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Abstract. We compare results of dynamical modeling of the fission process with 
predictions of the Kramers formulas. For the case of large dissipation these are two: 
the integral rate IR  and its approximation OR . As the ratio of the fission barrier 
height fB  to the temperature T , ε , reaches 4, any analytical rate is expected to 

agree with the dynamical quasistationary value DR  within 2%. We perform 
modeling using several potentials and find that the difference between the OR  and 
the DR  sometimes exceeds 20% even for 4ε > . Such discrepancy is not acceptable 
nowadays because it is comparable to the quantum, non-markovian and 
multidimensional effects. The features of the potentials which cause this 
disagreement are identified and studied. It is demonstrated that this is the IR , not 
the OR , which meets the expectation above irrespectively of the potential profile. 
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1. Introduction 
The statistical model of the fission process was introduced by Bohr and Wheeler [1]. Soon after this 
Kramers derived several formulas for the decay rate [2]. One of those is widely used in modern 
nuclear physics. Alternative way is to calculate the quasistationary fission rate (QSFR) by means of 
solving numerically the stochastic differential equations [3]. Both the Kramers and the dynamical 
approaches are based on the picture of Brownian motion. The dynamical approach is more accurate 
but very time consuming. The difference between the Kramers fission rates and the QSFR was shown 
to reach approximately 20% [4 – 6]. One the other hand, in the pioneering work [7] good agreement 
between a Kramers rate and the QSFR was demonstrated. 

This discrepancy was acceptable twenty years ago. Nowadays there are several circumstances which 
require more accurate analytical description of the fission rate (FR). These are: i) the quantum 
correction to the Kramers formula [8]; ii) the contribution of the non-markovian effects [9] and iii) the 
multidimensionality of the fission process [10]. 

Many aspects of the problem can be responsible for the significant difference between the Kramers 
fission rates and the QSFR, e.g. the deformation dependence of the friction (inertia) tensor and of the 
single-particle level density parameter, the approximations made in the derivation of the Kramers 
formulas, the non-harmonic character of the collective potential. The aims of the present study are i) to 
disentangle the effects of the potential in the accuracy of the Kramers formulas reducing the 
uncertainties related to all other parameters and ii) to find a way for diminishing the discrepancy 
between the analytical and dynamical rates down to about 2%. This value is comparable with the 
statistical errors of the QSFR achievable during a reasonable time of computer modeling. 

This is an ambitious program, therefore only the one-dimensional overdamped motion of a 
Brownian particle representing the fission process is considered below. Moreover, the deformation 
dependence of the friction, inertia and level density parameters is ignored. These serious restrictions, 
however, are still being used in modern studies [11, 12]. 
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2. Dynamical modeling 
We restrict ourselves with the symmetric fission at zero angular momentum. The nucleus shape is 
characterized by the half distance between mass centers of the nascent fragments over the radius of the 
spherical nucleus, q . Initially all the nuclei are assumed to be concentrated at the quasistationary point 

0.375qsq = . We deliberately position the saddle ( 1.2sdq = ) and the scission ( 3.0scq = ) points as 

well as qsq  far from each other to exclude possible influence of the distance between them onto our 
results. 
Within our approximations, the nuclear collective motion is modeled using the Euler scheme for the 
stochastic (Langevin) equations [3]: 
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Here β  is the damping coefficient and m  is the inertia parameter; the time step of dynamical 

modeling is denoted by τ ; nb  is a Gaussian random number with a variance of 2. The temperature T  

is calculated using the Fermi-gas relation at the quasistationary point 
* /totT E a=  and is supposed to 

be deformation-independent. In this work 
110 zsβ −=  has been chosen. 

Within the framework of the Langevin formalism, the time-dependent FR, fR , can be 

calculated by counting the number of trajectories fN  which reach the scission point before the 
time moment t : 
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Here totN  is the total number of trajectories. The fR  is close to zero when t  is small. Then it 

increases with t  and reaches its quasistationary value DR . This is illustrated by Fig. 1. 
 

 
3. Analytical formulas for the fission rate and representation of results 
The Kramers formulas, the accuracy of which we are studying here, read 
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In these equations sdω  and qsω  are the absolute values of the angular frequencies of the collective 

motion around the maximum ( sdq ) and the minimum ( qsq ) of the potential energy ( )U q . Eq. (3) is 

supposed to be valid if i) 
1 1fB T − >>  and ii) β  is large enough, i.e. ( )max ,qs sdβ ω ω≥

. 
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Figure 1. The fission rates versus time. The 

oscillating line with boxes corresponds to the fR , 

the DR  (solid line), the OR  (open circles) and the 
IR  (closed triangles) are also shown. These 

calculations have been performed for the W-
potential (see below) at 3.8ε =  

Figure 2. The fission rates versus 
*
totE . All 

notations are as in Fig. 1  

 

Eq. (4) results from Eq. (3) by extending the upper integral limits to plus infinity, the qsq  to minus 

infinity and by expanding ( )U q  in the integrands up to quadratic terms in ( )qsq q−
 and ( )sdq q− . 

Thus Eq. (4) is valid under the additional requirements: iii) scq  is far enough from sdq  and iv) ( )U q  

is represented by two parabolas with the stiffnesses sdC  and qsC  near its extremes. 

Of the two Kramers fission rates, IR  and OR , the former is expected to agree better to the 

DR .These three rates versus excitation energy 
*
totE  are shown in Fig. 2. They cover 3 orders of 

magnitude and are hardly distinguishable. Therefore it is convenient to characterize the deviation of a 

fission rate ikR  from another rate jkR  (both calculated with the same potential k ) by means of the 

fractional difference ( ) /ijk ik jk jkR R Rξ = −
. For instance the fractional difference between OHR  and 

DHR  reads ODHξ  and 5%ODHξ =  means that in the case of H-potential (see below) the overdamped 
Kramers rate calculated using Eq. (4) exceeds the dynamical QSFR by 5%. 

For the convenience of the reader we collect in Table 1 the values of the parameters used in the 
present calculations. 
 
Table 1. The values of the parameters used in the present calculations. 
 

,  MeVfB  
2,  MeV zsm ⋅  

,  zsτ  1,  MeVa −
 qsq  sdq  scq  ,  MeV zsη ⋅

5.35 100 0.05 10 0.375 1.20 3.00 1000 
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4. Numerical fission rates versus the analytical ones 
We start from the H-potential (harmonic) which consists of two smoothly matched parabolas with 

equal stiffnesses sd qsC C= . One of the parabolas stretches into the region of 0q < . It does not have 
physical meaning for the fission process, but such potential corresponds best to the assumptions under 

which Eq. (4) for OR  was derived. The H-potential is shown in Fig. 3 along with the left and right 
parabolas of which it is constructed. The first suspect in the inaccuracy of the Kramers fission rates is 

*
totE  or in other words the parameter /fB Tε = . Therefore we present in Fig. 4 the fractional 

differences IDHξ  (closed triangles) and ODHξ  (open circles) versus ε . 

Since the OHR  has been derived from Eq. (3) for the integral Kramers rate IHR , the latter is 
supposed to agree to the dynamical QSFR better. However, opposite is seen in Fig. 4. This seems to be 
due to occasional compensation of the inaccuracies made in the derivations of Eq. (4) from Eq. (3). 

The mutual layout of the IDHξ  and ODHξ  can be explained as follows. 
Eq. (4) results from Eq. (3) if one makes an expansion of the potential energy in the exponents 

up to quadratic terms in ( )qsq q−
 and in ( )sdq q−  (the outer and inner integral respectively). In 

addition, all the upper limits of integration are changed to plus infinity whereas minus infinity is used 
as the lower limits: 
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(note that Eq.(5) holds for all potentials considered in the present work). One can think that the 
expansion does not change anything for the H-potential since it is made of the two parabolas. It would 
be so if the integration was performed near the parabolas extremes. However in both integrals, the 

limits of integration enter the neighbor parabola. Thus both the expansion of the ( )U q  and the 
extension of the integral limits matter. The well of the H-potential contains more states than the 

corresponding left parabola. Therefore IH OHR R<  which is seen in Fig. 4. 
 

Figure 3. H-potential (closed triangles) along with 
the left and right parabolas (open circles). Figure 4. IDξ  (closed triangles) and ODξ  (open 

circles) versus ε . 
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Of course the shape of the barrier is not necessarily parabolic. Therefore we have made 

calculations using the cosine potential (C-potential) of Ref. [13]. The resulting ODCξ  and IDCξ  are 

shown in Fig. 5 which is analogous to Fig. 4. The ODCξ  is far from zero confirming that the acceptable 

agreement between OHR  and DHR  in Fig. 4 was purely accidental indeed. 
Eq. (4) accounts only for the two parabolas approximating the C-potential near its extremes. The 

corresponding upright parabola clearly contains less collective states than the quasistationary well of 

the C-potential itself. This results in OC ICR R> . The inverted parabola presents the barrier which is 

obviously thinner than the one of the C-potential. This again enhance the OCR  in comparison to the 
ICR . Thus the mutual layout of the OCR  and ICR  is explained qualitatively. 

Comparing Fig. 4 and Fig. 5 we are forced to conclude that the accuracy of Eq. (4) should be 

taken with care. Moreover only at ε  larger than 3.5 4.0− , the IR  agrees to DR  within 2%, 
essentially like it happens in the case of H-potential. 

Of course, the distance between the mass centers of the nascent fragments can not be negative. 
The potential which accounts for this requirement and keeps the advantages of the H-one, W-potential 

( )WU q , is again constructed of the two smoothly matched parabolas but is supplemented by an 

exponential wall preventing Brownian particles to come into the unphysical region 0q < . When 

qsq q> , the ( )WU q  is identical to the H-potential whereas at qsq q<  

( ) ( ) ( )( )2 3
/ 2 exp 100 1W qs qs qsU q C q q q q= − + − −

. The parabolas on which it is based are the 
same as in Fig. 3. 

Resulting values of the ODWξ  and IDWξ  are presented in Fig. 6. The IW OWR R>  and the latter 

does not agree to the DWR  even for 1ε  whereas the IWR  reaches the acceptable agreement with 

the DWR  for the values of 4ε > . Opposite to Fig. 5, in Fig. 6 the OWR  is smaller than the IWR . This 
is explained by the larger number of states contained in the upright parabola. 

All the potentials considered above were the piece-continuous potentials. Consequently the 
corresponding forces entering Eq. (1) possess the kinks. One can suspect the kink to be guilty in the 
inaccuracy of Eq. (4) [14]. Therefore we study one more case corresponding to the polynomial 
potential of the fifth order (P-potential) which was used in Ref. [15]. 

 

Fig. 5. The same as in Fig. 4 but for the C-
potential. 

Fig. 6. The same as in Figs. 4, 5 but for the W-
potential. 
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No values of the ODPξ  within 2% is reached in our calculations. Yet the IDPξ  enters the 2% stripe 
at the same value of 3.5 4.0ε ≈ −  as in the three previous cases. The qualitative explanation of the 

relation between the OPR  and IPR  is literally the same as for the case of Fig. 5. 
 

5. Conclusions 
The problem of the accuracy of the Kramers formulas for the fission rate of heated nuclei was not 
often addressed in the past. Sometimes the difference up to 20% was revealed but the reasons were not 
identified [4]. Now we have some progress which can be summarized as follows. 

The integral Kramers rate of Eq. (3), IR , agrees with the long time limit of the dynamical rate, 

DR , within 2% as the barrier height fB  becomes about 4 times larger than the temperature T . This is 

to be expected since the accuracy of the Kramers approach is of order of ( )exp /fB T−
. The rate 

which is obtained from the IR  using the parabolic approximation and the infinite limits for the 

integrals, OR , agrees to the DR  only in the case of the two parabolas potential with equal frequencies 
that allows unphysical negative distance between the fission fragment centers. This happens because 

of the mutual cancellation of the errors. For the other potentials, the OR  differs from DR  by more than 

5% even in the case of / 4fB T > . In particular the ( ) /OD O D DR R Rξ = −  is about 20% for 
/ 7fB T >  in the case of the W-potential forbidding the negative values of the center of mass distance 

for future fission fragments. This potential is the closest to the realistic one. The 20% inaccuracy of 
Eq. (4) is comparable to the quantum, non-markovian and multidimensional effects. 
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