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Abstract: The Raychaudhuri equation is derived by assuming geometric flow in space–time M of
n + 1 dimensions. The equation turns into a harmonic oscillator form under suitable transforma-
tions. Thereby, a relation between geometrical entropy and mean geodesic deviation is established.
This has a connection to chaos theory where the trajectories diverge exponentially. We discuss its
application to cosmology and black holes. Thus, we establish a connection between chaos theory and
general relativity.

Keywords: Raychaudhuri equation; chaos theory; Kaluza Klein theory; Kaluza Klein cosmology;
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1. Introduction

In general relativity the motion of nearby bits of matter is described by the celebrated
Raychaudhuri equation or the Landau–Raychaudhuri equation [1,2]. It shows a general
validation that gravitation should be a universally attractive interaction between any two
bits of matter in general relativity and also in Newton’s theory of gravity. This equation
was formulated by Raychaudhuri and Landau independently in 1954 [3,4]. Later it became
a fundamental lemma in proving the famous Hawking–Penrose singularity theorems and
in studying exact solutions of Einsteins equations in general relativity [5,6].

Saurya Das has proposed in the quantum theory a Raychaudhuri equation where the
usual classical trajectories are replaced by Bohmian trajectories [7]. Bohmian trajectories do
not converge and thus the issue of geodesic incompleteness, singularities such as big bang
or big crunch can be avoided [8,9]. In this paper we treat the classical geometrical flow as a
dynamical system in such a way that the Raychaudhuri equation becomes the equation of
motion and that the action can be used to quantize the dynamical system. The asymmetry
of the Raychaudhuri equation then leads to a characterization of the instabilities of the
geodesic flow. Classical chaos is essentially characterized by the exponential divergence of
neighboring trajectories inducing a high degree of instability in the orbits with respect to
initial conditions.

The Raychaudhuri equation is the basis for deriving the singularity theorems. The
study is expected to show the effect such a quantization will have on the geometrical flow,
and as part of the process it can be shown that a quantum space–time is non-singular. The
existence of a conjugate point is a necessary condition for the occurrence of singularities [9].
However it is possible to demonstrate that conjugate points cannot arise because of the
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quantum effects. An intriguing result obtained was that the Raychaudhuri equation can be
written in a harmonic oscillator form under suitable transformations. Here a new quantity
called geometrical entropy S = lnχ(x) can be defined where χ(x) represents the distance
between two nearby geodesics. We have expressed the above equations in terms of the
entropy which by transformation to a Ricatti-type equation becomes similar to the Jacobi
equation. We have recently proved that the geodesic deviation equation of Jacobi becomes
unitarily equivalent to that of a harmonic oscillator. In this way, a connection between
general relativity and chaos theory is established [10–12].

The connection can be further investigated by the addition of gauge fields in the metric.
Here too the Raychaudhuri equation and the geodesic equation acquire the harmonic
oscillator-form under suitable transformations. However, the convergence and divergence
criteria get modified by the effect of the gauge field. In this case the particles deviate
from the geodesics. A point to be noted when adding a gauge field into the picture is
that the particle no longer follows a geodesic. According to the work by S.G.Rajeev [13],
the Riemannian geometry is a particular case of Hamiltonian Mechanics. He explores the
links between Riemannian geometry and Hamiltonian Mechanics by changing the form of
the Hamiltonian through the addition of a scalar field or vector field and investigates the
corresponding change in the geometry(change in curvature and Ricci tensor).

2. Raychaudhuri Equation from Geometric Flow

We study the congruence of a test particle moving on an n+1 dimensional space–time
M. We use the proper time (τ) for this particle as a dynamical foliation parameter so as to
foliate the space–time into topology T× R. Here T is a Riemannian Manifold with a metric
gαβ that projects any vector field into the manifold. We also define H(T), a hyper-surface
in the transverse manifold that the world-lines intersect at time τ. The volume of that
hyper-surface is given by:

Vol =
∫

στ

√
det gdnx (1)

we consider the velocity field of the test particle in the congruence to be normal to the
n-dimensional transverse manifold H(T). The gradient of velocity is a second rank tensor
having three parts: the symmetric traceless part, the antisymmetric part and the trace.
The three parts define the shear, the rotation and the expansion of the flow. We consider
the cross-sectional hypersurface στ as a dynamical system. We define the volume of the
cross-sectional hypersurface [14–17]

ρ(τ) = 2
∫

στ

√
det gdnx (2)

as the dynamical degree of freedom.
We define the dynamical evolution of the metric as

∂τ gαβ = θαβ = 2σαβ +
2
n

gαβθ (3)

Multiplying both sides by
√

det g and using δ(det g) = g gαβ δgαβ, we get a very
important result

ρ̇ =
2
n

ρ θ (4)

Using the Lagrangian L = ( n
4

1
ρ ρ̇2 − ρ(R − ξ̇α

;α)−Vσ(ρ)), we define the action

S(ρ, ρ̇) =
∫

dτ(
n
4

1
ρ

ρ̇2 − ρ(R − ξ̇α
;α)−Vσ(ρ)) (5)

whereR is the Raychaudhuri scalar,R := Rµνξµξν, and Vσ(ρ) is the shear potential that
satisfies the equation
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Vσ(ρ)

∂ρ
= 2σ2 (6)

We can express the canonical conjugate momentum as

Π =
δL
δρ̇

=
n
2

ρ−1ρ̇, =
n
2

ρ−1(
2
n

ρ θ) = θ.

Thus, as one would expect, the expansion parameter is the conjugate momentum to
the dynamical degree of freedom ρ(σ). We proceed further by computing the variation

δL
δρ

= −n
4

ρ−2ρ̇2 − 2σ2 −R+ ξ̇α
;α =

n
4

[
ρ−2

(
4
n2 ρ2θ2

)]
− 2σ2 −R+ ξ̇α

;α

= − 1
n

θ2 − 2σ2 −R+ ξ̇α
;α

Using the Euler-Lagrange equation, we can rewrite the Raychaudhuri equation as

dθ

dτ
=

δL
δρ

(7)

θ̇ = − 1
n

θ2 − 2σ2 −R+ ξ̇α
;α (8)

We can define the Hamiltonian as

H =
1
n

ρ θ2 + (R− ξ̇α
;α)ρ + Vσ(ρ). (9)

Thus the derivation of Raychaudhuri equation without the acceleration term can
be found.

3. Raychaudhuri Equation in Harmonic Oscillator Form

Let us consider Raychaudhuri equation without the acceleration term (ξ̇α
α set to zero).

dθ

dτ
+

θ2

3
+ σ2 = −Rαβξαξβ (10)

In order for the LHS to be negative it must fulfill the condition dθ
dτ < − 1

θ2 which finally
leads to the inequality

1
θ(τ)

≥ 1
θ0

+
1

θτ
(11)

One can infer that any initially converging hyper-surface-orthogonal congruence must
continue to converge and within a finite proper time τ ≤ −3θ−1

0 must lead to crossing of
the geodesics. Since the Strong Energy Condition(SEC) causes gravitation to be attractive,
matter obeying the SEC cannot cause geodesic deviation, on the other-hand it will increase
the rate of convergence. Since entropy is defined as the average convergence/divergence
of the geodesics in a congruence, the SEC will cause further decrease in entropy. If we set
θ = 3χ′/χ the Raychaudhuri equation is transformed to

∂2χ

∂τ2 +
1
3

(
Rαβχαχβ + σ2

)
χ = 0, (12)

which is a harmonic oscillator equation [18].
As pointed out above, θ may be identified with the derivative of the entropy, so that

the entropy will be of the form S = lnχ. Here, χ may be identified with an effective or
average geodesic deviation.
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Recently, Kar and Sengupta [18] have shown that the condition for geodesic conver-
gence is the existence of zeroes in χ at finite values of the affine parameter(τ), and they
argue that convergence occurs if

Rαβξαξβ + σ2 −ω2 ≥ 0 (13)

Most of the physical matter fields satisfy the strong energy conditions which state that
for all time like vectors U, the inequality holds

TµνUµUν ≥ 1
2

TgµνUµUν (14)

It follows, when(SEC) holds the term RµνUµUν is always positive. Furthermore,
note that the shear and the rotation are spatial vectors and consequently σµνσµν ≥ 0
and ωµνωµν ≥ 0. As mentioned above ωµν = 0 is zero if and only if the congruence
is hyper-surface orthogonal. If that is satisfied the Raychaudhuri equation simplifies to
the form

dθ

dτ
+

1
3

τ2 + σ2 = −RµνUµUν (15)

In order for the left hand side to be negative it must fulfill the condition dθ
dτ < − 1

3 θ2

which finally leads to the inequality

1
θ(τ)

≥ 1
θ0

+
1
3

τ (16)

If we set θ = 3χ′

χ the Raychaudhuri equation is transformed to

d2χ

dτ2 +
1
3
(RµνUµUν + σ2 −ω2)χ = 0 (17)

which is a harmonic oscillator equation. We have recently proved that the geodesic de-
viation equation of Jacobi is unitarily equivalent to that of harmonic oscillator. The ex-
pansions rate of growth of the cross-sectional area orthogonal to the bundle of geodesics.
Increase/decrease of this area is same as that of divergence/convergence of the geodesics.
The average growth of the cross-sectional area is the same as that of the geodesics. The
average growth of the cross-sectional area is compatible with the average geodesic devia-
tion. Kar and the Sengupta [18] have shown that the condition for geodesic convergence is
the existence of zeros in ln χ at finite values of the affine parameter, and they argue that
convergence occurs if RµνUµUν + σ2 −ω2. Here shear increases convergence and rotation
obstructs convergence.

4. Raychaudhuri Equation in Harmonic Oscillator Form: With the Acceleration Term

The Raychaudhuri equation in harmonic oscillator form can be written as

∂2χ

∂τ2 +
1
3
(σ2 + Rαβξαξβ − ξ̇α

;α)χ = 0 (18)

and convergence occurs if:
σ2 + Rαβξαξβ − ξ̇α

;α ≥ 0 (19)

This clearly shows that the velocity field has a significant role in the convergence or
divergence of world-lines.

Let us study this effect in more detail. The acceleration term causes the particle to
deviate from geodesic. Therefore it has a logarithmic relation to entropy which increases
when geodesics diverge.



Symmetry 2021, 13, 957 5 of 6

To give a clear picture we consider the Kaluza Klein cosmology. The Kaluza Klein
metric is given by, gAB, A, B = 0, 1, 2, 3, 5 with the electromagnetic potential

gAB =

[
gαβ + α2 g55 Aα Aβ α0g55 Aα

α0g55 Aα g55

]
(20)

where gαβ is the 4-dimensional metric and Aα is the electromagnetic potential. Now the
space–time interval becomes

dS2 = gαβ dxαdxβ − g55 (dx5 + α0 Aαdxα)2. (21)

We also have

gAB =

[
gαβ −α0gαβ Aα

−α0gαβ Aα 1/g55 + α2
0 gαβ Aα Aβ

]
.

This provides a space–time with electromagnetism and gravity unified. The geodesic
equation in five-dimensional space–time,

d2zA

dS2 + ΓA
BC

dzB

dS
dzC

dS
= 0 (22)

can be transformed by applying cylindrical condition on the metric as

d2zα

dS2 + Γα
βλ

dzβ

dS
dzλ

dS
= aα0Fαβ

dzβ

dS
+

1
2

a2

g2
55

gαλ(∂λg55), (23)

where

a = g5α
dzα

dS
+ g55

dz5

dS
,

a is a constant along the 5 − D world line. In our case g5α is non zero since we have
included electromagnetic fields. We assume that

g5α

g55
= α0 Aα(x)

where α0 is determined by

α0 =
q

amc
.

Here, the electromagnetic potential emerges out of g5α. Let us now consider Ray-
chaudhuri equation in four dimensions.

dθ

dS
= − θ2

3
− σαβσαβ + ωαβωαβ − Rαβξαξβ + ξ̇α

;α (24)

where ξα =
dzα

dS
, 2σ2 = σαβσαβ, 2ω2 = ωαβωαβ. The cosmological constant Λ is set to

zero. Since

ξ̇α =
d2zα

dS2 + Γα
αβuαuβ,

the last term in Equation (8) can be written as

ξ̇α
;α = − a2

2
gαρDα(∂ρ

1
g55

) + aα0Dµ(Fµβ
dzβ

dS
) (25)

with Dµ as the covariant derivative. The vorticity ω and σ induces expansion and con-
traction respectively. It is useful to note that −Dα(∂ρ

1
g55

) is positive for static spherically
symmetric space–time in five dimensions without electromagnetism. The additional term,
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−Dα(∂ρ
1

g55
) is positive for static spherically symmetric space–time in five dimensions

without electromagnetism. Considering a case with Rαβξαξβ > 0 and ω = 0 we get

dθ

dS
≤ 1

4
θ2 − a2

2
gµρDµ(∂ρ

1
g55

) + aα0Dµ(Fµβ
dzβ

dS
) (26)

For a static spherical symmetric metric, − a2

2 gµρDµ(∂ρ
1

g55
) is always positive [19].

This indicates that a scalar field will always defocus world lines. Thus in Kaluza Klein
cosmology, scalar field always creates a defocus of worldlines and we get a bouncing model
of universe [20].

5. Conclusions

The formalism that we have developed can be applied to any physical system where
the equation for geometrical flow is valid. This can also be applied to cosmology with a
scalar field.

The physical significance of geometrical entropy is that, it represents the chaotic
behavior of world-lines that tend to converge or diverge. This can be observed in cosmology
where geodesics try to converge near big-bang singularity. However, scalar fields try to
inhibit the convergence and causes divergence. Thus there is a possibility of bouncing
model of the universe in classical theory. Further studies are possible in charged black holes.
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