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Abstract

The note describes the study of multijet triggers for the all-hadronic Higgs search.
It is an update of the previous trigger analysis used for the 2fo'analysis. This note
includes the results of new L2-CONE clustering and the new VH_MULTIJET trigger. In
addition to studying the new Level-2 clustering algorithm & new trigger, a new method to
apply the MC corrections has been developed which improves the agreement between

simulation and data.
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2 2 THE MULTIJET TRIGGERS AT CDF

1 Introduction

The Higgs boson remains as the only undiscovered particle of the Standard Model of particle
Physics. At CDF, there are many analyses which are conducting searches for the Higgs in
a variety of decay modes. The most sensitive channels are leptonic channels. This gives
a search channel with low backgrounds but they all suffer from low event yields. The all
hadronic analysis exploits the hadronic decay modes which has the largest cross-section x
branching-ratio. The two production modes which will be studied in this analysis are shown
in figure 1. The final state consists of 4 high-pT jets; two are b-jets and the other two are
non-b jets.

q

(a) Associated W/Z Higgs production. (b) Vector Boson Fusion

Figure 1: Higgs productions modes with bbqq final states. Both of these production modes
are to be studied in the latest all-hadronic Higgs search.

In 2008, an all-hadronic analysis was blessed using 2fb'of data [1]- This note is an update
on the trigger study of that analysis [2]. Since the 2fb™'study, two major changes to the
trigger took place:

o After Period-13, the L2 clustering algorithm changed from PACMAN to L2-CONE [3].

e The new VH_MULTIJET trigger was added during Period-18 to improve the accep-
tance for low- mass Higgs signals [4].

As part of the trigger study, the methods used to correct the simulation were reviewed. A
new method was developed which further improved the CDF simulation match to data.

2 The Multijet Triggers at CDF

The signature for the all-hadronic Higgs channel are 4 high-Pr jets with large Sum-Et 2 .
The TOP_MULTI_JET and VH_MULTIJET multi-jet triggers are designed to select events

2Sum-Et: Scalar Et sum of jets



with these signatures. At CDF, there are two standard ways of studying triggers:
e Cut on a parameter where the trigger is fully efficient.
e Measure the trigger turn-on from data and use it to weight the MC.
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Figure 2: The left plot shows the Sum-Et distributions for Higgs Signals, JET_50 data (QCD),
and tt . The following three plots are the trigger efficiencies for TOP_MULTI_JET and
VH_MULTIJET triggers. The graphs shows the trigger response is sensitive to the event
topology and clustering algorithm. NB: Non-linear bining has been used for these plots.

Figure 2 illustrates why neither of the standard methods can be applied to the all- hadronic
Higgs search. If one were to select events where the trigger has reached a plateau (Sum-Et
> 300 GeV), the efficiency for Higgs events would be very small. Contrast this with ¢ where
the Sum-Et spectrum is much harder, so a simple SumEt would be sufficient. The other
approach of measuring the trigger turn-on from data cannot be applied as both multi-jet trig-
gers are sensitive to the event-topology. Thus one must rely on CDF simulation to estimate
the trigger turn-on. But one must ensure the CDF simulation correctly reproduces the multi-
jet trigger. The previous trigger study had shown the trigger turn-on can be factorised into
two components: PHYSICS & DETECTOR.

PHYsICS The jet-Et and Sum-Et distributions of the MC sample must match the distribu-
tions measured with data.

DETECTOR The energy of L2 clusters from MC and data must match.

After these corrections, any difference can be attributed to the differences between the de-
tails of the CDF simulation and recorded data. This remaining scale factor is applied to MC
to get the correct trigger response.

3 Datasets used & Event Selection

Throughout this trigger study, all events were required to pass the Standard Event Selection
which is defined below:

e Eventis from a Good-Run (defined from Good-Run-List V27 (QCD+Silicon)
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o |Zyertex| < 60cm for highest-Pr vertex

e Lead Jet-Et > 60 GeV

e The event has at least 4 jets where a jet is defined as:
— Cone 0.4 jets
— Raw Jet-Et > 10 GeV
— Level 7 corrected Jet-Et > 15GeV
- nl <24

For this trigger study, the data-sets used are:
e JET_50 Data — Period 0 to Period 20
e QCD-MC Pt40 (btOsrb and bgOsrc)

Throughout the text, Sum-Et (All Jets) is used to parameterise the trigger turn-on. This
variables is defined as:

Sum-Et(All Jets) = Sum over all jets with Et > 15 GeV

4 The Reweigh Matrix

As the multi-jet triggers are sensitive to the event topology, it is important to match the
input jet Et and angular distributions when comparing MC to data. In the previous trigger
analysis note, an iterative procedure was applied to match the MC to the data. In this note,
a Reweigh Matrix ® was applied to match the MC to data. This has the advantage of not
only reproducing the jet distributions but it also accounts for any correlations between jets.
The added advantage is the Reweigh Matrix can be derived in a single pass. The Reweigh
Matrix is defined in equation 1.

Reweigh Matrix[Jetl — Et|[Jet2 — Et|[Jet3 — Et][Jetd — Et][Sum — Et][MINAR(4 — jets)]
_ DatalJetl — Et|[Jet2 — Et][Jet3 — Et][Jet4 — Et][Sum — Et][MINAR(4 — jets)]
~ MClJetl — Et][Jet2 — Et][Jet3 — Et][Jetd — Et][Sum — Et][MINAR(4 — jets)]

(1)

Each dimension of the Reweigh Matrix is defined below:
Jetl — Et Leading Jet Et

Jet2 — Et Second Leading Jet Et

Jet3 — Et Third Leading Jet Et

3The reweigh matrix was inspired by the Tag-Rate-Function method used to predict the QCD background in
the 2fb"analysis.



Jetd — Et Fourth Leading Jet Et
Sum — Et Scalar sum of all jets with Raw-Et>10GeV & L7-Corrected Et >15GeV
MINAR(4 — jets) The smallest AR # between the four leading jets.

The first four leading jets and SumEt were selected as these parameters are used in the
trigger definition. The MINAR(4 — jets) corrects the angular distribution of the jets. This
is important for triggers using the PacMan clustering algorithm which merges L2-clusters for
jets which are close together.

One should note for this trigger study that only the shapes of the MC and data need to
match. The absolute normalisation does not affect the measurement of trigger turn-on. In
the analysis, the Reweigh Matrix and its numerator and denominator are implemented as a
six-dimensional histogram. As the shape is only of concern, the six-dimensional histograms
are normalised to unit area before the ratio is taken.

The application of this matrix is shown in equation 2. The MC event picks up a weight from
the Reweigh Matrix and thus the distribution observed in data is reproduced.

Reweighed MC[Jetl — Et][Jet2 — Et|[Jet3 — Et|[Jetd — Et][Sum — Et][MINAR(4 — jets)]

= MC|[Jetl — Et][Jet2 — Et|[Jet3 — Et|[Jetd — Et][Sum — Et][MINAR(4 — jets)]

« Reweigh Matrix|Jetl — Et][Jet2 — Et][Jet3 — Et][Jetd — Et|[Sum — E|[MINAR(4 — jets)]
(@)

Figure 3 gives an example of a derived Reweigh Matrix . The figure shows the numerator and
denominator of the Reweigh Matrix . As a sanity check, one can remeasure the Reweigh
Matrix after the Reweigh Matrix has been applied the MC; by definition all the elements
should be 1. This is validated by the bottom-right plot of figure 3.

* AR = /A2 + Ag?
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Figure 3: Example of Reweigh Matrix . The six-dimensional Reweigh Matrix is transformed
into a one- dimensional vector. The x-axis for all of the histograms is the index of this
transformed 1D vector. The top-left histogram are the MC (RED) and Data (BLACK) values.
The ratio (thus the Reweigh Matrix ) is shown in the bottom-left plot. The top-right plot is
a copy of the top-left plot but after the Reweigh Matrix has been applied to the MC. As the
Reweigh Matrix has been applied, the ratio of Data to MC should be 1 which is shown in the
bottom- right plot.



5 Online Energy Correction

The previous trigger analysis note [2] showed rescaling the L2 cluster energies would help
to match the MC & Data trigger turn-ons. In this note, the L2-cluster rescaling is derived
from matching individual jets to individual L2 clusters rather than the global event variables
like SumEt. Figure 4 (top-plots) show scatter plots of L2-Cluster Et matched to offline jets.
A cluster is defined to match an offline jet by satisfying two requirements:

1. AR between the jet and L2-Cluster < 0.3.
2. The minimum AR between jets >1.2. This jet isolation cut avoids merged clusters.

The scatter plots are converted into profile histograms (bottom-left plot of figure 4). The
profile histograms show the L2-Cluster-Et scales linearly with Jet-Et but the MC matches
to a higher energy L2 cluster compared to data. The consequence is that the MC would
pass trigger cuts more often than data. Hence the MC trigger would turn-on before data. In
order to correct for this difference, one should scale the MC L2 clusters to match the data
L2 clusters. A bin-by-bin division of the profile histogram is shown in the bottom-right plot of
figure 4. This ratio is does not vary with Jet-Et and so the points are fitted to a flat line; this
ratio is the ONLINE ENERGY SCALE . It shows MC L2-Cluster Et need to be scale down by
the ONLINE ENERGY SCALE of 0.93.
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Figure 4: The top-left scatter plot shows the variation of L2-Cluster Et matched to offline jets
for JET_50 data. The top-right plot is the equivalent plot for QCD-MC Pt40. The bottom-right
are profile histograms of the scatter plots. The RED points are from QCD-MC P40 and the
BLACK points are from JET_50 data. The green lines are straight lines with gradients of 1.0,
0.9 and 0.8; shown here as guide for the eye. The QCD-MC points tend to lie on the 0.9
gradient line while the data lies on 0.8 gradient line. So for the same jet, the MC would tend
to give a large L2 cluster Et compared to data. The bottom-right plot is the bin-by-bin ratio
of DATA/MC profile histograms. As the ratio is flat, it is fitted to a constant.
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Figure 5: Derivation of ONLINE ENERGY SCALE for Central Calorimeter (|| < 1.1). For the
Central calorimeter, the ONLINE ENERGY SCALE scale is 0.9
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Figure 6: Derivation of ONLINE ENERGY ScCALE for East Plug Calorimeter (n > 1.1). For the
East Plug, the MC follows the DATA well. This is reflected in the ONLINE ENERGY SCALE of
0.98; very close to 1
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Figure 7: Derivation of ONLINE ENERGY SCALE for West Plug Calorimeter (n < —1.1). For
the West Plug, the MC follows the DATA well. This is reflected in the ONLINE ENERGY SCALE
of 0.99; basically 1
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The previous trigger note [2] had shown this ONLINE ENERGY SCALE differs for the Plug and
Central calorimeters. The ONLINE ENERGY SCALE was measured separately for East/West
Plug and Central calorimeters (figures 5, 6, 7). The ONLINE ENERGY SCALE for East &
West Plug calorimeters are approximately the same and the values are close to 1.0. So
the MC models the Data well in the Plug regions. However for the central calorimeter, the
ONLINE ENERGY SCALE is 0.9; a significant difference between the Data and MC L2 cluster
scale.

Another dependence mentioned in the previous trigger study [2] was a Run-Number depen-
dence. The ONLINE ENERGY SCALE was measured for different run-ranges and the variation
is plotted in figure 8. As the run-number increases, the ONLINE ENERGY SCALE reduces.
But when this is split by calorimeter type, the East & West Plug calorimeter have a constant
ONLINE ENERGY ScCALE . It is only the Central calorimeter which has a run-dependence.
Figure 8 also shows the ONLINE ENERGY SCALE measured with WH Higgs MC sample. The
ONLINE ENERGY SCALE has no sample dependence. The data from the plots are tabulated
in table 1.

Table 1: Online Energy Scale: This table gives the scale to reduce the MC L2 cluster Et
to make it match the response in data. The Central Calorimeter (CCAL) has a strong run
dependence while the Plug Calorimeters (ECAL/WCAL) are independent of run number. So
only the run-average (Full Run Range) value is used to correct the MC L2 Plug clusters. The
break in the table are for the different L2 clustering algorithms. PACMAN was used from the
start of Run-1l to Run 246229 and L2-CONE started from Run 253134.

Run-Range

Whole

CCAL

ECAL

WCAL

138858 - 164386
164451 - 168640
168766 - 183783
183785 - 185517
185518 - 192504
192505 - 198686
198695 - 204640
204642 - 211265
211267 - 222551
222552 - 232781
232802 - 239906
239923 - 246229

0.955 + 0.044
0.930 £+ 0.042
0.946 + 0.041
0.933 £+ 0.040
0.938 + 0.041
0.923 + 0.040
0.928 £+ 0.043
0.913 £ 0.041
0.909 £ 0.043
0.889 + 0.041
0.895 £+ 0.042
0.880 + 0.041

0.938 + 0.038
0.923 £+ 0.038
0.931 £+ 0.036
0.920 + 0.036
0.919 + 0.037
0.909 + 0.035
0.905 £ 0.037
0.892 + 0.036
0.888 £+ 0.037
0.868 + 0.036
0.872 + 0.036
0.857 + 0.034

1.062 + 0.058
0.945 £+ 0.042
0.988 + 0.035
1.010 + 0.043
0.923 + 0.039
0.984 + 0.046
1.026 + 0.051
0.956 + 0.043
1.011 = 0.052
0.991 + 0.051
1.002 £ 0.042
0.944 + 0.050

1.059 + 0.056
1.014 + 0.037
1.021 + 0.052
0.989 + 0.046
1.010 = 0.050
1.005 + 0.050
1.010 = 0.052
1.007 £ 0.045
1.005 + 0.055
1.020 + 0.046
1.077 £ 0.042
1.011 £ 0.060

Full Run Range

0.919 £+ 0.043

0.902 + 0.038

1.001 £ 0.052

1.008 + 0.054

253134 - 255940
255941 - 257698
257706 - 259590
259591 - 261143

0.891 £ 0.051
0.874 + 0.050
0.871 £+ 0.053
0.872 £+ 0.052

0.858 £+ 0.047
0.849 + 0.046
0.843 £+ 0.049
0.844 + 0.046

0.890 + 0.033
0.980 + 0.048
0.976 + 0.061
0.973 £+ 0.062

1.011 = 0.061
0.993 + 0.054
0.972 + 0.056
0.988 + 0.061

Full Run Range

0.875 £ 0.052

0.844 + 0.047

0.987 £+ 0.060

0.995 £ 0.061

The run dependence of the ONLINE ENERGY SCALE for the Central Calorimeter could be
attributed to the detector response changing with time (Run-Number). The profile histograms
show the L2 Cluster Et Vs Jet-Et can be fitted to a straight line. The variation in offset and
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Figure 8: Run Dependent ONLINE ENERGY SCALE . Each plot shows the variation of the
ONLINE ENERGY SCALE as a function of Run-Number for Whole Calorimeter (top-left), Cen-
tral Calorimeter (top-right), East Plug (bottom-left) and West Plug (bottom-right). The ob-
served run dependence is only for the Central calorimeter while the Plug does not vary. The
plots also show the ONLINE ENERGY SCALE does not depend on the MC sample as both
QCD-MC Pt 40 and WH-MC give the same values.

slope for each run period is shown in figures 9 & 10. The offset does not vary except when
the L2 clustering algorithm is changed. However the slope for the MC changes with run
number, but only when the PacMan clustering algorithm is used. The slope for data does
not vary with run number except a step when the L2 clustering algorithm was changed.
This shows the run dependence of the Central Calorimeter ONLINE ENERGY SCALE is to
compensate for the the MC L2 cluster energy changing with time/Run-Number. Further
investigation into this run dependency was shown to be due to a bug in CDF-code [5].
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Figure 9: The L2-Cluster Et Vs Jet-Et profile histograms are fitted to straight lines. The

graphs show the variation of the fitted offset with run number for the whole, central, East &
West calorimeter. The offset only changes when the L2 clustering algorithm changes.
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Figure 10: The L2-Cluster Et Vs Jet-Et profile histograms are fitted to straight lines. The

Cen-

The MC (Red) and data (Black) fitted slopes for the Plug

graphs show the variation of the fitted gradient (slope) with run-number for Whole,

tral, East & West calorimeter.

calorimeters agree with each other. However the slopes for the central calorimeter are do

not agree. The data does not vary with run number except when the L2 clustering algorithm
changed. But the MC shows a continuous increase in the slope until the L2 clustering algo-

rithm changed. So the run dependency of the online energy scale is to compensate for the

MC change in gradient.
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6 TOP_MULTIJET Trigger

The signature for VH/VBF all-hadronic mode are 4 high-Pr jets with large Sum-Et. The
TOP_MULTI_JET trigger was designed to trigger on such events. There have been 12
versions of this trigger during Run-Il. However they can be categorised into 4 major ver-
sions.

e L1 JET10_ & SUMET130 and L2_ AUTO_L1_JET10_& SUMET130 (V2)
e L1 JET10 and L2_. FOUR_JET125_SUMET(V3-V4)

e L1.JET10 and L2.FOUR_JET175_SUMETV5-V8)

e L1 JET20 and L2_. FOUR_JET175_SUMET(V9)

e Same trigger definition as V9 but L2-Cone clustering is used (V12)

The trigger versions not mentioned in the list are not associated with any Good-Runs. For
simplicity, TOP_MULTI_JET_V2-V4 are remade using the V8 definition; i.e. the L2 SumEt
cut is raised from 125 GeV to 175GeV.

Table 2 shows the number of L1, L2 & L3 triggers fired for each version of TOP_MULTI_JET.
The table shows the L2 component has the tightest cuts. So the focus is on matching the L2
performance.

Table 2: Rate for L1, L2 & L3 firing for TOP_MULTI_JET. The table shows the number of
times L1, L2 and L3 triggers fired for the high-Pr Muon dataset after passing the standard
event selection. The L1 Rate is defined as (L1 && L2/L2) and the L3 Rate is defined as (L1
&& L2 && L3 /L1 && L2). The L3 rate shows the L3 trigger will always fire if the event has
passed L1 and L2. The L2 rate shows L1 trigger would have fired if the L2 trigger had fired.
The exceptions are the last two versions of TOP_MULTI_JET where the L1 trigger was
raised from L1_JET10 to L1_JET20. This caused a 4% loss and will need to be accounted
for.

TOP_MULTIJET Version | L1 Count | L2 Count | (L1 && L2) (L1 && L2 | L1 Rate | L3 Rate
Count | && L3) Count
TOP_MULTIJET v-1 0 0 0 0 0 0
TOP_MULTIJET v-2 0 0 0 0 0 0
TOP_MULTIJET v-3 16848 2155 2155 2142 1 0.994
TOP_MULTIJET v-4 99979 14629 14560 14427 0.995 0.991
TOP_MULTIJET v-5 17071 1359 1347 1335 0.991 0.991
TOP_MULTIJET v-6 35518 2497 2495 2487 0.999 0.997
TOP_MULTIJET v-7 0 0 0 0 0 0
TOP_MULTIJET v-8 90513 6566 6562 6541 0.999 0.997
TOP_MULTIJET v-9 607248 80679 77055 76728 0.955 0.996
TOP_MULTIJET v-10 0 0 0 0 0 0
TOP_MULTIJET v-11 0 0 0 0 0 0
TOP_MULTIJET v-12 1306835 | 273665 262762 260312 0.960 0.991
All Versions 2174012 | 381550 366936 363972 0.962 0.992
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6.1 TOP_MULTI.JET_V2-V8

The TOP_MULTI_JET trigger for V2-8 is defined as:
Level1 L1 _JET10

Level 2 L2 FOUR_JET15_SUMET175

Level 3 Four 15GeV 0.4 cone jets

As mentioned in the previous section, the Level-2 SumEt cut has been set to 175 GeV for
V2-V4 of TOP_MULTI_JET to simplify the analysis.

The first step for this analysis is to derive a Reweigh Matrix for QCD-MC such that the input
distributions match those measured in data. Figure 11 shows the input distributions of the
QCD-MC before and after the reweigh matrix has been applied. After the Reweigh Matrix
has been applied, it matches the Data exactly. The two start to diverge in the tails where
statistics are low.

After the Reweigh Matrix , one has to apply the ONLINE ENERGY SCALE to the Level-2
clusters to correct their energy. For this version of the TOP_MULTI_JET trigger, only the
Level-2 trigger needs to be emulated. Figure 12 shows the application of the corrections
upon the measured trigger turn-on. If the raw QCD-MC is used, the TOP_MULTIJET
trigger is over-efficient with respect to data.

After the corrections, the QCD-MC matches the data better. The bottom row of figure 12
shows the ratio of the trigger turn-ons of JET_50 data to QCD-MC (after correction). They
are flat with ratios close to 1.0. The fitted ratio for the TOP_MULTI_JET trigger of the Data
to the QCD-MC(corrected) is 0.963 + 0.008. This ratio is applied as a scale factor to the MC
trigger.
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Figure 11: Jet, Sum-Et & MIN AR distributions: The reweigh matrix is applied to the QCD-
MC P40 which makes the distributions match JET_50 data.
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Figure 12: The trigger turn on for the L2 TOP_MULTI_JET components. The middle row
shows ratio ratio of JET_50 data to QCD-MC(uncorrected). The bottom row shows the ratio
of JET_50 data to QCD-MC(corrected). After the correction, the QCD-MC trigger turn-on
agrees better the JET_50 data. The fitted ratio for the TOP_MULTI_JET trigger of the Data

to the QCD-MC(corrected) is 0.963 + 0.008
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6.2 TOP_MULTIJET_V9

During Period 7, the L1 jet trigger threshold was raised from 10 GeV to 20 GeV which re-
duced the acceptance by ~ 6%. As we cannot assume L1 jet trigger would fire if L2 is true,
the L1_JET20 trigger needs to be measured. Figure 13 shows the L1_JET20 turn on if
Level-2 of TOP_MULTI_JET had fired. The turn-on measured by MC does not match the
data. The ratio of the two turn-ons is shown in the adjacent plot and fitted to function in equa-
tion 3. This function is applied to events passing Level-2 TOP_MULTI_JET trigger.
fl)=A(1—exp B+ C (3)

x : Sum-Et(All-Jets)

After the fit, the parameters for the turn-on are:
A 19.23 +£0.01

B 0.0280 + 0.0004

C —18.244+0.01

| L1_JET20 Turn On (L2_FOUR_JET15_SUMET175 Fired) L1_JET20 Turn On (L2_FOUR_JET15_SUMET175 Fired) Ratio
F —}— JET_50Data %)
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Figure 13: L1_JET20 correction: The left-graph shows the turn-on for L1_JET20 for events
passing the standard event selection and the L2 trigger. The right-graph shows the ratio of
the turn-on for data to the corrected QCD-MC. This ratio is fitted to equation 3 and plotted
(dark blue line). The lighter blue lines are +1¢ variation of the fit parameters.

Due to this L1_JET20 turn-on correction, the overall MC scale-factor is 0.963 x f(x) ( scale
factor from section 6.1 and L1_JET20 turn on from equation 3).
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6.3 TOP_MULTI.JET_V12

After the 2007 shutdown, the level-2 calorimeter trigger clustering was changed from PAC-
MAN to L2-CONE . A major advantage of the L2-CONE algorithm is that is does not suffer
from cluster merging which impaired the PACMAN algorithm. Further details can be found
in [3]. Another improvement after the shutdown was the Tevatron performance. There were
substantial gains in the instantaneous & integrated luminosity (see figure 14). Unfortunately
the available QCD-MC samples only go to P11. They do not include the L2-CONE clusters
or reflect the post 2007 shutdown luminosity profile. This was corrected by:

e Adding Number-of-Verticies (NVertex) to the Reweigh Matrix

e Remake all the L2 clusters using L2-CONE
The Reweigh Matrix is now a seven dimensional histogram to ensure the QCD-MC has the
correct luminosity profile (see equation 4).

Reweigh Matrix[Jetl — Et][Jet2 — Et]|[Jet3 — Et][Jetd — Et|[Sum — Et|][MINAR(4 — jets)|[N — Vertex]
_ Data[Jetl — Et][Jet2 — Et][Jet3 — Et][Jet4 — Et|[Sum — Et][MINAR(4 — jets)|[N — Vertex]
~ MCl[Jetl — Et][Jet2 — Et][Jet3 — Et|[Jetd — Et][Sum — Et][MINAR(4 — jets)][N — Vertex]
(4)
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Figure 14: Changes is luminosity profile: After the 2007 shutdown, the Tevatron luminosity
profile changed substantially. The graph on the left shows the instantaneous lumi profile
for JET_50 data for TOP_MULTI_JET_V1-9 and TOP_MULTI_JET_V12. The instantaneous
luminosity before and after are quite different. The plot on the right shows the number of
vertices for the two periods. Again the graphs shows JET_50 data normalised to unit area.
The higher instantaneous luminosity gives rise to more vertices being recorded.

Figure 15 shows the Data and QCD-MC distributions before/after the Seven-Dimensional
Reweigh Matrix is applied. After the correction, the QCD-MC now has the same luminosity
profile (N-Vertex distribution).
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Figure 15: The Jet-Et, Sum-Et, MIN AR & N-Vertex distribution. For the L2-CONE data,
the luminosity profile changed in data changed substantially. So in addition to the event
kinematics, the N-Vertex distribution is reweighed. After the reweigh matrix is applied, the
QCD-MC follows the data.



6.3 TOP_MULTI.JET_V12 23

As the run-ranges for QCD-MC and the JET_50 data do not overlap, the ONLINE ENERGY
SCALE needs to be considered. Section 5 had shown only the MC had a run-dependency.
To check the ONLINE ENERGY SCALE of this disjoint data, the ONLINE ENERGY SCALE was
remeasured but:

e QCD-MC ran over all of its events but all L2-Cluster remade using L2-CONE
e The JET_50 data was restricted to TOP_MULTI_JET_V-12

The QCD-MC was split into the same run sections as defined in table 1. But all of the
analysed JET_50 data was examined as we know there is no run dependency in data. The
result of this ONLINE ENERGY SCALE is shown in table 3. The values are same as those
using PacMan. So one can use the same ONLINE ENERGY SCALE .

The same procedure as in section 6.1 was followed to correct the QCD-MC Pt40: the QCD-
MC was reweighed using the reweigh matrix defined in equation 4 and the L2-CONE clusters
were rescaled using the values in table 1. Figure 16 shows the TOP_MULTI_JET_V-12
trigger turn-ons for JET_50 data and QCD-MC Pt40 before and after the corrections are
applied. The bottom row of figure 16 are the ratios of the trigger turn-ons of JET_50 data to
the corrected QCD-MC Pt40. The fitted ratio for TOP_MULTI_JET is 0.973 + 0.006.

The L1 trigger for TOP_MULTI_JET_V-12 is L1_JET20. Figure 17 shows the turn-on for
L1_JET20 for events passing the standard event selection and L2 components of TOP_MULTI_JET _V-
12. The ratio of JET_50 to corrected QCD-MC for the L1_JET20 turn-on is fitted to equa-
tion 5.

flz)=A (1 — exp_Bz) (5)

o : Sum-Et(All-Jets)

After the fit, the parameters for the turn-on are:
A 0.994 4+ 0.001
B 0.0132 £ 0.0003

The overall MC scale factor for TOP_MULTI_JET_V-12is 0.973 x f(x) (as defined in equa-
tion 5).
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Figure 16: The Trigger Turn On for TOP_MULTI.JET_V-12 : The top row shows the L2
trigger trigger turn on for TOP_MULTI_JET and its components. The middle row shows the
ratio of JET_50 data to QCD-MC(uncorrected). The bottom row shows the ratio of JET_50
data to QCD-MC(corrected). The fitted ratio for TOP_MULTI_JET_V-12 is 0.973 + 0.006.
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Table 3: Online Energy Scale: The QCD-MC only goes to P11 which does not cover the L2-
CONE period. As the MC has run-depdendcy on the L2-Cluster Et, one needs to cross-check
the ONLINE ENERGY SCALE . The ONLINE ENERGY SCALE was remeasured using the all
(good) runs from QCD-MC but the clusters are remade using the L2-CONE algorithm. The
data was restricted to the L2-CONE period (TOP_MULTI_JET_V12). The measured energy
scale is the same.

Run-Range Whole

CCAL

ECAL

WCAL

138858 - 164386
164451 - 168640
168766 - 183783
183785 - 185517
185518 - 192504
192505 - 198686
198695 - 204640
204642 - 211265
211267 - 222551
222552 - 232781
232802 - 239906

0.988 + 0.058
0.944 + 0.052
0.931 £+ 0.052
0.937 + 0.053
0.938 £+ 0.052
0.907 + 0.050
0.921 £+ 0.052
0.917 £+ 0.053
0.914 £+ 0.053
0.902 + 0.051
0.898 + 0.053

0.944 + 0.049
0.927 + 0.048
0.914 £+ 0.048
0.916 + 0.048
0.905 £ 0.046
0.887 + 0.046
0.888 £+ 0.047
0.881 £+ 0.047
0.874 + 0.046
0.866 + 0.046
0.855 + 0.046

1.116 £ 0.075
0.991 + 0.058
0.975 + 0.057
0.991 + 0.057
1.005 + 0.062
0.989 + 0.063
0.992 + 0.059
0.983 + 0.059
0.994 + 0.059
0.966 + 0.058
0.977 + 0.058

1.067 £ 0.071
0.957 + 0.062
0.929 + 0.057
0.955 + 0.059
0.985 + 0.051
0.988 + 0.064
0.986 + 0.054
0.979 £+ 0.053
0.949 + 0.054
0.961 + 0.053
0.976 + 0.060

Full Run Range | 0.918 £ 0.053

0.882 £+ 0.047

0.992 + 0.060

0.975 + 0.059
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Figure 17: L1_JET20 Correction for L2-CONE : The left hand plot shows the turn-on for
L1_JET20 for events which the standard event selection & passed the L2-CONE trigger.
The right hand plot is the ratio of the trigger turn-ons of JET_50 data to QCD-MC Pt40(after
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correction). The dashed blue line is the fit to the ratio using equation 5.
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7 VHMULTIJET Trigger

The TOP_MULTI_JET trigger was originally designed to select all-hadronic ¢t events. Al-
though it selects events with 4-jets, the L2-SumEt cut is high and this compromises the effi-
ciency for Higgs events. The VH MULTIJET was developed to address the inadequcies of
TOP_MULTIJET. This trigger was designed to improve the acceptance for low-mass higgs
events [4]. The definition of this trigger is:

Level-1 L1_JET20
Level-2 L2 THREEJET20_SUMET130
Level-3 NULL

The trigger turn-on measurement followed the same procedure outlined in section 6.1. The
QCD-MC Pt40 was reweighed using the same reweigh matrix & ONLINE ENERGY SCALE
used for the TOP_MULTI_JET_V-12 analysis. Figure 18 shows the VH_MULTIJET trig-
ger turn-on for JET_50 data and QCD-MC Pt40 before and after corrections. The bottom
row are the trigger turn on ratios of Data to corrected QCD-MC Pt40. The fitted ratio for
VH_MULTIJET is 0.953 + 0.004.
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Figure 18: The trigger turn-on for VH_MULTIJET : The top row shows the L2 trigger trigger
turn on for VH_MULTIJET and its components. The middle row shows the ratio of JET_50
data to QCD-MC(uncorrected). The bottom row shows the ratio of JET_50 data to QCD-
MC(corrected). The fitted ratio for VH_MULTIJET is 0.953 + 0.004.

The L1 trigger for VH_MULTIJET is L1_JET20. As for TOP_MULTI_JET triggers, the
L1_JET20 trigger turn on for events passing the standard event selection & L2 component
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of VH_MULTIJET is measured (figure 19). The ratio of the JET_50 to corrected QCD-MC
Pt40 is fitted to equation 6.

fla)=A(1—exp™57) (6)
x : Sum-Et(All-Jets)

After the fit, the parameters for the turn-on are:
A 0.9959 + 0.0009
B 0.0144 £ 0.0002

The overall MC scale factor for VH_MULTIJET is 0.953x f () (as defined in equation 6).
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Figure 19: L1_JET20 correction for VH_MULTIJET : The left hand plot shows the turn-on
for L1_JET20 for events which the standard event selection & passed the L2 component of
the VH_MULTIJET trigger. The right hand plot is the ratio of the trigger turn-ons of JET_50
data to QCD-MC Pt40(after correction). The dashed blue line is the fit to the ratio using
equation 6.
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8 Systematic Errors

As a cross check of the measurements made, the trigger study was repeated with a different
data set: JET_50 was replaced with JET_20 and QCD-MC Pt40 was replaced with QCD-
MC Pt18. The events from these data sets were forced to pass the same standard event
selection (section 3). The same reweigh matrices defined by equations 1 and 4 were used to
reweigh the QCD-MC Pt18 to match the JET 20 data. As JET_20 and QCD-MC Pt18 have
lower E+ cuts than JET_50 & QCD-MC Pt40, a smaller number of events survive the event
selection. This had an effect on the reweigh matrix where a coarser binning had to be used.
The reweighed QCD-MC Pt 18 distributions are shown in figures 20 and 21.

After the reweigh matrix, the same L2 cluster rescaling (table 1) was applied and the trigger
turn on was measured. The trigger turn-ons for the TOP_MULTI.JET & VH_MULTIJET
using JET 20 and QCD-MC Pt18 are shown in figures 22, 23 and 24. Again the QCD-MC
Pt 18 trigger turn-ons started following the data after the corrections were applied. The
MC scale-factor was remeasured by fitting the ratio of the trigger turn-ons of JET_20 data
to corrected QCD-MC Pt 8. As there were few events at high SumEt, the final fits of the
Data/MC ratio are restricted to the lower to mid SumEt region. From this alternative data-
set, the fitted scale factors were:

e TOP_MULTIJET_V-2-9 ( PACMAN ) : 0.930 + 0.047 (when fitted 200 < Sum-Et(All-
Jets) < 400 GeV

e TOP_MULTI_JET_V-12 ( L2-CONE ) : 1.006 + 0.049 (when fitted 100 < Sum-Et(All-
Jets) < 350 GeV

e VH_MULTIJET :0.934 + 0.024 (fitted over full Sum-Et(All-Jets) range)

The L1_JET20 turn-ons were also measured using the JET_20/QCD-MC Pt18 data sets and
fitted to the same functions (equations 3, 5 and 6). Due to the low statistics of JET_20/QCD-
MC Pt18 data, the errors on the fitted turn-ons are large. So all of the fitted turn-ons
measured with JET_50/QCD-MC Pt40 data are compatible with the fitted functions from
JET_20/QCD-MC Pt18 (figures 25, 26 and 27) . Table 4 summarises the measurements for
this systematics cross-check.

The low statistics of the JET_20 data and QCD-MC Pt18 make it difficult to measure the true
systematic differences. The error on the fitted parameters for L1_JET20 are large which
make them compatible with the fits from the higher statistic JET_50/QCD-MC Pt40 data set.
So there is no systematic for the L1_JET20 turn-on. The fitted ratios for the L2 Scale-factors
measured with JET_50/QCD-MC Pt 40 and JET_20/QCD-MC Pt 18 agree each other to 4%.
As a conservative estimate of the systematic, this 4% variation is taken as a measure of the
trigger systematic.
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Jet-Er , Sum-Et, MIN AR distributions for JET_20 data and QCD-MC Pt18

for PACMAN data. After applying the reweigh matrix, the corrected QCD-MC Pt18 (green)
matches the JET_20 data (black) better.
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Figure 21: Jet-Er , Sum-Et, MIN AR & N-Vertex distributions for JET_20 and QCD-MC Pt18
for L2-CONE data. After applying the reweigh matrix, the corrected QCD-MC Pt18 (green)
matches the JET_20 data (black) better.
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Figure 22: Trigger turn-on for TOP_MULTI_JET_V2-9 ( PACMAN ) as measured with QCD-
MC Pt18 and JET_20 data. The middle row shows the ratio of trigger of JET_20 data to
uncorrected QCD-MC Pt18. The bottom row are the trigger turn-on ratios of JET_20 data to
corrected QCD-MC Pt18. After the QCD-MC is corrected, the ratio plots are flat. The fitted
ratio of TOP_MULTI_JETfor the corrected QCD-MC Pt18 is 0.930 + 0.047.
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Figure 23: Trigger turn-on for TOP_MULTI_.JET_V12 ( L2-CONE ) as measured with QCD-
MC Pt18 and JET_20 data. The middle row shows the ratio of trigger of JET_20 data to
uncorrected QCD-MC Pt18. The bottom row are the trigger turn-on ratios of JET_20 data to
corrected QCD-MC Pt18. After the QCD-MC is corrected, the ratio plots are flat. The fitted
ratio of TOP_MULTI_JETfor the corrected QCD-MC Pt18 is 1.006 + 0.049.
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Figure 24: Trigger turn-on for VH_MULTIJET as measured with QCD-MC Pt18 and JET_20
data. The middle row shows the ratio of trigger of JET_20 data to uncorrected QCD-MC Pt18.
The bottom row are the trigger turn-on ratios of JET_20 data to corrected QCD-MC Pt18.
After the QCD-MC is corrected, the ratio plots are flat. The fitted ratio of VH_MULTIJET for
the corrected QCD-MC Pt18 is 0.934 + 0.024.

Table 4: MC trigger corrections as measured with JET_20 data and QCD-MC Pt18. The
measured values are all compatible with the measurements taken with JET_50 data and
QCD-MC P140. Only the fit for the L1 for TOP_MULTI_JET _v-9 differs. But the errors on the
fitted parameters are large enough to be compatbile with the fitted function from JET_50 &
QCD-MC Pt 40 (figure 20)

L1 MC Scale Factor L2 MC Scale Factor
TOP_MULTI_JET_v1-8 | Not Needed 0.930 £ 0.047
TOP_MULTIJET.v-9 | f(z)=A(1— eXp_Bx) +C 0.9304 0.047
A=4997.44+0.1
B =0.0495 + 0.001
C =-4996.5+0.1
TOP_MULTIJET.v-12 | f(z) = A(1 - exp_Bx) 1.006 4 0.049
A =1.041+£0.101
B = 0.0085 4 0.0033
VH_MULTIJET flz)=A(1- exp_Bm) 0.934 + 0.024
A =0.961 £0.025
B =0.017 + 0.006
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Figure 25: Measure of the L1_JET20 turn on for TOP_MULTI_JET_V-9 ( PACMAN ) using
JET_20 data and QCD-MC Pt18. The left plot shows the measured turn-ons for events pass-
ing the L1_JET20 trigger if the L2 component of TOP_MULTI_JET_V-9 is true for JET_20
data and (un)corrected QCD-MC Pt 18. The right plot is the ratio of the JET 20 trigger
turn-on to the corrected QCD-MC Pt 18. The lighter blue lines are +1¢ variation of the fit
parameters. The black line is the fit using JET_50/QCD-MC Pt40. This fit is compatible with
the JET_20/QCD-MC P18 measurement.
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Figure 26: Measure of the L1_JET20 turn on for TOP_MULTI_JET_V-12 ( L2-CONE ) using
JET_20 data and QCD-MC Pt18. The left plot shows the measured turn-ons for events
passing the L1_JET20 trigger if the L2 component of TOP_MULTI_JET_V-12 is true for
JET_20 data and (un)corrected QCD-MC Pt 18. The right plot is the ratio of the JET_20
trigger turn-on to the corrected QCD-MC Pt 18. The lighter blue lines are +1¢ variation of
the fit parameters. The black line is the fit using JET_50/QCD-MC Pt40. This fit is compatible
with the JET_20/QCD-MC Pt18 measurement.
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Figure 27: Measure of the L1_JET20 turn on for VH_MULTIJET ( L2-CONE ) using JET_20
data and QCD-MC Pt18. The left plot shows the measured turn-ons for events passing
the L1_JET20 trigger if the L2 component of VH_MULTIJET is true. for JET 20 data and
(un)corrected QCD-MC Pt 18. The right plot is the ratio of the JET_20 trigger turn-on to the
corrected QCD-MC Pt 18. The lighter blue lines are +1¢ variation of the fit parameters. The
black line is the fit using JET_50/QCD-MC Pt40. This fit is compatible with the JET_20/QCD-
MC Pt18 measurement.
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9 Application to the Higgs Signal MC

The purpose of these trigger studies is to derive a set of generic corrections which can
be applied to any MC sample to get a more correct trigger response. The MC corrections
applied to the QCD-MC samples are applied to the Higgs signal MC. Only the reweigh matrix
is not applied. We assume PYTHIA models the dynamics of a Higgs decay correctly. Thus
the overall MC trigger weight is:

Trigger Weight(Sum-Et) = Event Passes L2xL1 MC Scale Factor(Sum-Et)xL2 MC Scale Factor
(7)

The L1 and L2 scale factors are summarised in table 5.

Table 5: L1 & L2 MC Scale Factors. The overall trigger weight is a product of the L1 MC Sale
Factor and L2 MC Scale Factor. For the L1 MC Scale Factors, = is the Sum-Et(All Jets).

L1 MC Scale Factor L2 MC Scale Factor
TOP_MULTI_JET_v1-8 | Not Needed 0.963 + 0.008
TOP_MULTIJETW-9 | f(z)=A4 (1 — exp*Bx) +C 0.963 + 0.008

A =19.23£+0.01

B =280F - 02+ 0.04E — 02
C =-18.24+0.01
TOP_MULTIJET.v-12 | f(z)=A (1 — exp_Bx) 0.973 + 0.06
A =0.994 £+ 0.001

B =0.0132 £ 0.0003
VH_MULTIJET flx)=A (1 — exp_Bx) 0.953 + 0.004
A =0.9959 + 0.0009
B =0.0144 £ 0.0002

Using these trigger corrections, one can measure the acceptable for each trigger version
(table 6), where the trigger acceptance is defined as:

Passes event-selection & Trigger fires
Passes event-selection

Trigger Acceptance = (8)
The table shows the acceptance improved after the L2 clustering algorithm changed from
PACMAN to L2-CoNE and the new VH_MULTIJET makes further increases.

Table 6: Trigger acceptance for VBF, WH & ZH for 120 GeV Higgs and ¢t . All the MC
samples had the trigger corrections applied.

VBF120 | WH120 | ZH120 tt
TOP_MULTI.JET.v1-8 | 36.8% | 21.7% | 32.1% | 64.5%
TOP_MULTI.JET_v-9 36.0% | 21.3% | 31.5% | 63.5%
TOP_MULTI.JET.v-12 | 48.9% | 33.3% | 46.7% | 69.5%
VH_MULTIJET 59.2% | 57.4% | 70.5% | 82.7%
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10 Conclusion

A set of corrections were derived for CDF-MC to improve the trigger simulation. The correc-
tions applied to the MC are:

¢ Online Energy Corrections to correct the L2-Cluster energy
e MC Scale Function to correct the MC trigger turn-on to make it match data

The corrections for the L2-Cluster energy can be found in table 1 and the MC scale factors
are in table 5. All the corrections were derived using JET_50 data and QCD-MC Pt 40. As
a measure of the systematic error, the analysis was repeated using JET_20 data and QCD-
MC Pt 18. Unfortunately a small number of events passed the event-selection & trigger
requirements which made it difficult to have a true measure of the systematic error. The fits
for the L1_JET20 turn-on agree between the two samples. The L2 scale factor has 4%
variation. This 4% is taken as an estimate of the systematic error.

The focus of this study has been for the all-hadronic Higgs search. However the results
should be applicable to other analysis using multi-jet trigger (eg: all hadronic top measure-
ments). Also the technique developed in this not are applicable to other analysis where one
must rely on MC & simulation to measure the trigger.
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