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Abstract. Lorentz symmetry can be preserved in effective higher derivative scalar field
theories containing a constant vector that breaks Lorentz invariance of flat spacetime, through
the choice of special field configurations. These fields do satisfy the equations of motion, yielding
cubic dispersion relations analogous to those derived earlier. Moreover, the Lie algebra of the
Lorentz group can be realised on these fields.

1. Introduction
Physicists have focussed a lot of their attention on theoretically and experimentally probing
departures from Lorentz symmetry for the better part of the last couple of decades, [1, 2,
3, 4, 5, 6, 7, 8, 9]. This search was initiated by different theories of quantum gravity that
hypothesise violation of Lorentz symmetry in flat spacetime at energies E � MPl, where MPl

denotes the Planck mass. Deviations, suppressed by the Planck mass, from the standard special
relativistic dispersion relation of free particles of mass m at high energies E (MPl � E � m) are
considered to be signatures of quantum gravity induced Lorentz violation. Myers and Pospelov
[6] constructed low energy effective actions of fields having spins 0, 1/2 and 1 that include new
Planck suppressed dimension five operators, to account for these proposed corrections to the
dispersion relations. In this report, we shall restrict ourselves to the case of a complex scalar
field φ. The extended action of [6] is,

SMPφ =

∫
d4xLMPφ =

∫
d4x

[
|∂φ|2 −m2|φ|2

]
+

∫
d4x

iκ

MPl
φ∗∂3nφ , (1)

The first integral, let’s call it SS , is the usual action of a complex scalar field with mass m
while the second integral, SVS , is the Lorentz violating contribution. Global Lorentz symmetry
of flat spacetime is broken by the constant vector n which renders a preferred direction to the
background. κ is a real, dimensionless parameter and n · ∂ ≡ ∂n. Choosing a Lorentz frame
where nµ = (1,~0), corrections of O(p3) to the dispersion relation has been obtained in [6] in the
limit MPl � E � m.

ω2 ' |~p|2 +m2 +
κ

MPl
|~p|3 . (2)
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Although such deformed dispersion relations have attracted much attention, do they
unequivocally imply Lorentz violation? We first explore the possibility that special field
configurations exist for which the apparently Lorentz symmetry violating action of [6] may
still be Lorentz invariant in close analogy to what happens in magnetic monopole theory [10].
In section 2 we consider the Nöther current corresponding to Lorentz transformation of the
action (1). Demanding that this Nöther current be conserved leads us to the the result that the
effective action remains Lorentz invariant if the fields are decomposed in a particular way. The
initial absence of Lorentz symmetry in the action is transferred to the Lorentz non-invariant
splitting of the fields. We further investigate in the same section, the dispersion relation that
these special field configurations satisfy. This work is based on our more extensive study [11]

One must also have noticed that the additional term SVS in (1) contains third order derivatives
of the field. Higher derivative Lagrangians are not new to physics [12]. Back in 1961,
Ostrogradskii [13] had developed a canonical formalism for dealing with them. However, most
of the extant literature in this field, [14, 15, 16] and references therein, study systems having
finite number of degrees of freedom and higher time derivatives of the generalised coordinates.
Section 3 will present a brief review of Ostrogradskii’s technique generalised to field systems [17]
and use it to study the canonical structure of LMPφ with the Lorentz-preserving fields. This
part of the problem is going to be dealt with in more detail in our forthcoming publication [18].

2. Lorentz invariant dynamics of Myers Pospelov scalar model
2.1. Finding the Lorentz preserving fields
Let an infinitesimal Lorentz transformation be applied to the action (1). Then δαβSS = 0 while
δαβSVS =

∫
d4xφ∗n[α∂β]∂

2
nφ. On the other hand, if the spacetime divergence of the corresponding

Nöther current J is computed, we get ∂µJ µαβ = φ∗n[α∂β]∂
2
nφ.

Lorentz transformation will be a symmetry of the system if both δαβSVS = 0 and ∂µJ µαβ = 0.

This yields the condition n[α∂β]∂
2
nΦ = 0. A possible non-trivial solution is,

φ(x) = φ‖(x‖) + φ⊥(x⊥) , (3)

where φ‖ and φ⊥ are arbitrary functions of their respective arguments x‖ and x⊥, defined
by x‖ ≡ x·n

n2 n and n · x⊥ = 0. So, x = x‖ + x⊥. Hence, the requirement of a Lorentz invariant
action imposes a non-trivial restriction on the functional form of fields. Now, if we choose n to be
timelike, we can align x0 along n. Then our condition (3) implies that when the full scalar field
is a linear combination of a time-dependent, spatially homogeneous piece and a static spatially
inhomogeneous piece, the theory possesses Lorentz symmetry.

2.2. Evaluation of dispersion relation
The scalar field φ(x) assumed to be given by (3) leads to the equation of motion (� +m2)φ =
iκ
MPl

∂3nφ to be written as (∇2
⊥ + m2)φ⊥ = −(∇2

‖ + m2)φ‖ + iκ
MPl

∂3nφ‖, for n a unit vector

(we have used the decomposition �φ = ∇2
‖φ‖ + ∇2

⊥φ⊥). By taking the simple ansätz

φ⊥ ∼ exp(−k⊥ ·x⊥) , φ‖ ∼ exp(−i k‖ ·x‖) and going over to the inertial frame characterised by

n = (1,~0), it can be shown that the dispersion relation of the complete scalar field φ(x) in the

high energy regime E ' |~k| � m takes the simple form,

E2 ' |~k|2 +
κ

MPl
|~k|3, (4)

provided the four momentum k = (E ,~k). This is same as the dispersion relation (2) computed
in [6]. Hence, observation of a deformed dispersion relation doesn’t necessarily guarantee the
existence of Lorentz violating dynamics.
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3. Canonical structure of Lorentz preserving Lagrangian
For the rest of this report, we will study the canonical structure of Myers Pspelov theory in the
presence of Lorentz preserving fields.

3.1. Canonical formalism in higher derivative field theories
Let us consider a system of scalar fields φa(x) described by the Lagrangian density
L(φa, φa,ρ1 , φa,ρ1ρ2 , ..., φa,ρ1...ρl). Here, φa,ρ1...ρj ≡ ∂ρ1 ...∂ρjφa and a labels the different fields.
A canonical formalism of relativistic field theories requires us to ‘foliate’ spacetime into constant
time, spacelike hypersurfaces. This in turn involves the separation of temporal and spatial
derivatives of the fields1. It is most often possible to arrange terms in the Lagrangian such that
“mixed” derivatives of the fields, as in ∂2t ∂kφ, do not survive. This is true not only when the
Lagrangian is Lorentz invariant [17] but also when the Lorentz violating action (1) is written in
terms of the Lorentz preserving fields [18]. In such situations, the canonical momenta are given
by

πa(j) ≡
l∑

i=j+1

(−dt)i−(j+1) ∂L
∂φa(i)

, j = 0, ..., l − 1 . (5)

We have adopted the notation φa(j) ≡ d
j
tφa, j = 0, ..., l and πa(j) are the momenta conjugate

to φa(j) upto j = l − 1. It is evident that we are now working in an enlarged phase space. The

canonical variables satisfy the Poisson bracket {φa(i)(t, ~x), πb(j)(t, ~x′)} = δba δ
j
i δ

(3)(~x − ~x′). We
also wish to stress that higher derivative theories owe their peculiarities only to higher order
time derivatives of the fields, spatial derivatives being rather benign.

3.2. Algebra of Lorentz preserving fields
Without loss of generality, we are going to work in a Lorentz frame defined by n = (1,~0). This
greatly simplifies the Lagrangian density:

LMPφ = φ̇∗‖φ̇‖ − ~∇φ∗⊥ · ~∇φ⊥ +
iκ

MPl
(φ∗‖ + φ∗⊥)

...
φ‖ . (6)

Here, we have neglected the masses of the fields as we are interested in behaviour of the system
at energies much higher than the field masses. Eq.(6) has only higher order time derivatives

of φ‖(t) while ~∇φ‖ = 0 = ∂tφ⊥. Thus all mixed derivatives in the sense described above will
vanish. This permits us to safely use eq.(5) to determine the canonical momenta. We list them
in table 1.

The Nöther charge Qαβ =
∫
dσ σρ1J

ρ1
αβ, Σ being a three dimensional hypersurface. If we

orient it orthogonal to the time axis then the Nöther charge may be written in terms of the
canonical variables:

Qαβ =

∫
d3~x

(
π
(0)
‖ δαβφ‖(0) + π

(1)
‖ δαβφ‖(1) + π

(2)
‖ δαβφ‖(2) + π‖∗δαβφ

∗
‖ − x[αδ

0
β]LMPφ

)
. (7)

From here we can deduce the action of the Nöther charge on the Lorentz preserving fields
and the algebra satisfied by them [18]. The results appear below in eqs. (8), (9), (10)

1 At this stage, it is imperative that we sort the indices. Latin letters from the middle of the alphabet set viz.
i,j,k,l are being used as summation indices while those from the end like r,s,...,z will denote spatial components.
Different fields will be labelled by the alphabets a,b,c,d. Greek letters are reserved for spacetime indices.
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Generalised Generalised
coordinate momentum

φ‖(0) ≡ φ‖ π‖(0) = φ̇∗‖ + iκ
MPl

φ̈∗‖
φ‖(1) ≡ φ̇‖ π‖(1) = − iκ

MPl
φ̇∗‖

φ‖(2) ≡ φ̈‖ π‖(2) = iκ
MPl

(φ∗‖ + φ∗⊥)

φ∗‖(0) ≡ φ
∗
‖ π‖∗(0) = φ̇‖

φ⊥(0) ≡ φ⊥ π⊥(0) = 0

φ∗⊥(0) ≡ φ
∗
⊥ π⊥∗(0) = 0

Table 1. Canonically conjugate phase space variables

{Qαβ(t), φb(k)(t, ~x)} = −δαβφb(k)(t, ~x), for φb = φ‖, φ
∗
‖ , (8)

= 0, for φb = φ⊥, φ
∗
⊥ , (9)

{Qαβ(t), Qρσ(t)} = ηασQβρ(t)− ηαρQβσ(t) + ηβρQασ(t)− ηβσQαρ(t) . (10)

This completes the demonstration that our Lorentz preserving fields do indeed provide a
representation of the Lorentz Lie algebra.

4. Discussion
The special field configurations that we have obtained have aspects of intrinsic interest in
cosmological scenarios. They may provide natural seeds for the growth of inhomogeneities
in the early Universe [11]. An additional advantage is that these fields allow the use of standard
Lorentz invariant formalism even in situations where Lorentz symmetry is violated.

References
[1] Carroll S M, Field G B and Jackiw R 1990 Phys.Rev. D41 1231
[2] Latorre J I, Pascual P and Tarrach R 1995 Nuclear Physics B 437 60 – 82 URL http://www.sciencedirect.

com/science/article/pii/0550321394004906

[3] Colladay D and Kostelecky V A 1998 Phys.Rev. D58 116002 (Preprint hep-ph/9809521)
[4] Coleman S R and Glashow S L 1999 Phys.Rev. D59 116008 (Preprint hep-ph/9812418)
[5] Colladay D and Kostelecky V A 2001 Phys. Lett. B511 209–217 (Preprint hep-ph/0104300)
[6] Myers R C and Pospelov M 2003 Phys.Rev.Lett. 90 211601 (Preprint hep-ph/0301124)
[7] Jacobson T, Liberati S and Mattingly D 2006 Annals Phys. 321 150–196 (Preprint astro-ph/0505267)
[8] Mattingly D 2005 Living Rev.Rel. 8 5 (Preprint gr-qc/0502097)
[9] Maccione L, Taylor A M, Mattingly D M and Liberati S 2009 JCAP 0904 022 (Preprint 0902.1756)

[10] Zwanziger D 1971 Phys.Rev. D3 880
[11] Ganguly O, Gangopadhyay D and Majumdar P 2011 Europhys.Lett. 96 61001 (Preprint 1011.1206)
[12] Podolsky B and Schwed P 1948 Rev. Mod. Phys. 20 40–50
[13] Ostrogradskii M V 1961 Complete Collected Works vol 2 (SSR, Kiev: Akad. Nauk Ukrain) in Russian
[14] Barcelos-Neto J and Braga N R 1989 Acta Phys.Polon. B20 205
[15] Simon J Z 1990 Phys.Rev. D41 3720
[16] Morozov A 2008 Theor.Math.Phys. 157 1542–1549 (Preprint 0712.0946)
[17] de Urries F and Julve J 1998 J.Phys.A A31 6949–6964 (Preprint hep-th/9802115)
[18] Ganguly O manuscript in preparation

International Conference on Modern Perspectives of Cosmology and Gravitation (COSGRAV12) IOP Publishing
Journal of Physics: Conference Series 405 (2012) 012015 doi:10.1088/1742-6596/405/1/012015

4

http://www.sciencedirect.com/science/article/pii/0550321394004906
http://www.sciencedirect.com/science/article/pii/0550321394004906
hep-ph/9809521
hep-ph/9812418
hep-ph/0104300
hep-ph/0301124
astro-ph/0505267
gr-qc/0502097
0902.1756
1011.1206
0712.0946
hep-th/9802115



