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Buffer Manager Software Desl gn 

.8bstract: 

The work that the Buffer Manager must do to control the movements of 
events through the data acquisition pjpellnes is analyzed. Based on this 
analysis, a conceptual design for the Buffer Manager is developed 
step"by-step by gradually adding requirements, As the conceptual design 
advances, software elements are described which implement the design. 
The result is a description of the s1ngle partition version of the Buffer 
Manager which is easily extensible to the multiple partition case. 

Prob lem Statement: 

Section 3 of CDF-183, "Dataflow within the COF Data Acquisition System", 
gives the fundamental definition of the Buffer Manager's task and is quoted 
below. 

The Buffer Manager is the Master Intelligence controlling the now of data 
through this Plpel1ne. It has rasponsibil1ty for schedul1ng the processing 
elements at each stage (hereafter known as Pipeline Stage Elements or 
PSEs) and maintaining tables of statistics for each. In order to provide 
flexibllity in configuring the system, PSEs may be dynamically 00ded to or 
romoved from the plpelfne such that the avallabllity of another Event Builder I 
for example, may be Quickly and painlessly utilised. A further requirement 
is that the dataflow should be independent of whether part (or all) of the 
pipeline 1s implemented in FASTBUS hardware or In software on a VAX. Thus 
the functtona1fty of the various PSEs and the protocols by which they 
communicate with the Buffer Manoger should be decoupled as much as 
possible from their implementation and the transmission medium via which 
they communicate. S1ml1arly the Buffer Manager 1tself may initially be 
implemented as a prooess (or processes) on a VAX. other than limiting the 
number of VAXs that may be assooiated with a partition, this software or 
hardware implementation should be transparent. 

It is assumed that the reader is familiar with the remainder of that 
document. The rest of thIs document describes the portion of the Buffer 
Manager which manages the dataflow; the statistical section is discussed 
elsewhere. 
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The reader should be warned that the names of the messages sent and 
received by the Buffer Manager have been changed in this document 
relative to CDF-183 to make their function less ambiguous. However, the 
design of the dataflow software has very little to do with the content and 
meaning of the messages sent. Adapting to the new names should not be 
too difficult. 

CDF-183 describes the dataflow control messages seen by each PSE. This 
is useful in the design of an individual PSE but does not make very clear 
what happens from the Buffer Manager's point of view. Figure 1 shows all 
of the dataflow messages sent and received by the Buffer Manager to move 
a single event through a pipeline. The pipeline in this case has four 
stages, Trigger Supervisor, Event Bul1der, Level 3 and Consumer Computer, 
and the event is assumed to pass one of the trigger mask requirements. 
Time flow is from top to bottom of the figure. 

Th1s Is a reasonably complex sequence of messages, but what makes the 
Buffer Manager's life really complicated Is that the sequence is not fixed. 
PSEs can be added or subtracted from the pipeline dynamically. For 
example, Level 3 might develop a problem and be taken out of the system. 
In response, the Buffer Manager must stop dealing with Level 3 messages 
and route the data from the Event Builder to the Consumer Computers 
directly; none of the other PSEs need be aware that anything has happened. 
A1so, FIgure 1 represents the messages required to move only one event. 
The pfpel1ne wf1l actua11y have multiple events in it at various PSEs. The 
sequence of messages for any given event may look Ii ke Figure 1, but the 
sequence as seen by the Buffer Manager will be an interlaced set from all 
of the events, Furthermore the Buffer Manager may be running several 
pipelines at once, each with a different structure and each with many . 
events. Finally, multiple pipelines may share physical elements, e.g. the 
Event Bul1der. In this case the Buffer Manager not only has to determine to 
which event and to which pipeline messages from the event builder refer, 
but it may temporarl1y have to block access to the Event Builder for an 
event In one pipeline because a11 of the Event Buf1der's resources are 
occupied with events In different pipelines. It must then remember that 
someone has been waiting when resources are released. 

An attempt to design at one stroke a solution which deals with all of these 
possible conditions, opttons, and situations Is virtually certain to fail. 
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The problem must be broken down into its smallest manageable and 
meaningful parts and a full solution developed step-by-step from the 
pieces. 

Analysis: 

The simplest job that the Buffer Manager has to do is move a single event 
between two PSEs of a isolated p1peline. Even then there are two cases. 
Because data transactions on Fastbus are always between a master and a 
slave, one can either have the Fastbus master pushing data to the 
following slave (see Figure 2) or have the master pulling data from the 
preceding slave (see Figure 3). In either case, the Buffer Manager receives 
a message from the upstream PSE declaring the avallabllity of an event. 
The Buffer Manager then decides on the destination of the event, sends a 
message to the master of the transaction requesting that the event be 
moved and waits for acknowledgement that the move has occurred. 
Finally, the Buffer Manager sends a message to the slave of the 
transaction reporting that the event has been moved. 

This action of the Buffer Manager can be summarized by the following 
piece of pseudo-code: 

LISTING 1: 
REPEAT 

Wa I Lfor ..evenLready(c:urrenLPSE); 
Oeter.lne..naxLllnk(plpe:lIne-ID. currenLPSE. pipeline_I ink); 
SencLstar~(pipel inL.1 ink.Master); 
AlIa I t...ove..comp I etL.aeSSage(p I pe I I ne..1 / nk. Master) ; 
Send..Aove..repLMssaoe<p i pe line_I ink. S I ave); 
currenLPSE :- pipe/ ina-I Ink.destination; 

lm' I L dooIISday; 

This pseudo-code fragment, like the others in this document, is written is 
a Pascal-like language. This Is because Pascal is much clearer than 
Fortran would be for some of the later complications and because the 
Buffer Manager is actually written (mostly) in Pascal. 

Note that in principle a given PSE can be either master or slave. For 
example, some of the proposals discussed for Level 3 have that PSE act as 
a master to pull data from the preceding stage, but act as a slave to the 
following Consumer Computer. To provide maximum freedom for the 
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designers of the PSE hardware, it is better to base the Buffer Manager's 
actions on the role of a PSE in a given transaction rather than on the 
details of the PSE itself. For this reason, the Buffer Manager deals with 
the concept of a pipel1ne link, containing information about the roles of 
the participating PSEs as well as the PSEs themselves. By dealing with 
roles, the main loop of the pseudo-code can treat the two cases of Figures 
2 & 3 identically. 

Introducing the concept of a pipel1ne link also allows a clean separation of 
the topological functions of the Buffer Manager from the dataflow 
functions. PSEs can be statically defined objects with characteristics 
reflecting the particular hardware in isolation from its actions in a 
pipeline. The requests to the Buffer Manager to build and modify pipelines 
translate into dynamic modifications of the pipeline_link structures. The 
only interface to the dataflow module required is the look-up procedure 
Determine-flexLlink. This procedure completely hides the implementation 
of the topological actions. For example, the version of the Buffer Manager 
for the September 1985 run has the pipeline defined statically via 
conditional compilation. Later versions wlllimplement the dynamic 
insertion and deletion of PSEs. This change will require no modification to 
the dataf10w section of the code whatsoever. 

step-Wise design: 

Single link/One event-

There are now enough concepts in hand to begin designing the system 
software. Figure 4 presents two views of the situation described above. 
The upper portion of the figure is an abstract picture of the relationships 
between software components, while the lower portion sketches actual 
software structures. In both cases, the figure represents a single pipeline 
link with a single event at the upstream PSE. The link and the PSEs are 
reallzed as passive data records, ie.J they contain no executable code, only 
data. The PSE record, at this pOint, only needs to contain a PSE identifier. 
These records are created when the Buffer Manager is told of the existence 
of a new PSE. The Link record contains pointers to the source and 
destination PSEs and master/slave pOinters which specify the role each 
PSE should play. in the data transaction. These records are created and 
filled in when the topological section of the Buffer Manager adds a new 
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stage to a pipeline. The Event Manager is the active portion of the system. 
It actually executes the code of Listing I. It keeps in its own local 
storage a pOinter to the Current PSE, that is, the stage where the event 
data reside at the start of the transaction. A single pass through the code 
will move the data across the link and point the Event Manager to the new 
data 1 ocat ion. 

/1(jltlple link/One event-

Figure 5 represents the case of a single event moving through an extended 
but finite pipeline. The new feature required is the proper handling of the 
ends of the pipeline. First, the ends must be detectable, hence the added 
Boolean fields to the Link records -- TerminaLlink and Source_link. 
Second, the Event Manager must behave appropri ate ly at the ends. I f the 
Event Manager's job is taken to be to shepherd a single event through its 
pipeline, and if the Event Manager starts with its Current PSE pointer 
directed to the initial PSE J then the Event Manager can simple repeat the 
loop of Listing 1 unti11t reaches the last PSE and then terminate itself. 
The pseudo-code becomes: 

LISTING 2: 
REPEAT 

lola I Lfor ....eventJ'eOdy(arrenLPSE); 
Oeteralne...nexLllnk(plpellnLID, currenLPSE, plpel lne..1 ink); 
SencL..star t...-ove..assage(p I pe I I ne_11 nk. Mas tar ) i 
Awol L.Iaove...coIIplatLHSsoge(plpellne_'lnk.t1aster); 
SencLIIovL.raporLMssaga(p I pe II ne_11 nk. Slave); 
IF pipeline_link. t ..... lnal_llnk Tl£H 

tara I nate...Event...anagar 
ELSE 

currenLPSE :- plpellnL.llnk.destination; 
utfT I L dooudau; 

/1(jltlple disjoint pipelines/One event per plpellne-

The pseudo-code presented so far, although simple and comprehensible, 
can only deal with a universe containing a single event. First, there is 
only one CurrenLPSE pOinter, so only one event can be tracked at a time. 
Second, the code expects a111nbound messages to come from the PSEsof 
the current pipel1ne link and be about the current data transaction; it has 
no idea what to do with anything else. Third, once the event is delivered 
to the end of the pipeline, the Event Manager terminates and will not 
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respond to any other messages. Since the Buffer Manager must deal with 
multiple events, the code of Listing 2 seems seriously inadequate. 
However, with the addition of proper underpinnings, it will in fact work in 
the multiple event situation. 

Consider the case of two disjoint pipelines each with only one event in it. 
Then the code in Listing 2 works correctly provided (1) there are two 
Event Managers, one devoted to each event, and (2) each Event Manager only 
receives messages about its own event. Both of these conditions can be 
met in a straightforward manner by embedding Listing 2 into a 
multiprocess environment. We create an Event Manager process for each 
event and this process runs its own copy of Listing 2. In addition, we 
create another process which receives all messages from Fastbus and 
distributes them to the appropriate Event Managers based on an Event ID. 
Figure 6 illustrates this situation. 

The Receiver process operates as follows. In the idle condition, the 
Receiver process waits for messages on its input queue. The Fastbus 
1nterface places incoming messages onto this queue and wakes up the 
Receiver process. The Receiver then examines the type field of the 
message. If the message type is New_event, then the Receiver creates a 
new Event Manager process, put the message on the Event Manager's' 
message queue, pOints the new Event Manager's Current PSE at the source 
PSE specif1ed In the message's Source f1eld and makes the Event Manager 
ready to run. If the message type is not New_event, then there already is 
an Event Manager in the system for this event. The Receiver uses the 
EvenLID field of the message to locate the proper Event Manager, places 
the message on the Manager's queue and reactivates the process. In either 
case, the Receiver then rel1nquishes control of the CPU while any Event, 
Managers are ready to run. When all activity generated as a consequence of 
the arrival of the Fastbus message stops, the Receiver checks its input 
Queue for another message. 

Note that the Event_ID is assigned by the Buffer Manager, not by the PSEs. 
The bottom section of Figure 6 shows the new data structures needed for 
message distribution. Messages contain Source, Type and EvenLID fields 
as well as an Info field. The latter field is of variable length and contains 
such things as the trigger mask words which can be ignored by the 
Rece1ver process. In order to link messages Into queues, each message 
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contains a Link field which pOints to the next item in its queue. The Link 
field 1s added to the message after its reception; it does not exist on the 
Fastbus. 

The Receiver process has an Externa 1 Message Queue header to which the 
hardware delivers Fastbus messages. The Receiver also has a means of 
locating an Event Manager from a message's EvenLID. In the first 
implementation, the EvenLID is actually the virtual address of the 
associated Event Manager. This gives an extremely fast lookup, but may 
not be reliable enough, so may change in future versions. 

Each Event Manager process acquires two new local variables. One is an 
Internal Message Queue header to which the Receiver process delivers 
messages. For use by the Determine_nexLlink procedure, the Event 
Managers also have a Pipellne_1D variable. With these adjustments, each 
Event Manager can run the pseudo-code of Listing 2 with no problems, 
thereby giving the Buffer Manager as a whole a multiple event capability. 
Note that there is no need to worry about initialization of the loop in 
Listing 2; the Receiver process will set up each Event Manager properly. 
Also, there is no problem with the Event Manager terminating when it has 
delivered its event to the end of the pipeline; another Event Manager will 
be created to handle the next event. 

The principle concern with the multiprocessing approach is the time spent 
switching contexts, particularly since Buffer Manager response is vital to 
the operation of the whole Data Acquisition System. If each Event Manager 
were a separate VMS process, the system could not possibly be fast enough 
since each context switch would require about 1 msec. on a J,.lVAX II. Even 
using the faster kernel of VAXEln would take about 300 J,.lsec. On the o~her 
hand, both of these systems were designed to deal with a much more 
complex multiprocessing environment than is needed for the Event 
Managers. For example, both systems are event driven, preemptive, 
priority based systems. Determining which process should run next can be 
compl1cated in such systems. For the Buffer Manager, however, all the 
processes can have the same priority and each process can use the CPU 
until it must walt for a message or other resource, ie., preemption due to 
external events is not required. Under these conditions, the 
multiprocessing system becomes very simple. In fact the "processes" 
become coroutlnes. (See, for example, Knuth, Fundamental Algorithms, 
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Section 1.4.2, "Coroutines", or Wirth, Programming in Modula-2, Section 
30, "Concurrent processes and coroutines". Note that exactly the system 
needed here 1S provided as a language feature in Modula-2.) As 
implemented, the context switch consists of a CALLS instruction with two 
parameters and all registers saved, a swap of Frame POinters, and a 
return. The procedure takes about 20 ~sec. 

With the context switch reduced to such a short time, the next level of 
software overhead becomes a concern. A well layered system is highly 
desirable to assure reliable synchronization, but it can lead to the 
invocation of many procedures between a high level call, like 
WaiLfor _evenLready, and the actual context switch. If each invocation 
uses the relatively slow CALLS instruction, the effective context switch 
time can add up to unacceptable levels. However, one of the features of 
the EPascal compl1er is its ability to implement deSignated Procedures as 
fnl1ne code rather than as actual subroutines. This not only removes the 
CALLS instructions, but also allows the optimization modules of the 
compl1er to work through procedure invocations. With only a preliminary 
effort at optimization using this technique, the Buffer Manager software 
can receive a message, activate the proper Event Managers, run the proper 
resource synchronization checks, build and send the appropriate reply 
message, all in about 1 msec. 

One other overhead that could be a problem is the creation and termination 
of Event Manager processes. This has been reduced by not actually 
destroying terminated Event Managers but placing them in a pool of unused 
processes. When a process is to be created, the Process Manager module 
first tries to reuse a process from the pool. Only if the pool is empty does 
the Process Manager actually create a new process structure via the 
memory management services. The pool is initially empty and no 
processes are ever destroyed; the number of processes in the Buffer 
Manager rapidly adjusts itself to a level sufficient for the peak demand 
seen by the system. 

t1(Jltiple pipelines sharing PSEs/t1(Jltiple events per pipeline-

While the situation of Figure 6 is a legitimate multiple event case, it was 
contrived specifically to avoid two events trying to access the same PSE 
at the same time. Such collisions can arise if aPSE, e.g.J the Event 
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Builder, is shared between pipelines. A col1ision can also happen if an 
event in a pipeline catches up to a previous event in the same pipeline, In 
either circumstance, the co11iding events must coordinate their access to 
the PSE in dispute, otherwise events can be lost. For example, the Event 
Bunder may be able to handle only one event at a time. I f the Event Builder 
were reformatting one event and was ordered to read out another, the first 
event could be lost and the pipel1ne flow seriously confused. To avoid 
this, the Buffer Manager should delay sending the readout request until the 
previous event has been moved to the next PSE. 

There are two major design problems created by the advent of collisions. 
One Is to decide what resource management discipline to use for the PSEs. 
The Event Bullder might be able to deal with only one event at a time. On 
the other hand, it might be able simultaneously to read one event from the 
front end, format a second event, and send a third to Level 3. Then the 
decision to delay a request for service depends in a complex way on the 
current state of the Event Bullder. Level 3 will be able to service many 
events at once, but the internal destination of the next event has to be 
maintained by the Buffer Manager. Since none of the hardware PSEs has 
yet been fully deSigned, and each is likely to go through several 
incarnations, no fixed resource management discipline can be built into 
the Buffer Manager; anything should be possible. 

The second problem is how to implement the synchronization. Sharing 
resources among multiple processes is the fundamental problem of 
operating systems. Early operating systems tended to have a maSSive, 
monolithic kernel which managed everything. Such kernels are nearly 
impossible to code correctly and are far too inflexible to handle the 
dynamic creation of PSEs and their insertion and removal from pipel1ne,s. 
A more modern approach is to control resources in a distributed fashion 
through the use of monitors. (See, for example, Brinch Hansen, The 
Architecture of Concyrrent programs. Section 4.3 "Monitors", or Bowen and 
Buhr, The Logical Design of Multiple-Microprocessor Systems. Chapter 3, 
"Monitors",) A monitor is a collection of procedures for manipulating a 
resource along with a mechanism for assuring the orderly execution of 
those procedures by multiple processes. 

In the following discussion, it is assumed that the reader is familiar with 
semaphores as software synchronization constructs. (See, for example, 
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Bowen and Buhr, The Logical Design of Multiple-Microprocessor Systems. 
Section 1.2.3, "Critical Regions -- Semaphores", or VAXELN Programming. 
DEC Document Order Number: AA-Z451 A-TE, Version 1.0, pp 1-29 ff. 
V AXELN semaphores are not used for speed reasons. They have been 
reimpJemented in the coroutine context, but their abstract behavior 
remains the same.) 

There are, in fact, two synchronization problems when trying to share 
resources. One Is synchronizing access to the resource and the other is 
synchronizing access to the controlling software. A generic monitor 
provides both types of control by providing two data types and four 
procedures which act on variables of those types. (The Buffer Manager 
uses monitors of type gladiator. See Bowen and Buhr, The Logical Design 
of Multiple-Microprocessor Systems, Section 3.4.2, "Monitor of Type 
Gladiator" and Section 3.3.4, "Gladiator".) The two data types are the 
conditiorLvariable, which is basically a process queue, and the 
thls-'llonltor, which is a record containing a semaphore called the monitor 
gate and a conditlorLvarlable called the eligible queue. A given monitor 
may have any number of conditiorLvariables, but must have one and only 
one this-'llonltor. The four procedures are Enter and Leave, which take a 
variable of type this_monitor as argument, and Sleep and Awaken, which 
take a variable of type conditiorLvarlable and a variable of type 
thls-'llonltor as arguments. 

Each procedure of a specific monitor begins with the statement 
Enter(Here) and ends with the statement Leave(Here) where Here is the 
thi s-'llonl tor variable which defines the monitor is question. The Enter 
routfne causes the call1ng process to walt on the gate semaphore. If rio 
other process Is actively executing in one of the procedures of the . 
monitor, the gate will be open and the calling process will proceed. The 
Leave routine checks to see If there are any processes waiting in the 
eligible queue. (As we shall see In a moment, processes in the el1gible 
queue are ones which have been blocked In the monitor waiting on a 
conditlorLvariable.) If so, It makes the first one ready to run. Otherwise, 
1t signals the gate semaphore and proceeds to its asynchronous duties. 
The actions of Enter and Leave on the semaphore of Here make the 
procedures of the monitor collectively into a conventional critical region. 
This Is the mechanism by which a monitor solves the problem of 
contro111ng access to the resource synchronization code; no more than one 
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process can be actively executing in the monitor at one time. 

Sleep and Awaken, along with the action of Leave on the eligible queue, 
provide the means by which resources can be controlled. Their behavior is 
best explained by a simple example. 

LISTING 3: 
t1ODlI..E procIucar...consu.ar i 

EXPORT puLJlork, geLMork; 
ItlCLOOE gladiator, buffer-deflni tion; 

VAR 
hera: th I LIIIOO I tor; 
wa i t i n;.-for....llOl"k, wa i t i "'9-for...-pt i es: concH t i on..var i ab lei 
work, apt! as: buffer....queue; 

Pf\OCEOlI£ put....llOl"k (VAR buff: buffer ~ inter); 
BEGUt 

en tar (here ); 
I nsarLbuffer(buff, work); 
a.akan(wa I t i ng..for -Mark, here); 
IF e.ptles.a.pty THEN 

sleep(.ai t I ng..for-E:lllpt I as, here); 
buff :=reJIOVLbuf far (8IIp t i 85); 
leave(here>; 

00 {PULwork}; 

Pf\OCEOlI£ geL..work(UAR buff: buffer...po Inter); 
BEGIN 

en ter (here ); 

I nserLbuffer(buff, apt I es); 
CMOken(wa i t i "'9-for...opt! as I hera); 
I F work. apt.., 1l£tf 

s I eep(wa i tI ng..for -MOI"k, here); 
buff: =reJIOVLbuf f.,.(work) ; 
laave(hare); 

Ett) {geLwork}; 
EtIO {producer~}. 

Listing 3 gives the solution to the classic producer-consumer problem in 
terms of calls to a monitor. The monitor consists of the two routines 
puLwork, used by producers, and geLwork, used by consumers. The 
routines are symmetrical, so the discussion will concentrate on puLwork. 
Once the call1ng producer returns from Enter, it has exclusive access to 
the monitor. It deposits its full buffer on the work buffer queue and calls 
Awaken with the waitin9-for_work condition variable. If there are no 
consumers waiting in the condition variable's process queue, the routine 
does noth1ng and returns. If there are processes waiting, Awaken takes 
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the first waiting process, moves It to the el1glble queue of Here and then 
returns. In either case, the producer continues on in sole control of the 
monitor. The producer then checks the empty buffer queue. I f a buffer is 
available, the producer removes it and leaves the monitor. If a buffer is 
not available, the producer cannot continue its functions; it calls Sleep 
with the waitinQ-for _empties condition variable. Sleep checks the 
el1g1ble queue and makes the first process, if any, ready to run. If there 
are no eligible processes, Sleep makes the producer signal the monitor 
gate, thereby releasing Its exclusive access to the monitor. In either case, 
Sleep then causes the producer to place itself on the wait inQ-for _empties 
process queue and generates a context switch to the first process on the 
ready to run queue. Note that if there had been a consumer waiting on the 
waftlnQ-for _work condition variable, it was moved to the monitor-wide 
el1glble queue and would be made ready to run by the producer either 
Sleeping or leaving the monitor. 

Assume that the producer-consumer system contains only one producer, 
one consumer, and one buffer and that the producer originally has the 
buffer. Then the consumer will be waiting in the waitinQ-for _work queue, 
by virtue of the call to Sleep in geLwork, and will be made eligible by the 
producer's call to Awaken. When the producer Sleeps in turn, the consumer 
will be reactivated and return from its call to Sleep in geLworkl A·work 
buffer Is then guaranteed to be available (the producer just put it there 
and the monitor gate has not been opened, so no other process could have 
taken It away); the consumer removes It and leaves the monitor. Since 
there are no processes eligible (the producer is waiting on the 
waitinQ-for _empties queue) the exit of the consumer opens the monitor 
gate. Therefore, once the consumer has transformed the buffer into an 
empty one, it is able Immediately to pass through the Enter call of 
geLwork and Awaken the producer. The producer and consumer then 
continue to trade the buffer back and forth in a controlled fashion. 

The above discussion uses single buffers, consumers, and producers for 
ease of discourse; the system works equally securely with any positive 
numbers of processes and buffers. 

One point In particular Is worth noting about monitors and the code of 
Ustlng 3. It Is the fact that specific condition variables and their 
associated thls-'llonltor variable together make up the heart of monitor. 
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It would be a catastrophe if one were to call Awake or Sleep with a 
condition variable from one monitor and a thisJnonitor variable from 
another monitor. The EXPORT controls of EPascal prevent this from 
happening. Since only the monitor routines, puLwork and geLwork, are 
exported and not the crucial variables, the compiler will ensure that no 
other portion of the system can access and misuse them, while still 
allowing the variables to be shared among the procedures within the scope 
of the monitor code itself. 

Condition variables allow the implementation of a wide variety of 
resource management schemes. However, in the absence of any particulars 
about the resources contained in the PSEs, some skeletal form of resource 
needs to be invented so that the monitor interface can be defined and the 
software design proceed. An abstraction which appears adequate to the 
task is the idea of PSE Ports. Each PSE is assumed to have an unspecified 
number of input data Ports and an unspecified number of output data Ports. 
Before a data transaction can take place across a pipeline link, the Event 
Manager must acquire an output Port from the upstream PSE and an input 
Port from the downstream PSE. If a Port is not available, the Event 
Manager is blocked and the data transaction is delayed. Once the data are 
moved, the Ports must be released by the Event Manager. Each PSE monitor 
then needs two routines, one for the Event Manager to acquire a port and 
one to release it; the details of when and why Ports are avallable can be 
hidden within the specific monitor for a given type of PSE. 

There remains a problem. Although the use of abstract Ports as resources 
to be controlled allows the definition of a fixed argument list for the 
Event Manager to use when accessing a PSE's monitor, the particular 
routine, and therefore the particular monitor, to call depends on the PS~. 
One has to have a release_TS routine, a release-EB routine, &c. If these 
routines are presented directly to the Event Manager, then it has to 
actively decide which routine to call. This makes the Event Manager much 
more cluttered and complex, and virtually assures that one day the Event 
Manager will call release-EB when it should have called release-L3 with 
dlsasterous results. 

Fortunately, EPascal provides a way to deal with this difficulty. Each PSE 
record contains two additional fields. One is a pOinter to that PSE's 
acquire-port routine and the other points to the proper release-port 
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routine. The Event Manager code then can indirectly invoke the routine 
pointed to by the standard PSE field without knowing what that routine 
actually is. By making the creation of the PSE data block a function of the 
monitor Module, one can easl1y assure that the right routine is associated 
with the given PSE. Futhermore, by exporting only the PSE creation 
function, no other component of the system can locate the port routines 
and call them inappropriately. 

At this point, collisions are firmly under control. Figure 7 illustrates the 
type of situations that have been under discussion and the additions to the 
data structures required. Note that each Event Manager has acquired fields 
to hold Port identifiers so that when the Ports are released, the monitors 
known which resource is being returned. For the reader interested in how 
this whole discussion of monitors translates into code, Listing 4 gives the 
pipeline_definition Module, which defines the generic aspects if a PSE, and 
the EBYlonitor Module, which is a specific implementation of aPSE 
monitor. 

LISTING 4: 
t1ODlA..E pi pe I lna...da fin I t ion; 
TYPE 

PSE_ID • (DAQ...Buff"'.J1anager~ DAO-Trlgoer....5upervisor, 
DAQ...EvenLBu II der ~ DAQ..J..eve 1...3, 
DAO-.Constaer ....co.puter ); 

direct Ion· (I ngress I Egress); 
plpallna..llnk • REalI) 
~: .. PSE....contro l...b I ock; 
destination: APSE..control...block; 
.aster: PSE-ID; 
slave: PSE-ID; 
ter.lnal_llnk: BCn.EAN; 
SOlI"CLI Ink: BOa..EffI; 
EtI); 

PSE....contro l...b I ocl<. = RECORD 
PSE: PSE..ID; 
acqu i re..port: AAHYTYPE; 
re I ease..port: AAtMVPE; 
EtI). 

I 

FltICT I otI creatLPSE: APSE-COntro l...b lock; 
Fl.W1CT I otLTYPE; 

PROCEDl.f£ acqulre(port: IHTEDEA; IO:dlrectlon; this: "PSE..control...block); 
PAOCEDlJE..TYPE; 

PROCEDlfIE re I ease(port: INTEGER; th Is: .. PSE....contro l...b lock) ; 
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PROCEIX.IL.TYPE; 

00 {plpellne...deflni tion}. 

t1OOtl.E EBJIon I tor; 
EXPORT create...E9; 
INCLUDE gladiator; 
1NCLlJ)E plpallna...defini tion; 

!JAR 
here: th i S..IIOn i tor; 
evenLbu I I der...busy: BOOLEAN; 
.ai ti~for...evanLbullder: condi tiOl'l-variable; 

Fl.tCT I ON creatLEB (F TYPE creatLPSE i 
OAR naw-EB: APSE-Contro l...b I ock; 
BEGIH 

t£I.I (naw..PSE ) ; 
1-11 TH new..PSE1 DO 
BEGIH 

PSE: =OAO-EvenLBu i I der; 
acqu I re..port: -Address(acqu i re...EB); 
re I ease..port : =Addl"'ess(re I ease..£B ); 

EHO; 
create.-.EB: -new..PSE; 

EHD {create..PSE}; 

PROCEDtJ£ acqulrLEB OF TYPE acquire; 
DEGIH 

enter(here); 
IF evenLbu II dar...busy TI£H 

s I aap(1IQ I tll"I9-for.-avanLbu I I dar I hera); 
evenLbu II dar...busy: -TRUE; 
port:=1; 

18CMII(here) i 
Elf) {acqu I re..£B} ; 

PROCEDlf£ re I ease..EB OF TYPE re I ease; 
BEGIH 

antar(hara); 
event...bu I I der...busy: -FAlSE; 
port:=O; 
a.akan(wo I t i I"I9-for....avanLbu i I dar I here); 

leave(f'lere); 
EtI) {re I aasLEB} i 

END {EBJ1on I tor} . 

July 13, 1985 

Meanwhl1e, what has become of the Event Manager code? Very little, in 
fact. Listing 5 g1ves the new Event Manager loop. Save for the addition of 
the four INVOKE statements, the code is effectively unchaged from the 
no-collision case. Because of the indirect access to the Port routines and 
the power of the mon1tor concept, this code will work regardless of how 
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the hardware PSEs are ultimately implemented. 

LISTING 5: 
REPEAT 

lola I Lfor ..aventJeady(c:urrenLPSE ); 
OeteNIine...nexLI ink(pipel inLlD, currenLPSE, pipeline_I Ink); 
loIlTH plpel 1M-link. DO 
BEGIN 

I tMl(E(sourceI. acqu I rtLpOrt, acqu i re, OuLport, EGRESS, soc.rce); 
I ttVOKE(dest I nat! onf . acqu I rLpOrt, acqu ire, I rLpOI"t, I HGAESS, 

destination); 
Sand....st.cr~sage(I1a5t.er) ; 
Awa I L..taove...coIII ete..message<t1aster ); 
I tMl(E(sourc:eI. re I ease..port, re I ease, OuLport, SOlrCe); 
IttIJOKE(destinationl.rel~t, release, In...port, destination); 
SencI....move.-t...aessage(S I ave); 
IF t ... lnaLllnk THEN 

tera I nate...Event..aanaget" 
ELSE 

curranLPSE := dutinationl.PSE; 
EtI) (UITH); 

UttT I L doouday; 

Cloned PSEs-

There remains one topic to be discussed. In the final multiple partition 
case, there will be a substantial number of PSEs but a smaller number of 
PSE types. (See the upper portion of Figure 8.) The resource management 
characteristics of a given PSE are determined by its type, so it would be 
useful to be able to reuse the code for a given monitor type for each 
instance of the corresponding PSE. Unfortunately, a monitor by its very 
nature must include local variables, the this_monitor variable and the 
condition variables at least, which survive across invocations of the 
monitor's procedures. In the examples of Ustings 3 & 4, these variables 
have been declared as static variables permanently within the scope of,the 
monitor Module itself. Since there 1s therefore a one-to-one match 
between monitor Modules and local variables, there must be a separate 
Module for each PSE rather than each PSE type. However, a little 
prestidigitation will get us around this limitation. 
First, instead of declaring the condition variables, &c. needed by a monitor 
Module as static variables, they are collected together to form a TYPE 
declaration of a 10caLvariables record. Any variable of this type now 
represents a distinct instance of a monitor of the type specified by the 
monitor Module; Note that the content of the local_variables records wi 11 
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vary from monitor type to monitor type. Second, a field is added to the 
PSE record which is a pointer to a locaLvariables record of arbitrary 
structure. (Putting the local variables directly into the PSE record would 
lead to a very complicated, confusing, and therefore probably wrong, 
variant record structure for the PSE record.) Third, the create_PSE 
routine in each monitor Module generates a new locaLvariables block each 
time it is called and installs the proper pOinter into the PSE record locals 
field. Finally, the monitor routines are modified to act on the "local" 
variables found by following the locals pOinter in the PSE record. The 
lower section of Figure 8 illustrates the situation and Listing 6 shows the 
modified code for the example monitor. The Event Manager is completely 
uneffected by the change. 

LISTING 6: 
t1Oll.l..E pipe I i na...c:laf i nit i on i 
TYPE 

PSE..IO = (OAQ...Buffer.J1anaoer. OAQ_Tr i goer -Buperv i SOl" • 

OAQ...Event...Bu i I dar, OAQ..l.eve 1...3, 
OAQ...constaer .....computer); 

direction .. (Ingress, Egress); 
pipellnLl ink = RECORD 

£ourca: "PSE...contro l...b lock; 
destination: "PSE...contro l...b lock; 
.aster: PSE..IO; 
slave: PSE-IO; 
ten.lnaLllnk: BOO..EAtI; 
source_I ink: BOCl..EAN; 
EtI); 

PSE....contro l...b I ock = RECORD 
PSE: PSE-I 0; 
acqu i re-POf"t: AAtlYTYPE; 
re I easLpOr't: "AtlYTYPE; 

'locals: "ANVTYPE; 
EtI); 

FUNCT I ON create..PSE: "PSE-contro l...b lock; 
FUNCT I otLTYPE; 

PROCEDURE acqu i re(port: I tITEGER; 10: direct ion; th is: "PSE...contro l...b lock); 
PROCEOURE..TYPE; 

PROCEDURE re I ease(port : I HTEGEA; th is: "PSE...contro l...b lock); 
PROCEOURE..TYPE; 

EtI) {P1~IInL.dafinl tion}. 

MODULE EBJIon i tor; 
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EXPORT creatLEB; 
IHCLUOE gladiator; 
INCLUDE plpelln&-daflnltlon; 

TYPE 
I oca I_Vfr i ab I es = RECORD 

here: th i S..JIOn i tor ; 
evenLbu i I dar..busy: BOOLEAN; 
.a I t i ng..for....avenLbu i I dar: concii t I on-VOI" i ab I a; 
00; 

FtJiCT I ON create-EB OF TYPE create..PSE; 
VAR 

naw-EB: "PSE...contro l..b lock; 
new_Instance: "local_variables; 

BEGIN 
ts!( ...... ...PSE); 
WITH new..PSEt DO 
BEGIN 

PSE: -oAQ..Evan~ II dar; 
acqu I rLpOrt: -Address(acqu I re...EB); 
re I aase..port: -Adc:Iress(re I aase...EB); 
NEU(new_1 nstance); 
locals:=new_lnstance; 

END' I 

create...EB: -new..PSE; 
END {creatLPSE}; 

PROCEDlI£ acqu I re-EB OF TYPE acqu I rei 
BEGIN 

WITH thlst.localS@:: local_variables DO 
BEGIN 

an tar (here ); 
IF evenLbullder..busy THEN 

sleep(wal tlng.-for...evenLbuI ldar. here); 
avenLbu I I dar...busy: =TRUE; 
port:=1; 

I eave (here ); 
EtIO {W I TH} ; 

END {acqu I re..EB} ; 

PROCEDUAE re I easLEB OF TYPE re I ease; 
BEGIN 

WITH thid.localsl:: local-variables 00 
BEGIN 

en ter (here ); 
evenLbu I I dar..busy: af'ALSE; 
port:=O; 
awaken(wa I t Il'lg-for..avanLbu I I dar I here); 

laave(here); 
END {'-11TH}; 

81) {re I aaH-EB} i 

END {EBJ1on I tor} . 
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With these changes, the task of adding a new class of PSE is strictly 
limited to writing a well-defined prototype monitor Module. The 
topological section of the Buffer Manager only needs to know about the 
existence of the PSE type; it can clone off as many copies as it needs and 
connect them together as it sees fit. The topological module only deals 
with the invariant PSE record structure. The Event Managers are oblivious 
to the whole issue; they aren't even aware that there are different PSE 
types. 

Extensions: 

Essentially everything described above has been implemented in the 
prototype Buffer Manager for the September 1985 run. The principle 
missing component is the dynamic topological module. For now, a choice 
of plpel1ne configuration is made at compile time; the arrangement of 
PSEs into plpellne links 1s then a fixed feature of the Buffer Manager 
image. 

The creation of pipellne links is the basic job of the topological section. 
This task only depends on the generic PSE record. Appropriate linkage 
fields to build the desired PSE network will have to be added along with 
routines to manage that network. The ability to clone new PSEs is already 
provided in the create_PSE routines. They are driven by the PSE record 
structure defined elsewhere and will not care if fields are added. The 
DetermineJlexLl1nk procedure will have to be modified to access the new 
PSE network. Because of the strict partitioning of function in the Buffer 
Manager system, extant code will not be effected by these changes. 

One extension which will effect the Event Manager is the possibility of 
multiple Consumer Computers. This means that for terminal links only, 
the destination may in fact be a list of destinations, which list depends on 
the trigger mask requirements. In that case, the Event Manager must be 
trained to initiate multiple data transactions simultaneously and not 
terminate until all the transfers are complete. 
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