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Abstract

A population of compact object binaries emitting gravitational waves that are not individually resolvable will form
a stochastic gravitational-wave signal. While the expected spectrum over population realizations is well known
from Phinney, its higher-order moments have not been fully studied before or computed in the case of arbitrary
binary evolution. We calculate analytic scaling relationships as a function of gravitational-wave frequency for the
statistical variance, skewness, and kurtosis of a stochastic gravitational-wave signal over population realizations
due to finite source effects. If the time derivative of the binary orbital frequency can be expressed as a power law in
frequency, we find that these moment quantities also take the form of power-law relationships. We also develop a
numerical population synthesis framework against which we compare our analytic results, finding excellent
agreement. These new scaling relationships provide physical context to understanding spectral fluctuations in a
gravitational-wave background signal and may provide additional information that can aid in explaining the origin
of the nanohertz-frequency signal observed by pulsar timing array campaigns.

Unified Astronomy Thesaurus concepts: Gravitational wave astronomy (675); Gravitational wave sources (677);
Gravitational waves (678); General relativity (641); Compact objects (288); Astrophysical black holes (98);
Supermassive black holes (1663); LIGO (920); Astrostatistics (1882); Astronomical simulations (1857); Neutron
stars (1108)

1. Introduction

With strong evidence for a nanohertz-frequency gravita-
tional-wave (GW) background (GWB) signal recently pre-
sented by international collaborations of pulsar timing arrays
(PTAs; Agazie et al. 2023a; Antoniadis et al. 2023a; Reardon
et al. 2023; Xu et al. 2023), attention is now shifting to the
elusive nature of its origin. While a population of GW-radiating
supermassive black hole binaries (SMBHBs) seems the most
likely, many models of early-Universe processes can be formed
to explain the PTA data (e.g., Agazie et al. 2023b; Antoniadis
et al. 2023b; Afzal et al. 2023; Smarra et al. 2023).

In the simplest model of an astrophysical GWB one usually
assumes a statistically isotropic distribution of SMBHBs across
the sky, where the binary orbital evolution at PTA frequencies
is driven entirely by the emission of GWs, resulting in a power-
law characteristic strain spectrum with µ -( )h f fc

2 4 3 (Phin-
ney 2001). However, this relation is in fact an average over
many realizations of an SMBHB population, and several
studies have shown that fluctuations in this spectrum are
expected (e.g., Sesana et al. 2008; Roebber et al. 2016).

Recent work has attempted to account for binary population
variance in the spectrum and to distinguish between astro-
physical and cosmological signal origins. This has included
comparing the spectra of cosmological models against a power
law (Kaiser et al. 2022; Afzal et al. 2023), fitting Gaussian
processes or neural networks that are trained on many
realizations of simulated astrophysical GWBs to PTA data
(Taylor et al. 2017; Afzal et al. 2023; Bonetti et al. 2024),

searching for anisotropy (Agazie et al. 2023c) that may be
frequency dependent (Gardiner et al. 2024), quantifying the
discreteness of the GWB at high frequencies (Agazie et al.
2024), and testing the Gaussian ensemble model given a finite
population of GW sources (Allen & Valtolina 2024).
However, there has been little work to compute the expected

variance or higher moments of the GWB signal for a finite
population of GW sources. This could be applied to model
selection and parameter estimation of the GWB to improve
upon the simplistic power-law model for a binary population
and provide additional leverage against which other signal
models can be compared. There is a brief discussion of this in
Jaffe & Backer (2003) in terms of the moment generating
function of ( )h fc

2 , while Sato-Polito & Zaldarriaga (2024)1 re-
analyzed the NANOGrav 15 yr data set (Agazie et al.
2023a, 2023b) with a GWB spectral model that considers
deviations from a power law due to a finite population of
SMBHBs. However, explicit scaling relationships for variance,
skewness, and kurtosis of the distribution of characteristic
strain as a function of frequency were not provided, and the
calculations assumed that binaries were only evolving through
GW emission in both works. Additionally, Renzini & Golomb
(2024) investigated the GWB detection capabilities of LIGO-
Virgo-KAGRA (LVK) given uncertainties in the source
population from single event analyses. In this Letter, we
compute the variance and higher-order moments of the GWB
for a general finite population of GW sources that create an
unresolved GWB. While here we consider only population
finiteness effects, we note that GW signal interference will in
general also contribute to the variance and higher moments of
the GWB. We provide explicit frequency-scaling relationships
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for arbitrary binary evolution and compare directly to many
numerically synthesized populations. These results are relevant
not only for SMBHBs in the PTA frequency regime but for
other sources of a GWB across the GW frequency spectrum,
including LVK (e.g., Abbott et al. 2021) and LISA (Digman &
Cornish 2022; Babak et al. 2023; European Space
Agency 2024). One can regard this work as a generalization
of Phinney (2001) to higher moments of the GWB strain
distribution.

This Letter is laid out as follows. In Section 2 we introduce a
framework to model a finite population of GW sources, which
we then use to compute the mean, variance, skewness, and
kurtosis of the GWB spectrum across realizations of the
population. In Section 3 we develop a population synthesis
model derived from Sato-Polito & Kamionkowski (2024,
hereafter SK23). The comparison between our analytical and
numerical results is shown in Section 4, followed in Section 5
by a discussion of how our new results could aid in answering
the origin question for the PTA signal.

2. GW Strain Spectrum from a Binary Population

The cosmological energy density in GWs, as a fraction of
closure density, and as a function of frequency, is given by
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where ρGW is the energy density of GWs, ρc is the closure
density, f is the observed GW frequency, H0 is the Hubble
constant, and ( )h fc

2 is the squared characteristic strain. Within
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ΩGW( f ) is a quadrature sum of GW strain amplitude, h, from
each source (Sesana et al. 2008):
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where N is the number of sources, h is the GW strain amplitude
from a single GW source, the subscript r denotes the rest frame
of the source such that fr= (1+ z)f, and q


are parameters of the

source. For example, for populations of SMBHBs, q

includes

the chirp mass and redshift z of each SMBHB. We denote
the binning of sources within a logarithmic frequency bin as an
integral over frequency divided by D fln , which effectively
averages ΩGW( f ) across the log-frequency bin.

We compute the number of binaries per bin of GW
frequency and source parameters q


by

q q
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where n is the number of SMBHBs per unit comoving volume,
Vc. The quantity df/dt describes the dynamical evolution of the
SMBHB and is related to the typical amount of time that a
binary spends emitting at a given frequency (also known as the
residence time), f/(df/dt). For a circular SMBHB evolving
entirely due to the emission of GWs, df/dt∝ f 11/3

(Peters 1964). Other binary hardening drivers, such as

eccentricity of the binary orbit, three-body interactions with
stars in the stellar loss cone, or interactions with a circumbinary
gas disk, will result in different spectral indices for the power-
law relation (Kocsis & Sesana 2011; Sampson et al. 2015;
Burke-Spolaor et al. 2019). For example, for three-body stellar
scattering, df/dt∝ f 1/3, while different models of gas interac-
tions can result in df/dt∝ f 10/3 or ∝f 4/3. Hence, we model the
frequency evolution of the binary as df/dt∝ f λ, where λ is a
free parameter. With λ= 11/3 for GW emission alone, the
GWB spectrum has the following power-law form:
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where Aref is the strain amplitude measured at a reference
frequency fref, and α= (7/3− λ)/2=−2/3.
The original calculation from Phinney (2001) can be further

generalized by considering the distribution of SMBHB source
positions,
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where Ŵ is the direction of propagation of a GW.
SK23 adopt this form and discretize the GW source

populations as follows. The sky is divided up into infinitesimal
cells with unit vector Ŵi pointing toward the center of cell i. In
each cell, there is exactly zero or one GW source within the
frequency bin - +D D

⎡⎣ ⎤⎦f fln , lnf fln

2

ln

2
. If Ni is the number of

binaries in cell i, then the expected number of binaries in each
cell is
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where á ñ· denotes expectation over sky position. Note that, by
definition, =N Ni i
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where ò pá ñ = W á ñ = á ñˆN d N N4i i i , the expected number of
binaries in a given realization. This agrees with Equation (2).
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Integrating over sky positions Ŵi and Ŵj and binary parameters
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Integrating over frequency binD fln j, we can then compute the
variance on ΩGW( f ):
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Since á ñ µ µ µ l-N dN d f fdt df fln r
1 , D µf fln 1 , and

h( f )∝ f 2/3, we get the following relation:
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We derive the mean and variance of various useful
parameters related to ΩGW( f ) in Table 1, using the standard
transformation + =[ ] [ ]aX b a XVar Var2 for random variable
X and constants a, b. Note that our results agree with the
frequency relation in Equation (29) of Mingarelli et al. (2013),
where they compute
s W W µ =-( ( )) ( )f f f f fGW GW

1 2 4 3 11 6, where σ2=Var.
We also see that upon taking the ratio of the variance to the
mean, the frequency scaling no longer depends on the binary
evolution parameter λ, thus creating a clean probe of the
Poissonian statistics of the binary population without the need
to specify the dynamical mechanisms of binary decay.

The calculations for skewness and excess kurtosis on
ΩGW( f ) proceed in much the same way. The skewness is a
measure of the asymmetry of a distribution about its mean,
where a positive skewness indicates that most of the mass of
the distribution is to the right of the mean, and vice versa. The

excess kurtosis is a measure of the extremities of deviations
from the mean (i.e., outliers) relative to a Gaussian distribution,
where a positive kurtosis indicates more extreme outliers
resulting in wider tails, and a negative kurtosis indicates fewer
extreme outliers and a thinner tail, compared to a Gaussian
distribution. Note that Skew[aX+ b]= Skew[X] and Kurt
[aX+ b]=Kurt[X]; therefore, the skewness and kurtosis are
equal between linear transforms of ΩGW.
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The skewness and kurtosis are always positive. We derive the
following frequency relations, which are relevant for all linear
transformations of ΩGW:
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We now see that taking the ratio between the kurtosis and the
squared skewness removes all frequency dependence, provid-
ing a clear prediction for a stochastic GW signal generated by a
Poisson-distributed binary population.

3. Population Synthesis

We simulate 107 realizations of a population of SMBHBs.
We use a Schechter-based model to describe the number
density of SMBHBs per unit redshift and chirp mass
(Middleton et al. 2015; see also Sesana et al. 2008; Agazie
et al. 2023b; SK23):
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where n0 is the normalized merger rate,* is the characteristic
mass, α is the mass spectral index, z0 is the characteristic
redshift, and β is the redshift spectral index. (See Middleton
et al. 2015 for details.) To create the population of SMBHBs,
we Poisson sample the number of sources in each frequency,
chirp mass, and redshift bin such that (Sesana et al. 2008;
Middleton et al. 2015; Agazie et al. 2023b)
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In our analyses, we implement the five different models used
in SK23, calibrating n0 such that » ´ --A 2 101 yr

151 at
f= 1 yr−1, as was found in Agazie et al. (2023a). We model
a circular binary whose evolution is purely driven by GW

Table 1
A Table of Relationships between Different Quantities Relative to the

Fractional Energy Density ΩGW

Scaling Mean Variance

ΩGW( f ) L f 13/3−λ f 26/3−λ

( )h fc
2 f−2ΩGW f 7/3−λ f 14/3−λ

Sh( f ) f−3ΩGW f 4/3−λ f 8/3−λ

Sδt( f ) f−5ΩGW f−2/3−λ f−4/3−λ

Note. Assumes an SMBHB frequency evolution of df/dt ∝ f λ. Skewness and
kurtosis scale as f λ/2 and f λ, respectively, for all quantities. Featured quantities
include: squared characteristic strain hc

2; the one-sided power spectral density of
the GWB Fourier modes Sh; and the one-sided power spectral density of pulsar
timing residuals induced by a GWB Sδt.
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emission, and hence λ= 11/3. Our population synthesis code
is available on GitHub.2

4. Results

We now compare the 107 realizations of synthesized
SMBHB populations against our analytical results. Given that
λ= 11/3 for circular SMBHBs hardened by GW emission,
from Table 1 we expect the following frequency relationships
in our results: ΩGW( f )∝ f 2/3, variance W µ[ ( )]f fVar ;GW

5

Skew( f )∝ f 11/6; Kurt( f )∝ f 11/3.
In Figure 1, we show the mean, median, and 68% and 95%

confidence intervals of simulated GWB spectra across 107

realizations of Model 3 from SK23 in terms of ΩGW( f ). We see
that the mean follows the expected ΩGW( f )∝ f 2/3 relation that
we would expect from a GWB sourced from a finite population
of circular SMBHBs, while the spread in the spectrum
increases as frequency increases. We show the 99% confidence
interval for two frequencies, f= 7.9 nHz and f= 32 nHz, as
vertical lines to further show the increase in the width of the
distribution as frequency increases. In the right-hand panel, we
show the shape of the distribution of ΩGW( f ) across the 107

realizations at these two frequencies. We see that as frequency
increases, the distribution widens, and hence the variance
increases. The mass of the distributions is also to the left of the
mean, and they become more asymmetrical and feature more
extreme outliers (as shown by the wider tail) as frequency
increases. This suggests positive skewness and positive excess
kurtosis, which increases with increasing frequency, which
agrees with our interpretation of Equations (13) and (14).

Figure 2 shows the mean, variance, skewness, and kurtosis
of our 107 GWB realizations as a function of frequency for the
five models defined in SK23. Since we defined n0 in each
model such that » ´ --A 2 101 yr

151 (Agazie et al. 2023a), it is
expected, and observed, that the mean spectrum of each model
is identical. Comparing the computed variance of the GWB to
the guiding lines of ∝f 5 shows excellent consistency. As we
get to higher-order moments, the effect of having a finite
number of samples to approximate and analyze the distribution
becomes apparent. For Models 1 and 2, the skewness and
kurtosis follow the expected relation very well, despite some
instability at higher frequencies. The skewness of Model 3
follows the frequency relation well across all frequencies too;

however, for high frequencies, the kurtosis slightly deviates
from the expected f 11/6 relation. For Models 4 and 5, the
skewness and kurtosis follow the correct frequency relation at
lower frequencies but deviate from this relation at higher
frequencies. We attribute this simply to a limited sample size.
Some of these models have very long tails dominated by rare
massive binaries, and sampling a population realization where
the GWB at this frequency deviates so far from the mass of the
distribution to explore these tails is extremely unlikely. Hence,
we underestimate the skewness and kurtosis at these frequen-
cies. To create 107 realizations, we ran our code for 12 hr
across 100 CPUs for each model. Running at least 108–9

realizations could begin to ameliorate this; however, this would
be computationally expensive. We also note that in Model 5 at
∼6 nHz there is a deviation from the expected skewness and
kurtosis; this is due to a single extreme outlier in one
realization. Removing this point removes this deviation, and
the measured skewness and kurtosis are consistent with our
expectations.
The magnitude (and numerical stability) of the variance,

skewness, and kurtosis at high frequencies are model
dependent. The populations that result in the largest variance
and instability in the spectra are models that have a larger
characteristic mass*, which controls the exponential cutoff
to the number of high-mass binaries in Equation (17). In these
models where very high-mass SMBHBs are more likely, their
large strain amplitudes cause them to dominate the GWB
spectrum such that the expected number of SMBHBs in these
frequency bins is ( ) 1 . Therefore, some realizations will not
have a binary in these bins at all, while others will, resulting in
a large variance (and skewness and kurtosis) of the GWB
spectrum. To investigate the effect of the characteristic mass on
the distribution of the spectrum, we create two sets of 107

realizations of a Model 3 population, where we change the
characteristic mass to =*log 7 and =*log 9 (and
normalize n0 as required to maintain -A1 yr 1).
We show the results of these simulations in Figure 3.

Increasing the characteristic mass increases the variance of the
GWB, which strongly follows the f 5 dependence from Table 1.
For the model with =*log 9, we see in the left panel that
the mean spectrum across realizations is outside of the 68%
confidence interval, suggesting strong influence by a small
number of realizations with large ΩGW at high frequencies,
corresponding to a small number of SMBHBs in those

Figure 1. Gravitational-wave background from 107 realizations of a binary population described by Model 3 SK23. Left: we plot the mean and median cosmological
energy density as a function of GW frequency. The blue contours represent the 68% and 95% confidence intervals of the spectra, and the orange and green lines
represent the 99% confidence interval at two selected frequencies. For comparison, we also plot a ∝f 2/3 spectrum as expected from a population of circular SMBHB,
inspiraling due to GW emission only. Right: the GWB distribution across 107 realizations for two selected frequencies, noted in the left plot. As frequency increases,
the distribution is wider; hence the variance, skewness, and kurtosis increase.

2 https://github.com/astrolamb/pop_synth
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realizations. However, for the majority of realizations there are
no binaries and hence no GWB in these frequency bins,
causing the median spectrum to depart from the mean.

Decreasing *log results in decreasing variance across the
spectrum because of the exponential cutoff at a relatively low
mass, which leads to a large number of low-mass (hence low-
strain-amplitude) binaries to create a GWB consistent with

= ´ --A 2 101 yr
151 . The 68% confidence interval for

=*log 7 is very narrow and cannot be seen in Figure 3.
In the right panel of Figure 3, we compare the measured
variance for the three choices of *log (shown by markers)
against the analytically derived variance in Equation (11)
(plotted lines), showing excellent consistency.

5. Discussion

We derived analytical scaling relationships for the variance,
skewness, and kurtosis of the GWB spectrum across realiza-
tions of a finite population of GW sources for the first time. For
a binary population hardened by GW emission, we find that the
mean, variance, skewness, and kurtosis of ΩGW( f ) scale as
f 2/3, f 5, f 11/6, and f 11/3, respectively. We created simulated
populations of SMBHBs and compared the spectral moments
to our analytical forms, finding excellent agreement.

In addition, our approach can compute the moment statistics
of the GWB spectrum for any df/dt. For example, we expect
that SMBHBs interact with their galaxy environments at larger
separations (hence lower GW frequencies), resulting in
accelerated GW evolution in this frequency range. Assuming
that each mechanism being considered follows a power-law

relation lf i for each mechanism i, we can model df/dt as

ål= = l( ∣{ }) ( )df

dt
g f c c f, , 19i i

i
i i

for coefficients ci, which depend on other binary and
environmental properties. Furthermore, while this Letter
considers only circular binary populations, one could extend
our formalism to populations with eccentric orbits.
We have shown our analytical results for linear transforma-

tions of the GW cosmological energy density, ΩGW( f ).
However, other useful quantities involve nonlinear transforma-
tions of ΩGW( f ), the most notable of which is the rms
characteristic strain hc( f ). Transforming these variables
requires an expansion of the variable about the mean, and
applying the statistic to that expansion. To leading order this
gives Var[hc( f )]∝ f 7/3 for GW-hardened binaries, but this
assumes that fluctuations about the mean are small. We have
tested this against our numerical simulations, observing good
agreement at low frequencies but poor performance at higher
frequencies for models in which large strain outliers are more
probable, e.g., low characteristic redshift and high character-
istic chirp mass.
These results could be used in exploring the origin of GWB

signals. For example, in PTA science the standard astrophysical
GWB model is a power-law spectrum. However, a single
population realization’s spectrum will deviate from a power
law. Hence, including information on higher-order moment
statistics could lead to more robust analyses to account for
spectral excursions. One could directly fit SMBHB population
models to PTA data with this information (Sato-Polito &
Zaldarriaga 2024), bypassing computationally expensive

Figure 2. Comparing the mean, variance, skewness, and kurtosis of 107 realizations of the GWB as a function of GW frequency for the five models defined in SK23.
The gray lines represent the general frequency scaling relation for the given statistic in the case of λ = 11/3, which are ΩGW( f ) ∝ f 2/3, Var[ΩGW] ∝ f 5, Skew ∝ f 11/6,
and Kurt ∝ f 11/3. For all models, we see strong agreement with the relations found in Table 1.
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simulations and machine learning (Taylor et al. 2017; Agazie
et al. 2023b; Shih et al. 2024) using the methods developed in
Lamb et al. (2023). This will enable more refined GWB and
noise estimation in PTA data if the GWB is assumed to be of
astrophysical origin. Indeed by adopting a more general
dynamical model like Equation (19) in our calculations, one
could leverage higher statistical moment information to probe
the dynamics of SMBHB evolution in the subparsec regime.

PTA spectral characterization is likely too insensitive at
present to accurately measure skewness and kurtosis, but these
higher-order moments could be useful in the future. Mean-
while, the future LISA mission will be sensitive to several
stochastic signals, such as cosmological stochastic back-
grounds from first-order phase transitions, cosmic strings, and
primordial black holes, a stochastic foreground from Galactic
white dwarf binaries, and potentially backgrounds from
extragalactic stellar-mass black hole binaries and extragalactic
white dwarf binaries (Farmer & Phinney 2003; Babak et al.
2023; Colpi et al. 2024). Incorporating information on the
statistics of spectral deviations from simple power-law models
could help LISA analyses distinguish astrophysical from
cosmological GWB signals.

Finally, beyond the population finiteness effects studied
here, the additional influence of GW signal interference
between sources will contribute as a source of (cosmic)
variance (Allen 2023; Allen & Valtolina 2024) and potentially
to higher statistical moments of the GWB spectrum.
Frequency-scaling relationships for signal interference effects,
and the relative importance of population finiteness and signal
interference, will be explored in future work.
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