
Multi-Threaded Graph Processing Framework For Dune
Clifton Terwilliger, University of Alaska Anchorage – SIST Intern

Project Introduction
The dune project will require a lot of data collection, and data processing. Thus,

logically will require a lot of multi-threaded code. However, good multi-threaded code is
very hard to write, and tends to be a very time-consuming process. This can lead to
poorly written multi-threaded code, which can be very hard to debug and make thread
safe. My project for my internship this summer was to help explore and create a
framework that should help solve these problems. The framework was created in C++
using an existing library adapted to our use case and is based on graph processing.

The main goal was to make a framework that is easy to use. However, the framework
should also be lightweight, as to save resources and time. Additionally, the framework
should be able to take full advantage of allocated resources. Overall, this framework
could potentially reduce code development time, decrease required computing
resources, and most importantly hopefully reduce errors due to poorly written code.

Example graph of
Final Framework

Example Graph

Example graph

Thanks to my supervisor Kyle Knoepfel, for guiding me, and giving me aid through out
this project. Especially his help with modern C++ features. Additionally, I would like to
thank Arden Warner, and Jonathan Eisch, my mentors during this internship. Special
thanks to the SIST committee for making this project and internship possible.

Example of What The Framework Produces

Ideally, all that the user of the
framework would only have to input for a
name, and identifier for data(key) and
function for each node. Then list the
connections in the graph. The framework
should handle the rest.

Under the hood, the framework
automatically does many things. First, it's
automatically deducing what kind of node
the user is adding to the graph, then
deduces what data types and stores and
inputs data to the function based on the
associated keys. Then it constructs the
graph based on the edges given by the
user. Some additional nodes are added
to properly control data flow.

Acknowledgements

This manuscript has been authored by Fermi Research Alliance, LLC
under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy,
Office of Science, Office of High Energy Physics.

Desired Framework AttributesDetails

Framework Emphasis

This project had an emphasis on using
modern C++ features to streamline the
process of using the framework. These
modern features allowed for automation
that was not previously possible. These
new features include dynamic type
deduction, and template guides and
many more. Furthermore, there was a
large emphasis on making the framework
hard to make thread unsafe.

Poster# [FERMILAB-POSTER-22-119-STUDENT]

	Slide Number 1

