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ABSTRACT 

C a l c u l a t i ons of infrared s i ngular i t i e s  in non-Ab e l ian ( Yang- M i l l s )  gauge 
t h e o r i e s  and in part i c ular• Quar1tun1 C�hromodyna m i c s  are rep ort ed in the leading­
l og.::i y ii  thm appr·oximat i o n . Poss i b l e  ap p l i cat i ons to ha rl.ron p h y s i c s  are d i scus sed 
s u c h  a s  1 )  d fl  e xp lanation o t  the quark coun t i ng rules tor e xc l us iv e  f i xed-angle 
cro�,;s s e c t i o r1s , L )  an i r 1 c1 i c a t  i on o f  an i nfrar::: d mec h a n i s m  for quark confineme n-t 

a nd 3 )  a p icturt: ot hadr' o n i c  mCJ t t e r  at l cirge int erq_uaf'k d i stances res u l t i ng from 
t he a s 3 u1npt i o n  o f  very strong lor1g range torces between colored qua D t a . 
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THE I NFRARED PROBLEM I N  COLOR DYNAM I CS 

INTRODUCTION 

In recent years gauge theories have dominated theoretical thinking in parti ­

c l e  phys ics and with good reason : they provided us with unifie d ,  renormalizable 

models of weak and electromagnetic interactions 1
; and they also furnished us with 

a model of strong interactions such a s  Quantum Chromodynamics ( QCD)  in which 

interactions between quarks become vanishingly weak at short distances 2 - an 

explanation for ( approximate ) s c al ing in deep inelastic experiments . Furthermore , 

it seems that gauge theories are the only field theories capable of performing 

these two feats 3 - an indication that perhaps this t ime we are on the right track . 

The dynamics of non-Abelian ( Yang- Mills ) gauge theories with unbroken symme ­

try s uch as QCD is at present far from well understood . Only recent ly , for 

instance , have we come to realize that the structure of the vacuum state in YM 

theories is considerably more complex4 than people ever had reason to suspect on 

the basis of their experience with ordinary field theories . Another serious 

complication is  that the problem o f  infrared s ingularities is  much more difficult 

to handle in YM Theories than in Abelian gauge theories like QE D .  I n  these 

lectures , will describe work on the following three areas in which the infrared 

behavior of QCD has been examined in order to understand the physics of hadronic 

matter : 

( 1 ) Quark-counting scaling laws for exclus ive cross sections at 

h igh energy and wide angle and form factors at large momentum 

transfers .  

( 2 ) A signal for quark confinement from infrared s ingularities . 

( 3 ) Hadronic matter for large interquark distance s .  

Sections 1 and 2 are based on work5 done in collaboration with J . M . Cornwall 

at UCLA . The oart of section 3 dealing with gluon chains is based on ref . 6 .  

All calculations and arguments presented here were based on the Lagrangian 

density of Q CD :  
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which coup l e s  a set of vector gauge fields B i ( gl uon fields ) to a multiplet of 

fermion fields q ( quark fields ) . The matrices dj are the group generators in 

quark-fie ld space and F
i is the gauge-covariant curl µv of the gauge field B i 

µ 

Here ci j k  
are the structure constaniS of the gauge group i . e .  SU( 3 )  of color 

and the matrices dj are normalized according to 

The Lagrangian can accomodate any number of quark flavors n , d , s , c ,  . . .  each 

of wh ich appears as a color triplet .  

1 .  ASYMPTOTI C  FREEDOM IN H I GH-ENERGY WIDE-ANGLE EXCLUSIVE SCATTERING 

A few years ago Brodsky and Farrar
7 

and independently Matveev , Muradyan and 

Tavkhelidze
8 p o inted out that the e xperiments of e xclusive h i gh-energy wide -angle 

hadronic scattering are compactly s ummarized by scaling laws of the form 

�� :\; s 2-Nf ( t /s ) ,  s + 00 ,  s /t fixed ( 1) 

where s and t denote the squared c . m .  energy and momentum transfer respective ly 

and 

N total number of quarks of the initial and final 

hadrons according to the usual quark model 

assignments ( meson � qq, baryon � qqq) 

Moreover , the ( spin-averaged )  electromagnetic form factor of a hadron for large 

momentum transfer t behaves like 

F(  t) � t l-n ( 2 )  
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where n is the number of quarks in the hadron . Thus , for examp l e , 

dCJ 
dt 

� 
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t 
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- 8  
for np TIP 

- 10 
for pp pp 

-1  

- 2  

If  these remarkable " quark counting" rules are true asymptotic laws for 

hadronic react i ons and not j ust a fluke of the present data , they probably re-

fleet some fundamental feature of the interactions between quarks at short d istan-

ces . Can asymptot i c  freedom be invoked here ? Brodsky and Farrar noted that 

Eq . ( 1 ) implies that the relevant amplitude behaves like s
2-N /2 

and this happens 

to be the behavior of any connected tree with N quark legs , provided the bas ic 

interaction between quarks i s  renorma l izable with dimens ionless coupling constants . 

I t  could be , for instance , of the Yukawa type qq¢ w i th ¢ some set of "scalar 

gluons" or an Abe l ian vector-gluon theory qy
µ

qB
µ 

or , of cours e ,  it could be Q C D .  

The connected tree graph of F ig . 1 i s  a n  e xample o f  a contribution to meson-meson 

scattering which , at wide angle , behaves like s- 2  ( dotted l ines are gluon s )  

m e s o n{ � 
q 

: } meson 

Fig . 1 

m e s o n {: q } m e s o n  
q 

To ge t the meson-meson amp l i t ude this 8-quark amplitude must be appropriate ly 

convoluted by the Bethe-Salpeter wave functions for the mesons . But t h i s  w i ll 

ic,t change the s 
-2 

behavior if ·  the wave funct i ons are sufficiently regular at 

short interquark distance s .  The same is true for all other cases : meson-baryon 
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scatterin g ,  baryon-baryon scattering and form factors . 

The question now arise s : why isn ' t  this tree-like behavior modified by loop 

diagrams ? What is the behavior of loop diagrams The behavior of scattering 

ampl i tudes at high energy and wide angle in field theory has been discussed by a 

number of authors
9 . The upshot of these inve st igations may be briefly summarized 

as follows : 

"I n  a l l  renormali zable field theories involving no e lementary vector f i elds 

( th i s  e xcludes gauge theories ! )  the asymptotic power of s associated with a 

conne cted tree graph for a given process is modified by h i gher-loop graph s  s imp ly 

by multiplication with some polynomial in £n � where /I. is a renormalization­
/1.2 

point mass which is taken to be much larger than a l l  particle masses : s » A2 >>m2 ". 
i 

I. shall c a ll these powers of £n
s //1.2 ultraviolet logs because they come from 

regions in the domain of integration of Feynman graphs where all internal momenta 

are of order at least A ;  or , equivalen t ly , all vertices are concentrated in a 

region of space -time of diameter /1.
- 1 . They happen to be the same logs one finds 

for a given graph at large Euclidean momenta( if taken proportional to /S) . Thus , 

for this class of theorie s ,  the renorma l i za tion group 10 may be used to discuss the 

s + behavior of the e xclusive cross section . In general ,  the resul t ing power 

of s would be given by the anomalous dimensions of the quark fields at the relevant 

UV- stable point . There is , however , no � priori reason to expect that these ano-

malous dimensions vanish so that we get asymp t ot ically the same power of s as that 

of the tree graphs . Unless , of course ,  our theory is asymptotically free in which 

case all running coupling constants g ( A )  go to zero as /I. +  00 and the trees would 

dominate . But , remembe r ,  for a field theory to be asymp totically free it must 

3 contain non-Abelian gauge ( ve ctor ) mesons and therefore it does not belong to the 

above category ( i . e .  the class of theories with only UV logs ) .  

And so , to continue our search for an e xp lanation of the quark counting 

rules within the framework of field theory , we turn t o  the study of the s + 00 

limit in theories with vector mesons and , in part icular , non-Abel ian gauge theories . 

It t urns out tha t ,  in vector the orie s ,  in calculating the s -+ 00 behavior' of 
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individual graphs ,  one obtains powers of £ns not only from the UV regions we en-

countered before but also from regions where certain virtual momenta of vector 

mesons are much smaller than A ( or s ) .  A new mass scale is thus introduced 

which can be taken to be of the order of the vector meson masses if the vector 

mesons are mas s i ve , or , as in QCD , it can measure the departure of the momenta of 

all external colored particles from mass-shel l .  Such a departure i s  necessary 

because of infrared divergences of the mass-shell amplitudes .  S o  in QCD besi des 

the UV logarithms of the type £n( s/A2 ) ,  there appear also infrared- induced ( I R) 
logari thms

11
of the type £n ( s /M2 ) .  We may say that these IR  logs come from domains 

where not all vertices of the graph are within a small distance of order A - 1  from 

each other - some vector mesons are allowed to propagate by a finite distance of 

- 1 
order M 

S ince we are interested in discussing hadron s cattering we must look at 

"cluster" amplitudes in QCD ( j ust like the one in Fig . 1) each c luster of external 

quarks representing a hadron . More precisely , we consider the s + 00 limit of 

connected c luster amplitudes ( see Fig . 2) by taking the external momenta p i as 

follows : 

( It  ) 

( NJ 
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p ipj = O ( M )  if i , j  in the same cluster 

n i js ,  n . .  fixed i 0 otherwise l] 

s + 00 

Pe 
Pg 

P,o 

C n l  

( N J  

Fig . 2 



In Fig . 2 ,  p 1+p2 is the 4-momentum of one of the p i ons and p 1-p 2 = q is  

the relative quark momentum which w i l l  be integrated over after mult ipl ication 

by the pion BS wave function ¢ ( q) say , and s imilarly for all hadron clusters . 

In what follows we will j ust discuss the s � 00 of these cluster amp l itudes with 

the p i ' s  at off-shell values . We do not worry at this point about the on-shell 

divergence - we pres ume it is  taken care of by the subsequent q integration and 

the hadron wave function ¢ ( q) . 

From a study of the asymptot i c  behavior of c l uster• amp litudes in perturba-

tion the ory there emerges , first of all , an important fac t : if a ll c lusters are 

12 
colorsinglets the IR logs cancel c ompletely between graphs of the same order 

This is  quite analogous to the absence of infrared s ingularities in e lastic scat-

tering of electrically neutral atoms . And since our hadronic clusters are always 

color-singlet systems of quark s ,  it  seems at thi s  point that we can forget about 

IR logs al together and that we have at least "exp lained" the quark-counting rule s .  

There i s ,  howeve r ,  one more comp l i cation . Right after the first s uggest ion 

of the power laws E q .  ( 1) and ( 2 ) it  was pointed out by Landshoff13 that the 

contributions of certain disconnecte d  cluster amp litudes apparently dominate 

those of E q .  ( 1 ) and ( 2 ) .  The simplest case is  the one dep icted in F i g .  3 for 

meson-meson scattering . 

Fig . 3 

This class of graphs ( appropriately convoluted w ith hadron wave funct i ons ) 

gives a "pinch "  contribution to the hadron i c  amplitude which behaves like 

( 3) 
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where T 1 and T2 are the ( connected) quark-quark scattering amplitudes shown in 

Fig .  3 .  What happens may be simply described in space-time language : quarks 

from different hadrons travel long ( of order M- 1 )  distances and collide at two 

widely separated space-time regions ( of size A- 1 )  with amplitudes T 1 and T2 re-

spective ly .  Since T 1 , T2 themselves represent wide-angle collisions , unless they 

vanish in the s _,. 00 limit we would be faced with an s -3 /2 behavior for the hadro-

nic amp litude which would dominate over the s-2 behavior required by Eq .  ( 1 ) .  Si-

milar multiple- independent-scattering graphs e xist for meson-baryon and baryon-

baryon amplitude s .  

S o  now we must investigate quark-quark scattering inthe s _,. 00 limit ( at 

wide angle ) .  S ince we are no longer dealing with color-singlet clusters but with 

colored quarks the IR logs no longer cance l .  Obviously , it would be interesting 

to know if they add up to something simp le .  Unfortunately , so far what has been 

done is a calculation of the leading IR logs in perturbation theory up to sixth 

order in the coupling constant g ,  for various processes . This is far from be ing 

complete or satisfactory . Neverthe less , something strikingly s imple is suggested 

by these calculations : the I R  logs begin to exponentiate just as in the more 

familiar case of QED .  One may state the result [true a t  least t o  O ( g6 l] for a 

general connected c luster amplitude T as follows : 

T 
2 

Ttreeexp - {-g�( E c ) in2 C s /M2 ) } 
32TI2 V V 

( 4 )  

( only leading logs kept)  

where Ttree is the tree approximation to T and cv is the eigenvalue of the qua-

dratic Casimir operator for the representation of color SU( 3 )  to which the v-th 

cluster belongs . For example , for the quark-quark scattering amplitude �cv=4cF 

where cF is the Casimir eigenvalue for the 3 repre sentation of SU( 3 ) .  Note , 

inci dentally , that for color-singlet clusters , cv=O so Eq . ( 4 ) is consistent with 

our previous finding that there are no IR logs whatsoever ( leading or non-leading) 

if all. the clusters are color-singlets . 

So,  finally , i f  we accept Eq . ( 4 ) , we see that T 1 and T2 in Eq. ( 3 )  vanish 
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faster than any power of s and the Landshoff graph contributions are suppresse d .  

We may then conclude that asymptotic freedom is indeed the explanation for the 

quark- counting ruleJ4but only because infrared effects suppress the probabi lity 

of scattering configurations which could require wide space-time separation be­

tween the constituent quarks .  This looks like an intriguing hint - perhaps a 

related infrared mechanism is basically responsible for the strange fact that the 

quark constituents of a hadron never seem to fly apart to reveal themselves as 

free isolated particles . I shall pursue this idea and its possible relevance to 

quark confinement next . 

2 .  INFRARED S INGULARI TIES I N  Q CD � A  SIGNAL FOR CONFINEMENT 

In gauge theories like QED and QCD in which the gauge symmetry is not 

spontaneously broken ,  matrix e lements of phys ical operators between asymptotic 

states containing charged or colored quanta are infrared-divergent when calculated 

in perturbation theory beyond the tree approximation leve l .  Also exclusive cross­

sections for gauge meson emission diverge at low momenta . In this section I 

shall briefly review the infrared problem in QED15 and then point out certain 

apparent similarities and differences bet11een it and QCD - insofar as infrared 

singularities in QCD can be organized and understood at presen t .  

Begin with a simple process i n  Q E D  like the one shown i n  Fi g .  4 .  A 

( virtual) neutral particle ( e . g .  a hard photon ) represented by the dotted line 

produces an e+e- pair . The graph represents the exchange of a photon between the 

outgoing charged particle s .  The "blob" amp litude T0 contains a l l  the short range 

interaction s .  

k Fig .  4 
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The corre sponding Feynman integral ( assume scalar e lectrons for simplicity ) 

( 2p 1+k ) ( 2p2+k ) 
----------- x T 
{ ( P1 +k ) 2 -m2} {( P1 +k ) -m2 } o 

diverges at k=O logarithmically . One may introduce an infrared cut-off mass 

by replacing the photon propagator by ( k2 -µ2 ) .  Then 

P 1P2 I i � a H (�) £n( µ/M) 

µ->-0 
x T 0 ( 5 )  

where the mass M is related to the inverse range of interactions in T0 ( and not 

necessarily to the electron mass m) . 

It turns out that if we add up all possible virtual photon exchanges 

( including the no photon exchange T0 ) the result of Eq. ( 5 )  exponent iates : 

where 

T - I n Z -1,- {aH£n( µ /M) }nT = T0exp{ aH£n( µ /M) } n .  o 

In '"
{ sum of 

all n-photon-e xchange graphs ( Fi g .  5 )  

( 6 )  

Fig . 5 

From Eq.  ( 6 )  we see that T van ishes as µ ->- O .  Thi s  is not suprising because it 

can be understood clasically : one cannot observe the charged particles separated 

from their long range electromagnetic field.  In fact,  the energy density E(wl  of 

classical radiation in this case approaches a nonzero constant as the frequency w 

goes to zero , and so we e xpect the number of photons E ( w ) /w to become infinite . 

Now, if we ask fo� the probability to observe the charged particles plus an inde-

finite number of photons we should get a non-vanishing answer . This expectation 

1 9 8  



is borne out by a calculation of soft photon emiss ion cross sections . 

The graphs for the emiss ion of one photon of momentum kµ have a pole at 

kµ=O ( see fig . 6 )  
2 

+ · · · ·  Fi g .  6 

This implies a logarithmic divergence in the cross -section a 1  as µ +  0 .  We have 

"' I 1 2 Q d 3k i . i 2 < Q l T ·a f ( 2pk )Z � [ T 1 aHin )J 
0 / k'2 +µ2 µ+0 

( 7 )  

where Q i s  some fixed cut-off momentum ( which defines what we mean by "soft" pho-

ton ) . Similarly , the n-photon amplitude has an n-ple pole at vanish ing photon 

momenta , and it turns out that the corresponding cross -section on is given by : 

% [ T [ 2  � ( aHin .Q.)n 
' µ 

µ+O n .  

Thus the inclusive cross section is infrared finite because : 

= 'f 
n=O 

a n 

( 8 )  

( 9 )  

I n  fact , a i s  finite order-by-order in perturbation theory s ince expression 

( 9 ) is perfectly expandable in powers of a .  This i s  a special case o f  a more ge­

neral theorem: Lee and Nauenberg and independently Kinoshita 16 have shown that in 

theories with massless particles ( or more generally in quantum systems with infi-

nitely degenerate energy levels)  inclusive cross-sections are free of infrared 
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singular i t i e s  order-by-order in perturbation theory . 

Now let us turn to Q C D .  How much o f  what w e  s a i d  about Q E D  is a l s o  true 

in QCD ? The evidence so far is based on leading-logarithm calculations in 

perturbation theory and even those are incomplete and scanty . Nevertheles s ,  let 

us begin by a pro c e s s  like that of Fig . 4 where a t ime - like hard photon ( dotted 

line ) t urns into a quark-anti quark p a ir and a g l uon i s  exchanged . The integral 

is e s s ent ially the same as in QED ; we j ust replace a in Eq . ( 5 )  by cFg 2 / 4 n . 

In h i gher orders of g ,  however , we encounter a much larger variety of graphs in 

QCD . If we dec ide to take into account only ske leton graphs ( i . e .  graphs with no 

vertex and propagator ins ert ions ) then it can be shown that the leading logs 

again exponent iate a s  in Eq . ( 6 ) .  The vertex and propagator insertions w i l l  

almost certainly modify this ( se e  n e xt s ec t io n )  b u t  we may assume h e r e  that any­

way T w i l l  still vanish a s  µ � 0 .  

Next , we look at the one-g luon production cross s e ct ion O J .  

The new feature of QCD i s  that the emitted gluon is n o t  "neutra l " . Thus , it can 

e xchange soft virtual gluons with all other colored quanta ( e . g .  the quark s )  as 

illustrated in Fig . 7 

Fig . 7 
q 

It turns out that proce s s e s  with e xternal gluons "on the mas s -shell" i . e .  

with gluon momenta qi such that qf= µ 2 , are more s ingular than those with j us t  

( mass ive ) e xternal quarks compared a t  the s ame order' of perturbation th eory . The 

leading logs are powers of g2 £n2µ for gluon amp l itudes ( as compared to powers of 

g2 £nµ for quarks -only amp l itudes ) .  These "double logarithms" are int imately 

related t o  the ones we encountered in our discus s ion of h igh energy , wide angle 
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limits ( S ection 1) . Again , up to si xth order the double logs for a multigluon 

amplitude e xponent iate as follows ( compare with E q .  ( 4 ) )  

( 10 ) 

The external gluons are grouped into clusters of one or more gluons each 

cluster having invariant mass of order µ .  In  Eq . ( 10 )  cv is the Casimir e igen­
+( v )  . value for the v-th cluster and q is its 3-momentum. Going back to 0 1  now we 

see that , in contrast to the QED case , the exchanges of soft virtual gluons 

between the on-shell gluon of momentum q ( see Fig . 7 )  and the other colored 

part icles in the final state provide an exponent ial damp ing factor for the ampli-

tude so that instead of Eq . ( 7 )  we now have : 

( 11)  

The integral in Eq . ( 11 )  is finite for µ=O so that 

c 1 < cxi 

S imilarly , the n-ple poles of n-gluon-emiss ion amplitudes do not cause loga-

rithmic infinities in an/a0 s ince the exponential damping factor ( 10 )  ( from soft 

gluon e xchange s )  e ffectively only allows the emission of g luons or gluon clusters 

with 3-momenta of order µ .  Thus an /a0 approaches  a finite value en as µ + O .  

Assuming that the sum over n does not introduce a new k ind of divergence , it 

seems that the inclusive cross section o=La vanishes as n µ+O at the same rate 

as a0 • We interpret this result as a s ignal that in QCD quarks and gluons are 

never produced in asymptot ic states ,  i . e .  as a signal for confinement . 

Note that the suppress ion of gluons with three momenta much larger than µ 

occurs only after summation to all orders of perturbation theory for each an and 
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therefore there is no conflict with the Kinoshita-Lee-Nauenberg ( KLN ) theoreml6 

which states that the infrare d singularities cancel in the inclusive cross section 

order-by-order in perturbation theory . It is really a matter of when the µ + O  

limit of a is taken : i f  it is taken before s ummation to all orders of g then 

the KLN app lies , all tnµ ' s  canc e l  and we get a certain finite answer up to each 

order of perturbation theory ; but if µ is taken to zero after summation to all 

orders of g then a van ishes because gluon emission is  disallowe d .  

Note also that the µ=0 value o f  the integral i n  Eq . ( 11 )  behaves a s  l/g for 

small g indicating that it is not poss ible to recover the perturbation expansion 

for a 1 /a0after µ is set equal to zero . 

3 .  LONG RANGE FORCES AND GLUON CHAINS 

In our discussion of the infrared s ingularitie s  of ampl i tud.:s involving no 

e xternal gluons we simp lified our task drastically by admitting only skeleton 

graphs . By doing this we missed an important difference between QED and QCD 

referring to the character of the long range forces between quark s . 

In QED the behavior of the electromagnetic force at long range is related 

to the transverse part of the photon propagator , which , for small values of the 

-2 
momentum q

µ
, behaves l ike q to all orders of perturbation theory provided all 

charged particles are massive . [This is  because the vacuum polarization tensor 

is ( i )  gauge invariant and ( ii )  has no charged-particle-produc tion threshold at 

q2 = o] . Furthermore the infrared s ingularitie s  of charged-particle vertices and 

propagators cancel each other because of Ward-Takahashi identities . This i s  

i llustrated by Fig . 8 where ( b ) , ( c ) , ( d ) , ( e )  and ( f ) are the propagator and 

vertex corrections to the second- order graph ( a )  for the process virtual 

photon + e +e- . For the present discussion it is more appropriate to introduce 

the infrared cut-off µ as the departure of the momenta p and p '  from mass -shell 

and not as a photon mass . Then as p+O , ( a )  is proportional to atnµ and ( b )  is 

pr�port ional to a2 £nµ because the insertion of the particle loop in the photon 

propagator does not make it more singular . The leading s ingularity of both ( c )  
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and ( d )  is a2 in2 µ but it cancels between them ;  similarly for ( e )  and ( f ) . Thus 

the sum of ( b ) , ( c ) ,  ( d) ,  ( e )  and ( f ) does not modify the £nµ behavior of ( a )  

i t  j ust amounts t o  an infrared-regular charge and wave funct ion renormali zation . 

We can e xpress this by saying that h i gher-order quantum corrections do not modify 

Co 1 ( c )  

( d ) ( f )  

Fig . 8 

the l/r2 long-range character of the e lectromagnetic force . 

The si tuation in QCD is different : the 1/r2 force associated with bare 

gluon e xchange is modified by h igher order corrections . Con s i der the process 

virtual photon�quark-antiquark pair ( wh i ch is the analogue of y � e
+e - in QED ) . 

In addition to the graphs of Fig . 8 ( where the wavy lines are now gluon s )  we have 
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the graphs of Fig . 9 .  Note that the vacuum polarization now cons ists not only 

of the quark loop contribution of Fig . Sb but also of that of the gluon loop 

F i g .  9a  and ghost loop Fig . 9 b ,  both of which have threshold s ingularities at 

- - -<2 ---<2 C a l  C b  J 

�--<:1 ---<1 C c ) C d J  

Fig . 9 

Although the infrared s ingular contributions of individual graphs depends 

on the gauge , the ir sum ( at least to this order of g) does not and it can be 

fully accounted for as a logarithmic modification of the small q2 behavior of the 

17 
transverse part of the bar e  gluon propa?ator in the graph of Fi g .  B a .  In terms 

of the polarization tensor we have : 

for q2 < <m2 where q is  

11ab 
( q )  µv 

space-like and m is  the renormali zation-point mass ( a t  

which t h e  running coupling constant i s  of or'der 1 ) . From an inspection of higher 

order correc t i ons it seems that one gets increasing powers of tnC q2 /m2 ) for IT ( q2 ) ,  

At present no one knows what these logs add up to and most l ikely perturbation 

theory estimates are not the way to e xp l ore the small q2 behavior of the gluon 

propagator , s ince we know that g=O i s an infrared-unstable zero of the 
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renormalization-group function S ( g ) . But these logarithms s i gnal what could be 

a drastic departure from the q-2 
of the gluon propagator Dµv · To see what may be 

hapenning , consider two colored quanta ( quarks or gluons ) r and s located at 

points xr and xs 
respectively . From the gluon propagator Dµv we derive an instan-

taneous potential according to 

u rs t ( r ) a  t ( s ) a  U( I �  -� I )  
r s ( 1 2 )  

where t( r ) a  ( a= l , 2 ,  . . .  , 8 )  are the matrix group generators for particle r .  From 

the bare gluon propagator D ( q2 )%q-2 
we get the Coulombic U%- l � l - l , but if the 00 

full propagator behaves l ike ( q2 ) -2 , for e xamp l e ,  we get U'.i: l � I . In this case 

the interaction energy of a quark-antiquark system in a color s inglet configurat-

ion would grow linearly with their separation making it imposs ible to isolate a 

quark . 

G l uon C h a i n s
6 

Although we don ' t  know what the small momentum behavior of the g luon pro-

pagator ( more precisely : the effective gluon propagator , see above ) is , it i s  

interesting to speculate as t o  what would happen if indeed it led to a very strong 

confining force at long distances .  So assume that as a color-s inglet quark-

antiquark system is pulled apart the energy required grows linearly or faster 

with distance . Then it can be shown that it is energetically favorable to 

e xpend some energy to create a chain o f  gluons g 1 , g2 , . . .  , gn j oining the quark ( q) 

to the antiquark ( q) along some smooth curve : 

The color-spins of the gluons must be coupled to the quarks so that the whole 

system is a color singlet ( th at ' s  obvious ) and s o  that the system { q , g1 , g2 , . . .  , gk } 
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be longs to the 3 representation of color SU( 3 )  for all k .  It i s  straightforward 

to verify that this coupling in color space results in an e xponential screening 

of the forces between q and q .  More explicitly , the color part of the wave fun-

ction of the chains is 

'¥color 

where ar , i , j are the color indices for the r-th gluon , the quark and the ant iquark 

respectively and da is the a -th  generator in the spinor representation . Using 

Eq . ( 12 )  we calculate the expectation value of the interaction energy between the 

r-th and s-th quantum in the chain 

<U > -rs 
<'¥col .  l urs 1 '¥col .> 

<'¥col . I '¥  col . > 

The factor ( -8 ) - l r-s l due to the group theory of color is the reason for 

having chosen this particular coupling in color space . Thus if Ii;. -i;. I =  O ( m- 1 ) r+l r 

then l r-s l = O ( m l i;. -i;. I )  and we have exponential screening of the long range forces . r s 

In a first estimate of the potential energy of the system we may neglect all 

but the nearest neighbor interaction s ,  and check the stability of the chain by 

estimating its energy roughly by the relation : 

in terms of a length R representing the spacing between gluons . Then each gluon 

wave packet can have a spread of at most R and consequently an "uncertainty prin­

ciple" kinetic-energy of at least R-1 
which accounts for the first term in Eq . ( 13 ) . 

The e xpression g2 ( R ) R-l is the interaction energy between two nearest neighbors . 

The assumptions made about the gluon propagator imply that g2 (R )  is large and 

negative for R>>m- I and we also know that g2 (R )  is small and positive for R<<m- 1 

( asymptotic freedom) . Then a stable minimum is attained for some value of R of 

order m [at which g2 ( R )%0 ( ll] . The energy of the chain is therefore proportional 

to its length . Actually , the gluon spacing may vary along the chain so that the 
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energy content will be proportional to the length locally ( in a coarse-grained 

sense ) . 

The chain is stable against splitting in two pieces {q , g1 ,g2 , . . . , gk } and 

{ gk +l' " . . ,q}  s ince the p iece s ,  forming a 3 and a 3 color systems respectively , 

would be subject to a strong long range mutual attractive force like the one 

between q and q ( if unscreened by the formation of a chain of gluons between 

them) . 

The chain may split in two when a new quark-antiquark pair is created some-

where along the chain and two color-singlet pieces {q ,g1 , . . .  ,gk , q} and 

{q , gk +1, . . . ,q }  are formed . These may be eas ily separated since the strong long 

range forces do not act between them . Clearly , the chain may be split into more 

than two . p ieces with the creation of more qq pairs at different points . We have 

here the picture of a meson decaying into mesons . Meson processes in general may 

be naturally visualized as events , in which two chains combine into one ( by the 

inverse process to the one described above ) which subsequently is split in two or 

more color-singlet p ieces . This description of hadronic  matter is not much dif-

ferent from certain models of hadrons as relativistic strings with quarks at their 

ends18 . What is different here is the coarse-grainedness of the chain and the 

specific role of color in its dynamics and stability . 

Note that baryons may be described in an analogous way for large distances 

between the three constituent quarks : three gluon chains are tied at one p o int 

to form a Y with the quarks at the free ends . The color part of the wave function 

should be : 

a 1 ar ar+ l a a a 
( d ) ( d  . . . d r+s ) ( d  r+s +l d r+s+t ) ei ' j ' k '  d . . .  i ' i  j ' j . . .  ' k ' k 

where the three chains consist of r , s  at t gluons respectively with color indices 

a 1 , . . .  ,ar+s+t ; i , j ,k are the color indices of the quarks . Again , thi s  is the 

unique coupling in color space such that if the Y is cut at any point the two 

pieces have total color spins 3 and 3 respectively . 

I t  is instructive to realize that were the fundamental fermions to belong 
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to the adjoint representation of color ( or any repre sentation contained in a di -

rect product of adj oint representations ) ,  it would be possible to screen the long 

range forces between say a fermion and an antifermion by surrounding each of them 

with a small number of gluons ( i . e .  a number independent of the distance between 

q and q) . A gluon chain would then be far from energetically favore d .  Such 

screened ( or "bleached" ) fermions would probably behave like leptons toward each 

other or versus ordinary hadronic matter ( i . e .  color-triplet quarks held together 

by gluon chain s ) . The poss ib i l ity that phys ical leptons may fit this description 

should be kept in mind . 

The whole concept of gluon chains may be criticize d  up to this point as 

based on the imprec ise notion of an instantaneous color force and certain ad hoc 

assumptions about its strength at long range . However , it should be pointed out 

that the zluon chain emerges rather naturally when one considers states created 

out of the vacuum not by gauge-variant operators like q ( x ) q ( y )  but by their gauge-

invariant ( path-dependent ) generalizations : 

q ( x ) e xp { ig 
Y a a -f d"\J Bµ ( z ) d  } q ( y )  

x, c 
( 14) 

In Eq. ( 14 )  the line integral runs along the space- l ike curce C from x t o  

y and the d matrices are ordered along C : 

. n ( n )  -
I < ig) q .  ( x) a  . .  ( x , y ) q . ( y )  
n 

i lJ J 

z n 

{ d z( n - l ) µn - 1 ·  · · 

( 15 ) 

Since Oc creates meson - l ike physical state s , a matrix element l ike 

<Oc ( x , y ) J ( o ) > 0 where J is  some local color-singlet current ( e . g .  the e l ectroma-

gnetic current )  should be non zero . To s impl i fy ,  take x0�y
0

�zio and consider 

<O ( x, y ) J ( o ) >  for \ ;-y \ large 
c 0 
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The n-gluon amplitude <qo ( n ) qJ> calculated in perturbation theory will dis-

play powers of g2£n [ �-y [ which are the configuration space counterparts of the 

infrared logarithms we described in Section 2 . We may assume that they exponen-
n- I _,_  _,_ I  tiate and make <qo qJ>0 vanish as x-y -roo for any fixed n . 

x 

� 

J - - - - - J - - - -
� 

'------ Y 
( a  J ( b ) 

Fig . 10 

x 

Z 1 

Z r  

Z r .  1 

Z s - 1  

Z s 

Zn 

y 

However , for the band of terms in the expansion ( 15 )  with n � m [ �-y [ the 

situation is different . At the tree ·approximation leve l ,  the planar graph of 

Fig . lOa has the color factor 

a a2 a1 
( d n . . . d d ) . . J l  ( 16 ) 

Consi der ne xt the one-loop graph of lOb obtained from that of Fig .  lOa by 

exchanging a virtual gluon between the r-th and s-th gluon lines . I f  [ !  -! [ is r s 

large the loop integral behaves like £ n [ !  -! [ ,  an infrared singular behavior . r s 

However , in calcu�ating the contribution of this graph to <qonqJ> its color 

2 0 9  



factorU7)combined with that of cr ( n )  in Eq . ( 15 ) yields ( -8 ) - l r-s l j ust as in the 

calculation of <Urs> before . Thus , all one-loop infrared logarithms like 

�n l 1r-1s l are suppressed provided l r-s l is large whenever 11r-1s l is large . This 

is achieved by a configuration in which the distances between successive points 

in the sequence x , z1 , z2 , . • .  , zn , y are kept bounded ( below a common fixed bound) 

Such configurations are s trikingly s imilar to gluon chains - look 

spec ifically , at the coupling of the color spins given by ( 16 ) . 

Tree graphs which can be obtained from the planar one by a small number 

( < < n )  of IIB-arest neighbor interchanges still have their infrared s ingular loop 

corrections effectively suppressed by group factors and thus survive as contribu-

tions to the amplitude : these graphs have color factors representing minor local 

"disordering" in the coupling given by Eq . ( 16 )  which does not disturb either the 

screening of the color forces or the stability of the gluon chain . All other 

graphs are infrared-suppressed This is worth checking in higher orders of per-

turbation theory . 

In conclusion ,  I should emphasi ze that most of the work I described has its 

roots in perturbat ion theory and in graph-by-graph asymptotic est imate s ,  although 

the essential element be':l lr.d most arguments is exponent iation of infrared logs 

which presumes a summation to all orders . Eventually , of course , we hope to be 

able to study the infrared problem in Yang-Mills theories directly without having 

to get our cues from perturbation the ory . 
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