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ABSTRACT

Calculations of infrared singularities in non-Abelian (Yang-Mills) gauge
theories and in particular Quantum Chromodynamics are reported in the leading-
logarithm approximation. Possible applications to hadron physics are discussed
such as 1) an exolanation ot the quark counting rules for exclusive fixed-angle
cross sections, 2) an indication of an infrared mechanism for quark confinement
and 3) a picture of hadronic matter at large interquark distances resulting from
the assumption of very strong long range forces between colored quanta.
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THE INFRARED PROBLEM IN COLOR DYNAMICS

INTRODUCTION

In recent years gauge theories have dominated theoretical thinking in parti-
cle physics and with good reason: they provided us with unified, renormalizable
models of weak and electromagnetic interactionsl; and they also furnished us with
a model of strong interactions such as Quantum Chromodynamics (QCD) in which
interactions between quarks become vanishingly weak at short distances2 - an
explanation for (approximate) scaling in deep inelastic experiments. Furthermore,
it seems that gauge theories are the only field theories capable of performing
these two feat53 - an indication that perhaps this time we are on the right track.

The dynamics of non-Abelian (Yang-Mills) gauge theories with unbroken symme-
try such as QCD is at present far from well understood. Only recently, for
instance, have we come to realize that the structure of the vacuum state in YM
theories is considerably more complexL+ than people ever had reason to suspect on
the basis of their experience with ordinary field theories. Another serious
complication is that the problem of infrared singularities is much more difficult
to handle in YM Theories than in Abelian gauge theories like QED. In these
lectures, I will describe work on the following three areas in which the infrared
behavior of QCD has been examined in order to understand the physics of hadronic
matter:

(1) Quark-counting scaling laws for exclusive cross sections at

high energy and wide angle and form factors at large momentum
transfers.

(2) A signal for quark confinement from infrared singularities.

(3) Hadronic matter for large interquark distances.

Sections 1 and 2 are based on work5 done in collaboration with J.M.Cornwall
at UCLA. The nart of section 3 dealing with gluon chains is based on ref. 6.
All calculations and arguments presented here were based on the Lagrangian

density of QCD:
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14 AW, = eea 34
T Fqu + q(id- -igB-d’)q

which couples a set of vector gauge fields Bt (gluon fields) to a multiplet of
fermion fields q (quark fields). The matrices a) are the group generators in

quark-field space and F;V is the gauge-covariant curl of the gauge field Bi

Here ;1) are the structure constants of the gauge group i.e. SU(3) of color

Jk

and the matrices d3 are normalized according to

i 33y _ k
{da-,d’} = lcijkd
The Lagrangian can accomodate any number of quark flavors n,d,s,c,... each
of which appears as a color triplet.
1. ASYMPTOTIC FREEDOM IN HIGH-ENERGY WIDE-ANGLE EXCLUSIVE SCATTERING

A few years ago Brodsky and Farrar7 and independently Matveev, Muradyan and
Tavkhelidze8 pointed out that the experiments of exclusive high-energy wide-angle

hadronic scéttering are compactly summarized by scaling laws of the form

g%—% SQ_Nf(t/S), s > ©, s/t fixed (1)

where s and t denote the squared c.m. energy and momentum transfer respectively
and
N = total number of quarks of the initial and final
hadrons according to the usual quark model
assignments (meson “ qq, baryon n qqq)
Moreover, the (spin-averaged) electromagnetic form factor of a hadron for large
momentum transfer t behaves like

1-n

F(t) ~ t (2)
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where n is the number of quarks in the hadron. Thus, for example,

o « -8 for wp =+
at s P P
-10
« s for pp » pp
Foa ¢t
T
Foa t 2
p

If these remarkable *

'quark counting" rules are true asymptotic laws for
hadronic reactions and not just a fluke of the present data, they probably re-
flect some fundamental feature of the interactions between quarks at short distan-
ces. Can asymptotic freedom be invoked here ? Brodsky and Farrar noted that

Eq. (1) implies that the relevant amplitude behaves like 52—N/2 and this happens
to be the behavior of any connected tree with N quark legs, provided the basic
interaction between quarks is renormalizable with dimensionless coupling constants.
It could be, for instance, of the Yukawa type qq¢ with ¢ some set of "scalar
gluons" or an Abelian vector-gluon theory ﬁyquu or, of course, it could be QCD.

The connected tree graph of Fig. 1 is an example of a contribution to meson-meson

scattering which, at wide angle, behaves like s™? (dotted lines are gluons)

q +- q
meson{ _ H _ }meson
q 1 H RS q
i I !
1 1 |
i I ' Fig. 1
I i 1
q 5 & —+ q
meson{ i meson
q —— q

To get the meson-meson amplitude this 8-quark amplitude must be appropriately
convoluted by the Bethe-Salpeter wave functions for the mesons. But this will
not change the 5_2 behavior if' the wave functions are sufficiently regular at

short interquark distances. The same is true for all other cases: meson-baryon
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scattering, baryon-baryon scattering and form factors.

The question now arises: why isn't this tree-like behavior modified by locp
diagrams ? What is the behavior of loop diagrams ? The behavior of scattering
amplitudes at high energy and wide angle in field theory has been discussed by a
number of authorsg. The upshot of these investigations may be briefly summarized
as follows:

"In all renormalizable field theories involving no elementary vector fields

(this excludes gauge theories !) the asymptotic power of s associated with a
connected tree graph for a given process is modified by higher-loop graphs simply
by multiplication with some polynomial in 4¢n 5% where A is a renormalization-

A
point mass which is taken to be much larger than all particle masses: s >>A2>>m2".

i
I shall call these powers of en®/A2 ultraviolet logs because they come from
regions in the domain of integration of Feynman graphs where all internal momenta
are of order at least A; or, equivalently, all vertices are concentrated in a
region of space-time of diameter ATl They happen to be the same logs one finds
for a given graph at large Euclidean momenta(if taken proportional to Vs). Thus,
for this class of theories, the renormalization grouplo may be used to discuss the
s + « behavior of the exclusive cross section. In general, the resulting power
of s would be given by the anomalous dimensions of the quark fields at the relevant
UV-stable point. There is, however, no a priori reason to expect that these ano-
malous dimensions vanish so that we get asymptotically the same power of s as that
of the tree graphs. Unless, of course, our theory is asymptotically free in which
case all running coupling constants g(A) go to zero as A + » and the trees would
dominate. But, remember, for a field theory to be asymptotically free it must
contain non-Abelian gauge (vector) mesonssand therefore it does not belong to the
above category (i.e. the class of theories with only UV logs).
And so, to continue our search for an explanation of the quark counting
rules within the framework of field theory, we turn to the study of the s » =
1limit in theories with vector mesons and, in particular, non-Abelian gauge theories.

It turns out that, in vector theories, in calculating the s + = behavior of



individual graphs, one obtains powers of &ns not only from the UV regions we en-
countered before but also from regions where certain virtual mcmenta of vector
mesons are much smaller than A (or s). A new mass scale is thus introduced
which can be taken to be of the order of the vector meson masses if the vector
mesons are massive, or, as in QCD, it can measure the departure of the momenta of
all external colored particles from mass-shell. Such a departure is necessary
because of infrared divergences of the mass-shell amplitudes. So in QCD besides
the UV logarithms of the type 2n(s/A?), there appear also infrared-induced (IR)
logarithmsubf the type &n(s/M?). We may say that these IR logs come from domains
where not ali vertices of the graph are within a small distance of order A1 from
each other - some vector mesons are allowed to propagate by a finite distance of
order I"I-1

Since we are interested in discussing hadron scattering we must look at
"cluster'" amplitudes in QCD (just like the one in Fig. 1) each cluster of external
quarks representing a hadron. More precisely, we consider the s +  limit of

connected cluster amplitudes (see Fig. 2) by taking the external momenta p; as

follows:
pipj = 0(M) if i,j in the same cluster
= nijs, LS fixed # 0 otherwise
S &+ ©
P P,
(r) p N S (m)
2 P7
Fig. 2
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In Fig. 2, p,1p, is the 4-momentum of one of the pions and PPy = 4 is

the relative quark momentum which will be integrated over after multiplication
by the pion BS wave function %(q) say, and similarly for all hadron clusters.
In what follows we will just discuss the s » » of these cluster amplitudes with
the pi‘s at off-shell values. We do not worry at this point about the on-shell
divergence - we presume it is taken care of by the subsequent q integration and
the hadron wave function ¥(q).

From a study of the asymptotic behavior of cluster amplitudes in perturba-

tion theory there emerges, first of all, an important fact: if all clusters are

. 12
colorsinglets the IR logs cancel completely between graphs of the same order

This is quite analogous to the absence of infrared singularities in elastic scat-
tering of electrically neutral atoms. And since our hadronic clusters are always
color-singlet systems of quarks, it seems at this point that we can forget about
IR logs altogether and that we have at least "explained" the quark-counting rules.
There is, however, one more complication: kight after the first suggestion
of the power laws Eq. (1) and (2) it was pointed out by Landshoff'® that the
contributions of certain disconnected cluster amplitudes apparently dominate
those of Eq. (1) and (2). The simplest case is the one depicted in Fig. 3 for

meson-meson scattering.

n{ }n

Fig. 3

o { Jr

This class of graphs (appropriately convoluted with hadron wave functions)
gives a "pinch" contribution to the hadronic amplitude which behaves like

-3/2
s 7,7, (3)



where Tl and T2 are the (connected) quark-quark scattering amplitudes shown in
Fig. 3. What happens may be simply described in space-time language: quarks

from different hadrons travel long (of order M_l) distances and collide at two
widely separated space-time regions (of size A_l) with amplitudes T, and T, re-

spectively. Since T T, themselves represent wide-angle collisions, unless they

1’
vanish in the s - » limit we would be faced with an 5_3/2 behavior for the hadro-

2 behavior required by Eq. (1). Si-

nic amplitude which would dominate over the s
milar multiple-independent-scattering graphs exist for meson-baryon and baryon-
baryon amplitudes.

So now we must investigate quark-quark scattering inthe s » « limit (at
wide angle). Since we are no longer dealing with color-singlet clusters but with
colored quarks the IR logs no longer cancel. Obviously, it would be interesting
to know if they add up to something simple. Unfortunately, so far what has been
done is a calculation of the leading IR logs in perturbation theory up to sixth
order in the coupling constant g, for various processes. This is far from being

complete or satisfactory. Nevertheless, something strikingly simple is suggested

by these calculations: the IR logs begin to exponentiate just as in the more

familiar case of QED. One may state the result [true at least to O(gs)] for a

general connected cluster amplitude T as follows:

2

= 8 2 2
T = T, 0e®¥P {32ﬂ2(€ cv)ln (s/M9)} (%)

(only leading logs kept)
where Ttree is the tree approximation to T and e, is the eigenvalue of the qua-
dratic Casimir operator for the representation of color SU(3) to which the v-th
cluster belongs. For example, for the quark-quark scattering amplitude Ecv:ucF
where cp is the Casimir eigenvalue for the 3 representation of SU(3). Note, -
incidentally, that for color-singlet clusters, Cv=0 so Eq. (4) is consistent with
our previous finding that there are no IR logs whatsoever (leading or non-leading)

if all the clusters are color-singlets.

So, finally, if we accept Eq. (4), we see that T, and T, in Eq. (3) vanish
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faster than any power of s and the Landshoff graph contributions are suppressed.
We may then conclude that asymptotic freedom is indeed the explanation for the
quark-counting ruleéHbut only because infrared effects suppress the probability
of scattering configurations which could require wide space-time separation be-
tween the constituent quarks. This looks like an intriguing hint - perhaps a
related infrared mechanism is basically responsible for the strange fact that the
quark constituents of a hadron never seem to fly apart to reveal themselves as
free isolated particles. I shall pursue this idea and its possible relevance to

quark confinement next.

2. INFRARED SINGULARITIES IN QCD — A SIGNAL FOR CONFINEMENT ?

In gauge theories like QED and QCD in which the gauge symmetry is not
spontaneously broken, matrix elements of physical operators between asymptotic

states containing charged or colored quanta are infrared-divergent when calculated

in perturbation theory beyond the tree approximation level. Also exclusive cross-
sections for gauge meson emission diverge at low momenta. In this section I
shall briefly review the infrared problem in QEDlS and then point out certain
apparent similarities and differences betueen it and QCD - insofar as infrared
singularities in QCD can be organized and understood at present.

Begin with a sinple process in QED like the one shown in Fig. 4. A
(virtual) neutral particle (e.g. a hard photon) represented by the dotted line
produces an e+e- pair. The graph represents the exchange of a photon between the
outgoing charged particles. The "blob" amplitude T, containsall the short range

interactions.

Fig. 4
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The corresponding Feynman integral (assume scalar electrons for simplicity)

2 N (2p,+k) (2p,+k)
=__e__fﬂ 1 2 x T
(2m)4i k2 {(pl+k)2-m2}Kpl+k)—m2}

I

1 o

diverges at k=0 logarithmically. One may introduce an infrared cut-off mass

by replacing the photon propagator by (kz—uz). Then

PiPp
2)SLn(u/M) x TO (5)

I, ~aH(
u>0
where the mass M is related to the inverse range of interactions in T, (and not
necessarily to the electron mass m).
It turns out that if we add up all possible virtual photon exchanges

(including the no photon exchange TO) the result of Eq. (5) exponentiates:

T=II =3 ni, {aHen(u/M I T = T_explaHtn(y/M)} (6)

where
sum of

I'\a{
n

all n-photon-exchange graphs (Fig. 5)

"il""ﬂ” Fig. s

From Eq. (6) we see that T vanishes as u » 0. This is not suprising because it
can be understood clasically: one cannot observe the charged particles separated
from their long range electroﬁagnetic field. In fact, the energy density E(w) of
classical radiation in this case approaches a nonzero constant as the frequency w
goes to zero, and so we expect the number of photons E(w)/w to become infinite.
Now, if we ask for the probability to observe the charged particles plus an inde-

finite number of photons we should get a non-vanishing answer. This expectation



is borne out by a calculation of soft photon emission cross sections.
The graphs for the emission of one photen of momentum ku have a pole at

ku=0 (see fig. 6)

S - + Fig. 6

This implies a logarithmic divergence in the cross-section ¢, as u > 0. We have

|T|2-a JRI . S k ﬁk—)z % {T!2(aHen Q) (7)
0

where Q is some fixed cut-off momentum (which defines what we mean by "soft" pho-
ton). Similarly, the n-photon amplitude has an n-ple pole at vanishing photon
momenta, and it turns out that the corresponding cross-section o, is given by:

o, % 1|2 —17 (aH%n %)“ (8)

10 n!

Thus the inclusive cross section is infrared finite because:

£ oo =12 £ % (oHen DY
n=0 n=0 ** H

IT|2 exploHin %} = |1 2¢h® (9)

In fact, o is finite order-by-order in perturbation theory since expression

(9) is perfectly expandable in powers of a. This is a special case of a more ge-
6

neral theorem: Lee and Nauenberg and independently Kinoshital have shown that in

theories with massless particles (or more generally in quantum systems with infi-

nitely degenerate energy levels) inclusive cross-sections are free of infrared

199



singularities order-by-order in perturbation theory.

Now let us turn to QCD. How much of what we said about QED is also true
in QCD ? The evidence so far is based on leading-logarithm calculations in
perturbation theory and even those are incomplete and scanty. Nevertheless, let
us begin by a process like that of Fig. 4 where a time-like hard photon (dotted
line) turns into a quark-antiquark pair and a gluon is exchanged. The integral
is essentially the same as in QED; we just replace « in Eq. (5) by chz/un.

In higher orders of g, however, we encounter a much larger variety of graphs in
QCD. If we decide to take into account only skeleton graphs (i.e. graphs with no
vertex and propagator insertions) then it can be shown that the leading logs
again exponentiate as in Eq. (6). The vertex and propagator insertions will
almost certainly modify this (see next section) but we may assume here that any-
way T will still vanish as p = 0.

Next, we look at the one-gluon production cross section o].

The new feature of QCD is that the emitted gluon is not "neutral". Thus, it can
exchange soft virtual gluons with all other colored quanta (e.g. the quarks) as

illustrated in Fig. 7

Fig. 7

It turns out that processes with external gluons ''on the mass-shell" i.e.

2 are more singular than those with just

with gluon momenta a; such that q%:u
(massive) external quarks compared at the same order of perturbation theory. The
leading logs are powers of gzlnaxfor gluon amplitudes (as compared to powers of

g?tny  for quarks-only amplitudes). These "double logarithms" are intimately

related to the ones we encountered in our discussion of high energy, wide angle
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limits (Section 1). Again, up to sixth order the double logs for a multigluon

amplitude exponentiate as follows (compare with Eq. (4))

T T
>(
lq

e
tree

2
g 2¢_ M
xp{- Lo An® (—7——) (10)
a2y Y q(v)l }

Vbsy
The external gluons are grouped into clusters of one or more gluons each
cluster having invariant mass of order u. In Eq. (10) c, is the Casimir eigen-
value for the v-th cluster and E(v) is its 3-momentum. Going back to 01 now we
see that, in contrast to the QED case, the exchanges of soft virtual gluons
between the on-shell gluon of momentum 3 (see Fig. 7) and the other colored
particles in the final state provide an exponential damping factor for the ampli-

tude so that instead of Eq. (7) we now have:

o= |T]2

Q d?%q 2
lT‘Zng R exp{- g CAEHZ(U/ial)} (11)

2 2
/G242 (2pq) 16w

The integral in Eq. (11) is finite for u=0 so that

ne

g1

Lim o1/o = c1 < =
w0
Similarly, the n-ple poles of n-gluon-emission amplitudes do not cause loga-

rithmic infinities in on/co since the exponential damping factor (10) (from soft
gluon exchanges) effectively only allows the emission of gluons or gluon clusters
with 3-momenta of order u. Thus on/aO approaches a finite value c, as u>0.
Assuming that the sum over n does not introduce a new kind of divergence, it
seems that the inclusive cross section o:Eon vanishes as u+0 at the same rate
as g . We interpret this result as a signal that in QCD quarks and gluons are
never produced in asymptotic states, i.e. as a signal for confinement.

Note that the suppression of gluons with three momenta much larger than u

occurs only after summation to all orders of perturbation theory for each °h and
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therefore there is no conflict with the Kinoshita-Lee-Nauenberg (KLN) theorem!®

which states that the infrared singularities cancel in the inclusive cross section
order-by-order in perturbation theory. It is really a matter of when the u-0
limit of ¢ 1is taken: if it is taken before summation to all orders of g then
the KLN applies, all &nu's cancel and we get a certain finite answer up to each
order of perturbation theory; but if u is taken to zero after summation to all
orders of g then o vanishes because gluon emission is disallowed.

Note also that the u=0 value of the integral in Eq. (11) behaves as 1/g for
small g indicating that it is not possible to recover the perturbation expansion

for o1/c after u is set equal to zero.

3. LONG RANGE FORCES AND GLUON CHAINS

In our discussion of the infrared singularities of amplitudesinvolving no
external gluons wesimplified our task drastically by admitting only skeleton
graphs. By doing this we missed an important difference between QED and QCD
referring’to the character of the long range forces betwezn quarks.

In QED the behavior of the electromagnetic force at long range is related

to the transverse part of the photon propagator, which, for small values of the

-2 . .
momentum qu, behaves like q to all orders of perturbation theory provided all

charged particles are massive. [%his is because the vacuum polarization tensor
is (i) gauge invariant and (ii) has no charged-particle-production threshold at
q2= O]. Furthermore the infrared singularities of charged-particle vertices and
propagators cancel each other because of Ward-Takahashi identities. This is
illustrated by Fig. 8 where (b), (c¢), (d), (e) and (f) are the propagator and
vertex corrections to the second-order graph (a) for the process virtual

photon =+ efe”. For the present discussion it is more appropriate to introduce
the infréred cut-off u as the departure of the momenta p and p' from mass-shell
and not as a photon mass. Then as y»0, (a) is proportional to afnu and (b) is
pr~portional to a2&np because the insertion of the particle loop in the photon

propagator does not make it more singular. The leading singularity of both (c)
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and (d) is «?%ny but it cancels between them; similarly for (e) and (f). Thus
the sum of (b), (c), (d), (e) and (f) does not modify the &num behavior of (a)
it just amounts to an infrared-regular charge and wave function renormalization.

We can express this by saying that higher-order quantum corrections do not modify

(a) : (b) g
(d) ij :} (f)
(e)

Fig. 8

(c)

the l/.r‘2 long-range character of the electromagnetic force.

The situation in QCD is different: the 1/r? force associated with bare
gluon exchange is modified by higher order corrections. Consider the process
virtual photon+quark-antiquark pair (which is the analogue of y - efe” in QED).

In addition to the graphs of Fig. 8 (where the wavy lines are now gluons) we have
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the graphs of Fig. 9. Note that the vacuum polarization now consists not only
of the quark loop contribution of Fig. 8b but also of that of the gluon loop
Fig. 9a and ghost loop Fig. 9b, both of which have threshold singularities at

qZ:O.

(a) Fig. o

(c) (d)

Although the infrared singular contributions of individual graphs depends
on the gauge, their sum (at least to this order of g) does not and it can be
fully accounted for as a logarithmic modification of the small q2 behavior of the

17

transverse part of the bare gluon propagator in the graph of Fig. 8a. In terms

of the polarization tensor we have:

ab B ab 2 2
Ty (q) = & (6Wq qﬂVM(q)

M(q?) g c1gan(q?/m®)+ ...

for q2<<m2 where q is  space-like and m is the renormalization-point mass (at
which the running coupling constant is of order 1). From an inspection of higher
order corrections it seems that one gets increasing powersof &n(q?/m?) for M(q?).
At present no one knows what these logs add up to and most likely perturbation

theory estimates are not the way to explore the small q2 behavior of the gluon

propagator, since we know that g=0 is an infrared-unstable zero of the
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renormalization-group function B(g). But these logarithms signal what could be

a drastic departure from the q_2 of the gluon propagator Duv’ To see what may be
hapenning, consider two colored quanta (quarks or gluons) r and s located at
points X, and g respectively. From the gluon propagator Duv we derive an instan-

taneous potential according to

U = t(r)a t(s)a U(|;r-;s|) (12)

UCR]D) = 1g20Max b (R x,)

where t(r)a (a=1,2,...,8) are the matrix group generators for particle r. From
the bare gluon propagator Doo(qz)kz,q_2 we get the Coulombic Uw—];|_l, but if the
full propagator behaves like (qz)_z, for example, we get UX];[. In this case

the interaction energy of a quark-antiquark system in a color singlet configurat-
ion would grow linearly with their separation making it impossible to isolate a

quark.

Gluon Chains6

Although we don't know what the small momentum behavior of the gluon pro-
pagator (more precisely: the effective gluon propagator, see above) is, it is
interesting to speculate as to what would happen if indeed it led to a very strong
confining force at long distances. So assume that as a color-singlet quark-
antiquark system is pulled apart the energy required grows linearly or faster
with distance. Then it can be shown that it is energetically favorable to
expend some energy to create a chain of gluons 81380518, joining the quark (q)

to the antiquark (q) along some smooth curve:
8, = Qs 815 Bosenes8s 4= By

The color-spins of the gluons must be coupled to the quarks so that the whole

system is a color singlet (that's obvious) and so that the system {q,gl,gg,...,gk}
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belongs to the 3 representation of color SU(3) for all k. It is straightforward
to verify that this coupling in color space results in an exponential screening
of the forces between q and a. More explicitly, the color part of the wave fun-

ction of the chains is

where ar,i,j are the color indices for the r-th gluon, the quark and the antiquark
respectively and d® is the a-th generator in the spinor representation. Using
Eq. (12) we calculate the expectation value of the interaction energy between the

r-th and s-th quantum in the chain

<lycol IUrslwcol i —1r—s] |
<y >z — - [~'4 (-8) U] x -x )
rs <y v R r s
col.' col.
lr-s|

The factor (-8)" due to the group theory of color is the reason for

having chosen this particular coupling in color space. Thus if I;r+1_;r|: O(m_l)

then |P—S|: O(m|;r~;s|) and we have exponential screening of the long range forces.
In a first estimate of the potential energy of the system we may neglect all

but the nearest neighbor interactions, and check the stability of the chain by

estimating its energy roughly by the relation:

E % 1'1R—1—ng2(R)R_1 (13)

in terms of a length R representing the spacing between gluons. Then each gluon
wave packet can have a spread of at most R and consequently an "uncertainty prin-
ciple" kinetic-energy of at least R_1 which accounts for the first term in Eq.(13).
The expression gZ(R)R_1 is the interaction energy between two nearest neighbors.
The assumptions made about the gluon propagator imply that gZ(R) is large and
negative for R>>m_1 and we also know that g2(R) is small and positive for R<<m_1
(asymptotic freedom). Then a stable minimum is attained for some value of R of
order m [ét which gZ(R)%O(l)]. The energy of the chain is therefore proportional

to its length. Actually, the gluon spacing may vary along the chain so that the
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energy content will be proportional to the length locally (in a coarse-grained
sense).

The chain is stable against splitting in two pieces (q,gl,gz,...,gk} and
{gk+1"'”a} since the pieces, forming a 3 and a 3 color systems respectively,
would be subject to a strong long range mutual attractive force like the one
between q and a (if unscreened by the formation of a chain of gluons between
them).

The chain may split in two when a new quark-antiquark pair is created some-
where along the chain and two color-singlet pieces {q,gl,...,gk,i} and
{q,gk+l,...,a} are formed. These may be easily separated since the strong long
range forces do not act between them. Clearly, the chain may be split into more
than two pieces with the creation of more qq pairs at different points. We have
here the picture of a meson decaying into mesons. Meson processes in general may
be naturally visualized as events in which two chains combine into one (by the
inverse process to the one described above)‘which subsequently is split in two or
more color-singlet pieces. This description of hadronic matter is not much dif-
ferent from certain models of hadrons as relativistic strings with quarks at their
endslB. What is different here is the coarse-grainedness of the chain and the
specific role of color in its dynamics and stability.

Note that baryons may be described in an analogous way for large distances
between the three constituent quarks: three gluon chains are tied at one point
to form a Y with the quarks at the free ends. The color part of the wave function

should be:

21 r
ei'j'k'(d ...d ).,i(d ...d )i (d
where the three chains consist of r,s at t gluons respectively with color indices

a i,j,k are the color indices of the quarks. Again, this is the

127 2%pn4std
unique coupling in color space such that if the Y is cut at any point the two

pieces have total color spins 3 and 3 respectively.

It is instructive to realize that were the fundamental fermions to belong
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to the adjoint representation of color (or any representation contained in a di-
rect product of adjoint representations), it would be possible to screen the long
range forces between say a fermion and an antifermion by surrounding each of them
with a small number of gluons (i.e. a number independent of the distance between
q and i). A gluon chain would then be far from energetically favored. Such
screened (or "bleached") fermions would probably behave like leptons toward each
other or versus ordinary hadronic matter (i.e. color-triplet quarks held together
by gluon chains). The possibility that physical leptons may fit this description
should be kept in mind.

The whole concept of gluon chains may be criticized up to this point as
based on the imprecise notion of an instantaneous color force and certain ad hoc
assumptions about its strength at long range. However, it should be pointed out
that the gluon chain emerges rather naturally when one considers states created
out of the vacuum not by gauge-variant operators like q(x)q(y) but by their gauge-
invariant (path-dependent) generalizations:

¥

Q. (x,y) = q(x)exp{ig [
X

)

dz, B](2)d*}q(y) (14)
C

In Eq. (14) the line integral runs along the space-like curce C from x to

y and the d matrices are ordered along C:

. (n) -
Oc(x,y) = i(lg)nqi(X)di? (x,y)qj(y)
a, a a v %n
(n) 192 “n
%33 (x,y) = (d @ "...d )ij i dznun Lodz(_iyHy oy
22 al an
X Xf leAu (z)) Aum(z ) (15)

Since OC creates meson-like physical states, a matrix element like
<Oc(x,y)J(o)>O where J is some local color-singlet current (e.g. the electroma-
gnetic current) should be non zero. To simplify, take XAV J¥25 6 and consider

> > . -1
<Oc(x,y)J(o)>O for |x-y|large i.e.>>m .
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The n-gluon amplitude <q0(n)

qJ> calculated in perturbation theory will dis-
play powers of gzln\;—§1 which are the configuration space counterparts of the

infrared logarithms we described in Section 2. We may assume that they exponen-

tiate and make <qanaJ>o vanish as \;—;]*w for any fixed n.

— 2
Z4 o

e~~~ 2 . Zr
ol A

e ) Zn zn
N N y
(a) (b)

Fig. 10

However, for the band of terms in the expansion (15) with n « m|;—§| the
situation is different. At the tree approximation level, the planar graph of

Fig. 10a has the color factor
2.1
(@ "...d "da .. (16)

Consider next the one-loop graph of 10b obtained from that of Fig. 10a by
exchanging a virtual gluon between the r-th and s-th gluon lines. If \EP-ZS| is
large the loop integral behaves like Qn\;r—gs\, an infrared singular behavior.

However, in calculating the contribution of this graph to <qonaJ> its color
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(n) -|r-s|

factor(l7)combined with that of & in Eq. (15) yields (-8) just as in the
calculation of <U > before. Thus, all one-loop infrared logarithms like

-+ -+ . . - - . .
En\zr-zs| are suppressed provided |r—s| is large whenever Izp—zsl is large. This
is achieved by a configuration in which the distances between successive points

in the sequence X3Z132pse03Z 5 Y ATE kept bounded (below a common fixed bound)

> >
as |x—y|* ., Such configurations are strikingly similar to gluon chains - look

specifically, at the coupling of the color spins given by (16).

Tree graphs which can be obtained from the planar one by a small number
(<<n) of Tearest neéighbor interchanges still have their infrared singular loop
corrections effectively suppressed by group factors and thus survive as contribu-
tions to the amplitude: these graphs have color factors representing minor local
"disordering" in the coupling given by Eq. (16) which does not disturb either the
screening of the color forces or the stability of the gluon chain. All other
graphs are infrared-suppressed ! This is worth checking in higher orders of per-
turbation theory.

In conclusion, I should emphasize that most of the work I described has its
roots in perturbation theory and in graph-by-graph asymptotic estimates, although
the essential element behind most arguments is exponentiation of infrared logs
which presumes a summation to all orders. Eventually, of course, we hope to be
able to study the infrared problem in Yang-Mills theories directly without having

to get our cues from perturbation theory.
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