
ROOT RNTuple and EOS: The Next Generation of Event
Data I/O

Jakob Blomer1,∗, Andreas Joachim Peters1,∗∗, Guilherme Amadio1, Philippe Canal2, Florine
de Geus1,3, Jonas Hahnfeld1,4, Matti Kortelainen2, Alaettin Serhan Mete5, Vincenzo Eduardo
Padulano1, Danilo Piparo1, Giacomo Parolini1, Andrea Sciabà1, and Markus Schulz1

1CERN, European Organization for Nuclear Research, Geneva, Switzerland
2Fermi National Accelerator Laboratory (FNAL), Batavia, IL, USA
3University of Twente, Enschede, The Netherlands
4Goethe University Frankfurt, Frankfurt am Main, Germany
5Argonne National Laboratory, Lemont, Illinois, USA

Abstract. For several years, the ROOT team is developing the new RNTuple
I/O subsystem in preparation of the next generation of collider experiments.
Both HL-LHC and DUNE are expected to start data taking by the end of this
decade. They pose unprecedented challenges to event data I/O in terms of data
rates, event sizes, and event complexity. At the same time, the I/O landscape is
becoming more diverse. HPC cluster file systems and object stores, NVMe disk
cache layers in analysis facilities, and S3 storage on cloud resources are mixing
with traditional XRootD-managed spinning disk pools.
The ROOT team will finalize a first production version of the RNTuple binary
format by the end of 2024. After this point, ROOT will provide backward com-
patibility for RNTuple data. This contribution provides an overview of the
RNTuple feature set, the related R&D activities and the long-term vision for
RNTuple. We report on performance, interface design, tooling, robustness, in-
tegration with experiment frameworks, and validation results, as well as recent
R&D on parallel reading and writing and exploitation of modern hardware and
storage systems. We will give an outlook on possible future features after a first
production release.
Collaboratively, the IT and EP departments at CERN have launched a formal
project within the Research and Computing sector to evaluate the novel data for-
mat for physics analysis data utilized in LHC experiments and other fields. This
part of the project focuses on validating the scalability of the EOS storage back-
end during the transition from the over 25 years old TTree production format to
the newly developed RNTuple format, using both replicated and erasure-coded
storage profiles.

1 Introduction

In High Energy and Nuclear Physics (HENP), the vast majority of event data after recon-
struction is stored in ROOT files [1]. Once reconstructed, reduced and calibrated data sets are
∗e-mail: jblomer@cern.ch
∗∗e-mail: andreas.joachim.peters@cern.ch

EPJ Web of Conferences 337, 01324 (2025) https://doi.org/10.1051/epjconf/202533701324

CHEP 2024

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative
Commons Attribution License 4.0 (https://creativecommons.org/licenses/by/4.0/).

derived, persisted, and analyzed. Together, experiments at the Large Hadron Collider (LHC)
collected more than 2 EB from Run 1-3 data [2]. By the end of High-Luminosity LHC (HL-
LHC), we expect to have more than 10 EB of ROOT data under management, making storage
a major cost driver that consumes roughly half of the total High Energy Physics (HEP) com-
puting budget.

The ROOT RNTuple technology represents a major I/O upgrade towards HL-LHC [3].
Succeeding the ROOT TTree technology, RNTuple is a redesigned columnar I/O system for
HENP, built to handle the sharp increase in data rates. Compared to TTree I/O, RNTuple pro-
duces more compact files, typically 10% to 50% smaller, while also achieving significantly
higher read and write throughput, depending on the scenario. Additionally, it improves ro-
bustness through strict checksumming and a modernized, safer API.

RNTuple I/O fully exploits modern parallel storage architectures, such as NVMes and
object stores, and is designed with forward-looking constraints in mind, including terabyte-
sized events and petabyte-sized files.

The software frameworks of the ATLAS, ALICE, CMS, and LHCb experiments have
added initial support for RNTuple, including the ability to read and write their TTree data
products using RNTuple. At the same time, performance testing and validation of RNTuple
using large-scale shared EOS storage yielded encouraging results.

This contribution summarizes the major milestones reached so far. Section 2 outlines the
motivation behind RNTuple’s development and highlights its key characteristics. Section 3
provides an overview of single-node and small-scale performance studies. Section 4 presents
the results of the large-scale performance testing on shared EOS and CephFS storage.

2 RNTuple Overview

An I/O system for HENP event data has unique requirements and challenges related to data
layout, organization, software integration, and scalability.

The natural HENP data layout consists of jagged arrays of complex types optimized for
a columnar access pattern (see Figure 1). Although Big Data I/O systems such as Apache
Parquet [4] provide native support for such data layouts, their type support is too limited (see
Figure 2). Similarly, HDF5 [5] I/O, which is commonly used in high performance comput-
ing, is not a good fit due to its inherent tensor-based layout, meaning data are organized in
multidimensional cubes.

1 s t r u c t H i t {
2 f l o a t x , y , z ;
3 } ;
4
5 s t r u c t P a r t i c l e {
6 f l o a t E ;
7 s t d : : v e c t o r <Hit> h i t s ;
8 } ;
9

10 s t r u c t Event {
11 i n t eventNo ;
12 s t d : : v e c t o r <P a r t i c l e > p a r t i c l e s ;
13 } ;

Figure 1: Simplified representation of a typical HENP event data model. In practice, more
than 1,000 data classes and over 10,000 properties (columns) are common.

EPJ Web of Conferences 337, 01324 (2025) https://doi.org/10.1051/epjconf/202533701324

CHEP 2024

2

Figure 2: Data types used in LHC experiment data models (EDMs). Analysis Object Data
(AOD) is a reduced format with high-level physics objects for efficient analysis. Event Sum-
mary Data (ESD) contains detailed reconstruction information for calibration and algorithm
development. RECO includes all reconstructed objects and links to raw and simulated data
for intermediate processing. All listed types are supported in RNTuple, while other file for-
mats, such as HDF5 and Parquet, can only represent the first few types, which are highlighted
with an orange background.

Regarding data organization, HENP data are stored in global federations consisting of
sets of files. The I/O layer must enable efficient file access through remote access protocols
such as XRootD [6] and HTTP. The rich tooling ensures that files can be merged efficiently,
i. e. without recompression and with a complexity comparable to simple concatenation. At
runtime, data joining capabilities allow processing of data sets that span multiple files [7].

The HENP I/O libraries must be available for C++ and Python and integrate with exper-
iments’ multithreaded and multiprocess frameworks under tight memory constraints. Since
experiment data are maintained for decades, strict checksumming, as well as mechanisms for
evolving event data models (“schema evolution”) are required.

2.1 RNTuple in Practice

To maximize optimization opportunities, RNTuple introduces a new on-disk format and a
new API, breaking forward compatibility with TTree. At the same time, RNTuple integrates
seamlessly with the established ROOT/HENP ecosystem. Similar to TTree data, RNTuple
data is stored in ROOT files; however, unlike TTree, the ROOT file is just one of several
possible data containers for RNTuple. Its design allows for alternative storage solutions,
such as object stores, to be used as data containers, providing greater flexibility. RNTuple
is seamlessly introduced as a new object type within the ROOT file. Analyses written in
RDataFrame [8] require no code changes and can run equally on TTree and RNTuple data.
ROOT tooling, including the browser, TFileMerger and the hadd command line utility, or
TFile::MakeProject, applies consistently to RNTuple. Additionally, RNTuple adopts the
ROOT I/O schema evolution system [9].

EPJ Web of Conferences 337, 01324 (2025) https://doi.org/10.1051/epjconf/202533701324

CHEP 2024

3

For frameworks and power users, RNTuple provides a modern API for multi-threaded
reading and writing, available in both C++ and Python.

The C++ API follows the C++ core guidelines, incorporating features such as smart
pointers and signaling runtime errors through exceptions. It was also formally reviewed
by an independent panel of experts from the HEP-CCE programne.1. The Python API is
provided through PyROOT [10], with additional adjustments (“Pythonizations”) to better
integrate with the Python ecosystem.

The ATLAS, ALICE, CMS, and LHCb experiments have initial integrations of the
RNTuple API in their software frameworks.

For languages other than C++ and Python, or special use cases, the RNTuple specifi-
cation [11] enables 3rd party implementations of the binary format. For instance, initial
implementations are already available for the Julia language [12].

3 RNTuple Performance

Based on current and previous measurements, RNTuple consistently demonstrates significant
performance benefits in terms of data size, as well as read and write speed, compared to
TTree and other I/O formats. Previous studies have already demonstrated the advantages of
RNTuple technology over TTree, HDF5, and Apache Parquet [3, 13]. Moreover, RNTuple’s
implicit parallel I/O and the explicit “parallel writer” provide substantially higher multicore
scalability than TTree [14, 15]. RNTuple has been shown to fully leverage modern storage
systems, such as NVMe drives with direct I/O and object stores with native data-to-object
mappings [16, 17].

The remainder of this section focuses on the latest results in terms of compression and
throughput.

3.1 Data Size

Figure 3 compares the average event size of an ATLAS DAOD [18] open data sample, using
different compression algorithms. Note that zlib is omitted because in all our measurements
zstd [19] is both faster and produces smaller files. As a result, the default compression in
RNTuple changed to zstd from the TTree zlib default.

RNTuple stores the same content in approximately half the size. Section 4 shows a 39 %
size reduction for a zstd-compressed CMS nanoAOD [20] sample. Moreover, the relative
difference between the various compression algorithms is significantly smaller with RNTuple.
When moving existing data production workflows from TTree to RNTuple, it may therefore
be beneficial to reconsider the trade-off between throughput and compression ratio in the
selection of a compression algorithm, given the substantial differences in compression and
decompression throughput.

RNTuple achieves a high compression ratio by structuring data to maximize the effective-
ness of standard compression algorithms in identifying and utilizing compressible patterns.
One key strategy is the strict separation of offset and data buffers for collections, ensuring that
structural metadata and actual values are stored independently, which improves compression
efficiency.

Additionally, RNTuple employs type-specific encoding techniques, such as byte-splitting
for floating-point numbers and integers. Byte-splitting involves breaking multi-byte values
into separate byte streams. This technique enhances compression because the higher-order
bytes, which often contain more predictable patterns (such as leading zeros or sign bits),

1https://www.anl.gov/hep-cce

EPJ Web of Conferences 337, 01324 (2025) https://doi.org/10.1051/epjconf/202533701324

CHEP 2024

4

https://www.anl.gov/hep-cce

0

1

2

3

4

5

6

7

8

9

P
H

Y
S

LI
T

E
 e

ve
nt

 s
iz

e
[k

B
/e

ve
nt

]

TTree
RNTuple

ATLAS Preliminary Open Data ROOT 6.32.02, DOI:10.7483/OPENDATA.ATLAS.4ZES.DJHA

lz4 zstd-5 lzma-7

 x

0.35
0.4

0.45
0.5

0.55
0.6

R
N

T
up

le
 /

T
T

re
e

Figure 3: Comparison of the average event size of TTree and RNTuple for an ATLAS DAOD
open data sample using different compression algorithms. Credit: Martin Føll

can be compressed more efficiently. For floating-point numbers, byte-splitting can expose
common exponent values across multiple entries, further improving compression.

For signed integers, RNTuple uses zigzag encoding to enhance compressibility by map-
ping both positive and negative values to a closely packed unsigned space. In two’s com-
plement, negative numbers have a significantly different binary representation from positive
ones, reducing compression efficiency. Zigzag encoding interleaves positive and negative val-
ues, ensuring small-magnitude numbers remain compact with minimal bit changes, lowering
entropy and improving compression. Furthermore, RNTuple transparently merges identical
data buffers (“same-page merging”), which occur, for example, for independent vectors of
identical lengths.

3.2 Throughput and Scalability

Figure 4 illustrates the RNTuple read speed-up compared to TTree for various types of final
stage ntuples, using different data sources (memory, NVMe drive, HDD, and XRootD remote
access). The results confirm the significant performance benefits of RNTuple across a wide
range of input types and data access modes, which vary greatly in throughput and latency.

The primary contributors to RNTuple’s throughput benefits are asynchronous data
prefetching, multi-stream disk access via io_uring, and an on-disk data layout optimized
for both explicit and implicit parallelization.

These single-core RDataFrame benchmarks serve as the baseline for the development of
RNTuple. Section 4 presents results for multithreaded and distributed reading.

EPJ Web of Conferences 337, 01324 (2025) https://doi.org/10.1051/epjconf/202533701324

CHEP 2024

5

0

0.5

1

1.5

2

2.5

3

3.5
R

N
T

up
le

 S
pe

ed
up

 w
rt

. T
T

re
e

Single core end-to-end throughput with RDataFrame

Sample L Sample H Sample C Sample A

File System Buffers Solid State Disk Spinning Disk XRootD, 20Gbit, 0.3ms

Figure 4: Comparison of read throughput using zstd-compressed input files in TTree and
RNTuple format for various data sources. Samples ‘L’, ‘H’, ‘C’, ‘A’ are final-stage ntuples of
different shapes (fully flat or with nested vectors) coming from different HEP experiments.
The same RDataFrame code is used for both TTree and RNTuple inputs.

4 RNTuple and Remote Storage

In the following subsection, we describe the various computing environments that we used to
benchmark and optimize RNTuple analysis reading from remote storage. These are based on
two open source technologies, EOS [21] and Ceph [22].

CERN EOS Open Storage is a high-performance, scalable, and distributed storage system
developed at CERN to meet the data storage and access requirements of large-scale scientific
projects, particularly the experiments at the LHC. It is implemented using the XRootD frame-
work.

Ceph is an open source distributed storage platform designed to provide highly scalable,
reliable, and flexible storage for modern data-intensive applications. It is widely used in cloud
and high-performance computing environments. We use CephFS2 in our benchmarks.

4.1 Compute and Storage platform

We set up a bare metal computing environment, EO2C, with 70 compute nodes connected
via a 100GbE network for a large-scale validation study. The system was benchmarked using
three different storage back-ends. The specifications of the compute nodes are detailed in
Table 1.

A shared home directory is available to all compute nodes via a CephFS filesystem, en-
abling software installation and distributed task execution. The analysis remote access relied
on three storage back-ends using file-based erasure coding [23] or object replication:

• EOSPILOT instance with erasure coding RS(10,2)3 and 20 PB usable space

2CephFS is a POSIX-compliant, distributed file system built on top of the Ceph object storage platform.
3RS(10,2) employs Reed-Solomon erasure coding with 10 data and 2 parity disks. If not more than two disks are

lost from a group of 12, the data remains recoverable and accessible.

EPJ Web of Conferences 337, 01324 (2025) https://doi.org/10.1051/epjconf/202533701324

CHEP 2024

6

Component Specifications
Processor 2x AMD EPYC 7302 and 7313 16-Core Processor
Memory DDR4 3200 MT/s 16x16 GB - 256 GB
Network Adapter Intel® Ethernet Network Adapter E810 - 1x100GbE
Filesystems / EXT4 2 TB NVME

/cvmfs CVMFS filesystem
/shared CephFS home directory
/jcache CephFS cache directory

Table 1: Compute node system configuration details, including processor specifications,
memory, network adapter, and filesystem setup.

• EOSALICEO2 instance with erasure coding RS(10,2) and 150 PB usable space

• CephFS NVME filesystem with 2x object replication and 285 TB usable space

Details of the setup are shown in Figure 5.

Node 1-10 Node 11-20 Node 21-30 Node 31-40 Node 41-50 Node 51-60 Node 61-70

Shared CephFS home directory + batch system written in bash

EOSPILOT
14 nodes 100GE 1334x 18TB HDDs

 24 PB - 20 PB usable

FST FST FST FST FST FST FST

FST FST FST FST FST FST FST

EOSALICEO2

125 nodes 100GE 12000x
HDDs 180 PB - 150 PB usable

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

FS
T

OSD OSD OSD

OSD OSD OSD

CephFS
8 nodes 25GE

80 x 7.6 TB NVMe
 568 TB - 284 TB usable

CO
M
PU

TE
STO

RA
G
E

100GE NETWORK

40 GB/s 380 GB/s 22.5 GB/s
Max
read

Figure 5: RNTuple benchmarking setup illustrating the compute and storage infrastructure.

4.2 Analysis Grand Challenge Benchmark

The Analysis Grand Challenge (AGC) is a project developed by IRIS-HEP4 to address chal-
lenges in particle physics data analysis. The purpose of this project is to test, benchmark, and
improve the scalability, efficiency, and reproducibility of computational tools and workflows
required for data analysis in high-energy physics, particularly in preparation for HL-LHC.

Performance studies used the tt̄ analysis from the CMS experiment, using a standard anal-
ysis Grand Challenge example with RDataFrame. The code can be found on GitHub [24].
This analysis represents a worst-case scenario, since only a small fraction of the data is ac-
cessed, leading to highly sparse read patterns.

4Institute for Research and Innovation in High Energy Physics Software

EPJ Web of Conferences 337, 01324 (2025) https://doi.org/10.1051/epjconf/202533701324

CHEP 2024

7

In all measurements, the data set is ensured to be uncached in both the storage back-end
and the client-side cache, wherever applicable. This means that data is not preloaded or stored
temporarily in any cache layers, ensuring that the measurements reflect the true performance
of data access directly from the back-end storage system. This approach provides a more
accurate evaluation of the storage system’s capabilities under real-world conditions, where
data are usually not cached.

The AGC example can be run in four different modes:

Nodes Running Modes
single mt: multi-threaded
single dask-local: multi-process
multi dask-ssh: multi-node
multi dask-remote: multi-node

Table 2: AGC running modes with corresponding node configurations.

The multiprocess and multinode execution modes utilize Dask [25] in combination with
RDataFrame. The dask-local mode launches 64 local worker processes on the 32-core com-
puting node where it is executed. dask-ssh mode uses ssh to start 64 workers on each server
specified on the command line. dask-remote mode enables connections to an externally man-
aged Dask cluster, such as one deployed on Kubernetes [26] infrastructure.

4.2.1 Dataset Sizes

Six datasets were used as inputs for various benchmarks, derived from CMS OpenData tt̄,
and included three generations of AGC RNTuple files. These are shown in Table 3. Data sets
AGC1,2,3 reflect the various optimizations performed by modifying the cluster size parameter
and the introduction of an adaptive page size algorithm, which led to a further reduction in
the size of the data set. The runtime of tt̄ AGC is relatively short, making it unsuitable for
execution with distributed Dask and large-scale parallelism, since processing is shorter than
the initialization time5.

To address this, we generated a 100x inflated dataset by duplicating each data file 100
times, resulting in the 104 TB AGC100|200 datasets.

4.2.2 Storage Read Pattern

The CMS OpenData analysis tt̄ presents a demanding use case for a spinning disk-based
infrastructure due to its access pattern: Only 6.4% of the full dataset is read as input, with
scattered forward reads that limit HDD performance, as hard drives are optimized for sequen-
tial access rather than high IOPS (see Figure 6).

4.2.3 Dataset Size Reduction: TTree to RNTuple

Using zstd compression for storing TTree format, instead of the original default zlib com-
pression, reduces the size of the dataset by 18%. Switching from the TTree format to the
RNTuple format, while using the same zstd compression algorithm, results in a 39% reduc-
tion in the size of the data set.

5This is true for configurations with more than 100 workers.

EPJ Web of Conferences 337, 01324 (2025) https://doi.org/10.1051/epjconf/202533701324

CHEP 2024

8

Name Format Comp Size #Files
AGCzlib TTree zlib [27] 1.94 TB 787
AGCzstd TTree zstd 1.59 TB 787
AGC1 RNTuple zstd 1.04 TB 787
AGC2 RNTuple,

2xcondensed
Cluster Size 200M

zstd 1.04 TB 396

AGC3 RNTuple
Cluster Size 100M
Adaptive Pagesize

zstd 0.965 TB 787

AGC100|200 RNTuple, 100x
inflated AGC1|2

zstd 104 TB 39600

Table 3: Comparison of different data storage formats and compression techniques for TTree
and RNTuple. The table presents file format, compression settings, total data size, and the
number of files for each configuration.

Re
ad

 o
ff

se
t i

n
by

te
s

Elapsed processing time [s]

Figure 6: Illustration of the initial AGC1 read pattern. The x-axis represents the elapsed
processing time (0 to 96 seconds), while the y-axis shows the read offset in bytes within the
AGC RNTuple files.

4.2.4 Optimizing Single-Node Multi-threaded AGC Analysis

During the optimization of the multithreaded AGC analysis in a single compute node, we
applied five optimizations that reduced the initial run time of the CMS OpenData tt̄ analysis
from 240 seconds to 70 seconds.

The following optimizations have been subsequently applied:

Vector Read Correction

Building on observations from the previous year and initial attempts in March 2024, we
identified a flaw in the vector read implementation when comparing XRootD with HTTP

EPJ Web of Conferences 337, 01324 (2025) https://doi.org/10.1051/epjconf/202533701324

CHEP 2024

9

access. This issue caused approximately 60% more data to be read than necessary during
each AGC run when using the XRootD protocol. The underlying bug has since been fixed in
the RNTuple implementation.

XRootD Connection Demultiplexing

Connection multiplexing allows multiple virtual connections over a single physical link. In
XRootD, this boosts resource use, efficiency, and scalability. Each client opens one socket per
server, sharing it to access multiple files. In setups like CERN’s EOS instances, where servers
outnumber client threads, multiplexing has little impact. But it matters for EOSPILOT, which
has only 14 servers. Its effect is clear when comparing two runs: the first reads uncached
data, while the second is much faster. This may initially seem like just a buffer cache effect.
However, when connection demultiplexing is enforced within the clients, the effect nearly
disappears, as shown in Table 4:

Mode 1st Run 2nd Run
Default 142 s 77 s
Demux64 83 s 75 s

Table 4: Runtime comparison of AGC for default multiplexed connections versus 64× de-
multiplexed connections.

The performance impact of multiplexing originates from the implementation of the
XRootD server. The server serializes all requests over a single connection, preventing par-
allel access to multiple files, even when those files are located on different storage devices.
We have added a patch to the AGC code, which creates a thread-exclusive connection from
each processing thread to each storage server, as shown in Figure 7. For future production
use, de-multiplexing should either be implemented as a feature within the XRootD client
or achieved through instance-level configuration by running multiple XRootD daemons per
storage server.

MT XRootD
Server

XRootD
Client

MT XRootD
Server

XRootD
Client

1 connection
per server

N connections
per server

default

demux
patch

Figure 7: Schematic illustrating the default behavior of XRootD clients, where a single con-
nection is established per storage server (top/default), compared to the patched version, which
creates N connections to each storage server (bottom/demux).

Data Format Optimizations

A change in the cluster size and the introduction of an adaptive page size algorithm resulted
in a significant reduction in AGC runtime (-50%). The improvement comes from the fact that

EPJ Web of Conferences 337, 01324 (2025) https://doi.org/10.1051/epjconf/202533701324

CHEP 2024

10

larger cluster sizes result in larger I/O operations, increasing the average request size from
27 kB to 540 kB. This significantly enhances the bandwidth performance of HDDs.

JCache - a client-side journal cache

As part of this R&D activity, we developed a prototype for a new type of client-side cache
JCache [28] that records read and vector read requests as sequential journals in a shared
filesystem mounted on computing nodes. Using the NVMe-based CephFS filesystem de-
scribed in this section, we achieved an additional 7% reduction in runtime, reducing the total
runtime from 240 to just 70 seconds, a general improvement of 3.4x.

The contributions of each optimization and the resulting runtime are shown in Figure 8.

0

60

120

180

240

707583

148

180

240

RNTuple RNTuple ReadV Fix RNTuple Demux
RNTuple 2x Condensed RNTuple Cluster Size 100M RNTuple JCache

AGC1

AGC1

AGC1

AGC2
AGC3 AGC3

Beginning
RNTuple

ReadV Fix
RNTuple

XRootD
Demultiplexing

Data Format
Cluster-/Pagesize

Journal
Cache

240s

70s

-25%

-17%

-50%

-7%

Runtime [s]

March April May July October

Figure 8: Graph showing the improvement in AGC runtime on a single 32-core computing
node over time. The dataset format is labeled at the top of each column, while the right side
highlights various optimizations and their contributions to runtime reduction. Data is read
from the EOSPILOT instance using the XRootD protocol.

4.2.5 Optimizing Multi-Node Dask-based AGC Analysis

As previously noted, scaling the 1 TB AGC dataset across multiple nodes is quickly domi-
nated by initialization time, resulting in no significant real-time performance improvements.
When scaling AGC100 across a few nodes using dask-ssh, it successfully saturated instances
EOSPILOT and EOSALICEO2, demonstrating that performance was not limited by band-
width.

Figure 9 illustrates the variation in runtime relative to the number of client nodes. Each
client node runs 64 worker processes, e.g. with 30 nodes, we run 1,920 worker processes.
Performance effectively scales up to 20 nodes, then scalability diminishes. Considering that
EOSALICEO2 is supported by more than 12,000 HDDs, this behavior was not expected.
To address the issue based on our previous observations, we created the AGC200 RNTuple
dataset with a larger cluster size, which significantly reduced the number of read operations

EPJ Web of Conferences 337, 01324 (2025) https://doi.org/10.1051/epjconf/202533701324

CHEP 2024

11

Ru
nt

im
e

[s
]

0

250

500

750

1000

Number of Client Nodes
10 20 30

O2 Measured O2 Expected

Figure 9: Runtime of the tt̄ analysis using the inflated 104 TB AGC100 dataset using 10, 20,
and 30 client nodes, each running 64 Dask worker processes. The green diamond dots rep-
resent the expected ideal scaling behavior, while the blue diamond dots depict the measured
performance, showing reduced scalability at 30 nodes.

required for the analysis—from approximately two million to just one hundred thousand as
explained in

Scalability improvements are shown for the 20 PB EOSPILOT instance in Figure 10 and
for the 150 PB EOSALICEO2 in Figure 11. In the last graph, we have isolated the contri-
bution of initialization time to highlight that, at high node counts, it significantly impacts the
overall runtime and becomes the primary factor in the reduction of scalability. The first graph
demonstrates that the change in the data format has enabled us to achieve a runtime improve-
ment of more than 3x using the same infrastructure. In the EOSALICEO2 measurement, we
achieved an average read bandwidth of 43 GB/s during processing.

Figure 12a shows the approximate average and peak bandwidths delivered from the
storage system. For 70 nodes we reach 84 GB/s peak and 43 GB/s average. In Figure 12b,
we extrapolate the maximum bandwidth required when the data read increases from a sparse
6.4% to a full 100%. This sparsity determines the output bandwidth, which ranges from
43 GB/s to 625 GB/s. Sequential streaming tests on EOSALICEO2 confirm that the instance
can achieve an overall streaming throughput of up to 700 GB/s using 8,000 streams.

The comparison of the distributed Dask analysis with JCache in CephFS, EOSPILOT,
and EOSALICEO2 is shown in Figure 13. The JCache back-end delivers a 18x speedup,
EOSPILOT achieves a 28x, and EOSALICEO2 reaches a 40x speedup. The JCache solution
is currently limited by the 25GbE network on the storage servers. Upgrading to 100GbE
networking could potentially achieve 72x speedup. The key takeaway is that integrating a
high-performance NVMe-based cache can significantly accelerate IOPS-limited distributed
workloads and is a valid candidate for deployment in an analysis facility.

EPJ Web of Conferences 337, 01324 (2025) https://doi.org/10.1051/epjconf/202533701324

CHEP 2024

12

Ru
nt

im
e

[s
]

10

100

1000

Number of Client Nodes
1 10 20 30 40

175
234

351

703

7'037

1150117311481342

356365427
703

7037

Measured after optimisation Measured before optimisation Linear Expectation

Figure 10: Runtime of the tt̄ analysis on the inflated 104 TB AGC100,200 datasets using 10 to
40 client nodes, each with 64 Dask worker processes, against the EOSPILOT instance. The
green line shows results for the non-optimized AGC100, the blue for the optimized AGC200,
and the gray line represents ideal scalability. Runtimes plateau beyond 40 clients and are thus
omitted.

Summary of Achievements and Insights

RNTuple Improvements Through Benchmarking

Detailed benchmarking has significantly improved the performance of RNTuple for remote
access from EOS, as demonstrated with the AGC tt̄ example. This effort uncovered sev-
eral issues that do not manifest in local environments, enabling targeted improvements. Key
achievements include a more than threefold reduction in runtime when transitioning from the
TTree data format to RNTuple, along with a 39% decrease in data size during this transforma-
tion. Furthermore, switching from replication to erasure coding RS (10 + 2) in EOS resulted
in a 40% reduction in data size. Furthermore, a sparse CMS AGC analysis was successfully
executed at an impressive processing speed of 43 GB/s using HDD storage.

Implications for Future Analysis Facility Architectures

These results provide valuable information to design future analysis facilities and highlight
several key strategies. Combining NVMe and HDDs within shared file systems, along with
remote-accessible storage, optimizes both performance and scalability. Adopting a bare metal
approach or leveraging platforms like SWAN and HTCondor enables flexible and efficient
computational workflows. Additionally, prioritizing the usability and cost-effectiveness of
EOS erasure-coded storage enhances large-scale data analysis.

These improvements and recommendations not only improve current workflows, but also
lay the foundation for more efficient, scalable, and user-friendly analysis infrastructures.

EPJ Web of Conferences 337, 01324 (2025) https://doi.org/10.1051/epjconf/202533701324

CHEP 2024

13

Ru
nt

im
e

[s
]

10

1000

100000

Number of Client Nodes
1 10 20 30 40 50 60 70

76675547383226
18

160180190240270
380

660

6750

248254274294315420
700

6784

O2 Measured 2x Condensed Processing Time Initialization Time O2 Linear Expectation

Figure 11: Runtime of the tt̄ analysis on the optimized 04 TB AGC200 dataset using 10–70
client nodes (64 Dask workers each) against the EOSALICEO2 instance. The gray line shows
initialization time, green shows processing time, and blue shows total runtime. The yellow
line represents ideal scalability. Runtime plateaus beyond 70 clients.

G
B/

s

0

22.5

45

67.5

90

Client Nodes with 64 workers each
1 10 20 30 40 50 60 70

43
3836

29
25

18
10

1

84

72

61

50

36

24

14

2

Peak Backend Traffic GB/s Average Backend Traffic GB/s

(a)

G
B/

s

0

250

500

750

1000

Client Nodes with 64 workers each
1 10 20 30 40 50 60 70

847261503624142
433836292518101

659

586
555

439
391

277

160

17

Virtual Traffic GB/s Average Backend Traffic GB/s Peak Backend Traffic GB/s

(b)

Figure 12: (a) Shows the average (green) and peak (blue) read bandwidth provided by
EOSALICEO2 during processing. (b) Illustrates the maximum virtual bandwidth (blue line),
extrapolated from reading only a 6.4% fraction to 100%.

5 Conclusions

RNTuple is advancing towards full production readiness, establishing a robust foundation
for future I/O research and development. Optimizations for both local and remote data ac-
cess have achieved substantial performance gains, validated through rigorous testing using a
challenging worst-case scenario, demonstrating the effectiveness of NVMe and HDD storage
back-ends.

EPJ Web of Conferences 337, 01324 (2025) https://doi.org/10.1051/epjconf/202533701324

CHEP 2024

14

@30 client nodes
Network bottleneck

25 GBit Network

@40 client nodes
Storage bottleneck

>70 client nodes
Storage bottleneck

18x 28x 40xSpeedup

compared to
single client node

>120 client nodes
Storage bottleneck

72x

measured Theoretical
with 100 GE

Runtime
hours→minutes

Figure 13: Analysis speedup achieved using different storage back-ends. The first three
columns represent measured results, while the fourth column shows a theoretical extrapola-
tion.

In the final phase of this initiative during 2025, we plan to actively collaborate with ex-
periments to refine specific data formats and assess their performance through a large-scale
data challenge, ensuring readiness for future challenges of HL-LHC.

References

[1] R. Brun, F. Rademakers, ROOT - an object oriented data analysis framework, Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment A 389, 81–86 (1997).

[2] LHC Study Group, The large hadron collider: Conceptual design, CERN Yellow Report
CERN-2004-003 (2008).

[3] J. Blomer, P. Canal, A. Naumann, D. Piparo, Evolution of the ROOT Tree I/O, EPJ Web
Conf 245, 02030 (2020).

[4] Apache Software Foundation, Apache parquet (2024), accessed: 2025-05-19, https:
//parquet.apache.org

[5] The HDF Group, Hierarchical Data Format Version 5 (HDF5) (1997), accessed: 2025-
05-19, https://www.hdfgroup.org/solutions/hdf5/

[6] A. Hanushevsky, Xrootd: A scalable data access framework for distributed computing,
Journal of Physics: Conference Series 331, 012017 (2011).

[7] F. de Geus, V.E. Padulano, J. Blomer, P. Canal, A.L. Varbanescu, On-the-fly data set
joins and concatenations with ROOT RNTuple, in Proc. 27th Conf. Computing in High
Energy and Nuclear Physics (2024). To appear. (2024)

[8] G. Amadio, J. Blomer, P. Canal, G. Ganis, E. Guiraud, P.M. Vila, L. Moneta, D. Pi-
paro, E. Tejedor, X.V. Pla, Novel functional and distributed approaches to data analysis
available in ROOT, Journal of Physics: Conference Series 1085 (2018).

EPJ Web of Conferences 337, 01324 (2025) https://doi.org/10.1051/epjconf/202533701324

CHEP 2024

15

https://parquet.apache.org
https://parquet.apache.org
https://www.hdfgroup.org/solutions/hdf5/

[9] L. Janyst, R. Brun, P. Canal, ROOT data model evolution (2008), https://root.
cern.ch/root/SchemaEvolution.pdf

[10] ROOT Development Team, PyROOT: Python Interface to the ROOT Framework (2025),
accessed: 2025-05-19, https://root.cern/manual/python/

[11] The ROOT Team, Tech. Rep. CERN-OPEN-2025-001, CERN, Geneva (2024), https:
//cds.cern.ch/record/2923186

[12] J. Ling, T. Gal, ROOT RNTuple implementation in Julia programming language, in
Proc. 27th Conf. Computing in High Energy and Nuclear Physics (2024). To appear.
(2024)

[13] J. Lopez-Gomez, J. Blomer, RNTuple performance: Status and outlook, Journal of
Physics: Conference Series 2438 (2023).

[14] T.C. collaboration, RNTuple: A CMS Perspective, in Proc. 27th Conf. Computing in
High Energy and Nuclear Physics (2024). To appear. (2024)

[15] J. Hahnfeld, J. Blomer, T. Kollegger, Parallel Writing of Nested Data in Columnar For-
mats, in Euro-Par 2024: Parallel Processing (2024), p. 18–31

[16] J. Hahnfeld, J. Blomer, P. Canal, T. Kollegger, Direct I/O for RNTuple Columnar Data,
in Proc. 27th Conf. Computing in High Energy and Nuclear Physics (2024). To appear.
(2024)

[17] J. Lopez-Gomez, J. Blomer, Exploring object stores for high-energy physics data stor-
age, EPJ Web Conf 251 (2021).

[18] J. Elmsheuser, C. Anastopoulos, J. Boyd, J. Catmore, H. Gray, A. Krasznahorkay, J. Mc-
Fayden, C.J. Meyer, A. Sfyrla, J. Strandberg et al., Evolution of the ATLAS analysis
model for run-3 and prospects for HL-LHC, EPJ Web Conf 245 (2020).

[19] Y. Collet, Zstandard: A fast real-time compression algorithm, Proceedings of the 2016
Data Compression Conference (DCC) pp. 1–10 (2016). 10.1109/DCC.2016.49

[20] A. Rizzi, G. Petrucciani, M. Peruzzi, A further reduction in CMS event data for analysis:
the NANOAOD format, EPJ Web Conf 214 (2019).

[21] A. Peters, L. Janyst, Exabyte scale storage at cern, Journal of Physics: Conference
Series 331, 052015 (2011). 10.1088/1742-6596/331/5/052015

[22] S.A. Weil, S.A. Brandt, E.L. Miller, D.D.E. Long, C. Maltzahn, Ceph: A Scal-
able, High-Performance Distributed File System, in Proceedings of the 7th Sym-
posium on Operating Systems Design and Implementation (OSDI) (USENIX Asso-
ciation, 2006), pp. 307–320, https://www.usenix.org/legacy/event/osdi06/
tech/full_papers/weil/weil.pdf

[23] H. Shacham, B. Plank, Erasure codes for storage systems: A survey, ACM Computing
Surveys (CSUR) 34, 309 (2002). 10.1145/507587.507589

[24] IRIS-HEP, Analysis grand challenge (2024), accessed: 2024-03 to 2024-
10, https://github.com/iris-hep/analysis-grand-challenge/tree/main/
analyses/cms-open-data-ttbar

[25] M. Rocklin, Dask: Parallel computation with blocked algorithms and task scheduling,
in Proceedings of the 14th Python in Science Conference (2015), pp. 130–136, https:
//doi.org/10.25080/Majora-7b98e3ed-013

[26] T.K. Authors, Kubernetes: Production-grade container orchestration (2025), accessed:
2025-05-19, https://kubernetes.io

[27] J. loup Gailly, M. Adler, zlib: A massively spiffing library for data compression (1995),
accessed: 2022-12-01, https://www.zlib.net/

[28] A.J. Peters, Xrootd jcache plugin (2024), branch: XrdClJCachePlugin, https://
github.com/cern-eos/xrootd.git

EPJ Web of Conferences 337, 01324 (2025) https://doi.org/10.1051/epjconf/202533701324

CHEP 2024

16

https://root.cern.ch/root/SchemaEvolution.pdf
https://root.cern.ch/root/SchemaEvolution.pdf
https://root.cern/manual/python/
https://cds.cern.ch/record/2923186
https://cds.cern.ch/record/2923186
https://doi.org/10.1109/DCC.2016.49
https://doi.org/10.1088/1742-6596/331/5/052015
https://www.usenix.org/legacy/event/osdi06/tech/full_papers/weil/weil.pdf
https://www.usenix.org/legacy/event/osdi06/tech/full_papers/weil/weil.pdf
https://doi.org/10.1145/507587.507589
https://github.com/iris-hep/analysis-grand-challenge/tree/main/analyses/cms-open-data-ttbar
https://github.com/iris-hep/analysis-grand-challenge/tree/main/analyses/cms-open-data-ttbar
https://doi.org/10.25080/Majora-7b98e3ed-013
https://doi.org/10.25080/Majora-7b98e3ed-013
https://kubernetes.io
https://www.zlib.net/
https://github.com/cern-eos/xrootd.git
https://github.com/cern-eos/xrootd.git

	Introduction
	RNTuple Overview
	RNTuple in Practice

	RNTuple Performance
	Data Size
	Throughput and Scalability

	RNTuple and Remote Storage
	Compute and Storage platform
	Analysis Grand Challenge Benchmark
	Dataset Sizes
	Storage Read Pattern
	Dataset Size Reduction: TTree to RNTuple
	Optimizing Single-Node Multi-threaded AGC Analysis
	Optimizing Multi-Node Dask-based AGC Analysis

	Conclusions

