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The Boltzmann equation is solved in the relaxation time approximation using a hierarchy of angular 
moments of the distribution function. Our solution is obtained for an azimuthally symmetric radially 
expanding boost-invariant conformal system that is undergoing Gubser flow. The solution of moments 
that we get after truncating the infinite set of equations at various orders is compared to the exact 
kinetic solution. The dynamics of transition is described by the presence of fixed points which describes 
the evolution of the system from an early time collisionless free streaming to the hydrodynamic regime 
at intermediate times and back to free streaming at late times. The attractor solution is found for various 
orders of moments as an interpolation between these fixed points. The relation of moments to various 
approximations of relativistic viscous hydrodynamics is investigated.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Hydrodynamics is an effective theory for the description of 
long-wavelength phenomena of fluids, that can be expressed as 
a small gradient expansion relative to a thermal background [1]. 
Thus, hydrodynamics is expected to fail for systems which are far-
from-equilibrium where the gradients are expected to be large. The 
medium produced in pp collisions at LHC and RHIC energies is an 
example of such a system. However, recent experimental results 
of high energy pp collision have shown evidence of collectivity 
similar to those observed in heavy-ion collisions [2–6]. The un-
precedented success of hydrodynamics to describe collectivity in 
heavy-ion collisions, as well as small systems, can be attributed to 
the fact that there exists a stable universal attractor which makes 
the dynamical equations to quickly converge and enter a hydro-
dynamic regime, at a time scale much smaller than the typical 
isotropization time scales [7–13].

Previous works [8,14–20] have mostly focused on studying the 
properties of attractors for rapidly expanding 1+1d boost invariant 
systems undergoing Bjorken flow using relativistic kinetic theory. 
However, the fireball produced in high energy heavy-ion collisions 
also expands in the transverse direction at late times. Therefore, 
it is natural to ask whether the systems undergoing simultaneous 
longitudinal and transverse expansion also shows the attractor na-
ture as observed for 1+1d expansion. In the present work, we con-
sider a system undergoing Gubser flow which has a simultaneous 
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transverse and longitudinal expansion. In the context of Gubser 
flow, some recent works [21,22] study such dynamical properties 
using anisotropic hydrodynamics or DNMR hydrodynamical theo-
ries [23]. Recently in [24], it was found that the Gubser dynamical 
system allows a perturbative series solution around its early and 
late time fixed points with a finite radius of convergence. Based on 
these findings, it was shown that Gubser expanding system does 
not hydrodynamize. The purpose of the present work is to inves-
tigate the dynamics of transition from free streaming regime to a 
hydrodynamic regime or vice versa using a moment method that 
translates the kinetic equation for distribution function in relax-
ation time approximation (RTA) to an infinite series of coupled 
ordinary differential equations advocated in [25–27]. It will be 
seen that unlike 1+1d Bjorken flow which has late-time thermal-
ization/hydrodynamization, Gubser expansion is intrinsically 3+1d 
expansion with dynamics such that the system goes from early 
time free-streaming regime to intermediate thermalization/hydro-
dynamization and back to free-streaming in the late time regime.

2. Formulation

The hydrodynamic equations can be derived from the trans-
port equation by taking appropriate moments of the distribution 
function. The collision term in the Boltzmann equation plays an 
important role to isotropize any arbitrary initially anisotropic out 
of equilibrium distribution function or the anisotropy generated by 
a strong expansion. The competition between the two effects is 
commonly investigated in terms of the ratio between longitudinal 
pressure PL and transverse PT , local equilibrium corresponds to 
PT /PL = 1. In [25] it has been shown that a particular moment 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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of the distribution function is very useful for studying an out of 
equilibrium system undergoing longitudinally boost-invariant ex-
pansion. The details of the moment of the distribution function 
will be discussed later. The Boltzmann equation in an arbitrary co-
ordinate system for on-shell particles is

pμ∂μ f + �λ
μ j pλpμ ∂ f

∂ p j
= C[ f ], (1)

where �λ
μ j are the Christoffel symbols and f = f (xμ, p j) is the 

one particle distribution function.
Following [28,29] we look for solutions of the hydrodynamic 

equations with S O (3)q ⊗ S O (1, 1) ⊗ Z2 symmetry in flat spacetime. 
This can be implemented by a Weyl transformation of Minkowski 
spacetime in Milne coordinates xμ = (τ , x, y, η) to dS3 ⊗R space-
time. Here 3 stands for the 3-dimensional de Sitter spacetime as-
suming that the fluid is homogeneous. This spacetime is described 
by the line element

dŝ2 = −dρ2 + cosh2 ρ
(

dθ2 + sin2 θdφ2
)

+ dη2 (2)

Here we have introduced the de Sitter coordinates x̂μ=(ρ, θ, φ, η), 
with

ρ(τ , r) = − sinh−1
(

1−q2τ 2+q2r2

2qτ

)
, (3)

θ(τ , r) = tan−1
(

2qr
1+q2τ 2−q2r2

)
. (4)

q−1 is an arbitrary length scale and sets the size of the system. 
In these coordinates, the Gubser flow profile takes the form: uτ =
− coshκ(τ , r), ur = sinhκ(τ , r), with transverse flow rapidity κ =
tanh−1 (

2q2τ r/
(
1 + q2τ 2 + q2r2

))
. In this paper, all quantities in 

de Sitter coordinates are denoted with a hat.
Gubser symmetry requires massless degrees of freedom of the 

fluid, i.e., p̂2 = 0 and thus the spatial momentum can be written 
as

p̂ρ =
√(

p̂θ / coshρ
)2 + (

p̂φ/(coshρ sin θ)
)2 + p̂2

η. (5)

The S O (3)q symmetry implies the distribution function to be inde-
pendent of (θ, φ) and that the distribution function depends only 
on the following combination of momentum components:

p̂2
� = p̂2

θ + p̂2
φ

sin2 θ
. (6)

Similarly the S O (1, 1) symmetry subgroup implements longitudi-
nal boost invariance as a result of which the distribution function 
is independent of η. Using the above constraints, the RTA Boltz-
mann equation Eq. (1) in de Sitter space takes the following form 
[30,31]

∂

∂ρ
f
(
ρ; p̂�, p̂η

) = − T̂ (ρ)

c

[
f
(
ρ; p̂�, p̂η

) − feq

(
p̂ρ/T̂ (ρ)

)]
.

(7)

Here p̂ρ =
√(

p̂�/ coshρ
)2 + p̂2

η and T̂ = τ T . c is a dimensionless 
parameter which, in RTA, can be expressed in terms of the shear 
viscosity (ηs) to entropy density (s) ratio η̄s ≡ ηs/s as c = 5η̄s .

3. Evolution of moments in Gubser flow

Although Eq. (7) can be solved numerically, much insight can 
be gained by taking various moments of the distribution function 
as elucidated in [25,26]. These moments capture the deviation of 
distribution function from isotropy and for an expanding system 
Fig. 1. (a) L0 moment by truncating Eq. (9) at various orders. The initial condition 
is that of an equilibrium distribution function imposed at ρ0 = 0 with L0(ρ0) = 1. 
The results are obtained assuming η̄ = 1/4π . (b) Same as (a) but for L1.

they approach local equilibrium at late times due to collisions. The 
nth order moment Ln of the distribution function is defined as:

Ln =
∫

dP̂
(

p̂ρ
)2

P2n
(

p̂η/p̂ρ
)

f
(
ρ; p̂�, p̂η

)
, (8)

where dP̂ = dp̂ηdp̂θdp̂φ/ 
(
(2π)3 p̂ρ cosh2 ρ sin θ

)
is the phase 

space measure and P2n is a Legendre polynomial of order 2n. Ex-
cept for the moment n = 0 which corresponds to energy density ε̂ , 
all higher order n quantify the details of longitudinal momentum 
anisotropy. For example, the first order moment L1 = P̂L − P̂T , de-
scribes the anisotropy of pressure components in longitudinal and 
transverse directions.

Taking the derivative of Eq. (8) with respect to de Sitter time ρ
and using Eq. (7) one arrives at the following infinite set of coupled 
differential equations,

∂Ln

∂ρ
= − tanh(ρ) (anLn + bnLn−1 + cnLn+1)

− T̂ (ρ)
Ln

c
, (n ≥ 1)

∂L0

∂ρ
= − tanh(ρ) (a0L0 + c0L1) , (n = 0) (9)

where the coefficients an, bn , and cn are given as

an = 2(18n2 + 9n − 4)

(4n − 1)(4n + 3)
, (10)

bn = −4n(n + 1)(2n − 1)

(4n − 1)(4n + 1)
, (11)

cn = 2(n + 1)(2n − 1)(2n + 1)

(4n + 1)(4n + 3)
. (12)

As one can clearly see from Eq. (9), there is a competition between 
collisions (the term containing relaxation time) which washes out 
the effect of anisotropy and expansion (determined from the di-
mensionless coefficients an, bn , and cn) which drive the system out 
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Fig. 2. (a) Scaled Ln moments in the free streaming limit, with equilibrium initial conditions imposed at ρ0 = 0 with T̂ (ρ0) = 1, obtained from Eq. (15). (b) β(g0) as a 
function of g0 from Eq. (21). The crosses indicate the approximate solutions obtained from Eq. (21). The red diamond point corresponds to the late time unstable fixed point 
which is obtained from Eq. (22) for L2

L0
= 3

8 . The green circle corresponds to a late time stable fixed point which is obtained from Eq. (22) for L2
L0

= 1.
of equilibrium. One should note that a key difference between the 
present work and that of [26] is that the relaxation time τR in 
a conformal setting is not a constant but is related to the only 
available scale in the system i.e., temperature through the relation 
τ̂R = c/T̂ (ρ). A comparison of the coefficients an , bn , and cn for 
Gubser flow against the coefficients ãn , b̃n and c̃n for Bjorken flow 
of [26] gives us the following relations: an + ãn = 4, bn = −b̃n and 
cn = −c̃n .

The system of equations Eq. (9) can be easily solved by trun-
cating the series at a given n and ignoring all higher-order terms. 
In Fig. 1 we compare the solution of these equations with the ex-
act numerical solution of Eq. (7) by using a method given in [31]. 
First, we see that even for n < 2, the solution captures the qual-
itative details of the exact solution. Second, one notices that the 
approach to the exact solution is alternating for even and odd n. 
We would like to also point that, the exact kinetic solution shows 
numerical instability at negative ρ values when the system is ini-
tialized with non-zero shear stresses at ρ0 = 0. The same problem 
also persists in the moment method when we try to extrapolate 
the solution to negative de Sitter coordinates.

4. The free streaming fixed point

The RTA Boltzmann equation Eq. (7) has the following exact 
solution [30,31]:

f
(
ρ; p̂2

�, p̂η

)
= D (ρ,ρ0) f0

(
ρ0; p̂2

�, p̂η

)
+ (13)

1

c

ρ∫
ρ0

dρ ′D
(
ρ,ρ ′) T̂

(
ρ ′) feq

(
ρ ′; p̂2

�, p̂η

)
, (14)

where D (ρ,ρ0) = exp
[
− ∫ ρ

ρ0
dρ ′ T̂

(
ρ ′)/c

]
is the damping func-

tion, f0
(
ρ0; p̂2

�, pη

)
is the initial distribution function at de Sitter 

time ρ0 and feq
(
ρ ′; p̂2

�, p̂η

)
is the equilibrium distribution func-

tion. The moments can be calculated from the distribution function 
Eq. (13) using the definition given in Eq. (8).

Assuming that the initial distribution f0
(
ρ0; p̂2

�, p̂η

)
at ρ0 is 

an isotropic Boltzmann distribution, we find the following free 
streaming (FS) solution (taking c → ∞ in Eq. (13)) for the mo-
ments

LF S
n (ρ) = 3T̂ 4

0

π2
x2Fn (x) , (15)

where x = coshρ0 and Fn(x) as
coshρ
Fn(x) = 1

2

1∫
−1

dy
√(

1 − x2
)

y2 + x2 P2n

⎛
⎜⎝ y√

x2 + (
1 − x2

)
y2

⎞
⎟⎠ .

(16)

Here T̂0 is the initial temperature at ρ0. The function Fn(x) has the 
following limits: Fn(x) → 1/2 as x → 0 and Fn(x) → sin 2nπ

2nπ(1+2n)
as 

x → 1 (i.e., F0 = 1 for n = 0 and F0 = 0 for n 	= 0). Consequently, 
for asymptotically large de Sitter time, i.e., |ρ| 
 |ρ0|, Fn(x) is a 
constant and LF S

n (ρ) decays as 1/cosh2 ρ . However, the scaled mo-
ments,

lim
ρ→∞

LF S
n (ρ)

LF S
0 (ρ)

= 1, (17)

saturate in the FS limit, which would have decayed to zero in the 
presence of collisions.

In Fig. 2 we show the analytical solution of the evolution of 
scaled moments by solving Eq. (15). As one can see, all the scaled 
moments approach unity at large de Sitter times. The FS regime 
can also be described by Eq. (9) by taking the limit c → ∞. We 
have also checked (not shown here) that even for arbitrary initial 
condition, the moments approach unity both from above and be-
low at large de Sitter times.

Since the moments continuously evolve to a constant value at 
large times, it is natural to define the quantity gn(ρ) [25,26],

gn(ρ) = ∂ lnLn

∂ ln(coshρ)
. (18)

For Eq. (9), gn(ρ) turns out to be,

gn(ρ) = −an − bn
Ln−1

Ln
− cn
Ln+1

Ln
− (1 − δn0)

T̂ (ρ)

c tanhρ
. (19)

Taking the limit c → ∞, and using the expression Eq. (17) for the 
ratio of the moments (for large ρ) one can obtain the FS fixed 
point. We find that for all n the solution yields gn(ρ) = −2. For 
the above initial condition, one finds that solution of gn(ρ) from 
Eq. (9) does not evolve with ρ and hence is indeed a fixed point. 
One may also verify that for arbitrary initial conditions, the series 
of equations Eq. (9) also gives the approximate result gn(ρ) ≈ −2
with error due to finite truncation of the series. Alternatively, one 
may define an equation of motion for the quantity gn(ρ),

∂ gn = β(gn). (20)

∂ ln(coshρ)
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The fixed points correspond to the zeros of β(gn). For n = 0 and 
assuming vanishing L2 and higher order moments, β(g0) turns out 
to be

β(g0) ≈ −g2
0 − (a0 + a1)g0 + c0b1 − a0a1. (21)

The plot of the function β(g0) is shown in Fig. 2(b). We find that 
there is yet another fixed point g0 ≈ −3 apart from the previ-
ously found point g0 ≈ −2. Applying linear perturbation around 
the fixed point 〈g0〉, i.e., g0(ρ) = 〈g0〉 + f (ρ), and substituting this 
in Eq. (20) we find that the solution around 〈g0〉 = −2 yields de-
caying modes for ρ > 0 and hence a stable fixed point in the late 
time regime where as the solution at 〈g0〉 = −3 yields growing 
modes for ρ > 0 and therefore an unstable fixed point in the late 
time regime. However, in the early time regime ρ < 0, gn = −3 is 
stable and gn = −2 is unstable.

If one needs to keep the second moment L2 in the expression 
for β(g0) in Eq. (21), we get

β(g0) = −g2
0 − (a0 + a1)g0 + c0b1 − a0a1 + c0c1

L2

L0
. (22)

For the stable late time fixed point g0 = −2, we get the value 
L2/L0 = 1 as expected. For the unstable late time fixed point 
g0 = −3, L2/L0 = 3/8. The correction to β(g0) because of the 
term L2 is also shown in Fig. 2(b).

It is interesting to note here that the late time behavior of the 
ratio of moments for the unstable fixed point gn = −3 (for any 
arbitrary n) turns out to be

lim
ρ→∞

Ln(ρ)

L0(ρ)
= P2n(0). (23)

An important observation from Eqs. (23), (17), is that the fixed 
points gn = −3 and gn = −2 correspond to vanishing effective lon-
gitudinal and transverse pressure P̂L = 0, P̂T = 0 respectively. One 
notices that the late time behavior of the ratio of moments for 
stable and unstable fixed points in the Bjorken scenario [26] is ex-
actly the opposite of Gubser flow. This can be understood from the 
previous observation i.e., for Gubser flow P̂T → 0, the system free 
streams in the transverse direction at late-times while for Bjorken 
flow P̂L → 0, the system free-streams along the longitudinal direc-
tion.

5. The hydrodynamic fixed point

Previously, we have seen that for an initially isotropic equilib-
rium distribution, the collisionless FS solution drives the system 
to anisotropic distribution with a wealth of moments being gener-
ated as time goes on. Owing, to the presence of fixed point that 
we have already seen, the time dependence can be qualitatively 
captured by the two lowest moments.

As we have discussed earlier, the effect of collision is to wash 
out the effect of initial anisotropy and the anisotropy generated 
due to expansion. For a 1+1 dimensional expansion, the late time 
behavior of the system can be described as a series expansion in 
the power of expansion scalar 1/τ . The late-time behavior in such 
a system has been attributed to the presence of a different kind of 
the fixed point, called hydrodynamic fixed point. To proceed, we 
shall assume that all the moments Ln admit a gradient expansion 
in powers of tanhρ [22]:

Ln(ρ) =
∞∑

m=n

(tanhρ)mγ
(m)

n , (24)

where γ
(m)

n ’s are coefficients of the expansion. Due to Landau 
matching condition, for all orders, the zeroth moment corresponds 
to the energy density i.e., γ
(m)

0 = ε̂ for all m. Since ε̂(ρ) is 
time-dependent, we deduce that coefficients γ (m)

n are also time-
dependent. The late-time behavior of the term γ (0)

0 can be ob-
tained from Eq. (9) by ignoring the contribution from L1. We find 
that the ideal hydrodynamics limit of the time evolution of ε̂(ρ) is 
governed by the term a0 = 8/3, i.e., ε̂(ρ) ∼ (coshρ)−8/3. The lead-
ing terms in the expansion can be determined by demanding the 
cancellation of relaxation terms in Eq. (9) since other terms can be 
ignored at large times. The above condition can be met if we have

Ln = −cbn tanhρ

T̂ (ρ)
Ln−1. (25)

Starting from n = 1, the above equation leads to a recursion rela-
tion for Ln from which the coefficients γ (n)

n can be deduced as

γ
(n)

n = ε̂

(
c

T̂

)n

(−1)n
n∏

i=1

bi . (26)

Since, ε̂(ρ) ∼ T̂ 4(ρ), the time dependence of leading order is 
given as: γ

(n)
n ∼ (coshρ)−2(4−n)/3. Substituting, this in Eq. (24)

gives us the time dependence of Ln ∼ (tanhρ)n(coshρ)−2(4−n)/3. 
The fixed points can be calculated using the definition of gn(ρ) in 
Eq. (18),

gn(ρ) = 2(n − 4)

3
+ n csch2(ρ). (27)

Eq. (27) shows that unlike the 1+1d Bjorken case where the gn(ρ)

is a constant, for 2+1d Gubser flow the hydrodynamic fixed point 
is a function of time. However, in the asymptotic limit, we have 
gn(ρ → ±∞) = 2(n − 4)/3. It is also interesting to note that for 
n = 1 at large time, the hydrodynamic and FS stable fixed point 
are exactly same.

The next to leading order correction to γ
(n)

n can be deter-
mined by ignoring the contribution from the term Ln+1/Ln but 
still keeping the constant contribution in Eq. (18). This gives

γ
(n+1)

n

γ
(n)

n

= − c

T̂

(
2(n − 4)

3
+ an + bn

γ
(n)

n−1

γ
(n)

n

)
. (28)

6. The hydrodynamic attractor

Following [26], we define the ‘attractor’ as the solution of 
Eq. (9) with initial conditions pertaining to the FS stable fixed 
point for ρ < 0, i.e. gn = −3 with the corresponding moments 
as given by Eq. (23). In Fig. 3(a), the numerical solution of at-
tractor and arbitrary initial conditions is shown for L0 in terms 
of the quantity g0. While solving numerically we used ρ0 = −10, 
because this value avoids unphysical behavior e.g. negative tem-
peratures [31] if one initialize at ρ0 = 0. The solution is obtained, 
for various values of η̄s in decreasing order as one goes from top 
to bottom of the figure. The solution is obtained after truncating 
Eq. (9) after 150 terms. Thin black solid lines correspond to ar-
bitrary initial conditions, red dotted line corresponds to FS stable 
fixed point for ρ > 0, i.e., g0 = −2, black dotted line corresponds 
to hydrodynamic fixed point g0 = −8/3 (Eq. (27), with n = 0) and 
the green solid line is the attractor solution respectively. We can 
make the following observations from Fig. 3(a)

1. Starting from the top, with a large value of 4πη̄s = 105, which 
almost correspond to the FS limit in this setup, one finds that 
there are two plateaus, for early time this corresponds the FS 
stable fixed point g0 = −3 and at late times g0 = −2. Arbitrary 
initial conditions approach these FS attractor at early and late 
time. The system does not approach the hydrodynamic fixed 
point at any point of time as expected.
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Fig. 3. (a) Attractor solutions for L0 moments in terms of g0(ρ) truncating Eq. (9) after 150 terms. Thin black solid lines correspond to arbitrary initial conditions, red 
dotted line corresponds to FS stable fixed point for ρ > 0, i.e., g0 = −2, black dotted line corresponds to hydrodynamic fixed point g0 = −8/3. Green solid is defined as the 
‘attractor’ solution. For all curves ρ0 = −10 with decreasing values of η̄s . (b) g0(ρ) − g2(ρ) as a function of ρ with initial condition fixed at ρ = −10 and 4πη̄s = 10. Line 
symbols are same as that of (a), except that black dotted lines are determined from Eq. (27).
2. Decreasing the value of 4πη̄s = 103, pushes the g0 = −2 fixed 
point further in +ρ and g0 = −3 backward in −ρ . Here, the 
system just transiently touches the hydrodynamic fixed point 
around ρ = 0 before approaching the late time FS fixed point 
g0 = −2. The same trend continues for 4πη̄s = 102, with the 
system staying relatively longer in the hydrodynamic fixed 
point than the previous value and a plateau developing.

3. For 4πη̄s = 10, the system pushes the g0 = −3 fixed point far 
back in −ρ and the hydrodynamic fixed point is approached 
relatively quicker than previous cases. At late times the hydro-
dynamic fixed point decays to the FS fixed point g0 = −2. The 
hydrodynamic attractor goes from g0 = −3 → −8/3 → −2. 
Further decrease of 4πη̄s = 1 plateaus the hydrodynamic fixed 
point longer in time before eventually decaying to g0 = −2.

A comparison between 1+1d Bjorken expansion to the intrinsi-
cally 3+1d Gubser expansion is apt here. Unlike Bjorken flow 
which thermalizes/hydrodynamizes at a late time, Gubser flow 
goes from FS→thermalizes/hydrodynamizes→FS. This is because 
the inverse Knudsen number Kn−1 = τ/τR for Bjorken flow in the 
conformal limit grows with time [19], in the other hand Kn−1 =
(τ̂R |tanhρ|)−1 for Gubser flow increases for ρ < 0 and decreases 
ρ > 0 as shown in Fig. 4(a). We also plot the function g0 as a func-
tion of inverse Knudsen number Kn−1 in Fig. 4(b), with 4πη̄s = 10. 
The arrow of time in this figure first moves to the right and then 
to left as can be understood from Fig. 4(a). The initial condition of 
the setup corresponds to Kn−1 ∼ 1. The system moves to the right 
i.e. with increasing value of g0 with increasing Kn−1, reaches the 
hydrodynamic fixed point at few orders in Kn−1, turns left again, 
remaining in the hydrodynamic regime with decreasing value of 
Kn−1. After reaching Kn−1 < 101, the g0 increases further until it 
reaches the FS fixed point at small values of Kn−1. Such a case 
was recently studied in [19] by varying the Knudsen number for a 
system undergoing Bjorken flow.

Next, we examine the behavior of higher-order gn , where n =
1, 2 as a function of ρ Fig. 3(b). Following are the salient features: 
a) All curves approach the hydrodynamic fixed point around ρ = 0
(Kn−1 
 1), which can be called the ‘hydrodynamic regime’. As 
noted earlier all higher-order moments have a pole at ρ = 0. b) 
The hydrodynamic and late time FS fixed point is the same for n =
1. c) We have checked that the hydrodynamic fixed-point values 
are independent of the truncation order but not the FS values, i.e., 
Fig. 4. (a) Inverse Knudsen number Kn−1 = (τ̂R |tanhρ|)−1 for Gubser flow, with 
initial conditions pertaining to gn = −3 at ρ = −10, i.e., ‘attractor’ solution and 
4πη̄s = 10. (b) g0 as function of Kn−1 with the parameters set as that of (a). The 
line symbols are same as that of Fig. 3.

as one goes to higher-order in the set of Eqs. (9), the match to late 
time exact values of FS fixed point gn = −2 gets better.

7. Matching to hydrodynamics

Here we pause and compare the various orders of moments 
generated from truncation of Eq. (9) to successive orders of vis-
cous hydrodynamic corrections. In the last section we have already 
shown that truncation at lowest order with vanishing L1 results in 
ideal hydrodynamic equation of motion. Truncation at n = 1 yields 
two coupled set of equations:
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∂ε̂

∂ρ
= − tanh(ρ)

(
8

3
ε̂ − π̂

)
,

∂π̂

∂ρ
= − tanh(ρ)

(
2

3
b1ε̂ + a1π̂

)
− π̂ T̂

c
, (29)

where π̂ = −c0L1. The above set of equations constitute the sec-
ond order viscous hydrodynamic equations for Gubser flow in the 
Chapman-Enskog expansion [32]. The term b1, a1 are related to the
term β̂π , λ̂π through the relation: β̂π = −b1ε̂/2, λ̂π = a1 respec-
tively and as we have already mentioned τ̂R = c/T̂ (ρ). In the first 
order Navier-Stokes approximation the Eq. (29) reduces for small 
c: π̂ = (4/3) τ̂R β̂π tanhρ .

For third and higher-order viscous correction from the moment 
equation by keeping the term L2 in Eq. (29) and also considering 
the time evolution of moment L2:

∂π̂

∂ρ
= − tanh(ρ)

(
2

3
b1ε̂ + a1π̂ + 2

3
c1L2

)
− π̂ T̂

c
, (30)

∂L2

∂ρ
= − tanh(ρ)

(
a2L2 + 3

2
b2π̂

)
− L2 T̂

c
. (31)

In the above equation, L2 appears as a new dynamical variable 
with its own evolution equation which in contrast to third-order 
hydrodynamics is related to π̂ by a constitutive relation. To make 
a connection with hydrodynamics it suffices to take a small c limit 
in which,

L2 = −3

2
τ̂Rb2π̂ tanhρ = − 9b2

8β̂π

π̂2, (32)

where we have used the Navier-Stokes limit to express tanhρ in 
terms of moment π̂ . Eq. (32) can be matched to the coefficient χ̂
appearing in third-order hydrodynamic [32] through the relation: 
χ̂ = −(3/4)c1b2. For higher-order corrections, the series γ (n)

n is di-
vergent since it grows as n! for large n as has already been seen 
previously in Bjorken flow.

8. Conclusion

To summarize, the moment method which has been formulated 
in [26] for 1+1d boost invariant system acts both as a practical tool 
for solving the kinetic equation and to address dynamical ques-
tions like the presence of fixed points and attractors, etc. for the 
system under consideration. In the present work, we applied the 
moment method for a system undergoing Gubser flow which has 
a simultaneous transverse and longitudinal expansion. Our study 
suggests that the presence of an attractor, to which the solution 
of the dynamical equations quickly converges before eventually 
reaching the viscous hydrodynamic regime is a feature not limited 
to the 1+1d system with an overwhelming amount of symmetries 
like Bjorken flow. However, unlike Bjorken flow which starts with 
vanishing longitudinal pressure at an early time and ends up in 
thermalization at late times, the dynamics of Gubser flow is dif-
ferent. Initially, the dynamics of the system is similar to Bjorken 
flow but ends up with vanishing transverse pressure, with ther-
malization happening in an intermediate stage. We also compared 
the numerical solution obtained after solving the coupled moment 
equations to the exact solution which shows a very good agree-
ment. A similar comparison of coefficients obtained through this 
method with successive orders of viscous hydrodynamic correc-
tions shows exact agreement. We believe that these results offer 
detailed insights into the dynamics of longitudinal/transverse mo-
mentum isotropization in relativistic systems undergoing simulta-
neous transverse and longitudinal expansion. In passing, we would 
also mention that although Gubser flow has a transverse expan-
sion, in itself is a highly idealized model when confronted with 
dynamics of matter produced in heavy-ion collisions. Therefore we 
think it is important to investigate the appearance of attractors 
further, by relaxing certain symmetries e.g. conformality and ho-
mogeneity along lines similar to [33] but with more analytical 
control e.g. by adding mass terms or using a non-trivial metric 
choice.
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