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4.4.1 Introduction

With the discovery of the Higgs boson at the LHC, the world high-energy physics
community is investigating the feasibility of a Higgs Factory as a complement to the
LHC for studying the Higgs and pushing the high energy frontier. CERN physicists are
busy planning the LHC upgrade program, including HL-LHC and HE-LHC. They also
plan a more inspiring program called FCC, including FCC-ee and FCC-hh. Both the
HE-LHC and the FCC-hh are proton-proton (pp) colliders aiming to explore the high
energy frontier and expecting to find new physics [1, 2, 3]. Chinese accelerator
physicists also plan to design an ambitious machine called CEPC-SPPC (Circular
Electron Positron Collider-Super Proton Proton Collider). The CEPC-SPPC program
contains two stages. The first stage is an electron-positron collider with center-of-mass
energy 240 GeV to study the Higgs properties carefully. The second stage is a proton-
proton collider at center-of-mass energy of more than 70 TeV [4]. The SPPC design is
just starting, and first we developed a systematic method of how to make an appropriate
parameter choice for a circular pp collider by using an analytical expression of beam-
beam tune shift, starting from the required luminosity goal, beam energy, physical
constraints at the interaction point (IP) and some technical limitations [5, 6]. Then we
start the lattice design according to the parameter list and have the first version SPPC
lattice.

4.42 SPPC Parameter Choice

The energy design goal of the SPPC is about 70-100 TeV, using the same tunnel as
the CEPC, which is about 59 km in circumference [7, 8, 10]. A larger circumference for
the SPPC, like 100 km, is also being considered. It is planned to use superconducting
magnets of about 20 T [4]. We obtain a set of parameters for the 59.2 km SPPC. In this
set of parameters, the full crossing angle fc keeps the separation of 12 RMS beam sizes
for the parasitic crossings. The luminosity reduction factor due to the crossing angle is
larger than 0.9 and the ratio of f* and o, is about 15. We also give a set of parameters
for the larger circumference SPPC, considering both 80 km and 100 km. Table 1 is the
parameter list for the SPPC. We choose the dipole field as 20 T and get a center-of-
mass energy of 70 TeV. If we want to explore the higher energy, we should make the
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circumference larger. To explore a center-of-mass energy of 100 TeV while keeping the
dipole field at 20 T, the circumference should be 80 km at least. With this condition,
there is hardly any space to upgrade, so a 100 km SPPC is much better because the
dipole field is then only 15.52 T. If the dipole field is kept at 20 T in a 100 km SPPC,
we can get a center-of-mass energy as high as 130 TeV [9, 11].

Table 1: SPPC Parameter List.

SPPC(Pr SPPC- SPPC- SPPC- SPPC-
e-CDR 59.2Km 100Km 100Km 80Km
Main parameters and geometrical aspects
Beam energy[£,)/TeV 35.6 35.0 50.0 65.0 50.0
Circumference[ Cy]/km 54.7 59.2 100.0 100.0 80.0
Dipole field[B}/T 20 19.70 15.52 19.83 19.74
Dipole curvature radius[p]/m 5928 5921.5 109244 109244  8441.6
Bunch filling factor(f;] 0.8 0.8 0.8 0.8 0.8
Arc filling factor(f;] 0.79 0.78 0.78 0.78 0.78
Total dipole length [Lppere)/m 37246 37206 68640 68640 53040
Arc length[Lgc)/m 47146 47700 88000 88000 68000
Straight section length[Lss]/m 7554 11500 12000 12000 12000
Physics performance and beam parameters

Peak luminosity per IP[L]/ cm s ' 1.1x10° | 1.20x10”°  1.52x10%"  1.02x10°° 1.52x10%
Beta function at collision[*]/m 0.75 0.85 0.99 0.22 1.06
Max beam-beam tune shift [ ¢ y]/IP 0.006 0.0065 0.0068 0.0079 0.0073
Number of IPs contribut to A Q 2 2 2 2 2
Max total beam-beam tune shift 0.012 0.0130 0.0136 0.0158 0.0146
Circulating beam current[I,]J/A 1.0 1.024 1.024 1.024 1.024
Bunch separation[ A t]/ns 25 25 25 25 25
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Number of bunches[n,] 5835 6315 10667 10667 8533
Bunch population[N,] (10" 2.0 2.0 2.0 2.0 2.0

Normalized RMS transverse

emittance[&]/um 4.10 3.72 3.62 3.10 3.35
RMS IP spot size[c*]/um 9.0 8.85 7.86 3.04 7.86

Beta at the 1st parasitic

encounter[f;]/m 19.5 18.70 16.36 68.13 15.31
RMS spot size at the 1st parasitic

encounter[c;]/um 45.9 43.20 33.31 55.20 31.03
RMS bunch length[c,]/mm 75.5 56.60 65.68 14.88 70.89
Full crossing angle[0c]/urad 146 138.23 106.60 176.66 99.28
Reduction factor according to cross

angle[Fca] 0.8514 0.9257 0.9247 0.9283 0.9241
Reduction factor according to hour

glass effect[F}] 0.9975 0.9989 0.9989 0.9989 0.9989
Energy loss per turn[U,]}/MeV 2.10 1.97 4.45 12.71 5.76
Critical photon energy[Ec]/keV 2.73 2.60 411 9.02 5.32
SR power per ring[Py]/MW 2.1 2.01 4.56 13.01 5.89
Transverse damping time [1,]/h 1.71 1.946 2.08 0.946 1.28
Longitudinal damping time [t.]/h 0.85 0.973 1.04 0473 0.64

4.4.3 SPPC Lattice Consideration

4.43.1 ARC length consideration and limitation

According to the SPPC physicists, we want to find some new physics on this big
ambitious machine. The center-of-mass energy should be 70 TeV at least and between
70 TeV and 100 TeV will be much better. We will use high field dipole in ARC and its
strength will be 20T. Now we estimate the circumference length. If we choose the
lowest CMS energy 70 TeV, then we have the smallest Bp (116635.29Tm). We use the
highest strength of dipole 20T, then we have the smallest dipole radius p(5831.76m) and
the smallest total dipole length (36.6 km). If the arc filling factor in ARC is 0.8, an
usual choice and much reasonable number, then we can get the total ARC length (Larc
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=47.8 km). There are 8 long straight sections and 2 of them are about 3 km long at IP1
and IP3 for ee integration region. And now the other 6 long straight sections are about
1km in the same length. So the circumference will be about 59.5 km.

4.4.3.2  Layout consideration

According to the Pre-CDR and CEPC partial double ring layout [10, 11], in the
future, SPPC is in the same tunnel with CEPC and may be running at the same time. So
the layout of SPPC should consider the CEPC layout. Fig. 1 shows the layout of SPPC
according the layout of CEPC partial double ring scheme.

SPPC Layout (Su Feng Jan. 10, 2016)

c® I ~%

LSS8_extr ! Lss2_inj
§ T AR SR LSS3_pp | f

C = 58.983 km

LSS1/5_coll : 3.2Km

LSS2/4/6/8: 788.31m |
LSS3/7_pp: 973.83m % &

ARC: 5963.2m

Figure 1: SPPC Lattice Layout.

4.4.4 SPPC Lattice Design

444.1 ARC and FODO cell

In this part, we introduced the preliminary lattice design of SPPC. There are § arcs
and 8 long straight sections. We use FODO in the ARC, and Fig. 2 shows the
parameters of FODO cell in ARC. Each cell has 8 dipoles whose length is 14.8 m and
strength is 20 T. The total cell length is 144.4 m, maximum beta function is 244.8 m,
minimum beta function is 42.6 m and phase advance is 90 degree in both horizontal and
vertical. The quadrupole gradient and dipole parameter is reasonable according to the
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Pre-CDR choice. And the aperture of quadrupole is also reasonable for both injection
and collision energy. Fig. 3 and Fig. 4 is the optics of FODO cell and ARC.
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Figure 2: SPPC FODO cell parameter choice.
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Figure 4: SPPC ARC optics.

4.4.4.2  Dispersion Suppressor Section

For 90 degree phase advance FODO cell, the dispersion suppressor section has
three schemes, called full-bend scheme, half-bend scheme and missing-dipole scheme.
Fig. 5 shows these three schemes for SPPC. And in our design we choose the missing-
dipole scheme as the space can be used for collimation in the future.

(1) Half Bend (2) LHC Like (3) Full Bend
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Figure S: Dispersion suppressor section for SPPC.

4.44.3  Long Straight Section and Interaction Region

There are 8 long straight sections in SPPC lattice which are named as LSS1 coll,
LSS2 inj, LSS3 pp, LSS4 RF, LSS5 coll, LSS6 RF, LSS7 pp and LSS8 extr. Long
straight section 3 and 7 are for low S pp collision, long straight section 1 and 5 are for
collimation using the long space as 3.2 km, long straight section 4 and 6 are for RF
system and long straight section 2 and 8 are for injection and extraction. Fig. 6 7 8 9
show the optics of these long straight sections. Fig. 10 shows the quadrupole strength of
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LSS3 pp and LSS7 pp, and the gradient and aperture are reasonable according to the
Pre-CDR parameter choice for quadrupoles.
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Figure 7: Long straight section for collimation.
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Figure 9: Long straight section for injection and extraction.
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Figure 10: Quadrupole gradient and aperture in LSS3 pp and LSS7 pp.

4.4.5 Dynamic Aperture Study and Beam Dynamics

Dynamic aperture study is a very important and interesting issue in pp colliders.
The Dynamic aperture is divided into 2 kinds. One is called Real-World-Dynamic-
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Aperture (RW-DA) which is defined as the largest amplitude at which particles remain
in the accelerator over a time range of interest. The other one is called Potential-
Dynamic-Aperture (PO-DA) which is defined as the onset of global chaos, also means
the largest amplitude with mainly regular motion. Insignificant chaotic layers within the
regular regime will be ignored. However considerable wide “chaotic spikes” have to be
taken into account. It turns out that the PO-DA is typically too small as RW-DA
estimate. The chaotic motion is measured by the evolution of initially close-by particles.
And the Lyapunov exponent is a sensitive signal for DA tracking.

Rapid amplitude
. growth and loss

— Stable Islands in

DA chaotic sea

_ Fine chactic layers in
stable regime

a\

~ Mostly stable particle
~—— motion

Figure 11: Dynamic Aperture Scheme

4.45.1 Dynamic Aperture without Interaction Region

At first, we studied the dynamic aperture of SPPC main ring without interaction
region. There are 8 arcs in the main ring and 8 long straight sections. Now we use
simple FODO in the long straight section, latter we should optimize the long straight
section design for difference use like RF system, injection, extraction and collimation.

Following is the dynamic aperture from Sixtrack. Figure 12 is a 4-Dimension
phase space for the regular and the chaotic motion. The solid tie shape shows the
regular particles motion which has the largest amplitude, if the amplitude becomes a
little larger, the motion will become chaotic, and the diffusion points around the solid
tie show the chaotic motion. This largest amplitude is the dynamic aperture we want to
study. Figure 13 shows the evolution of the distance of phase space for regular (left)
and chaotic (right) motion. Figure 14 and Figure 15 show the horizontal and vertical
phase space projections for the regular (left) and the chaotic (right) cases. Figure 16
show the physical phase space projections for the regular (left) and the chaotic (right)
cases. Figure 17 and Figure 18 show the horizontal and vertical tune FFT-analysis for
the regular (left) and the chaotic (right) cases. We can get from the figures that the
dynamic aperture is about 22.58 mm (346 o) in horizontal and 49.16 mm (315 o) in
vertical.
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Figure 12: 4-Dimension phase space for regular and chaotic motion (cm).

(The solid tie shape shows the regular particles motion which has the largest amplitude,
if the amplitude becomes a little larger, the motion will become chaotic, the diffusion
points around the solid tie show the chaotic motion. This largest amplitude is the
dynamic aperture we want to study.)
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Figure 13: Evolution of the distance of phase space for regular (left) and chaotic (right)
motion.
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Figure 15: Vertical phase space projections for regular (left) and chaotic (right) cases.
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Figure 16: Physical phase space projections for regular (left) and chaotic (right) cases.
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4.45.2  Dynamic Aperture with Interaction Region

Following is the dynamic aperture with low beta pp interaction region. The beta
function at IP is 0.75m. The maximum beta function in this region is about 9.6 km. The
dynamic aperture becomes smaller, 8.22 mm (126 ox) in horizontal and 19.73 mm (126
oy) in vertical (we keep the same observation point for comparison with the DA without
low beta pp IR). At the low beta pp IP, the dynamic aperture is only 1.089mm (126 o)
in both horizontal and vertical because the beam size is very small (8.647um).

Figure 19: 4-Dimension phase space for regular and chaotic motion (cm).
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Figure 20: Horizontal phase space projections for regular (left) and chaotic (right) cases.
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Figure 21: Vertical phase space projections for regular (left) and chaotic (right) cases.
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Figure 22: Physical phase space projections for regular (left) and chaotic (right) cases.

4.4.6 Summary

In this paper, we showed a set of parameters for SPPC with different
circumferences like 59km, 80 km or 100 km and different energies like 70TeV or
100TeV. We also showed the first version of SPPC lattice including ARC, dispersion
suppressor section and long straight sections. We also showed the first dynamic
aperture and beam dynamic studies of SPPC main ring with and without low beta pp
interaction region although it needs lots of work to do and to be optimized.
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