

Metal Catalyzed H-D Exchange Methods Using D₂O as a Deuterium Source: A Comparative Study in Different Sealed Devices

Kazuhiro AKUTSU-SUYAMA^{1*}, Kwhwan PARK², Ryoya TAKAKURA², Kazuhisa TAMURA³, Marina. CAGNES⁴, Tamim A. DARWISH⁴, Tsuyoshi YAMADA², Yoshinari SAWAMA², and Hironao SAJIKI²

¹Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), Tokai, Ibaraki 319-1106, Japan

²Laboratory of Organic Chemistry, Gifu Pharmaceutical University, Daigaku-nishi, Gifu 501-1196, Japan

³Quantum Beam Science Center, Japan Atomic Energy Agency (JAEA), Sayo-cho, Hyogo 679-5148, Japan

⁴National Deuteration Facility (NDF), Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee DC, NSW 2232 Australia

*E-mail: k_akutsu@cross.or.jp

(Received December 3, 2019)

In order to advance neutron research, we have investigated some easy-to-implement deuteration systems through H-D exchange reactions. Sub-gram to gram scale H-D exchange reactions of 1-butyl-3-methylimidazolium chloride ([C₄mim][Cl]) and acrylate polymer raw materials, such as methyl methacrylate and butyl acrylate, were investigated. The deuteration of C₄mim cation was successfully carried out in Parr Reactor system and a stainless steel sealed reactor, while that of the acryl moieties of acrylate polymer raw materials was effectively demonstrated in a D₂O/2-PrOH solvent system (the alkyl moieties remained unaffected).

KEYWORDS: Deuterium labeling, Ionic liquid, Taiatsu-stainless steel reactor

1. Introduction

Deuterium (²H) is a stable isotope of hydrogen (¹H) and exists only in trace amounts (0.015%) in nature. Deuterium labeled compounds have been widely used as tracers for ¹H Nuclear Magnetic Resonance (NMR) spectroscopy, reaction mechanisms, and neutron studies, due to the different physicochemical properties in comparison with ¹H such as atomic mass and nuclear spin [1, 2]. Since the FDA recently approved deutetrabenazine (Austedo[®]) as a deuterated (heavy) prescription medicine, the interest of deuterium-labeled compounds in the development of new drugs by pharmaceutical companies has been growing [3].

Deuterated materials have been used in neutron studies to control the neutron scattering contrast of organic molecules and/or reduce the neutron incoherent scattering background of hydrogen. Deuteration methods using Parr Reactor systems, which are generally used in the synthesis of deuterated materials for use in neutron studies, have been established, and various kinds of deuterated compounds were synthesized in the

