
P
o
S
(
L
H
C
P
2
0
2
3
)
2
8
6

Accelerating Full and Fast Simulation of the CMS
Experiment

Natascha Krammer𝑎,∗ on behalf of the CMS collaboration
𝑎Institute of High Energy Physics, Austrian Academy of Science,
Vienna, Austria

E-mail: natascha.krammer@oeaw.ac.at

Monte Carlo Simulation data for the CMS experiment can be produced using two software tools.
The first, the Full Simulation, is a more precise tool based on Geant4 detector simulation. The
second, the Fast Simulation, provides a faster but still reliable tool and is based on parametric
particle-material interactions. Full Simulation for the LHC Run-3 shows significant computing
performance improvements compared to LHC Run-2 using the current Geant4 version (10.7.2),
the new software package DD4hep for geometry description and the Vectorized Geometry run
time library. A further optimization is achieved by the change of the computing platform operating
system from CentOS 7 to Alma Linux 8. The challenging CMS detector upgrade plan for HL
(High Luminosity)-LHC requires extra efforts due to the increased luminosity and the new and
complex detectors geometry. Full Simulation plans to meet the requirements for HL-LHC with the
new Geant4 version (11.1) as well as physics improvements including machine learning techniques
to reduce compute capacity needs. Major progresses of Fast Simulation are reached by a more
efficient treatment of the generator particles as they propagate through the detectors. Recent
developments include the implementation of an increasing more accurate shower generation,
improved track finding and tuning of physics processes. This contribution reports the current Full
and Fast Simulation performance innovations and further plans to fulfill the significant higher
Monte Carlo Simulation demands in LHC Run-3 and for HL-LHC.

The Eleventh Annual Conference on Large Hadron Collider Physics (LHCP2023)
22-26 May 2023
Belgrade, Serbia

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:natascha.krammer@oeaw.ac.at
https://pos.sissa.it/


P
o
S
(
L
H
C
P
2
0
2
3
)
2
8
6

Accelerating Full and Fast Simulation of the CMS Experiment Natascha Krammer

1. Introduction

Future LHC runs will reach new frontiers in energy and luminosity, which implicate increasing
experimental data rate and high pileup interactions. For the next step the HL-LHC it is crucial
to accelerate the simulation step. Due to the major upgrade of the CMS experiment [1], the
high-granularity calorimeter (HGCAL), Full Simulation expects to be 3 times slower because of
more complex geometry and more precise physics. Also the migration to CMS HL-LHC DD4hep
geometry needs a speed up of the simulation time.

2. Accelerating Full and Fast Simulation

For Full and Fast Simulation a wide range of improvement options were analysed and in-
troduced. New features in Full Simulation were implemented in Run-3 and Phase-2 [2] [3]: (i)
the migration to DD4hep geometry description, (ii) the use of the LTO (Like Time Optimization)
build method, (iii) the use of faster computations and less instructions: Geant4 Gamma General
Process and VDT (VectorisD maTh) for fast and auto-vectorisable mathematical functions, (iv) the
Geant4 Transportation with MSC (multiple scattering), (v) custom tracking managers to simplify
the e-gamma transport in Geant4, (vi) G4HepEm external library, which focuses on the EM shower
generation for GPU usage. In addition the operating systems was upgraded from CentOS 7 (SLC7)
to Alma Linux 8 (EL8). The Geant4 version was migrated from 10.4 to 10.7 (CMSSW 11_3_X) and
to 11.1.1 (CMSSW 13_1_X). Fast Simulation software and framework optimization achieves a more
efficient handling of the generator particles through the detectors. In addition, there is an ongoing
effort of R&D of GPU usage for simulation such as Accelerated demonstrator of electromagnetic
Particle Transport (AdePT) [4] und the Celeritas [5] project targeting the computationally intensive
HL-LHC runs. The success of the improvements are shown in the evolution for the past 4 years in
Figure 1 for the average CPU time per event for the standard model processes 𝑡𝑡 and the beyond
standard model process BSM T1tttt (pp → gluino + gluino, gluino → 𝑡𝑡 + lightest neutralino) for
single threaded jobs [6].

Figure 1: Full and Fast Simulation CPU time evolution for the past 4 years. Fast Simulation compared to
Full Simulation is for BSM T1tttt 136 times and for 𝑡𝑡 110 times faster using the latest CMSSW version.

2



P
o
S
(
L
H
C
P
2
0
2
3
)
2
8
6

Accelerating Full and Fast Simulation of the CMS Experiment Natascha Krammer

3. Refining Fast Simulation using Machine Learning (ML) techniques

Fast Simulation (FastSim) compared to Full Simulation (FullSim) has a major advantage in
speed with the price of decreased accuracy in some of the final observables. The refining method
using ML techniques [7] was developed to increase the accuracy and promote FastSims wider
usage. The refining method is to use the analysis observables simulated by the FastSim chains and
compare them to the corresponding FullSim output. A fully-connected feed-forward neural network
is trained to establish a refined version of the FastSim data sample, which is more accurate to the
FullSim sample. The current refining FastSim method focus on jet flavor tagging for four DeepJet
discriminators (B(b+bb+lepb), CvB(c/(c+b+bb+lepb)), CvL(c/(c+uds+g)), QG(g/(g+uds))) in the
CMS NanoAOD data analysis format. The DeepJet algorithm [8] is a multi-class neural network
trained to distinguish jets originating from b, c, light quarks and gluons. The network has six output
nodes (b, bb, lepb, c, uds, g) activated with a softmax function.

As training sample the beyond standard model process BSM T1tttt is simulated with FastSim
and FullSim. The jets, which match the 𝛿𝑅 angular criterion result in the jet triplets (Generation,
FastSim, FullSim). The application of the ResNet-like (Deep Residual Learning) architecture [9]
results in a good approximation of FastSim to FullSim output and needs only to apply a residual
correction. The pre-processing transforms the input variables/parameters and the post-processing
transforms back and enforce DeepJet constraint that the refined DeepJet discriminators (B, CvB,
CvL, QG) have to be constructed such that the sum of the original DeepJet output nodes (b, bb,
lepb, c, uds, g) is equal to unity. The network is implemented using the PyTorch package [10]. Loss
terms have to be considered, the primary loss MMD (distributed-based) compares ensembles of jets
not jet-jet pairs to cope with independent stochastic in both simulations chains and an additional
loss term MSE/Huber (output-target pair-based) for the correction for deterministic FastSim biases.
The two loss terms are combined via MDMM algorithm. ResNet-like regression NN can be used
as post-hoc refinement layer to FastSim output, which results in a considerably improved agreement
with FullSim output, illustrated in Figure 2.

Figure 2: The distribution of the DeepJet discriminator B(b+bb+lepb) for FullSim, FastSim and the refined
version of FastSim.

3



P
o
S
(
L
H
C
P
2
0
2
3
)
2
8
6

Accelerating Full and Fast Simulation of the CMS Experiment Natascha Krammer

4. FlashSim - a ML simulation framework

A new simulation framework, named 𝐹𝑙𝑎𝑠ℎ𝑆𝑖𝑚 [11] uses the advantage of ML for a faster
and accurate simulation. It is based on new Normalizing Flows (NF) [12] using generic ML
generative techniques, which directly produce CMS NanoAOD format samples from generator
level information. The advantage of the NanoAOD format for analysis is to reduce the number
of variables to simulate from several thousands down to few hundreds. The difference to typical
AI/ML sample generation e.g. image generation, is that we need to condition the generation on
some previous information. Not a generic CMS event should be simulated, but the CMS event
corresponding to some given generator level input. For the simulation the natural factorization is
to go one by one on the various objects and to use generator level representation of those objects
as conditioning information. The simulation of each object is a so-called functional unit, which
is a transformation implemented by the Normalizing Flows algorithm. As input only the relevant
physical information for the simulation of its target is taken into account and the various units are
independent at first order. It may still be necessary to include additional correlation runs in a chain
to also access not only generator level information but also reconstruction information of previous
units. The advantage of this general, flexible simulator is to be not tailored to a specific analysis.

In a real-world scenario analysis test the feasibility of the model is performed with generated
datasets of 𝑡𝑡, Drell-Yan, EWK LLJJ and signal (𝐻 → 𝜇+𝜇−) processes. Higgs to di-muon VBF
(vector boson fusion) analysis [13] uses events with muons and jets simulated by FlashSim to verify
the usability of the approach at the analysis level. The flash-simulated quantities are calculated using
Deep Neural Network (DNN) to separate signal from background and are compared with FullSim
results. Multiple derived input variables are used by DNN, including some that are correlating
the di-jets part of the VBF event with the di-muon part of the Higgs decay. The consistency of
FlashSim and FullSim results are shown in Figure 3.

Figure 3: Flash and Full Simulation comparison of analysis DNN output using muons and jets information
of 𝑡𝑡 and EWK LLJJ samples (same process used in training, different events) and signal events (not seen
during training).

4



P
o
S
(
L
H
C
P
2
0
2
3
)
2
8
6

Accelerating Full and Fast Simulation of the CMS Experiment Natascha Krammer

References

[1] CMS collaboration, The CMS experiment at the CERN LHC, JINST 3 S08004 (2008)

[2] V. Ivanchenko, S. Banerjee, G. Hugo, S. L. Meo, I. Osborne, K. Pedro, D. Piparo, D. Sorokin,
N. Srimanobhas, C. Vuosalo, CMS Full Simulation for Run 3, EPJ Web Conf. 251 03016
(2021)

[3] N. Srimanobhas, S. Banerjee, J. Hahnfeld, V. Ivantchenko, N. Krammer, S. Muzaffar„ K.
Pedro, D. Piparo, Full Simulation of CMS for Run-3 and Phase-2, CERN-CMS-CR-2023/152
(2023)

[4] G. Amadio, J. Apostolakis, P. Buncic et al., Offloading electromagnetic shower transport to
GPUs, J. Phys.: Conf. Ser. 2438 012055 (2023)

[5] S. C. Tognini, P. Canal, T. M. Evans et al., Celeritas: GPU-accelerated particle transport for
detector simulation in High Energy Physics experiments, FERMILAB-FN-1159-SCD, arXiv
2203.09467 (2022)

[6] CMS collaboration, CPU performance evolution of Full and Fast simulations from Run-2 to
Run-3/CMSSW_13_2_0, CERN-CMS-DP-2023-063 (2023)

[7] S. Bein, P. Connor, K. Pedro, P. Schleper, M. Wolf, Refining fast simulation using machine
learning, CERN-CMS-CR-2023/128 (2023)

[8] E. Bols, J. Kieseler, M. Verzetti, M. Stoye, A. Stakia, Jet flavour classification using DeepJet,
JINST 15 P12012, arXiv:2008.10519 (2020)

[9] K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) pp. 770-778 (2016)

[10] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N.
Gimelshein, L. Antiga et al., PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library, Part of Advances in Neural Information Processing Systems (NeurIPS) 32 pp.
8024–8035 (2019)

[11] F. Vaselli, FlashSim: accelerating HEP simulation with an end-to-end Machine Learning
framework, CERN-CMS-CR-2023/090 (2023)

[12] G. Papamakarios, E. Nalisnick, D.J. Rezende, S. Mohamed, B. Lakshminarayanan, Normal-
izing flows for probabilistic modeling and inference, Journal of Machine Learning Research
22(57) 1-64, arXiv:1912.02762 (2021)

[13] A. Sirunyan et al. (CMS), Evidence for Higgs boson decay to a pair of muons, JHEP 01 148,
arXiv:2009.04363 (2021)

5


	Introduction
	Accelerating Full and Fast Simulation
	Refining Fast Simulation using Machine Learning (ML) techniques
	FlashSim - a ML simulation framework

