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Buffer Manager Software Design

Abstract:

The work that the Buffer Manager must do to confrol the movements of
events through the data acquisition pipetines is analyzed. Based on this
analysis, a conceptual design for the Buffer Manager is developed
step-by-step by gradually adding requirements. As the conceptual design
advances, software elements are described which implement the design.
The result is a description of the single partition version of the Buffer
Manager which is easily extensible to the muitiple partition case.

I L.

Section 3 of CDF-183, "Dataflow within the CDF Data Acquisition System”,
gives the fundamental definition of the Buffer Manager's task and is quoted
below.

The Buffer Manager is the Master Intelligence contralling the flow of data
through this Pipeline. It has responsibility for scheduling the processing
elements at each stage (hereafter known as Pipeline Stege Elements or
PSEs) and maintaining tables of statistics for each. In order toprovide
flexibility in configuring the system, PSEs may be dynamically added to or
removed from the pipeline such that the availability of another Event Builder,
for example, may be quickly and painlessly utilised. A further requirement
is that the dataflow should be independent of whether part (or all) of the
pipeline is implemented in FASTBUS hardware or in software on a YAX. Thus
the functionality of the various PSEs and the protocols by which they
communicate with the Buffer Manager should be decoupled as much as
possible from their implementation and the transmission medium via which
they communicate. Stmilarly the Buffer Manager itself may initially be
implemented as a process (or processes) on a YAX. Other than limiting the
number of YAXs that may be associated with a partition, this software or
hardware implementation should be transparent.

It is assumed that the reader is familiar with the remainder of that
document. The rest of this document describes the portion of the Buffer
Manager which manages the dataflow; the statistical section is discussed
elsewhere,
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The reader should be warned that the names of the messages sent and
received by the Buffer Manager have been changed in this document
relative to CDF-183 to make their function less ambiguous. However, the
design of the dataflow software has very little to do with the content and
meaning of the messages sent. Adapting to the new names should not be
too difficult.

CDF-183 describes the dataflow control messages seen by each PSE. This
is useful in the design of an individual PSE but does not make very clear
what happens from the Buffer Manager's point of view. Figure 1 shows all
of the dataflow messages sent and received by the Buffer Manager to move
a single event through a pipeline. The pipeline in this case has four
stages, Trigger Supervisor, Event Builder, Level 3 and Consumer Computer,
and the event is assumed to pass one of the trigger mask requirements.
Time flow is from top to bottom of the figure.

This is a reasonably complex sequence of messages, but what makes the
Buffer Manager's life really complicated is that the sequence is not fixed.
PSEs can be added or subtracted from the pipeline dynamically. For
example, Level 3 might develop a problem and be taken out of the system.
In response, the Buffer Manager must stop dealing with Level 3 messages
and route the data from the Event Builder to the Consumer Computers
directly; none of the other PSEs need be aware that anything has happened.
Also, Figure 1 represents the messages required to move only one event.
The pipeline will actually have multipie events in it at various PSEs. The
sequence of messages for any given event may look like Figure 1, but the
sequence as seen by the Buffer Manager will be an interlaced set from all
of the events. Furthermore the Buffer Manager may be running several
pipelines at once, each with a different structure and each with many
events. Finally, multiple pipelines may share physical elements, eg the
Event Builder. In this case the Buffer Manager not only has to determine to
which event and to which pipeline messages from the event builder refer,
but it may temporarily have to block access to the Event Builder for an
event in one pipeline because all of the Event Builder's resources are
occupied with events in different pipelines. It must then remember that
someone has been waiting when resources are released.

An attempt to design at one stroke a solution which deals with all of these
possible conditions, options, and situations is virtually certain to fail.
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The problem must be broken down into its smallest manageable and
meaningful parts and a full solution developed step-by-step from the
pieces.

Analysis:

The simplest job that the Buffer Manager has to do is move a single event
between two PSEs of a isolated pipeline. Even then there are two cases.
Because data transactions on Fastbus are always between a master and a
slave, one can either have the Fastbus master pushing data to the
following slave (see Figure 2) or have the master pulling data from the
preceding slave (see Figure 3). In either case, the Buffer Manager receives
a message from the upstream PSE declaring the availability of an event.
The Buffer Manager then decides on the destination of the event, sends a
message to the master of the transaction requesting that the event be
moved and waits for acknowledgement that the move has occurred.
Finally, the Buffer Manager sends a message to the slave of the
transaction reporting that the event has been moved.

This action of the Buffer Manager can be summarized by the following
piece of pseudo-code:

LISTING 1:
REPEAT
Hait..for_event_ready(current_PSE);
Datermina.next_|l ink(pipel ine_ID, current_PSE, pipelina.link);
Send_stort_move_messcagalpipel ina.l ink .Master);
Awai t_move_complete_message(pipel ine_I ink.Haster);
Send_move_repor

tmessage(pipel ine_link.Slave);
current.PSE := pipeline_link.destination;

UNTIL doomsday;

This pseudo-code fragment, like the others in this document, is written is
a Pascal-like language. This is because Pascal is much clearer than
Fortran would be for some of the later complications and because the
Buffer Manager is actually written (mostly) in Pascal.

Note that in principle a given PSE can be either master or slave. For
example, some of the proposals discussed for Level 3 have that PSE act as
a master to pull data from the preceding stage, but act as a slave to the
following Consumer Computer. To provide maximum freedom for the



Figure 2

Master-to-Slave, Single Event Transactions

( l Processing Done ( Master Pushing pata )
Buffer Manager
Push Event
Push Ok

\

Start Processing { Data Slave PSE




Figure 3

Slave-to-Master, Single Event Transaction

4 N

Buffer Manager ¢« Frocessing Done

Data Slave PSE )

Pull Event/Start Master Pulling Data

Pull Ok

free Buffer

AN AN

Data Slave PSE ]




CDF-326 July 13, 1985

designers of the PSE hardware, it is better to base the Buffer Manager's
actions on the role of a PSE in a given transaction rather than on the
details of the PSE itself. For this reason, the Buffer Manager deals with
the concept of a pipeline 1ink, containing information about the roles of
the participating PSEs as well as the PSEs themselves. By dealing with
roles, the main loop of the pseudo-code can treat the two cases of Figures
2 & 3 identically.

Introducing the concept of a pipeline link also allows a clean separation of
the topological functions of the Buffer Manager from the dataflow
functions. PSEs can be statically defined objects with characteristics
reflecting the particular hardware in isotation from its actions in a
pipeline. The requests to the Buffer Manager to build and modify pipelines
translate into dynamic modifications of the pipeline_link structures. The
only interface to the dataflow module required is the look-up procedure
Determine_next_link. This procedure completely hides the implementation
of the topological actions. For example, the version of the Buffer Manager
for the September 1985 run has the pipeline defined statically via
conditional compilation. Later versions will implement the dynamic
insertion and deletion of PSEs. This change will require no modification to
the dataflow section of the code whatsoever.

Step-wise design:

Single link/One event -

There are now enough concepts in hand to begin designing the system
software. Figure 4 presents two views of the situation described above.
The upper portion of the figure is an abstract picture of the relationships
between software components, while the lower portion sketches actual
software structures. Inboth cases, the figure represents a single pipeline
link with a single event at the upstream PSE. The link and the PSEs are
realized as passive data records, /e, they contain no executable code, only
data. The PSE record, at this point, only needs to contain a PSE identifier.
These records are created when the Buffer Manager is told of the existence
of anew PSE. The Link record contains pointers to the source and
destination PSEs and master/slave pointers which specify the role each
PSE should play. in the data transaction. These records are created and
filled in when the topological section of the Buffer Manager adds a new
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stage to a pipeline. The Event Manager is the active portion of the system.
ft actually executes the code of Listing 1. It keeps in its own local
storage a pointer to the Current PSE, that is, the stage where the event
data reside at the start of the transaction. A single pass through the code
will move the data across the link and point the Event Manager to the new
data location.

Multiple link/One event -

Figure S represents the case of a single event moving through an extended
but finite pipeline. The new feature required is the proper handling of the
ends of the pipeline. First, the ends must be detectable, hence the added
Boolean fields to the Link records -- Terminal_link and Source_link.
Second, the Event Manager must behave appropriately at the ends. If the
Event Manager's job is taken to be to shepherd a single event through its
pipeline, and if the Event Manager starts with its Current PSE pointer
directed to the initial PSE, then the Event Manager can simple repeat the
loop of Listing 1 until it reaches the last PSE and then terminate itself.
The pseudo-code becomes: |

LISTING 2:
REPEAT

Hai t_for_svent_ready(current_PSE);
Datermine_naxt_| ink{pipel ine..|D, current_PSE, pipeline_link);
Send_start_move_messagelpipel ine.lirk.Master),;
fiwal t_move_complete_messoge(pipel ine_link.Master);
Send_rove_report_messaoge(pipel ine_link.Slave);
IF pipel ine_link. terminal..link THEN
ELsémInate_Euent_nanger

current PSE := pipeline_link.destination;
UNTIL doomsday;

Multiple aisjoint pipelines/One event per plpeline-

The pseudo-code presented so far, although simple and comprehensible,
can only deal with a universe containing a single event. First, there is
only one Current_PSE pointer, so only one event can be tracked at a time.
Second, the code expects all inbound messages to come from the PSEs of
the current pipeline link and be about the current data transaction; it has
no idea what to do with anything else. Third, once the event is delivered
to the end of the pipeline, the Event Manager terminates and will not
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respond to any other messages. Since the Buffer Manager must deal with
multiple events, the code of Listing 2 seems seriously inadequate.
However, with the addition of proper underpinnings, it will in fact work in
the multiple event situation.

Consider the case of two disjoint pipelines each with only one event in it.
Then the code in Listing 2 works correctly provided (1) there are two
Event Managers, one devoted to each event, and (2) each Event Manager only
receives messages about its own event. Both of these conditions can be
met in a straightforward manner by embedding Listing 2 into a
multiprocess environment. We create an Event Manager process for each
event and this process runs its own copy of Listing 2. In addition, we
create another process which receives all messages from Fastbus and
distributes them to the appropriate Event Managers based on an Event ID.
Figure 6 illustrates this situation.

The Receiver process operates as follows. In the idle condition, the
Receiver process waits for messages on its input queue. The Fastbus
interface places incoming messages onto this queue and wakes up the
Receiver process. The Receiver then examines the type field of the
message. If the message type is New._event, then the Receiver creates a
new Event Manager process, put the message on the Event Manager's -
message queue, points the new Event Manager's Current PSE at the source
PSE specified in the message’'s Source field and makes the Event Manager
ready to run. If the message type is not New_event, then there already is
an Event Manager in the system for this event. The Receiver uses the
Event_ID field of the message to locate the proper Event Manager, places
the message on the Manager’s queue and reactivates the process. In either
case, the Receiver then relinquishes control of the CPU while any Event
Managers are ready to run. When all activity generated as a consequence of
the arrival of the Fastbus message stops, the Receiver checks its input
queue for another message.

Note that the Event_ID is assigned by the Buffer Manager, not by the PSEs.
The bottom section of Figure 6 shows the new data structures needed for
message distribution. Messages contain Source, Type and Event_ID fields
as well as an Info field. The latter field is of variable length and contains
such things as the trigger mask words which can be ignored by the
Recelver process. In order to link messages into queues, each message
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contains a Link field which points to the next item in its queue. The Link
field is added to the message after its reception; it does not exist on the
Fastbus.

The Receiver process has an External Message Queue header to which the
hardware delivers Fastbus messages. The Receiver also has a means of
locating an Event Manager from a message's Event_ID. In the first
implementation, the Event_ID is actually the virtual address of the
associated Event Manager. This gives an extremely fast lookup, but may
not be reliable enough, so may change in future versions.

Each Event Manager process acquires two new local variables. One is an
Internal Message Queue header to which the Receiver process delivers
messages. For use by the Determine_next_link procedure, the Event
Managers also have a Pipeline_ID variable. With these adjustments, each
Event Manager can run the pseudo-code of Listing 2 with no problems,
thereby giving the Buffer Manager as a whole a multiple event capability.
Note that there is no need to worry about initialization of the loop in
Listing 2; the Receiver process will set up each Event Manager properly.
Also, there is no problem with the Event Manager terminating when it has
delivered its event to the end of the pipeline; another Event Manager will
be created to handle the next event. ’

The principle concern with the multiprocessing approach is the time spent
switching contexts, particularly since Buffer Manager response is vital to
the operation of the whole Data Acquisition System. If each Event Manager
were a separate VMS process, the system could not possibly be fast enough
since each context switch would require about 1 msec. on a pVAX |1, Even
using the faster kernel of VAXEIn would take about 300 psec. On the other
hand, both of these systems were designed to deal with a much more
complex multiprocessing environment than is needed for the Event
Managers. For example, both systems are event driven, preemptive,
priority based systems. Determining which process should run next can be
complicated in such systems. For the Buffer Manager, however, all the
processes can have the same priority and each process can use the CPU
until it must wait for a message or other resource, e, preemption due to
external events is not required. Under these conditions, the
multiprocessing system becomes very simple. In fact the "processes’
become coroutines. (See, for example, Knuth, Fundamental Algorithms,
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Section 1.4.2, "Coroutines”, or Wirth, Programming in Modula-2, Section
30, "Concurrent processes and coroutines”. Note that exactly the system
needed here is provided as a language feature in Modula-2.) As
implemented, the context switch consists of a CALLS instruction with two
parameters and all registers saved, a swap of Frame Pointers, and a
return. The procedure takes about 20 psec.

With the context switch reduced to such a short time, the next level of
software overhead becomes a concern. A well layered system is highly
desirable to assure reliable synchronization, but it can lead to the
invocation of many procedures between a high level call, like
Wait_for_event_ready, and the actual context switch. If each invocation
uses the relatively slow CALLS instruction, the effective context switch
time can add up to unacceptable levels. However, one of the features of
the EPascal compiler is its ability to implement designated Procedures as
inline code rather than as actual subroutines. This not only removes the
CALLS instructions, but also allows the optimization modules of the
compiler to work through procedure invocations. With only a preliminary
effort at optimization using this technique, the Buffer Manager software
can receive a message, activate the proper Event Managers, run the proper
resource synchronization checks, build and send the appropriate reply
message, all in about 1 msec. '

One other overhead that could be a problem is the creation and termination
of Event Manager processes. This has been reduced by not actually
destroying terminated Event Managers but placing them in a pool of unused
processes. When a process is to be created, the Process Manager module
first tries to reuse a process from the pool. Only if the pool is empty does
the Process Manager actually create a new process structure via the
memory management services. The pool is initially empty and no
processes are ever destroyed; the number of processes in the Buffer
Manager rapidly adjusts itself to a level sufficient for the peak demand
seen by the system.

Multiple pipelines sharing PSES/IMUILiple events péer pipeline-
While the situation of Figure 6 is a legitimate multiple event case, it was

contrived specifically to avoid two events trying to access the same PSE
at the same time. Such collisions can arise if a PSE, eg, the Event
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Builder, is shared between pipelines. A collision can also happen if an
event in a pipeline catches up to a previous event in the same pipeline. In
either circumstance, the colliding events must coordinate their access to
the PSE in dispute, otherwise events can be lost. For example, the Event
Builder may be able to handle only one event at a time. If the Event Builder
were reformatting one event and was ordered to read out another, the first
event could be lost and the pipeline flow seriously confused. To avoid
this, the Buffer Manager should delay sending the readout request until the
previous event has been moved to the next PSE.

There are two major design problems created by the advent of collisions.
One is to decide what resource management discipline to use for the PSEs.
The Event Builder might be able to deal with only one event at a time. On
the other hand, it might be able simultaneously to read one event from the
front end, format a second event, and send a third to Level 3. Then the
decision to delay a request for service depends in a complex way on the
current state of the Event Builder. Level 3 will be able to service many
events at once, but the internal destination of the next event has to be
maintained by the Buffer Manager. Since none of the hardware PSEs has
yet been fully designed, and each is likely to go through several
incarnations, no fixed resource management discipline can be built into
the Buffer Manager; anything should be possible. '

The second problem is how to implement the synchronization. Sharing
resources among multiple processes is the fundamental problem of
operating systems. Early operating systems tended to have a massive,
monolithic kernel which managed everything. Such kernels are nearly
impossible to code correctly and are far too inflexible to handle the
dynamic creation of PSEs and their insertion and removal from pipelines.
A more modern approach is to control resources in a distributed fashion
through the use of monitors. (See, for example, Brinch Hansen, The
Architecture of Concurrent Programs, Section 4.3 "Monitors®, or Bowen and
Buhr, The Logical Design of Multiple-Microprocessor Systems, Chapter 3,
"Monitors".) A monitor is a collection of procedures for manipulating a
resource along with a mechanism for assuring the orderly execution of
those procedures by multiple processes.

In the following discussion, it is assumed that the reader is familiar with
semaphores as software synchronization constructs. (See, for example,
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Bowen and Buhr, The Logical Design of Multiple-Microprocessor Systems,
Section 1.2.3, "Critical Regions -- Semaphores”, or VAXELN Programming,

DEC Document Order Number: AA-Z451A-TE, Version 1.0, pp 1-29 ff.
VAXELN semaphores are not used for speed reasons. They have been
reimplemented in the coroutine context, but their abstract behavior
remains the same.)

There are, in fact, two synchronization problems when trying to share
resources. One is synchronizing access to the resource and the other is
synchronizing access to the controlling software. A generic monitor
provides both types of control by providing two data types and four
procedures which act on variables of those types. (The Buffer Manager
uses monitors of type giadiator. See Bowen and Buhr, The Logical Design
of Multiple-Microprocessor Systems, Section 3.4.2, "Monitor of Type
Gladiator" and Section 3.3.4, "Gladiator”.) The two data types are the
condition_variable, which is basically a process queue, and the
this_monitor, which is a record containing a semaphore called the monitor
gate and a condition_variable called the eligible queue. A given monitor
may have any number of condition_variables, but must have one and only
one this_monitor. The four procedures are Enter and Leave, which take a
variable of type this_monitor as argument, and Sleep and Awaken, which
take a vartable of type condition_variable and a variable of type
this_monitor as arguments.

Each procedure of a specific monitor begins with the statement
Enter(Here) and ends with the statement Leave(Here) where Here is the
this_monitor variable which defines the monitor is question. The Enter
routine causes the calling process to wait on the gate semaphore. If no
other process is actively executing in one of the procedures of the _
monitor, the gate will be open and the calling process will proceed. The
Leave routine checks to see if there are any processes waiting in the
eligible queue. (As we shall see in a moment, processes in the eligible
queue are ones which have been blocked in the monitor waiting on a
condition_variable.) If so, it makes the first one ready to run. Otherwise,
it signals the gate semaphore and proceeds to its asynchronous duties.
The actions of Enter and Leave on the semaphore of Here make the
procedures of the monitor collectively into a conventional critical region.
This is the mechanism by which a monitor solves the problem of
controlling access to the resource synchronization code; no more than one

10
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process can be actively executing in the monitor at one time.

Sleep and Awaken, along with the action of Leave on the eligible queue,
provide the means by which resources can be controlled. Their behavior is
best explained by a simple example.

LISTING 3:
MODULE producer._consumer;
EXPORT putwork, get_work;
INCLUDE gladiator, buffer_definition;

VAR
here: this_monitor;
waiting-for.work, waiting_for_empties: condition variable;
work, empties: buffer_queue;

PROCEDURE put_work(UAR buff: buffer_pointer);
BEGIN
enter(here);
insert.buffercbuff, work),;
awaken{wai ting_for_work, here);
IF empties. ampty THEN
sleep(waiting_for_empties, here);
buff:=remove_buffer(empties);
leavechere);
END {put.work};

PROCEDURE get_work(UAR buff: buffer_pointer),;
BEGIN
enter(hare);
insert_buffer(buff, empties);
awaken(waiting_for_ampties, hera);
IF work.empty THEN
sleep{waiting_for_work, here);
buff:=remove.buffer{work);
leavachere);
END {get_work};
END {producer_consumer}.

Listing 3 gives the solution to the classic producer-consumer problem in
terms of calls to a monitor. The monitor consists of the two routines
put_work, used by producers, and get_work, used by consumers. The
routines are symmetrical, so the discussion will concentrate on put_work.
Once the calling producer returns from Enter, it has exclusive access to
the monitor. It deposits its full buffer on the work buffer queue and calls
Awaken with the waiting_for_work condition variable. If there are no
consumers waiting in the condition variable’s process queue, the routine
does nothing and returns. If there are processes waiting, Awaken takes

11
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the first waiting process, moves it to the eligible queue of Here and then
returns. In either case, the producer continues on in sole control of the
monitor. The producer then checks the empty buffer queue. If a buffer is
available, the producer removes it and leaves the monitor. If a buffer is
not available, the producer cannot continue its functions; it calls Sleep
with the waiting_for_empties condition variable. Sleep checks the
eligible queue and makes the first process, if any, ready to run. If there
are no eligible processes, Sleep makes the producer signal the monitor
gate, thereby releasing its exclusive access to the monitor. In either case,
Sleep then causes the producer to place itself on the waiting_for_empties
process queue and generates a context switch to the first process on the
ready to run queue. Note that if there had been a consumer waiting on the
waiting_for_work condition variable, it was moved to the monitor-wide
eligible queue and would be made ready to run by the producer either
Sleeping or leaving the monitor.

Assume that the producer-consumer system contains only one producer,
one consumer, and one buffer and that the producer originally has the
buffer. Then the consumer will be waiting in the waiting_for_work queue,
by virtue of the call to Sleep in get_work, and will be made eligible by the
producer’s call to Awaken. When the producer Sleeps in turn, the consumer
will be reactivated and return from its call to Sleep 7 get_work/ A work
buffer is then guaranteed to be available (the producer just put it there
and the monitor gate has not been opened, so no other process could have
taken it away); the consumer removes it and leaves the monitor. Since
there are no processes eligible (the producer is waiting on the
waiting.for_empties queue) the exit of the consumer opens the monitor
gate. Therefore, once the consumer has transformed the buffer into an
empty one, it is able immediately to pass through the Enter call of
get_work and Awaken the producer. The producer and consumer then
continue to trade the buffer back and forth in a controlled fashion.

The above discussion uses single buffers, consumers, and producers for
ease of discourse; the system works equally securely with any positive
numbers of processes and buffers.

One point in particular is worth notihg about monitors and the code of

Listing 3. It is the fact that specific condition variables and their
associated this_monitor variable together make up the heart of monitor.

12



CDF-326 July 13, 1985

It would be a catastrophe if one were to call Awake or Sleep with a
condition variable from one monitor and a this_monitor variable from
another monitor. The EXPORT controls of EPascal prevent this from
happening. Since only the monitor routines, put_work and get_work, are
exported and not the crucial variables, the compiler will ensure that no
other portion of the system can access and misuse them, while still
allowing the variables to be shared among the procedures within the scope
of the monitor code itself.

Condition variables allow the implementation of a wide variety of
resource management schemes. However, in the absence of any particulars
about the resources contained in the PSEs, some skeletal form of resource
needs to be invented so that the monitor interface can be defined and the
software design proceed. An abstraction which appears adequate to the
task is the idea of PSE Ports. Each PSE is assumed to have an unspecified
number of input data Ports and an unspecified number of output data Ports.
Before a data transaction can take place across a pipeline link, the Event
Manager must acquire an output Port from the upstream PSE and an input
Port from the downstream PSE. If a Port is not available, the Event
Manager is blocked and the data transaction is delayed. Once the data are
moved, the Ports must be released hy the Event Manager. Each PSE monitor
then needs two routines, one for the Event Manager to acquire a port and
one to release it; the details of when and why Ports are available can be
hidden within the specific monitor for a given type of PSE.

There remains a problem. Although the use of abstract Ports as resources
to be controlled allows the definition of a fixed argument list for the
Event Manager to use when accessing a PSE's monitor, the particular
routine, and therefore the particular monitor, to call depends on the PSE.
One has to have a release_TS routine, a release_EB routine, &c. If these
routines are presented directly to the Event Manager, then it has to
actively decide which routine to call. This makes the Event Manager much
more cluttered and complex, and virtually assures that one day the Event
Manager will call release_EB when it should have called release_L3 with
disasterous results.

Fortunately, EPascal provides a way to deal with this difficulty. Each PSE

record contains two additional fields. One is a pointer to that PSE's
acquire_port routine and the other points to the proper release_port

13
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routine. The Event Manager code then can indirectly invoke the routine
pointed to by the standard PSE field without knowing what that routine
actually is. By making the creation of the PSE data block a function of the
monitor Module, one can easily assure that the right routine is associated
with the given PSE. Futhermore, by exporting only the PSE creation
function, no other component of the system can locate the port routines
and call them inappropriately.

At this point, collisions are firmly under control. Figure 7 illustrates the
type of situations that have been under discussion and the additions to the
data structures required. Note that each Event Manager has acquired fields
to hold Port identifiers so that when the Ports are released, the monitors
known which resource is being returned. For the reader interested in how
this whole discussion of monitors translates into code, Listing 4 gives the
pipeline_definition Module, which defines the generic aspects if a PSE, and
the EB_Monitor Module, which is a specific implementation of a PSE
monitor.

LISTING 4:
MODULE pipelina_dafinition;
TYPE

PSE-ID = (DRO.Buffer_ tanager, DAQ_Trigger_Supervisor,
DRQ.Event.Bui lder, DAQ_Level. 3,

DAQ_Consumer_Computer),;

direction = (Ingress, Egress);
pipeline.link = RECORD
source: *PSE.control_block;

destination: “PSE_control_block.
master: PSE_ID;
slova: PSE_ID;

terainai_link: BOOLEAN;
source_|link: BOOLEAN;
END;

PSE_control_block = RECORD
PSE: PSE..ID;
acquire_port: “RANYTYFE;
release_port: “ANYTVPE;
END;

FUNCTION create PSE: “PSE_controi_block;
FUNCT ION_TYPE;

PROCEDURE acquire(port: INTEGER; 10:direction; this:*PSE_control_block);
PROCEDURE_TYPE;

PROCEDURE release(port: INTEGER; this:*PSE.control_block);
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PROCEDURE_TYPE ;
END {pipeline_definition}.

INCLUDE gladiator;
INCLUDE pipel ine_definition;

UAR
here: this_monitor;
event.builder..busg BOOLERN;
wai ting_for_event_bui lder: condlt:m.uwiwle;

FUNCTION create_EB OF TYPE create PSE;
UAR new_EB: “PSE_control_block;
BEGIN
NEW(new_PSE);
HITH new. PSE® DO
BEGIN
PSE :=DAQ.Event_Bui I der;
acquire_port:=fAddress{(acquire_EB);
release_port:=fiddressi(release EB);
END;
create FB:=new PSE;
END {create_PSE};

PROCEDURE acquire_EB OF TYPE acquire;
BEGIN
enter(here);
IF event_buli lder_busy THEN
sleap(waiting_for_event_builder, hera);
event_bul Ider_busy:=TRUE;
port:=1,
leavelhaere);
END {acquire.EB};

PROCEDURE release_EB OF TYPE rejease;
BEGIN
anter(haere)’;
event_bui |der_busy:=FRLSE;
port.=0;
awaken{waiting_for_svent.builder, hare),;
leavachera);
END {release_EB};

END {EB.Monitor}.

Meanwhile, what has become of the Event Manager code? Very little, in
fact. Listing S gives the new Event Manager loop. Save for the addition of
the four INVOKE statements, the code is effectively unchaged from the
no-collision case. Because of the indirect access to the Port routines and
the power of the monitor concept, this code will work regardiess of how
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the hardware PSEs are ultimately implemented.

LISTING S:
REPERT
Hai t_for_event_ready(current PSE);
Deteraine.next_| ink{pipeline.iD, current. PSE, pipeline_link);
HITH pipeline_link® DO
BEGIN
INVOKE (source® .acquire_port, acquire, Out_port, EGRESS, source);
INVOKE(destination®. acquire_port, acquire, In_port, INGRESS,
destination);
Sand_stort_move_maessoga(Master);

fiwai t-move_complete_message(Master);
INVOKE(source®.release.port, release, Out_port, source);
INVOKE(destination® release_port, release, In_port, destination);
t_message(Slave);
IF terminal_1ink THEN
terminate_Event_manager
ELSE
currant PSE := dastination®.PSE;
END {HiITH};
UNTIL doomsdoy;

Cloned PSEs-

There remains one topic to be discussed. In the final multiple partition
case, there will be a substantial number of PSEs but a smaller number of
PSE types. (See the upper portion of Figure 8.) The resource management
characteristics of a given PSE are determined by its type, so it would be
useful to be able to reuse the code for a given monitor type for each
instance of the corresponding PSE. Unfortunately, a monitor by its very
nature must include local variables, the this_monitor variable and the
condition variables at least, which survive across invocations of the
monitor's procedures. in the examples of Listings 3 & 4, these variables
have been declared as static variables permanently within the scope of the
monitor Module itself. Since there is therefore a one-to-one match
between monitor Modules and local variables, there must be a separate
Module for each PSE rather than each PSE type. However, a little
prestidigitation will get us around this limitation.

First, instead of declaring the condition variables, &c. needed by a monitor
Module as static variables, they are collected together to form a TYPE
declaration of a local_variables record. Any variable of this type now
represents a distinct instance of a monitor of the type specified by the
monitor Module: Note that the content of the local_variables records will
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vary from monitor type to monitor type. Second, a field is added to the
PSE record which is a pointer to a local_variables record of arbitrary
structure. (Putting the local variables directly into the PSE record would
lead to a very complicated, confusing, and therefore probably wrong,
variant record structure for the PSE record.) Third, the create_PSE
routine in each monitor Module generates a new local_variables block each
time it is called and installs the proper pointer into the PSE record locals
field. Finally, the monitor routines are modified to act on the "local”
variables found by following the locals pointer in the PSE record. The
lower section of Figure 8 illustrates the situation and Listing 6 shows the
modified code for the example monitor. The Event Manager is completely
uneffected by the change.

LISTING 6:
MODULE pipal ina_dafinition;
TYPE
PSE_ID = (DARQ_Buffer_Manager, DAQ_Trigger. Supervisor,
DRQ_Event.Builder, DAQ.Level_3,
DRQ_Consumer_Computer);

direction = {Ingress, Egress);
pipeline_link = RECORD

source: *PSE_control_block;
destination: *PSE_control_block;
naster: PSE_ID;
slave: PSE_ID;

terminal _1ink: BOOLEAN;
source_link: BOOLERN;
END;

PSE_control. block = RECORD
PSE: PSE_ID;
aocquire_port: “ANYTYPE;
release_port: “ANYTYPE;

‘Tocals: ANYTYPE;
END;
FUNCTION create PSE: “PSE_control_block;
FUNCT ION_TYPE;

PROCEDURE acquirelport: INTEGER; 10:direction; this:“PSE_control.block);
PROCEDURE_TVPE ;

PROCEDURE releasa{port: INTEGER; this:*PSE_controi_block);
PROCEDURE_TVYPE ;
END {pipalina_dafinition}.

MODULE EB_Moni tor;
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EXPORT create_EB;
INCLUDE gladiator;
INCLUDE pipeline_dafinition;

TYPE

local _variablies = RECORD
here: this_monitor;
event_bui [der_busy: BOOLERN,
waiting_for_avent_builder: condition_variable;
END;

FUNCTION create EB OF TYPE create PSE;
VAR

new.EB: “PSE_control_biock;
new_instonce: “local._variables;
BEGIN
NEW(naw PSE );
WITH new PSE® DO
BEGIN
PEE : =DRO_Event_Bui Ider;
acquire_port:=fiddress(acquire.£B);
release.port:=Rddress(release EB);
NEW(naw_instonce);

iocals:=new..instance;
END;

cre::te.EB :=new.PSE;
END {create PSE};

PROCEDURE acquire.EB OF TYPE acquire;
BEGIN

HITH this®. locals€:: local. varicbles DO
BEGIN

entar(here);

IF event_builder_busy THEN
sleapi(waiting_for.event_builder, here);
event_bui | der_busy:=TRUE;
port:=1;
leavaecthere);
END {WITH};
END {acquire_EB};

PROCEDURE release EB OF TYPE release;
BEGIN
HITH this®. locals®: : local_variables DO
BEGIN
enter(here);
event_bui |der_busy:=FRLSE;
port:=0;
awaken({wai ting_.for_event_ builder, here),;
leavechere);
END {HITH};

END {release EB};

END {EB_Monitor}.
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With these changes, the task of adding a new class of PSE is strictly
limited to writing a well-defined prototype monitor Module. The
topological section of the Buffer Manager only needs to know about the
existence of the PSE type; it can clone off as many copies as it needs and
connect them together as it sees fit. The topological module only deals
with the invariant PSE record structure. The Event Managers are oblivious
to the whole issue; they aren't even aware that there are different PSE
types.

Extensions:

Essentially everything described above has been implemented in the
prototype Buffer Manager for the September 1985 run. The principle
missing component is the dynamic topological module. For now, a choice
of pipeline configuration is made at compile time; the arrangement of
PSEs into pipeline links is then a fixed feature of the Buffer Manager
image.

The creation of pipeline links is the basic job of the topological section.
This task only depends on the generic PSE record. Appropriate linkage
fields to build the desired PSE network will have to be added along with
routines to manage that network. The ability to clone new PSEs is already
provided in the create_PSE routines. They are driven by the PSE record
structure defined elsewhere and will not care if fields are added. The
Determine_next_link procedure will have to be modified to access the new
PSE network. Because of the strict partitioning of function in the Buffer
Manager system, extant code will not be effected by these changes.

One extension which will effect the Event Manager is the possibility of
multiple Consumer Computers. This means that for terminal 1inks only,
the destination may in fact be a list of destinations, which list depends on
the trigger mask requirements. in that case, the Event Manager must be
trained to initiate multiple data transactions simultaneously and not
terminate until all the transfers are complete.
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