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Abstract. We compare results of dynamical modeling of the fission process with
predictions of the Kramers formulas. For the case of large dissipation these are two:

the integral rate R, and its approximation R,. As the ratio of the fission barrier
height B, to the temperature T, &, reaches 4, any analytical rate is expected to
agree with the dynamical quasistationary value R, within 2%. We perform
modeling using several potentials and find that the difference between the R, and

the R, sometimes exceeds 20% even for ¢ > 4. Such discrepancy is not acceptable

nowadays because it is comparable to the quantum, non-markovian and
multidimensional effects. The features of the potentials which cause this

disagreement are identified and studied. It is demonstrated that this is the R, not

the R, , which meets the expectation above irrespectively of the potential profile.
25.70.J3,25.70.-z

1. Introduction

The statistical model of the fission process was introduced by Bohr and Wheeler [1]. Soon after this
Kramers derived several formulas for the decay rate [2]. One of those is widely used in modern
nuclear physics. Alternative way is to calculate the quasistationary fission rate (QSFR) by means of
solving numerically the stochastic differential equations [3]. Both the Kramers and the dynamical
approaches are based on the picture of Brownian motion. The dynamical approach is more accurate
but very time consuming. The difference between the Kramers fission rates and the QSFR was shown
to reach approximately 20% [4 — 6]. One the other hand, in the pioneering work [7] good agreement
between a Kramers rate and the QSFR was demonstrated.

This discrepancy was acceptable twenty years ago. Nowadays there are several circumstances which
require more accurate analytical description of the fission rate (FR). These are: i) the quantum
correction to the Kramers formula [8]; ii) the contribution of the non-markovian effects [9] and iii) the
multidimensionality of the fission process [10].

Many aspects of the problem can be responsible for the significant difference between the Kramers
fission rates and the QSFR, e.g. the deformation dependence of the friction (inertia) tensor and of the
single-particle level density parameter, the approximations made in the derivation of the Kramers
formulas, the non-harmonic character of the collective potential. The aims of the present study are i) to
disentangle the effects of the potential in the accuracy of the Kramers formulas reducing the
uncertainties related to all other parameters and ii) to find a way for diminishing the discrepancy
between the analytical and dynamical rates down to about 2%. This value is comparable with the
statistical errors of the QSFR achievable during a reasonable time of computer modeling.

This is an ambitious program, therefore only the one-dimensional overdamped motion of a
Brownian particle representing the fission process is considered below. Moreover, the deformation
dependence of the friction, inertia and level density parameters is ignored. These serious restrictions,
however, are still being used in modern studies [11, 12].
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2. Dynamical modeling
We restrict ourselves with the symmetric fission at zero angular momentum. The nucleus shape is
characterized by the half distance between mass centers of the nascent fragments over the radius of the

spherical nucleus, q. Initially all the nuclei are assumed to be concentrated at the quasistationary point

Ges = 0'375. We deliberately position the saddle (qu - 1'2) and the scission (qSc - 3'O) points as

well as Gs far from each other to exclude possible influence of the distance between them onto our
results.

Within our approximations, the nuclear collective motion is modeled using the Euler scheme for the
stochastic (Langevin) equations [3]:
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Here B is the damping coefficient and M is the inertia parameter; the time step of dynamical

modeling is denoted by 7 ; b, is a Gaussian random number with a variance of 2. The temperature T

is calculated using the Fermi-gas relation at the quasistationary point tot
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Within the framework of the Langevin formalism, the time-dependent FR, ', can be
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calculated by counting the number of trajectories '

time moment L:

which reach the scission point before the
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Here Nio is the total number of trajectories. The is close to zero when U is small. Then it

increases with U and reaches its quasistationary value Ro . This is illustrated by Fig. 1.

3. Analytical formulas for the fission rate and representation of results
The Kramers formulas, the accuracy of which we are studying here, read
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In these equations D and “% are the absolute values of the angular frequencies of the collective

qqs

motion around the maximum (qu ) and the minimum ( '¥) of the potential energy U(a) .Eq. 3) is

-1
(J>>1 ,BZmax(a)qs, a)sd)

supposed to be valid if 1) and ii) p is large enough, i.e.
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Figure 1. The fission rates versus time. The

*

R Figure 2. The fission rates versus o All
oscillating line with boxes corresponds to the ', notations are as in Fig. 1

the Ry (solid line), the Ro (open circles) and the

R (closed triangles) are also shown. These
calculations have been performed for the W-

potential (see below) at € =3-8

Ogs

to minus

infinity and by expanding U in the integrands up to quadratic terms in (q - qqs) and (q O )

Eq. (4) results from Eq. (3) by extending the upper integral limits to plus infinity, the

Thus Eq. (4) is valid under the additional requirements: iii) Ysc is far enough from Gsq and iv) U(a)
is represented by two parabolas with the stiffnesses Ca and Cqs near its extremes.

Of the two Kramers fission rates, R and RO, the former is expected to agree better to the

Ro .These three rates versus excitation energy B are shown in Fig. 2. They cover 3 orders of
magnitude and are hardly distinguishable. Therefore it is convenient to characterize the deviation of a

. ! R. . .
fission rate Ri from another rate ¥ (both calculated with the same potential k) by means of the

Cfijk =(Rik _Rjk)/R'

fractional difference K For instance the fractional difference between Ron and

— K0
Row reads SooH and Sop =% means that in the case of H-potential (see below) the overdamped
Kramers rate calculated using Eq. (4) exceeds the dynamical QSFR by 5%.
For the convenience of the reader we collect in Table 1 the values of the parameters used in the
present calculations.

Table 1. The values of the parameters used in the present calculations.

B, MeV | m, MeV-zs* | > % | a, MeV"' | 0 | Oy Uy 1, MeV -zs

5.35 100 0.05 10 0.375 11.20 3.00 1000
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4. Numerical fission rates versus the analytical ones
We start from the H-potential (harmonic) which consists of two smoothly matched parabolas with

equal stiffnesses Co = Cqs . One of the parabolas stretches into the region of q<0 . It does not have

physical meaning for the fission process, but such potential corresponds best to the assumptions under

which Eq. (4) for Ro was derived. The H-potential is shown in Fig. 3 along with the left and right
parabolas of which it is constructed. The first suspect in the inaccuracy of the Kramers fission rates is

E e=B, /T

ot or in other words the parameter . Therefore we present in Fig. 4 the fractional

differences Sion (closed triangles) and SopH (open circles) versus ¢ .

Since the Rou has been derived from Eq. (3) for the integral Kramers rate Rin , the latter is
supposed to agree to the dynamical QSFR better. However, opposite is seen in Fig. 4. This seems to be
due to occasional compensation of the inaccuracies made in the derivations of Eq. (4) from Eq. (3).

The mutual layout of the Siow and Soo can be explained as follows.
Eq. (4) results from Eq. (3) if one makes an expansion of the potential energy in the exponents

up to quadratic terms in (q _qqs) and in (q _qu) (the outer and inner integral respectively). In
addition, all the upper limits of integration are changed to plus infinity whereas minus infinity is used

as the lower limits:
T |7 C.y | 2B, -C_ X’ B
R.=—{|exp| ——2"_|dy | exp| ———2~_|dx
0 mﬂ_[o p{ ZT}y_L p{ oT }

)

(note that Eq.(5) holds for all potentials considered in the present work). One can think that the
expansion does not change anything for the H-potential since it is made of the two parabolas. It would
be so if the integration was performed near the parabolas extremes. However in both integrals, the

- . . . . U
limits of integration enter the neighbor parabola. Thus both the expansion of the (q) and the
extension of the integral limits matter. The well of the H-potential contains more states than the

Ry <R

corresponding left parabola. Therefore OH which is seen in Fig. 4.
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Figure 3. H-potential (closed triangles) along with
the left and right parabolas (open circles).

Figure 4. Sio (closed triangles) and Sop (open
circles) versus €.



International Nuclear Physics Conference 2010 (INPC2010) IOP Publishing
Journal of Physics: Conference Series 312 (2011) 082023 doi:10.1088/1742-6596/312/8/082023

Of course the shape of the barrier is not necessarily parabolic. Therefore we have made
calculations using the cosine potential (C-potential) of Ref. [13]. The resulting Sonc and Sioc are
shown in Fig. 5 which is analogous to Fig. 4. The Sopc is far from zero confirming that the acceptable

agreement between Row and Row in Fig. 4 was purely accidental indeed.
Eq. (4) accounts only for the two parabolas approximating the C-potential near its extremes. The
corresponding upright parabola clearly contains less collective states than the quasistationary well of

Roc >R

the C-potential itself. This results in IC. The inverted parabola presents the barrier which is

obviously thinner than the one of the C-potential. This again enhance the Roc in comparison to the

Ry . Thus the mutual layout of the Roc and Ry is explained qualitatively.
Comparing Fig. 4 and Fig. 5 we are forced to conclude that the accuracy of Eq. (4) should be

taken with care. Moreover only at € larger than 3.5-4.0 the R, agrees to Ro within 2%,
essentially like it happens in the case of H-potential.

Of course, the distance between the mass centers of the nascent fragments can not be negative.
The potential which accounts for this requirement and keeps the advantages of the H-one, W-potential

Uy (9)

exponential wall preventing Brownian particles to come into the unphysical region q< 0. When

4> dgs q <0

, 1s again constructed of the two smoothly matched parabolas but is supplemented by an

the Yw (q) is  identical to the H-potential whereas at
2 3
Uy (9)=C, (4-05:) /2+exp(1oo(qqs ~q) )—1

same as in Fig. 3.

. The parabolas on which it is based are the

Rw >R

Resulting values of the Soow and Siow are presented in Fig. 6. The OW and the latter

does not agree to the Row even for €1 1 whereas the Riw reaches the acceptable agreement with

the Row for the values of € > 4. Opposite to Fig. 5, in Fig. 6 the Row is smaller than the Riw . This
is explained by the larger number of states contained in the upright parabola.

All the potentials considered above were the piece-continuous potentials. Consequently the
corresponding forces entering Eq. (1) possess the kinks. One can suspect the kink to be guilty in the
inaccuracy of Eq. (4) [14]. Therefore we study one more case corresponding to the polynomial
potential of the fifth order (P-potential) which was used in Ref. [15].
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Fig. 5. The same as in Fig. 4 but for the C- Fig. 6. The same as in Figs. 4, 5 but for the W-
potential. potential.
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No values of the Sope within 2% is reached in our calculations. Yet the Siop enters the 2% stripe

at the same value of €~ 3.5-4.0 a5 in the three previous cases. The qualitative explanation of the

relation between the Ror and Rpp is literally the same as for the case of Fig. 5.

5. Conclusions

The problem of the accuracy of the Kramers formulas for the fission rate of heated nuclei was not
often addressed in the past. Sometimes the difference up to 20% was revealed but the reasons were not
identified [4]. Now we have some progress which can be summarized as follows.

The integral Kramers rate of Eq. (3), R, , agrees with the long time limit of the dynamical rate,

Ro , within 2% as the barrier height ' becomes about 4 times larger than the temperature T . This is

exp(-B, /T)

to be expected since the accuracy of the Kramers approach is of order of . The rate

which is obtained from the R, using the parabolic approximation and the infinite limits for the

integrals, Ro , agrees to the Ro only in the case of the two parabolas potential with equal frequencies
that allows unphysical negative distance between the fission fragment centers. This happens because

of the mutual cancellation of the errors. For the other potentials, the Ro differs from Ro by more than

B, /T >4

5% even in the case of . In particular the Sop =(RO _RD)/RD is about 20% for

B, /T>7. : i . .
o 7 in the case of the W-potential forbidding the negative values of the center of mass distance

for future fission fragments. This potential is the closest to the realistic one. The 20% inaccuracy of
Eq. (4) is comparable to the quantum, non-markovian and multidimensional effects.
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