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The Boltzmann equation is solved in the relaxation time approximation using a hierarchy of angular
moments of the distribution function. Our solution is obtained for an azimuthally symmetric radially
expanding boost-invariant conformal system that is undergoing Gubser flow. The solution of moments
that we get after truncating the infinite set of equations at various orders is compared to the exact
kinetic solution. The dynamics of transition is described by the presence of fixed points which describes
the evolution of the system from an early time collisionless free streaming to the hydrodynamic regime
at intermediate times and back to free streaming at late times. The attractor solution is found for various
orders of moments as an interpolation between these fixed points. The relation of moments to various
approximations of relativistic viscous hydrodynamics is investigated.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Hydrodynamics is an effective theory for the description of
long-wavelength phenomena of fluids, that can be expressed as
a small gradient expansion relative to a thermal background [1].
Thus, hydrodynamics is expected to fail for systems which are far-
from-equilibrium where the gradients are expected to be large. The
medium produced in pp collisions at LHC and RHIC energies is an
example of such a system. However, recent experimental results
of high energy pp collision have shown evidence of collectivity
similar to those observed in heavy-ion collisions [2-6]. The un-
precedented success of hydrodynamics to describe collectivity in
heavy-ion collisions, as well as small systems, can be attributed to
the fact that there exists a stable universal attractor which makes
the dynamical equations to quickly converge and enter a hydro-
dynamic regime, at a time scale much smaller than the typical
isotropization time scales [7-13].

Previous works [8,14-20] have mostly focused on studying the
properties of attractors for rapidly expanding 1+1d boost invariant
systems undergoing Bjorken flow using relativistic kinetic theory.
However, the fireball produced in high energy heavy-ion collisions
also expands in the transverse direction at late times. Therefore,
it is natural to ask whether the systems undergoing simultaneous
longitudinal and transverse expansion also shows the attractor na-
ture as observed for 1+1d expansion. In the present work, we con-
sider a system undergoing Gubser flow which has a simultaneous
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transverse and longitudinal expansion. In the context of Gubser
flow, some recent works [21,22] study such dynamical properties
using anisotropic hydrodynamics or DNMR hydrodynamical theo-
ries [23]. Recently in [24], it was found that the Gubser dynamical
system allows a perturbative series solution around its early and
late time fixed points with a finite radius of convergence. Based on
these findings, it was shown that Gubser expanding system does
not hydrodynamize. The purpose of the present work is to inves-
tigate the dynamics of transition from free streaming regime to a
hydrodynamic regime or vice versa using a moment method that
translates the kinetic equation for distribution function in relax-
ation time approximation (RTA) to an infinite series of coupled
ordinary differential equations advocated in [25-27]. It will be
seen that unlike 1+1d Bjorken flow which has late-time thermal-
ization/hydrodynamization, Gubser expansion is intrinsically 3+1d
expansion with dynamics such that the system goes from early
time free-streaming regime to intermediate thermalization/hydro-
dynamization and back to free-streaming in the late time regime.

2. Formulation

The hydrodynamic equations can be derived from the trans-
port equation by taking appropriate moments of the distribution
function. The collision term in the Boltzmann equation plays an
important role to isotropize any arbitrary initially anisotropic out
of equilibrium distribution function or the anisotropy generated by
a strong expansion. The competition between the two effects is
commonly investigated in terms of the ratio between longitudinal
pressure #; and transverse Pr, local equilibrium corresponds to
Pr/Pr = 1. In [25] it has been shown that a particular moment
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of the distribution function is very useful for studying an out of
equilibrium system undergoing longitudinally boost-invariant ex-
pansion. The details of the moment of the distribution function
will be discussed later. The Boltzmann equation in an arbitrary co-
ordinate system for on-shell particles is

p“aﬂf-l—ri‘”p)\pﬂaa—f =C[f], (1)
Dj

where Ff”. are the Christoffel symbols and f = f(x*, p/) is the
one particle distribution function.

Following [28,29] we look for solutions of the hydrodynamic
equations with SO(3)®S0(1,1)® Z, symmetry in flat spacetime.
This can be implemented by a Weyl transformation of Minkowski
spacetime in Milne coordinates x* = (7,x,y,n) to dS3 ® R space-
time. Here 3 stands for the 3-dimensional de Sitter spacetime as-
suming that the fluid is homogeneous. This spacetime is described
by the line element

ds? = —dp? + cosh? p (dé’2 + sin? 9d¢>2) +dn? (2)

Here we have introduced the de Sitter coordinates X*=(p, 0, ¢, 1),
with

1 (1-q? T2
o(t,r) = —sinh (%), (3)
9(‘[, r) = tan71 (@%) . (4)

q~! is an arbitrary length scale and sets the size of the system.

In these coordinates, the Gubser flow profile takes the form: u; =
—coshk(t,r), ur =sinhk (z,r), with transverse flow rapidity « =
tanh~' (2¢%tr/ (1 +¢?t? +¢*r?)). In this paper, all quantities in
de Sitter coordinates are denoted with a hat.

Gubser symmetry requires massless degrees of freedom of the
fluid, i.e., p?> =0 and thus the spatial momentum can be written
as

fgp=\/(ﬁg/coshp)z+(ﬁ¢/(coshpsin9))2+ﬁ%. (5)

The SO(3), symmetry implies the distribution function to be inde-
pendent of (0, ¢) and that the distribution function depends only
on the following combination of momentum components:

f’?,

A2 A

=p5+ ———0-. 6
Po="Fo sin® 0 (€)

Similarly the SO (1,1) symmetry subgroup implements longitudi-
nal boost invariance as a result of which the distribution function
is independent of 7. Using the above constraints, the RTA Boltz-
mann equation Eq. (1) in de Sitter space takes the following form
[30,31]

3 . T . oA
%f (s Po. Dy) = —% [f (Ps Do, Py) — feq (p"/T(p))] .
(7)

Here pP = \/(ﬁg/cosh p)2 + p2 and T =1T. c is a dimensionless
parameter which, in RTA, can be expressed in terms of the shear
viscosity (ns) to entropy density (s) ratio 1ns =1s/s as ¢ = 51;s.

3. Evolution of moments in Gubser flow

Although Eq. (7) can be solved numerically, much insight can
be gained by taking various moments of the distribution function
as elucidated in [25,26]. These moments capture the deviation of
distribution function from isotropy and for an expanding system
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Fig. 1. (a) Lo moment by truncating Eq. (9) at various orders. The initial condition
is that of an equilibrium distribution function imposed at pp =0 with Lo(pp) = 1.
The results are obtained assuming 7 = 1/4s. (b) Same as (a) but for £;.

they approach local equilibrium at late times due to collisions. The
nth order moment £, of the distribution function is defined as:

L :/df’ (f)p)z Pon (Dn/D”) f (0: Do, D), (8)

where dP = dp,dpedps/ <(27T)3f7" cosh? p sin@)
space measure and Py, is a Legendre polynomial of order 2n. Ex-
cept for the moment n = 0 which corresponds to energy density €,
all higher order n quantify the details of longitudinal momentum
anisotropy. For example, the first order moment £ = ?SL — SDAT, de-
scribes the anisotropy of pressure components in longitudinal and
transverse directions.

Taking the derivative of Eq. (8) with respect to de Sitter time p
and using Eq. (7) one arrives at the following infinite set of coupled
differential equations,

is the phase

9L
ap” = —tanh(p) (@nLn + bnLn-1 + cnLnt1)
. L
- T(")Tn’ n=>1)
9L
a—p" = —tanh(p) (apLo + coL1), (n=0) (9)

where the coefficients ay, by, and ¢, are given as

_2(18n* +9n—4)

= (10)
(4n—1)(4n +3)
bn:_4n(n+1)(2n—l)’ (11)
(4n—1)(4n+1)
_ 2m+1)2n—-1)2n+1) (12)

(4n+1)(4n+3)

As one can clearly see from Eq. (9), there is a competition between
collisions (the term containing relaxation time) which washes out
the effect of anisotropy and expansion (determined from the di-
mensionless coefficients ay,, b,, and c,;) which drive the system out
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Fig. 2. (a) Scaled £, moments in the free streaming limit, with equilibrium initial conditions imposed at pg = 0 with T(pg) = 1, obtained from Eq. (15). (b) B(go) as a
function of gy from Eq. (21). The crosses indicate the approximate solutions obtained from Eq. (21). The red diamond point corresponds to the late time unstable fixed point

L
for iy

which is obtained from Eq. (22)
of equilibrium. One should note that a key difference between the
present work and that of [26] is that the relaxation time 7y in
a conformal setting is not a constant but is related to the only
available scale in the system i.e., temperature through the relation
TR = C/T(p). A comparison of the coefficients a, by, and ¢, for
Gubser flow against the coefficients ay, by and ¢, for Bjorken flow
of [26] gives us the following relations: a, + a, =4, b, = —b, and
Cp = —Cp.

The system of equations Eq. (9) can be easily solved by trun-
cating the series at a given n and ignoring all higher-order terms.
In Fig. 1 we compare the solution of these equations with the ex-
act numerical solution of Eq. (7) by using a method given in [31].
First, we see that even for n < 2, the solution captures the qual-
itative details of the exact solution. Second, one notices that the
approach to the exact solution is alternating for even and odd n.
We would like to also point that, the exact kinetic solution shows
numerical instability at negative p values when the system is ini-
tialized with non-zero shear stresses at po = 0. The same problem
also persists in the moment method when we try to extrapolate
the solution to negative de Sitter coordinates.

4. The free streaming fixed point

The RTA Boltzmann equation Eq. (7) has the following exact
solution [30,31]:

£ (3 D% Bu) = D (0. po) fo (po: Py By) + (13)

0
1 A A2 A
Efdp’D(p,p’)T(p’) fea (092 n).  (14)

Po

where D (p, pg) = exp [— Jhdo'T (p') /c] is the damping func-
tion, fo (po; P Py) is the initial distribution function at de Sitter
time pg and feq (0'; P2, Py) is the equilibrium distribution func-
tion. The moments can be calculated from the distribution function
Eq. (13) using the definition given in Eq. (8).

Assuming that the initial distribution fo (po; p%. by) at po is
an isotropic Boltzmann distribution, we find the following free
streaming (FS) solution (taking ¢ — oo in Eq. (13)) for the mo-
ments

FS 3T
Ly>(p) = 72X Fn (X), (15)
where x = ccfsl;l’;f and F,(x) as

= %. The green circle corresponds to a late time stable fixed point which is obtained from Eq. (22) for % =1.

1
1
7 =5 [[ay 1 =)y ey |

(16)

Here Ty is the initial temperature at po. The function #(x) has the
following limits: F5,(x) — 1/2 as x — 0 and Fp(x) — % as
x— 1 (i.e, Fo=1 for n=0 and ¥y =0 for n # 0). Consequently,
for asymptotically large de Sitter time, i.e., |p| > |pol, Fn(x) is a
constant and £F5(p) decays as 1/cosh? p. However, the scaled mo-

ments,

FS
im .E,;S(p) =1
p=0 L5>(p)

(17)

saturate in the FS limit, which would have decayed to zero in the
presence of collisions.

In Fig. 2 we show the analytical solution of the evolution of
scaled moments by solving Eq. (15). As one can see, all the scaled
moments approach unity at large de Sitter times. The FS regime
can also be described by Eq. (9) by taking the limit ¢ — co. We
have also checked (not shown here) that even for arbitrary initial
condition, the moments approach unity both from above and be-
low at large de Sitter times.

Since the moments continuously evolve to a constant value at
large times, it is natural to define the quantity g,(p) [25,26],

oln L,
&n(p) 31n(cosh p) (18)
For Eq. (9), g,(p) turns out to be,
3 Lot Lo T(p)
&n(p) = —an — by z Cn 7, (1 —éno) Ctanhp’ (19)

Taking the limit ¢ — oo, and using the expression Eq. (17) for the
ratio of the moments (for large p) one can obtain the FS fixed
point. We find that for all n the solution yields g,(p) = —2. For
the above initial condition, one finds that solution of g,(p) from
Eq. (9) does not evolve with p and hence is indeed a fixed point.
One may also verify that for arbitrary initial conditions, the series
of equations Eq. (9) also gives the approximate result g,(p) ~ —2
with error due to finite truncation of the series. Alternatively, one
may define an equation of motion for the quantity g,(p),

dgn
& Bgn).

d In(cosh p) (20)
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The fixed points correspond to the zeros of B(gn). For n =0 and
assuming vanishing £, and higher order moments, 5(go) turns out
to be

B(g0) ~ —g3 — (ap + a1)go + cob1 — aoay. (21)

The plot of the function B(gp) is shown in Fig. 2(b). We find that
there is yet another fixed point gy ~ —3 apart from the previ-
ously found point go ~ —2. Applying linear perturbation around
the fixed point (go), i.e., go(p) = (go) + f(p), and substituting this
in Eq. (20) we find that the solution around (go) = —2 yields de-
caying modes for p > 0 and hence a stable fixed point in the late
time regime where as the solution at (go) = —3 yields growing
modes for p > 0 and therefore an unstable fixed point in the late
time regime. However, in the early time regime p <0, g, = =3 is
stable and g, = —2 is unstable.

If one needs to keep the second moment £, in the expression
for B(go) in Eq. (21), we get

L
B(g0) = —g5 — (ao + a1)go + cob1 — apa1 + coc Z (22)
For the stable late time fixed point gg = —2, we get the value

L2/Lo =1 as expected. For the unstable late time fixed point
go = —3, L2/Lo = 3/8. The correction to B(gp) because of the
term Ly is also shown in Fig. 2(b).

It is interesting to note here that the late time behavior of the

ratio of moments for the unstable fixed point g, = —3 (for any
arbitrary n) turns out to be

im 200 _ P21(0). (23)
pr— Lo(p)

An important observation from Egs. (23), (17), is that the fixed
points g, = —3 and g, = —2 correspond to vanishing effective lon-
gitudinal and transverse pressure P,=0,$r=0 respectively. One
notices that the late time behavior of the ratio of moments for
stable and unstable fixed points in the Bjorken scenario [26] is ex-
actly the opposite of Gubser flow. This can be understood from the
previous observation i.e., for Gubser flow Pr — 0, the system free
streams in the transverse direction at late-times while for Bjorken
flow P; — 0, the system free-streams along the longitudinal direc-
tion.

5. The hydrodynamic fixed point

Previously, we have seen that for an initially isotropic equilib-
rium distribution, the collisionless FS solution drives the system
to anisotropic distribution with a wealth of moments being gener-
ated as time goes on. Owing, to the presence of fixed point that
we have already seen, the time dependence can be qualitatively
captured by the two lowest moments.

As we have discussed earlier, the effect of collision is to wash
out the effect of initial anisotropy and the anisotropy generated
due to expansion. For a 1+1 dimensional expansion, the late time
behavior of the system can be described as a series expansion in
the power of expansion scalar 1/7. The late-time behavior in such
a system has been attributed to the presence of a different kind of
the fixed point, called hydrodynamic fixed point. To proceed, we
shall assume that all the moments £, admit a gradient expansion
in powers of tanh p [22]:

o0

Ln(p)=Y_ (tanh p)"y, ™. (24)
m=n

where yn(m) ’s are coefficients of the expansion. Due to Landau

matching condition, for all orders, the zeroth moment corresponds

to the energy density i.e., yo(m) = € for all m. Since €(p) is

time-dependent, we deduce that coefficients yn(m) are also time-
dependent. The late-time behavior of the term yo(o) can be ob-
tained from Eq. (9) by ignoring the contribution from £;. We find
that the ideal hydrodynamics limit of the time evolution of €(p) is
governed by the term ag = 8/3, i.e., €(p) ~ (cosh p) /3. The lead-
ing terms in the expansion can be determined by demanding the
cancellation of relaxation terms in Eq. (9) since other terms can be
ignored at large times. The above condition can be met if we have
L= Cb? tanhan_l. (25)
T(p)
Starting from n = 1, the above equation leads to a recursion rela-

tion for £, from which the coefficients yn(") can be deduced as
c\" 1
" = é(¥> "] (26)
i=1

Since, é(p) ~ T4(p), the time dependence of leading order is
given as: )/n(") ~ (cosh p)~24=M/3 substituting, this in Eq. (24)
gives us the time dependence of £, ~ (tanh p)"(cosh p)~2¢4—™/3,
The fixed points can be calculated using the definition of g,(p) in
Eq. (18),

2(n—4)
3
Eq. (27) shows that unlike the 1+1d Bjorken case where the g,(p)
is a constant, for 2+1d Gubser flow the hydrodynamic fixed point
is a function of time. However, in the asymptotic limit, we have
gn(p — +o0) =2(n—4)/3. It is also interesting to note that for
n=1 at large time, the hydrodynamic and FS stable fixed point
are exactly same.
The next to leading order correction to yn(") can be deter-
mined by ignoring the contribution from the term £,1,/L, but
still keeping the constant contribution in Eq. (18). This gives

gn(p) = +ncsch?(p). (27)

(n+1) ()
c (2n—4 Vo
b L (% ¥ an + by "(n;> . (28)
Vn T Vn

6. The hydrodynamic attractor

Following [26], we define the ‘attractor’ as the solution of
Eq. (9) with initial conditions pertaining to the FS stable fixed
point for p <0, i.e. g, = —3 with the corresponding moments
as given by Eq. (23). In Fig. 3(a), the numerical solution of at-
tractor and arbitrary initial conditions is shown for Ly in terms
of the quantity gg. While solving numerically we used pg = —10,
because this value avoids unphysical behavior e.g. negative tem-
peratures [31] if one initialize at pp = 0. The solution is obtained,
for various values of 7js in decreasing order as one goes from top
to bottom of the figure. The solution is obtained after truncating
Eq. (9) after 150 terms. Thin black solid lines correspond to ar-
bitrary initial conditions, red dotted line corresponds to FS stable
fixed point for p > 0, i.e., go = —2, black dotted line corresponds
to hydrodynamic fixed point go = —8/3 (Eq. (27), with n =0) and
the green solid line is the attractor solution respectively. We can
make the following observations from Fig. 3(a)

1. Starting from the top, with a large value of 47 7j; = 10°, which
almost correspond to the FS limit in this setup, one finds that
there are two plateaus, for early time this corresponds the FS
stable fixed point go = —3 and at late times gg = —2. Arbitrary
initial conditions approach these FS attractor at early and late
time. The system does not approach the hydrodynamic fixed
point at any point of time as expected.
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Fig. 3. (a) Attractor solutions for £o moments in terms of go(p) truncating Eq. (9) after 150 terms. Thin black solid lines correspond to arbitrary initial conditions, red
dotted line corresponds to FS stable fixed point for p > 0, i.e., go = —2, black dotted line corresponds to hydrodynamic fixed point go = —8/3. Green solid is defined as the
‘attractor’ solution. For all curves pg = —10 with decreasing values of 7js. (b) g0(0) — g2(p) as a function of p with initial condition fixed at p = —10 and 477 = 10. Line
symbols are same as that of (a), except that black dotted lines are determined from Eq. (27).

2. Decreasing the value of 47 j; = 103, pushes the go = —2 fixed
point further in +p and go = —3 backward in —p. Here, the
system just transiently touches the hydrodynamic fixed point
around p = 0 before approaching the late time FS fixed point
g0 = —2. The same trend continues for 47 #j; = 102, with the
system staying relatively longer in the hydrodynamic fixed
point than the previous value and a plateau developing.

3. For 4 ns = 10, the system pushes the go = —3 fixed point far
back in —p and the hydrodynamic fixed point is approached
relatively quicker than previous cases. At late times the hydro-
dynamic fixed point decays to the FS fixed point gg = —2. The
hydrodynamic attractor goes from go = -3 - —8/3 — —2.
Further decrease of 47 1js = 1 plateaus the hydrodynamic fixed
point longer in time before eventually decaying to go = —2.

A comparison between 1+1d Bjorken expansion to the intrinsi-
cally 3+1d Gubser expansion is apt here. Unlike Bjorken flow
which thermalizes/hydrodynamizes at a late time, Gubser flow
goes from FS— thermalizes/hydrodynamizes— FS. This is because
the inverse Knudsen number Kn—! = 7/t for Bjorken flow in the
conformal limit grows with time [19], in the other hand Kn~! =
(1?R|tanh,o|)71 for Gubser flow increases for p < 0 and decreases
p > 0 as shown in Fig. 4(a). We also plot the function g¢ as a func-
tion of inverse Knudsen number Kn™! in Fig. 4(b), with 47 #js = 10.
The arrow of time in this figure first moves to the right and then
to left as can be understood from Fig. 4(a). The initial condition of
the setup corresponds to Kn~! ~ 1. The system moves to the right
i.e. with increasing value of gy with increasing Kn~!, reaches the
hydrodynamic fixed point at few orders in Kn~!, turns left again,
remaining in the hydrodynamic regime with decreasing value of
Kn~!. After reaching Kn—! < 107, the gg increases further until it
reaches the FS fixed point at small values of Kn~!. Such a case
was recently studied in [19] by varying the Knudsen number for a
system undergoing Bjorken flow.

Next, we examine the behavior of higher-order g,, where n =
1,2 as a function of p Fig. 3(b). Following are the salient features:
a) All curves approach the hydrodynamic fixed point around p =0
(Kn~! > 1), which can be called the ‘hydrodynamic regime’. As
noted earlier all higher-order moments have a pole at p = 0. b)
The hydrodynamic and late time FS fixed point is the same for n =
1. ¢) We have checked that the hydrodynamic fixed-point values
are independent of the truncation order but not the FS values, i.e.,

103
102

10!

Kn~1

10°
10t

1072

_1.8 L 1
107! 10! 103

Kn=t
Fig. 4. (a) Inverse Knudsen number Kn—! = (letanhp\)’l for Gubser flow, with
initial conditions pertaining to g, = —3 at p = —10, i.e., ‘attractor’ solution and

471js = 10. (b) go as function of Kn~!

line symbols are same as that of Fig. 3.

with the parameters set as that of (a). The

as one goes to higher-order in the set of Egs. (9), the match to late
time exact values of FS fixed point g, = —2 gets better.

7. Matching to hydrodynamics

Here we pause and compare the various orders of moments
generated from truncation of Eq. (9) to successive orders of vis-
cous hydrodynamic corrections. In the last section we have already
shown that truncation at lowest order with vanishing £ results in
ideal hydrodynamic equation of motion. Truncation at n =1 yields
two coupled set of equations:
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= —tanh(p) §é—fr
re p 3 )

9€é
ap
om
ap

2., N\ AT
= —tanh(p) (—b1€ + a17r> -—, (29)
P 3 c
where 7 = —coL;. The above set of equations constitute the sec-

ond order viscous hydrodynamic equations for Gubser flow in the
Chapman-Enskog expansion [32]. The term by, a; are related to the
term En, . through the relation: ,3,, = —b1€/2, A =@ respec-
tively and as we have already mentioned 7 = c/f(p). In the first
order Navier-Stokes approximation the Eq. (29) reduces for small
c: 7t = (4/3) Tr B tanh p.

For third and higher-order viscous correction from the moment
equation by keeping the term £, in Eq. (29) and also considering
the time evolution of moment Ly:

R 2 . .2 #T

— = —tanh(p) (—b1e +a7+ —C1£2> -—, (30)
ap 3 3 c

AL 3. LT
8—,02 = —tanh(p) <azlz + §b2ﬂ> - =2 (31)

In the above equation, £, appears as a new dynamical variable
with its own evolution equation which in contrast to third-order
hydrodynamics is related to 77 by a constitutive relation. To make
a connection with hydrodynamics it suffices to take a small ¢ limit
in which,

.£2=—§‘fgb2ﬁt&ﬂhp=—9122 ﬁz, (32)

g

where we have used the Navier-Stokes limit to express tanh p in
terms of moment 77. Eq. (32) can be matched to the coefficient ¥
appearing in third-order hydrodynamic [32] through the relation:
X = —(3/4)c1b,. For higher-order corrections, the series yn(") is di-
vergent since it grows as n! for large n as has already been seen
previously in Bjorken flow.

8. Conclusion

To summarize, the moment method which has been formulated
in [26] for 1+1d boost invariant system acts both as a practical tool
for solving the kinetic equation and to address dynamical ques-
tions like the presence of fixed points and attractors, etc. for the
system under consideration. In the present work, we applied the
moment method for a system undergoing Gubser flow which has
a simultaneous transverse and longitudinal expansion. Our study
suggests that the presence of an attractor, to which the solution
of the dynamical equations quickly converges before eventually
reaching the viscous hydrodynamic regime is a feature not limited
to the 1+1d system with an overwhelming amount of symmetries
like Bjorken flow. However, unlike Bjorken flow which starts with
vanishing longitudinal pressure at an early time and ends up in
thermalization at late times, the dynamics of Gubser flow is dif-
ferent. Initially, the dynamics of the system is similar to Bjorken
flow but ends up with vanishing transverse pressure, with ther-
malization happening in an intermediate stage. We also compared
the numerical solution obtained after solving the coupled moment
equations to the exact solution which shows a very good agree-
ment. A similar comparison of coefficients obtained through this
method with successive orders of viscous hydrodynamic correc-
tions shows exact agreement. We believe that these results offer
detailed insights into the dynamics of longitudinal/transverse mo-
mentum isotropization in relativistic systems undergoing simulta-
neous transverse and longitudinal expansion. In passing, we would
also mention that although Gubser flow has a transverse expan-
sion, in itself is a highly idealized model when confronted with

dynamics of matter produced in heavy-ion collisions. Therefore we
think it is important to investigate the appearance of attractors
further, by relaxing certain symmetries e.g. conformality and ho-
mogeneity along lines similar to [33] but with more analytical
control e.g. by adding mass terms or using a non-trivial metric
choice.
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