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Abstract
We introduce a master constraint operator on the kinematical Hilbert space of
loop quantum gravity representing a set of gauge conditions which classically
fix the densitized triad to be diagonal. We argue that the master constraint
approach provides a natural and systematic way of carrying out the quantum
gauge-fixing procedure which underlies the model known as quantum-reduced
loop gravity. The Hilbert space of quantum-reduced loop gravity is obtained as
a particular space of solutions of the gauge-fixing master constraint operator.
We give a concise summary of the fundamental structure of the quantum-
reduced framework, and consider several possible extensions thereof, for
which the master constraint formulation provides a convenient starting point.
In particular, we propose a generalization of the standard Hilbert space of
quantum-reduced loop gravity, which may be relevant in the application of the
quantum-reduced model to physical situations in which the Ashtekar connec-
tion is not diagonal.

Keywords: loop quantum gravity, quantum-reduced loop gravity,
models of loop quantum gravity, master constraint, quantum gauge-fixing

1. Introduction

Quantum-reduced loop gravity is a physically motivated model of loop quantum gravity
(LQG), which is designed to address the crucial question of extracting statements about con-
crete physical phenomena from the formalism of full LQG. From the practical standpoint, a
key advantage of the quantum-reduced model is its simplified kinematical structure, which

Original Content from this work may be used under the terms of the Creative Commons Attribution
4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the

title of the work, journal citation and DOI.

© 2024 The Author(s). Published by IOP Publishing Ltd 1

https://doi.org/10.1088/1361-6382/ad4506
https://orcid.org/0000-0003-3039-6942
mailto:ilkka.makinen@ncbj.gov.pl
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6382/ad4506&domain=pdf&date_stamp=2024-5-23
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Class. Quantum Grav. 41 (2024) 125010 I Mäkinen

allows for physical applications of the model to be developed at the level of explicit calcu-
lations. Quantum-reduced loop gravity was introduced by Alesci and Cianfrani in [1, 2] and
studied further in several subsequent works, e.g. [3–7]. The model has found applications in
cosmology [8–11] and in the physics of black holes [12–14], and its relation with full LQG
has been studied particularly in [15, 16].

On a technical level, quantum-reduced loop gravity is based on the idea of implementing in
the quantum theory a gauge fixing to a diagonal densitized triad. The gauge conditions select
a sector of the kinematical Hilbert space of full LQG, which serves as the Hilbert space of
the quantum-reduced model. The kinematical structure of quantum-reduced loop gravity is
then completed by the definition of the model’s basic operators, which can be seen as arising
from the action of the corresponding operators of full LQG on the aforementioned Hilbert
space [16]. A distinctive feature of the resulting framework is the considerable simplicity of
its quantum states and operators, when compared with their counterparts in the full theory1.

Thus, the choice of gauge which constitutes the fundamental premise of quantum-reduced
loop gravity is motivated ultimately by practical considerations: Starting from the framework
of full LQG, the program initiated by Alesci and Cianfrani is able to establish a model which,
on one hand, enjoys a sufficiently simplified kinematical structure to enable concrete calcu-
lations about physics to be performed within the model, while on the other hand retaining a
clear and definite connection with the formalism of the full theory.

In the original work of Alesci and Cianfrani [1, 2], the gauge conditions for a diagonal triad
were enforced in the quantum theory through an intricate procedure involving U(1) holonom-
ies and the formalism of projected spin networks [19]. In the present article we propose the
master constraint method, originally introduced to LQG by Thiemann [20–22] in connection
with the Hamiltonian constraint, as a natural and straightforward approach for implementing
the quantum gauge-fixing conditions underlying quantum-reduced loop gravity. The classical
starting point for the construction of a master constraint operator is to assemble the gauge con-
ditions fixing the densitized triad Eai to be diagonal, i.e. Eai = 0 for a ̸= i, into a single master
constraint functional M, such that the single condition M= 0 is equivalent to the gauge con-
ditions being satisfied everywhere on the spatial manifold Σ. Upon quantization, the master
constraint is promoted into a constraint operator, which represents the gauge conditions for a
diagonal triad on the kinematical Hilbert space of LQG.

In the context of quantum-reduced loop gravity and quantum gauge-fixing, an advantage
of the master constraint approach is that it results in the gauge conditions being formulated
entirely in terms of a well-defined constraint operator. This allows one to largely avoid a cer-
tain level of confusion, which is present in much of the early literature of quantum-reduced
loop gravity regarding various technical aspects of the framework. In a sense, the present article
can therefore be seen as a complement to the earlier article [16], where the status of the funda-
mental operators of quantum-reduced loop gravity was clarified by establishing a clear relation
between these operators and the corresponding operators of full LQG. The work presented in
this article arguably accomplishes an analogous clarification for the quantum states which form
the Hilbert space of quantum-reduced loop gravity.

1 As a specific example we may mention the volume operator, which is important in LQG not only as a fundamental
geometrical observable, but also as a key element in the formulation of the dynamics (the volume operator is involved
in any standard definition of the Hamiltonian constraint operator in LQG). In full LQG, the matrix elements of the
volume operator between basis states of the kinematical Hilbert space cannot be computed in explicit form in general,
but only in certain simple enough special cases (see e.g. [17, 18]). In contrast, the volume operator in quantum-reduced
loop gravity acts diagonally on the natural basis states of the Hilbert space of the model.
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The material in this article is organized as follows. In section 2 we give a brief summary
of the basic kinematical framework of LQG. This serves to establish our notation and conven-
tions, and to introduce the necessary tools which will be used in the main part of the article.
(For a more comprehensive introduction to LQG, we refer the reader to any of the standard
references, e.g. [23–28].) In section 3 we define a master constraint operator representing the
gauge conditions which fix the triad to be diagonal on the kinematical Hilbert space of LQG.
We show that the states spanning the Hilbert space of quantum-reduced loop gravity can be
recovered as solutions of our master constraint operator on cubical graphs, with the notion of
solutions being understood in the generalized sense2 utilized by Alesci and Cianfrani when
originally introducing the quantum-reduced model.

Section 4 presents a concise but methodical overview of the fundamental structure of
quantum-reduced loop gravity, recapitulating the results obtained in section 3 regarding the
Hilbert space of the quantum-reduced model, and in the earlier article [16] regarding the basic
operators of the model. When the Hilbert space of quantum-reduced loop gravity is viewed
as a subspace of the kinematical Hilbert space of full LQG, operators of the quantum-reduced
model arise in a natural way from the action of operators of full LQG on the reduced Hilbert
space. A given operator of the full theory typically gives rise to a corresponding ‘reduced’ oper-
ator, which is obtained by discarding certain small terms generated by the action of the full
operator on states in the reduced Hilbert space. The reduced operator is a well-defined oper-
ator in the framework of the quantum-reduced model, the Hilbert space of the model being
preserved by the action of this operator, while from the point of view of full LQG, the reduced
operator provides a good approximation of the action of the corresponding full theory operator
on the reduced Hilbert space.

In section 5 we consider various possible generalizations of the standard formulation of
quantum-reduced loop gravity. We discuss the question of SU(2) gauge invariance in the
quantum-reduced model, and present two ways in which this question could in principle be
addressed. We also introduce an extension of the standard Hilbert space of quantum-reduced
loop gravity, which is obtained by splitting each edge of a standard reduced basis state into two
‘half-edges’, which can carry arbitrary magnetic quantum numbers at their free ends.We argue
that a generalization of the reduced Hilbert space (which may be the generalization proposed
in section 5.2, or another, so far unknown generalization of a different kind) is likely needed
in order to capture all the degrees of freedom contained in a general, not necessarily diagonal
Ashtekar connection. Finally, the concluding section 6 summarizes the work presented in this
article and briefly comments on possible directions for future work.

2. A brief review of LQG

2.1. The kinematical Hilbert space

The kinematical Hilbert space of LQG is formed by the so-called cylindrical functions. (More
precisely, the kinematical Hilbert space is defined as the completion of the space of cylindrical
functions with respect to the scalar product defined in equation (2.5) and in the subsequent

2 Namely, since the master constraint operator represents a set of constraints which are non-commuting at the level
of the quantum theory (although they are compatible with each other classically), one acknowledges that looking for
solutions of the constraint equation as an exact equality would be too restrictive of a condition. Instead, (generalized)
solutions are searched in the form of states which carry large spin quantum numbers, and which approximately satisfy
the constraint equation in the regime of large spins.
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text.) A function cylindrical with respect to a graph Γ is a complex-valued function of the
form

ΨΓ (he1 , . . . ,heN) . (2.1)

The graph Γ consists of N edges e1, . . . ,eN, which are assumed to be oriented and embedded
in the spatial manifold Σ. The arguments of the cylindrical function (2.1) are SU(2)-valued
group elements, one for each edge of the graph.

The group elements he are typically referred to as holonomies, due to their origin as holo-
nomies (path-ordered exponentials) of the Ashtekar–Barbero connection in the classical the-
ory. In the quantum theory the holonomies are assumed to satisfy certain algebraic properties
with respect to the edge label e, which are consistent with the classical interpretation of the
holonomy as a parallel propagator. These properties are

he−1 = h−1
e , (2.2)

he2◦e1 = he2he1 , (2.3)

hp = 1, (2.4)

where e−1 denotes the edge e taken with the opposite orientation, e2 ◦ e1 denotes the combined
edge obtained by taking e1 followed by e2 (it is assumed that the endpoint of e1 coincides with
the beginning point of e2), and p denotes an edge consisting of a single point.

A scalar product on the space of cylindrical functions is given by the Ashtekar–
Lewandowski scalar product [29, 30]. This is defined as follows. For two functions cylindrical
with respect to the same graph Γ, we set

⟨ΨΓ|Ψ ′
Γ⟩=

ˆ
dh1 · · ·dhNΨΓ (h1, . . . ,hN)Ψ

′
Γ (h1, . . . ,hN) (2.5)

where dh denotes the normalized Haar measure of SU(2). To extend the definition to two
functions cylindrical with respect to two different graphs Γ1 and Γ2, consider any graph Γ12

that contains both Γ1 and Γ2 as subgraphs. By introducing a trivial dependence on the group
elements associated with the additional edges, each of the two functions in question can be
seen as a cylindrical function on Γ12 (see e.g. [23]), and their scalar product is then defined by
applying equation (2.5) on Γ12. (The normalization of the Haar measure implies that the result
is independent of the choice of the graph Γ12.)

It follows from the Peter–Weyl theorem that a basis on the space of cylindrical functions
can be constructed from the irreducible representation matrices of SU(2) (Wigner matrices)
D( j)
mn(h). An orthonormal basis on the space of functions cylindrical with respect to a graph Γ

is given by the functions∏
e∈Γ

D
( je)
mene (he) (2.6)

where the quantum numbers {je,me,ne} range over all their possible values, and the notation

D( j)
mn (he) =

√
2j+ 1D( j)

mn (he) (2.7)

has been introduced for the normalized3 matrix elements of the Wigner matrices.

3 In the sense of the Haar measure, i.e.
´
dh

∣∣D( j)
mn (h)

∣∣2 = 1.
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An important subspace of the space of all cylindrical functions is the space of functions
invariant under local SU(2) gauge transformations. (Classically such transformations corres-
pond to internal rotations of the densitized triad Eai .) Under a gauge transformation given by a
gauge function g(x) ∈ SU(2), the holonomy transforms as

he → g(t(e))heg
−1 (s(e)) (2.8)

where s(e) and t(e) stand for the beginning point (source) and endpoint (target) of the edge
e. The space of gauge invariant cylindrical functions on a graph Γ is spanned by cylindrical
functions of the form(∏

v∈Γ

ιv

)
·

(∏
e∈Γ

D( je) (he)

)
. (2.9)

These are the well-known spin network functions of LQG [31, 32]. In the function (2.9), an
invariant tensor of SU(2) (intertwiner) ιv of an appropriate index structure is associated with
each node v of the graph, and the dot indicates a complete contraction of magnetic indices
according to the pattern dictated by the graph. More precisely, suppose a node v contains
M edges oriented inwards and carrying spins j1, . . . , jM, and N edges oriented outwards and
carrying spins j ′1, . . . , j

′
N. Then the tensors ιv assigned to the node form a basis of the intertwiner

space

InvSU(2)
(
Hj1 ⊗ ·· ·⊗HjM ⊗H∗

j ′1
⊗ ·· ·⊗H∗

j ′N

)
, (2.10)

whereH∗
j is the dual space, and InvSU(2) denotes the SU(2)-invariant subspace. The condition

for ιv to be invariant under SU(2) is to be understood in an appropriate generalized sense, which
takes into account the index structure of the intertwiner. Being an element of the space (2.10),
ιv is a tensor with M lower indices (in the representations j1, . . . , jM) and N upper indices (in
the representations j ′1, . . . , j

′
N), and is required to satisfy

D( j
′
1 )
(
g−1
)
· · ·D( j

′
N)
(
g−1
)
ιvD

( j1) (g) · · ·D( jM) (g) = ιv (2.11)

where g is an arbitrary element of SU(2), and the action of the representation matrices on ιv is
given by contraction of magnetic indices.

2.2. Kinematical operators

The elementary operators of LQG are the holonomy and flux operators. These are the
quantum operators corresponding to holonomies of the Ashtekar–Barbero connection along
one-dimensional curves, and fluxes of the densitized triad through two-dimensional surfaces.

The holonomy operator associated to an edge e acts on cylindrical functions by
multiplication:

D̂( j)
mn (he)ΨΓ (he1 , . . . ,heN) = D( j)

mn (he)ΨΓ (he1 , . . . ,heN) . (2.12)

The form of the resulting state depends on whether the edge e is contained among the edges
e1, . . . ,eN of the graph Γ. For the work carried out in the present article, the relevant case is
that e coincides with one of the edges e1, . . . ,eN. In this case, the function on the right-hand
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side of equation (2.12) is still a cylindrical function on the same graph Γ. The explicit form of
this function in the basis (2.6) can be found by using the SU(2) Clebsch–Gordan series

D( j1)
m1n1 (he)D

( j2)
m2n2 (he) =

∑
j

C( j1 j2 j)
m1 m2 m1+m2

C( j1 j2 j)
n1 n2 n1+n2D

( j)
m1+m2 n1+n2 (he) (2.13)

to couple the holonomies on the edge e; here C( j1 j2 j)
m1 m2 m are the Clebsch–Gordan coefficients of

SU(2). (In calculations where the phases of the Clebsch–Gordan coefficients are relevant, we
assume that they have been fixed according to the Condon–Shortley convention.)

Consider then the flux operator associated to a surface S. The action of the flux operator on
a holonomy D( j)(he) depends on the relative location of the edge e with respect to the surface
S. Assuming for simplicity that there is a single point of intersection between the surface S and
an edge e, the action of the flux operator is given by

Êi (S)D
( j) (he) = iν (S,e)×



1
2
D( j) (he)τ

( j)
i s(e) lies on S

1
2
τ
( j)
i D( j) (he) t(e) lies on S

D( j) (he1)τ
( j)
i D( j) (he2) S intersects e at an interior point

.

(2.14)

Here ν(S,e) denotes the relative orientation of the surface and the edge at the intersection
point, and ν(S,e) = 0 if e intersects S tangentially. In the case that S intersects e at an interior
point, e1 and e2 denote the two segments into which e is divided by S. Moreover, τ ( j)i are the

anti-Hermitian generators of SU(2) in the spin-j representation. The matrix elements of τ ( j)i
are given in terms of the matrix elements of the angular momentum operator as(

τ
( j)
i

)
mn

=−i⟨jm|Ji|jn⟩. (2.15)

In the standard basis, which diagonalizes the z-component of angular momentum, we have the
following explicit expressions:(

τ ( j)x

)
mn

=−iA+ ( j,n)δm,n+1 − iA− ( j,n)δm,n−1 (2.16)(
τ ( j)y

)
mn

=−A+ ( j,n)δm,n+1 +A− ( j,n)δm,n−1 (2.17)(
τ ( j)z

)
mn

=−imδmn (2.18)

where

A± ( j,m) =
1
2

√
j( j+ 1)−m(m± 1). (2.19)

The action of the flux operator is extended on the basis states (2.6) by the Leibniz rule, i.e. each
edge in the product (2.6) which intersects the surface S contributes a term of the form (2.14)
to the action of the operator.
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The volume operator [33, 34] is a quantization of the classical functional
´
d3x
√

|detE|.
When acting on a cylindrical function, the volume operator picks up contributions from the
nodes of the graph, and its action has the generic form

V̂|ΨΓ⟩=
∑
v∈Γ

V̂v|ΨΓ⟩ (2.20)

with

V̂v =
√
|q̂v|. (2.21)

Here q̂v is an operator which can be expressed in explicit form in terms of left- and right-
invariant vector fields of SU(2). In contrast, no such explicit expression is available for the
operator V̂v, which must in general be defined implicitly through its spectral decomposition.
In this article we will work exclusively with the Ashtekar–Lewandowski version of the volume
operator [34], and will refer to this operator simply as the volume operator.

In the construction of operators in LQG, one often has to deal with negative powers of the
volume element

√
|detE| appearing in classical functionals which one wishes to quantize.

These factors cannot be quantized simply by using the inverse of the volume operator; the
volume operator is not invertible, as its spectrum contains the eigenvalue zero. In the literature
of LQG, this problem is frequently circumvented by using the so-called Tikhonov regulariza-
tion of the inverse volume operator (examples of the use of this operator can be found e.g. in
[35–37]). The regularized inverse volume operator can be defined as

V̂−1
v = lim

ϵ→0

V̂v
V̂2
v + ϵ2

. (2.22)

Note that the operator (2.22) shares the same eigenstates as the operator V̂v, and each eigen-

value of V̂−1
v is the inverse of the corresponding eigenvalue of V̂v, except the zero eigenvalue

of V̂v remains a zero eigenvalue of V̂−1
v . Hence, given a complete set of eigenstates of the

volume operator, the spectral decomposition of the regularized inverse volume is given by

V̂−1
v =

∑
λ̸=0

λ−1|λ⟩⟨λ| (2.23)

where |λ⟩ denotes an eigenstate with eigenvalue λ: V̂v|λ⟩= λ|λ⟩.
Another operator which is often used in technical constructions in LQG is the so-called par-

allel transported flux operator (this operator is also known as the gauge covariant flux operator
in the LQG literature). The parallel transported flux operator is a quantization of the classical
functional

Ẽi (S,x0) =−2Tr
(
τiẼ(S,x0)

)
(2.24)

where

Ẽ(S,x0) =
ˆ
S
dSa hx0,xE

a
i (x)τ

i h−1
x0,x (2.25)

is a matrix-valued generalized flux variable. In equation (2.25), dSa = 1
2ϵabcdx

b ∧ dxc denotes
the natural area element on the surface S, and hx0,x ≡ hp(x0,x) are (classical) holonomies associ-
ated to a family of paths p(x0,x). For each point x on the surface, p(x0,x) is a path connecting x

7
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to a fixed point x0, which may lie on S or outside of it. Apart from their endpoints being fixed,
the paths p(x0,x) can otherwise be chosen in principle arbitrarily, with different choices leading
to different, possibly inequivalent implementations of the parallel transported flux operator.

The action of the parallel transported flux operator on a holonomy is discussed e.g. in section
3.3 of [38]. For the purposes of the present article, it is enough to consider the case where the
surface S intersects the edge e at a single interior point of e. In this case, the action of the
operator can be expressed in the form

ˆ̃Ei (S,x0)D
( j) (he) = iν (S,e)D( j) (he2)D

( j)
(
h−1
x0,x+

)
τ
( j)
i D( j)

(
hx0,x+

)
D( j) (he1) (2.26)

where x+ denotes the point of intersection between e and S, and, as in equation (2.14), e1 and
e2 are the two segments into which e is divided by the intersection with S. We can see that,
just as the action of the standard flux operator inserts the generator τ ( j)i at the point where the
surface intersects the edge—see equation (2.14)—so does the action of the parallel transported
flux operator insert the matrix

D( j)
(
h−1
x0,x+

)
τ
( j)
i D( j)

(
hx0,x+

)
, (2.27)

which is simply the generator τ ( j)i ‘rotated’ by the adjoint action of the SU(2) group element
hx0,x+ .

3. Master constraint for diagonal gauge

3.1. The master constraint approach

In this section we propose a constraint operator which represents the gauge conditions

Eai = 0 for i ̸= a (3.1)

on the kinematical Hilbert space of LQG. (Our convention is that the spatial index takes the
values a= x,y,zwhile the internal index takes the values i = 1,2,3; however, the values 1,2,3
are identified respectively with x,y,z and are often used interchangeably with each other.) In
the classical theory, the gauge conditions (3.1) can be realized by fixing (partially4) the gauge
freedom corresponding to the Gauss and diffeomorphism constraints. The different gauge con-
ditions classically commute among themselves, {Eai ,Ebj }= 0, which presents no obstruction
against imposing the gauge (3.1). On the other hand, in the quantum theory the different com-
ponents of the flux operator Êi(S) do not commute with each other in general. Hence the
procedure of representing the gauge conditions (3.1) individually as constraint operators and
solving them one by one is inherently ambiguous, and one would expect e.g. that the eventual
space of solutions may depend on the order in which the individual constraints are imposed.

4 The gauge fixing is partial because there exist some residual diffeomorphisms which preserve the gauge (3.1). These
are the diffeomorphisms which, when interpreted as coordinate transformations on the spatial manifold Σ, have the
form

(x,y, z)→ (X(x) ,Y(y) ,Z(z))

where each new coordinate is a function of the corresponding old coordinate only.

8
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To construct a constraint operator which treats the constraints (3.1) in a symmetric manner,
we turn to the master constraint approach, which was introduced to LQG by Thiemann [20–22]
as a method for dealing with the quantization of the Hamiltonian constraint. In this approach
one begins by defining a master constraint functional M on the classical phase space, such
that the condition M= 0 is equivalent to the gauge conditions (3.1) being satisfied at every
point of the spatial manifold Σ. A master constraint operator M̂ corresponding to the classical
functional M is then constructed on the kinematical Hilbert space of LQG, and solutions of
the constraint are defined as states satisfying the condition

M̂|Ψ⟩= 0. (3.2)

In our case, it turns out that the condition (3.2) must be interpreted in a certain approximate
sense, instead of imposing it as an exact equation. Since the different gauge conditions (3.1) do
not commute with each other as quantum operators, one cannot expect to be able to find a large
family of states which satisfy the constraint equation (3.2) exactly. Following the approach
originally taken by Alesci and Cianfrani in their work on quantum-reduced loop gravity [2,
6, 15], we understand (generalized) solutions of the condition (3.2) to be states which are
characterized by large values of the spin quantum numbers, and which approximately satisfy
equation (3.2) in the large spin regime, such that the norm of the state M̂|Ψ⟩ approaches zero
in the formal limit j→∞.

3.2. Definition of the master constraint operator

Consider the constraint function

µ2 = (Ex2)
2
+(Ex3)

2
+(Ey1)

2
+(Ey3)

2
+(Ez1)

2
+(Ez2)

2
. (3.3)

Clearly the condition µ2(x) = 0 is fulfilled if and only if all the gauge conditions (3.1) are
satisfied at the point x. A constraint which encodes the gauge conditions at every point on the
spatial manifold Σ can be obtained by integrating the constraint (3.3) over Σ. We divide µ2 by√
q, with q= det(qab) being the determinant of the spatial metric, to construct an integrand

of density weight +1. Integrating the resulting expression over Σ then gives rise to the master
constraint functional

M=

ˆ
Σ

d3x
µ2

√
q
. (3.4)

The integrand in equation (3.4) is a positive definite function. Therefore, in the classical theory,
the single constraint equationM= 0 is equivalent to the gauge conditions (3.1) being satisfied
everywhere on Σ.

Our task now is to write down an operator corresponding to the classical functional (3.4) on
the kinematical Hilbert space of LQG. To this end, it is useful to add and subtract the squared
diagonal components of Eai in µ2, which allows us to rewrite equation (3.4) as

M=

ˆ
Σ

d3x
∑
a

∑
i (E

a
i )

2 − (Eaa)
2

√
q

. (3.5)

To construct an operator corresponding to the expression (3.5), we make use of a system
of cubical cells and surfaces analogous to the one employed e.g. in the construction of the
Ashtekar–Lewandowski volume operator in [34]. The spatial manifold Σ is partitioned into

9
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cubical cells, and for concreteness we let each cell have edge length ϵ and coordinate volume ϵ3.
Inside any given cell□, we set up an assembly of three surfaces Sa(□), a= x,y,z. Furthermore,
we assume the existence of a fixed Cartesian background coordinate system, and we require
that the faces of the cells □ and the surfaces Sa(□) are aligned with the coordinate directions
defined by this coordinate system, such that the background coordinate xa = const on the sur-
face Sa(□). When considering the action of the resulting quantum operator on a cylindrical
function defined on a graph Γ, we assume that the partition is adapted to the graph, by which
we mean that the following two conditions must be satisfied: (1) The parameter ϵ is taken
small enough to ensure that each cell □ contains at most a single node of the graph; (2) If
a cell □ contains a node of the graph, the node coincides with the single point of intersec-
tion between the surfaces Sa(□). For later use, denote this point of intersection by p□, i.e.
p□ = Sx(□)∩ Sy(□)∩ Sz(□).

With the above preparations in place, we now turn to defining an operator corresponding to
the functional (3.5). The form of this operator is postulated as follows. We write the integral
over Σ as a sum of integrals over the cells □ and, for each cell □, quantize every instance of
the densitized triad Eai as the flux operator Êi

(
Sa(□)

)
, and the factor 1/

√
q as the regularized

inverse volume operator V̂−1
p□ of equation (2.22) associated to the point p□. If the cell □ does

not contain a node of the graph of the cylindrical function on which the operator acts, the action

of V̂−1
p□ gives zero, due to the fact that the volume operator V̂v has a non-vanishing action only

on nodes of valence three or higher. For a cell which contains a node, the action of V̂−1
p□ will in

general be non-zero, since we have assumed that the point p□ coincides with the node inside
□. Hence the action of the master constraint operator on a given cylindrical function will pick
up non-trivial contributions only from cells which contain a node, i.e. it has the form

M̂|ΨΓ⟩=
∑
v∈Γ

M̂v|ΨΓ⟩. (3.6)

Since the operator V̂−1
v does not commute with the flux operator, a factor ordering has to

be specified. We assume that the inverse volume operator is ordered to the left of the flux
operators5. With this choice, the operator M̂v is given by the expression

M̂v = V̂−1
v

∑
a

(
Â(Sa (v))2 − Êa (S

a (v))2
)
, (3.7)

where we now use the notation Sa(v) to denote the three surfaces placed within the cell con-
taining the node v. In equation (3.7) the sum runs over a= x,y,z, and

Â(S) =
√
Êi (S) Êi (S) (3.8)

is the area operator associated to the surface S. This concludes the definition of the master
constraint operator corresponding to the classical master constraint (3.4).

5 The outcome of the derivation performed in section 3.3 is not affected by this choice. The states obtained there as

solutions of the master constraint operator are also solutions of the constraint where the operator V̂−1
v is ordered to

the right.

10
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3.3. A family of solutions

Following the work of Alesci and Cianfrani [2, 6, 15], we look for solutions of the master
constraint operator defined by equations (3.6) and (3.7) among cylindrical functions based on
cubical graphs. By a cubical graph we mean a graph whose nodes are six-valent, and whose
edges are aligned with the Cartesian coordinate directions defined by the background coordin-
ate system used in the construction of the master constraint operator in the preceding section.
In the calculation which follows, we consider a fixed but arbitrary cubical graph; hence the
analysis presented in this section applies to any cubical graph.

Since the operator M̂ acts locally at each node of the graph, we may focus our attention on a
single node v. We label the edges incident on the node as indicated in figure 1, and we assume
that the orientation of each edge e±i agrees with the positive direction of the corresponding
background coordinate axis. Consider now the action of the operator M̂v on the generic basis
state

∏
i=x,y,z

D
( j+i )
m+
i n

+
i

(
he+i

)
D
( j−i )
m−
i n

−
i

(
he−i

)
(3.9)

associated to the node v. For the moment, let us ignore the inverse volume operator in
equation (3.7) and focus on the terms in the sum over a. Each of these terms will act only
on two of the six holonomies in the state (3.9), since the edges corresponding to the remaining
four holonomies are tangential to the surface Sa(v). For instance, the term with a= z will act
only on the factor

D
( j+z )
m+
z n

+
z

(
he+z

)
D
( j−z )
m−
z n

−
z

(
he−z

)
(3.10)

while leaving the holonomies of the edges in the x- and y-directions untouched. Using
equations (2.15)–(2.18), a straightforward calculation shows that the action of this term on
the state (3.10) gives

(
Â(Sz (v))2 − Êz (S

z (v))2
)
D
( j+z )
m+
z n

+
z

(
he+z

)
D
( j−z )
m−
z n

−
z

(
he−z

)
=

1
4

(
j+z
(
j+z + 1

)
+ j−z

(
j−z + 1

)
−
(
n+z
)2 − (m−

z

)2)
D
( j+z )
m+
z n

+
z

(
he+z

)
D
( j−z )
m−
z n

−
z

(
he−z

)
+A+

(
j+z ,n

+
z

)
A−
(
j−z ,m

−
z

)
D
( j+z )
m+
z ,n+z +1

(
he+z

)
D
( j−z )
m−
z −1,n−z

(
he−z

)
+A−

(
j+z ,n

+
z

)
A+

(
j−z ,n

−
z

)
D

( j+z )

m+
z ,n+z −1

(
he+z
)
D

( j−z )

m−
z +1,n−z

(
he−z
)
. (3.11)

Note that, since the magnetic quantum numbers in a given representation j are constrained by
−j ⩽ m,n⩽ j, the coefficient of the diagonal term on the right-hand side is strictly positive, so
the right-hand side as a whole cannot be equal to zero for any values of m−

z , n
+
z . This reflects

the already anticipated fact that we should generally not expect to be able to find a large class
of states satisfying the constraint equation M̂|Ψ⟩= 0 exactly; the best we can do is to look for
states which solve the constraint in an appropriate approximate sense.

11
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Figure 1. Labeling of the edges and spin quantum numbers for a generic node of a
cubical spin network graph. The subscript i = x,y,z in the notation e±i indicates that the
edge is aligned with the xa-coordinate direction of the background coordinate system.
The superscript − or + shows whether the edge lies before or after the node v (in the
sense defined by the positive direction of the xi-coordinate axis).

Consider the choice

n+z = j+z , (3.12)

m−
z = j−z . (3.13)

This choice of the magnetic quantum numbers eliminates the off-diagonal terms on the right-
hand side of equation (3.11), and cancels the terms quadratic in j in the coefficient of the
diagonal term. Hence we are left with(

Â(Sz (v))2 − Êz (S
z (v))2

)
D
( j+z )
m+
z j

+
z

(
he+z

)
D
( j−z )
j−z n

−
z

(
he−z

)
=

1
4

(
j+z + j−z

)
D
( j+z )
m+
z j

+
z

(
he+z

)
D
( j−z )
j−z n

−
z

(
he−z

)
. (3.14)

(In fact, for fixed values of the spin quantum numbers j±z , the choice (3.12) and (3.13) leads to
the smallest possible value of the norm of the state on the right-hand side of equation (3.11).)

Let us at this point address the termswith a= x and a= y in equation (3.7), which will act on
the holonomies corresponding to i= x and i= y in the state (3.9). The above calculations were
carried out in the standard basis, in which the generator τ ( j)z is diagonal. These calculations
will go through without modification for the x- and y-directions as well, provided that we
do not use the standard basis, but an appropriately constructed basis which diagonalizes the
corresponding generator τ ( j)x or τ ( j)y . This basis is given by

|jm⟩i = D( j) (gi) |jm⟩ (3.15)

12
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where i= x or y, and gi denotes an SU(2) element describing a rotation which rotates the z-axis
into the i-axis. This rotation is of course not uniquely determined by the condition that the z-
axis is rotated into the i-axis. We fix the ambiguity by requiring that the rotation corresponds to
a cyclic permutation of the coordinate axes, so that the triple (x,y,z) is transformed into (y,z,x)
or (z,x,y). (This choice ensures that equations (2.16)–(2.18) are valid in the basis (3.15) simply
after cyclically permuting the labels x, y and z, without the appearance of any additional phase
factors.)

Introduce the notation

D( j)
mn (he)i = i⟨jm|D( j) (he) |jn⟩i (3.16)

for the matrix elements of the normalized Wigner matrix D( j)(he) =
√
2j+ 1D( j)(he) in the

basis (3.15). Imposing the choice (3.12) and (3.13) on the holonomies in the x- and y-directions
as well, with respect to the bases appropriate to these directions, we are led to consider the state∏

i=x,y,z

D
( j+i )
m+
i j

+
i

(
he+i

)
i
D
( j−i )
j−i n

−
i

(
he−i

)
i

(3.17)

(where i= z refers to the standard basis). Denote this state by |Ψv⟩. The calculation which
produced equation (3.11) now shows that(

Â(Sa (v))2 − Êa (S
a (v))2

)
|Ψv⟩=

1
4

(
j+a + j−a

)
|Ψv⟩. (3.18)

Hence the action of the entire operator (3.7) on the state (3.17) gives

M̂v|Ψv⟩=
1
4

∑
a

(
j+a + j−a

)
V̂−1
v |Ψv⟩. (3.19)

Now the final step of our calculation is to find the action of the inverse volume operator

V̂−1
v on the state |Ψv⟩. This can be deduced from the results obtained in [16], where the action

of the volume operator V̂v on a state of the form (3.17) was derived under the assumption that
all the spin quantum numbers characterizing the state are large:

j±i ≫ 1. (3.20)

The derivation was performed in two stages as follows. First, one considers the operator q̂v in
equation (2.21). By direct calculation, it can be shown that

q̂v|Ψv⟩= λv|Ψv⟩+O
(
j2
)

(3.21)

where

λv =
1
8

(
j+x + j−x

)(
j+y + j−y

)(
j+z + j−z

)
(3.22)

and the term O( j2) denotes a state which is not of the form (3.17), but whose norm depends
quadratically on the spins. In contrast, the eigenvalue λv is of order O( j3), so it follows from
the assumption (3.20) that the second term on the right-hand side of equation (3.21) is small
in comparison with the diagonal term. Due to the fact that the action of q̂v on the state |Ψv⟩
is approximately diagonal, the action of the volume operator V̂v =

√
|q̂v| on this state can be

13
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deduced by applying standard perturbation theory to establish the relevant part of the spectral
decomposition of the operator q̂v. In this way, as shown in detail in appendix B of [16], one
finds

V̂v|Ψv⟩=
√
λv|Ψv⟩+O

(√
j
)

(3.23)

where the norm of the off-diagonal term is again small in comparisonwith the leading, diagonal
term.

In the case presently at hand for us, the arguments presented in appendix B of [16] can

equally well be applied to deduce the action of the operator V̂−1
v on the state |Ψv⟩, given the

known action of q̂v on this state. The result is

V̂−1
v |Ψv⟩= λ−1

v |Ψv⟩+O
(
j−5/2

)
. (3.24)

Going now back to equation (3.19), we finally establish that

M̂v|Ψv⟩=O
(
j−1/2

)
|Ψv⟩+O

(
j−3/2

)
, (3.25)

which represents the conclusion of the calculations carried out in this section. We have found a
family of states which, while not being exact solutions of the master constraint operator at the
node v, do satisfy the constraint approximately in the regime of large spin quantum numbers,
in the sense that the norm of the state M̂v|Ψv⟩ approaches zero as the spins are taken larger
and larger. This family of states is defined by equation (3.17), and is characterized by the
property that the magnetic quantum number of each holonomy at v takes its maximum value
with respect to the basis adapted to the direction of the corresponding edge.

The states given by equation (3.17) represent a set of approximate solutions of the gauge fix-
ing constraint at the node v. To extend the solution to all nodes of a given cubical graph, it suf-
fices to impose the conditions (3.12) and (3.13) at every node of the graph. In equation (3.17),
this means that both magnetic indices of each holonomy are set to their maximal value. Finally,
note that the calculations starting from equation (3.11) go through in exactly the same way if,
instead of equations (3.12) and (3.13), we make the choice n+z =−j+z andm−

z =−j−z , i.e. both
magnetic indices now take their minimum value. (However, if one of n+z and m−

z is chosen to
be maximal while the other is taken minimal, the off-diagonal terms in equation (3.11) are not
completely eliminated, although the diagonal term behaves in the same way as before.) Hence
we will allow both maximal and minimal values of the magnetic quantum numbers, but at any
node v of the cubical graph, we require that both magnetic indices corresponding to a given
coordinate direction must have the same sign. In this way we arrive at a space of (approximate)
solutions of the master constraint operator (3.6), which is summarized in section 4.1 below.

4. Fundamental structure of quantum-reduced loop gravity

4.1. The reduced Hilbert space

We take the Hilbert space of the quantum-reduced model to be the space spanned by the states
which were derived in section 3.3 as solutions of the gauge fixing master constraint operator.
Thus, a basis on the reduced Hilbert space is given by the states∏

e∈Γ

D
( je)
τeje σeje (he)ie . (4.1)

14
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The graph Γ is a cubical graph, with its edges aligned along the coordinate directions defined
by a fixed Cartesian background coordinate system. Note that the calculation of section 3.3
is valid for any cubical graph. Hence one is not necessarily restricted to working with just a
single fixed graph; all cubical graphs (corresponding to a specific choice of the background
coordinate directions) are included in the Hilbert space of quantum-reduced loop gravity.

All the spin quantum numbers labeling the state (4.1) are required to be large:

je ≫ 1 (4.2)

for every edge of the graph Γ. The labels σe and τ e in the state (4.1) are sign factors, i.e.
σe =±1 and τe =±1. (The factors σe and τ e belong respectively to the source and target of
the edge e.) For any given edge, σe and τ e can be chosen independently of each other; however,
at each node of the graph the two labels associated with a given coordinate direction must have
the same value, as described at the end of section 3.3. In other words, let e±i (v) denote an edge
which is incident on the node v and aligned in the xi-coordinate direction, with the superscript
indicating whether the edge lies before (−) or after (+) the node v (in the sense defined by the
positive direction of the xi-coordinate axis). Then we require that the labels σe and τ e in the
state (4.1) are constrained by the conditions

σe+i (v) = τe−i (v). (4.3)

Regarding the orientation of the graph Γ, we assume that the orientation is fixed so that every
edge of the graph is oriented towards the positive direction of the corresponding background
coordinate axis. Note that there is no loss of generality in this assumption, due to the relation

D( j)
mn

(
h−1
e

)
= (−1)m−nD( j)

−n−m (he) (4.4)

satisfied by the SU(2) representation matrices. This relation shows that a state of the form (4.1)
on a cubical graph of arbitrary orientation is equivalent to a state on a graph with the fixed
orientation specified above, only with possibly modified values of some of the sign labels σe
and τ e.

Apart from the constraint (4.3), which has not been considered in the literature of quantum-
reduced loop gravity so far, the reduced Hilbert space defined above agrees with the Hilbert
space established in the articles originally introducing the quantum-reduced model, together
with certain amendments proposed in later work. In particular, the states (4.1) with opposite
signs of the magnetic quantum numbers (i.e. σe =−τe) were not included in the Hilbert space
considered originally in [1, 2], but such states were introduced later in [7], where the frame-
work of quantum-reduced loop gravity was applied to the description of spherically symmetric
spacetimes.

4.2. Action of LQG operators on the reduced Hilbert space

The relation between the operators of quantum-reduced loop gravity, as originally formulated
in the literature of the quantum-reduced model, and the corresponding operators of full LQG
has been examined in [16]. The calculations carried out in [16] reveal the following general
picture: When an operator Ô on the kinematical Hilbert space of LQG is applied on the basis
states (4.1), the result typically (but not for all possible operators Ô) is of the schematic form

Ô|Ψ0⟩= f( j) |Ψ ′
0⟩+ g( j) |Φ⊥⟩. (4.5)
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Here |Ψ0⟩ and |Ψ ′
0⟩ are normalized states belonging to the reduced Hilbert space, while |Φ⊥⟩ is

a normalized state which is orthogonal to the reduced Hilbert space. Moreover, the coefficients
f (j) and g(j) are such that, under the assumption of large j,

f( j)≫ g( j) . (4.6)

Hence the conclusion is that, although the operator Ô does not preserve the reduced Hilbert
space exactly, the action of Ô on a reduced state produces a state whose component outside of
the reduced Hilbert space is much smaller than the component which lies within the reduced
Hilbert space.

In the earlier literature on quantum-reduced loop gravity, the kinematical operators of the
model are typically introduced as projections of the corresponding operators of full LQG down
to the reduced Hilbert space (see e.g. [6]). Thus, the results obtained in [16] provide a justi-
fication for this procedure by showing that the terms which get projected out are small in
comparison with the terms which are preserved by the projection.

We will now briefly review the results derived in [16] pertaining to the holonomy and flux
operators, and extend these results to the basis states (4.1), in which arbitrary sign factors
σe, τ e are allowed (in [16] only the case σe = τe =+1 was considered). For the flux operator,
assuming the surface S intersects the edge e at one of its endpoints, equations (2.14) and (2.16)–
(2.18) immediately yield

Êi (S)D
( j)
τ j σj (he)i = ν (S,e)×


σ
j
2
D

( j)
τ j σj (he)i s(e) lies on S

τ
j
2
D

( j)
τ j σj (he)i t(e) lies on S

(4.7)

and

Êk (S)D
( j)
τ j σj (he)i =O

(√
j
)

(k ̸= i) . (4.8)

Hence the dominant component in the action of the flux operator is the one where the internal
index matches the direction of the edge on which the operator acts, and the action of this
component on the reduced holonomy6 is diagonal. The remaining components of the flux
operator act non-diagonally, producing states which do not belong to the reducedHilbert space,
but these components are suppressed by a factor of j−1/2 relative to the diagonal component.

However, note that if the surface intersects the edge at an interior point, the action of the
flux operator on a reduced holonomy gives

Êk (S)D
( j)
τ j σj (he)i = iν (S,e)

(
D( j) (he2)τ

( j)
k D( j) (he1)

)(i)
τ j σj

, (4.9)

where the notation on the right-hand side indicates that the matrix element is taken in the basis

|jm⟩i, i.e.
(
M( j)

)(i)
mn

= i⟨jm|M( j)|jn⟩i. Here all the matrix elements of the generator (τ ( j)i )mn
enter the result, and the right-hand side of equation (4.9) does not reduce to any simple form
even under the assumption of large j. The flux operator associated to a surface of this kind

6 We use the term ‘reduced holonomy’ to refer to the holonomies which make up the basis state (4.1). Thus, the
characteristic property of a reduced holonomy associated to an edge e is that both magnetic quantum numbers of the
holonomy have the maximal or minimal value with respect to the basis corresponding to the direction of the edge.
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is therefore an example of an operator for which the result (4.5) does not hold. In quantum-
reduced loop gravity one typically works only with flux operators whose surfaces intersect the
cubical graph of the basis states (4.1) only at the nodes of the graph.

The action of the holonomy operator on a reduced holonomy is given by equation (2.13)
as

D̂(s)
mn (he)D

( j)
τ j σj (he) =

∑
k

C( j s k)
τ j m m ′C

( j s k)
σj n n ′D

(k)
m ′n ′ (he) , (4.10)

where

m ′ = τ j +m (4.11)

n ′ = σj + n (4.12)

and we assume that s=O(1), while j≫ 1 as before. Under these assumptions, it was shown
in [16] that the Clebsch–Gordan coefficients entering equation (4.10) behave as

C( j s j+m)
j m j+m = 1+O

(
1
j

)
(4.13)

and

C( j s k)
j m j+m =O

(
1√
j

)
(k> j+m) . (4.14)

Using equations (4.13) and (4.14) in equation (4.10) one finds, considering first the case σ =
τ =+1,

D̂(s)
mm (he)D

( j)
jj (he) =D

( j+m)
j+m j+m (he)+O

(
1
j

)
, (4.15)

D̂(s)
mn (he)D

( j)
jj (he) =O

(
1√
j

)
(m ̸= n) . (4.16)

The case σ = τ =−1 can be obtained from equations (4.15) and (4.16) with the help of the
relation (4.4). We have

D̂(s)
mm (he)D

( j)
−j−j (he) =D

( j−m)
−j+m−j+m (he)+O

(
1
j

)
, (4.17)

D̂(s)
mn (he)D

( j)
−j−j (he) =O

(
1√
j

)
(m ̸= n) . (4.18)

Thus, the dominant terms in the action of the holonomy operator on a reduced holonomy with
σ = τ are given only by the diagonal (m= n) components of the operator.

It remains to consider the cases σ =+1, τ =−1 and σ =−1, τ =+1. These can be
deduced from the above results by using the symmetry properties of the Clebsch–Gordan coef-
ficients, namely

C( j1 j2 j)
−m1 −m2 −m = (−1)j1+j2−jC( j1 j2 j)

m1 m2 m (4.19)
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(see e.g. [39]). We find

̂
D(s)
m−m (he)D

( j)
j−j (he) = (−1)s−m

D
( j+m)
j+m−j−m (he)+O

(
1
j

)
(4.20)

̂
D(s)
m−m (he)D

( j)
−j j (he) = (−1)s−m

D
( j−m)
−j+m j−m (he)+O

(
1
j

)
(4.21)

and

D̂(s)
mn (he)D

( j)
±j∓j (he) =O

(
1√
j

)
(m ̸=−n) . (4.22)

Hence, in the case of a reduced holonomy with σ =−τ , the leading-order terms in the action
of the holonomy operator arise from the ‘anti-diagonal’ (m=−n) components. In all the cases
the leading term is again a reduced holonomy, i.e. each magnetic index is either maximal or
minimal.

4.3. Reduced operators

The results summarized in the previous section suggest that operators of quantum-reduced
loop gravity can be interpreted as arising from the action of the corresponding operators of
full LQG on states in the reduced Hilbert space. (Note that the states (4.1) are elements of
the kinematical Hilbert space of LQG.) From any operator Ô whose action on the reduced
Hilbert space has the form (4.5), we can obtain a reduced operator ÔR simply by discarding
the second term on the right-hand side of equation (4.5), with equation (4.6) guaranteeing
that the discarded term is small in comparison with the term which is kept. The action of the
operator ÔR on the reduced Hilbert space is given by

ÔR|Ψ0⟩= f( j) |Ψ ′
0⟩. (4.23)

From the perspective of the quantum-reduced model, the reduced operator ÔR is therefore a
well-defined operator on the reduced Hilbert space, this space being preserved by the action of
the operator. On the other hand, comparing the action of the reduced operator to the original
operator Ô, we can write∣∣∣∣Ô|Ψ0⟩− ÔR|Ψ0⟩

∣∣∣∣∣∣∣∣Ô|Ψ0⟩
∣∣∣∣ ≪ 1 (4.24)

which shows that from the perspective of the full theory, the operator ÔR provides a good
approximation of the action of the full operator Ô on states in the reduced Hilbert space.

The action of the reduced flux operator can be read off from equations (4.7) and (4.8) as

ÊRk (S)D
( j)
τ j σj (he)i = δikν (S,e)φ

j
2
D

( j)
τ j σj (he)i , (4.25)

where φ = σ or φ = τ according to whether the surface S intersects the edge e at s(e) or
t(e). The action of the reduced holonomy operator also follows from the results derived in the
previous section. From the various cases considered there, we gather
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̂
D(s)
mn (he)

R
i D

( j)
τ j σj (he)i =



δmnD
( j+m)
j+m j+m (he)i (τ,σ) = (++)

δmnD
( j−m)
−j+m−j+m (he)i (τ,σ) = (−−)

δm,−n (−1)s−m
D

( j+m)
j+m−j−m (he)i (τ,σ) = (+−)

δm,−n (−1)s−m
D

( j−m)
−j+m j−m (he)i (τ,σ) = (−+)

. (4.26)

It can be seen that in the cases where σ = τ , the action of the reduced holonomy operator
is essentially the multiplication law of the group U(1), where the role of the U(1) quantum
number is played by the magnetic quantum number (and not the spin) carried by the holonomy
operator.

Other LQG operators can be treated in the same way in order to derive their reduced coun-
terparts. The example of the volume operator was analyzed in [16]. It was shown that the action
of the reduced volume operator on the basis states (4.1) is diagonal, and is given by

V̂Rv

(∏
e∈Γ

D
( je)
τeje σeje (he)ie

)
= λv

(∏
e∈Γ

D
( je)
τeje σeje (he)ie

)
(4.27)

where the eigenvalue is

λv =

√
1
8

(
j+x + j−x

)(
j+y + j−y

)(
j+z + j−z

)
(4.28)

with j±i denoting the spins on the six edges incident on v, as illustrated in figure 1. Note that the
reduced volume operator is not constructed by starting with the reduced flux operators defined
by equation (4.25) and using them to form a volume operator. Instead, we evaluate the action
of the volume operator of the full theory on the reduced Hilbert space and, extracting the term
of leading order in the spins, find that this term is an element of the reduced Hilbert space—in
other words, the action of the operator is of the form (4.5). The reduced volume operator of
equation (4.27) is then obtained by keeping only the leading term and discarding the terms of
lower order in j.

To conclude our discussion of reduced operators, let us consider the Hamiltonian constraint.
In order to obtain a well-defined Hamiltonian operator for the quantum-reduced model, the
operator must be constructed in such a way that the terms of leading order in j produced by the
action of the operator on states in the reduced Hilbert space are again elements of the reduced
Hilbert space. This condition is necessary (and sufficient) to ensure that the reduced Hilbert
space is preserved by the resulting reduced Hamiltonian, which is obtained by truncating the
full action of the Hamiltonian at leading order in j. (If the space spanned by the states (4.1)
is interpreted as a space of quantum states where the gauge conditions encoded in the mas-
ter constraint operator (3.6) are satisfied, then the above condition can, loosely speaking, be
interpreted as the condition for the chosen gauge to be preserved under the quantum dynamics
generated by the reduced Hamiltonian.)

A concrete example of a Hamiltonian operator which satisfies the condition formulated
above can be obtained as follows. As the classical starting point for the construction, we take
the classical Hamiltonian constraint in the form

C(N) =
1
β2

ˆ
Σ

d3xN

(
ϵ k
ij E

a
i E

b
j F

k
ab√

|detE|
+
(
1+β2

)√
|detE| (3)R

)
. (4.29)
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Here β is the Barbero–Immirzi parameter, N is the lapse function, Fiab is the curvature of
the Ashtekar connection Aia, and

(3)R is the Ricci scalar of the spatial manifold Σ. For the
quantization of the Lorentzian part of the Hamiltonian, represented in equation (4.29) by the
term involving the Ricci scalar, we refer to the work carried out in [38, 40]. In this pair of
articles, an operator representing the integrated Ricci scalar was first constructed for arbitrary
kinematical states of LQG based on cubical graphs, and then it was established that the reduced
Hilbert space is preserved by the action of this operator at leading order in j. To deal with
the quantization of the Euclidean part of the Hamiltonian, we follow the construction in [41]
which, when adapted to the quantization of the Euclidean part of the constraint (4.29), gives
rise to the following operator (up to a constant numerical factor, which is omitted):

ĈE (N) =
∑
v∈Γ

N(v) V̂−1
v

∑
e∦e ′ at v

ϵijkTr

(
τ
(s)
k

̂
D(s) (hαee ′

))
Ĵ(v,e)i Ĵ

(v,e ′)
j . (4.30)

Here the inner sum runs over pairs of edges whose tangent vectors at v are linearly independent,
and the operator Ĵ(v,e)i is defined as

Ĵ(v,e)i D( j)
mn (he) =

iD
( j)
mm ′ (he)

(
τ
( j)
i

)
m ′n

v= s(e)

−i
(
τ
( j)
i

)
mm ′

D( j)
m ′n (he) v= t(e)

(4.31)

However, we depart from [41] when it comes to specifying the loop αee ′ , which arises from
the regularization of the curvature Fiab. In our case, the operator (4.30) is applied on a cubical
graph, and we take αee ′ to be the minimal closed loop formed by the edges e, e′ and by two
other edges of the cubical graph. Now a straightforward calculation can be performed to show
that when the operator (4.30) acts on the basis states (4.1), the term of leading order in j does
belong to the reduced Hilbert space. Therefore the construction sketched above provides a
well-defined Hamiltonian constraint operator for quantum-reduced loop gravity.

5. Possible extensions and generalizations

5.1. SU(2) gauge invariance

The basis states (4.1) are not invariant under the local SU(2) gauge transformations given by
equation (2.8). Hence, when working with a model whose state space is spanned by these
states, one essentially takes the point of view that since the gauge freedom represented by
the Gauss constraint is completely fixed by the gauge choice (3.1), there should be no trace
of SU(2) gauge invariance left in the quantum theory after the gauge fixing constraint has
been imposed. Here we will not try to address the conceptual question of whether the correct
way to deal with the Gauss constraint in quantum-reduced loop gravity is simply to ignore
it, or whether it should be taken into account in some non-trivial way. Instead, we will take
this question as a purely technical one, and propose two possible ways in which the Gauss
constraint could be incorporated into the framework considered so far in this article.

20



Class. Quantum Grav. 41 (2024) 125010 I Mäkinen

Following the extended master constraint proposal of Thiemann [20], we can include the
Gauss constraint7 as a part of the master constraint by considering the extended master con-
straint

Mext =M+MGauss, (5.1)

where M is the master constraint for diagonal gauge from section 3.2, and the master Gauss
constraint is defined as

MGauss =

ˆ
Σ

d3x
GiGi√
q

(5.2)

with

Gi =DaE
a
i = ∂aE

a
i + ϵ k

ij A
j
aE

a
k . (5.3)

In order to promote the classical functional (5.2) into an operator, we use a construction sim-
ilar (but not identical) to the one introduced in [38] to quantize covariant derivatives of the
densitized triad in terms of finite differences of parallel transported flux operators on a cubical
graph.

Consider, as in section 3.2, a partition of the spatial manifold into cubical cells adapted to
a given cubical graph. For any node v of the graph, let Sa±(v) (a= x,y,z) denote the six faces
of the cell containing v, such that the surface Sa±(v) lies in the coordinate plane xa = const.
and the subscript indicates whether the surface is located before or after the node v in the
positive direction of the xa-coordinate axis (as in the notation for the edges in figure 1). Now
the covariant derivative DaEai at v (no summation over a is understood) can be approximated
by the discretized variable

∆aE
a
i (v) = Ẽi

(
Sa+ (v) ,v

)
− Ẽi

(
Sa− (v) ,v

)
(5.4)

where Ẽ(S,v) is the parallel transported flux variable discussed in section 2.2. We assume that
the parallel transport from any point x on the surface Sa±(v) to the node v is taken first along a
straight line from x to the point at which the surface intersects an edge e of the cubical graph,
and then from the intersection point to v along e.

We then define

M̂Gauss =
∑
v

V̂−1
v

∑
a,i

(
∆̂aEai (v)

)2
(5.5)

as the operator representing the master Gauss constraint (5.2). The action of the oper-

ator ∆̂aEai (v) (no sum over a) on the basis states (4.1) can be computed with the help of
equation (2.26). The result is

∆̂aEai (v)

(∏
e∈Γ

D
( je)
τeje σeje (he)ie

)
=


(
j+i − j−i

)(∏
e∈Γ

D
( je)
τeje σeje (he)ie

)
(i = a)

O
(√

j
)

(i ̸= a)

(5.6)

7 In principle there is no obstruction against treating the spatial diffeomorphism constraint in the same way. An oper-
ator representing the master diffeomorphism constraint on a cubical graph can be constructed in a relatively straight-
forward manner, but the form of this operator is much more complicated than the master Gauss constraint considered
in this section, and finding a space of solutions of the constraint in explicit form is a non-trivial task, which we have
so far not accomplished.
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where the notation of figure 1 is again used for the spins at the node v. It follows that the
constraint equation M̂Gauss|Ψ⟩= 0 is satisfied exactly by basis states fulfilling the condition
j+i = j−i at every node. However, since solutions of the extended master constraint operator
can again be found only in the approximate sense discussed in section 3.3, there is room for
this condition to be relaxed accordingly. Thus, we consider solutions of the extended master
constraint to be the basis states (4.1) where the spins are constrained by the conditions∣∣j+i − j−i

∣∣≪ j±i (5.7)

which state that the difference between two consecutive spins along a given ‘line’ of edges
must be small compared to the spins themselves.

Another possible way of addressing gauge invariance would be to apply SU(2) group aver-
aging (see e.g. [42]) in order to obtain a set of gauge invariant states. Since the gauge conditions
do not commute with the Gauss constraint, it should be expected that the outcome of the con-
struction will depend on the order of imposing the gauge-fixing constraint and implementing
SU(2) gauge invariance. (Note that this question does not arise in the extended master con-
straint approach discussed above, where the gauge conditions and the Gauss constraint are
both combined into a single constraint operator.) We propose that the natural order of per-
forming these operations is suggested by the fact that the master constraint operator defined
by equations (3.6) and (3.7) is not gauge invariant, i.e. the gauge invariant Hilbert space is
not preserved by the action of this operator. Hence it does not seem clear how this operator
could be imposed as a constraint on the gauge invariant Hilbert space in a consistent manner.
On the other hand, performing an SU(2) group averaging on the Hilbert space spanned by the
states (4.1) is, from the technical standpoint, a well-defined and unambiguous procedure, act-
ing as a projection onto the SU(2) invariant subspace. For this reason we will only consider
the order where the gauge-fixing constraint is solved first, and group averaging is then applied
to the resulting basis states (4.1).

Let us look at the effect of group averaging on a given node v of a reduced basis state. Here
it is convenient to depart temporarily from the convention introduced in section 4.1 concerning
the orientation of the edges, and instead use equation (4.4) to arrange for all the edges incident
on v to have an outgoing orientation. Then the relevant part of the state (4.1) has the form8

∏
i=x,y,z

D( j+i )
(
he+i

)∣∣j+i , j+i 〉iD( j−i )
(
hẽ−i

)∣∣j−i ,−j−i 〉i, (5.8)

where ẽ−i stands for the edge e−i with a reversed orientation. Applying the group averaging
operation to the state (5.8) now gives

ˆ
dg

∏
i=x,y,z

D( j+i )
(
he+i g

)∣∣j+i , j+i 〉iD( j−i )
(
hẽ−i g

)∣∣j−i ,−j−i 〉i (5.9)

where the integral is taken over the SU(2) group manifold. Due to the invariance of the Haar
measure, the state (5.9) is manifestly invariant under SU(2) gauge transformations acting at
the node v.

8 The expression (5.8) is obtained by writingD( j)
τ j σj(he)i = i⟨j, τ j |D( j)(he)|j,σj⟩i and omitting the bra vector i⟨j, τ j |,

which is associated not with the node v but with the target node of the edge e. For concreteness, we also assume that
all the sign factors in the state (4.1) are positive at v (before adjusting the orientations): σ

e+i (v)
= τ

e−i (v)
=+1.
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It is helpful at this point to recall the definition of the coherent states of angular momentum
[43, 44]. The coherent state |j⃗n⟩ is constructed from the state of highest weight |jj⟩ by applying
a SU(2) rotation g(⃗n)which rotates the z-axis into the direction of the unit vector n⃗ ∈ R3: |j⃗n⟩=
D( j)

(
g(⃗n)

)
|jj⟩. A closely related object is the Livine–Speziale coherent intertwiner, which was

introduced in [45] as the SU(2)-invariant projection of the tensor product state |j1n⃗1⟩ · · · |jNn⃗N⟩:

|j1 · · · jN; n⃗1 · · · n⃗N⟩=
ˆ

dgD( j1) (g) |j1n⃗1⟩ · · ·D( jN) (g) |jNn⃗N⟩. (5.10)

Referring now back to equation (5.9), note that the states |j,±j⟩i, as defined in equation (3.15),
are simply the coherent states |j⃗n⟩ corresponding to the choice n⃗=±êi (with êx, êy, êz being
the unit vectors along the background coordinate directions). Hence we see that the group
integration in equation (5.9) combines with the representation matrices and the state vectors,
i.e. D( j±i )(g)|j±i ,±j

±
i ⟩i, to produce precisely the coherent intertwiner (5.10). The conclusion

emerging from the calculation is therefore as follows: The group averaging of the reduced
basis state (4.1) results in a gauge invariant spin network state of the general form (2.9), where
each node carries a six-valent Livine–Speziale intertwiner, and the unit vectors n⃗1, . . . , n⃗6 char-
acterizing the intertwiner are the six face normal vectors of a cube.

Here a crucial question, to which we do not currently have a conclusive answer, has to do
with the property summarized in equation (4.5), whereby the reduced Hilbert space is pre-
served by the action of the operator Ô at leading order in j. It is a priori not clear whether this
property continues to be valid after the group averaging operation has been applied. Assuming
that Ô is a gauge invariant operator, and letting P̂G denote the group averaging operator
(equivalently, the projection operator onto the gauge invariant Hilbert space), we obtain from
equation (4.5)

ÔP̂G|Ψ0⟩= f( j) P̂G|Ψ ′
0⟩+ g( j) P̂G|Φ⊥⟩. (5.11)

However, the state vectors appearing in this equation are no longer normalized (as a projection
operator, P̂G does not preserve the norm of the state on which it acts, unless this state is already
gauge invariant) and a more careful analysis would be needed in order to establish whether the
second term on the right-hand side of equation (5.11) is still much smaller than the first term.

5.2. A generalized basis of reduced spin network states

The space spanned by the states (4.1) is clearly not the most general set of solutions of the
gauge-fixing master constraint introduced in section 3.2, although it is a natural set of solu-
tions of the constraint operator, and up to details related to the sign factors σe, τe, it coincides
with the reduced Hilbert space considered in earlier literature of quantum-reduced loop grav-
ity. However, the following considerations suggest that this space may not be general enough
with a view towards the possible physical applications of the quantum-reduced model. In the
classical theory, the gauge conditions Eai = 0 for i ̸= a generally do not restrict any compon-
ents of the conjugate variable Aia to be vanishing. There exist possible classical configurations
in which the densitized triad is diagonal but all components of the Ashtekar connection are
non-zero. On the other hand, equation (4.10) shows that in the action of the reduced holonomy

operator
̂

D(s)
mn(he)R on the basis (4.1), only the diagonal (m= n) and anti-diagonal (m=−n)

components of the operator give a non-vanishing result. This does not seem to be consistent
with the classical expectation that all components of the connection Aia could generally be

23



Class. Quantum Grav. 41 (2024) 125010 I Mäkinen

non-vanishing, since for an arbitrary value of the connection Aia, all matrix elements of the

classical holonomy D(s)
mn
(
he[A]

)
will in general be non-zero.

One could ask whether this problem might have to do with the restriction to cubical graphs,
whose edges are aligned in the background coordinate directions. Considering that one can find
many examples of states in the Hilbert space of full LQG which are defined on cubical graphs
but on which all components of the holonomy operator act non-trivially, it seems unlikely that
the vanishing action of the off-diagonal components on the reduced Hilbert space could be
explained entirely by the choice of graph. Nevertheless, it is plausible that this issue could
be addressed by looking for solutions of the gauge-fixing master constraint on other types
of graphs, on which the action of all components of the holonomy would possibly be non-
vanishing. This idea will not be pursued further in the present article, but we leave it as a poten-
tial topic for future work. (To the author’s best knowledge, there have not been any attempts so
far in the literature to extend the framework of quantum-reduced loop gravity to non-cubical
graphs.)

Instead, we will propose an extension of the standard reduced Hilbert space described in
section 4.1, in which the system of cubical graphs is not entirely discarded, but is merely
modified in a way which allows for all components of the reduced holonomy operator to have a
non-trivial action on the extended Hilbert space. In searching for such an extension, we would
like to leave the structure present at the nodes of the standard basis states (4.1) unchanged,
since this structure essentially follows from the considerations of section 3.3, and hence it
seems difficult to envision any substantial modification of this structure while ensuring that
the resulting states continue to be solutions of the gauge-fixing master constraint. This leaves
the possibility of introducing some additional structure at the interior of the edges of the graphs
on which the standard basis states are defined.

To this end, consider the basis state (4.1) and focus on the reduced holonomy corresponding
to a given edge e. Divide the edge into two segments e1, e2 (so that e= e2 ◦ e1) and replace the
reduced holonomy D

( je)
τeje σeje(he)i with a product of two holonomies associated with the two

segments as follows:

D
( je)
τeje σeje (he)i → D

( je)
τeje me

(he2)iD
( j ′e )
m ′
e σej ′e

(he1)i . (5.12)

Here me and m ′
e are new quantum numbers characterizing the generalized state, and the spins

je and j ′e may generally be different from each other. From the perspective of standard LQG,
it may seem somewhat unnatural to assume that the reduced holonomies associated to the two
segments can carry different spin quantum numbers. Nevertheless, here it is in fact necessary
to allow for this possibility. If the spins on the two segments were required to match, then
the Hilbert space spanned by the resulting states would not be closed under the action of the
reduced holonomy operator (see equation (5.16) below).

Applying the above procedure to every edge e in the basis states (4.1), we arrive at the
generalized basis states∏

e∈Γ

D
( je)
τeje me

(he2)i D
( j ′e )
m ′
e σej ′e

(he1)i . (5.13)

In these states, the magnetic quantum numbers associated with every proper six-valent node
of the cubical graph Γ are τeje and σej ′e, while the quantum numbers me and m ′

e are located at a
‘degenerate’ two-valent node formed by the edges e1 and e2 (see figure 2 for a pictorial illus-
tration). When the master constraint operator defined by equations (3.6) and (3.7) is applied
on the states (5.13), the operator acts non-trivially only on the six-valent nodes; its action on
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Figure 2. Construction of the generalized basis states. (Third dimension suppressed for
clarity.) Each edge of the cubical graph is split into two segments, and the reduced
holonomy is replaced with a pair of holonomies, which may carry arbitrary magnetic
quantum numbers at the end which is not attached to a proper, non-degenerate node
of the graph. Thus, a solid circle in the drawing represents a node where the values of
all magnetic indices are maximal or minimal with respect to the appropriate coordinate
direction, while a truncated line represents an arbitrary value of the magnetic index.

the two-valent nodes vanishes due to the presence of the inverse volume operator V̂−1
v . Since

the structure at the six-valent nodes of the generalized basis states (5.13) has not been altered
relative to the standard basis states (4.1), the generalized states therefore continue to be valid
solutions of the gauge-fixing master constraint, as long as the conditions

je ≫ 1 (5.14)

j ′e ≫ 1 (5.15)

are fulfilled for each edge e, and the constraint (4.3) on the sign factors is satisfied at every
node.

The action of the holonomy operator on the generalized states (5.13) can be found bywriting
the holonomy along the edge e as he = he2he1 , and then applying equation (2.13) separately to
each of the two segments. Using also equations (4.13) and (4.14), one finds (we display the
result only for the case σe = τe =+1; the other cases are not different in any essential way)

̂
D(s)
nn ′ (he)iD

( j)
jm (he2)iD

( j ′)
m ′j ′ (he1)i

=
∑
µ

C( j s j+n)
m µ m+µC

( j ′ s j ′+n ′)
m ′ µ m ′+µ D

( j+n)
j+n m+µ (he2)iD

( j ′+n ′)
m ′+µ j ′+n ′ (he1)i +O

(
j−1/2

)
. (5.16)

The term of leading order in j on the right-hand side of equation (5.16) is a linear combination
of states of the form

D
( j)
jm (he2)iD

( j ′)
m ′j ′ (he1)i (5.17)

so the space of such states is preserved by the action of the reduced holonomy operator obtained
from equation (5.16). Moreover, for any values of m and n, the reduced holonomy operator
̂

D(s)
mn(he)Ri will generally have a non-vanishing action on the basis states (5.13).
In the terminology of cylindrical functions, the construction proposed in this section can

be seen as a particular kind of refinement of the graph on which the standard basis states (4.1)
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are defined. The standard basis states are cylindrical functions on a regular cubical graph con-
taining only six-valent nodes. In contrast, the generalized basis states of equation (5.13) are
cylindrical functions on a finer graph, which is obtained by taking a regular cubical graph and
introducing a two-valent node at an interior point of every edge. Note that the standard basis
states can also be seen as cylindrical functions on this finer graph. (This is achieved by assign-
ing a Kronecker delta at each two-valent node as an intertwiner which contracts the magnetic
indices of the holonomies at the node and thus joins the two segments into one whole edge.)
Hence the original Hilbert space spanned by the states (4.1) is a proper subspace of the gener-
alized Hilbert space spanned by the states (5.13), so in this sense the generalized Hilbert space
is indeed a genuine extension of the standard reduced Hilbert space.

6. Conclusions

In this article we constructed and analyzed a constraint operator representing a set of gauge
conditions which fix the densitized triad to be diagonal on the kinematical Hilbert space of
LQG. A gauge fixing to a diagonal triad at the level of the quantum theory is the basic premise
of quantum-reduced loop gravity, a physically motivated model of LQG proposed by Alesci
and Cianfrani in [1, 2]. Hence the work presented in this article can be seen as re-examining
the foundations of quantum-reduced loop gravity from an alternative and arguably more sys-
tematic standpoint.

In order to construct a constraint operator encoding the desired gauge conditions, we turned
to the master constraint method introduced to LQG by Thiemann [20, 21] as a technique for the
quantization of the Hamiltonian constraint. The gauge conditions aggregated in the resulting
master constraint operator do not commute among themselves as quantum operators, despite
being compatible with each other in the classical theory. To search for solutions of a constraint
of this kind, we followed the approach originally taken by Alesci and Cianfrani. Instead of
requiring the constraint equation to be satisfied exactly, one looks for solutions of the constraint
among kinematical states characterized by large spin quantum numbers, with the constraint
equation being interpreted as a condition to be satisfied approximately in the regime of large
spins (the equality becoming exact if one formally takes the limit j→∞). By deriving a set of
solutions of the constraint operator (understood in the above generalized sense) on a cubical
graph, we confirmed that the Hilbert space of quantum-reduced loop gravity is recovered in
the form considered in earlier literature, up to minor technical details regarding the signs of
the magnetic quantum numbers.

Having established a space of solutions of the gauge fixing master constraint, we proceeded
to examine the action of the basic operators of LQG on this space. We summarized the central
results of the earlier article [16], where the relation between the operators of quantum-reduced
loop gravity and those of full LQG was analyzed, and extended these results to the more gen-
eral set of states considered in the present article. These calculations show that the Hilbert
space of quantum-reduced loop gravity, when viewed as a subspace of the kinematical Hilbert
space of full LQG, is approximately preserved by the action of many fundamental operators
of LQG. More precisely, the action of a LQG operator on a state in the reduced Hilbert space
typically produces a state which lies predominantly in the reduced Hilbert space, in the sense
that the component of this state orthogonal to the reduced Hilbert space is much smaller than
the component which belongs to the reduced Hilbert space. Operators for quantum-reduced
loop gravity can therefore be derived from the corresponding operators of full LQG by drop-
ping the small terms which do not belong to the reduced Hilbert space. From the perspective
of the quantum-reduced model, the reduced operator obtained in this way is a well-defined
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operator on the Hilbert space of the model, whereas from the point of view of the full theory
the action of the reduced operator can be seen as a good approximation of the action of the full
operator on the reduced Hilbert space.

Expressing the gauge conditions for a diagonal triad in terms of a precisely formulated
constraint operator provides an opportune starting point for considering various possible gen-
eralizations of the construction presented in this article. We showed that the master constraint
for diagonal gauge can be straightforwardly extended to include the Gauss constraint, mak-
ing it possible to implement a notion of SU(2) gauge invariance on the reduced Hilbert space.
Another way to address the question of gauge invariance would be to directly apply a SU(2)
group averaging map on the reduced basis states. However, for the time being it is not known
whether the group averaging operation preserves the decomposition of the action of operators
on the reduced Hilbert space into a large term belonging to the reduced Hilbert space and a
small term lying outside of this space.

We further proposed a basis of generalized reduced states, making use of the fact that the
master constraint operator (in both its non-extended and extended forms) acts only on the
nodes of a given graph, so there is room to modify the definition of the standard reduced basis
states away from the nodes. The need to look for a generalization of the standard reduced
Hilbert space was motivated by the observation that only the diagonal and ‘anti-diagonal’
components of the reduced holonomy operator have a non-vanishing action on the standard
reduced states. This feature appears to be in conflict with the classical expectation that fixing
the off-diagonal components of the densitized triad to zero should not necessarily constrain
any components of the Ashtekar connection to vanish. For this reason, it is unclear whether
the standard formulation of the reduced Hilbert space can correctly capture all the degrees
of freedom contained in the Ashtekar connection in physical situations where off-diagonal
components of the connection are relevant. On the space spanned by the generalized reduced
states, all components of the reduced holonomy operator have a generically non-vanishing
action.

Developing a clearer understanding of the physical interpretation of the generalized reduced
states and investigating their possible relation with other ideas discussed in the literature of
LQG and related fields will make an interesting topic for future work. The splitting of a whole
edge of a reduced state into two segments carrying arbitrary magnetic quantum numbers at
their ‘free’ ends seems to bear at least a superficial resemblance to the discussion of the link
entanglement of spin network states in [46]. Moreover, if the notion of splitting an edge in the
construction of the generalized reduced states is taken in a very literal sense, and is interpreted
to mean that the connectivity information encoded in the graph of the reduced state is also
discarded, one would end up with a collection of individual, disconnected six-valent nodes
with open-ended edges. This picture is very similar to the so-called condensate states studied
in the group field theory approach to quantum gravity (see e.g. [47, 48]).

Data availability statement

No new data were created or analysed in this study.

Acknowledgments

This work was funded by National Science Centre, Poland through Grant No.
2022/44/C/ST2/00023. For the purpose of open access, the author has applied a CC BY 4.0

27

https://creativecommons.org/licenses/by/4.0/


Class. Quantum Grav. 41 (2024) 125010 I Mäkinen

public copyright license to any author accepted manuscript (AAM) version arising from this
submission.

ORCID iD

Ilkka Mäkinen https://orcid.org/0000-0003-3039-6942

References

[1] Alesci E and Cianfrani F 2013 A new perspective on cosmology in loop quantum gravity Europhys.
Lett. 104 10001

[2] Alesci E and Cianfrani F 2013 Quantum-reduced loop gravity: cosmology Phys. Rev. D 87 083521
[3] Alesci E and Cianfrani F 2014 Quantum reduced loop gravity: semiclassical limit Phys. Rev. D

90 024006
[4] Alesci E and Cianfrani F 2015 Loop quantum cosmology from quantum reduced loop gravity

Europhys. Lett. 111 40002
[5] Alesci E and Cianfrani F 2016 Improved regularization from quantum reduced loop gravity

(arXiv:1604.02375 [gr-qc])
[6] Alesci E and Cianfrani F 2016 Quantum reduced loop gravity and the foundation of loop quantum

cosmology Int. J. Mod. Phys. D 25 1642005
[7] Alesci E, Bahrami S and Pranzetti D 2018 Quantum evolution of black hole initial data sets: found-

ations Phys. Rev. D 98 046014
[8] Alesci E, Botta G and Stagno GV 2018 Quantum reduced loop gravity effective Hamiltonians from

a statistical regularization scheme Phys. Rev. D 97 046011
[9] Alesci E, Barrau A, Botta G, Martineau K and Stagno G 2018 Phenomenology of quantum reduced

loop gravity in the isotropic cosmological sector Phys. Rev. D 98 106022
[10] Olmedo J and Alesci E 2019 Power spectrum of primordial perturbations for an emergent Universe

in quantum reduced loop gravity J. Cosmol. Astropart. Phys. JCAP04(2019)030
[11] Alesci E, Botta G, Luzi G and Stagno G V 2019 Bianchi I effective dynamics in quantum reduced

loop gravity Phys. Rev. D 99 106009
[12] Alesci E, Bahrami S and Pranzetti D 2019 Quantum gravity predictions for black hole interior

geometry Phys. Lett. B 797 134908
[13] Alesci E, Bahrami S and Pranzetti D 2020Asymptotically de Sitter Universe inside a Schwarzschild

black hole Phys. Rev. D 102 066010
[14] Gan W-C, Ongole G, Alesci E, An Y, Shu F-W and Wang A 2022 Understanding quantum black

holes from quantum reduced loop gravity Phys. Rev. D 106 126013
[15] Alesci E, Cianfrani F and Rovelli C 2013 Quantum-reduced loop-gravity: relation with the full

theory Phys. Rev. D 88 104001
[16] Mäkinen I 2020 Operators of quantum-reduced loop gravity from the perspective of full loop

quantum gravity Phys. Rev. D 102 106010
[17] Brunnemann J and Rideout D 2008 Properties of the volume operator in loop quantum gravity. I.

Results Class. Quantum Grav. 25 065001
[18] Brunnemann J and Rideout D 2008 Properties of the volume operator in loop quantum gravity. II.

Detailed presentation Class. Quantum Grav. 25 065002
[19] Dupuis M and Livine E R 2010 Lifting SU(2) spin networks to projected spin networks Phys. Rev.

D 82 064044
[20] Thiemann T 2006 The Phoenix project: master constraint program for loop quantum gravity Class.

Quantum Grav. 23 2211
[21] Thiemann T 2006 Quantum spin dynamics. VIII. The master constraint Class. Quantum Grav.

23 2249
[22] Giesel K and Thiemann T 2007 Algebraic quantum gravity (AQG). I. Conceptual setup Class.

Quantum Grav. 24 2465
[23] Ashtekar A and Lewandowski J 2004 Background independent quantum gravity: a status report

Class. Quantum Grav. 21 R53
[24] Rovelli C 2004 Quantum Gravity (Cambridge University Press)

28

https://orcid.org/0000-0003-3039-6942
https://orcid.org/0000-0003-3039-6942
https://doi.org/10.1209/0295-5075/104/10001
https://doi.org/10.1209/0295-5075/104/10001
https://doi.org/10.1103/PhysRevD.87.083521
https://doi.org/10.1103/PhysRevD.87.083521
https://doi.org/10.1103/PhysRevD.90.024006
https://doi.org/10.1103/PhysRevD.90.024006
https://doi.org/10.1209/0295-5075/111/40002
https://doi.org/10.1209/0295-5075/111/40002
https://arxiv.org/abs/1604.02375
https://doi.org/10.1142/S0218271816420050
https://doi.org/10.1142/S0218271816420050
https://doi.org/10.1103/PhysRevD.98.046014
https://doi.org/10.1103/PhysRevD.98.046014
https://doi.org/10.1103/PhysRevD.97.046011
https://doi.org/10.1103/PhysRevD.97.046011
https://doi.org/10.1103/PhysRevD.98.106022
https://doi.org/10.1103/PhysRevD.98.106022
https://doi.org/10.1088/1475-7516/2019/04/030
https://doi.org/10.1103/PhysRevD.99.106009
https://doi.org/10.1103/PhysRevD.99.106009
https://doi.org/10.1016/j.physletb.2019.134908
https://doi.org/10.1016/j.physletb.2019.134908
https://doi.org/10.1103/PhysRevD.102.066010
https://doi.org/10.1103/PhysRevD.102.066010
https://doi.org/10.1103/PhysRevD.106.126013
https://doi.org/10.1103/PhysRevD.106.126013
https://doi.org/10.1103/PhysRevD.88.104001
https://doi.org/10.1103/PhysRevD.88.104001
https://doi.org/10.1103/PhysRevD.102.106010
https://doi.org/10.1103/PhysRevD.102.106010
https://doi.org/10.1088/0264-9381/25/6/065001
https://doi.org/10.1088/0264-9381/25/6/065001
https://doi.org/10.1088/0264-9381/25/6/065002
https://doi.org/10.1088/0264-9381/25/6/065002
https://doi.org/10.1103/PhysRevD.82.064044
https://doi.org/10.1103/PhysRevD.82.064044
https://doi.org/10.1088/0264-9381/23/7/002
https://doi.org/10.1088/0264-9381/23/7/002
https://doi.org/10.1088/0264-9381/23/7/003
https://doi.org/10.1088/0264-9381/23/7/003
https://doi.org/10.1088/0264-9381/24/10/003
https://doi.org/10.1088/0264-9381/24/10/003
https://doi.org/10.1088/0264-9381/21/15/R01
https://doi.org/10.1088/0264-9381/21/15/R01


Class. Quantum Grav. 41 (2024) 125010 I Mäkinen

[25] HanM,Ma Y and HuangW 2007 Fundamental structure of loop quantum gravity Int. J. Mod. Phys.
D 16 1397

[26] Thiemann T 2007 Modern Canonical Quantum General Relativity (Cambridge University Press)
[27] Rovelli C and Vidotto F 2014 Covariant Loop Quantum Gravity: An Elementary Introduction to

Quantum Gravity and Spinfoam Theory (Cambridge University Press)
[28] Ashtekar A and Pullin J (eds) 2017 Loop Quantum Gravity: The First 30 Years (World Scientific)
[29] Ashtekar A and Lewandowski J 1993 Representation theory of analytic holonomy C∗ algebras

(arXiv:gr-qc/9311010)
[30] Ashtekar A and Lewandowski J 1995 Projective techniques and functional integration for gauge

theories J. Math. Phys. 36 2170
[31] Rovelli C and Smolin L 1995 Spin networks and quantum gravity Phys. Rev. D 52 5743
[32] Baez J C 1995 Spin networks in nonperturbative quantum gravity The Interface of Knots and

Physics pp 167–203 (arXiv:gr-qc/9504036)
[33] Rovelli C and Smolin L 1995 Discreteness of area and volume in quantum gravity Nucl. Phys. B

442 593
Rovelli C and Smolin L 1995 Nucl. Phys. B 456 753–4 (erratum)

[34] Ashtekar A and Lewandowski J 1998Quantum theory of geometry. 2. Volume operatorsAdv. Theor.
Math. Phys. 1 388

[35] Bianchi E 2009 The length operator in loop quantum gravity Nucl. Phys. B 807 591
[36] Assanioussi M 2020 Graph coherent states for loop quantum gravity Phys. Rev. D 101 124022
[37] Varadarajan M 2021 Euclidean LQG dynamics: an electric shift in perspective Class. Quantum

Grav. 38 135020
[38] Lewandowski J and Mäkinen I 2022 Scalar curvature operator for models of loop quantum gravity

on a cubical graph Phys. Rev. D 106 046013
[39] Khersonskii V K, Moskalev A N and Varshalovich D A 1988 Quantum Theory Of Angular

Momentum (World Scientific Publishing Company) (https://doi.org/10.1142/0270)
[40] Lewandowski J and Mäkinen I 2023 Scalar curvature operator for quantum-reduced loop gravity

Phys. Rev. D 107 126017
[41] Alesci E, Assanioussi M, Lewandowski J and Mäkinen I 2015 Hamiltonian operator for loop

quantum gravity coupled to a scalar field Phys. Rev. D 91 124067
[42] Ashtekar A, Lewandowski J, Marolf D, Mourao J and Thiemann T 1995 Quantization of diffeo-

morphism invariant theories of connections with local degrees of freedom J. Math. Phys. 36 6456
[43] Radcliffe J M 1971 Some properties of coherent spin states J. Phys. A: Gen. Phys. 4 313
[44] Perelomov A M 1972 Coherent states for arbitrary Lie groups Commun. Math. Phys. 26 222
[45] Livine E R and Speziale S 2007A new spinfoam vertex for quantum gravityPhys. Rev.D 76 084028
[46] Bianchi E and Livine E R 2023 Loop quantum gravity and quantum information Handbook of

Quantum Gravity ed C Bambi, L Modesto and I Shapiro (Springer Nature) (https://doi.org/
10.1007/978-981-19-3079-9_108-1)

[47] Gielen S and Sindoni L 2016 Quantum cosmology from group field theory condensates: a review
SIGMA 12 082

[48] Oriti D 2017 The Universe as a quantum gravity condensate C. R. Physique 18 235

29

https://doi.org/10.1142/S0218271807010894
https://doi.org/10.1142/S0218271807010894
https://arxiv.org/abs/gr-qc/9311010
https://doi.org/10.1063/1.531037
https://doi.org/10.1063/1.531037
https://doi.org/10.1103/PhysRevD.52.5743
https://doi.org/10.1103/PhysRevD.52.5743
https://arxiv.org/abs/gr-qc/9504036
https://doi.org/10.1016/0550-3213(95)00150-Q
https://doi.org/10.1016/0550-3213(95)00150-Q
https://doi.org/10.1016/0550-3213(95)00550-5
https://doi.org/10.1016/0550-3213(95)00550-5
https://doi.org/10.4310/ATMP.1997.v1.n2.a8
https://doi.org/10.4310/ATMP.1997.v1.n2.a8
https://doi.org/10.1016/j.nuclphysb.2008.08.013
https://doi.org/10.1016/j.nuclphysb.2008.08.013
https://doi.org/10.1103/PhysRevD.101.124022
https://doi.org/10.1103/PhysRevD.101.124022
https://doi.org/10.1088/1361-6382/abfc2d
https://doi.org/10.1088/1361-6382/abfc2d
https://doi.org/10.1103/PhysRevD.106.046013
https://doi.org/10.1103/PhysRevD.106.046013
https://doi.org/10.1142/0270
https://doi.org/10.1103/PhysRevD.107.126017
https://doi.org/10.1103/PhysRevD.107.126017
https://doi.org/10.1103/PhysRevD.91.124067
https://doi.org/10.1103/PhysRevD.91.124067
https://doi.org/10.1063/1.531252
https://doi.org/10.1063/1.531252
https://doi.org/10.1088/0305-4470/4/3/009
https://doi.org/10.1088/0305-4470/4/3/009
https://doi.org/10.1007/BF01645091
https://doi.org/10.1007/BF01645091
https://doi.org/10.1103/PhysRevD.76.084028
https://doi.org/10.1103/PhysRevD.76.084028
https://doi.org/10.1007/978-981-19-3079-9_108-1
https://doi.org/10.1007/978-981-19-3079-9_108-1
https://doi.org/10.3842/SIGMA.2016.082
https://doi.org/10.3842/SIGMA.2016.082
https://doi.org/10.1016/j.crhy.2017.02.003
https://doi.org/10.1016/j.crhy.2017.02.003

	Master constraint approach to quantum-reduced loop gravity
	1. Introduction
	2. A brief review of LQG
	2.1. The kinematical Hilbert space
	2.2. Kinematical operators

	3. Master constraint for diagonal gauge
	3.1. The master constraint approach
	3.2. Definition of the master constraint operator
	3.3. A family of solutions

	4. Fundamental structure of quantum-reduced loop gravity
	4.1. The reduced Hilbert space
	4.2. Action of LQG operators on the reduced Hilbert space
	4.3. Reduced operators

	5. Possible extensions and generalizations
	5.1. SU(2) gauge invariance
	5.2. A generalized basis of reduced spin network states

	6. Conclusions
	References


