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Introduction
The Algebraic Bethe Ansatz, which is the essence of the quantum inverse scattering method,

emerges as a natural development of the following different directions in mathematical physics: the
inverse scattering method for solving nonlinear equations of evolution [GGK1967], quantum theory of
magnets [Bet1931], the method of commuting transfer-matrices in classical statistical mechanics
[Bax1982]] and factorizable scattering theory [Yan1967,Zam1979]. It was formulated in our papers
[STF1979,TFa1979,Fad1984]. Two simple algebraic formulas lie in the foundation or the method:

RT1T2=T2 T1R (*)
and

R12R13R23= R23R13R12. (**)
Their exact meaning will be explained in the next section. In the original context or the Algebraic
Bethe Ansats T plays the role of the quantum monodromy matrix of the auxiliary linear problem and is a
matrix with operator-valued entries whereas R is an ordinary "c-number" matrix. The second formula can
be considered as a compatibility condition for the first one.

Realizations of the formulae (*) and (**) for particular models naturally led to new algebraic objects
which can be viewed as deformations of Lie-algebraic structures [KRe1981,Skl1982,SklNONE,Skl1985].
V. Drinfeld has shown [Dri1985,Dri1986-3] that these constructions are adequately expressed in the
language of Hopf algebras [Abe1980]. On this way he has obtained a deep generalization of his results of
[KRe1981,Skl1982,SklNONE,Skl1985]. Part of these results were also obtained by M. Jimbo
[Jim1986,Jim1986-2].

However, from our point of view, these authors did not use formula (*) to the full strength. We
decided, using the experience gained in the analysis of concrete models, to look again at the basic
constructions of deformations. Our aim is to show that one can naturally define the quantization (q-
deformation) of simple Lie groups and Lie algebras using exclusively the main formulae (*) and (**).
Following the spirit of non-commutative geometry [Con1986] we will quantize the algebra of functions
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Fun(G) on a Lie group G instead of the group itself. The quantization of the universal enveloping algebra

U(𝔤) of the Lie algebra 𝔤 will be based on a generalization of the relation

U(𝔤)=Ce-∞ (G)

where Ce-∞(G) is a subalgebra in C-∞(G) of distributions with support in the unit element e of G.

We begin with some general definitions. After that we treat two important examples and finally we

discuss our constructions from the point of view of deformation theory. In this paper we use a formal

algebraic language and do not consider problems connected with topology and analysis. A detailed

presentation of our results will be given elsewhere.

1. Quantum formal groups

Let V be an n-dimensional complex vector space (the reader can replace the field ℂ by any field of

characteristic zero). Consider a non-degenerate matrix R∈Mat(V⊗2,ℂ) satisfying the equation

R12R13R23= R23R13R12, (1)

where the lower indices describe the imbedding of the matrix R into Mat(V⊗3,ℂ).

Definition 1. Let A=A(R) be an associative algebra over ℂ with generators 1, tij, i,j=1,…,n,

satisfying the following relations

RT1T2=T2T1R, (2)

where T1=T⊗I, T2=I⊗T∈Mat(V⊗2,A), T=(tij)i,j=1n∈Mat(V,Λ) and I is a unit matrix in Mat(V,ℂ).

The algebra A(R) is called the algebra of functions on the quantum formal group corresponding to the

matrix R.

In the case R=I⊗2 the algebra A(R) is generated by the matrix elements of the group GL(n,ℂ) and is

commutative.

Theorem 1. The algebra A is a bialgebra (a Hopf algebra) with comultiplioation Δ:A→A⊗A

Δ(1) = 1⊗1, Δ(tij) = ∑k=1ntik ⊗tkj, i,j=1,…,n.

Let Aʹ=Hom(A,ℂ) be the dual space to the algebra A. Comultiplication in A induces multiplication

in Aʹ:

( 1 2,a)= ( 1 2)(a) =( 1⊗ 2) (Δ(a)),

where 1, 2∈Aʹ and a∈A. Thus Aʹ has the structure of an associative algebra with unit 1ʹ, where

1ʹ(tij)=δij, i,j=1,…,n.

Definition 2. Let U(R) be the subalgebra in A(R)ʹ generated by elements 1ʹ and ij(±), i,j=1,…,n,

where

(1ʹ,T1…Tk) = I⊗k, (L(+),T1…Tk) = R1(+)…Rk(+), (L(-),T1…Tk) = R1(-)… Rk(-). (3)

Here L(±)=( ij(±))i,j=1n∈Mat(V,U),

Ti=I⊗…⊗ T⏟i⊗… ⊗I∈Mat (V⊗k,A), i=1,…,k.

The matrices Ri(±)∈Mat(V⊗(k+1),ℂ) act nontrivially on factors number 0 and i in the tensor

product V⊗(k+1) and coincide there with the matrices R(±), where

R(+)= PRP, R(-)= R-1; (4)

here P is the permutation matrix in V⊗2: P(v⊗w)=w⊗v for v,w∈V. The left hand side of the

formula (3) denotes the values of 1ʹ and of the matrices-functionals L(±) on the homogeneous elements of
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the algebra A of degree k. When k=0 the right hand side of the formula (3) is equal to I. The algebra U(R)
is called the algebra of regular functionals on A(R).

Due to the equation (1) and
R12R23(-) R13(-)= R13(-) R23(-) R12

the definition 2 is consistent with the relations (2) in the algebra A.

Remark 1. The apparent doubling of the number of generators of the algebra U(R) in comparison
with the algebra A(R) is explained as follows: due to the formula (3) some of the matrix elements of the
matrices L(±) are identical or equal to zero. In interesting examples (see below) the matrices L(±) are of
Borel type.

Theorem 2.
1) In the algebra U(R) the following relations take place:

R21 L1(±) L2(±)= L2(±) L1(±) R21, R21L1(+) L2(-)= L2(-) L1(+) R21, (5)
where R21=PR12P and L1(±)=L(±)⊗1, L2(±)=I⊗L(±)∈Mat(V⊗2,Aʹ).

2) Multiplication in the algebra A(R) induces a comultiplication δ in U(R)
δ(1ʹ) = 1ʹ⊗1ʹ, δ( ij(±)) = ∑k=1n ik(±)⊗ kj(±), i,j=1,…,n,

so that U(R) acquires a structure of a bialgebra.

The algebra U(R) can be considered as a quantization of the universal enveloping algebra, which is
defined by the matrix R.

Let us also remark that in the framework of the scheme presented one can easily formulate the
notion of quantum homogeneous spaces.

Definition 3. A subalgebra B⊂A=A(R) which is a left coideal: Δ(B)⊂A⊗B is called the algebra of
functions on quantum homogeneous space associated with the matrix R.

Now we shall discuss concrete examples of the general construction presented, above.

2. A finite-dimensional example.

Let V=ℂn; a matrix R of the form [Jim1986-2]
R=∑i≠ji,j=1n eii⊗ejj+q ∑i=1neii⊗ eii+ (q-q-1) ∑1≤j<i≤n eij⊗eji, (6)

where eij∈Mat(ℂn) are matrix units and q∈ℂ, satisfies equation (1). It is natural to call the
corresponding algebra A(R) the algebra of functions on the q-deformation of the group GL(n,ℂ) and
denote it by Funq(GL(n,ℂ)).

Theorem 3. The element
detq T= ∑s∈Sn (-q) (s) t1s1… tnsn

where summation goes over all elements s of the symmetric group Sn and (s) is the length of the
element S, generates the center of the algebra Funq(GL(n,ℂ)).

Definition 4. The quotient-algebra of Funq(GL(n,ℂ)) defined by an additional relation detq T=1 is
called the algebra of functions on the q-deformation of the group SL(n,ℂ) and is denoted by
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Funq(SL(n,ℂ)).

Theorem 4. The algebra Funq(SL(n,ℂ)) has an antipode γ, which is given on the generators tij by:
γ(tij)= (-q)i-j t∼ji, i,j=1,…,n,

where
t∼ij= ∑s∈Sn-1 (-q) (s) t1s1… ti-1si-1 ti+1si+1… tnsn

and s=(s1,…,si-1,si+1,…,sn)=s(1,…,j-1,j+1,…,n). The antipode γ has the properties Tγ(T)=I and
γ2(T)=DTD-1, where D=diag(1,q2,…,q2(n-1))∈Mat(ℂn).

In the case n=2 the matrix R is given explicitly by
R= ( q000 0100 0q-q-110 000q ) (7)

and the relations (2) reduce to the following simple formulae:
t11t12 = qt12t11, t12t21 = t21t12, t21t22 = qt22t21, t11t21 = qt21t11, t12t22 = qt22t12, t11t22-

t22t11 = (q-q-1) t12t21
and

detq T=t11t22 -qt12t21.
In this case

γ(T)= ( t22-q-1t12 -qt21t11 ) .

Remark 2. When |q|=1 relations (2) admit the following *-anti-involution: tij*=tij, i,j=1,…,n. The
algebra A(R) with this anti-involution is nothing but the algebra Funq(SL(n,ℝ)). In the case n=2 this
algebra and the matrix R of the form (7) appeared for the first time in [FTa1986]. The subalgebra
B⊂Funq(SL(n,ℝ)) generated by the elements 1 and ∑k=1ntiktjk, i,j=1,…,n, is the left coideal and may be
called the algebra of functions on the q-deformation of the symmetric homogeneous space of rank n-1 for
the group SL(n,ℝ). In the case n=2 we obtain the q-deformation of the Lobachevski plane.

Remark 3. When q∈ℝ the algebra Funq(SL(n,ℝ)) admits the following *-anti-involution: γ(tij)=tji*,
i,j=1,…,n. The algebra Funq(SL(n,ℂ)) with this anti-involution is nothing but the algebra Funq(SU(n)). In
the case n=2 this algebra was introduced in [VSoNONE,Wor1987].

Remark 4. The algebras Funq(G), where G is a simple Lie group, can be defined in the following
way. For any simple group G there exists a corresponding matrix RG satisfying equation (1), which
generalizes the matrix R of the form (6) for the case G=SL(n,ℂ). This matrix RG depends on the
parameter q and, as q→1,

RG=I+(q-1) τG+O((q-1)2),
where

τG=∑i ρ(Hi)⊗ρ(Hi)2 +∑α∈Δ+ ρ(Xα)⊗ρ(X-α).
Here ρ is the vector representation of Lie algebra 𝔤, Hi, Xα its Cartan-Weyl basis and Δ+ the set of
positive roots. The explicit form of the matrices RG can be extracted from [Jim1986-2], [Bas1985]. The
corresponding algebra A(R) is defined by the relations (2) and an appropriate anti-involution compatible
with them. It can be called the algebra of functions on the q-deformation of the Lie group G.

Let us discuss now the properties of the algebra U(R). It follows from the explicit form (6) of the
matrix R and the definition 2 that the matrices-functionals L(+) and L(-) are, respectively, the upper- and
lower-triangular matrices. Their diagonal parts are conjugated by the element S of the maximal length in
the Weyl group of the Lie algebra 𝔰𝔩(n,ℂ):

diag(L(+))= S diag(L(-)) S-1.
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Theorem 5. The following equality holds:

U(R)=Uq (𝔰𝔩(n,ℂ)),

where Uq(𝔰𝔩(n,ℂ)) is the q-deformation of the universal enveloping algebra U(𝔰𝔩(n,ℂ)) of the Lie

algebra 𝔰𝔩(n,ℂ) introduced in [Dri1985] and [Jim1986]. The center of U(R) is generated by the elements

ck=∑s,sʹ∈Sn (-q) (s)+ (sʹ) s1s1ʹ(+)… skskʹ(+) sk+1sk+1ʹ(-)… skskʹ(-).

Remark 5. It is instructive to compare the relations for the elements ij(±), i,j=1,…,n, which

follow from (5), with those given in [Dri1985] and [Jim1986]. The elements ij(±) can be considered as

a q-deformation of the Cartan-Weyl basis, whereas the elements ii+1(+), i-1i(-), ii(+) are the -

deformation of the Chevalley basis. It was this basis that was used in [Dri1985] and [Jim1986]; the

complicated relations between the elements of the q-deformation of the Chevalley basis presented in these

papers follow from the simple formulae (3), (5) and (6).

Remark 6. It follows from the definition of the algebra Uq(𝔰𝔩(n,ℂ)) that it can be considered as the

algebra Funq((G+×G-)/H), where G± and H are, respectively, Borel and Cartan subgroups of the Lie

group SL(n,ℂ). Moreover, in the general case the q-deformation Uq(𝔤) of the universal enveloping

algebra of simple Lie algebra 𝔤 can be considered as a quantization of the group (G+×G-)/H. For the

infinite-dimensional case (see the next section) this observation provides a key to the formulation of a

quantum Riemann problem.

In the case n=2 we have the following explicit formulae:

L(+) = q ( e-hH/2 hX 0 ehH/2 ) , L(-) = 1q ( ehH/2 0 hY e-hH/2 ) ,

where the generators 1 and e±hH/2, X, Y of the algebra Uq(𝔰𝔩(2,ℂ)) satisfy the relations

e±hH2X= q±1Xe±hH2, e±hH2Y= q∓1Ye±hH2, XY-YX=-(q-q-1)h2 (ehH-e-hH)

which appeared for the first time in [KRe1981].

3. An infinite-dimensional example
Replace in the general construction of section 1 the finite-dimensional vector space V by an infinite-

dimensional ℤ-graded vector space V∼=⊕n∈ℤλnV=⊕n∈ℤVn, where λ is a formal variable (spectral

parameter). Denote by 𝕊 the shift operator (multiplication by λ) and consider as a matrix R an element

R∼∈Mat(V∼⊗2,ℂ) satisfying equation (1) and commuting with the operator 𝕊⊗𝕊. Infinite-dimensional

analogs of the algebras A(R) and U(R) - the algebras A(R∼) and U(R∼) are introduced as before by

definitions 1 and 2; in addition the elements T∼∈Mat(V∼,A(R∼)) and L∼(±)∈Mat(V∼,U(R∼)) commute

with 𝕊. Theorems 1 and 2 are valid for this case as well.

Let us discuss a meaningful example of this construction. Choose the matrix R∼ to be a matrix-

valued function R(λ,μ) defined by the formula

R(λ,μ)= λq-1R(+)-μqR(-) λq-1-μq ,

where the matrices R(±) are given by (4). The role of the elements T∼ is now played by the infinite

formal Laurent series

T(λ)=∑m∈ℤ Tmλm

with the relations

R(λ,μ)T1(λ) T2(μ)=T2(μ) T1(λ)R(λ,μ).

The comultiplication in the algebra A(R∼) is given by the formula

Δ(tij(λ)) =∑k=1ntik (λ)⊗tkj(μ), i,j=1,…,n.
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The following result is the analog of Theorem 3.

Theorem 6. The element

detq T(λ)= ∑s∈Sn (-q) (s) T1s1(λ)… Tnsn(λqn-1)

generates the center of the algebra A(R∼).

Let us now briefly discuss the properties of the algebra U(R∼). It is generated by the formal Taylor

series

L(±)(λ)= ∑m∈ℤ+ Lm(±)λ±m

which, act on the elements of the algebra A(R∼) by the formulae (3). The relations in U(R∼) have the

form

R(λ,μ) L1(±)(λ) L2(±)(μ) = L2(±)(μ) L1(±)(λ) R(λ,μ), R(λ,μ) L1(+)(λ) L2(-)(μ) = L2(-)(μ) L1(+)(λ)

R(λ,μ).

Due to lack of space we shall not discuss here an interesting question about the connection of the

algebra U(R∼) with the q-deformation of loop algebras, introduced in [Dri1986-3]. We shall only point

out that the algebra U(R∼) has a natural limit when q→1. In this case the subalgebra generated by

elements L(+)(λ) coincides with the Yangian Y(𝔰𝔩(n,ℂ)) introduced in the papers [Dri1985,KRe1986].

4. Deformation theory and quantum groups
Consider the contraction of the algebras A(R) and U(R) when q→1. For definiteness let us have in

mind the above finite-dimensional example. The algebra A(R)=Funq(G), when q→1, goes into the

commutative algebra Fun(G) with the Poisson structure given by the following formula

{g⊗,g}= [τG,g⊗g]. (8)

Here gi j, i,j=1,…,n are the coordinate functions on the Lie group G. Passing from the Lie group G to

its Lie algebra 𝔤, we obtain from (8) the Poisson structure on the Lie algebra

{h⊗,h}= [ τG,h⊗I+ I⊗h ] . (9)

Here h=∑i=1dim 𝔤hiXi, where Xi, i=1,…,dim 𝔤, form a basis of 𝔤. If we define h(±)=h±+hf2, where

h± and hf are respectively the nilpotent and Carton components of h, we can rewrite the formula (9) in the

form

{ h(±)⊗, h(±) } = [ τG,h(±) ⊗I+I⊗h(±) ] ,

{ h(±)⊗, h(∓) } =0. (10)

(This Poison structure and its infinite-dimensional analogs were studied in [RFa1983] (see also

[STS1985,FTa1987]). Thus the Lie algebra 𝔤 has the structure of a Lie bialgebra, where the cobracket

𝔤→𝔤∧𝔤 is defined by the Poisson structure (10).

Analogously, the contraction q→1 of the algebra U(R) leads to the Lie bialgebra structure on the

dual vector space 𝔤* to the Lie algebra 𝔤. The Lie bracket on 𝔤* is dual to the Poisson structure (10) and

the cobracket 𝔤*→𝔤*∧𝔤* is defined by the canonical Lie-Poisson structure on 𝔤*.

This argument clarifies in what sense the algebras A(R) and U(R) determine deformations of the

corresponding Lie group and Lie algebra. Moreover it shows how an additional structure is defined on

these "classical" objects. Returning to the relations (*) and (**) we can now say that (*) constitutes a

deformation of the Lie-algebraic defining relations with tij playing the role of generators, R being the

array of "quantum" structure constants, and (**) generalizing the Jacoby Identity.
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