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Abstract This paper investigates the possible use of the Hyperspherical Adiabatic
basis in the description of scattering states of a three-body system. In particular,
we analyze a 1 + 2 collision process below the three-body breakup. The conver-
gence patterns for the observables of interest are analyzed by comparison to a uni-
tary equivalent Hyperspherical Harmonic expansion. Furthermore, we compare
and discuss two different possible choices for describing the asymptotic configu-
rations of the system, related to the use of Jacobi or hyperspherical coordinates. In
order to illustrate the difficulties and advantages of the approach two simple nu-
merical applications are shown in the case of neutron-deuteron scattering at low
energies using s-wave interactions. We found that the optimization driven by the
Hyperspherical Adiabatic basis is not as efficient for scattering states as in bound
state applications.

1 Introduction

The Hyperspherical Adiabatic (HA) method is based on the parametrization of
the internal degrees of freedom with hyperspherical coordinates (see (1) and re-
ferences therein). The method then consists in expanding the system’s wavefunc-
tion on a basis made of hyperangular optimized functions (the adiabatic basis set)
times (unknown) hyperradial functions. The hyperangular basis elements are taken
as the eigenvectors of the Hamiltonian operator for a fixed value of the hyperra-
dius p. Once those eigenvectors have been calculated, the hyperradial functions
are obtained as the solutions of a system of coupled one-dimensional differential
equations. The advantages of such approach are that the HA basis should drive a
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quick convergence for the expansion, due to its optimization, the payback is re-
presented by the necessity and the difficulty in calculating accurately the first and
second derivatives of the adiabatic basis set with respect to the hyperradius. Those
terms are crucial to the method as they represent the coupling terms between the
various hyperradial differential equations. In some applications of the HA method
it was shown that the strong coupling between pair of elements of the adiabatic
basis makes the hyperradial problem particularly hard to solve (2)).

The properties of the adiabatic basis functions have been object of several
studies and are well known. In particular, in the asymptotic limit of large hyperra-
dius the HA functions are known to converge towards the scattering states of the
three-body system, both below and above break-up. This characteristic makes the
adiabatic expansion a valid choice to describe the three-body continuum states. In
the literature there are several studies of the bound spectrum of a three-nucleon
system by means of the HA method (3 145 15), but very few dealing with conti-
nuum states (6). This paper investigates the possibility of using the HA approach
to describe a three-body elastic process in which a particle collides the other two,
initially forming a bound state. The object of this work is the study of the appro-
priate boundary conditions to be imposed to the hyperradial functions as p — oo
and a careful analysis of the convergence properties of the HA expansion.

In order to quantitatively understand the pattern of convergence of the HA ex-
pansion we make use of the parallelism that can be built between the HA method
and the Hyperspherical Harmonic (HH) expansion. In fact, we can consider two
different expansions for the system’s wavefunction, one in terms of N4 HA ba-
sis elements, and the second in terms of Ny HH basis elements. When Ny = Ny
the two expansions are connected by a unitary transformation and therefore must
yield identical results. Since the HH basis has been used several times to describe
scattering states (7 I8), we exploit this knowledge to study the convergence of
the HA expansion. In particular, we will study the convergence properties of the
L = 0 phase shift at low energies in a 1+ 2 collision, which has been used as a
benchmark problem in literature (see for example (9))).

The problem of the boundary conditions to be imposed to the hyperradial func-
tions is related to the difficulties associated with obtaining the eigenvectors and
eigenvalues of the adiabatic Hamiltonian at large values of the hyperradius. As the
lowest adiabatic functions tend to the two-body bound wavefunctions, an accurate
description of those states using, for example, the expansion in HH functions is
known to be very difficult. This is because, as p — oo, the two-body bound states
are localized in a very small zone of the hyperangular phase-space. Consequently,
this particular configuration necessitates a large number of HH functions to be
described (2). In fact, it can be shown that the number of HH required to repro-
duce this type of spatial configuration grows exponentially with the hyperradius.
If the interest is limited to study deep three-body bound states, the problem just
described does not manifest and a tractable number of HH functions suffices for
a good accuracy. Due to the finite hyperradial size of the associated wavefunc-
tion, the adiabatic Hamiltonian needs to be solved only up to a non so large value
of the hyperradius. However, there are cases in which shallow bound states are
present (as Efimov states) and the adiabatic Hamiltonian needs to be solved for
very large values of p. Furthermore, for energies in the continuum, the associated
three-body scattering wavefunction has an infinite extension and a direct applica-
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tion of the HA necessitates of the solution of the adiabatic Hamiltonian at very
large values of p, too. In order to obtain accurate asymptotic solutions to the adia-
batic Hamiltonian we have followed in detail the procedure outlined by Nielsen
et al. (1).

Finally, interest in this work is also sparkled by an article of Fabre de la Ri-
pelle (6), where he suggested the possibility of expanding the three-body asympto-
tic scattering states into the adiabatic basis set, and retaining only the first term in
such an expansion, resulting in a considerable reduction of the numerical burden.
We will analyze this truncation together with the contribution of higher terms.

This paper is organized as follows: in the next section the HA method is pre-
sented, by first introducing the notation. The expansion of the HA basis in terms of
the HH functions is given as well as the method to describe the HA functions and
the adiabatic potentials at large values of p. Section [3|treats the problem of scatte-
ring states. Two different methods of implementing the Kohn Variational Principle
are given in conjunction with the HA basis. The asymptotic conditions are given
in terms of the distance between the incident particle and the two-body system and
in terms of p. Section[]is devoted to numerical applications. Results are presen-
ted using a simple Gaussian two-body potential and the semi-phenomenological
s-wave MT-III potential (10). The final section is devoted to the conclusions and
perspectives.

2 Hyperspherical Adiabatic Method

Let us consider a system of three identical particles of mass m, in a state of to-
tal orbital angular momentum L = 0. Other quantum numbers are represented by
the total spin S, total isospin 7', and the symmetry under particle permutation IT,
which can take the values a (anti-symmetric, for three fermions) or s (symme-
tric, in the case of three bosons). A further quantum number needed to uniquely
identify each wavefunction is given by the vibrational number n (n = 1,2,...) for
bound states or the energy E for continuum states.
Let us start from the definition of Jacobi coordinates {x;,y;}

Xj = —=(rj—ry)

Hg‘_.
[\)

ey
yi = \%(rj+rk—2r,~)

where {r;} are the Cartesian coordinates of the three particles and i, j,k = 1,2,3

cyclic. The hyperspherical variables {p, 6;} are defined as follows

Xi=pcos6;, Y;=psinf; 2)

where p is the hyperradius which is symmetric under any permutation of the three

particles and 6; is the hyperangle, which is dependent on the particular choice of

the Jacobi coordinate system. In terms of the interparticle distances r;; = |r; —
rj| = V/2X; the hyperradius reads:
1

p=—" r%2+r§3+r§1. 3)

V3
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In addition to p and 0; there are four more coordinates needed to parametrize
all the possible spacial configurations of the three particles, for example the four
polar angles which define the orientation of the two Jacobi vectors with respect to
the laboratory frame of reference. However, in the particular case of total orbital
angular momentum L = 0, the number of such coordinates can be reduced to just
one non-trivial functional dependence, represented by the cosine y; of the angle
between the two Jacobi vectors {x;,y;}:

Wi =X;-yi/ (XiY7). 4

In the following, we will refer to the set of hyperangles {6;, ;} as €;, or more in
general as Q = {6, 1} when there is no need to specify the choice of a particular
permutation of the particles defining a set of Jacobi coordinates.

The Hamiltonian operator ¢ takes the following expression in hyperspherical
coordinates

hz 2

H=— Tyt 5 pov SG*+V(p,Q), (5)

2

where V is the potential energy operator, T, is the hyperradial operator

& 5d
Ip=—+—— 6
s + o dp (6)
and G? is the grand-angular operator

2
4 dy pppd &b
dz cos?0  sin?6’

V1-z2dz

where z = cos26 and ¢, and ¢, are the angular momentum operators associated
with the x and y vectors, respectively. The volume element is p°dp+/1 — z2dzd .

The system wavefunction ¥, with quantum numbers L, S, T, I1, and n (or E),
is expanded as follows:

G’ =

(N

lI/LSTH Zuv ¢LSTH p Q) (8)

where {(P\%STH } are the eigenfunctions of the operator /5 made of the hyperan-
gular part of the kinetic operator plus the potential energy operator, in which p
acts only as a parameter:

h2
Aoy ST — {Wcuv] P (p, Q) = Uy(p)@E M (p.2). ()

The set of eigenfunctions {@L5T} is known as the adiabatic basis set, and the
associated eigenvalues {Uy,(p)} as the adiabatic curves or potentials. In practical
calculations, the infinite expansion of Eq. (§8) needs to be truncated to a finite
number of basis elements, say N4. The convergence for the observables of interest
with respect to this parameter is then checked.
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The initial Hamiltonian problem is thus tackled in two steps: first, the HA basis
functions { @55} and the associated potentials {Uy (p)} are calculated by solving
Eq. (9). Second, the hyperradial functions u/,(p) are obtained as the solutions
of a system of N4 coupled one-dimensional differential equations, which can be
expressed as follows (11):

= 2m dp dp
where the coupling terms B,,,,C,, follow from the dependence on p of the HA
basis:
W /dd, dd,
B, = 11
we(P) = oz (TG ) (1)
and
n* d®,
/ =—( D, . 12
Con(p) = s (ol ') 12

For bound states solutions, and short range potentials, the functions {u, } tend to
zero exponentially as p — oo, whereas for scattering states the boundary conditions
to be imposed to the {u, } will be discussed in the next section.

The first step in the implementation of an HA calculation consists in obtaining
the adiabatic basis elements and the associated adiabatic potentials, solutions of
Eq. (9), for a number of values of p. Among several available techniques we have
chosen to use a variational approach, by expanding the functions {®L5711} onto
a set of Hyperspherical Harmonics (HH) of size Ny. In order to define a basis set
with the desired properties under particle permutation, we combine opportunely
hyperspherical polynomials based on different set of Jacobi coordinates (8). The
expansion for L5711 reads:

Ny
@5 =Y D} (p)|kl,LSTII), (13)
kl

with the basis element given, for L = 0, by

3
|k, 08TT) = Y [(2)P,f’l (.QQ@T,@S,}, (14)
i=1
where S; (7;) indicates the coupling of particles jki to a state of total spin S (to-

tal isospin 7'), and the hyperspherical polynomial is written as (see for instance
Ref. (12;/13) for more details):

@pH(Q) = Nu(1 -2 PP ()P (), (15)

where P,f‘ P is a Jacobi polynomial, P, is a Legendre polynomial and Ny, is a nor-
malization factor. The HH so defined are eigenfunctions of the grand-angular ope-
rator,

G*|kl,0STII) = K (K +4)|kl,0STIT), (16)

Na w2 d d .
Y [ —5=Tp+Uy—E ) 8yy+Byy |y +Cpry——tty + — (Cyryuy) =0 (V' =1,...
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where K is the grand-angular quantum number (K = 2k + 21).

The unknown coefficients {D}; } in Eq. (13), and the adiabatic potential {Uy }
are obtained as the eigenvectors and eigenvalues, respectively, of the following
generalized eigenvalue problem

Ny
Y (K1, LSTII|. A6 — Ukl LSTIT) Dy = 0. (17)
kl

In practical calculations the size Ny of the HH basis set is increased until
convergence is reached for the desired number N4 of adiabatic potentials {Uy }.
However, it is well known that the convergence becomes harder to achieve the
larger the value of p. The reason for this behavior is connected to the specific pro-
perties of the HA basis set at large p. Namely, the lowest adiabatic potentials tend
to the binding energies of all possible two-body subsystems, and the associated
HA basis elements to the two-body wavefunctions, opportunely normalized. The
HH expansion is not optimal for reproducing wavefunctions with similar characte-
ristics, which become the more localized the larger p. This convergence problem
can be further enhanced by the presence of a hard core repulsion in the two-body
potential. If the calculation is to be limited to the three-body bound states, and
in absence of very extended ones such as the Efimov states, the limited radius
of convergence of the HH expansion does not constitute a problem. When the
calculation is extended to the continuum energy region, however, the accurate de-
termination of the adiabatic curves and functions at very large p becomes essential
for the convergence of the results. In order to overcome this problem Blume and
co-workers (2) advocate the use of splines, which at large p converge significantly
faster than the HH. Alternatively, when p is much larger than the range of the two-
body interaction, approximations for the HA basis elements and potentials can be
obtained by solving a non-homogeneous one-dimensional differential equation. A
brief illustration of this second approach is summarized below, based on the work
of Nielsen et al. (1). Let us start from the definition of the reduced amplitudes ¢,

3 3
~ 6:,p)
(I)LSTH = (D([) = M 18
v l.=21"3 & cos 6;sin 6; (18
each one having the set of quantum numbers LST II. They are the solutions of the
Faddeev equations, that for s-wave potentials read

nd : : ) ®
(_Zmpzdiz—H/ (ﬁp cos 9,-) —lv(p)) ov(p,6;) =—cos 6;sin 6V (\@p cos Gi)lldui ((IJV + P, )

19

where Ay (p) = Uy (p) — 4%/ (2mp?). Defining ro = v/2p cos 6 the range of the
(short-range) potential, we observe that, for large values of p, the potential V(\/ip cos 6;)
can be considered different for zero only for values of 6; in the interval 6y < 6; <
7/2, which is the smaller the larger p. Accordingly, the above equation has two
regimes depending the values of 6;. It is homogeneous for 6; < 6y. For values in
which the potential is not zero we have to evaluate the non-homogeneous term
which depends on the amplitudes j, k. From the relation between the different sets
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of Jacobi coordinates, the region of values of 6; where V is different from zero
correspond to the values 6; ~ /6 and 6; ~ 7/6. In this region each of these am-
plitudes is governed by the corresponding homogeneous Faddeev equation. For
example, for the j-amplitude, the possible solutions depending on the value of A
are

¢V(p7ej) = ASin(kV ) a«v >0
ov(p,8)) = A% —e M%) 2y <0, (20)

and similarly for the k-amplitude, where k2 = 2m|A,|/h%. Replacing these expres-
sions in the Faddeev equation (I9), its asymptotic form can be obtained:

( 2h;2dd;2+v<fpcose) Av(p )) ov(p,0) = (ﬁpcosﬂ)Af(p,Qzl)

When the equation describes a two-body bound state with a third particle far
away, A, is negative and tends to the two-body bound state energy. The corres-
ponding non-homogeneous term is

k(m/2—-6) —k(/2—0) okm/6 _ o—kn/6

€ —€

f(p,8)=-2 k Sn (7)) (22)

For positive values of A, the adiabatic functions describe asymptotically three free
particles and

8sin (km/6)
V3

A is a normalization constant to be determined from the solutions. The boundary
conditions for the functions ¢y are ¢y (p,0) = ¢v(p,7/2) = 0, which determine
completely the solutions of Eq. (21)).

In practical applications the adiabatic potentlals {Uy} and the HA basis ele-
ments { YT} are obtained as solutions of Eq. (17) for p < po and of Eq. (
for p > po, respectively. The matching point pg needs to be chosen larger than the
range ry of the two-body potential V. There is a zone around the matching point
in which, for a sufficient large value of Ny, the solutions obtained from the HH
expansion or by solving Eq. (ZI) for each value of v become indistinguishable
from each other. In this way we link the definitions of pg and Ny as the values
for which the solutions of Egs. and can be accurately matched. In fact,
if the functions ¢, obtained by solving Eq. (21 are themselves expanded into the
HH basis, the coefficients of this expansion can be individually matched to the
equivalent coefficients obtained through solving Eq. for the same value of p.

In the following, we discuss the solutions of the the system of coupled diffe-
rential equations in the case of bound states. The hyperradial functions {u.}
can be expanded into normalized generalized Laguerre polynomials times and ex-
ponential function (14):

f(p,0)=— sin[k(7/2 — 0)] /k. (23)

Np—1

Z Al L) (Bp)exp[—Bp /2], (24)
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where B is a non-linear parameter which can be used to improve the conver-
gence of the expansion (15). The coefficients {A}},} can be found by means of
the Rayleigh—Ritz variational principle, whose implementation requires the solu-

tion of the following eigenvalue problem:

Y (m'V'| A — Elmv)Auy =0, (25)

myv

where the orthonormalized basis element |mv) is defined as

mv) =Ly (Bp)exp[—Bp /2] 08T (p, Q). (26)

The size of the variational problem is M = N, X Ny, where N, is the number of
adiabatic basis functions retained in expansion of Eq. and N, is the num-
ber of Laguerre polynomials used in expansion of Eq. (24). For sake of simpli-
city all functions u, are expanded using the same number of Laguerre polyno-

mials, although this is not strictly necessary. The eigenvalues {E,<,M)} n=1,2,...)
represent upper bounds to the eigenvalues of the Hamiltonian problem (5)) and
converge towards them monotonically as M is increased. The associated set of
coefficients {A”, } provide approximations to the system wavefunctions.

As it has been mentioned before, there is a complete equivalence between
the two methods if they include the same number of HH functions. In fact the
expansion for ¥ in Eq. (8) can be written also as:

Ny
wSTT =Y wii(p) |k, LSTIT), 27)
Kl
and from Eq. the following relation can be obtained

Na
wi(p) =Y i (p)D}i(p). (28)
\%

If N, is set equal to Ny the matrix Dy, represents a unitary transformation between
the HA and HH basis sets, therefore the two expansions must produce identical
sets of eigenvalues and eigenvectors. Consequently, if in a specific problem, the
desired accuracy is reached using Ny HH basis functions, the use of a larger num-
ber of HH basis elements in the expansion of the adiabatic basis functions is super-
fluous. However, we can expect that the number of adiabatic functions N4 needed
to reach the same accuracy will be Ny < Ny. This is because the HA functions
have been optimized to the specific Hamiltonian problem by solving Eq. (9) for
each value of the hyperradius. We would like to stress the fact that the equivalence
between the HH and the HA method using a tractable number Ny of HH functions
applies in presence of deep bound states. When shallow bound states, as Efimov
states, are present the situation changes and a direct application of the HH method
encounter the problem of the inclusion of a very large number of basis states in
the expansion of the wavefunction. This is related to the correct description of the
adiabatic potentials in the asymptotic regime. In this case the use of the asympto-
tic form of the Faddeev equations given above proves to be extremely useful, as
for example in the solution of three Helium atoms system (1)).
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3 Scattering Observable Calculations

In this section, we apply the HA expansion to the study of continuum states of
a three-body system. The case considered will be the scattering of one particle
colliding other two forming a dimer, at energies below the three-body breakup
threshold. The wavefunction for the system can be written as

¥ ="+Y, (29)

where the first term is .#’> and describes the system configurations in which the
three particles are all close to each other. The second term represents the solution
of the Schroedinger equation in the asymptotic region in which the incident par-
ticle does not interact with the other two (the discussion will be limited to short
range potentials). Moreover, we will consider the case of a two-body interaction
that supports only one dimer bound state of energy E?’. Accordingly, we will
consider energies E?* < E < 0.

The explicit form of the term ¥, depends on the energy E of the system. Ho-
wever, the particular choice of the function ¥, is rather arbitrary, as it can be mo-
dified by adding or subtracting any .# function. In the following we will consider
and compare two different expressions for the asymptotic function ¥,. Practical
applications will be shown for the case of nucleon-deuteron scattering using the
semi-realistic s-wave MT-III potential, as the repulsive core of the potential allows
a better understanding of the numerical problems associated with the method’s im-
plementation.

3.1 Scattering below Break-up: Method 1

The ¥, term must describe the asymptotic state of the dimer plus a third particle.
Therefore, the most natural choice for this term leads to building two independent
and symmetrized states, that for L = 0, read as follows:

g(r;) sin [kyy;
afy = x4 S E g ), (30)

and

cos [kyyi| (1 —exp[—7yyi])
ky)’i

Qs =Y. 9a(ri) Po(i)|ST). (31)
i
The distance between particle i and particles j,k forming a dimer is y;, §4(r)

is the dimer wavefunction of energy E2?, k§ = 4m(E — |[E®|)/3h* and ./ is a
normalization factor chosen so that

<Q§T\%*E|—Q§T> - <Q§T|%*E\Q§T> =1/2. (32)

The behavior of the function QéT for y; — 0 has been regularized by means of
an opportune factor. The constant ¥y can be consider a non linear parameter of
the scattering wave function. The final result should be independent of the value
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chosen for it but a wrong choice can slow down the convergence significantly. A

reasonable choice could be y ~ y/m|E2b| /R

A general scattering state is given by defining the following linear combina-
tions

QY = uprQE: +uor 4y, (33)
and
Qlr = urQE +u Q. (34)
The term ¥, having total spin S and total isospin T, can thus be written as
¥ = Qg + L Qr (35)

where different choices for the matrix u can be used to define the scattering matrix

Z (16). Here we will use
i -1 36
u=
i 1 )

defining . = S-matrix and detu = 2i. Another possible choice used here corres-
ponds to upg = uy; = 1 and u1g = ug; = 0 defining .£ = %, the reactance matrix.
The two representations are related as

S =1 +iR)(1—i%)". (37)

This identity holds for the exact matrices therefore it can be used as a check of the
accuracy of the calculation by comparing the results using both schemes.

At energies below the three-body breakup, the ¥, term is .#2. Accordingly it
can be represented by means of an expansion in the same £ basis used for bound
states, namely

Y=Y Any|mv). (38)

myv

From the above definitions we can construct the scattering state as

Y=Y Awlmv) + Q5 + L4y (39)
mv

The solution of a scattering problem at a given energy requires the determina-
tion of the amplitude . and the linear coefficients A,,,. To this aim we make use
of the Kohn variational principle (16)) that can be written as

2

£]=2- detu

(Y*|0 — E|WP). (40)

The numerical implementation of the variational principle leads to a first or-
der approximation of the amplitude . obtained through the solution of a linear
system of equations of size M + 1, where M is the size of the basis set for the
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expansion of the core part of the wavefunction. If we define an array of unknowns
({Amv },Z) of dimension M + 1, the linear system can be written as:

Hyyr my I_Im/v/.ﬂ1 Any _ _Hm’v,.QO @n
H.Ql,mV HQI7_QI g %(detu—ZHQth —2H90591) ’

where Hy , stands for the matrix element
Hy o= (A — Ex). (42)
The second order estimate for . is then given by

gznd _ glst o ?iu <q/lst*|% —E|lII]St> , (43)

where ¥!¥' is the wavefunction obtained solving the linear system of Eq. .

Let us now discuss in more detail the structure of Eq. {#I)). The top left part
of the coefficient matrix, of dimension M x M contains the matrix elements used
for the bound state calculation when the scattering state has the same quantum
numbers as the bound state (compare it to Eq. ). Otherwise specific states |mv)
having proper quantum numbers have to be constructed. The additional matrix
elements needing to be computed are those between the . basis functions and
the scattering functions, and among the scattering functions themselves, for a total
of 2M + 4 different terms. The number of such extra terms grows linearly with the
basis set size, and due to the functional form of Q2 and Q/, they need to be
calculated at every different choice of the system energy E.

The application discussed above employ the HA basis in the expansion of the
£? . term. Alternatively, ¥ could also have been expanded in terms of sole HH
functions as

¥ =Y Apua|mkl), (44)
mkl

where we have defined the ket
jmkl) = L) (Bp) exp[—Bp /2] @ |ki,0STI). (45)

After including a sufficient number of Laguerre polynomials, both expansions, in
terms of HH or HA functions, are equivalent leading to the same value of .Z.
Example of this equivalence will be shown and discussed in the next section.

3.2 Scattering below Break-up: Method 2

An alternative approach considered is represented by a direct solution of Eq. (I0)
which represents a different form of the three-body Schroedinger equation. The
bound state solutions have been discussed in Sect. 2} and here we will discuss the
scattering solutions below three-body breakup: E?” < E < 0. For this purpose it
is important to determine the boundary conditions to be imposed to the functions
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{ut(p)}. Firstly, let us observe that at very large p the only open channel in the
system of Egs. (I0) is the lowest one, and that the system uncouples:

hZ
(_MTP+U1_E+BII> u;y =0. (46)

At p = 0 corresponds u; (0) = 0, whereas the boundary conditions at large p de-
pend on the specific asymptotic forms of the hyperradial potentials U; (p) and of
the terms By (p). A detailed study of their asymptotic expressions will be object
of a forthcoming publication (17). For the purpose of this work it suffices to say
that

W d? 2 5/2
<_2WlTp+U1 —E+Bll>ul — (dp2 +k;+o(p™ )> (p / up), (@47

where the wavenumber kj is defined from the relation:

hz
E=E»4+ )2

48
2m P %)
The boundary conditions associated with u; thus are
in (k k
() =0, Timu(p)— iy = nEeP) 508 KoP) (49)

pﬂoo - p5/2 an p5/2 ’

all other u, — O sufficiently fast, as p — oo. Furthermore, the lowest adiabatic
function @07 (p, Q) — p3/2¢,(r)|ST) at very large values of p (3). Therefore,
the asymptotic behavior of the scattering wave function in terms of the adiabatic
basis results:

in (k k
W Zuv YOS (. Q) — ¢y (r) Sm(”mﬂanami)"m

IST). (50)

In the limit p — oo the relation k,y ~ kpp holds as r is constrained by the ﬁnlte
size of the dimer wavefunction, therefore r/ p < 1. Consequently Eq. (50) re-
present the asymptotic limit of .QST +tand QST, for p — oo. The full equlvalence
between the above expression for the asymptotic wavefunction and that one given
by Egs. (30) and (31) can be established by n0t1c1ng that the i constitutes the
leading term in the expansion of !2 or and .Q o in terms of the small parameter
r/p (6), which yields

sin [k _
<Q§T|¢1>wlj5;’2p]+ﬁ(p ), (51)

and

cos ko)

3 +0(p°) (v>1). (52)

<Q§T|q§v> ~
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and a similar expansion yields for -Qér- From the above discussion, we can define
an alternative asymptotic term &, as combination of the following functions:

R m sin [kp p]
Qosr =,/ % (1 —exp[—yp])" W‘Pl (L,p), (53)
Qo= |1 —explro) S 2,p), 54
P 21 ky p3/2

where the factor (1 —exp[—7p])" is introduced as usual to regularize the behavior
of the functions for p — 0 (in practical calculations we have set 1 = 4), and the
functions are normalized as in Eq. (32)). The same approach as in the previous
Section can now be applied where. Accordingly the scattering wave function can
be written as

and

¥ =Y Buy|mv)+ Q0 +.7 Qg (55)
Mv

where the asymptotic part is now given in terms of Qgﬁ o7 and Q;I),ST’ and the core

part ¥ is expanded onto the HA basis times a set of .2 functions uy (p). We can
refer to this expansion as HA2.

This approach is justified as the neglected terms in the r/p expansion of
QR and Q! do not carry flux and can be incorporated into the unknown term
Y¥.. The approximated expression for the term ¥, allows to speed up the cal-
culation significantly as there is no need to calculate the overlap integrals bet-
ween the HA basis functions and the asymptotic functions as in Eq. @I)). On
the other hand, its implementation suffers from the following problems. At in-
termediate distance the expansion on r/p of the asymptotic functions converges
very slowly, resulting in a large number of HA functions which need to be ta-
ken into account. At large p, the implementation of the functions of Egs.
and results in a very awkward behavior of the .#? term ¥.. Continuing
the expansion of Eq. (51), for instance, it is possible to show that the next term
is cos[kpp]/p’/?, which imposes the asymptotic behavior that the function u;
has to reproduce. This particular functional form is very slow decaying, and it
is particularly hard to reproduce with a polynomial expansion. This problem is
further enhanced by the presence of oscillations associated with cosine and sine
terms.

In order to solve the linear system taking into account the oscillatory
behavior of the hyperradial functions for large p values, we have implemented
a Discrete Variable Representation (DVR) scheme (18) rather than the standard
variational approach. In a previous work (19) we have shown how to combine the
variational Kohn principle with a DVR scheme, for the case of a two-body system,
which corresponds to a single one-dimensional differential equation. In this work
we have a set of Ny one-dimensional coupled differential equations. Therefore
we define a (Na4M + 1) x (N4M + 1) unitary transformation matrix % which is a
direct product of N4 4 1 matrices

U=w"oU' .. 21, (56)
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Fig. 1 The left panel shows the lowest adiabatic curves Uy (p) for different values of p. In order
to display the behavior at large p the curves are multiplied by a factor p2. The lowest curve

thus tends to En,p?2, and the others to the spectrum A>K (K +4)/m, with K = 0,2,3,4,... for
v =2,3,4,5,.... The right panel shows the convergence of the lowest adiabatic curve U, (p)
as a function of the number of HH used in the expansion of Eq. (I3). The asymptote at E;, =
—2.2245 MeV is plotted for comparison

where % '¢ is a M x M unitary matrix associated to a customary one-dimensional
DVR of size Npyr = M built in p:

UM = L9 (1)) exp[—1;/2] 7, 57)

where #; and w; are the appropriate quadrature points and weights. By mean of a
parameter f3, the end quadrature point fy,,,, can be associated to different physical
values Pmax, by setting #; = Bp;. In this fashion we can constrain the quadrature
points to be distributed between 0 and prax.-

4 Numerical Applications

In order to illustrate the method outlined in the previous Sections we present two
applications to the n — d system in a quartet state (S = 3/2). The potential energy
of the system is taken as the sum of three pairwise potentials. We consider the
MT-III interaction Vy,7_j;; for which benchmarks results exist in the literature (9)).
It reads:

Varr_m(r) = (1438.72exp[—3.11 7] — 626.885exp[—1.557]) /r.  (58)

To make contact with the results of Ref. (6), we have also used the Gaussian
potential (named Vg):

Vi(r) = —66.327exp [—(0.64041r)?], (59)

For both potentials we assume nuclear distances in fm and energies in MeV. The
nucleon mass used is such that 4> /m=41.47 MeV fm?2. Furthermore, we consider
both potentials as acting only on the / = 0 two-body partial wave.

The potential V; supports one deuteron bound state, with zero angular momen-
tum, of energy Ey;, = —2.22448 MeV. The zero-energy scattering length is a; =
5.4208 fm, whereas for the MT-III potential the values are E,;, = —2.23069 MeV,
and a;, = 5.5132 fm.

For the potential Vi we consider the three-body system with quantum numbers
II=a,T=1/2and S =1/2, whereas for Vyyr—mn Il =a, T =1/2 and S = 3/2.
As the potentials are projectors on s-wave, the index / in Eq. (I4) is restricted to
the value [ = 0, and the index k can take the values k = 0,2,3,4,5,...,c in the
first case and k = 1,2,3,4,5, ..., in the second case.
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4.1 Bound States

Figure shows, in the left panel, the lowest adiabatic curves Uy (p) calculated for
the Vi potential. In order to highlight their asymptotic behavior, the curves have
been multiplied by a factor p2. The lowest curve U; (p) thus tends to the deuteron
energy times p2, whereas the upper curves tend to the free HH spectrum, that is
4k(k+2)h? /m with k = 0,2,3,4,5,... for v =2,3,4,5,6,.... The value k = 1 is
not allowed as there is no completely symmetric HH with £k = 1 and / = 0. Subse-
quently, the adiabatic function ®; (p, Q) tends to the deuteron wavefunction, whe-
reas @y, v > 1, to the HH functions, with the appropriate normalization factors.
The right panel shows the convergence of the lowest curve U;(p) as a function of
the number of HHs employed in the expansion of Eq. (I3)). It shows that the larger
p becomes, the larger the expansion basis must be in order to properly describe
the function @;. In practice, the radius of convergence of expansion (I3)) increases
rather slowly when the basis set size is increased. The reason for this behavior is
that when p is increased the function @; becomes more and more localized in the
hyperangular phase-space, therefore its description by means of the HH requires a
larger and larger basis set size. This behavior is not connected with any particular
feature of the potential used in this specific calculation but it can be considered a
general one, as it is induced by the geometric localization of the deuteron wave-
function in connection with the HH expansion. The thick curve is the solution of
Eq. (1) starting at p = 20 fm. For large values of p, the corresponding eigenvalue
reproduces the two-body binding energy E7.

The description of a three-nucleon bound state using a central potential has to
been taken as a homework problem and preliminary to check the usefulness of the
HA basis to treat scattering states, in comparison to the HH expansion. The Vg
potential predicts two bound states in the three-body system, a very deep ground
state and a very shallow excited state. Table[I|reports the convergence patterns for
the upper bounds E{V and Eév to the two bound states supported by the potential
Vi, as a function of the number N of HA and HH basis elements. The HA func-
tions were expanded in 80 HH functions which is the number required for the HH
expansion to describe accurately the deep and shallow bound states. The number
of HH functions necessary to obtain a full convergence of the energy for the deep
bound state is much smaller, around 10 functions. The most striking feature to
be observed in the table is the much rapid convergence of the HA basis expan-
sion compared to the HH. Not only full convergence can be achieved with a basis
which is one order of magnitude smaller, but already the inclusion of only one
basis element yields an energy for the excited state within 90% of its converged
value.

4.2 Scattering States

In the following, results obtained combining the HA basis expansion with the
expressions of Eqs. (30) and (31)) are given and will be referred to as HA1. Table 2]
reports the full patterns of convergence of the L = 0,5 = 3/2 MT-III phase shift
0, at E,, = 1 MeV, as a function of the number of Laguerre polynomials N,
used in expanding the hyperradial functions in Eq. (38) and the number Ny of
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Table 1 Patterns of convergence for the three-nucleon bound states obtained with the V; poten-
tial, as a function of the number N of hyperangular basis functions included in the expansion.
The HA basis elements were calculated with 80 HH, B = 1.6 fm~!, and 33 Laguerre polyno-
mials were employed in the expansion of Eq.

N n=1 N n=2
HH HA HH HA
1 —21.5808 —22.0520 1 0.0620 —2.3484
2 —21.9567 —22.0850 4 —0.9576 —2.3627
3 —22.0694 —22.0873 10 —2.0348 —2.3632
4 —22.0805 —22.0874 20 —2.3036 —2.3632
5 —22.0852 —22.0874 30 —2.3474 —2.3632
6 —22.0869 —22.0874 40 —2.3582 —2.3632
7 —22.0872 —22.0874 50 —2.3615 —2.3632
8 —22.0873 —22.0874 60 —2.3626 —2.3632
9 —22.0874 —22.0874 70 —2.3631 —2.3632
10 —22.0874 —22.0874 80 —2.3632 —2.3632

Note the different scales for the ground and excited state patterns of convergence

Table 2 Convergence of the phase-shift § in function of the number of Laguerre polynomials
N, (see Eq. ) and of the size Ny of the HA basis set, at an incident energy of £ = 1.00 MeV

N,\Na 20 40 60 80 120 160 200

5 55974 55912 55902 —55.898 —55.897 —55.896 —55.896

9 —55.937 55879 —55.870 —55.867 —55.865 —55.864 —55.864
13 —-55932 55878 —55.868 —55.865 —55.864 —55.863 —55.863
17 —55934 55878 —55.868 —55.865 —55.863 —55.863 —55.863
21 —55.932 —-55.878 —55.868 —55.865 —55.864 —55.863 —55.863
25 —55.933 -55.878 —55.868 —55.865 —55.864 —55.863 —55.863
29 —55.932 55878 —55.868 —55.865 —55.864 —55.863 —55.863
33 —55931 55878 —55.868 —55.865 —55.864 —55.863 —55.863

The HA basis is calculated with 200 HH elements. The non-linear parameter was fixed to = 1.9
fm~!

adiabatic channels included. The HA functions have been calculated using 200
HH functions. This number of HH functions is sufficient to accurately describe
the phase shifts below the three-body breakup. From the table it can be seen that
the convergence requires a rather high number of HA basis elements, more than
100, whereas 12 Laguerre polynomials are enough to achieve final convergence.
In order to analyze deeply the pattern of convergence, in Table [3|results obtai-
ned by means of the HH expansion (20) are compared to those obtained with the
HA approach. In each row of the table N4 indicates the number of HH functions
used in the calculation and the number of HA functions used calculated using 200
HH functions. As already pointed out, for the special case of Ny = N4 the two
expansions are equivalent and the results become identical, provided that a suffi-
ciently high number of Laguerre polynomials is employed to describe the {u, (p)}
set of functions. Therefore the equivalence can be seen in the last row of the table
in correspondence with N4 = 200 (in some cases the equivalence is reached al-
ready at Ny = 160). For the case of E = 2.00 MeV, two patterns of convergence
are shown for two different HA bases, obtained with 120 HH and 200 HH, res-
pectively. Here the equivalence can be seen also at N4 = 120. In this energy range
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Table 3 Convergence of the phase-shift § at three different energies below break-up threshold
for the MT-III potential, in function of the size N of the basis

Ny 0.20 MeV 1.00 MeV 2.00 MeV
HH HA1 HH HA1 HH HA1
120 200

20  —28.263 28312 —-56913  —55.931 —70.741 —71.594  —71.597
40  —28.201 —28299 55948 55878  —71.701 —71.501 —71.500
60  —28.306  —28.295 55922  —-55.868 —71.508 —71.485 —71.483
80  —28296 28294 55872 55865 —71.483  —71.480 71478
120 —28.294  —-28.294  —55.865 —55.864 71476 —-71.476  —71.475
160  —28.294  —28.294  —55.863 —55.863 —71.474 - —71.474
200 —28.294  —28.294  —-55.863 —55.863 —71.474 — —71.474

The patterns of convergence for the HH and HA1 methods are shown for comparison. The HA
basis was calculated employing 200 HH basis elements. For £ = 2.00 MeV the calculation with
120 HH basis elements is also shown. All calculations employed 33 Laguerre polynomials (see
Table , and B =1.9 fm™!

there is little difference in the results obtained with the two bases, for example
when 20 or 40 HA basis elements are employed. To be noticed that the results
shown in Table [3] present a different pattern of convergence with respect to the
ones given in Table 2 of Ref (20): the reason is that in the previous paper the
S-matrix representation was chosen for the matrix u, whereas in this work the R-
matrix was preferred. The two choices are equivalent and lead, once convergence
is achieved, to the same results. We can conclude that although there is some im-
provement, the table shows that the convergence is not speed up significantly by
transforming the HH basis into the HA basis. This suggests that the HA basis does
not provide as an optimized basis for the scattering problem as it does for the
bound state problem.

Table [4] shows the convergence pattern for the phase-shift at E = 1.00 MeV,
obtained using the HA2 expansion for the asymptotic term. As anticipated in the
previous Section, in order to obtain stability in the phase shift, we have employed a
much larger and finer hyperradial grid, consisting of 4153 points, distributed up to
p = 2000 fm. At the same time the HA basis set and associated eigenvalues were
obtained with a bigger number, up to 2000, of HH basis functions, or by solving
the asymptotic differential Eq. for p > po (po = 40 fm). This calculation has
been performed using the Laguerre polynomials as an expansion basis for the hy-
perradial functions. As anticipated, the polynomials are not an appropriate choice
to reproduce the long range oscillatory behavior of the hyperradial functions. This
can be seen from the poor convergence pattern in terms of N, as the number of
HA functions increases. For N4y > 8 more than 100 polynomials are necessary.
Furthermore, the convergence pattern is also poor relative to the increase of the
number of HA basis elements. Differences with results of Table 2] are remarkable.

Fig. 2 The phase-shift 0 in terms of different choices of the non-linear parameter  and of
the size of the expansion in Laguerre polynomials. The left panel shows the convergence for
expansion HA1, and the right panel for expansion HA2. Note the different scales on the y-axis
of the two graphs
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Table 4 Convergence of the phase-shift §, using the HA2 method, in function of the number of
Laguerre polynomials N, (see Eq. (12_711)) and of the size Ny of the HA basis set, at an incident
energy of £ = 1.00 MeV

N,\Ns 4 8 16 24 32 36 40
21 —57.753  -57.231 -57.063 —57.037 —57.230 —57.028 —57.027
41 —57.638 —56915 —56.581 —56.511 —56.480 —56.484 —56.480
61 —57.628 —56.868 —56.456 —56.348 —-56.310 —56.300 —56.293
81 —57.627 —56.858 —56.414 —56.281 —56.228 —-56.214 —56.204
101 —-57.626 —56.855 —56.399 —56.251 —56.188 —56.169 —56.156
121 —57.626 —56.853 —56.393 —56.237 —56.166 —56.145 —56.129

The HA basis is calculated with 2000 HH elements. The non-linear parameter was fixed to
B=19fm™!

Table 5 Convergence of the phase-shift § at E = 1.00 MeV, using the HA2 method, for the
MT-III potential, as a function of the number Npyg of DVR points employed, and of the last grid

point P

Pmax \Npve 100 150 200 250 300 350
First Second

200 —56.179 —56.161 —56.159 —56.159 —56.159 —56.161 —56.160
400 —56.124 —56.100 —56.095 —56.093 —56.092 —56.091 —56.092
600 —56.096 —56.089 —56.085 —56.084 —56.084 —56.085 —56.083
800 —56.119 —-56.089 —56.084 —56.083 —56.082 —56.080 —56.081
1000 —56.162 —56.087 —56.082 —56.081 —56.081 —56.082 —56.081
1200 —56.149 —56.088 —56.082 —56.081 —56.081 —56.082 —56.081
1400 —56.106 —56.084 —56.082 —56.081 —56.081 —56.077 —56.080
1600 —56.154 —56.090 —56.082 —56.081 —56.081 —56.082 —56.080

Convergence is shown for the second order estimate of & for all values of M, but the last, where
both first and second order are shown

Figure |2 shows the effect on the phase-shift of varying the non-linear parame-
ter 3. The left panel shows results for the HA1 expansion, whereas the right panel
refers to the HA2 expansion. Different sizes of the Laguerre basis are shown. In
principle, for a complete basis set, that is N, = oo, there should be no effect in
varying the parameter . When the basis set is finite, the stability of the result, in
this case the phase-shift, with respects to changes of f is a measure of the com-
pleteness of the expansion. In particular, by comparing the right and left panels,
one can see that the HA1 polynomial expansion of the functions uy(p) is much
more effective than for the case HA2 (also note the different scales of the y—axis).
In the first case, the expansion with 17 polynomials is completely unaffected by
changes in 3, whereas in the second case even a basis set as large as 120 polyno-
mials yields significantly different results with different choices of 3, indicating
that the result is far from convergence.

In order to circumvent this problem we use the DVR technique in the hyper-
radius variable. Table [5] shows the convergence, in terms of different choices of
Pmax and the number of DVR points employed, of a case calculation, with 40
adiabatic functions, for the MT-III potential and £ = 1.00 MeV. For the biggest
case (Npyr = 350), we show both the first and second order values of the phase-
shift obtained by using the Kohn Variational Principle. In order to obtain a good
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Table 6 Patterns of convergence for the two different choice of the asymptotic term, in terms of
the number N4 of HA basis elements, at three different energies

Ny 0.20 MeV 1.00 MeV 2.00 MeV
HA1 HA2 HA1 HA2 HA1 HA2

4 —28.364 —29.065 —56.136 —57.625 —72.344 —71.988

8 —28.340 —28.739 —56.038 —56.852 —71.965 —71.871
12 —28.328 —28.604 —55.984 —56.545 —=71.770 —71.437
16 —28.319 —28.532 —55.947 —56.385 —71.660 —71.210
20 —28.312 —28.487 —55.922 —56.286 —71.597 —71.070
24 —28.308 —28.456 —55.906 —56.218 —71.558 =71.975
28 —28.304 —28.434 —55.895 —56.169 —71.534 —71.907
32 —28.302 —28.417 —55.888 —56.133 —71.518 —71.855
36 —28.300 —28.404 —55.882 —56.104 —71.507 —71.815
40 —28.299 —28.394 —55.877 —56.081 —71.500 —71.783
Table —28.294 —55.863 —71.474

The MT-III potential has been used. The last row reports the converged values from Table [3]
The columns refers to a choice of f = 1.9 fm~! for HAI, and Pmax = 1200 fm for the HA2
expansion. Moreover, the HA1 values are associated to a calculation with 200 HH, whereas the
HAZ2 to a calculation with 2000 HH. The HA?2 results have been obtained with the DVR scheme

convergence of the second order value it is important that the integral in Eq. (3]
is calculated with a very high numerical accuracy. The hyperradial grid used in
the calculation consists in more than 4000 grid points up to p = 2000 fm. The
use of the DVR technique allowed for stable results in terms of the hyperradial
expansion. The use of 350 DVR points is equivalent to a calculation with 350
Laguerre polynomials which in general is much more involved to be carried. Ho-
wever the number Ny = 40 of HA functions used in this calculation is not enough
to well describe the phase shift. At E = 1.00 MeV the HA1 method as well as
the HH method predict 6 = —55.863 degrees to be compared to the result of the
HA2 method, 6 = —56.081 degrees, using Ny = 40. In order to have an stable
result for & using the HA2 method, the value Ny = 120 has to be considered and
Npyr > 350 since the number of DVR points has to be increased as N4 increases.
The dimension of the HA2 problem is N4 X Npyg and is clear that very soon the
problem becomes computationally unsustainable, unless exceptional computatio-
nal resources are considered.

Table E]compares the convergence patterns for 6 at three different energies for
the two suggested choices for the asymptotic term ¥, namely the one in Eqgs.
and (31)), referred to as HA1, and the one in Eqs. (53)) and (54), referred to as HA2,
in terms of the number Ny of adiabatic channels. Due to the very large basis sets
required to obtain convergence with the HA2 term, the pattern of convergence is
limited to few channels, less than required to obtain a full convergence. The last
row reports the converged values from Table [3] It is possible to see that the ex-
pansion HA1 converges faster towards the final number, whereas expansion HA2
moves rather slowly. The reason is the difference in the treatment of the asympto-
tic wavefunction. In the HA1 method, as well as in the HH method, the asymptotic
configuration described by ¥, is reached at intermediate distances. Conversely, in
the HA2 the the configuration described by ¥, is reached at much larger values of
p. Furthermore, at intermediate distances, in order to reproduce the correct beha-
vior a big number of HA functions are needed.
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Fig. 3 The functions uy(p) (v = 1,2,3,4) at E = 2.00 MeV. The left panel shows the short-
range region. Some of the functions were magnified by the factor shown in the legend. The
circles represent the DVR amplitudes at the DVR grid points. The right panel shows the long
range region. In order to highlight the asymptotic behavior of each function, u; is multiplied by

p7/2, and uy, u3 and uy by p3. In the right panel u; is also magnified by a factor 50000

Fig. 4 The function us(p) (see Eq. ) obtained with the method HA1 (continuum line) and
HAZ2 (dotted line). In the first case the function uy is short range, decaying exponentially with
p, whereas in the second case it shows the long range oscillations

Fig. 5 Elastic deuteron—nucleon phase-shift below three-body break-up (marked by the dotted
line) for the Vi potential. The full line corresponds to a calculation retaining one HA basis
element, and using the HA2 method. The dots correspond to the full calculation

The following figures present important characteristics of the hyperradial func-
tions used in the expansion HA2.

Figure [3| shows the functions u,(p) calculated with Ny = 4, Npyr = 300
and pmax = 1200 fm. The dots indicate the DVR amplitudes at the DVR points,
whereas the lines represent the uy(p) functions obtained by back-transforming
to the original polynomial basis. The left panel displays the short-range region
(0 < p £20 fm), where the function u; is predominant. The right panel shows a
part of the long-range region (100 < p < 300 fm). Here the situation is drastically
different, and the functions u;, u3z and u4 have a much larger amplitude than u
(which is magnified by a factor 50000). Also, in order to highlight the asymptotic
behavior, u; is multiplied by p”/2, and us, u3 and us by p>. The most striking
feature are the oscillations present in all curves. This behavior is a consequence of
the decomposition of the asymptotic configuration in terms of HA functions. This
resulting peculiar long range behavior is the cause of the very slow convergence
of the phase-shift shown in Tables ] [5] [} The behavior obtained for the curves uy
is the one expected by the analytical expansion of the asymptotic terms indicated
in Egs. (51)) and (52).

Fig compares the hyperradial function us(p) obtained with method HA1
and HA2. In particular it highlights as the former is short range and exponen-
tially decaying with p, compared to the latter which is oscillating as indicated in
Eq. (51).

As mentioned in Sect. [I] in Ref. (6) the phase shift for the potential V; has
been calculated from Eq. in the so-called uncoupled adiabatic approximation
(UUA) retaining one hyperradial function. Namely, the following equation has
been solved:

2

/
—%Tp—i-Ul—E—}—BU ul(p):O (60)

with the asymptotic condition u; (p) — sin(kp 4+ 8 +37/2) as p — oo. Besides the
factor 37 /2, this is equivalent to the method HA2 given in the previous section
taking into account one HA function.

In Fig. |5| we show the phase-shift §(E). The dots represent fully converged
results obtained with the HA1 expansion, whereas the continuum line represent
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results obtained by including just one adiabatic function in the expansion HA2.
It is possible to notice that the UUA provides a very good first order estimate of
the phase-shift. However, the deviation from the complete expansion can be as big
as 10%. Also notice that in Fig. [5] the phase-shifts have been normalized so that
O0(E =0) — 6(E = =) = 360, as there are two bound trimer states.

5 Conclusions

In this paper, we have investigated the capability of the HA basis to describe scat-
tering states in a three-nucleon problem. The basis was generated from the hyper-
angular Hamiltonian by means of an expansion in HH functions. We have shown
the complete equivalence between the adiabatic basis generated using N HH func-
tions and the HH basis of dimension N. This equivalence provides a useful bench-
mark when the convergence of the quantities of interest is studied in terms of the
number N4 of adiabatic functions. For example, for bound states it is well known
that Ny << N suffices for the convergence of the binding energies. One goal of
this paper was to investigate whether the same relation holds for scattering states.
In particular, we studied the convergence of the L = 0 phase shift 6 corresponding
to a process in which a nucleon collides a deuteron at low energies in the state
S =3/2. For this purpose we have used the MT-III potential.

In the calculation of the phase shift using the HA basis we have followed two
different procedures. They were both based on a decomposition of the scattering
wavefunction as a sum of two terms. One term describes the configurations when
the three particles are all close to each other and goes to zero as the interparticle
distances increase. The second term describes the asymptotic configurations and
has been regularized so that goes to zero as y — 0. In the first procedure the HA
basis has been used to expand the short range part of the scattering wave function.
The second order estimate of the phase-shift has been obtained from the Kohn
variational principle. A similar approach has been used before with the HH basis.
Therefore, a detailed comparative analysis of the convergence patterns was pos-
sible. The conclusion is that the number of basis elements needed to achieve a
comparable level of convergence for the phase-shift is of the same order for the
two bases, that is N4 ~ N, which is a surprising difference with respect to what
happens in bound state calculations. A possible explanation could be the follo-
wing. In bound state calculations the wavefunction expansion benefits from the
initial optimization performed by constructing the HA basis. Conversely, in scat-
tering state calculations the solution of the linear system of Eq. (41) requires a
different short range behavior in the HA basis elements due to the presence of the
terms Q2. and QJ; in the short distance region.

The second procedure considered was based in a direct solution of the system
of equations for the hyperradial functions given in Eq. (I0). This method however
suffers from the following complications. The hyperradial boundary conditions to
be imposed are those required to reconstruct the asymptotic configuration given by
the functions defined in Eqs. (30) and (31)). For very large values of p the boundary
conditions are simple and are given by Eq. {#9) for the lowest function (v = 1).
All other functions go to zero as p — oo. This means that the solution of the linear
system has to be obtained over a very extended hyperradial grid. Moreover, the
adiabatic potentials and functions have to be accurately known in the grid. In the
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present work we have solved partially the numerical difficulties associated to the
solution of Eq. (I0) introducing a variational DVR procedure.

From the present study, we can conclude that the use of the HA basis in the des-
cription of scattering states is not as advantageous as for bound states. The main
drawback is that then number of basis elements required to reach convergence is
not as low (in proportion) as in bound state calculations. Second, a number of
numerical problems arise from the need of calculating the adiabatic curves and
the associated basis elements at large distances. Further studies to improve the
description of scattering states using the HA expansion are at present underway.
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