
New J. Phys. 24 (2022) 025001 https://doi.org/10.1088/1367-2630/ac47cc

OPEN ACCESS

RECEIVED

28 October 2021

REVISED

27 December 2021

ACCEPTED FOR PUBLICATION

4 January 2022

PUBLISHED

3 February 2022

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER

Boosting engine performance with Bose–Einstein condensation

Nathan M Myers1,2,∗ , Francisco J Peña3,∗ , Oscar Negrete4 , Patricio Vargas4,
Gabriele De Chiara5,∗ and Sebastian Deffner1,6

1 Department of Physics, University of Maryland, Baltimore County, Baltimore, MD 21250, United States of America
2 Computer, Computational and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States

of America
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Abstract
At low-temperatures a gas of bosons will undergo a phase transition into a quantum state of
matter known as a Bose–Einstein condensate (BEC), in which a large fraction of the particles will
occupy the ground state simultaneously. Here we explore the performance of an endoreversible
Otto cycle operating with a harmonically confined Bose gas as the working medium. We analyze
the engine operation in three regimes, with the working medium in the BEC phase, in the gas
phase, and driven across the BEC transition during each cycle. We find that the unique properties
of the BEC phase allow for enhanced engine performance, including increased power output and
higher efficiency at maximum power.

1. Introduction

In the 1920s Bose [1] and Einstein [2] put forward the theoretical hypothesis that a dilute atomic gas could
give way to a phenomenon in which a large number of bosons occupy the zero momentum state of a
system simultaneously. This phenomenon, now known as Bose–Einstein condensation (BEC), was
corroborated in 1995 when it was observed in rubidium [3], sodium [4] and lithium [5, 6] vapors,
confined in magnetic traps and cooled to temperatures in the fractions of microkelvins in order to achieve
the necessary ground state populations. These experimental verifications marked a profound development
in the study of quantum gases. Over the subsequent years, experimental control of BECs has expanded
dramatically, including the creation of a BEC in microgravity [7] and the implementation of BEC-based
atomic circuits [8].

As a phase transition with an origin that is purely quantum in nature, the thermodynamics of BECs has
attracted considerable attention. The transition from a normal Bose gas to a BEC can be fully described
mathematically, and treatments can be found in most any modern thermodynamics or statistical mechanics
textbook [9–11]. Notably, unlike the more familiar gas-to-liquid phase transition, the BEC transition occurs
in momentum, rather than coordinate space [10]. While the equilibrium thermodynamic behavior of BECs
is well established, including the equations of state, fugacity, and specific heat [9–11], the analysis of BECs
in the context of heat engines, the paradigmatic systems that thermodynamics itself was developed to study,
remains curiously scarce.

With the development of quantum thermodynamics [12] the exploration of how quantum phenomena
can be harnessed in nanoscale thermal machines has seen an explosion in interest [13–23], including
examinations of the role of the quantum statistics of the working medium [24–26]. With macroscopically
observable behavior arising from the underlying bosonic quantum statistics and well-developed techniques
for experimental control, BECs would seem an optimal system to serve as a quantum working medium
for a thermal machine. However, as the condensate itself consists of macroscopic occupation of the
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zero-momentum state, it is not easy to see how the typical paradigm for work extraction from macroscopic
thermal machines, involving pressure exerted against an external piston or potential, translates to a BEC
working medium. Several recent works have proposed implementations of quantum thermal machines that
leverage BECs, including extracting work through the use of Feshbach resonances [27], using a mixture of
two gas species to implement a refrigeration cycle [28], implementing a heat engine cycle with cold bosons
confined to a double-well potential [29], and using BECs as the basis for thermal machines that act on a
working medium of quantum fields [30].

In this paper, we explore an Otto cycle in the context of endoreversible thermodynamics using a
harmonically trapped bosonic gas as a working substance. We study the cycle in three regions of operation:
(i) with a condensed medium, (ii) with a non-condensed medium, and (iii) with a medium driven across
the condensation transition. We find that the properties of the BEC allow for enhanced performance above
what can be achieved with the corresponding classical gas. For a working medium that remains in the
condensate phase during the whole cycle, we show that the efficiency at maximum power (EMP)
significantly exceeds the Curzon–Ahlborn (CA) efficiency [31], the efficiency obtained for an endoreversible
Otto cycle with a working medium of an ideal gas described by Boltzmann statistics [32]. In contrast, if the
system only operates with the working medium in a non-condensed phase, we find that the EMP is
equivalent to the CA efficiency. We also examine cycles operating while the working medium is driven
across the BEC phase transition, and find that the EMP is highly parameter-dependent and can fall above or
below the CA efficiency. We conclude with a discussion on the role of the condensate itself in work
extraction and the experimental applicability of these results.

2. BEC thermodynamics

To keep our analysis as self-contained as possible and establish the necessary notions and notations, we
begin with a brief review of the textbook thermodynamics of non-interacting bosons in a harmonic trap.
We consider the system under study to be in the thermodynamic limit, in which N →∞, where N is the
number of bosons, while maintaining the condition Nω is constant, where ω corresponds to the trap
frequency [11]. The trapping potential is given by,

Vext(r) =
1

2
m
(
ω2

xx2 + ω2
y y2 + ω2

z z2
)

, (1)

where ωx, ωy and ωz are the oscillator frequencies in each direction. The energy eigenvalues for each atom
of the Hamiltonian corresponding to the above potential are [10, 11],

Enx,ny ,nz = �ωx

(
nx +

1

2

)
+ �ωy

(
ny +

1

2

)
+ �ωz

(
nz +

1

2

)
. (2)

If all three frequencies are the same (the harmonic-isotropic case), we can define n = nx + ny + nz,
simplifying the energy spectrum of equation (2) to En = �ω

(
n + 3

2

)
with a quantum degeneracy of the

form D(n) = (n + 1) (n + 2) /2 [10].
In the harmonic-isotropic case, the grand potential for a system of bosons in the grand canonical

ensemble is given by [10],

Ω(μ, T,ω) = kBT
∑

nx,ny ,nz

ln
(

1 − e−β�ω(nx+ny+nz)+βμ
)

, (3)

where we have suppressed the zero energy state in order to obtain the number of excited bosons in the
system. We can perform the above sum by introducing a continuous density of states (assuming that
E � �ω) [10, 11],

a(E) =
E2

2(�ω)3 . (4)

In this approximation, the grand potential takes the form [10],

Ω(μ, T,ω) =
(kBT)4

2(�ω)3

∫ ∞

0
dx x2 ln

(
1 − e−x eβμ

)
= − (kBT)4

(�ω)3
g4(z), (5)

where β is the inverse temperature, μ is the chemical potential, and g4(z) corresponds to the Bose function,
given by the integral [10, 11],

gν(z) =
1

Γ(ν)

∫ ∞

0
dx

xν−1

z−1 ex − 1
, (6)

2



New J. Phys. 24 (2022) 025001 N M Myers et al

where Γ(ν) is the gamma function for integer ν. The Bose function can also be expressed in series form as
[10, 11],

gν(z) =
∞∑

n=1

zn

nν
. (7)

Here z = exp(μ/kBT) denotes the fugacity of the system. Note that, for the case of harmonic confinement,
the volume is not a parameter in the grand potential. Instead, the inverse of the trap frequency plays the
role of volume. The average number of excited atoms in the trap can be obtained from [10, 11],

N(μ, T) = −
(
∂Ω

∂μ

)
ω,T

=

(
kBT

�ω

)3

g3(z), (8)

where we use the recurrence relation [10],

gν−1(z) =
∂

∂ ln(z)
gν(z). (9)

For fixed N, the fugacity monotonically increases as temperature decreases until BEC occurs at
μ = 0 (z = 1) [10]. Therefore, using equation (8) and setting z = 1, we can find the critical temperature
that characterizes the transition [10, 11],

Tc =
�ω

kB

(
N

ζ(3)

) 1
3

, (10)

where ζ(ν) is the Riemann zeta function.
The internal energy of the system below and above the BEC transition is given by [10, 11],

U(T,ω) =

⎧⎪⎪⎪⎨
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3kBT

(
kBT

�ω

)3
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(
kBT
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)3
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(11)

Using equation (11) the entropy of the system can be found [11],

S(T,ω) =

⎧⎪⎪⎪⎨
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4kB

(
kBT

�ω

)3

g4(1), T � Tc.

kB

(
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�ω

)3

ζ(3)

[
4

N

(
kBT

�ω

)3

g4(z) − ln(z)

]
, T � Tc.

(12)

Note that when using equation (12) we can obtain an expression for the fugacity for the case of T � Tc by
solving equation (8).

3. The endoreversible Otto cycle

The Otto cycle consists of four strokes: isentropic compression, isochoric heating, isentropic expansion, and
isochoric cooling. The cycle strokes for a working medium of harmonically confined particles are illustrated
graphically in figure 1 using an entropy (S)–frequency (ω) diagram. The isentropic and isochoric processes
are represented in the figure by horizontal and vertical lines, respectively. In our notation, T refers to
temperature and ω to the trap frequency (both parameters measured in arbitrary units). During the
isentropic strokes the working system is disconnected from the thermal reservoirs and the external field is
varied from ωl to ωh (for stroke A → B) and vice-versa (for stroke C → D). In contrast, during the isochoric
strokes the external field is held constant while the working medium exchanges heat with the hot (for stroke
B → C) or cold (for stroke D → A) reservoir. Note that the work parameter (ω) plays the role of an inverse
volume, increasing during the compression stroke (A → B) and decreasing during the expansion stroke
(C → D). Thermodynamically, the cycle is characterized by the temperatures of the two heat reservoirs and
the initial and final values of the external frequency, ωh and ωl.

Examining a quantum heat engine with a working medium of an ensemble of harmonic oscillators
Rezek and Kosloff [33] demonstrated that, when operating in finite time, the power output is subject to
irreversible losses arising from both thermal conduction and non-adiabatic ‘quantum friction.’ In the
following we will apply the framework of endoreversible thermodynamics [31, 34, 35] to analyze the
finite-time performance of an Otto cycle with a working medium of a harmonically confined Bose gas.
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Figure 1. Entropy versus external field diagram for the Otto cycle. Note that the system is only in contact with the thermal
reservoirs during the isochoric (vertical) strokes. At points C and A, the working substance reaches the temperatures Th and Tl,
of the hot and cold reservoirs, respectively, indicated by the isotherms touching the cycle at those points. For the quantum cycle,
the entropy values SB and SD are calculated using the same thermal occupation probabilities as points A and C to ensure the
strokes A → B and C → D fulfill the quantum adiabatic condition.

During an endoreversible process the working medium is assumed to always be in a state of local
equilibrium, but never achieves global equilibrium with the reservoirs. As such, the engine performance will
be subject to irreversible losses from thermal conduction, but not from non-adiabatic quantum friction.
Note that the finite-time analysis of an Otto cycle with a working medium of an ideal Bose gas was
previously examined in reference [36]. However, in that study the effects of BEC were not explored, which
we will examine in detail. For our analysis we will closely follow the procedure established in reference [23].

We can express the heat exchanged with the reservoirs during the isochoric heating stroke of an
endoreversible Otto cycle (from B → C) as,

Qin = UC(T3,ωh) − UB(T2,ωh), (13)

where we note that, unlike the quasistatic case, T3 �= Th. The temperatures T2 and T3 satisfy the following
conditions,

T(0) = T2 and T(τh) = T3 with T2 < T3 � Th, (14)

where τh is the duration of the heating stroke. We can explicitly model the temperature change from T2 to
T3 by applying Fourier’s law of heat conduction,

dT

dt
= −αh (T(t) − Th) , (15)

where αh is a constant that depends on the thermal conductivity and heat capacity of the working medium.
Equation (15) can be fully solved to yield,

T3 − Th = (T2 − Th)e−αhτh . (16)

The isentropic expansion stroke (from C → D) is carried out in exactly the same manner as in the
quasistatic cycle. Since the working medium is decoupled from the thermal reservoirs during this stroke, the
work is determined entirely from the change in internal energy,

Wexp = UD(T4,ωl) − UC(T3,ωh). (17)

The isochoric cooling stroke (from D → A) can be modeled in the exact same manner as the heating
stroke. The heat exchanged with the cold reservoir is given by,

Qout = UA(T1,ωl) − UD(T4,ωl), (18)

where T1 and T4 satisfy the conditions

T(0) = T4 and T(τl) = T1 with T4 > T1 � Tl. (19)
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As for the heating stroke, the temperature change can again be modeled by Fourier’s law,

dT

dt
= −αl (T(t) − Tl) . (20)

The solution to equation (20) is,
T1 − Tl = (T4 − Tl) e−αlτl . (21)

Finally, in exact analogy to the expansion stroke, the work done during the compression stroke can be
found from the change in internal energy,

Wcomp = UB(T2,ωh) − UA(T1,ωl). (22)

The efficiency of the engine can be found from the ratio of the total work and the heat exchanged with
the hot reservoir,

η = −Wcomp + Wexp

Qin
. (23)

The power output is given by the ratio of the total work to the cycle duration,

P = −Wcomp + Wexp

γ(τh + τl)
, (24)

with γ serving as a multiplicative factor that implicitly incorporates the duration of the isentropic strokes
[23].

Noting that the entropy remains constant during the isentropic strokes, we can solve the equation for
the total entropy differential dS(T,ω) = 0 to obtain a relationship between T and ω. This first order
differential equation is given by,

dω

dT
= −

(
∂S
∂T

)
ω(

∂S
∂ω

)
T

. (25)

Taking the appropriate derivatives and solving equation (25) we find that the isentropic condition is
satisfied by,

T2 = T1

(
ωh

ωl

)
≡ T1κ

−1, T4 = T3

(
ωl

ωh

)
≡ T3κ, (26)

where κ = ωl/ωh indicates the compression ratio. The full derivation of this condition is given in appendix
A.

We note that the quasistatic Otto cycle can be recovered from the endoreversible cycle in the limit of
long stroke times τh and τ l. In this limit, the working medium reaches full equilibrium with the reservoirs
during the heating and cooling strokes and equations (16) and (21) simplify to T3 = Th and T1 = Tl,
respectively.

4. Results

4.1. Quasistatic results
Figures 2–4 present numerical results for the quasistatic Otto cycle in three different operating zones, with
the working medium in the non-condensate phase for the full cycle, with the working in the condensate
phase for the full cycle, and with the working medium driven across the BEC phase transition during each
isochoric stroke. In all the simulations, the parameters Tl, Th and ωl are held fixed, while ωh is varied. In
each figure, panel (a) presents a representative cycle displayed over isothermal entropy curves as a function
of ω for a temperature range between 5 nK and 350 nK. Panel (b) shows the same process presented in (a)
but on a plot of T versus ωh. Panel (c) shows the total work in units of meV over a wide range of possible
cycles, with the black dot indicating the value of work obtained from the cycle highlighted in (a) and (b).
Finally, panel (d) presents the efficiency as a function of ω for a range of cycles, where, as before, the
efficiency value indicated with a black dot corresponds to the specific case drawn in (a) and (b). Note that
the frequency and temperature values selected for our analysis are typical [37] and comparable with those
used in experimental demonstrations of BEC [3, 5].

Figure 4 illustrates a case in which the working system transitions between the condensed and
non-condensed phases during the isochoric strokes. In this case, the total work extraction is calculated from
the combination of internal energy expressions given in equation (11). For stroke 1 → 2 the expression for
T � Tc correctly describes the internal energy of the working medium and for stroke 3 → 4 the expression

5
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Figure 2. Results for a quasistatic cycle with 60 000 bosons operating fully in the non-condensate regime. (a) Representative
cycle displayed over isothermal entropy curves. (b) T versus ωh plot of the cycle depicted in panel (a). (c) Total work as a function
of ωh for a range of cycles. (d) Efficiency as a function of ωh for a range of cycles, with the analytical efficiency (solid blue line)
and Carnot efficiency (dotted orange line) given for comparison. In panels (c) and (d) the work and efficiency values indicated
with the black dots correspond to the specific cycle drawn in (a) and (b). The parameters are: Tl = 120 nK, Th = 210 nK, and
ωl = 300 s−1.

for T � Tc correctly describes the internal energy of the working medium. Consequently, the total work is
given by,

W = −k4
B (−1 + κ)

(
−π4T4

l + 90T4
hκ

4g4(z3)
)

30κω3
l �

3
, (27)

where we use g4(1) = π4/90. The intermediate temperatures, T4 and T2, were eliminated from
equation (27) by applying the relationship between the temperatures and frequencies given in equation (26)
that ensures the compression and expansion strokes remain isentropic.

The fugacity is obtained by solving equation (8) using a third-order approximation of the series form of
g3(z),

z +
z2

23
+

z3

33
= N

(
�ω

kBT

)3

. (28)

In order to verify that this third-order approximation is sufficiently accurate, we compare the analytical
approximation to a numerical calculation of the fugacity in appendix B.

It is important to note that only one Bose function appears in equation (27), despite the facts that the
expressions for internal energy at both points 3 and 4 in the cycle are proportional to the Bose function,
and that the temperatures and trap frequencies are different at each point. This is a consequence of the
fugacity along path 3 → 4 in the cycle being obtained from equation (8) with a fixed number of particles,
along with the isentropic condition given by equation (26). The isentropic condition states that the ratio of
frequency to temperature at the start and end of each adiabatic stroke must be equal. Since the fugacity is
determined from this ratio, along with the number of particles, the fugacity must also remain fixed during
the adiabatic strokes. Thus we have the additional condition that z3 ≡ z3(Th,ω2) = z4(T4,ωl).

Considering equation (10) we see that, as long as the temperature of the hot reservoir remains fixed,
increasing the trap frequency will eventually drive the system across the critical point. This transition results
in a kink the total work extraction, due to the divergence in the first derivative of the internal energy that
characterizes the BEC phase transition. This behavior can be clearly observed in figure 4. By increasing ωh,
we can move along the isotherm corresponding to Th = 55 nK until we reach the frequency at which 55 nK
is the critical temperature for the transition. We emphasize that equation (27) is only valid up to this

6
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Figure 3. Results for a quasistatic cycle with 60 000 bosons operating fully in the condensate regime. (a) Representative cycle
displayed over isothermal entropy curves. (b) T versus ωh plot of the cycle depicted in panel (a). (c) Total work as a function of
ωh for a range of cycles. (d) Efficiency as a function of ωh for a range of cycles, with the analytical efficiency (solid blue line) and
Carnot efficiency (dotted orange line) given for comparison. In panels (c) and (d) the work and efficiency values indicated with
the black dots correspond to the specific cycle drawn in (a) and (b). The parameters are: Tl = 40 nK, Th = 75 nK, and
ωl = 300 s−1.

transition point. By rearranging equation (10) we can solve for this critical frequency,

ωc
h =

(
ζ(3)

N

) 1
3
(

kBTc

�

)
. (29)

Consequently, equation (27) is only valid up to κ = ωl/ω
h
c . Rewriting equation (29) in terms of κ and

taking Tc = Th (which provides the limiting case that still ensures the phase transition occurs during the
quasistatic heating stroke) we have,

κ = 7.18 × 10−3N1/3

(
ωl

Th

)
. (30)

This equation indicates that there are two ways to decrease this critical value of κ that ensures the engine is
still operating in the transition regime (i.e. to avoid passing into the regime where the entire cycle takes
place outside of the condensate phase): one is to decrease the number of particles, and the other is to
decrease the ratio ωl/Th. If we want to remain consistent with the assumption that the engine is operating
in the thermodynamic limit, only the second option remains available. By decreasing the critical value of κ
we broaden the parameter space over which the transition engine can operate while still maintaining the
condition that the compression stroke occurs in the condensate phase and that the expansion stroke occurs
in the non-condensate phase.

Consider an example set of parameters, ωl = 110 s−1, Tl = 20 nK, and Th = 55 nK with N = 60 000
bosons. From equation (29) we obtain ωc

h ∼ 195.559 s−1, a value that is consistent with figure 4(c). Beyond
that value of ωh, to determine the total work extraction as shown in figure 4(c) we must consider the case of
a cycle that operates fully in the condensate regime.

Figure 3 presents such a case. As the working medium remains in the condensate phase for the full cycle,
the fugacity (z) remains fixed at one. In this case, the total work of extraction is,

W = −k4
Bπ

4 (1 + κ)
(
−T4

l + T4
hκ

4
)

30κω3
l �

3
. (31)
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Figure 4. Results for a quasistatic cycle with 60 000 bosons driven across the condensate phase transition. (a) Representative
cycle displayed over isothermal entropy curves. (b) T versus ωh plot of the cycle depicted in panel (a). (c) Total work as a function
of ωh for a range of cycles. (d) Efficiency as a function of ωh for a range of cycles, with the analytical efficiency (solid blue line)
and Carnot efficiency (dotted orange line) given for comparison. In panels (c) and (d) the work and efficiency values indicated
with the black dots correspond to the specific cycle drawn in (a) and (b). The parameters are: Tl = 20 nK, Th = 55 nK, and
ωl = 110 s−1.

It is straightforward to maximize this expression for the work extraction in order to determine ideal the
compression ratio. By taking the derivative of equation (31) with respect to κ and we obtain,

T4
l + T4

h (3 − 4κ∗)κ∗4 = 0. (32)

The example illustrated in figure 3 presents a cycle with parameters Tl = 40 nK, Th = 75 nK and
ωl = 300 s−1. For these parameters, the work output is maximized at κ∗ = 0.7995. The value of ωh

corresponding to this maximum is thus ωh ∼ 375.232 s−1, which corresponds exactly with the peak
observed in panel (c) of figure 3.

It is important to note the fact that all our results for the engine operating only in the condensate regime
are explicitly independent of the particle number, N. This is due to the fact that the chemical potential in
the condensate phase is zero, resulting in N no longer being a thermodynamic variable.

Finally, we will consider the case where the cycle is operated with a working medium that remains
entirely in the non-condensate phase, as shown in figure 2. In this case, the expression for the total work is,

W = −3k4
B (−1 + κ)

(
−Tlg4(z1) + Thκ

4g4(z3)
)

κω3
l �

3
, (33)

where the isentropic condition for the expansion and compression strokes leads to the following relations
between the fugacities at each corner of the cycle, z1 ≡ z1(Tl,ωl) = z2(T2,ωh) and z3 ≡ z3(Th,ωh) = z4

(T4,ωl).
As in the case of the cycle fully in the condensate regime, we can use equation (33) to determine the

compression ratio that maximizes the work output. Using the parameters of the example cycle shown in
figure 2, Tl = 120 nK, Th = 210 nK, and ωl = 300 s−1, we obtain a value of κ∗ = 0.755. Using this value of
κ∗, we see that the maximum occurs at ωh ∼ 398 s−1 consistent with the peak observed in panel (c) of
figure 2.

4.2. Endoreversible results
Let us first consider an endoreversible engine with a condensate working medium below the critical
temperature. In this case, we can determine the efficiency by combining equations (13), (17), (22) and (23)

8
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with the top line of equation (11). After making use of the isentropic conditions TAωh = TBωl and
TCωl = TDωh the efficiency simplifies to the same result found for the quasistatic cycle

ηbelow = 1 − κ, (34)

where κ = ωl/ωh is the compression ratio.
We can repeat the same process for a non-condensate working medium above the critical temperature,

now applying the expression for internal energy from the bottom line of equation (11). Recalling that the
fugacity remains constant during the isentropic strokes, we find that the dependence on the Bose function,
gν(z), cancels out and the efficiency simplifies to,

ηabove = 1 − κ, (35)

identical to that of the condensate working medium. These results indicate that in both the quasistatic and
endoreversible regimes BEC has no impact on engine efficiency.

Next we consider the power output for a condensate working medium below the critical temperature.
Combining equation (24) with equations (17) and (22) yields a complicated expression in terms of the
temperatures and frequencies at each corner of the cycle. Applying equations (16) and (21) along with the
isentropic conditions we can express the power entirely in terms of the experimentally controllable
parameters, namely the hot and cold bath temperatures, the thermal conductivities, the stroke times, and
the compression ratio,

Pbelow =
(kBπ)4(κ− 1)

30γ (τl + τh) (eαlτl+αhτh − 1)4κ4ω3
h�

3

{
[(eαlτl − 1) Tl + eαlτl (eαhτh − 1) Thκ]4

− [Thκ− eαhτh ((eαlτl − 1) Tl + Thκ)]4} . (36)

Following the same steps for a working medium above the critical temperature, we find the power to be,

Pabove =
3k4

B(κ− 1)

γ (τl + τh) (eαlτl+αhτh − 1)4κ4ω3
h�

3

{
g4(z1)[κTh − eαhτh (Tl (eαlτl − 1) + κTh)]4

− g4(z3)[Tl (eαlτl − 1) + κTheαlτl (eαhτh − 1)]4
}

, (37)

where z1 and z3 are the fugacities during the compression and expansion strokes, respectively.
It is well established that there is an inherent trade-off between efficiency and power. Efficiency is

maximized in the limit of infinitely long, quasistatic strokes. However, in this limit the power output will
vanish due to the dependence on stroke time in the denominator of equation (24). The maximum efficiency
of the engine is bounded by the Carnot efficiency which, examining equations (34) and (35), we see is
achieved when κ = Tl/Th. Plugging this value of κ into equations (36) and (37) we see that for both the
condensate and non-condensate working mediums the power vanishes at Carnot efficiency.

A figure of merit of more practical interest is the EMP, which corresponds to maximizing the power
output, and then determining the efficiency at that power [31]. As before, let us consider first the
condensate working medium. Due to the cumbersome form of equation (36) we maximize the power
output numerically with respect to the compression ratio, κ. The EMP for a 60 000 boson condensate is
shown in figure 5(a) in comparison to the Curzon–Ahlborn efficiency. We see that the condensate EMP is
significantly higher than the Curzon–Ahlborn efficiency. Noting that the Curzon–Ahlborn efficiency has
been found to be the EMP for a classical harmonic Otto engine [23], we see that the condensate behavior
leads to a significant advantage in performance.

We note that in reference [23] it was shown that a harmonic quantum Otto engine with a single-particle
working medium displays an EMP that exceeds the Curzon–Ahlborn efficiency, as long as it is operating in
the quantum regime defined by �ωh/kBTl � 1. This is consistent with the results found here, as the
parameters that ensure the working medium remains below the critical temperature throughout the cycle
correspond to the deep quantum regime.

We next consider the EMP of a working medium of bosons above the critical temperature. Taking the
ansatz that the high-temperature behavior should match the classical limit, we take the derivative of
equation (37) with respect to κ and then plug in our ansatz that κ =

√
Tl/Th. Note that in order to express

the compression and expansion stroke fugacities in closed form, we take the high temperature limit of small
z such that equation (7) can be well approximated by just the first term. We find that our ansatz works to
maximize the power output in this case, demonstrating that the EMP above the critical temperature is
equivalent to the Curzon–Ahlborn efficiency. This behavior is illustrated graphically in figure 5(b).

Finally, we consider the case of a working medium of 60 000 bosons driven across the BEC phase
transition, such that the compression stroke takes place while the working medium is below the critical

9



New J. Phys. 24 (2022) 025001 N M Myers et al

Figure 5. (a) EMP as a function of the cold bath temperature for a BEC working medium (blue, dashed). Parameters are
τ c = τh = 1. We have used Th = 45 nK, which ensures the temperature of the working medium always remains below the
critical temperature. (b) EMP as a function of the cold bath temperature for a working medium of 60 000 bosons above the
condensation threshold (blue, dashed). Parameters are τ c = τ h = 1. We have used Th = 75 nK, which ensures the temperature
of the working medium always remains above the critical temperature. (c) EMP as a function of the cold bath temperature for a
working medium of 60 000 bosons driven across the BEC phase transition with stroke durations τ c = τh = 10 (blue, dashed)
and τ c = τ h = 1 (green, dot dashed). We have used Th = 75 nK, which ensures that the compression stroke takes place below
the critical temperature and the expansion stroke takes place above the critical temperature. In each plot the Curzon–Ahlborn
efficiency (red, solid) is given for comparison. Other parameters are γ = αc = αh = 1.

temperature and the expansion stroke takes place while the working medium is above the critical
temperature. The EMP for this transition engine is shown in figure 5(c) for two different stroke durations.
We see that when the duration of the isochoric strokes is short, the EMP of the bosonic medium is greater
than the Curzon–Ahlborn efficiency at low values of the cold bath temperature but lower at higher values of
the cold bath temperature. However, we see that if we increase the duration of the isochoric strokes, while
the total power will be reduced, the EMP now exceeds the Curzon–Ahlborn efficiency across the whole
temperature range. This indicates that the low value of the EMP observed at higher values of Tl for short
stroke times is a truly finite-time effect. We will explore the physical origins of this behavior in the next
section.

5. Discussion

5.1. Work extraction from a BEC
In the textbook formulation of a classical heat engine, work extraction occurs from the pressure exerted by
the working medium against a movable piston during the expansion stroke of the cycle [38]. However, this
interpretation of work has clear issues when considering a fully condensed working medium, as particles in
the zero-momentum state cannot exert any pressure [9]. This issue remains when considering the quantum
formulation of work. For an isolated (unitarily evolving) quantum system, work is given by the change in
internal energy [12]. As the isentropic compression and expansion strokes of the quantum Otto cycle are
performed while the working medium is isolated from the thermal environment, the total work extracted
will be the sum of the changes in internal energy during both strokes. If all particles remain in the
zero-momentum ground state across both strokes, the changes in internal energy will be the same, and the
total work extracted from the engine will be zero.

Following this line of reasoning, we must think about how to interpret the results in figure 5(a). The
engine is able to extract work while below the critical temperature, and does so at higher efficiency than a
medium above the critical temperature. If the particles in the condensate contribute nothing to the work
extracted from the engine, then this work extraction must come from the fraction of bosons that remain in
an excited state outside of the condensate in the thermal cloud. The average number of particles in the
thermal cloud can be found from [10],

NT =

(
kBT

�ω

)3

g3(z). (38)

Utilizing the isentropic condition, along with the fact that the fugacity remains constant during the
isentropic strokes, we see that the average number of particles in the thermal cloud must also remain fixed
during the compression and expansion strokes.

Let us consider a working medium below the critical temperature. In this regime z = 1 and the internal
energy can be described by the first line of equation (11). Solving equation (38) for ω, we can rewrite the
endoreversible work as,

Wcomp = 3kBNcomp
T

ζ(4)

ζ(3)
(T2 − T1), (39)

10
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for the compression stroke and,

Wexp = 3kBNexp
T

ζ(4)

ζ(3)
(T4 − T3), (40)

for the expansion stroke. Using equations (39) and (40) as well as equations (16) and (21) and the
isentropic conditions, we can express the endoreversible power entirely in terms of the experimental
controllable parameters along with Ncomp

T and Nexp
T ,

P =
π4(1 − κ)�ωh

30γ (τc + τh) ζ(3)4/3

[(
Nexp

T

)4/3 −
(
Ncomp

T

)4/3
]
. (41)

From this expression it is clear that the power depends directly on the number of particles in the thermal
cloud during the compression and expansion strokes. Furthermore, we see that if all particles reside in the
condensate, such that Nexp

T = Ncomp
T = 0, the power output vanishes, confirming our supposition that the

work extracted from the engine comes entirely from the bosons that remain in the thermal cloud.
From equation (41) we see that the power is maximized when Nexp

T is as large as possible and Ncomp
T is as

small as possible. Examining equation (10) we see that NT achieves its maximum value of N when T = Tc,
and vanishes as T approaches zero. Thus in order to maximize the power output from the engine, we want
the expansion stroke to be as far below the critical temperature as possible, and the compression stroke to
occur as close to the critical temperature as possible.

This provides a straightforward physical interpretation of the enhanced performance we see for the BEC
working medium in comparison to a working medium above the critical temperature. As particles in the
zero-momentum state cannot exert any pressure, the compressibility of the BEC phase diverges. With this
being the case, just as no work can be extracted from the bosons in the BEC during the expansion stroke, no
work is needed to compress them during the compression stroke. However, after the isochoric heating
stroke a fraction of the particles that were compressed ‘for free’ in the condensate will have been excited into
the thermal cloud, allowing them to do work during the expansion process. Notably the compressibility
only truly diverges in the thermodynamic limit. However, this interpretation remains applicable for a
working medium with a large, but finite, number of particles. In this case the work required to compress the
condensate will be nonzero, however due to the extremely large compressibility it can be negligible in
comparison to the work required to compress the thermal cloud atoms.

Let us now consider how this behavior leads to the EMPs seen in figures 5(a)–(c). In order to maximize
the power output the work done on the medium during the compression stroke should be minimized,
which occurs when T1 ≈ T2, and the work by the medium during the expansion stroke should be
maximized, which occurs when T3 � T4. Recalling the isentropic condition in equation (26) we see that
when κ ≈ 1 the work cost of compression will be minimized, but when κ 
 1 the work gained on
expansion will be maximized. The maximal power output occurs at the value κ∗ that best balances this
trade-off.

Since the efficiency is always given by η = 1 − κ, regardless of the phase of the working medium, the
fact that the BEC medium exceeds the Curzon–Ahlborn efficiency means κ∗ is always less than (Tl/Th)1/2

when below the critical temperature. As the BEC medium can be compressed at a lower work cost, κ∗ can
shift to a lower value, increasing the work gained on expansion. The same interpretation can be applied for
the transition engine when Tl is significantly below the critical temperature.

However, we see in figure 5(c) that at larger values of Tl, when the temperature of the cold bath is closer
to the critical temperature, the EMP falls below Curzon–Ahlborn. Using equation (10) we can express the
critical temperature for the cooling stroke as,

Tcool
c =

�κωh

kB

(
N

ζ(3)

)1/3

. (42)

From equation (42) we see that the critical temperature also depends on κ. Thus having a larger value of κ
raises the critical temperature for the cooling stroke, resulting in a cycle that operates with a larger
percentage in the BEC regime and further reducing the compression work cost. This leads to larger values of
κ∗ being favorable for maximum power output, leading to reduced EMP. However, as Tl gets colder and
colder, this increases the percentage of the cycle in the BEC regime faster than increasing κ would, and thus
smaller values of κ∗ that maximize the work gained on expansion become preferable.

The fact that increasing the cycle times leads to the transition engine EMP always exceeding the
Curzon–Ahlborn efficiency favors this interpretation. Increasing the stroke times has a similar effect to
lowering Tl (as both lead to a decrease in T4). Like decreasing Tl, increasing the stroke times moves a larger
percentage of the cycle into the BEC regime faster than raising the critical temperature by increasing κ.
Thus for the case of long stroke times smaller values of κ∗ become preferable again.
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5.2. Experimental considerations
Typically, BECs are created by cooling a trapped atomic gas using evaporative cooling, laser cooling, or a
combination of the two [3–5, 39, 40]. While laser cooling is capable of achieving temperatures of only a few
nanokelvin, it is most successful in low density systems [39]. For systems operating in the thermodynamic
limit with a large number of particles, evaporative cooling provides a more realistic approach for achieving
condensation.

Evaporative cooling provides an additional complication not explicitly considered in our analysis,
namely that the total number of particles is no longer fixed. During the cooling strokes, the evaporative
cooling process will result in a decrease in particle number, precluding the possibility of a completely closed
thermodynamic cycle. However, this does not mean our analysis lacks applicability.

The simplest scenario under which our results remain valid is if the number of particles is sufficiently
large, such that the fraction lost during each cooling stroke remains effectively zero. Furthermore, for an
engine operating below the critical temperature, the total number of particles is not a thermodynamic
variable, with the number of particles in the thermal cloud being determined solely by the temperature and
frequency. Thus for the case of an engine operating fully in the condensate regime, as long as the number of
particles lost to evaporative cooling remains low enough that the assumption of the thermodynamic limit is
still valid, our results will remain applicable.

5.3. Concluding remarks
In this work we have examined both the quasistatic and endoreversible performance of an Otto cycle with a
working medium of a harmonically confined Bose gas. We have shown that when the cycle is operated
above the critical temperature, the EMP is equivalent to the Curzon–Ahlborn efficiency. However, when the
cycle is operated below the critical temperature the EMP can significantly exceed the Curzon–Ahlborn
efficiency. We have demonstrated that the power output of such a cycle is optimal when the number of
particles in the condensate is maximized during the compression stroke and the number of particles in the
thermal cloud is maximized during the expansion stroke. This enhanced power output is fundamentally an
effect of the indistinguishable nature of quantum particles, arising from the fact that the particles in the
zero-momentum state can be compressed at no work cost.

BECs show much potential for the development of ultra-high precision sensors [41] and for applications
in quantum information processing [42]. However, in order to optimally implement BEC-based devices we
must first understand their thermodynamics in a device-oriented context. Heat engines provide just such a
framework. Here we have shown that the unique properties of the BEC phase can be leveraged to enhance
heat engine performance. As the BEC phase is a fundamentally quantum state of matter, this is a
demonstration of a thermodynamic ‘quantum advantage.’

It has also been demonstrated that the phenomena of Bose condensation can occur outside the realm of
ultra-cold atomic gasses, such as in magnons, quasiparticle spin excitations in magnetic systems [43].
Magnon condensates have the distinct advantage of surviving at much higher temperatures, even up to
room temperature [44]. Such systems may provide an ideal platform for experimental implementations of a
BEC engine. Strongly coupled photon-matter excitations, known as polaritons [45, 46], can also exhibit
condensation. Polaritons are a fundamentally nonequilibrium system [46], however, and their
nonequilibrium nature would have to be carefully accounted for in any treatment of their thermodynamics.

In this paper we have considered a BEC operating in the quasistatic and endoreveresible regimes. In the
endoreversible regime, the protocol by which the frequency is varied during the compression and expansion
strokes is irrelevant, as long as the condition of local equilibrium is maintained. Extending this work to the
fully nonequilibrium regime would allow for an exploration of non-equilibrium, finite-time effects, such as
the impact of specific ramp protocols on the engine performance. In reference [27] it was shown that work
can be extracted from a BEC in the nonequilibrium regime by varying the nonlinear interaction strength of
the BEC through the use of Feshbach resonances. Extending our analysis to the nonequilibrium regime
would introduce the possibility of a cycle that can leverage both variations in the nonlinearity strength and
external trapping potential. In principle, the work extracted from a BEC engine could also be employed to
refrigerate another coupled gas. This might provide an avenue towards an effective means of cooling
ultra-cold atomic vapors beyond the evaporative or laser cooling paradigms. We leave an exploration of
these questions and more as potential topics for future work.
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Appendix A. Isentropic condition

In this appendix we will derive the relationship between the frequency and temperature that maintains the
isentropic condition for the compression and expansion strokes. From equation (12) we know that for
T � Tc the entropy is given by,

S(T,ω) = kB

(
kBT

�ω

)3

ζ(3)

[
4

N

(
kBT

�ω

)3

g4(z) − ln(z)

]
. (A.1)

Noting that the entropy for T < Tc is simply a special case of equation (A.1) with z = 1, if we can
determine a relationship that maintains dS = 0 for arbitrary z we know that it will hold both above and
below the critical temperature. As S = S(T,ω) we can express the isentropic condition as,

dS =

(
∂S

∂T

)
ω

dT +

(
∂S

∂ω

)
T

dω = 0. (A.2)

Re-arranging equation (A.2) we arrive at equation (25),

dω

dT
= −

(
∂S
∂T

)
ω(

∂S
∂ω

)
T

. (A.3)

Taking the appropriate derivatives of equation (A.1) we arrive at the cumbersome expression,

−
(
∂S
∂T

)
ω(

∂S
∂ω

)
T

=
ω

T

⎛
⎝

[
24k3

BT3g4(z)z − NT�
3ω3 ∂z

∂T + z
(

4k3
BT3 ∂g4(z)

∂z
∂z
∂T − 3N�

3ω3 ln (z)
)]

[
24k3

BT3g4(z)z + N�3ω4 ∂z
∂ω

− z
(

4kBT3ω ∂g4(z)
∂z

∂z
∂ω

+ 3N�3ω3 ln (z)
)]

⎞
⎠ . (A.4)

Let us consider the ansatz that the temperature–frequency relationship that maintains the isentropic
condition is identical to the relationship found for a single-particle harmonic Otto engine in reference [23],
that is TAωh = TBωl and TCωl = TDωh. If this is the case, then we need to show that the right-hand side of
equation (A.4) simplifies to ω/T. Thus our ansatz is verified if we can show the term in the large () in the
equation (A.4) is equal to one. Examining equation (A.4) we see that there are two conditions under which
this will be true. Either (

N�
3ω3 − 4k3

BT3z
∂g4(z)

∂z

)
= 0, (A.5)
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or (
T
∂z

∂T
+ ω

∂z

∂ω

)
= 0. (A.6)

Let us consider the first condition, presented in equation (A.5). This condition will be satisfied if,

z
∂g4(z)

∂z
=

N

4

(
�ω

kBT

)3

. (A.7)

The function gν(z) obeys the recurrence relation [10],

gν−1(z) =
∂

∂ ln(z)
gν(z), (A.8)

which we can use to express equation (A.7) as,

g3(z) =
N

4

(
�ω

kBT

)3

. (A.9)

However, using equation (8) we know that,

g3(z) = N

(
�ω

kBT

)3

. (A.10)

Thus, the first condition simplifies to 1 = 1/4, which can never be satisfied.
Next we examine the second condition, presented in equation (A.6). This can be rewritten,

T
∂z

∂T
= −ω

∂z

∂ω
. (A.11)

By applying the chain rule, along with equation (8), we arrive at,

∂g3(z)

∂ω
=

∂g3(z)

∂z

∂z

∂ω
= 3N

(
�

kBT

)3

ω2. (A.12)

Thus,
∂z

∂ω
= 3N

(
�ω

kBT

)3 1

ω

[
∂g3(z)

∂z

]−1

. (A.13)

Similarly, we can again apply equation (8) to find,

∂g3(z)

∂T
=

∂g3(z)

∂z

∂z

∂T
= −3N

(
�ω

kB

)3 1

T4
. (A.14)

Therefore,
∂z

∂T
= −3N

(
�ω

kBT

)
1

T

[
∂g3(z)

∂z

]−1

. (A.15)

Finally, comparing equations (A.13) and (A.15) we confirm that equation (A.11) is indeed true and holds
for arbitrary z. Consequently, the linear relationship holds for all temperatures with no approximations.

Appendix B. Numerical fugacity calculation

In this appendix we verify the fugacity found using the third-order analytical approximation using a direct
numerical calculation. In the numerical case, the fugacity is found by solving for the chemical potential at
which the average particle number, determined by summing over the first 10 000 state occupations of the
Bose–Einstein distribution, is equivalent to the total particle number. The temperature range and trap
frequency parameters were chosen to be comparable to those used for the example cycle in figure 4. We see
in figure B1 that the analytical approximation and numerical results show very good agreement, with the
third-order approximation deviating only slightly when very close to the critical temperature.
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Figure B1. Comparison between numerical calculation (red dots) and analytical third-order approximation (black line) for the
fugacity of a 60 000 boson system. Trap frequency was taken to be ω = 150 s−1.

ORCID iDs

Nathan M Myers https://orcid.org/0000-0002-9903-2859
Francisco J Peña https://orcid.org/0000-0002-7432-0707
Oscar Negrete https://orcid.org/0000-0002-2412-8602
Gabriele De Chiara https://orcid.org/0000-0003-3265-9021
Sebastian Deffner https://orcid.org/0000-0003-0504-6932

References

[1] Bose S N 1924 Z. Phys. 26 178–81
[2] Einstein A 1924 Akand. Wiss 22 261
[3] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198–201
[4] Davis K B, Mewes M-O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969
[5] Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995 Phys. Rev. Lett. 75 1687
[6] Bradley C C, Sackett C A and Hulet R G 1997 Phys. Rev. Lett. 78 985
[7] Becker D et al 2018 Nature 562 391–5
[8] Ramanathan A, Wright K C, Muniz S R, Zelan M, Hill W T, Lobb C J, Helmerson K, Phillips W D and Campbell G K 2011 Phys.

Rev. Lett. 106 130401
[9] Huang K 2009 Introduction to Statistical Physics (London: Chapman and Hall)

[10] Pathria R K and Beale P D 2011 Statistical Mechanics 3rd edn (Boston: Elsevier)
[11] Pitaevskii L P and Stringari S 2016 Bose–Einstein Condensation and Superfluidity (International Series of Monographs on Physics

No. 164) 1st edn edn (Oxford: Oxford University Press)
[12] Deffner S and Campbell S 2019 Quantum Thermodynamics (Bristol: Morgan and Claypool)
[13] Scully M O, Zubairy M S, Agarwal G S and Walther H 2003 Science 299 862
[14] Scully M O, Chapin K R, Dorfman K E, Kim M B and Svidzinsky A 2011 Proc. Natl Acad. Sci. 108 15097
[15] Abah O and Lutz E 2014 Europhys. Lett. 106 20001
[16] Roßnagel J, Abah O, Schmidt-Kaler F, Singer K and Lutz E 2014 Phys. Rev. Lett. 112 030602
[17] Hardal A Ü C and Müstecaplıoğlu Ö E 2015 Sci. Rep. 5 12953
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