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Abstract. We present new lattice results on Polyakov loop susceptibilities in the SU(3) pure
gauge system. Ratios of these susceptibilities are useful probes for deconfinement. Progress
toward understanding these ratios in the presence of quarks are briefly discussed.

1. Introduction

Deconfinement can be described by the spontaneous breaking of Z3 center symmetry [1, 2, 3, 4, 5].
This symmetry, however, is explicitly broken by dynamical quarks. The result is the flattening
of the static quark potential at long distances, even when the temperature is below criticality.
If one aims at studying the confining part of the heavy quark potential, and probe the related
symmetry breaking phase transition, it is useful to study QCD in the limit of exact Z3 symmetry
——SU(3) pure gauge theory.

The relevant observables to study deconfinement are the Polyakov loop and its susceptibilities.
The Polyakov loop, which measures the free energy of a static quark immersed in a hot gluonic
medium [5, 6], defines an order parameter for the deconfinement transition. At low temperatures
its thermal expectation value vanishes, signaling color confinement, while at high temperatures
it is nonzero, resulting in a finite energy of a static quark and consequently the deconfinement
of color. The Polyakov loop susceptibility, on the other hand, represents fluctuations of the
order parameter. It features a peak at the transition temperature, and a width that signals the
temperature window in which phase transition takes place.

While the basic thermodynamic functions of the SU(3) pure gauge theory, such as pressure
and entropy, are well established within the lattice approach [7, 8], it is less clear for the
temperature dependence of the renormalized Polyakov loop and its susceptibilities. Careful
study of these quantities can enhance our understanding of the QCD phase structure.

2. Polyakov loop and its susceptibilities on the lattice
On an N3 x N, lattice, the Polyakov loop is defined as the trace of the product over temporal
gauge links,
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The bare Polyakov loop needs to be renormalized to give a physical, N -independent result.
We perform the following multiplicative renormalization [9]:

ren — (Z(g2))NT Lbare‘ (3)

and introduce the ensemble average of its modulus, (|L**"|). This quantity is well defined in the
continuum and thermodynamic limits and is an order parameter for the spontaneous breaking
of Z5 center symmetry.

We now define the corresponding susceptibilities. In the SU(3) gauge theory, the Polyakov
loop operator is complex. One can therefore explore its fluctuations along the longitudinal and
transverse directions, as well as that of its absolute value,

Txp= K% [(LF)?) — (LFm)?], (4)
Toxr = 3 [(LF?) — (1)) (5)
Txa= 35 (L 2) — (Ln])?), (6)

where L = Re(L) and Ly = Im(L). Here we have introduced the Zs-transformed Polyakov
loop, L = Le?™/3 with n = 0,41. The phase of the transformation is chosen such that the

transformed Polyakov loop is located in the main sector, defined by —n/3 < arg(L) < 7/3.
Our lattice results [10] for these quantities are collected in Fig. 1.

3. The ratios of susceptibilities

The renormalization of gluonic correlation functions in general, Polyakov loop susceptibility in
particular, is still an unsolved problem. One way to get around this is by considering ratios of
these susceptibilities.

Fig. 2 shows the temperature dependence of the ratios R4 = xa/xz and Rr = x7r/X1L,
obtained in the SU(3) pure gauge theory. Also shown in the figure are the analogous results
extracted from simulations of (241)-flavor QCD by the HotQCD collaboration, using the highly
improved staggered quark (HISQ) action with almost physical quark masses on a 323 x 8 lattice
[11].

In the pure gauge limit (N; = 0), ratios R4 and Ry exhibit a #-like discontinuity at T, and
change only weakly with temperature on either side of the transition. These features make them
ideal for probing deconfinement.

We now interpret their limiting values, deep in the confining and deconfining phases, based
on general symmetry arguments and the characteristics of Polyakov loop distribution function.
Consider first the confining phase at low temperatures. Due to the Z3-symmetric vacuum, the
expectation value of any symmetry breaking operator must vanish. In particular,

V(L% —(L)*) = xz —xr = 0. (7)

It follows that Ry = 1 in the confining phase.

In the same temperature range, R4 closely follows the Gaussian distribution result of
(2—7/2) ~0.429 [12]. This suggests that the quadratic term in the effective action contributes
dominantly to the susceptibilities deep in the confining phase. However, we expect non-Gaussian
terms to be crucial in determining higher-order cumulants.

At high temperatures, Z3 symmetry is spontaneously broken. This has been shown to yield
R4 ~ 1 [12]. On the other hand, Ry is not restricted by symmetries. Our result indicates a
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Figure 1. The temperature dependence of the modulus of renormalized Polyakov loop and its
susceptibilities in the SU(3) pure gauge theory.

small value for this ratio. In the language of an effective Polyakov loop potential, this finding
suggests that, around the global minimum associated with the symmetry-broken vacuum, the
local curvature along the transverse (imaginary) direction is much steeper than that along the
longitudinal (real) direction. We note, however, that a residual N, dependence remains in our
results. Therefore we cannot yet draw any firm conclusions about the continuum extrapolation
of this quantity.

In the presence of light quarks, the Polyakov loop is no longer an order parameter for
deconfinement. Due to the explicit breaking of Z3 symmetry, the ratios are smoothened and
vary continuously across the pseudocritical temperature. R 4 interpolates between the two limits
set by the pure gauge theory, joined by a crossover region. We expect the width of this crossover
to depend on the number of flavors and the values of quark masses. We also observe that the
value of Rr at high temperatures deviate substantially from the pure gauge limit. For this there
is as yet no good theoretical understanding.

Further work is needed for the physical interpretations of these results, and to analyze in
detail the systematic uncertainties involved in the extractions of these quantities.

4. Conclusions

Polyakov loop susceptibilities and their ratios provide excellent signals for deconfinement phase
transition in the pure gauge system. Most of their features can be related to Z3 center symmetry
and its spontaneous breaking. In this sense, they are the natural composite operators to study
deconfinement.
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Figure 2. Lattice results on the ratios of Polyakov loop susceptibilities, R4 = xa/x1 and
Rr = x7/x1L, for the pure gauge system and (2+1)-flavor QCD. The temperature is normalized
to its (pseudo)critical value for the respective lattice. The lines are results from the Polyakov
loop model proposed in Ref. [10].

Many effective potentials have their model parameters tuned to match the lattice data of
thermodynamic pressure and Polyakov loop [13, 14, 15, 16]. Fluctuation effects, on the other
hand, have yet to be included. The new susceptibility results presented here can help to better
constrain these seemingly arbitrary model parameters [10].

Our preliminary results for (241)-flavor QCD suggest that ratios of susceptibilities are
considerably smoothened in the presence of light quarks. Also, the value of Rr in the high
temperature phase deviates substantially from the pure gauge limit. To understand these issues,
theoretical inputs are essential. In particular, it is important to understand the quark mass and
flavor dependence of the Polyakov loop and the susceptibilities. An exploratory first step would
be to include a small explicit breaking term in the pure glue potential and study how the picture
changes from the pure gauge theory.

For the lattice calculations, more work is needed for the robust extractions of these gluonic
correlation functions, as well as for the detailed understanding of their systematic uncertainties.
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