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Hawking radiation, quantum fields, and tunneling
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I consider the problem of reconciling “tunneling” approaches to black-hole radiation with the treatment
by quantum field theory in curved spacetime. It is not possible to do this completely, but using what appears
to be the most direct and natural correspondence, the simplest case of such an approach does not describe a
tunneling process but rather a WKB approximation to a two-point function. What it computes is a sort of
rescaled Unruh temperature associated with worldlines tracing Killing trajectories near the horizon. This
temperature is numerically equal to the Hawking temperature, but at this point no argument is known which
identifies it with the Hawking effect; indeed, the same temperature can exist when no curvature is present.
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I. INTRODUCTION

Hawking’s prediction that black holes radiate [1,2]
remains one of the intriguing facets of relativity. It was
initially received skeptically, but has come to be embraced
by virtually all workers in the field. However, while there
are innumerable enthusiasts for the prediction, there is
decidedly less agreement about what its foundations are.

Hawking’s original argument, which was based on a
careful and insightful analysis of the propagation of quantum
fields on a gravitationally collapsing spacetime, revealed also
that trans-Planckian modes would enter essentially. He
pointed out too he had neglected possible quantum-gravita-
tional effects, and that these might alter his predictions; and
indeed it was later shown on dimensional grounds that
quantum-gravitational effects could very plausibly com-
pletely change the picture (though they certainly need not).

These two problems are simply there. They are conse-
quences of conventional quantum field theory in curved
spacetime, and so no derivation of Hawking radiation
within, or even strictly compatible with, that framework
can avoid them. They would have to be overcome by
essentially new physical hypotheses.' (See Ref. [3] for a
review of these matters.)

“helfera@missouri.edu

"There is an exception to this. If one introduces a textbook
ultraviolet cutoff, there is no trans-Planckian problem, but
also no Hawking radiation. There is no absolute reason to
reject this possibility, although it is hard to let go of the very
beautiful link Hawking’s work suggests between black holes
and thermodynamics.
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But it is not easy to see how quantum field theory in
curved spacetime should be modified. Quantum field
theory itself was largely developed in order to reconcile
quantum theory with special relativity, and it has been
extraordinarily successful where it has been tested. The
transition to quantum field theory in curved spacetime is
based largely on the hypothesis that the local structure of
the theory should agree with the Minkowskian one. So it is
hard to see how quantum field theory in curved space-
time could be changed without upsetting either special-
relativistic quantum theory or local Lorentz invariance.

The seriousness of the problems underpinning Hawking
radiation makes it desirable to search for alternative deriva-
tions, but the hermetic character of the arguments for
quantum field theory in curved spacetime makes this very
difficult. I will be concerned here with one family of ideas to
treat black-hole radiation: the “tunneling” proposals.

A. “Tunneling”

The first “tunneling” proposal was made by Parikh and
Wilczek [4]; a somewhat different (“Hamilton-Jacobi™)
form was given by Angheben et al. [5] and is most
commonly used now. See Ref. [6] for a review. The
proposals are supposed to give a treatment of black holes
somewhat parallel to the Schwinger effect [7] (which
predicts the creation of charged pairs by a strong electric
field®).

The physical interpretation of these proposals, however,
remains obscure. This is because, while much suggestive
language (tunneling, virtual particles, etc.) has been used, it
has so far not been possible to establish detailed models or

*This prediction was actually made earlier, by Euler and
Heisenberg [8], before the modern development of quantum
electrodynamics.
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justifications for all of the steps. It is not in fact clear at this
point whether these ideas are supposed to be consequences
of quantum field theory in curved spacetime, or alternatives
to it—and, if they are alternatives, what their founda-
tions are.

A great deal of this is because of unresolved usages of
the term “particle.” Hawking based his analysis on a careful
discussion of what one should reasonably call physical
particles. However, it is not clear how much of this is
accepted in the tunneling papers, and straightforward
readings of many of them conflict strongly with Hawking’s.

The papers invoking tunneling generally present the
process as the creation of “particles” infinitesimally outside
of the event horizon, which then simply suffer redshifts
(and have amplitudes somewhat reduced by greybody
factors) as they propagate to future null infinity Z. If this
were really the case, then the particles created near a given
point on the horizon would be blueshifted relative to the
Hawking temperature, by amounts exponentially increas-
ing with retarded time (in any fixed frame near the horizon).
Colossal energy densities would be present, diverging at the
horizon.

This is not at all what Hawking’s analysis showed, nor
indeed what will happen in any analysis consistent with
quantum field theory in curved spacetime. In those pictures,
physical particle production is a highly nonlocal matter, and
one can only unambiguously say that Hawking quanta are
present at distances greater than a few gravitational radii
from the hole. Closer to the horizon, there is no unam-
biguous physical definition of particles of the relevant wave
vectors, and local measurements of the physical state would
reveal no remarkable structure: the Hawking quanta are
present only in the sense that they will be revealed by a
Bogoliubov transformation from local field data there to the
neighborhood of Z.

It is acknowledged in some of the tunneling literature
that the term “particle” is used in an extended sense and that
it is coordinate (or frame) dependent [6]. Presumably, it is
hoped that eventually one will be able to develop a theory
of just what these “particles” (and their physical properties)
are, so that one will be able to give a coherent account of
how and where they are created, how they propagate, and
what their stress-energy content is. But these things have
yet to be done.

So we await clarifications of in just what sense particles
are supposed to be produced at the horizon, and just how
they are affected as they move outwards to Z*, in the
tunneling picture.

Generally, the papers compute a quantity they refer to as
the imaginary part of the action JIS and, usually without
discussion, identify this with particle production. It is true
that one can relate the particle production Schwinger found
to what might be called the imaginary part of the action
for an auxiliary problem, but this identification strongly
takes advantage of the Minkowskian background structure.

One needs to justify a parallel application to the gravita-
tional case.

It should also be emphasized that, while the language of
tunneling is often used in connection with the Schwinger
effect, it is not really a correct description of that process.
This description invokes the “Dirac sea” in a way which is
considered in modern field theory not just to be incorrect
but to be a source of much confusion.” So even if one could
present the Hawking effect as a parallel to a tunneling
calculation for the Schwinger effect, one would have a lot
of explaining left to do. In fact, Hawking himself consid-
ered the possibility of a tunneling description, and cau-
tioned it was “heuristic only and should not to be taken too
literally” [2].

We are left with an unsettled situation. The “tunneling”
approaches depend on a formula taken over from special-
relativistic quantum electrodynamics, but there are ques-
tions about the justification for this in the gravitational case,
and it is not clear if the results are compatible with quantum
field theory in curved spacetime.

B. This paper

The aim of this paper is to give a natural interpretation of
the simplest case of “tunneling” calculations in terms of
quantum field theory in curved spacetime. In view of the
discussion above, it will not be possible to reconcile all
aspects of the tunneling approaches with this theory.
Nevertheless, the present paper at least fills in some
elements of one interpretational framework, and provides
a point of comparison for others who might wish to offer
alternatives.

As the goal here is to treat the simplest case, I will focus
on a Hamilton-Jacobi approach. But the points to be
considered here would also appear in a discussion of the
Parikh-Wilczek one (although there would be other, com-
plicating, issues).

It will be shown that the computations can be viewed as
not having to do with tunneling at all, but rather as giving
certain asymptotics for the quantum-field-theoretic two-
point functions near the event horizons. The temperature
computed does indeed correspond to one known from

Schwinger himself wrote:

The picture of an infinite sea of negative energy electrons
is now best regarded as an historical curiosity, and
forgotten. Unfortunately, this episode, and discussions
of vacuum fluctuations, seem to have left people with
the impression that the vacuum, the physical state of
nothingness (under controlled physical circumstan-

ces), is actually the scene of wild activity. [9]
The first sentence is quoted in Weinberg’s book on quantum field
theory [10]. Zee says (of particles with negative energies, and
traveling backwards in time) this “metaphorical language, when
used by brilliant minds...was evocative and inspirational, but
unfortunately confused generations of physics students and
physicists” [11].

025005-2



HAWKING RADIATION, QUANTUM FIELDS, AND TUNNELING

PHYS. REV. D 100, 025005 (2019)

quantum field theory in curved spacetime, one introduced
by Jacobson [12] and closely related to an argument of
Unruh [13]. And this temperature is numerically equal to
the Hawking temperature. However, it represents a different
phenomenon: it is a kind of acceleration temperature, like
that of the Unruh effect. More precisely, it represents a sort
of scaled limit of the acceleration temperature for detectors
held at fixed radii, approaching the horizon.

Jacobson suggested applying the principle of equiva-
lence to identify this with the Hawking temperature;
however, this is not really feasible, at least in a direct
sense. The difficulty is that the principle of equivalence
only applies in sufficiently small neighborhoods of an event,
but the wavelengths of the field modes involved in accel-
erated-observer effects are necessarily large enough to extend
beyond that scale [3]. If there is a physically correct argument
allowing one to infer the Hawking effect from this scaled
acceleration temperature, it has not yet been found.

Another concern is that the mathematical procedure
giving this temperature would also (as we will see) apply
in cases where there is no spacetime curvature, for instance
in a Rindler wedge. This strongly suggests that it is simply
an acceleration temperature, and not a black-hole radia-
tion one.

It is worth pointing out that this view is consistent with
some of the discussions which have appeared in the
“tunneling” literature. As described in Ref. [6], one can
try to tackle the question of what “particles” are in the
“tunneling” approaches by imagining detectors following
some of the coordinate worldlines. Here I find that the most
straightforward interpretation of the calculations corre-
sponds to a limit of more and more accelerated detectors
closer and closer to the horizon. It is the identification of
this with black-hole radiation which is unestablished, and
indeed questionable.

So—with the interpretation adopted here—the “tunnel-
ing” approaches compute a sort of scaled limit of accel-
eration temperatures which is known to be numerically the
same as the Hawking temperature, but which we have (so
far) no direct way of relating to the Hawking process.

C. Outline

The next section outlines the ideas leading up to
Hawking’s prediction of black-hole radiation. It is not
logically necessary for the material which follows (and so
can be omitted), but it does help place it in context and may
help clarify some of the issues. The main work of the paper
is in Sec. III, which outlines an interpretation of a simple
“tunneling” calculation. The final section is given to
discussion.

Conventions: The metric signature is + — ——; space-
time conventions accord with Penrose and Rindler [14].
Natural units are used, with Newton’s constant, the speed of
light, Planck’s reduced constant and Boltzmann’s constant
all unity.

II. HAWKING’S ANALYSIS
AND ITS BACKGROUND

Although the idea that tunneling might be involved in
black-hole radiation goes back to one of Hawking’s
original papers [2], it has remained difficult to make precise
arguments supporting it. In these circumstances, it seems
appropriate to give a brief review of the main ways in which
concepts suggesting tunneling appeared in Hawking’s
paper and the work leading up to it. That is done in this
section. It is not necessary for the rest of the paper, and can
be skipped.

In 1971, two papers appeared which showed how energy
might be extracted from spinning black holes: that of
Penrose and Floyd [15] (applying to particles) and that of
Zel’dovich [16] (for fields).

The Penrose-Floyd argument depended explicitly on the
ergosphere, the regime (outside the horizon) in which the
Killing vector associated with stationarity became space-
like. Because the Killing energy of a freely falling particle
is conserved, such a particle might fall into the ergosphere,
then split, locally conserving energy-momentum but with
one of the product particles having negative Killing energy.
That particle would remain within the ergosphere, but the
other could escape with a larger energy than it had initially.

In this case, for the particle with negative Killing energy,
the part of spacetime outside of the ergosphere is (classi-
cally) forbidden. This does seem to set up the possibility of
a tunneling effect. However, note that it is associated with
the ergosphere and not the event horizon.

Zel’dovich had argued that a spinning object in
Minkowski space could, at the classical level, scatter waves
(of some field interacting with the material) in a superradiant
fashion, with the object’s rotational energy converted into
extra wave energy. He pointed out that at a quantum level this
would amount to stimulated radiation, and that in turn would
imply spontaneous quantum emission from the object. He
then asserted that the same would apply to black holes.
When, a little later, he investigated the Kerr case in more
detail, his analysis strongly involved the ergosphere [17].

Hawking (whose first papers on this appeared in 1974 and
1975) was largely motivated by Zel’dovich’s work, although
apparently he had reservations about Zel’dovich’s quantum
treatment [18]. But Hawking also considered an issue which
had been neglected by others: a hole formed by gravitational
collapse is not eternal. This turns out to be critical for the
Hawking effect, in contrast to those discussed by Penrose,
Floyd, and Zel’dovich. Correspondingly, Hawking’s work
depends on looking at the propagation of field modes in
the neighborhood of the event horizon, whereas the others
depend only on penetrating the ergosphere to some degree.

At this point, we see that ideas related to tunneling would
have been naturally present in the period leading up to
Hawking’s black-hole radiation work, but also that these
ideas are really related to the issue of rotation and not to
Hawking radiation.
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Hawking’s analysis turned on two points: arguments
about what it meant physically to identify particles, and
analysis of the propagation of quantum field modes. The
arguments for the physical identification of particles are
essentially that if in some spacetime volume we can set up a
coordinate system in which the curvature scale is <L7!,
then we can use the standard forms of the local field
operators to sensibly define particles of wave numbers
>L~! within the region. This gives unproblematic defi-
nitions of the particle content far from the collapsing
region.

It was the analysis of the field modes which led to the
surprising results. Ultimately, the definitions of particle
number depend on splitting the field modes into positive-
and negative-frequency parts, and what Hawking found
was that the nonlinear redshift distortion in field modes
propagating from the distant past to distant future gave rise
to a change in the split for the future regime relative to the
past (a Bogoliubov transformation with # # 0). This means
that the past vacuum contains future particles. This dis-
tortion is present even in the nonrotating case, and depends
strongly on the assumption that the black hole formed from
collapse, although it does not depend (after transients) on
the details of the collapse. It is a causal process, and does
not depend on penetrating the future event horizon.

Hawking’s first, tentative, prediction of black-hole radi-
ation had focussed on the asymptotic regimes, and had
shown one would expect a steady emission of thermal
radiation. This could be understood as a quasiclassical
energy flux at Z*, but if the quasiclassical character was
valid everywhere it would amount to a divergent energy
density in the neighborhood of the event horizon. An
essential part of the second paper was a discussion of how
to resolve this difficulty.

It was there that Hawking explicitly and strongly
presented the argument for the nonlocality of particle
creation. This also meant that the field could not be viewed
as giving in any direct way a well-defined distribution of
particles near the event horizon. It is in this context that
Hawking discussed the possibility of a tunneling interpre-
tation in some detail but ultimately characterized it as
“heuristic only.”

There are a number of issues making a tunneling view
difficult to implement it the Hawking-radiation case:

(a) One is looking for tunneling not just across an ergo-
sphere, but across an event horizon, that is, tunneling
which overcomes not just an energy barrier, but also a
causality barrier. This would strike profoundly at the
foundations of relativity.

(b) The Schwinger effect is due to a strong uniform
electric field, whereas there need be no locally strong
field anywhere in the Hawking picture.

(c) To even begin to formulate a tunneling picture, one
would need to discuss its particle content. Specifically,
one would need to identify a source region, in which

the particles are created; outside of this particle-
number would be conserved. But at least the most
straightforward approach to this would seem to lead
one back to Hawking’s analysis and its conclusion that
particle production is significantly nonlocal and does
not really occur in any well-defined sense at the
horizon.

It is worth adding that even with a well-defined notion of
particles, it is in general not straightforward to discuss
tunneling for relativistic quanta. The reason is that the
concept of tunneling turns on the existence of well-defined
states of localization, so one can meaningfully speak of the
amplitude of a particle to go from one place to another.
However, relativistic quanta cannot really be localized
below their Compton wavelengths.

Finally, a comment on issues of localization and the
Unruh effect is in order. Unruh famously showed that a
uniformly accelerating detector in Minkowski space would
respond as if it were in a thermal bath. Unruh’s model of the
detector was essentially confined to a small neighborhood
of a central worldline. Such a detector is best not referred to
as a particle detector, since it does not sample a spatial
region that is large compared to the Compton wavelengths
of interest. The detector certainly does respond to the field,
however, and one may fairly say that it detects field quanta.

III. INTERPRETING A “TUNNELING”
CALCULATION

The goal of this paper is to interpret “tunneling”
computations in quantum-field-theoretic terms. This leads
to a different logical perspective from papers which seek to
explore the consequences of such computations.

If one assumes a tunneling model is valid, then one
computes a barrier-penetration amplitude; in the literature,
estimates of this turn up a factor controlled by the Hawking
temperature, and this temperature is the result of the
computation.

Here, however, we first wish to understand what the
quantum-field-theoretic basis was for the original tunneling
idea, that is, how the concept of tunneling arose in the
Schwinger effect. Then, we ask what would be the parallel
in the black-hole case, and then how the actual black-hole
“tunneling” calculations relate to quantum field theory.
Since the link between the quantum field theory and
spacetime geometry is well understood, the main issue
will be to understand just how the “tunneling” calculations
select elements of the geometry.

A. The Schwinger effect

Schwinger considered the effect of a classical electro-
magnetic field on the electron-positron quantum field.
He computed the expected current (j,), which one finds
from a limit of a two-point function (with a Dirac gamma
inserted).

025005-4



HAWKING RADIATION, QUANTUM FIELDS, AND TUNNELING

PHYS. REV. D 100, 025005 (2019)

The core of Schwinger’s calculation is finding this
two-point function, and this is done by noting that it
satisfies a Dirac equation in each variable. In Schwinger’s
paper, this appears as an auxiliary to the more fundamental
quantum-field-theoretic issues. However, in the “tunnel-
ing” approaches, this is described in first-quantized, Dirac-
sea language. It is said there that negative-energy virtual
particles can “tunnel” across the negative-to-positive
energy mass gap and become real. A better description
is that the electric field contributes enough to the charged
field modes’ frequencies that a negative-to-positive fre-
quency mixing occurs, and what had been a vacuum state
before the external field was applied becomes a many-
particle state. In other words, we should really use a
second-quantized treatment and think in terms of
Bogoliubov transformations.

In any event, the key point here is that the “tunneling”
description is built on calculating or estimating the two-
point function, but describes this estimation in terms of a
(not really correct) first-quantized particle dynamics. We
will try to interpret the “tunneling” approach to black-hole
radiation using a parallel framework.

B. The black-hole case

Let ¢ be the quantum field, which we take to satisfy the
wave equation. The quantum state will be |¥) and we
consider the two-point function

G(p.q) = (Yig(p)d(q)|¥). (1)

(There is no need to time order this for our purposes; the
time-ordered function could always be recovered from
this.) As the point of the present paper is to offer an
interpretation which will at least work in the least prob-
lematic situations, we will assume that the spacetime is
spherically symmetric and represents a spatially bounded
gravitationally collapsing body of mass M, and shortly we
will accept that the dominant contribution to black-hole
radiation comes from s-waves.

An obviously correct thing to do would be to compute a
weighted average of G(p, q), masking p and ¢ by wave
packets approximating Fourier modes near future null
infinity, to compute the expected number density of modes
of a given wave number there. This would reproduce the
results of Hawking’s computation, in effect working out the
Bogoliubov coefficients and using explicitly the change in
wave numbers from the distant past (or at least the
neighborhood of the horizon) to the neighborhood of future
null infinity. But this is not what is done in the “tunneling”
approaches.

There are two central features to the “tunneling”
approaches:

(1) They assume we may focus on the ultraviolet

asymptotics of the field in the neighborhood of
the horizon. This is motivated by the correct view

that the field modes giving rise to Hawking quanta
have ultrahigh wave numbers near the horizon.

(2) One should resolve the time dependence in terms of
Killing frequencies. (It is this step which allows one
to write the WKB approximation in a form which
will appear as a tunneling calculation.) This is
obviously mathematically admissible outside the
collapsing matter. However, it does mean disregard-
ing the dynamical, collapse, phase, and the nonlinear
distortion of frequencies which, in the Hawking
picture, gives rise to the radiation. That in turn raises
the question of just whether the tunneling models are
really dealing with black-hole radiation.

Given these two assumptions, one then makes a WKB
approximation to solutions of the wave equation. Let £ be
the standard Killing vector generating the stationarity and
normalized at infinity; we may introduce a coordinate =
such that &V, = 1. This coordinate will necessarily be
the Schwarzschild time coordinate ¢ plus some function of
the Schwarzschild coordinate r. In order to have the
coordinate regular across the event horizon, we will choose

T=1t+r,, (2)
where
r,=r+2Mlog[(r—2M)/(2M)] (3)

is the “tortoise” coordinate. (In fact, 7 is the standard
advanced time coordinate, usually denoted by ».) Then
WKB approximations to s-wave solutions of the wave
equation will be superpositions of expressions of the form
expiw(z + w(r)). The WKB condition applied in the case
of the wave equation will force 7+ to be an eikonal.
However, the eikonals are simply functions of 7+ r,
and functions of 7 — r,, so the only nontrivial choice is
v = —2r, (up to an additive constant). The “action” S is the
change in wy over a classical path. The imaginary part of
the action will depend only on whether the end points of
this path are to the left or the right of » = 2M and the choice
of analytic continuation of the logarithm for r < 2M. For
a path crossing the horizon once, we have evidently (up to
sign)

IS =4drMw, (4)

and this is the key quantitative result of the “tunneling”
calculations. Note that this result would be unchanged
under the addition to 7 of any function of r that is smooth at
the horizon. (In particular, one could work in the often-used
Painlevé-Gullstand coordinates.)

But what have we actually calculated? What is the
interpretation of this in terms of the two-point function?

There is good reason at this point to think that this
computation has little to do with gravity. This is because the
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main effect comes from moving infinitesimally to first
order from one side to the other of a null hypersurface. If
we really were doing this at one point, only the first-order
geometry at the point could enter. In particular, no
curvature would be detected, and it would be unclear what
the computation had to do with gravity.

The situation is a bit more complicated, however,
because in working with Fourier modes we have really
introduced a substantial delocalization: resolving into these
modes requires integrating over the Killing trajectories.
However, since after all the Killing vector generates
symmetries it is not clear that this delocalization is enough
to bring in very much geometry. In fact, it is not, as I shall
now show.I will show that the same result for IS would be
obtained in very general circumstances, including in cases
where there is no curvature, for instance accelerated
observers in the Rindler wedge.

C. The computation in general

Let us consider a two-dimensional spacetime with a
Killing field & which is null but nonvanishing on a
geodesic N, timelike future-directed on a set R (for right),
and spacelike on a set L (for left). We may choose null
coordinates U, V, increasing to the future and with N the
zero-set of U; these coordinates are then unique up to
sense-preserving reparametrizations (also preserving
U = 0). The metric will be f2dUdV for some positive
function f.

Whether or not this really describes a black hole, the
geodesic N will be a Killing horizon. We must have

va(gbgb) =-2k§, on N, (5)
and the quantity x must be constant on N. In the black-hole
case, it would be the surface gravity. We will assume that «
is positive.

Let the Killing field be & = ady + p0y. Since this must
preserve the null geodesics, the coefficient @ must depend
on U alone, and likewise f# depends on V alone. And since
N is a Killing horizon, we must have @(0) = 0. Since &* is
timelike future-pointing, we must have @ > 0, # > 0 on R;
since £ # 0 on N, we must have # > 0 on a neighborhood
of N. We may then exploit the reparametrization freedom in
V to choose f = 1 near N.

A short computation shows that Eq. (5) implies
Jya = —kff = —x on N. We may then use the repara-
metrization freedom in U to choose a=—«xU. Then
£ = —xUQy + Oy, and the Killing condition becomes
2= f2(V+«'log(-U/U,)) for some constant U, on
the set R. [Strictly speaking, it would be better to write £ as
a function of —(U/U,) exp kV, which would apply across
the Killing horizon, but the previous form will fit more
directly with subsequent calculations.]

We now choose a coordinate 7 such that &V, ,r =1,
regular across the horizon. We may simply take 7 = V; as

in the previous subsection, it will become evident that the
choice, as long as it is regular across the horizon, is
irrelevant. As before, we consider WKB approximations
to the wave equation of the form exp iw(z + ), where
v =w(V+xlog(-U/U,)). Then 7+ must be an
eikonal, which is to say a function of U alone or a function
of V alone. The only possibilities are =0 and y =
—k~'log(=U/U,) — V (up to additive constants). We see
that 3, identified by looking at the change of y across N,
satisfies (up to sign)

38 = k" rw. (6)

This has, of course, the same form as in the previous
subsection, but all we have assumed here is a Killing
horizon. We see then that this form does not really depend
on any gravitational physics at all; it would occur in a
Rindler wedge with & = k(xd; + tJ,) (in standard coor-
dinates) a boost.

D. Interpretations

What would be the interpretation of the computation in
the Rindler wedge? We are supposed to be computing some
of the ultraviolet asymptotics of the two-point function
(holding one point fixed), and we have Fourier transformed
with respect to Killing time. Had we Fourier transformed
with respect to proper time s = (k/a)t, where a = (x> —
2)71/2 is the acceleration of the Killing trajectory, we
should have expressed the formula (6) as

3§ = alza, (7)

where @ is the angular frequency with respect to s. We
thus see that the formula can be interpreted as recovering
the Unruh temperatures Ty = a/(27) = @/(23S) of the
Killing trajectories, independently of .

On the other hand, we are really interested in this in the
limit of small neighborhoods of the Killing horizon, which
is to say afoo. In this limit ¢ and the physical Unruh
temperature will diverge. However, we can shift to rescaled
parameters 7 = (a/k)s, @ = @k/a in terms of which the
physical formula (7) has the mathematically stable limit (6).
The role of k in these formulas is simply to provide a
reference scale.

Now let us return to the Schwarzschild case. As an
application of the argument just given, we may interpret the
Schwarzschild computation as simply reflecting the Unruh
effect for accelerated observers hovering nearer and nearer
the horizon. In this sense, the mass (and spacetime
curvature) scale out of the problem.

But there is a further interpretation available in the
Schwarzschild case. We may ask how a distant observer
would describe the Unruh radiation in a small box
hovering close to the horizon. The box, and its Unruh
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temperature, would appear redshifted. The acceleration of
the box would be

a(r) = (1=2M/r)""2(M/r?), (8)

with Unruh temperature
Ty(r) = (1=2M/r)"\2(M/r?)/(27). ©)
The redshifted temperature was denoted by Jacobson as

Tye(r) = (M/r*)/(27). (10)

As r|2M, we find that this is numerically equal to the
Hawking temperature:

lim Ty () = Ty = 1/ (81). (11)

We may connect this with the argument of the previous
paragraph by noting that the rescaling factor used there
was

a(r)/k = (1 =2M/r)"2(4M?/7?), (12)

and this approaches the redshift factor as r|2M.

We may summarize these findings as follows. The
computation in the black-hole case amounts to finding
the Unruh temperature associated with accelerated detec-
tors near the horizon. As was noted by Jacobson, if these
Unruh boxes are examined by a distant observer, their
temperatures will be redshifted, and in the limit as the boxes
approach the horizon the redshifted temperatures stabilize
at the Hawking temperature.

There is, at present, no known correct argument that
this equality (11) allows one to infer black-hole radiation
from Unruh radiation. The equality is certainly suggestive,
but it cannot be considered compellingly remarkable since
on dimensional grounds the left-hand side must be a
pure number multiple of the right. For more discussion,
see Ref. [3].

IV. DISCUSSION

The idea that black-hole radiation might be connected to
tunneling goes back to Hawking himself. Attempts at making
this at least semiquantitatively precise go back to Parikh and
Wilczek. But, despite much work on the subject, serious gaps
remain in its foundations and interpretation.

The aim of this paper has been to connect at least the
simplest sort of tunneling proposal with conventional
quantum field theory. So it is the s-wave sector of a
massless scalar field on a spacetime representing the
spherically symmetric collapse of a bounded matter dis-
tribution to a black hole which is considered, and a
Hamilton-Jacobi-type treatment of tunneling.

I have found that an interpretation of the “tunneling”
calculations in quantum-field-theoretic terms is possible,
but it does not quite achieve what proponents of the
approach might want. It does not appeal to tunneling at
all; it is better thought of as giving certain estimates of the
ultraviolet asymptotics of the two-point function.

The temperature computed most directly represents a
sort of scaled temperature associated with acceleration
radiation, for observers hovering closer and closer to the
horizon, and was considered earlier by Jacobson. It is
numerically equal to the Hawking temperature, and
Jacobson did suggest trying to appeal to the equivalence
principle to identify it with black-hole radiation, but so
far no correct argument is known which does this. The
difficulty is that the equivalence principle can only be
applied locally, and the wavelengths of the relevant field
quanta are too big for the application to be valid.

Also, the temperature found does not really depend on
any spacetime curvature being present; it would exist near a
Fulling-Rindler horizon in Minkowski space, too. In this
connection, it is worth pointing out that the spacetime
geometry enters the “tunneling” calculation only weakly
(through the normalization for the Killing field).

It remains possible that other interpretations of the
“tunneling” calculations exist, ones that link them more
closely with Hawking radiation. Whatever interpretations
are offered, one would like to know just how particles are
defined and propagate, and how the proposals are related to
quantum field theory.
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