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Abstract

Quantum Theory and General Relativity are two of the most successful theories of Nature

in their respective regimes. In situations where effects from both are non-negligible, the

regime of Quantum Gravity emerges. Many theories, such as String Theory, Loop Quan-

tum Gravity and Doubly Special Relativity, attempt to address the high-energy regime of

Quantum Gravity. The structures of such theories suggest the existence of a minimum

measurable length. This in turn modifies the Heisenberg Uncertainty Principle, to the so-

called Generalized Uncertainty Principle (GUP). In this work, GUP is used to construct

phenomenological models, which can be used to verify the existence of a minimum mea-

surable length. Specifically, in Earth-based experiments, the magnetometer experiment and

Bose-Einstein condensation are considered, and in cosmology, explanations of the baryon

asymmetry in the Universe and the EDGES anomaly are provided. Furthermore, a novel

conceptual approach to Quantum Gravity, namely the Quantum Equivalence Principle, is

explored.
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Chapter 1

Introduction

“If you wish to make an apple pie from

scratch, you must first invent the

Universe.”

Carl Sagan

The workings of Nature have been studied and contemplated since ancient times by

philosophers such as Democritus, Aristotle, Pythagoras, Archimedes and many others.

Their descriptions and explanations of observed phenomena were based mostly on geo-

metric principles. The modern picture of physics started forming after the discoveries of

Copernicus, Galileo and Newton between the 15th and 17th centuries. More specifically,

physics took a more modern form after the publication of Philosophiae Naturalis Principia

Mathematica by Isaac Newton [1]. However, physics has developed significantly through-

out the last hundred-fifty years, compared to the rest of its long history. Quantum Theory

(QT) changed the classical concepts of position and velocity of a particle and the theory

of General Relativity (GR) identified space-time as a dynamic variable, which changes in

response to mass. These two theories are very successful in explaining and predicting ob-

servable phenomena to a high degree of precision at microscopic and macroscopic length

scales, respectively [2, 3]. They are also considered to be fundamental theories of Nature,

since their descriptions include the most basic known building blocks of the Universe and

they both reduce to the well known standard Newtonian physics of everyday life in the

classical and non-relativistic limits.

1



1. INTRODUCTION

Physics at the small scale and non-relativistic speeds is described within the framework

of Quantum Mechanics (QM) and is governed by the Schrödinger equation

i�
∂ψ(x, t)

∂ t
=

(
− �

2

2m
∇2 +V (x)

)
ψ(x, t) , (1.1)

where � = h/2π is the reduced Planck constant (h is the Planck constant), m is the par-

ticle mass, ψ(x, t) is the wave function describing the particle in consideration and V (x)

is the classical potential. It introduces the concept that one cannot measure the position

and momentum of a particle simultaneously. This concept is described by the Heisenberg

Uncertainty Principle

ΔxΔp ≥ �

2
, (1.2)

where Δx is the uncertainty in position and Δp the uncertainty in momentum. The product

of these two uncertainties has a constant lower bound. This means that the more one knows

about the position of a particle, the less one knows about the momentum of that particle,

and vice versa.

On the other hand, physics at the large scale and relativistic regimes is described within

the framework of GR, and is governed by the Einstein equations

Rμν− 1

2
Rgμν+Λgμν =

8πG
c4

Tμν , (1.3)

where Rμν = ∂ρΓ
ρ
μν−∂μΓ

ρ
νρ+ΓρρσΓσμν−ΓρμσΓσρν is the Ricci tensor,

Γρμν =
1

2
gρσ

(
∂μ gνσ+∂ν gμσ−∂σ gμν

)
(1.4)

are the Christoffel symbols, R = gμνRμν = R μ
μ is the Ricci scalar, gμν is the space-time

metric, Λ is the cosmological constant, G is the universal gravitational constant, c is the

speed of light and Tμν is the energy momentum tensor. In the above, the Einstein summation

2



1. INTRODUCTION

rule is used

3

∑
μ=0

aμ bμ ≡ aμ bμ , (1.5)

for any two same indices in the above configuration. This rule is used for all relativistic

considerations in this work. The Greek indices denote space-time components, which can

take values μ,ν = 0,1,2,3 , with 0 representing the time component and 1,2,3 the spatial

components, denoted with Latin indices i, j, when considered separately. The Einstein

equations, presented in Eq. (1.3) describe dynamics of a space-time (M ,gμν), defined on a

manifold M , as a response to the energy content Tμν within that space-time.

QM has also been modified to include special-relativistic effects on a flat Minkowski

space-time, neglecting gravitational interactions. The resulting theory is called relativistic

Quantum Field Theory (QFT), which successfully quantizes three out of four fundamental

forces of Nature, namely the Electromagnetic, Weak nuclear and Strong nuclear forces. In

the formulation of relativistic QFTs, the spin of the considered particle becomes relevant.

It is relevant to the extent that the equations of motion for particles with different spin

will take different forms. The Klein-Gordon equation describes relativistic spin-0 particles

(bosons), and can be generalized in an arbitrary curved space-time, described by a metric

gμν as [4] (
gμν∇μ∇ν+

m2c2

�2

)
Φ(x, t) = 0 , (1.6)

where ∇μ is the covariant derivative, related to gμν, and Φ(x, t) is the Klein-Gordon field.

The Dirac equation describes relativistic spin-1/2 particles (fermions), and can also be

generalized in an arbitrary curved space-time, described by a metric gμν as [5]

(
i�γμ Dμ −mc

)
Ψ(x, t) = 0 , (1.7)

where γμ are the space-time dependent Dirac gamma matrices, Dμ = ∂μ +Γμ, in which Γμ

3



1. INTRODUCTION

is the spinor affine connection (see Section 5.1 for details on γμ and Γμ), and Ψ(x, t) is the

Dirac spinor field. Note that Eqs. (1.6) and (1.7) include gravity in a classical sense, as a

background geometry, and do not imply a quantization of the force of gravity. Therefore,

gravity is the remaining fundamental force, which still lacks a quantum description, and a

consistent theory which bridges the two regimes is still up for debate [6].

Despite their success, QT and GR are incomplete theories. They both display inconsis-

tencies at small distance and time scales (Planck length �P =
√

�G/c3 = 1.62×10−35 m and

Planck time tP =
√
�G/c5 = 5.39×10−44 s, respectively), i.e., very high energies (around

the Planck energy EP =
√
�c5/G = 1.22×1028 eV), where contributions from each regime

are expected. At those scales QT becomes inconsistent, because it does not explain effects

of high energy particles on space-time, which become prominent, while GR displays sin-

gularities when studying black holes and the origin of the Universe [7]. In this context,

space-time is expected to no longer be a passive background, but an active and interacting

physical object.

The predictions of QT work remarkably well within the range of current highest experi-

mentally achievable energies in particle colliders, which reach Eexp � 1013 eV in the specific

case of the Large Hadron Collider (LHC). However, around Ep gravitational effects can no

longer be neglected. Since such high energies are experimentally not achievable now or in

the near future, such effects cannot be directly observed [7]. Such high energy scenarios

may also take place near black holes, cosmological singularities, and perhaps at large dis-

tances as well, where dark components and/or modifications of GR are invoked to explain

Dark Matter effects and the accelerated phase of the present Universe. It is expected that

the inconsistencies at small scales (high energies) can be resolved within the framework of

Quantum Gravity (QG), which must incorporate the principles of QT and GR, and must

provide a description of the microstructure of space-time at the Planck scale. However,

there is no simple way of combining the two theories to describe phenomena in high en-

ergy scenarios, where effects of both domains are applicable simultaneously. It can be seen
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1.1. QUANTUM GRAVITY THEORIES AND APPROACHES

that Eqs. (1.1) and (1.3) are not compatible, since only Eq. (1.3) is relativistic. Although

QM can be generalized to a relativistic QFT, as discussed above, the two are still incom-

patible, since Eqs. (1.1), (1.6) and (1.7) use a probabilistic approach to describe particles

using wavefunctions or fields, while Eq. (1.3) treats particles in a completely deterministic

way. QT and GR have some concepts in common, such as the notion of space-time, but

they consider them in a different way. In QT the space-time metric is considered to be a

passive static background, while the space-time metric in GR is a dynamic variable.

The above reasons prevent a straightforward unification of the two theories, although

both have relativistic descriptions [7]. It is expected that space-time should not have a

classical geometry such as in GR, but that it should be quantized. Candidate theories of QG

aim to accomplish this. Among the existing candidate theories of QG, String Theory and

Loop Quantum Gravity are the two of the best studied. However, there has not been a single

experiment or observation which support or refute any theory of QG, due to the currently

unattainable immensity of the Planck energy scale. Therefore, it is important to look for

indirect signatures of these theories in accessible, low energy laboratory-based experiments

[7, 8].

1.1 Quantum Gravity Theories and Approaches

In the well established QFTs which describe the fundamental forces of Nature, ex-

cept gravity, one is often lead to infinite scattering amplitudes, which can be mitigated by

using standard renormalization procedures. The same process of quantization and renor-

malization can be attempted with gravity, but one quickly realizes that the infinities do not

disappear due to the dimensionful coupling constant G. One way out could be a higher-

derivative theory of gravity where renormalization works to obtain finite results, but gives

rise to other issues, such as non-physical ghost fields [9]. Therefore, a novel theory of QG

is required. There are several candidate theories of QG, which could explain phenomena

at or near the Planck scale. They attempt to reconcile the probabilistic nature of QT with
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1.1. QUANTUM GRAVITY THEORIES AND APPROACHES

the geometrical interpretation of GR. As QT and GR both reduce to Newtonian physics in

the classical and non-relativistic limits, also a theory of QG must reduce to QT and GR in

their respective regimes. As is the case in other areas of physics, a successful theory should

explain previously unexplained observable phenomena and predict new effects. In the fol-

lowing, several candidate theories of QG and approaches to QG are briefly summarized,

namely String Theory, Loop Quantum Gravity and Doubly Special Relativity.

1.1.1 String Theory

One of the best studied candidate theories of QG is String Theory (ST) [10, 11, 12, 13].

In ST, one hopes to resolve the problem of classical singularities and removing quantum in-

finities, by describing fundamental building blocks of matter as tiny strings. It was initially

developed to describe the strong nuclear force, but a more consistent Yang-Mills theory

was adapted for that interaction instead. ST was revived when attempts were made to unify

gravity with the other fundamental forces of Nature. Several, apparently different STs were

proposed in the mid 1980’s, during the so-called first superstring revolution [13]:

• Type I: formulated in 10 dimensions, and contains unoriented open and closed strings.

• Type IIA: formulated in 10 dimensions, contains oriented closed strings and is a non-

chiral theory.

• Type IIB: similar to type IIA, with the difference that it is a chiral theory.

• SO(32) heterotic: left moving excitations propagate in 26 dimensions, while right

moving excitations propagate in 10 dimensions. Contains closed strings and imple-

ments the gauge group SO(32).

• E8 ×E8 heterotic: similar to SO(32) heterotic, with the difference that it implements

the gauge group E8 ×E8.

It was later discovered, that they are all equivalent and are different limits of one underly-

ing theory, known as M-Theory [6, 13]. At low energies it can describe gauge interactions,
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1.1. QUANTUM GRAVITY THEORIES AND APPROACHES

using stringy Feynman diagrams, and gravity, where it predicts a massless spin-2 particle

(graviton), whose dynamics effectively describe GR at large distances. ST uses Super-

symmetry [14] and compactified extra dimensions [10, 11, 12, 13] in its formulation. The

required extra dimensions, which are suggested to be of the size of �P, lead to QG effects.

Therefore, since the stringy behaviour is supposed to manifest at energies of the order of

EP [15], ST cannot predict directly measurable effects at relatively low energies, currently

achievable in accelerators, which is also the case with many other candidate theories of

QG. The theory is also formulated on a fixed, as opposed to a dynamical curved space-time

background, and therefore cannot address all aspects of QG.

Strings

In standard QFT, world lines are graphical representations, used to describe a path of a

point particle in space-time. The main idea of ST is to replace point-like particles which

have no size, with string-like objects which have a non-zero length, as the fundamental

building blocks of matter in the Universe. This effectively replaces a one-dimensional

world line of a particle with a two-dimensional world sheet of a string in a space-time

diagram (see Fig. 1.1). A world line of a point particle is described by a single parameter,

while for a world sheet, a second parameter needs to be introduced to describe the path of

a string in space-time (see Eq. (1.9)). The size of a string is assumed to be no smaller than

the Planck length �P, but can be larger. Therefore, it is considered as a free parameter of

the theory.

To transition from classical to quantum mechanics, one needs to introduce Planck’s

constant �, and to transition from classical to relativistic mechanics, one needs to introduce

the speed of light c. Similarly, one needs to introduce a fundamental constant α′, called

string tension, when a transition to ST is made. This approach has several advantages.

For example, when regular 4-point Feynman diagrams are considered (see figure 1.2 a)),

infinities appear in such calculations, which arise from interactions taking place in infinitely
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1.1. QUANTUM GRAVITY THEORIES AND APPROACHES

Figure 1.1: Replacing a world line a) with a world sheet b). Adapted from Ref. [6]. Credit

of Nancy Barajas.

Figure 1.2: Replacing a regular 4-point Feynman diagram a) with a stringy Feynman dia-

gram b). Adapted from Ref. [6]. Credit of Nancy Barajas.

8



1.1. QUANTUM GRAVITY THEORIES AND APPROACHES

small volumes, and have to be mitigated by renormalization. However, when ST is applied

to such processes (see figure 1.2 b)), the singular vertex interaction points are no longer

present and the infinities do not appear. Therefore, renormalization is not required.

The following review of ST is based on Ref. [12]. The action for a relativistic point

particle in curved space-time, parameterized with proper time τ can be written as

Spp =
1

2

∫
dτ

(
η−1gμν(X)

dXμ

dτ
dXν

dτ
−ηm2

)
, (1.8)

where η is the world line tetrad and Xμ the space-time coordinate. As mentioned earlier, to

consider an action for a string, a second parameter must be introduced. This new parameter,

labeled as σ, is called proper position. The set of parameters for a string can then be written

as σa = (σ,τ) and the position in space-time as Xμ(σa). This formulation is used to describe

the dynamics of a string. The action for the string is called the Polyakov action and reads

as

S =
1

4πα′

∫
dσdτ h1/2 habημν

dXμ

dσa
dXν

dσb , (1.9)

where hab is the Euclidian world sheet metric with signature (+,+), h= det(hab) and ημν is

the Minkowski metric, describing flat space-time. Note that the entire expression is divided

by the string tension α′. One can see that Eq. (1.8) has an explicit term for mass, which is

a free parameter of the theory, while Eq. (1.9) does not. In ST, particle masses depend on

α′ and are not free parameters themselves. The masses of particles in ST read as

m2 =
1

α′

(
N +

2−D
24

)
, (1.10)

where N is the level of excitation of the string and D the space-time dimensionality. For an

arbitrary classical space-time metric gμν, the action (1.9) can be rewritten as

S =
1

4πα′

∫
dσdτ h1/2 hab gμν(X)

dXμ

dσa
dXν

dσb . (1.11)
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1.1. QUANTUM GRAVITY THEORIES AND APPROACHES

It turns out that Eq. (1.11) is all one needs to compute stringy Feynman diagrams.

Quantizing a string, described by the above action, gives rise to interesting new results.

One of the most important results, which appears in such considerations is the emergence

of a quantized gravity.

To demonstrate how gravity emerges from ST, one introduces a slowly evolving scalar

dilaton field ΦD, coupled to the Ricci curvature scalar R in the action from Eq. (1.11) as

S =
1

4πα′

∫
dσdτ h1/2

(
hab gμν(X)

dXμ

dσa
dXν

dσb +α′RΦD(X)

)
. (1.12)

From the above, one can compute the renormalization group β−functions, which appear as

βg
μν+8π2gμν

βΦD

α′ = α′
(

Rμν− 1

2
gμνR

)
+α′ fμν(∇2ΦD)+O(α′2) , (1.13)

where fμν(∇2ΦD) is a tensor function of second derivatives of ΦD and represents the source

terms. The requirement of ST to be Weyl invariant ensures that βg
μν = βΦD = 0. From Eq.

(1.13) one can see that the Einstein equations, coupled to the dilaton field ΦD are obtained.

When ST, formulated on a fixed flat or curved space-time is quantized, one obtains

excitations of various masses and spins, which includes, interestingly, a massless spin-2

particle, which can be identified with the perturbative graviton, which is the force carrier

in a quantized theory of gravity. To quantize ST, one can use the standard quantization

methods, such as Feynman path integrals or canonical quantization [10, 11, 12, 13]. The

canonical quantization is briefly summarized below, following Ref. [10].

For a specific class of a world sheet parameterization, the equations of motion for both

open and closed strings turn out to be wave equations Ẍμ −Xμ′′ = 0, where ˙ denotes the

derivative over τ and ′ the derivative over σ. The canonically conjugate momentum densi-

ties in this case turn out as

Pτμ =
1

2πα′ Ẋμ and Pσμ =− 1

2πα′ Xμ′ . (1.14)
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1.1. QUANTUM GRAVITY THEORIES AND APPROACHES

The above conjugate momentum densities hold for any gauge of the considered class. The

canonical quantization turns out to be identical for open and closed strings, and is expressed

by the equal-time canonical commutation relations

[
Xμ(τ,σ), Pτν(τ,σ′)

]
= i�ημν δ(σ−σ′) ,[

Xμ(τ,σ), Xν(τ,σ′)
]
=

[
Pτμ(τ,σ), Pτν(τ,σ′)

]
= 0,[

x−(τ), p+(τ)
]
=−i� , (1.15)

where δ(σ−σ′) is the Dirac delta function, and x− and p+ are the 0−th components of po-

sition and momentum vectors in the light-cone coordinate system. The solutions of Xμ(τ,σ)

for open and closed strings turn out to be different. On one hand, the solution for an open

string is expressed in terms of open string oscillation modes αoμ
n , where n ∈N∪{0}. Given

the commutation relations in Eq. (1.15), the open string oscillation modes, which are now

quantum operators, obey

[αoμ
m ,αoν

n ] =−nημν δm+n,0 . (1.16)

On the other hand, the solution for a closed string is expressed in terms of closed string

oscillation modes αcμ
n and αcμ

n . Given the commutation relations in Eq. (1.15), the closed

string oscillation modes, which are now quantum operators obey

[αcμ
m ,αcν

n ] =−nημν δm+n,0 , [αcμ
m ,αcν

n ] =−nημν δm+n,0 and [αcμ
m ,αcν

n ] = 0 . (1.17)

The commutation relations in Eqs. (1.16) and (1.17) govern the quantum behaviour of

strings and are a fundamental feature in ST. They are used as ladder operators to construct

quantum states, and quantum operators for physical observables, such as number operators,

momentum operators, Hamiltonians and others.
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Summary

As promising as ST appears, it still has several issues which need to be addressed to be

considered as a consistent theory of QG. One such issue is the requirement for Supersym-

metry [14]. Supersymmetry states that all bosons and fermions from the Standard Model of

particle interactions have supersymmetric counterparts with opposite particle statistics and

equal masses, if the symmetry is to be preserved. Supersymmetric particles have not been

detected so far, which suggests that such particles do not exist, or that Supersymmetry is

broken and the supersymmetric particles are much heavier. Also, ST assumes the existence

of compact dimensions, which lack experimental confirmation. The compact dimensions

can form different topologies, depending on the number of compact dimensions, and are

described by Calabi-Yau manifolds [13]. For two compact dimensions there are only two

cases, C and a two-torus T 2. For four compact dimensions there are two cases, K3 and a

four-torus T 4 (there are also two non-compact cases, C2 and C×T 2 in four dimensions).

For six compact dimensions, which is the most interesting case, found in superstring mod-

els, there is a large number ∼ 10100 of possible Calabi-Yau three-folds. This introduces an

ambiguity, called the vacuum selection problem.

1.1.2 Loop Quantum Gravity

The next candidate theory of QG is Loop Quantum Gravity (LQG) [16, 17, 18, 19,

20, 21, 22], which provides a novel theoretical framework for a quantum description of

space-time and attempts to quantize GR in a non-perturbative way. It considers GR in four

space-time dimensions as the starting point for its formulation, as opposed to ST, which

considers GR to be a low energy approximation of a more fundamental theory in higher

dimensions. LQG uses a background independent Hamiltonian approach. In other words,

no background is assumed. It introduces several new techniques and concepts, of which the

Ashtekar variables and the formulation of space-time in terms of finite loops incorporated

into a network, are the most important. Networks of such loops are called spin networks or
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spin foam, and require the introduction of non-separable Hilbert spaces and representations

of operators, compatible with such Hilbert spaces [22]. Time evolution in LQG systems

takes place in increments of the size of �P, which indicates quantization of space-time. This

can provide a viable explanation of the Planck scale departures from Lorentz symmetry and

make predictions in early Universe cosmology [7].

Canonical General Relativity

The formalism of LQG is that of canonical GR. To transition to a canonical description,

one needs to rely on the use of vierbeins (tetrads), labeled by ea
μ and defined through gμν =

ea
μ eb

ν ηab. Here, ηab is the Minkowski space-time metric of the tangent space and a,b are

the tangent space indices. The vierbeins are covariantly conserved, which means

Dμ ea
ν ≡ ∇μ ea

ν−ωab
μ eνb = 0 , (1.18)

where ωab
μ is the spin connection. According to the standard ADM prescription (named

after R. Arnowitt, S. Deser and W. Misner), one takes a globally hyperbolic manifold M ,

which can be foliated as M = Σ×R, where Σ is a spatial manifold and R the temporal

manifold. Usually, a triangular gauge is chosen for the vierbeins

ea
μ =

⎡
⎢⎣ N NA

0 eA
m

⎤
⎥⎦ , (1.19)

where eA
m is a spatial dreibein, m and A represent curved and flat indices, respectively, while

N and NA are the Lagrange multipliers, called lapse and shift, respectively. The space-time

metric gμν then takes the form

gμν =

⎡
⎢⎣ −N2 +NANA Nn

Nm gmn

⎤
⎥⎦ , (1.20)
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1.1. QUANTUM GRAVITY THEORIES AND APPROACHES

where gmn = eA
m enA refers to the spatial part of the metric. Using the standard procedure,

one can obtain the canonically conjugate momenta from the Einstein-Hilbert Lagrangian

LEH as

Πm
A =

δLEH

δ ∂teA
m
=

1

2
eem

B (KAB −δAB K) , (1.21)

where KAB = eμ
A eνB∇μ eν0 = ωAB0 and K = KAA are the extrinsic curvature tensor and scalar

of Σ, respectively, e = det
(
eA

m
)

and δAB the Kronecker delta. The conjugate momenta from

Eq. (1.21) are used to construct the Hamiltonian density through a Legendre transformation

H = ∂t em
A ΠA

m −LEH = N H0 +NA HA , (1.22)

where HA = DmΠm
A ,

H0 = e−1

(
ΠABΠAB − 1

2
Π2

)
− eR(3) , (1.23)

ΠAB = Πm
A eB

m, Π = ΠAA and R(3) the spatial Ricci scalar. Setting H0 ≈ 0 represents the

classical Hamiltonian constraint. A standard canonical quantization of the above can be

performed by promoting the dreibein eA
m to a multiplication operator and writing the canon-

ically conjugate momenta as a functional differential operator as

Πm
A (x) =−i�

δ
δeA

m(x)
. (1.24)

By this substitution, the previously mentioned Hamiltonian constraint becomes a quantum

equation, called the Wheeler-DeWitt equation, which generates dynamics in LQG and is

given by

H0(x)Ψ[e] = 0 , (1.25)
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where Ψ[e] is a wave functional, which can in general depend on more variables. It is also

known as the wave function of the Universe, since it is expected to contain all information

about the Universe from its beginning to its end. However, by using the conjugate mo-

mentum operator from Eq. (1.24) to solve Eq. (1.25), one obtains a highly singular and

ill-defined form of a functional differential equation. This creates a significant obstacle in

constructing appropriate Hilbert spaces with befitting scalar products for wave functionals.

Therefore, LQG approaches quantization of gravity by virtue of the Ashtekar variables,

which complement the above canonical formalism of GR.

Loops

A new set of canonical variables was introduced by Abhay Ashtekar in 1986, which

provide a connection representation in canonical GR. They present a novel way to write

the metric canonical variables within slices Σt , using a SU(2) gauge field. As shown in the

following, LQG uses the Ashtekar variables to introduce loops, which comprise the spin

network description of space-time. They are derived in detail in Refs. [23, 24] (see also

Ref. [25]) where the first variable is the SU(2) gauge field connection, which reads as

AmA =−1

2
εABC ωmBC + γ KmA , (1.26)

where εABC is the Levi-Civita anti-symmetric tensor, γ is the Barbero-Immirzi parameter1

and KmA = KBA eB
m. In classical considerations γ has no physical interpretation. However,

when the theory is quantized, γ sets the scale for fundamental areas and volumes. The

second variable is the so-called inverse densitized spatial dreibein and is defined as Em
A =

1The Barbero-Immirzi parameter γ was initially taken to be complex. More specifically, for γ = ±i the

Hamiltonian constraint is expressed in terms of the new variables polynomially and simplifies the calculations

significantly. However, this choice implies that the phase space of GR is complex, and turns out to be an issue

when quantizing gravity. It poses a problem in defining suitable hermiticity conditions of states and operators,

which has not been resolved so far. Therefore, to obtain the real phase space of GR and avoid quantization

issues, the Barbero-Immirzi parameter is currently taken to be real, γ ∈ R.
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eem
A . It can be straightforwardly verified that the Ashtekar variables (AmA from Eq. (1.26)

and Em
A ) obey the Poisson algebra

{AmA(x), AnB(y)}= 0 ,

{Em
A (x), En

B(y)}= 0 ,{
AA

m(x), En
B(y)

}
= 8πGγ δn

m δ
A
B δ(3)(x−y) , (1.27)

where δ(3)(x− y) is the spatial Dirac delta function. From the above one can see that γ

renormalizes the universal gravitational constant G.

LQG is formulated using spin networks and spin foams, represented by loops. De-

scription of such loops is based on holonomies. The loop representation is related to the

connection from Eq. (1.26) by the loop transform, which is a functional analog to a Fourier

transform. In contrast to using functionals, such as Ψ[A ], which are defined on the entirety

of Σ, it is more convenient to use holonomies, which are gauge covariant functionals, de-

fined on one-dimensional curves within Σ and designated by e. A holonomy for a given

curve inside Σ is a matrix valued functional, defined as

he[A ] = P exp

(∫
e
Am dxm

)
, (1.28)

where Am = AmA τA with τA being the generators of SU(2), i.e., the Pauli matrices, A =

Am em
A τ

A and P denotes path ordering from shortest paths on the left, to longest paths on

the right. It turns out that the trace of a holonomy in Eq. (1.28) for a closed loop is gauge

invariant and is called a Wilson loop, which reads as

We[A ] = Tr [he[A ]] . (1.29)

The Wilson loops can be used to quantize gravity non-perturbatively, since they form a basis

for expansion of any gauge invariant functional Ψ[A ] =∑eΨ[e]We[A ]. Since the size of the
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curves, described by their individual e, can be arbitrarily small in Σ, the basis comprised

of Wilson loops forms a so-called spin network space. However, such a space does not

address all constraints of the theory. Therefore, a larger space is required. To obtain this

larger space, LQG assumes quantization of the holonomy he[A ] and its conjugate variable,

the flux vector FA
S [E] through any surface S embedded in Σ, where E = det

(
Em

A

)
(see Refs.

[16, 17, 18, 19, 20, 21, 22] for details on FA
S [E] and the commutation relations between

the quantized variables). The non-separable Hilbert space of LQG, denoted by S , is then

constructed by linear combinations of functionals ΨΓ,ψ[A ] =ψ(he1
[A ], he2

[A ], . . .)≡ |ΨΓ〉
over all possible graphs Γ⊂ Σ, containing edges ei ∈ Γ and vertices v ∈ Γ. Here, ψ is some

function of holonomies.

Using FA
S [E], one can construct surface and volume operators, which have discrete spec-

tra proportional to �2
P γ and �3

P γ
3/2, respectively [26] (see Section 2.1.3 for an example). This

implies that LQG predicts the existence of a minimal area and volume, parameterized by

γ. In this context, the spin network quantizes space-time. Note that the spin network is

embedded within a continuous manifold Σ and is considered to be a fundamental physical

object of space-time.

Summary

LQG manifests a number of important features a theory of QG must have, such as back-

ground independence and quantization of space-time. However, it still has its shortcomings

and open problems, which need to be addressed for it to be considered a consistent theory

of QG. For example, it is unclear how to obtain the classical limit of LQG, where stan-

dard GR with a smooth space-time emerges. The reason for this is that the quantum states

in LQG are significantly different than quantum states in the standard Fock space quan-

tization. In addition, LQG cannot address the two-loop divergence, which is expected to

appear when expanding the non-perturbative quantized gravity in Newton’s constant. Such

an expansion has not been performed, since the semi-classical state, which should manifest
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this divergence, has not been found. There is also little justification for the Hamiltonian

constraint operator, which is central in LQG, and it is not clear if the space-time covariance

can be recovered. Including matter in LQG also raises some issues. It appears that LQG

imposes no restrictions for types of matter and their interactions with themselves as well

as with gravity. Therefore, it is not clear if the consistency requirements from perturbative

relativistic QFTs on matter can be recovered.

1.1.3 Doubly Special Relativity

Doubly Special Relativity (DSR) [27, 28, 29, 30] is a theoretical framework, which

aims to explore what happens to the Lorentz symmetry at or near the Planck scale �P. It

is not considered as a candidate theory of QG, such as ST and LQG, but it is believed to

emerge as a certain limit of QG. Despite the expected departures from Special Relativity

(SR) at the Planck scale, the principle of relativity (equivalence of inertial frames) remains

unmodified in the context of DSR. The doubly in DSR comes from the main assumption of

the theory, which states that there are two observer-independent scales, in contrast to SR,

which contains only one, the speed of light c. This gives rise to a modified set of postulates:

• Principle of relativity: all inertial frames are equivalent, which means that all laws of

physics take the same form in all inertial frames.

• There exist two observer-independent scales: the speed of light c and the Planck

length �P, parameterized by κ ∝ 1/�P, i.e., κ ∝ MP and has units of mass, where

MP =
√

�c/G.

Note that the standard SR is obtained by κ −→ ∞. The problem to incorporate both

observer-independent scales in a theory is non-trivial, since from SR one expects to mea-

sure different lengths from different inertial frames. However, it is possible to incorporate

both scales by introducing concepts, such as space-time non-commutativity and description

of space-time symmetries using quantum groups [27, 28, 29, 30]. This results in a non-
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classical description of space-time with properties somewhat similar to those of a phase

space in standard QM.

Analogously as in SR, the postulates in DSR suggest that the symmetry group should

be ten dimensional. However, because of the inclusion of a second observer-independent

scale, the symmetry group cannot be the standard Poincaré group. This suggests a modi-

fication to the standard energy-momentum dispersion relation E2 = p2c2 +m2c4 from SR.

By considering the framework of SR, it does not permit an introduction of another observer-

independent scale. However, a complete theory of QG must include further observer-

independent constants �, G and Λ. Therefore, one can argue that in limits of QG, where

gravitational interactions and quantum effects are negligible, space-time becomes locally

flat, and traces of QG persist in terms of the previously introduced scale κ.

The new scale κ then modifies the Poincaré algebra to the quantum κ-Poincaré algebra.

Specifically, SO(3,1) −→ SOq(3,1) for three dimensions and SO(3,2) −→ SOq(3,2) for

four dimensions, where q = exp
(
Λ�

2/κ2c2
)

[30]. For κ−→ ∞, q = 1 and one obtains the

standard Poincaré algebra. In DSR, a specific basis for the κ-Poincaré algebra is chosen,

where only the translational sector is modified and the Lorentz sector remains unmodified

[31]. However, in the four dimensional case, the generators of physical quantities need to

be renormalized2 to obtain finite results [32, 33]. Such renormalization introduces a family

of contractions, parameterized by r ∈ R. It turns out that only r = 1 returns the required

four dimensional κ-Poincaré algebra, which reads as [30]

[Ji,Jj] = iεi jk Jk ,

[Ji,Kj] = iεi jk Kk ,

[Ki,Kj] =−iεi jk Jk ,

[Ji, p j] = iεi jk Jk ,

2Note that renormalization in this context does not refer to the renormalization of the gravitational field,

but ensuring that energy and momentum variables remain finite in the representation of SOq(3,2).
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[Ji, p0] = 0 ,

[Ki, p j] = iδi j

(
κc
2

(
1− e−2p0/κc

)
+

p2

2κc

)
− i

pi p j

κc
,

[Ki, p0] = i pi , (1.30)

where Ji are the rotation generators, Ki the boost generators and pμ the translation operators,

i.e., the four-momentum. The feature that the Lorentz sector remains unmodified shows

that Lorentz symmetry is not broken. However, its action on momenta is non-linear. By

computing the Casimir invariant, one arrives at the modified energy-momentum dispersion

relation

κ2c4 cosh

(
E
κc2

)
=

1

2
p2c2 eE/κc2

+κ2c4 cosh
(m
κ

)
, (1.31)

where p0 = E/c was used. From the above, one can see that by increasing the momentum

to p = |p| −→ κc, the energy approaches infinity p0 −→∞ for any observer. This confirms

that κ is observer-independent and sets an upper bound to the possible physical momenta

of particles in DSR. One can verify that Eq. (1.31) also implies a momentum-dependent

speed of light for massless particles

v =
∂E
∂p

=
c

1− p
κc

, (1.32)

where one can see that it diverges for p −→ κc. This result will be subject to tests in the

future [34].

The above formulation of DSR, based on the algebra from Eq. (1.30) is only one possi-

ble realization, often called DSR1. Another realization of DSR, explored in Refs. [28, 35],

often called DSR2, uses a choice of a slightly different basis for the κ-Poincaré algebra.

In the basis of DSR2, the algebra differs from the one in Eq. (1.30) only in the last two
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expressions as

[Ki, p j] = i
(
δi j p0 − pi p j

κc

)
,

[Ki, p0] = i
(

1− p0

κc

)
pi , (1.33)

while the rest remain unchanged. Therefore, the Lorentz sector remains unmodified in this

formulation as well. By computing the Casimir invariant for this case, one arrives at the

modified energy-momentum dispersion relation

E2(
1− E

κc2

)2
=

p2 c2(
1− E

κc2

)2
+m2c4 , (1.34)

where again p0 = E/c was used. From the above, one can see that an upper limit on the

energy E < κc2 is implied. One can verify that Eq. (1.34) does not suggest a varying speed

of light. Note that there exists a third realization of DSR, explored in Refs. [36, 37, 38], but

will not be discussed here, since it would provide no further insight into DSR.

One of the interesting features of DSR is that the four-momentum space is not described

by a flat manifold, but a manifold with constant curvature κ−2. A consequence of this is

that space-time coordinates do not commute. Therefore, a space-time of DSR is a non-

commutative manifold, the κ-Minkowski space-time [31, 39], where

[x0,xi] =− i
κ

xi , and [xi,x j] = 0 , (1.35)

valid for all realizations of DSR. For comparison, in standard QM it is not possible to

simultaneously measure the position and momentum of a particle. This feature is given in

terms of non-commutativity of position and momentum. Similarly, for the above space-time

non-commutativity, there exists a similar limitation of simultaneously measuring a time and

a space coordinate [7].

As a final note, the authors in Ref. [40] proposed an extension of DSR to include space-
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time curvature, known as Doubly General Relativity. One of the important results of this

extension is that the geometry of space-time depends on the energy E of the particle used

to probe it (gravity’s rainbow) [41].

Summary

Since DSR is not formulated as a theory of QG, but as a limit of QG, it provides an

insightful description of the space-time symmetries and relativistic dynamics of high energy

particles in negligible gravitational fields. However, DSR still has several open problems

which need to be addressed for it to be complete and consistent. While single particle

dynamics are understood well, it has several issues describing multi-particle dynamics,

manifesting as the so-called soccer-ball problem [42]. It is also not completely clear how

DSR emerges from a limit of QG and what are its conservation laws. Justification of why

Nature would choose the SOq(3,2) algebra as a limit of QG and r = 1 to renormalize

physical quantities, also remain open questions. Finally, DSR is formulated on momentum

space and there is still no consistent formulation in position space.

1.1.4 Other Approaches to Quantum Gravity

From the candidate theories of QG, reviewed in this work, ST quantizes the perturba-

tions of the graviton field on a fixed background, LQG quantizes space-time itself, and DSR

addresses the behaviour of space-time symmetries in limits of QG. In contrast to the above,

there are several other candidate theories of QG and approaches to QG, which introduce

new concepts to address the QG problem. However, they will not be discussed in this work,

but will only be mentioned, including a reference for the interested reader:

• Discrete causal sets [43]: Lorentzian metric used as geometry and causal structure.

• Causal Dynamical Triangulations [44]: gravitational path integral on a differential

manifold realized explicitly, non-perturbative and with no dependence on the back-

ground.
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• Asymptotically safe QG [45]: non-perturbative construction of a QFT of the metric

tensor.

• Non-commutative QFT [46]: Formulation of a QFT on a non-commutative space-

time.
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Chapter 2

Quantum Gravity Phenomenology

“I have a naive trust in the Universe –

that at some level it all makes sense,

and we can get glimpses of that sense if

we try.”

Mihaly Csikszentmihalyi

By taking a close look at competing candidate theories of QG (e.g., theories reviewed

in Section 1.1), one notices that it is difficult to provide experimentally testable predictions

within their frameworks. This difficulty is mainly attributed to technological limitations of

contemporary experiments, which can be quantified in terms of energy. Currently, the high-

est experimentally achievable energies in particle colliders reach Eexp � 1013 eV, an upper

bound set by the LHC experiments. As explained in Chapter 1, QG effects are believed to

manifest at energies comparable to the Planck energy EP ∼ 1028 eV. This is 15 orders of

magnitude greater than the energy, which can currently be achieved. Therefore, direct tests

of candidate theories of QG are currently not possible. However, QG effects are shown to

be universal [7, 8, 47], which implies they must also persist at low and accessible energies,

where although their signatures are expected to be small, they may still be detectable in high

precision experiments. In other words, by taking the low energy limit of a theory of QG,

which must give rise in QT and GR, the QG effects are expected to appear as corrections to

established results from QT and GR. These corrections are expected to be non-vanishing,

even in the regime of Newtonian mechanics. Therefore, if precise enough experiments are
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designed, signatures of such effects are expected to be observable. Endeavours to provide

observable predictions and explanations of anomalous phenomena (observed phenomena,

which have no explanation within the standard frameworks of QT and GR) in terms of these

corrections, comprise the field of Quantum Gravity Phenomenology (QGP) [7].

In QGP, phenomenological models are constructed in order to test general properties,

as well as specific predictions which a consistent theory of QG may exhibit (e.g. Refs.

[48, 49, 50]). An abundance of research on QGP has been produced in the last 30 years,

which is evident from this extensive (yet incomplete) sample of Refs. [15, 48, 49, 50, 51,

52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,

75, 76, 77, 78, 79, 80, 81, 82, 83, 84], covering predictions and constraints of QG effects

from atomic to cosmic scales. QGP does not assume any specific candidate theory of QG

as the correct one. It considers the consequences of quantization of gravity and a quantized

space-time, such as a minimum measurable length �min.

2.1 Motivation for Minimum Length

In QG considerations, the notion of space-time at Planck scales must be reconsidered,

from which corrections to quantum principles are expected to follow. For example, one of

the consequences of ST (as well as M-Theory) and DSR is space-time non-commutativity

[85, 86, 87, 88, 89, 90]. It leads to modified dispersion relations [91] and in some situations,

may also exhibit a varying speed of light [92, 93], which gives rise to non-local field theories

and the modification of the standard canonical commutation relation of the Heisenberg

Uncertainty Principle [62, 80, 94, 95, 96] (see also Refs. [8, 68, 97, 98]).

The above results imply the existence of a non-vanishing minimum measurable length.

In general, most candidate theories of QG and the pertinent thought experiments agree on

the existence of a minimum measurable length in one way or another [6, 7, 27, 41, 63, 69,

72, 99, 100, 101, 102, 103, 104, 105, 106, 107]. In the following, a handful of examples of

the emergence of a minimum measurable length are discussed. Specifically, the black hole
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thought experiment, ST, LQG and DSR.

2.1.1 A Thought Experiment with a Black Hole

In the region near the apparent horizon of a small black hole, both QT and GR effects

become important. Therefore, it is reasonable to assume that QG effects can manifest there.

This thought experiment implies QG effects by means of measuring the area of the apparent

horizon of a black hole. In this approach, only model-independent QG properties are used.

The main physical process underlying this thought experiment is Hawking radiation.

Hawking radiation is a nearly black body radiation, with a characteristic temperature,

known as the Hawking temperature of the black hole, as seen by an asymptotic observer

[108]. One of the consequences of Hawking radiation is loss of black hole mass, resulting

in black hole evaporation. In this context, if a black hole does not gain mass by accretion

or other mechanisms, it will shrink and eventually vanish.

The main idea is to perform the Heisenberg microscope thought experiment, where the

observed quantum particle is replaced by a black hole with a non-vanishing area of the

apparent horizon. For simplicity, a Reissner-Nordström black hole with mass M and charge

Q is considered, given by the metric [109]

ds2 =−
(

1− RS

r
+

R2
Q

r2

)
c2dt2 +

(
1− RS

r
+

R2
Q

r2

)−1

dr2 + r2(dϑ2 + sin2ϑ dϕ2) , (2.1)

where

RS =
2GM

c2
and R2

Q =
Q2G

4πε0 c4
, (2.2)

ε0 the electric constant, s the invariant interval, t time, and r, ϑ and ϕ are the standard

spherical coordinates. Note that for charge Q = 0, Eq. (2.1) reduces to the Schwarzschild

metric.

A Reissner-Nordström black hole has two horizons. The outer apparent horizon and the

inner horizon. The latter is in general located at a shorter radius than the former. The hori-
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zons of any given black hole are found where the rr component of its metric in a spherical

coordinate system diverges, i.e., g−1
rr = 0. For a Reissner-Nordström black hole, described

by Eq. (2.1), they turn out as

R±
h =

GM
c2

⎛
⎝1±

√
1− Q2

4πε0 GM2

⎞
⎠ , (2.3)

where + denotes the outer apparent horizon solution and − the inner horizon solution. A

Reissner-Nordström black hole is extremal when the above two horizons coincide R+
h =

R−
h . This equality is satisfied when Q2 = 4πε0 GM2. It turns out that an extremal black

hole does not emit spontaneous Hawking radiation, because it has a vanishing Hawking

temperature, and is therefore an ideal candidate for the Heisenberg microscope thought

experiment. It is also assumed, that the black hole does not discharge. The goal of this

thought experiment is to examine the limitations to the precision of measuring R+
h [58].

In classical GR, an observer cannot obtain information beyond the apparent horizon,

which implies that nothing is emitted from the black hole. However, the area of a black

hole can be measured indirectly, by observing the motion of test particles at infinity. In this

way, the mass M and the charge Q of the black hole are obtained. By using the + solution

of Eq. (2.3), the area of the apparent horizon is A= 4πR+2
h . However, a black hole can emit

Hawking radiation due to quantum effects near its apparent horizon. Therefore, a stationary

observer at r > R+
h can detect a signal, which allows for a direct measurement of the area

of the apparent horizon.

By using the Heisenberg microscope thought experiment, one can measure the area of

the apparent horizon. A photon with wavelength λ is sent from infinity towards an extremal

Reissner-Nordström black hole, where it gets absorbed. The mass of the black hole after

absorption is M+ΔM, where

ΔM =
h
λc

(2.4)

and follows from the conservation of energy ΔM c2 = hν = hc/λ. Due to this change
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in mass, the black hole is not extremal anymore, and is expected to decay back to the

extremal state through Hawking radiation. It is assumed that a single photon of the same

wavelength λ is emitted from the black hole and detected by the microscope (see Fig. 2.1).

The measurement is repeated many times, so a complete image of the black hole is obtained.

From this, the radius of the apparent horizon R+
h can be determined.

If a Schwarzschild black hole was chosen instead, it would eventually evaporate through

Hawking radiation and it would also not be possible to discriminate the re-emitted photon

from the background Hawking radiation. If an extremal Kerr-Newman black hole was

chosen instead, the flattening of the apparent horizon and frame dragging effects would

need to be taken into account, when determining where the photon came from. However,

the following results would not change [58].

In the standard Heisenberg microscope thought experiment, the resolving power of the

microscope and the wavelength of the detected photon determine the uncertainty in mea-

suring the position of a particle. The exact same factors determine the first contribution to

the uncertainty of measuring the radius of an apparent horizon of a black hole, which reads

as

Δx(1) 
 λ
sinθ

, (2.5)

where θ defines the angular size of the microscope as seen from the apparent horizon of the

black hole. It is related to the resolving power of the microscope, given by its lens diameter

D and focal length f as sinθ = D/2 f . Also, the photon itself poses a limitation. It cannot

resolve length scales smaller than its wavelength λ.

The uncertainty in measuring the momentum of the black hole after re-emitting the

photon is also the same as in the standard case, which reads as

Δp 
 h
λ

sinθ . (2.6)

Multiplying the above by Eq. (2.5), one obtains the standard form of the Heisenberg Un-
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Figure 2.1: The Heisenberg microscope with a lens of diameter D and focal length f ,

observing a black hole (BH) through Hawking radiation. Credit of Nancy Barajas.

certainty Principle

Δx(1)Δp ∼ � . (2.7)

Note the interchange between the Planck constant h and the reduced Planck constant �. In

estimations such as here, one can safely assume h ∼ �.

For a black hole, there exists another contribution in determining the uncertainty of the

radius of the apparent horizon. As the black hole emits the photon, its mass decreases

from M +ΔM to M, and as a consequence, the apparent horizon radius also changes by

Δx(2) = R+
h (M+ΔM)−R+

h (M), which turns out as

Δx(2) 
 GΔM
c2

+

√(
GM
c2

+
GΔM

c2

)2

− GQ2

4πε0
−
√(

GM
c2

)2

− GQ2

4πε0
≥ 2GΔM

c2
. (2.8)

By plugging Eq. (2.4) in the above, the second contribution to the uncertainty becomes

Δx(2) ≥ �G
c3λ

=
�2

P
λ

. (2.9)
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By considering the inequality λ/sinθ≥ λ the dependence on the microscope is eliminated.

The terms Δx(1) and Δx(2) can then be linearly added to obtain

Δx ≥ λ+B
�2

P
λ

, (2.10)

where B is a dimensionless constant, determining the magnitude of the second contribution.

Elimination of the dependence on the microscope also implies considering the inequality

Δp/sinθ≥ Δp. Using this with Eq. (2.6), one can rewrite Eq. (2.10) as

Δx ≥ �

Δp
+B�2

P
Δp
�

=
�

Δp
+ B̃GΔp , (2.11)

where B̃ = B/c3. The modified uncertainty relation from Eq. (2.11) can be written in a

more familiar form as the modified Heisenberg Uncertainty Principle

ΔxΔp ≥ �+B
�2

P
�
Δp2 = �+ B̃GΔp2 , (2.12)

where it can be seen that an extra term appears, compared to the standard Heisenberg Un-

certainty Principle. The term is squared in the uncertainty of momentum and it contains

the gravitational constant G, which implies that the correction is of gravitational origin. As

�2
P ∝ G, the correction term is also related to minimum length. To estimate the minimum

length, one finds the minimum of Eq. (2.11), which turns out as �min ≡ Δxmin =
√

B�P.

2.1.2 String Theory

From considerations of ST, discussed in Section 1.1.1, it can be concluded that there is

no strict constraint on the string size. Therefore, ST allows the sizes of extra dimensions to

be larger than the Planck scale. Specific choices of sizes and number of extra dimensions

provide a range of observable effects. Other ST inspired phenomenological approaches

introduce new fields, which give rise to new observable effects. Possible future reformu-
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lations of ST could include a variety of space-time quantization, which could successfully

predict measurable phenomena [7].

In ST the emergence of a minimum length can be demonstrated from considerations of

dualities. A simple example, giving a general idea about dualities, comes from condensed

matter physics [110]. A two-dimensional Ising model represents a dual spin system. The

dual lattice has a Z2 symmetry, where spins on one lattice are oriented in one direction,

while spins on the dual lattice are oriented in the opposite direction (see Fig. 2.2). Black

and white dots represent opposite spins of the lattices, with temperatures T and 1/T respec-

tively. There is one phase transition in such a system and it occurs at the critical temperature

Tc = 1, at which the lattices switch roles and the system behaves the same at temperatures

T > Tc as at temperatures T < Tc. This is called T -duality [6].

Figure 2.2: Dual lattice of a two-dimensional Ising model. Credit of Nancy Barajas.

T -duality is also found in ST and it implies the existence of a smallest circle, at which

the radii R and α′/R of dual circles are equal. To see this, one considers a space, where

at least one dimension is periodic with period 2πR. One then proceeds to shrink R below
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√
α′. It turns out that the circle will begin to expand again. This means that the circle radius

can’t get smaller than
√
α′ [6]. On such a circle with radius R, a massless string (assumed

for simplicity) has momentum and energy

p = �
n
R

and En = �c
|n|
R

, (2.13)

where n ∈ Z are the excitation levels of the string (momentum modes). Strings can also

be wrapped around the circle. If a string is wrapped m times around the circle (winding

modes), their energy increases by

Ẽm = �c
mR
α′ . (2.14)

Momentum modes and winding modes are analogous to the Ising dual spin system, where

the symmetry Z2 is generalized to Z. A scheme of a string on a circle with momentum

and energy spectra at different values of R is shown on Fig. 2.3, from where one can see

that the role of the string momentum modes and the winding modes interchange through

the equivalence R ⇐⇒ α′/R, as the circle is shrunk below
√
α′. This is how T -duality

manifests in ST.

An immediate consequence of not being able to compress a circle below a certain size,

is the existence of a minimum length. According to the Heisenberg Uncertainty Principle,

distance scales are probed with momentum (energy) as Δx 
 �/Δp. However, this does

not work for very large energies, since the strings begin to re-expand with increasing en-

ergy after a certain threshold, which is determined by the string tension α′. The smallest

uncertainty in momentum is the difference between two neighbouring momentum modes

Δp = �
n
R
−�

(n−1)

R
=

�

R
=⇒ R =

�

Δp
. (2.15)

As the T -duality, R ⇐⇒ α′/R, and the above relation is taken into account, one can see
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Figure 2.3: String on a circle for shrinking R with it’s spectrum. Here �= c = 1 is assumed.

Adapted from [6]. Credit of Nancy Barajas.

that momenta in ST manifest T -duality as well

�

Δp
⇐⇒ α′ Δp

�
. (2.16)

Since contributions of both of the above terms are present at all energies (momenta), the

sum of these terms expresses the uncertainty in position of a particle, as a consequence of

T -duality as

Δx ≥ �

Δp
+α′ Δp

�
. (2.17)

The above can be written in the form of a modified Heisenberg Uncertainty Principle

ΔxΔp ≥ �+
α′

�
Δp2 . (2.18)

Using the same reasoning as for Eq. (2.11) at the end of Section 2.1.1, one finds the min-

imum length by calculating the minimum of Eq. (2.17). In the framework of ST, one can

see that the minimum length is �min ≡ Δxmin =
√
α′ ∝ �P. A similar result is obtained in a
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study of scattering processes of strings at energies ∼ EP [73].

2.1.3 Loop Quantum Gravity

One of the most important results, obtained within the framework of LQG, discussed

in Section 1.1.2, is the discreteness of space-time, as seen by studying spin networks. This

concept introduces fundamental discrete area and volume spectra [26], as well as a discrete

length spectrum [111], implying the existence of a minimum measurable length. To see

exactly how a minimum measurable length emerges within LQG, dimensional physical

operators must be introduced.

In LQG one can construct length, area and volume operators. The simplest operator to

construct is the area operator, defined on a two-dimensional surface S ⊂ Σ. This surface

is then subdivided into N small surfaces SI , where I = 1,2, ...,N and S = ∪ISI . The area

operator is constructed using the flux vector operator FA
S [E] and the above division of S as

ÂS[E] = lim
N→∞

N

∑
I=1

√
FA

SI
[E]FA

SI
[E] . (2.19)

For simplicity, a simple wave functional |ΨΓ〉 of a single fixed graph Γ, which has L(Γ)

edges ep ∈ Γ, is taken. In this case, every surface SI is crossed by one edge of the spin

network. The eigenvalue of the area operator from Eq. (2.19) on such a wave functional is

ÂS |ΨΓ〉= 8π�2
P� γ

L(Γ)

∑
p=1

√
jp( jp +1) |ΨΓ〉 , (2.20)

where jp �= 0 are the spins of the edges ep. In the most minimalistic case, one considers a

graph Γmin, which contains only one edge e in the ground state with spin j = 1/2. In this

case, the smallest possible area eigenvalue is

ÂS |ΨΓmin〉= 4
√

3π�2
P� γ |ΨΓmin〉 , (2.21)
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which is called the area gap and is the smallest area an edge can carry. One can construct

volume and length operators in a similar fashion, but it is a significantly more involved

process, and will not be covered here. To understand in detail how the FA
S [E] operator

works on holonomies, which are the main components of spin network wave functionals,

and how they are used to construct volume and length operators, the reader can consult

Refs. [16, 17, 18, 19, 20, 21, 111].

Within the framework of LQG, the area operator eigenvalue obtained in Eq. (2.21)

is the smallest quantum of area, while the smallest eigenvalue of a length operator is

�min = 4
√

3 γ1/2�P/
√

2 [111], and implies the existence of a minimum measurable length.

The Barbero-Immirzi parameter γ defines the magnitudes of the minimum area, minimum

volume and minimum length in terms of �P, and remains a free parameter in LQG.

To probe such a space-time (spin network), described by LQG, one needs to introduce

matter. For simplicity, a scalar field is considered. In LQG, matter must also be quantized

in a background independent way. One way to approach a background independent quan-

tization of scalar fields, is called polymer quantization [112, 113, 114, 115, 116]. Such

quantization introduces a new length scale μ ∝ γ1/2�P, called polymer length. In this formu-

lation, the scalar particle in consideration can be effectively described by the approximate

position and momentum operators [115, 117]

x = x0 , and p =
�

μ
sin

(μ
�

p0

)
, (2.22)

where x0 and p0 are the standard canonical operators from QM, and are given in one dimen-

sion for simplicity. Using the above, one can construct a commutation relation between x

and p as

[x, p] = i�
(

1− μ2

�2
p2 +O(μ4)

)
, (2.23)

which is the commutator form of the modified Heisenberg Uncertainty Principle. From
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the above, one can see that the standard Heisenberg commutation relation is obtained in

the limit μ −→ 0. The modification of the above commutation relation, emerging from

LQG, appears as a quadratic correction to the standard case in terms of the scalar particle

momentum p, with its magnitude parameterized by μ.

2.1.4 Doubly Special Relativity

In a similar way as seen in the above considerations, DSR incorporates the existence of a

minimum measurable length. The κ-Poincaré algebra, introduced in Section 1.1.3, suggests

modifications of QT in terms of the canonical commutation relations. Such modifications

arise as a consequence of the modification of energy-momentum dispersion relation. In

general, a modified dispersion relation can be written as [35, 118]

E2 f 2 −p2c2g2 = m2c4 , (2.24)

where f = f (E/κc2, p2/κ2c2) and g = g(E/κc2, p2/κ2c2) are model dependent modifica-

tion functions of two variables, and can be used to define the auxiliary energy and momen-

tum variables as ε=E f (E/κc2, p2/κ2c2) and πi = pi g(E/κc2, p2/κ2c2), for convenience.

To see how the above modifications affect QM, one can construct commutation relations

between t, xi, E and pi, once promoted to quantum operators (see Ref. [118]). However,

to demonstrate the emergence of a minimum measurable length, only the commutation

relation between the position xi and momentum pi variables is relevant. Since DSR is

formulated on momentum space (see Section 1.1.3), it is natural to choose a momentum

representation to define quantum operators. This makes pi the multiplication operator and

xi = i�∂πi the translation operator in momentum space. Note that the xi operator is defined

in terms of the derivative over the variable πi and not the physical momentum pi. In mo-

mentum space, this can always be done, when g �= 1 [35] (see also Ref. [63]). Using these

definitions of xi and pi, when the energy-momentum dispersion relation is modified by f

36



2.1. MOTIVATION FOR MINIMUM LENGTH

and g, the resulting commutation relation reads as [118]

[xi, p j] = i�
∂p j

∂πi
=

i�
g

(
δi j −2

pi p j

κ2c2

N
D

)
, (2.25)

where

N = f ∂1g+
E
κc2

(∂1f ∂2g−∂2 f ∂1g) (2.26)

and

D =

(
f +

E
κc2

∂1f
)(

g+2
p2

κ2c2
∂2g

)
−2

p2

κ2c2
∂1g

E
κc2

∂2 f . (2.27)

In the above, ∂1 and ∂2 denote partial derivatives of the modification functions f and g, over

their first and second arguments, respectively. The right-hand side of Eq. (2.25) is obtained

by a straightforward, yet involved algebra of ε and πi.

In the case of the DSR1 realization, where the modified energy-momentum dispersion

relation is given by Eq. (1.31), the modification functions are given by

f (E/κc2, p2/κ2c2) =
1

2

[(
1+

p2

κ2c2

)
eE/κc2

E/κc2
− e−E/κc2

E/κc2

]
(2.28)

and

g(E/κc2) = eE/κc2
, (2.29)

where g turns out to not depend on p2. Plugging the above modification functions f and g

in Eq. (2.25), the modified commutation relation reads as

[xi, p j] = i�
[

e−E/κc2
δi j +

pi p j

κ2c2

1

cosh(m/κ)

]
, (2.30)
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which can be rewritten in the phenomenologically relevant low particle mass limit, m � κ,

as

[xi, p j]
 i�
[(

1− p
κc

− m2c2

2κc p
+

m2

2κ2

)
δi j +

pi p j

κ2c2
+O(κ−4)

]
, (2.31)

or in the massless case, m = 0, as

[xi, p j] = i�
[(

1− p
κc

)
δi j +

pi p j

κ2c2

]
. (2.32)

From the above modification of the canonical commutation relations, one can see that the

standard QM commutation relation is obtained in the limit κ−→∞. The modification in the

DSR1 realization appears as linear and quadratic corrections to the standard case in terms

of the particle momentum p, with their magnitude parameterized by κ.

In the case of the DSR2 realization, where the modified energy-momentum dispersion

relation is given by Eq. (1.34), the modification functions are given by

f (E/κc2) = g(E/κc2) =
1

1− E
κc2

, (2.33)

where both take the same shape and neither of them depend on p2. Plugging the above

modification functions f and g in Eq. (2.25), the modified commutation relation reads as

[xi, p j] = i�δi j

(
1− E

κc2

)
. (2.34)

From the above modification of the canonical commutation relations, one can also see that

the standard QM commutation relation is obtained in the limit κ −→ ∞. The modification

in the DSR2 realization appears only as a linear correction to the standard case in terms of

the particle energy E, with its magnitude parameterized by κ.

Comparing Eqs. (2.30), (2.31) and (2.32) with Eq. (2.34), one can see that the DSR1

modification contains corrections up to second order in κ, while the DSR2 modification
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contains corrections only up to first order in κ, and that the DSR1 modification is given

in terms of the particle momentum p, while the DSR2 modification is given in terms of

the particle energy E. However, the two realizations are equivalent, since there exists a

mapping between the variables of DSR1 and DSR2 [37, 38].

Considerations in Sections 2.1.1 and 2.1.2 demonstrate that a modified Heisenberg Un-

certainty Principle implies the existence of a minimum measurable length. The Heisenberg

Uncertainty Principle, as well as an uncertainty relation between any two quantum opera-

tors, can also be expressed in terms of commutation relations (see Section 2.2). Therefore,

Eqs. (2.30), (2.31), (2.32) and (2.34) represent modifications of the Heisenberg Uncer-

tainty Principle. They imply the existence of a minimum measurable length, parameterized

by 1/κ∝ �P, emerging from the framework of DSR. Furthermore, DSR imposes an addition

of a linear correction term, while considerations in Sections 2.1.1 and 2.1.2 propose only a

quadratic correction term. This addition implies the existence of a fundamental maximum

energy-momentum scale, parameterized by κ ∝ MP.

2.2 Generalized Uncertainty Principle

Examples in Section 2.1 provide a strong motivation for the existence of a minimum

measurable length �min, and suggest that a fully consistent theory of QG must provide a

fundamental description of space-time in terms of �min. Given the variety of formulations

in these approaches to QG, it is very interesting to note that they all share a common phe-

nomenological feature; a modification of the Heisenberg Uncertainty Principle, parameter-

ized by an unknown minimum length scale �min ∝ �P. The Heisenberg Uncertainty Prin-

ciple, modified in this manner, is known as the Generalized Uncertainty Principle (GUP).

It can be used to probe QG signatures at low and accessible energies, as well as in the

absence of strong gravity objects, such as black holes. Overall, this feature of QG is com-

pletely model independent. GUP shifts the focus from searching for QG effects in high

energy experiments to searching for them in high precision experiments. Therefore, low
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energy signatures of QG effects are expected to be discovered eventually, as the precision

of experiments increases with time. However, higher experimental energies are still fa-

vorable, as they amplify the QG signatures. GUP and its implications have been studied

extensively in the past [15, 48, 49, 50, 54, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,

71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84], and remain relevant in searching for

signatures of QG in previously unexplored fields.

2.2.1 The GUP Model

For practical applications, a specific model of GUP needs to be introduced. There are

several different realizations of GUP models used in QGP research. For example, some of

the commonly used models, given in commutator form in one dimension, are [63, 69, 72]

[x, p] = i�(1−α p) , (2.35)

[x, p] = i�
(
1+β p2

)
, (2.36)

[x, p] = i�
√

1+2β(p2 +m2c2) , (2.37)

where α and β are the dimensionful GUP parameters, defined below Eq. (2.42). At phe-

nomenologically relevant energies, the GUP model from Eq. (2.37) is equivalent to the

GUP model from Eq. (2.36). In literature, the most widely used GUP model is the quadratic

one, presented in Eq. (2.36), which was explored in detail by Kempf, Mangano and Mann

(KMM) in Ref. [63]. Therefore, this model is referred to as the KMM model, for conve-

nience. A short summary of its implications follows.

In a well defined Hilbert space representation, the wave functions must be normal-

izable, while the position and momentum operators should have finite expectation val-

ues and uncertainties. To demonstrate how the KMM model affects QM, two arbitrary

wave functions, ψ(p) and φ(p), defined in the momentum space representation, are intro-

duced. The momentum operator is defined as p̂ψ(p) = pψ(p) and the position operator as

x̂ψ(p) = i�(1+β p2)∂pψ(p) to satisfy the KMM model. The scalar product in momentum

40



2.2. GENERALIZED UNCERTAINTY PRINCIPLE

space is then

〈ψ|φ〉=
∫ ∞

−∞

dp
1+β p2

ψ∗(p)φ(p) , (2.38)

and the identity operator takes the form

1 =
∫ ∞

−∞

dp
1+β p2

|p〉〈p| . (2.39)

Because a minimal position uncertainty is introduced, a physical state that corresponds to

a position eigenstate cannot be retrieved. However, one can obtain a quasi position wave

function ψ(ξ) in the form

ψ(ξ) =

√
2
√
β

π

∫ ∞

−∞

dp
(1+β p2)3/2

e
i ξ tan−1(

√
β p)

�

√
β ψ(p) , (2.40)

with the position and momentum operators represented in the quasi position space as

x̂ψ(ξ)=

(
ξ+�β

tan(−i�
√
β ∂ξ)√

β

)
ψ(ξ) , and p̂ψ(ξ)=

tan(−i�
√
β ∂ξ)√

β
ψ(ξ) . (2.41)

One can see that the operators x̂ and p̂ are expressed as functions of ξ and −i� ∂ξ, for which

the standard Heisenberg commutation relation [ξ,−i� ∂ξ ] = i� holds. Furthermore, the

above implies that the physical states are distinct from those in standard QM. The standard

QM states and operators are retrieved when β−→ 0.

However, in this work the linear and quadratic form of the GUP, consistent with all ap-

proaches to QG, is considered, which was introduced and explored by Ali, Das and Vagenas

(ADV) in Refs. [66, 68]. Therefore, this model is referred to as the ADV model, for con-

venience. For the ADV model, the above phase-space considerations are similar, but more

involved (see Ref. [119]). In three dimensions, the ADV model is given by

[xi, p j] = i�
(
δi j −α

(
pδi j +

pi p j

p

)
+β

(
p2 δi j +3 pi p j

))
, (2.42)
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where α ≡ α0/(MP c) and β ≡ β0/(MP c)2, with α0 and β0 the dimensionless linear and

quadratic GUP parameters, respectively, and p =
√

pi pi. In general, α0 and β0 are dif-

ferent, which implies two length scales α0 �P and
√
β0 �P. They correspond to a maxi-

mum measurable momentum pmax ∝ 1/α0 �P ∝MP c/α0 and a minimum measurable length

�min ∝
√
β0 �P, respectively. The upper bound on experimentally achievable energies Eexp

determines the smallest experimentally achievable probing length scale �EW ∼ 10−18 m,

through the Heisenberg Uncertainty Principle. It is called the electroweak length scale, be-

cause it successfully probes the domain of the electroweak force. In terms of �P, it can be

expressed as αEW ≡ �EW/�P = 1017. Since no QG effects have been observed at this scale,

the actual value of �min can be anywhere between �P < �min < �EW . The only restrictions

on GUP, imposed by this scale, are bounds α0 < αEW = 1017 and β0 < α2
EW = 1034.

The connection between the position-momentum commutator and the Heisenberg Un-

certainty Principle is called the Robertson uncertainty relation. In general, this connection

relates a commutator and the uncertainty relation between any two quantum operators A

and B as

ΔAΔB ≥ 1

2
|〈[A,B]〉| . (2.43)

The Robertson relation for the position-momentum commutator in one dimension reads as

ΔxΔp ≥ 1
2 |〈[x, p]〉|, and returns

ΔxΔp≥ �

2
(1+β〈p2〉)

=
�

2
(1+βΔp2 +β〈p〉2)

=
�

2
(1+βΔp2) (2.44)

in the case of the KMM model from Eq. (2.36), and

ΔxΔp≥ �

2
(1−2α〈p〉+4β〈p2〉)
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≥ �

2

[
1+

(
α√
〈p2〉 +4β

)
Δp2 +4β〈p〉2 −2α

√
〈p2〉

]

=
�

2

[
1−αΔp+4βΔp2

]
(2.45)

in the case of the ADV model from Eq. (2.42), where the relation Δp2 = 〈p2〉− 〈p〉2 and

mirror symmetric states 〈p〉= 0 were considered.

Δp(Δxmin)

Δp

ΔxLQmin

ΔxQmin

Δ
x

Heisenberg

Quadratic GUP (KMM)

Linear + Quadratic GUP (ADV)

Figure 2.4: The Generalized Uncertainty Principle (KMM model (orange) and ADV model

(green)), compared to the Heisenberg Uncertainty Principle (blue).

One can compare the KMM model from Eq. (2.44) and the ADV model from Eq.

(2.45) with the standard Heisenberg Uncertainty Principle from Eq. (1.2) by plotting them

alongside each other, as seen in Fig. 2.4. For simplicity, the prefactors (∝β) of the quadratic

terms Δp2 are taken to be the same, neglecting the factor 4 in Eq. (2.45). One can notice

that each of the modified cases deviate from the standard Heisenberg case and predict a

different minimum length. In the phenomenologically relevant, low energy range of Δp, the

magnitude of the deviation is greater for the ADV model, compared to the KMM model.

Also, in the same energy range, the ADV model deviates to the left of the Heisenberg case
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due to the presence of the pmax scale in the linear term, compared to the purely quadratic

KMM model, which deviates to the right. The above observations suggest that the ADV

model predicts stronger QG effects than the KMM model, and provides a way to verify the

existence of a maximum measurable momentum scale pmax, once QG effects are observed

for the first time. This reinforces the phenomenological relevance of the ADV model, and

is therefore used throughout this work.

2.2.2 Challenges

GUP motivated QGP also faces some challenges, which need to be taken into consider-

ation. For example, Newton’s gravitational constant G, which determines the Planck length

�P ∝
√

G, is commonly assumed to be constant on all scales. However, this assumption

has no solid verification. Therefore, one should carefully examine whether G is constant

across the diverse energy scales, from the very small to the very big. This can have direct

consequences on GUP, since it depends on �P.

GUP is used to provide simple phenomenological models. A limitation of this approach

is that most of testable QG signatures, described by GUP, are based only on the minimum

measurable length, and not on other QG features. However, this limitation is at the same

time a strength of GUP, since it is model independent. A full test theory should be able

to provide additional information, alongside the form of GUP and the corresponding dis-

persion relation (the two are related; see Section 2.1.4). It must also address the following

issues [7]:

• Universality of GUP. Is the modification parameter always the same, or is it different

for different particles?

• How is the soccer-ball problem addressed for multi-particle dynamics, described by

GUP and the corresponding modified dispersion relation?

• Is the standard energy-momentum conservation law assumed valid in general, given

a modified dispersion relation?
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In the worst case scenario, the suppression factor ∝ En/En
P, where n ∈ N, may com-

pletely prevent observations of any QG effects in low energy experiments [7]. However,

even in this scenario, the development of more detailed phenomenological models and the

increasing precision of low energy experiments, may provide ever stronger bounds on �min

(see Chapter 3). On the other hand, cosmological considerations do not only bound �min,

but determine it (see Chapter 4). Both, improvements on the bound of �min in low energy

experiments and measurements of �min in cosmological considerations, drive the progress

of QGP, and encourage future research in this field. Furthermore, testing fundamental con-

cepts, which are believed to lead towards a consistent theory of QG, such as the Quantum

Equivalence Principle (see Chapter 5), proves to be an equally important branch of QGP.
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Chapter 3

Earth-based Experiments

“The beauty of a living thing is not the

atoms that go into it, but the way those

atoms are put together.”

Carl Sagan

Earth-based experiments provide a wide scope of tests, where the bulk of QGP research

is applied [49, 15, 48, 51, 52, 53, 55, 56, 57, 62, 65, 66, 67, 68, 69, 72, 73, 79, 80, 120, 121,

122]. They are crucial in QGP, since it is possible to control the conditions and parameters

of a given experimental setup. This allows for a dedicated search for QG effects in well

defined conditions.

In this chapter, new results of QGP in Earth-based experiments are presented. Specif-

ically, GUP motivated QG signatures in Bose-Einstein condensates and in magnetometer

experiments, are explored in detail. Furthermore, QG signatures in a Bose-Einstein Con-

densate are also explored in terms of extra compact dimensions.

3.1 Bose-Einstein Condensate

The phenomenon of a Bose-Einstein Condensate (BEC) is explained within the frame-

work of statistical mechanics [123]. Although, QG effects in statistical mechanics have

not been studied extensively, some proposals suggest to search for QG signatures in BECs

[120, 121, 122], and signatures of compact extra dimensions in BECs [124, 125, 126].

Work in this section explores QG signatures in BECs, where two novel approaches are
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used. They provide a number of new results and are based on compact extra dimensions

and GUP, respectively. They imply QG corrections to observables in BEC, such as the

critical temperature Tc and fraction of bosons in the ground state f0.

The aforementioned two approaches are considered independently of each other in the

following. In the approach with extra compact dimensions, it is shown that the modifica-

tions of observables enter through the energy-momentum dispersion relation in a space-time

with compact dimensions. In the approach with GUP, it is shown that GUP modifies the

energy levels of a particle in a box, and hence the corresponding phase space volume. This

directly modifies the density of states. When such a modification is applied to phase-space

integrals of a BEC, modifications of observables follow. Supporting material for this section

is found in Appendix A.

3.1.1 From Classical to Quantum Gases

Description of a classical gas at relatively high temperatures neglects the interactions

between the constituent particles. This can be safely assumed, since the thermal de Broglie

wavelength λB = h/
√

2πmkBT , at high temperature, is much smaller than the mean free

path between particles of the gas. Here kB is the Boltzmann constant and T the temperature

of the gas. This condition can be written as

nλ3
B =

nh3

(2πmkBT )3/2
� 1 , (3.1)

where n is the number density of the gas, related to the mean free path as � f ree = 1/n1/3.

When the temperature of the gas is lowered, the parameter nλ3
B approaches unity and all

physical quantities of the system correspond to its classical properties. As the temperature

decreases to a certain value, nλ3
B is still small, but becomes non-negligible. Therefore, the

various physical quantities of the system can be expanded as a power series of this param-

eter. This implies that the condition in Eq. (3.1) can still be satisfied at low temperatures

of the gas. However, the effects of quantum statistics, which arise from the spin of parti-
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cles comprising the gas, become important. Such effects turn out to be different for bosons

and fermions (see Eq. (A.4) in Appendix A.1). In general, for lower temperatures, higher

particle densities and lower particle masses, quantum phenomena become more prominent

[123].

3.1.2 Standard Bose-Einstein Condensation

The phenomenon of BEC occurs when a dilute gas of bosons is cooled below a certain

temperature, where the bulk of these bosons occupy the ground state. This temperature is

known as the critical temperature Tc. Since the Bose-Einstein (BE) statistics (see Eq. (A.4)

in Appendix A.1) allows for an arbitrary number of bosons in any state, there could theoret-

ically be an infinite number of bosons in the ground state. In the following, a few important

results, related to a standard BEC, are reviewed. Note that the standard BEC observables

Tc and f0 are given in terms of an arbitrary number of Euclidean spatial dimensions d.

The critical temperature Tc is the threshold at which all of the bosons are still in the

excited states. As soon as the gas temperature T drops below Tc, the bosons rapidly start to

decay to their ground state. Furthermore, considering the non-relativistic case, the chemical

potential vanishes μ −→ 0 at T < Tc, in the thermodynamic limit N0 −→ ∞, where N0 is

the number of bosons in the ground state. In d-dimensional space, with d ≥ 3 (a non-

relativistic BEC in d = 1,2 dimensions does not exist [125]), the critical temperature of a

non-relativistic BEC (obtain by means of Eq. (A.11) from Appendix A.1) reads as

Tc =
2π�2

kB mζ(d
2 )

2/d
n2/d , (3.2)

where ζ(d/2) is the Riemann zeta function, evaluated at d/2 (see Eq. (A.7) in Appendix

A.1). From the above Tc, one can see that the critical temperature of a non-relativistic BEC

will be higher for high boson densities and light boson masses. Note that Eq. (3.2) for

d = 3, is identical to Eq. (3.1) up to an unimportant numerical factor when its right hand

side is set to unity. From this, one can see that at Tc, the thermal de Broglie wavelength
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λB equals the mean free path between particles � f ree, where the interactions between the

constituent particles become significant. Furthermore, at temperatures lower than Tc, where

λB > � f ree, the particles start to form a BEC for bosons, and a degenerate gas for fermions.

The second important observable in BEC is the fraction of bosons in the ground state f0. If

n0 is the number density of bosons in the ground state, n(T ) the number density of bosons

in the excited states at temperature T < Tc and n the total number density of bosons, one

can relate these number densities as

n = n0 +n(T ) = n0 +n
(

T
Tc

)d/2

=⇒ f0 =
n0

n
= 1−

(
T
Tc

)d/2

, (3.3)

where n(T ) is obtained by means of Eq. (A.11) from Appendix A.1. From the above f0,

one can see that at T = Tc there are no bosons in the ground state, since f0 = 0. The bosons

start to occupy the ground state at T < Tc, where f0 > 0, and completely occupy the ground

state at T = 0K, where f0 = 1.

The critical temperature Tc and fraction of bosons in the ground state f0 for the rel-

ativistic case can be found in a similar manner, by using the relativistic density of states

instead (see Eq. (A.3) from Appendix A.1). There are two distinct cases of BECs for rela-

tivistic bosons. The first, when a gas of neutral bosons is considered, is associated with the

following critical temperature

Tc =
1

kB

(
2d−1πd/2

�
d cd Γ(d

2 )

Γ(d)ζ(d)

)1/d

n1/d , (3.4)

where Γ(d) is the gamma function, evaluated at d. The above Tc is valid in arbitrary d ≥ 2

spatial dimensions (a neutral relativistic BEC in d = 1 dimension does not exist [127, 128]).

Note that it does not depend on boson mass, unlike the non-relativistic result given in Eq.

(3.2). However, it continues to depend on the boson number density, albeit with a different

(positive) power. The fraction of relativistic neutral bosons in the ground state turns out to
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be

f0 = 1−
(

T
Tc

)d

. (3.5)

The reasoning behind the above f0 is the same as for Eq. (3.3), but with a different power

dependence of T/Tc. The second relativistic case considers a gas of charged particles,

consisting of bosons and antibosons. The distribution function for such a gas is the to-

tal charge density n (in the previous two cases, n refers simply to the number density of

bosons), obtained as the difference between the respective BE distributions. One sub-

tracts the BE distribution of antibosons (where μ(Tc) = −mc2) from the BE distribution

of bosons (where μ(Tc) = mc2). The relativistic boson-antiboson critical temperature, valid

in arbitrary d ≥ 3 spatial dimensions (a charged relativistic BEC does not exist in d = 1,2

dimensions [127, 128]), reads as

Tc =
1

kB

(
2d−2πd/2

�
d cd−2Γ(d

2 )

mΓ(d)ζ(d −1)

)1/(d−1)

n1/(d−1) , (3.6)

where Tc increases with increasing total charge density n and decreasing boson mass m.

Note that the above Tc depends on both, m and n, compared to the relativistic neutral boson

case, where Tc depends only on n. The fraction of relativistic charged bosons in the ground

state turns out to be

f0 = 1−
(

T
Tc

)(d−1)

. (3.7)

The reasoning behind the above f0 is the same as for the previous two cases, but with a

different power dependence of T/Tc.

To summarize, one can see that a Tc of a BEC depends on powers of m and n, determined

by the above cases and the dimensionality d of a chosen Euclidean space. Similarly, a f0

of a BEC depends on powers of T/Tc, determined by the above cases and d. Note that the
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charged relativistic BEC is the most general case, which reduces to the other two cases in

corresponding limits.

3.1.3 Bose-Einstein Condensation in Compact Dimensions

Compact extra dimensions are interesting from the point of view of QG, since they are

an essential component in ST, where they are usually assumed to be tiny, most often, of the

order of �P [11]. In the following, it is examined whether compact dimensions have an effect

on the Tc and f0 of a BEC, in which case they may be measurable. Interestingly, it turns out

that there is indeed such an effect. To demonstrate this, one considers a charged relativistic

BEC, described by charge density n, given in d non-compact Euclidean dimensions and N

compact spherical dimensions (space topology of Rd ×SN) as [124]

n =
∞

∑
�=0

d�
∫ ∞

0

ddk
(2π)d

⎡
⎣ 1

eβT

(√
�2k2c2+m2c4+�2ω2

� −μ
)
−1

− 1

eβT

(√
�2k2c2+m2c4+�2ω2

� +μ
)
−1

⎤
⎦ , (3.8)

where

d� ≡ (2�+N −1) Γ(�+N −1)

�! Γ(N)
and ω2

� ≡
c2

R2
�(�+N −1) (3.9)

are the degeneracy factors and energy contributions from compact dimensions, respectively,

βT = 1/kBT is the inverse temperature and R is the radius of the compact SN . Currently,

the only available experimental realization of creating a BEC, is the non-relativistic case.

Therefore, a non-relativistic BEC is considered in the following, for which kBT � mc2.

This condition reduces Eq. (3.8) to
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n

∞

∑
�=0

d�
1

(2π�2)d/2
(kBTc)

d/2 1

cd

(√
�2ω2

� +m2c4

)d/2

×
∞

∑
n=1

1

nd/2
e−nβTc

(√
�2ω2

�+m2c4 −mc2
)
, (3.10)

evaluated at Tc. Note that the second sum in the above, equals the polylogarithm func-

tion Lid/2

(
exp

[
−βTc

(√
�2ω2

� +m2c4 −mc2
)])

(see Eq. (A.6) in Appendix A.1). Fur-

thermore, it is assumed that the radius of the compact dimensions R is very small, since

R ∝ �P. In this situation, the Compton wavelength of the boson is much greater than R,

i.e., (mc/h)R � 1 (or equivalently �ω� � mc2). This implies that all terms in the sum

over �, except for � = 0, are exponentially suppressed by the Boltzmann factor from the

second sum. However, they do not completely vanish for R > 0, no matter how small.

Therefore, only the largest, first order contribution, � = 1, of the compact dimensions is

kept, and higher orders, � > 1, neglected. This allows to predict measurable signatures of

compact dimensions. For � = 1 and small R, the above polylogarithm function reduces to

Lid/2(exp(−βTc
�c
R

√
N)), where the argument is also small. For a small argument of the

polylogarithm function, one can write Lid/2(exp(−βTc
�c
R

√
N)) ≈ exp(−βTc

�c
R

√
N) [129].

Therefore, for a small radius R of the compact dimensions, the number density of bosons

from Eq. (3.10) can be written as

n 

(

mkBTc

2π�2

)d/2
[
ζ(d

2 )+
�

d/2(N +1)Nd/4

Rd/2 md/2 cd/2
e−βTc

�c
R
√

N

]
, (3.11)

where the first term agrees with the standard non-relativistic BEC and the second term is a

correction, induced by extra compact dimensions. The Boltzmann suppression factor makes

this correction very small, since it vanishes as R −→ 0. One is interested in the critical

temperature Tc, which is extracted from Eq. (3.11) by using a perturbative approach. To

accomplish this, one needs to define Tc = T (0)
c +ΔT(R), where T (0)

c is the standard theory
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critical temperature and ΔT(R) the correction to the critical temperature, induced by extra

compact dimensions. Such a critical temperature, obtained for the first time in Ref. [130],

reads as

Tc 
 2π�2

kB mζ(d
2 )

2/d
n2/d − 4π�(d+4)/2(N +1)Nd/4 e−β(0)Tc

�c
R
√

N

kB d Rd/2 m(d+2)/2 cd/2 ζ(d
2 )

(2+d)/d
n2/d , (3.12)

where β(0)Tc
= 1/kBT (0)

c . From Eq. (3.12), one can see that the first term is identical to

Eq. (3.2), and that the magnitude of the correction term increases with increasing n and

decreasing m. Furthermore, the correction term has a non-trivial dependence on R. This

dependence is discussed in terms of the relative magnitude of the correction, obtained from

Eq. (3.12) as

∣∣∣∣∣ΔT(R)

T (0)
c

∣∣∣∣∣= 2�d/2(N +1)Nd/4 e−β(0)Tc
�c
R
√

N

d Rd/2 md/2 cd/2 ζ(d
2 )

≡ 10−r < 10−q . (3.13)

In the above, r and q take positive values, such that 10−q denotes the precision at which

the critical temperature of a BEC can currently be measured, and 10−r denotes the required

precision of such measurements to observe extra compact dimensions. The inequality in

Eq. (3.13) stems from the fact that the above ΔT(R) has not been observed in experiments

so far. This subsequently puts bounds on the size of extra compact dimensions, as shown

below. The important point to note here is that the right-hand side of Eq. (3.13) contains

the compact dimension radius R in the denominator as well as in the numerator, via the

exponential Boltzmann factor. Therefore, interestingly, as one spans the range of R from

very small to larger values, the correction term initially increases and then starts to decrease.

This behaviour is shown in Fig. 3.1 for a BEC of a helium gas, where d = 3 and N = 1

are assumed. The blue line therein depicts the relative correction, given by Eq. (3.13),

and the horizontal orange line signifies a hypothetical precision, expected to be attainable

in the future (a line corresponding to current precision at ∼ 10−7 [131] would lie well
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Figure 3.1: Relative correction as a function of radius R/�c (in energy units) of the extra

compact dimension for a helium gas BEC (blue), where m = mHe, n = 1023 m−3, d = 3 and

N = 1, and a hypothetical precision of an experiment (orange).

above the blue curve). Note that the curves intersect at two points, corresponding to R1

and R2 on the horizontal axis. Therefore, if no traces of extra compact dimensions are

found in experiments, in terms of the above correction, it would mean that the correction

effect can manifest for R either below R1 or above R2. In other words, one obtains an

upper as well as a lower bound on the size of R. More precisely, the peak is located at

Rmax = 2β(0)Tc
�c

√
N/d, and the two bounds always satisfy R1 < Rmax and R2 > Rmax for

upper and lower bounds, respectively. Furthermore, from the example shown in Fig. 3.1,

one can obtain Rmax = 1.77m. Since the actual size of extra compact dimensions cannot

be of this order, otherwise they would have already been detected, it must be much smaller

R1 � Rmax, and the lower bound R2 is not useful in this context. One can also notice that

Eq. (3.13) is implicitly dependent on the number density n through β(0)Tc
, since the latter
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depends on n. Therefore, if n is increased, the exponential factor increases and the relative

correction increases.

The order of magnitude of the correction from Eq. (3.13), signified by the quantity r,

which one hopes to minimize, is given in terms of R, the number of compact dimensions N,

the boson mass m and implicitly on the boson density n as

r = rd,N(R,m) = log

(
d Rd/2 md/2 cd/2 ζ(d

2 )

2�d/2(N +1)Nd/4
eβ

(0)
Tc

�c
R
√

N

)
. (3.14)

The above gives an estimate of what the precision of the temperature measurements in

BECs must be, to detect such a deviation from standard theory and obtain signatures of

extra compact dimensions. The second observable, the fraction of bosons in the ground

state, including corrections induced by extra compact dimensions, is obtained through the

standard derivation, presented in Eq. (3.3), while using the modified number density from

Eq. (3.11). Such a fraction of bosons in the ground state reads as

f0 = 1−
(

T
Tc

)d/2
[

1+
�

d/2(N +1)Nd/4

Rd/2 md/2 cd/2 ζ(d
2 )

(
e−βTc

�c
R
√

N
(Tc

T

)
− e−βTc

�c
R
√

N
)]

, (3.15)

from where one can see, that for R −→ 0, the above is identical to Eq. (3.3) from the

standard non-relativistic BEC. Also, the correction term in square brackets in Eq. (3.15)

vanishes for T = Tc, as expected.

In this analysis, a spherical space topology SN was assumed for the extra compact di-

mensions, where there is only one R, no matter how many extra compact dimensions N

are considered. If the space topology of extra compact dimensions is toroidal instead, for

example T (N), then each of the N extra compact dimensions could have its own distinct

radius. In this case, the above calculations would be similar, with the difference that the

energy contributions in Eq. (3.9) would be functions of all N radii, instead of only one.

However, for N = 1, no difference between the two topologies is expected.
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3.1.4 Bose-Einstein Condensation and GUP

As shown in Sections 3.1.2 and 3.1.3, the theoretical framework for describing BECs

is statistical mechanics (see also Appendix A.1). The phase space integrals in statistical

mechanics are normalized by a phase space volume of a particle in a box, which is where

GUP introduces QG corrections. Such corrections also modify the density of states, which

is used to calculate the QG corrected number density of bosons in a BEC, and by extension,

the corresponding critical temperature and fraction of bosons in the ground state. To apply

GUP, given by Eq. (2.42), to a particle in a box, one considers the energy-momentum

dispersion relation of a particle, confined inside a box-like potential. In QM, this is the

Hamiltonian

H = T (p)+V (x) , (3.16)

where T (p) is the kinetic energy of the particle, p = |p| the magnitude of p, the physical

momentum of the particle, and V (x) the external box-like potential at a physical position x,

given by V (x) = 0 inside the box and V (x) −→ ∞ outside the box. In general, Eq. (3.16)

satisfies the stationary Schrödinger equation Hψ = Eψ (see Eq. (1.1)), where ψ is the

particle wave function and E the corresponding energy eigenvalue.

One can notice that the standard QM operator for momentum −i�∂xi cannot be used for

pi, because it does not satisfy the GUP commutation relation from Eq. (2.42). However, a

set of canonical operators x0i and p0i can be defined, such that they satisfy the standard QM

commutation relation [x0i, p0 j] = i�δi j. Therefore, one can write p0i = −i�∂x0i . In terms

of x0i and p0i, one can define a transformation

xi = x0i and pi = p0i (1−α p0 +2β p2
0) , (3.17)

between physical and canonical operators, where p0 =
√

p0k p0k. Note that the above trans-

formation is one of several equivalent transformations, which satisfy the GUP commutation

relation from Eq. (2.42). For convenience, transformation from Eq. (3.17) is used in what
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follows, to compute QG corrections to the non-relativistic and relativistic Hamiltonians,

and to examine corresponding QG signatures in a BEC.

Non-relativistic

In this case, a non-relativistic particle of mass m and kinetic energy T (p) = p2/2m, is

considered. The potential is defined as a three dimensional box with edges Lx, Ly and Lz,

and takes values V (x) = 0 inside the box and V (x) −→ ∞ outside the box. This implies

the wave function boundary conditions ψ(0,y,z) = ψ(x,0,z) = ψ(x,y,0) = ψ(Lx,y,z) =

ψ(x,Ly,z) = ψ(x,y,Lz) = 0. To compute the QG corrected energy spectrum of a non-

relativistic particle in a three dimensional box, one first writes the QG corrected Hamil-

tonian, by using Eq. (3.17) to express p in terms of p0, as

H =
p2

2m
=

p2
0

2m
− α

m
p3

0 +
5β
2m

p4
0 ≡ H0 +H1 +H2 , (3.18)

where H0 = p2
0/2m, H1 = −α p3

0/m and H2 = 5β p4
0/2m. The corrections to the energy

spectrum due to H1 and H2 are computed to linear order in β and quadratic order in α (note

that these are of a similar order or magnitude, i.e., O(β) ∼ O(α2)). It is well known, that

the eigenfunctions of an unperturbed Hamiltonian H0, for a particle in a three dimensional

box, are given as [132]

|ψn(x0)〉 ≡ ψnx,ny,nz(x0,y0,z0) =

√
8

V
sin

(
πnx

Lx
x0

)
sin

(
πny

Ly
y0

)
sin

(
πnz

Lz
z0

)
, (3.19)

where V = Lx Ly Lz is the volume of the box and nx,ny,nz ∈ N are quantum numbers, de-

scribing the excitation state of a particle in a three dimensional box. The above eigen-

functions span a Hilbert space H = {|ψn〉; n ∈ N3}, where one can write a general state

wave function as |Ψ(x0)〉= ∑n cn |ψn(x0)〉, for cn ∈ C. The standard energy spectrum of a
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particle in a three dimensional box, considering an unperturbed Hamiltonian H0, is

ε(0)n = ε(0)nx,ny,nz = 〈ψn(x0)|H0|ψn(x0)〉= �
2π2

2mL2
(n2

x +n2
y +n2

z ) , (3.20)

where L = Lx = Ly = Lz was assumed, without loss of generality. To obtain the QG correc-

tion to the energy spectrum from Eq. (3.20), the time independent, first order perturbation

theory is used. It provides the linear (see Appendix A.2) and quadratic corrections of per-

turbations H1 and H2, respectively, as

Δε(1)Lin
n = 〈ψn(x0)|H1|ψn(x0)〉 = −α�3π3

mL3
(n2

x +n2
y +n2

z )
3/2 (3.21)

Δε(1)Quad
n = 〈ψn(x0)|H2|ψn(x0)〉 = 5β�4π4

2mL4
(n4

x +n4
y +n4

z

+2n2
x n2

y +2n2
x n2

z +2n2
y n2

z ) . (3.22)

The energy spectrum of a particle in a three dimensional box, up to quadratic order of the

QG corrections, is then simply the sum of Eqs. (3.20), (3.21) and (3.22)

εn =
�

2π2

2mL2
(n2

x +n2
y +n2

z )−
α�3π3

mL3
(n2

x +n2
y +n2

z )
3/2

+
5β�4π4

2mL4
(n4

x +n4
y +n4

z +2n2
xn2

y +2n2
xn2

z +2n2
yn2

z )

=
�

2

2m
k2

n −
α�3

m
k3

n +
5β�4

2m
k4

n , (3.23)

where k2
n = π2

L2

(
n2

x +n2
y +n2

z
)

was used in the last line. From the above, one can see that

the QG corrections to the energy spectrum of a particle in a three dimensional box are

dependent on quantum numbers nx, ny and nz, with different powers. A procedure to obtain

the exact QG corrected energy spectrum, given Eq. (2.42), of a particle in a one dimensional

box, without using perturbation theory, is described in Ref. [133].

Using the QG corrected energy spectrum for a particle in a three dimensional box, given

by Eq. (3.23), and taking the continuum limit (kn −→ k =⇒ εn −→ ε; see Appendix A.3),
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the QG corrected density of states, obtained for the first time in Ref. [130], reads as

g(ε) =
V (2m)3/2ε1/2

4π2�3
(1+16α

√
m ε1/2 −25βmε) . (3.24)

One can see that the above reduces to the usual density of states, given by Eq. (A.2) in

Appendix A.1, when α,β −→ 0. The above QG corrected density of states is central in

predicting QG effects in non-relativistic statistical mechanics. It is used to modify the

non-relativistic BEC observables in the following. A more general procedure, described in

Appendix A.4 can also be used to obtain the QG corrected density of states. However, its

use is currently limited to the non-relativistic case, and for quadratic corrections only, due

to the complexity of calculations.

The number of particles in the system is calculated using Eq. (A.1) from Appendix A.1

and the QG corrected density of states in Eq. (3.24). The integral is evaluated at Tc, where

μ −→ 0, and divided by the spatial volume V , to obtain the QG corrected number density

of bosons

n=
NBE

V
=

√
2 m3/2

2π2�3

[∫ ∞

0

ε1/2

eβTcε−1
dε+16α

√
m
∫ ∞

0

ε
eβTcε−1

dε−25βm
∫ ∞

0

ε3/2

eβTcε−1
dε

]

=

√
2 m3/2

4π3/2�3

[
(kBTc)

3/2 ζ(3
2)+

16π3/2

3
α
√

m(kBTc)
2 − 75

2
βm(kBTc)

5/2 ζ(5
2)

]
, (3.25)

where one can see that it reduces to the usual number density, given by Eq. (A.11) (as

μ −→ 0) in Appendix A.1, when α,β−→ 0. Note that it is not possible to extract a closed

form expression of Tc from Eq. (3.25). Therefore, a perturbative approach is used instead.

One defines Tc = T (0)
c +ΔT(α)+ΔT(β), to express the QG corrected Tc, where ΔT(α) ∝ α

and ΔT(β)∝ β. The standard critical temperature T (0)
c is equal to that in Eq. (3.2) for d = 3.

The QG corrected critical temperature, then reads as

Tc =
2π�2

kB mζ(3
2)

2/3
n2/3 −α

32
√

8π3
�

3

9kB mζ(3
2)

2
n+β

100π2
�

4 ζ(5
2)

kB mζ(3
2)

7/3
n4/3 , (3.26)
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where one can see that the QG corrections increase with increasing number density n and

decreasing boson mass m. One can also see that higher order QG corrections (∝ β) have a

stronger dependence on n. This is a direct consequence of terms of higher order in Tc from

Eq. (3.25). The magnitude of the relative correction is then

∣∣∣∣∣ ΔT

T (0)
c

∣∣∣∣∣= α0
16

√
8π2

�

9MP cζ(3
2)

4/3
n1/3 −β0

50π�2 ζ(5
2)

(MP c)2 ζ(3
2)

5/3
n2/3 , (3.27)

where the definitions of α and β, found below Eq. (2.42), were used. The above increases

with increasing n, but does not depend on the boson mass. This dependence is presented in

Fig. 3.2 for a BEC of a helium gas, where the black line represents the current experimental

precision, which will continue to improve with time. Eq. (3.27) differs from a similar

result in Refs. [120, 121], where the relative correction decreases with increasing n as

|ΔT/T (0)
c | ∝ α0/n1/3. Note that as the particle number increases in a given volume, the

total energy approaches EP, thus magnifying the QG effects [34]. This shows that the

above result is perfectly reasonable.
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Figure 3.2: Relative temperature QG correction for a non-relativistic BEC, as a function of

the number density n, at different values of parameter α0, where β0 = α2
0. The black line

represents the experimental accuracy. The parameters of the example BEC are those of a

helium gas.
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Figure 3.3: QG correction of f0 for a non-relativistic BEC, as a function of the condensate

temperature T , at different values of parameter α0, where β0 =α2
0. The black line represents

the experimental accuracy. The parameters of the example BEC are those of a helium gas.

The second important observable is the fraction of bosons in the ground state. Following

the derivation from Eq. (3.3), while using the number density from Eq. (3.25), the QG

corrected fraction of bosons in the ground state for a non-relativistic BEC reads as

f0 = 1−
(

T
Tc

)3/2

+ α0
16π3/2

3ζ(3
2)

√
mkB

MP c

[
T 3/2

Tc
− T 2

T 3/2
c

]

− β0

75ζ(5
2)

2ζ(3
2)

mkB

(MP c)2

[
T 3/2

T 1/2
c

− T 5/2

T 3/2
c

]
, (3.28)

where one can see that a standard result from Eq. (3.3) is recovered for α0,β0 −→ 0.

Furthermore, one can see that at T = Tc, the QG corrections vanish and f0 = 0, as expected,

even when α0,β0 �= 0. This means that a deviation in fraction of bosons in the ground state,

induced by QG effects, can be observed at temperatures T < Tc. The corrections terms

from Eq. (3.28) are presented in Fig. 3.3 for a BEC of a helium gas. One can see that

the correction has a maximum between absolute zero and the critical temperature Tc. It is
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located at

Tm =
9

16
Tc − β0

α0

2025ζ(5
2)

256π3/2

√
mkB

MP c
T 3/2

c . (3.29)

This suggests that experiments, able to measure the fraction of bosons in the ground state

with high accuracy, would most likely observe QG signatures around temperature Tm.

Relativistic

For the relativistic case, the procedure outlined in Ref. [134] is followed to obtain the

QG corrected energy spectrum of a relativistic boson in a three dimensional box. This is

then used to obtain the relativistic density of states, the QG corrected critical temperature Tc,

and fraction of bosons in the ground state f0, for a relativistic BEC. Two distinct relativistic

cases, mentioned in Section 3.1.2, are considered. In the first case, the neutral relativistic

BEC is considered, and in the second case, the charged relativistic BEC is considered.

Relativistic scalar bosons (spin-0 particles) are described by the Klein-Gordon equation

(see Eq. (1.6) in a flat space-time, gμν = ημν), which gives rise to the following effective

relativistic Hamiltonian in the Feshbach-Villars formalism [134, 135, 136]

Hr = (τ3 + iτ2)
p2

2m
+ τ3 mc2 , (3.30)

where τi (i = 1,2,3) are the Pauli matrices. Note that the Pauli matrices are not related

to the spin of the particle in this context, but are used as a mathematical aid instead, to

obtain the above classical-like Hamiltonian. The corresponding wave function satisfies the

Schrödinger-like equation i�∂tΨ= HrΨ. The vector-like eigenfunctions Ψ of the effective

Hamiltonian in Eq. (3.30), are given by a pair of scalar eigenfunctions ϕ and χ as

Ψ=

⎡
⎢⎣ ϕ

χ

⎤
⎥⎦ . (3.31)
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By defining the Klein-Gordon field as ψ= ϕ+χ, and using the above definitions of Hr and

Ψ, it is straightforward to show that ψ satisfies the Klein-Gordon equation

1

c2

∂2ψ
∂ t2

−∇2ψ+
m2c2

�2
ψ= 0 . (3.32)

One can impose a three dimensional box potential V (x), such as seen in the non-relativistic

case, to Hr. This determines the boundary conditions for ϕ and χ, which are the same as

for the non-relativistic wave function from Eq. (3.19). It turns out that the time dependent

solutions for ϕ and χ, given Hr for a relativistic particle in a three dimensional box, are

ϕ±
n (x)=

√
8

V
ϕ±

0 (p)e∓
E
�

t sin

(
πnx

Lx
x
)

sin

(
πny

Ly
y
)

sin

(
πnz

Lz
z
)

χ±n (x)=
√

8

V
χ±0 (p)e∓

E
�

t sin

(
πnx

Lx
x
)

sin

(
πny

Ly
y
)

sin

(
πnz

Lz
z
)
, (3.33)

where V = Lx Ly Lz is the volume of the box, nx,ny,nz ∈ N the particle excitation quan-

tum numbers and ϕ±
0 (p), χ

±
0 (p) relativistic momentum-dependent functions, which satisfy

(ϕ±
0 )

2 − (χ±0 )
2 = ±1, with ± denoting particle and anti-particle solutions. Eq. (3.31) can

then be rewritten in terms of Eq. (3.33) as Ψ±
n (x). One can notice that the solutions in Eq.

(3.33) are similar to those in the non-relativistic case from Eq. (3.19). They differ only by

the relativistic momentum-dependent functions ϕ±
0 (p) and χ±0 (p).

To obtain the QG corrected energy spectrum of a relativistic particle in a box, one

modifies the effective Hamiltonian Hr, using the transformation from Eq. (3.17), as

Hr QG =(τ3 + iτ2)
p2

0

2m
+ τ3 mc2 − (τ3 + iτ2)

α
m

p3
0 +(τ3 + iτ2)

5β
2m

p4
0

≡Hr 0 +Hr1 +Hr2 , (3.34)

where one defines Hr 0 = (τ3 + iτ2) p2
0/2m+ τ3 mc2, Hr1 =−(τ3 + iτ2)α p3

0/m and Hr2 =

(τ3 + iτ2)5β p4
0/2m. The energy spectrum of a relativistic particle in a three dimensional
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box, considering an unperturbed effective Hamiltonian Hr 0, turns out to be

ε(0)n =±
√

c2�2π2

L2

(
n2

x +n2
y +n2

z
)
+m2c4 , (3.35)

where L= Lx = Ly = Lz was assumed, without loss of generality, and ± signifies the particle

and anti-particle solutions. The energy spectrum in Eq. (3.35) is obtained by computing the

eigenvalues of the Hr 0 operator, for the state Ψ±
n . To obtain the QG correction to the energy

spectrum in Eq. (3.35), one considers the complete QG corrected, effective Hamiltonian

Hr QG from Eq. (3.34), and uses the result from Appendix A.2. The QG corrected energy

spectrum is then

εn =±
√

�2c2k2
n −2α�3c2k3

n +5β�4c2k4
n +m2c4 , (3.36)

which is obtained by computing the eigenvalues of the effective Hamiltonian Hr QG, for the

state Ψ±
n . In the above, k2

n =
π2

L2

(
n2

x +n2
y +n2

z
)

was again used, and the ± sign plays no role

in further considerations, since the square of Eq. (3.36) is used. Using the QG corrected

energy spectrum for a particle in a three dimensional box, given by the relativistic relation

in Eq. (3.36), and taking the continuum limit (kn −→ k =⇒ εn −→ ε; see Appendix A.3),

the QG corrected relativistic density of states reads as [130]

g(ε) =
V ε

√
ε2 −m2c4

2π2�3c3

(
1+4α

1

c

√
ε2 −m2c4 − 25

2
β

1

c2

(
ε2 −m2c4

))
, (3.37)

One can see that the above reduces to the usual relativistic density of states, given by Eq.

(A.3) in Appendix A.1, when α,β −→ 0. The above QG corrected density of states is

central in predicting QG effects in relativistic statistical mechanics. It is used to modify

the relativistic BEC observables in the following. It may be noted that the integrals, which

take the form of Eq. (A.1) from Appendix A.1, cannot be expressed in closed form, when

using the relativistic density of states from Eq. (3.37). However, they can be expressed in a
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closed form in the ultra-relativistic limit, where ε� mc2.

The number of particles in the system is obtained using Eq. (A.1) from Appendix A.1

and the QG corrected density of states from Eq. (3.37). The integral is evaluated in the

ultra-relativistic limit at Tc, where μ −→ 0, and divided by V to obtain the QG corrected

number density for the neutral relativistic BEC as

n=
N

UR−B

BE

V
=

1

2π2�3c3

[∫ ∞

0

ε2

eβTcε−1
dε+4

α
c

∫ ∞

0

ε3

eβTcε−1
dε− 25

2

β
c2

∫ ∞

0

ε4

eβTcε−1
dε
]

=
1

π2�3c3

[
(kBTc)

3 ζ(3)+
2π4

15

α
c
(kBTc)

4 −150
β
c2

(kBTc)
5 ζ(5)

]
, (3.38)

and for the charged relativistic BEC as

n=
N

UR−BB

BE

V
=

m
2π2�3ckBTc

[∫ ∞

0

ε2

cosh(βTcε)−1
dε+4

α
c

∫ ∞

0

ε3

cosh(βTcε)−1
dε

− 25

2

β
c2

∫ ∞

0

ε4

cosh(βTcε)−1
dε
]

=
m

3�3c

[
(kBTc)

2 +
72

π2

α
c
(kBTc)

3 ζ(3)−10π2 β
c2

(kBTc)
4

]
, (3.39)

where one can see, that both cases retrieve the number densities as in the standard relativis-

tic BECs [127], when α,β −→ 0. Since it is also not possible to obtain a closed form of

respective critical temperatures from Eqs. (3.38) and (3.39), a perturbative approach is used

in the same way as in the non-relativistic case. The QG corrected critical temperatures then

read as

T B
c =

π2/3
�c

kB ζ(3)1/3
n1/3 −α

2

45

π16/3
�

2c

kB ζ(3)5/3
n2/3 +β

50π2
�

3c
kB

ζ(5)
ζ(3)2

n , (3.40)

for the neutral relativistic BEC, and as

T BB
c =

1

kB

(
3�3c

m

)1/2

n1/2 −α
108�3ζ(3)
π2kB m

n+β
15π2

kB

(
3�9

m3c

)1/2

n3/2 , (3.41)
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for the charged relativistic BEC, where one can see that the QG corrections increase with

increasing number density n in both cases. In the charged case, the QG corrections increase

with decreasing boson mass m, while the neutral case is independent of boson mass. One

can also notice that higher order QG corrections have a stronger dependence on n, which

is also seen in the non-relativistic case. The standard results from Eqs. (3.4) and (3.6), for

d = 3, are recovered from Eqs. (3.40) and (3.41), when α,β −→ 0. The magnitude of the

relative correction of the critical temperature for the neutral case is

∣∣∣∣∣ΔT B

T (0)
c

∣∣∣∣∣= α0
2π14/3

�

45MP cζ(3)4/3
n1/3 −β0

50π1/2
�

2 ζ(5)
(MP c)2 ζ(3)5/3

n2/3 , (3.42)

while for the charged case, it is

∣∣∣∣∣ΔT BB

T (0)
c

∣∣∣∣∣= α0
108�3/2 ζ(3)√
3π2MP c

√
mc

n1/2 −β0
15π2

�
3

(MP c)2mc
n , (3.43)

where the definitions of α and β, found below Eq. (2.42), were used. From the above one

can see that the relative correction increases only with increasing n and does not depend

on m for the neutral case and increases with increasing n and decreasing m for the charged

case. The relative corrections are presented in Fig. 3.4. One can see that the QG correction

in the charged case requires a higher α0 (about 5 orders of magnitude) to reach the same

magnitude as the QG correction in the neutral case. In other words, the corrections are

much smaller in the charged case.

One must address the second important observable, the fraction of bosons in the ground

state, in context of relativistic BECs. Following the derivation from Eq. (3.3), while using

the number densities from Eqs. (3.38) and (3.39), the QG corrected fraction of bosons in

the ground state read as

f B
0 = 1−

(
T
Tc

)3

+α0
2π4

15ζ(3)
kB

MP c2

[
T 3

T 2
c
− T 4

T 3
c

]
−β0

150ζ(5)
ζ(3)

k2
B

M2
P c4

[
T 3

Tc
− T 5

T 3
c

]
, (3.44)
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Figure 3.4: Relative temperature QG correction for a relativistic BEC, as a function of

the number density n, at different values of parameter α0, where β0 = α2
0. The solid lines

represent the neutral case and the dashed lines represent the charged case. The parameters

of the example BEC are those of a helium gas.

for a neutral relativistic BEC, and as

f BB
0 = 1−

(
T
Tc

)2

+α0
72ζ(3)
π2

kB

MP c2

[
T 2

Tc
− T 3

T 2
c

]
−β0

10π2k2
B

M2
P c4

[
T 2 − T 4

T 2
c

]
, (3.45)

for a charged relativistic BEC. From the above, one can see that the standard results from

Eqs. (3.5) and (3.7) are recovered, when α0,β0 −→ 0. Note that at T = Tc the QG cor-

rections vanish and, as expected f0 = 0, even when α0,β0 �= 0. Therefore, as in the non-

relativistic case, the QG signatures in the fraction of bosons in the ground state can be

observed for T < Tc.

The corrections terms from Eqs. (3.44) and (3.45) are presented in Fig. 3.5. Since only

the charged case is dependent on the boson species, an example of a helium gas was chosen

to plot it. In the same manner as in the non-relativistic case, one can see that the correction

has a maximum between the absolute zero and the critical temperature Tc. It is located at

T B
m =

3

4
Tc − β0

α0

3375ζ(5)
π4

kB

MP c2
T 2

c (3.46)
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Figure 3.5: QG correction of f0 for a relativistic BEC, as a function of the condensate

temperature T , at different values of parameter α0, where β0 =α2
0. The solid lines represent

the neutral case and the dashed lines represent the charged case. The parameters of the

example BEC are those of a helium gas.

for the neutral case and

T BB
m =

2

3
Tc − β0

α0

5π4

54ζ(3)
kB

MP c2
T 2

c (3.47)

for the charged case. This suggests that experiments, able to measure the fraction of bosons

in the ground state for a relativistic BEC with high accuracy, would most likely observe QG

signatures around temperature T B,BB
m .

Summary

In this section, six observables were considered, for which theoretical predictions of QG

signatures are provided. These are the three critical temperatures from Eqs. (3.26), (3.40)

and (3.41), and three fractions of bosons in the ground state from Eqs. (3.28), (3.44) and

(3.45). Out of these possibilities, only the non-relativistic BEC can currently be realized in

an experimental setup, and with ever-improving measurement precisions, one expects that

such QG signatures may be observable in the future. One can also expect that relativistic
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BECs will be possible to produce in experiments in the future, which will further increase

the chances to measure potential QG signatures.

Currently, the detection threshold for critical temperatures is of the order ∼ 10−10 K

[131], which implies α0 < 1019 when β0 = α2
0 (the same holds when β0 ∼ 0), and β0 < 1046

for only quadratic QG corrections (i.e., α0 = 0). Since the attainable electroweak scale

αEW bounds the GUP parameters to α0 < 1017 and β0 < 1034, the BEC bounds do not

present an improvement and QG signatures are not expected to be observed in current BEC

experiments. However, the theoretical framework provided here, should be useful to test

QG, as experimental precisions improve.

The fraction of bosons in the ground state in a BEC is measured by integrating the mea-

sured velocity distribution within the ranges of velocities, where the gas is in the condensate

state [137]. The precision of such a measurement is around 10−2, i.e., about 1% [138, 139].

It is expected that this precision will increase with time as well, and reach a stage in the

foreseeable future where the predicted effects will either be measurable, or one will be able

to put strict bounds on the GUP parameters. The bounds on GUP parameters obtained

by considering the precision of measuring the fraction of bosons in the ground state are

α0 < 1025 for β0 = α2
0 (or β0 ∼ 0) and β0 < 1052 for α0 = 0. These bounds are not as good

as the ones obtained using critical temperature. Therefore, measuring QG signatures with

the fraction of bosons in the ground state is phenomenologically not yet as interesting.

3.2 Magnetometer Experiment

In this section, an approach to measure QG signatures in a magnetometer experiment is

proposed. A magnetometer is a device, which can measure magnetic fields or dipole mo-

ments of atoms, depending on its purpose. A realization of the latter, where the interactions

of nuclear spins with external magnetic fields are measured, is considered. It turns out that

optical magnetometers are ideal to test fundamental physics, due to their high precision

[140]. In optical magnetometer experiments, one uses light to measure the response of an-
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gular momenta of atoms in an external magnetic field. In this context, the QG signatures

are explored through GUP inspired modifications of the Larmor frequency of probed atoms.

Specifically, QG modifications of the Larmor frequency of 129Xe atoms are considered in

detail. The 129Xe species is chosen because it has non-zero nuclear spin, is stable and has

a long relaxation time in normal conditions (T = 20°C and p = 1atm), which allows to

make highly precise measurements. One of the methods to measure the Larmor frequency

of such atoms is the two-photon laser spectroscopy, described in detail in Ref. [141].

The idea of the experiment is based on Refs. [140, 141, 142]. The 129Xe atom in

the ground state 5p6 1S0 (see Ref. [143] for notation convention), with a quantum number

of total angular momentum quantum number F = 1/2 (F is defined through the operator

sum F = J+ I, where J is the total electron angular momentum and I the total nuclear

angular momentum) and projection mF = −1/2, is excited by a circularly polarized UV

light with λUV = 256nm to the state 5p5 (2P3/2) 6p 2[5/2]2. This state then decays to one of

two intermediate states 5p5 (2P3/2) 6p 2[3/2]1,2, which emits IR photons with wavelengths

λIR1 = 905nm and λIR2 = 993nm, respectively, before decaying back to the ground state.

The 129Xe atom has two ground state sublevels with mF = −1/2 and mF = +1/2, due to

the hyperfine interaction. Probability that the above intermediate states decay to either of

these sublevels is 1/2. Since the mF =+1/2 state cannot absorb the UV light, an ensemble

of 129Xe atoms will eventually become spin polarized, where all atoms are in the same spin

state of mF =+1/2. Then a uniform external magnetic field B is applied to induce the so-

called Larmor precession of 129Xe atoms. They start to oscillate between the mF = +1/2

and mF =−1/2 states with the corresponding Larmor frequency. As the UV light reinitiates

the above excitation-decay process of atoms, which pass through the state mF = −1/2,

the IR emission starts to oscillate with the exact Larmor frequency of the 129Xe atoms,

which can be precisely measured. A similar experiment, considering two-photon laser

spectroscopy of an ensemble of 129Xe atoms, has been conducted by the authors in Ref.

[144], where they use an atomic transition, different than the one described above.
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To apply QG modifications to the Larmor frequency of an atom, one needs to consider

contributions of electrons and the nucleus, which comprise the atom in question. From the

ground state structure 5p6 1S0 of the 129Xe atom, one can see that the total electron angu-

lar momentum J = 0, and the total angular momentum F = I. Therefore, the electrons do

not provide a magnetic dipole moment and consequently do not contribute to the Larmor

precession. Furthermore, the only cause of the magnetic dipole moment and the Larmor

precession is the nucleus. To describe the interaction between the magnetic dipole mo-

ment of the nucleus and the external magnetic field B, a suitably adapted Hamiltonian is

considered [145, 146]

HN =H0N −mN ·B+
e2

8mp c2 ∑
i
(B× ri)

2

≡H0N +HBN +H1N , (3.48)

where H0N is the Hamiltonian of the nucleus in the absence an external magnetic field, mN

the nuclear magnetic dipole moment operator, e = +e0 the proton charge, mp the proton

mass and ri the radius of proton i in the nucleus. The sum in the last term from Eq. (3.48)

goes over all protons i in the nucleus. The notation of HBN and H1N in Eq. (3.48) is defined

for convenience. It is useful to estimate the magnitudes of terms from Eq. (3.48), to have

an idea which effects are expected to contribute most in the following considerations. The

expectation value of the leading order term 〈H0N〉 is clearly the largest of the three [145],

and needs no further discussion in this context. However, the other two terms from Eq.

(3.48) need to be examined carefully.

The magnitude of the HBN term can be estimated by taking an experimentally plausible

external magnetic field B = 1T ẑ [142], assumed parallel to the nuclear spin orientation,

and by evaluating the expectation value of the nuclear magnetic dipole operator mN in the

ground state of 129Xe. This expectation value turns out as 〈mN〉Xe = gXe μN I ẑ, where gXe is

the nuclear gyromagnetic factor for 129Xe and μN = e�/2mp the nuclear magneton [145].
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The magnitude of HBN can then be estimated as

|〈HBN〉|= |gXe μN I B|= 3.93×10−27 J , (3.49)

where gXe = −1.556 [147], I = F = 1/2 and μN = 5.05×10−27 J/T were used. One can

find the nuclear magnetic dipole moment of the 129Xe atom as μXe = gXe μN I =−0.778μN =

−3.39×10−27 J/T. The magnitude of the H1N term can be estimated by the external mag-

netic field B, assumed above, and a distribution of protons in the nucleus, which maximizes

the contribution of this term. This provides a theoretical upper bound of the magnitude,

which the H1N term can contribute. Such a distribution of protons, which maximizes the

H1N term, is realized by assuming all protons are located in a circle on the surface of the

nucleus (|ri| ∼ RXe for all i, where RXe is the radius of a 129Xe nucleus), where this circle is

perpendicular to the external magnetic field, i.e., ri ⊥ B for all i, which maximizes the cross

products from H1N in the ground state of 129Xe. The radius of a stable 129Xe nucleus is

approximated by RXe = R0 A1/3
Xe = 6.06×10−15 m, where R0 = 1.2×10−15 m is an experi-

mentally determined nuclear scale, and AXe = 129 the atomic mass number of 129Xe [145].

Since the sum in H1N goes only over the protons in the nucleus, there will be as much terms

in the sum, as there is protons in the 129Xe nucleus, which is ZXe = 54. The magnitude of

H1N can then be estimated as

|〈H1N〉|� e2

8mp c2
54B2R2

Xe =
27e2

0

4mp c2
B2R2

Xe = 4.2×10−56 J , (3.50)

where the accepted values for mp, e0 and c were used. One can then compare the contribu-

tions of the HBN and H1N terms, given by Eqs. (3.49) and (3.50), respectively, as

|〈H1N〉|
|〈HBN〉| � 10−29 , (3.51)

from where it can be seen that the contribution of the H1N term is more than 29 orders of
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magnitude smaller than the contribution of the HBN term. This implies the H1N term can

be safely neglected in further considerations. Given the estimation of the GUP parameters

obtained in the following, the H1N term is also negligible compared to the GUP correction

terms.

3.2.1 Larmor Frequency and GUP

The QG corrections, motivated by GUP from Eq. (2.42), to the Larmor frequency of

atoms, has been explored in detail in Ref. [48], where the analysis considers the Larmor

precession of atoms, caused by the the total electron spin J. However, for the purposes of the

proposed 129Xe experiment, one needs to generalize this analysis to include nuclear spin,

since J = 0 and F = I. It turns out that such a generalization is straightforward, following

Ref. [48], where an arbitrary nucleus with a nuclear gyromagnetic factor gnuc and a nuclear

magnetic dipole moment μnuc = gnuc μN I is considered. To achieve this, one considers the

nuclear Hamiltonian from Eq. (3.48), suitably modified by GUP through Eq. (3.17) and

denoted by HQG
N , while neglecting the H1N term. The GUP corrected electron magnetic

moment operator is replaced by a GUP corrected nuclear magnetic moment operator

mN = mN0 (1−α p0 +β p2
0) , (3.52)

where mN0 =−gnuc μN

�
I and p0 operators act on the nuclear wave function

ΨN(r, t) = ψN(r, t) [a(t) |+〉N +b(t) |−〉N ] . (3.53)

In the above ψN(r, t) is the spatial part and the linear combination a(t) |+〉N +b(t) |−〉N is

the spin part, with a(t) and b(t) time dependent functions, which satisfy |a(t)|2 + |b(t)2|=
1. For a quantization axis ẑ, parallel to B, it turns out that mNz |+〉N = μnuc |+〉N and

mNz |−〉N =−μnuc |−〉N . Considering the above generalizations, one solves the Schrödinger
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equation i�∂tΨN(r, t) = HQG
N ΨN(r, t) (see also Eq. (1.1)), which splits in two equations

i�
∂
∂ t

ψN(r, t) = HQG
0N ψN(r, t) , (3.54)

and

i�
d

d t
[a(t) |+〉N + b(t) |−〉N ] =

−mN0 ·B(1−α p0 +β p2
0) [a(t) |+〉N +b(t) |−〉N ] . (3.55)

It turns out that Eq. (3.54) is not relevant in describing the Larmor precession, and is

therefore ignored in the following considerations. However, it can provide QG corrections

to the nuclear shell model, which can be a topic for a future project. On the other hand, the

solutions of a(t) and b(t) of Eq. (3.55) return harmonic solutions of the Larmor precession,

which oscillate with a QG corrected Larmor frequency

ωL =−2μnuc B
�

(1−α〈p〉+β〈p2〉) , (3.56)

where the expectation values of powers of momentum p, are related to the nuclear spin

I of the atom. In principle, one could additionally consider corrections arising from the

internal structure of the nucleus, which would manifest as corrections to μnuc. Note that the

above Larmor frequency takes the same shape as in Ref. [48], with the difference that μnuc

refers to the magnetic dipole moment of the nucleus, and p is now related to the spin of the

nucleus. Since p represents a measure of momentum, related to I, it can be interpreted as the

momentum of the nucleus up to leading order (see Ref. [148] for higher order corrections).

Such a generalization can be done for any atom, where both, J �= 0 and I �= 0, cause the

Larmor precession through the total spin F = J+ I. Eq. (3.56) remains the same, where the

total magnetic dipole moment is just the sum of the electron and nuclear magnetic dipole

moments μ0 = μnuc +μe, and p can be interpreted in the same way.
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The velocities of atoms in the proposed experiment are expected to be non-relativistic

[142] (see Section 3.2.2). Therefore, the expectation value of momentum and its square can

be written in terms of the classical momentum as 〈p〉 = m〈v〉 and 〈p2〉 = m2〈v2〉, respec-

tively, where m is the mass of an atom, 〈v〉 the expectation value of its velocity and 〈v2〉 the

expectation value of the square of its velocity. Therefore, one can rewrite Eq. (3.56) as

ωL =
2 |μ0|B

�
(1−αm〈v〉+βm2〈v2〉) , (3.57)

where the absolute value |μ0| is taken, without loss of generality, since only the magnitude

of ωL can be measured. For convenience, one can define the expectation value of the QG

correction as 〈C〉= αm〈v〉−βm2〈v2〉. The above Larmor frequency can then be simplified

as

ωL =
2 |μ0|B

�
(1−〈C〉) . (3.58)

To discuss experimental implications of the above QG corrected Larmor frequency, one

needs to quantify the magnitude of the QG correction 〈C〉 and compare it to the precision

of the proposed experiment, quantified in the same manner. The magnitude of the relative

QG correction is quantified by r as

∣∣∣∣δωL

ωL0

∣∣∣∣
QG

= 〈C〉 ≡ 10−r , (3.59)

where r ∈ N and ωL0 = 2 |μ0|B/�. The above allows one to compare the QG corrections

with the precision of the proposed experiment [142]

∣∣∣∣δωL

ωL0

∣∣∣∣
exp


 10−15 ≡ 10−q , (3.60)

where q = 15 quantifies the experimental precision. The main idea of this discussion is to

optimize the parameters α0, β0, m and v, in order to bring r as close to q as possible. The
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same method for comparison with experimental precision in terms of r and q was used in

Section 3.1.3. Such optimization provides an estimate of conditions, at which QG effects

are most likely to be detected. Since Eq. (3.58) is valid for any atom, different species

of atoms with different m and μ0 are explored, while providing detailed estimates for the

129Xe atom.

3.2.2 Thermal Distribution of Atom Velocities

In this section, QG signatures in measurements of the Larmor frequency, using ensem-

bles of atoms, are explored. Since the considered magnetometer experiment is proposed to

be conducted in normal conditions [142], the thermal velocity distribution of an ensemble of

chosen atoms with masses m, is assumed to be the three dimensional Maxwell-Boltzmann

(MB) distribution [123, 146]

fv(v) =
(

m
2πkBT

)3/2

exp

(
− mv2

2kBT

)
4πv2 , (3.61)

where v ∈ [0,∞). In the following, QG signatures are discussed in terms of average ther-

mal velocities of atoms, suggested by 〈C〉, and in terms of individual velocities of atoms,

described by 〈C〉 −→ C. Note that 〈C〉 corresponds to a single particle. Therefore, for a

distribution, C can take a range of values, as explained in detail later in this section.

Average Thermal Velocities

The provided version of QG corrections 〈C〉 = αm〈v〉 − βm2〈v2〉 suggests that it is

natural to take the average thermal velocity 〈v〉 and the mean square of the velocity 〈v2〉
of an atom in a thermalized ensemble, obtained from the MB distribution, to estimate the

magnitude of 〈C〉. For convenience, one can approximately parameterize the atom mass

with the atomic mass number A, as m = Amp [145]. Using this parameterization, one can

write the average thermal velocity of species A at temperature T as
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〈v〉=
∫ ∞

0
v fv(v)dv=

√
8kBT
πm

=
1√
A

√
8kBTRT

πmp

√
T

TRT

=
1√
A
〈vH〉RT

√
T

TRT
, (3.62)

and the mean square of the velocity as

〈v2〉=
∫ ∞

0
v2 fv(v)dv=

3kBT
m

=
1

A
3kBTRT

mp

T
TRT

=
1

A
〈v2

H〉RT
T

TRT
, (3.63)

which are given in terms of the average velocity and the mean square of the velocity of an

ensemble of Hydrogen atoms at room temperature TRT = 20°C as 〈vH〉RT ≈ 2480 m/s and

〈v2
H〉RT ≈ 7.256×106 m2/s2, respectively. Plugging Eqs. (3.62) and (3.63) in the definition

of 〈C〉, and considering the parameterization of m, one obtains [149]

〈C〉(α0,β0; A,T ) = α0

√
Amp 〈vH〉RT

MP c

√
T

TRT
−β0

Am2
p〈v2

H〉RT

(MP c)2

T
TRT

, (3.64)

where the definitions of α and β, found below Eq. (2.42), have been used. For clarity, the

logarithm of Eq. (3.64) is shown in Fig. 3.6, as a monotonically increasing function of

both, A and T , where β0 = α2
0 is assumed. The dependence is shown for several different

values of α0. The black flat surface corresponds to the experimental precision. One can see

that QG signatures can be detected if α0 ≈ 108. In this case, the detection of QG signatures,

using 129Xe atoms with A = AXe = 129, would take place at T ≈ 560K, given Eq. (3.64).
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Figure 3.6: Logarithmic dependence of 〈C〉 on mass number A and temperature T for four

different values of α0; purple: α0 = 102, blue: α0 = 104, green: α0 = 106 and red: α0 = 108.

The black flat surface is the experimental precision limit.

Distribution of Thermal Velocities

In the above, it was assumed that the expectation values in 〈C〉 refer to the averages of

the whole distribution of atoms. However, Eq. (3.58) is derived for a single atom, which

suggests that the expectation values 〈p〉 and 〈p2〉 correspond to the single particle momen-

tum p and its square p2 for that atom, and not to the averages of the whole ensemble. This

single atom correspondence then implies 〈C〉 −→C, 〈v〉 −→ v and 〈v2〉 −→ v2. Therefore,

it turns out that atoms are distributed over ranges of ωL and C as well, since they are MB

distributed over all velocities v ∈ [0,∞), following Eq. (3.61), resulting in a QG induced

broadening of the Larmor frequency. To see this, one rewrites Eq. (3.57), considering the
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single atom correspondence and atomic mass number parameterization, as

ωL = ωL0

(
1−αAmp v+βA2m2

pv2
)
. (3.65)

For convenience, one can also rewrite the MB distribution from Eq. (3.61) in terms of the

atomic mass number A as

fv(v) =
(

mp

2πkBT

)3/2

A3/2 exp

(
−Amp v2

2kBT

)
4πv2 . (3.66)

To obtain a QG corrected distribution of atoms over Larmor frequencies fω(ωL), given Eqs.

(3.65) and (3.66), one makes the following change of variables

fv(v)dv = fω(ωL)dωL =⇒ fω(ωL) = fv(v)
∣∣∣∣ dv
dωL

∣∣∣∣ . (3.67)

The derivative |dv/dωL| on the right-hand side of Eq. (3.67) is obtained by solving Eq.

(3.65) for

v =
α

2βAmp

(
1−

√
1+4

β
α2

(
ωL

ωL0
−1

))
, (3.68)

where only the − solution was considered, since the + solution does not recover the stan-

dard result ωL = ωL0 for v = 0, and deriving v over ωL, which then reads as

∣∣∣∣ dv
dωL

∣∣∣∣= 1

αAmpωL0

1√
1+4

β
α2

(
ωL
ωL0

−1
) . (3.69)

By using Eqs. (3.68) and (3.69) in the change of variables from Eq. (3.67), the distribution

of atoms over ωL, is obtained for the first time, as [149]
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fω(ωL)=

(
1

2πAmp kBT

)3/2

exp

⎛
⎜⎜⎜⎝−α2

0(MP c)2

β2
0

(
1−

√
1+4

β0

α2
0

(
ωL
ωL0

−1
))2

8Amp kBT

⎞
⎟⎟⎟⎠

× π
α0 (MP c)3

β2
0ωL0

(
1−

√
1+4

β0

α2
0

(
ωL
ωL0

−1
))2

√
1+4

β0

α2
0

(
ωL
ωL0

−1
) , (3.70)

where the definitions of α and β, found below Eq. (2.42), have been used. From the above

distribution, one can obtain, for the first time, the standard phenomenological quantities,

similarly as with the MB distribution, such as the most probable Larmor frequency (at the

peak of the distribution; d fω/dωL = 0)

ωL,peak = ωL0

(
1−α0

√
2Amp kBT

MP c
+β0

2Amp kBT
(MP c)2

)
, (3.71)

the average Larmor frequency

〈ωL〉=
∫ ∞

ωL0

ωL fω(ωL)dωL = ωL0

(
1−α0

√
8Amp kBT√
πMP c

+β0
3Amp kBT
(MP c)2

)
, (3.72)

and the mean square of the Larmor frequency

〈ω2
L〉=

∫ ∞

ωL0

ω2
L fω(ωL)dωL

=ω2
L0

(
1−α0

2

MP c

√
8Amp kBT

π
+(α2

0 +2β0)
3Amp kBT
(MP c)2

−α0β0

√
8

π
8(Amp kBT )3/2

(MP c)3
+β2

0

15A2 m2
p k2

BT 2

(MP c)4

)
. (3.73)

One can see that the correction terms in Eq. (3.72) correspond exactly to Eq. (3.64),

if expressed in terms of 〈vH〉RT and 〈v2
H〉RT . However, this consideration provides more
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information, since now one has the distribution fω(ωL).

For detailed phenomenological research, where different GUP models are considered,

one can straightforwardly reduce Eq. (3.70) to obtain fω(ωL) for such models. For the

linear GUP model (β0 −→ 0), the above distribution turns out as [149]

f Lin
ω (ωL)=

(
1

2πAmp kBT

)3/2

exp

⎛
⎜⎝−(MP c)2

α2
0

(
ωL
ωL0

−1
)2

2Amp kBT

⎞
⎟⎠

× 4π
(MP c)3

α3
0ωL0

(
ωL

ωL0
−1

)2

, (3.74)

for which ωLin
L,peak and 〈ωL〉Lin are those from Eqs. (3.71) and (3.72), respectively, when

β0 −→ 0. Next, for the quadratic GUP model (α0 −→ 0), the distribution from Eq. (3.70)

turns out as [149]

f Quad
ω (ωL)=

(
1

2πAmp kBT

)3/2

exp

⎛
⎝−(MP c)2

β0

(
ωL
ωL0

−1
)

2Amp kBT

⎞
⎠

× 2π
(MP c)3

β3/2
0 ωL0

√
ωL

ωL0
−1 , (3.75)

for which ωQuad
L,peak and 〈ωL〉Quad are those from Eqs. (3.71) and (3.72), respectively, when

α0 −→ 0.

From Eqs. (3.71) and (3.72) one can see that the peak and mean of the Larmor frequen-

cies are shifted with respect to the standard theory Larmor frequency ωL0, as long as T > 0.

Furthermore, Eq. (3.70) implies a broadening of the measured Larmor frequency, due to

thermal motion of atoms. With increasing α0 and β0, the deviation of ωL from ωL0 gets

larger and the width of the distribution gets broader, and vice-versa. Increasing the temper-

ature T and the atomic mass number A, provide the same effect on the distribution. Since

the distribution of QG corrections, described by Eq. (3.70), is so close to ωL0, the sam-

pling of such small steps of ωL is not possible with current computing power. Therefore,
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it is more convenient to visualize the distribution of atoms over QG corrections C instead,

where

C = α0
Amp v
MP c

−β0

A2m2
pv2

(MP c)2
=

∣∣∣∣δωL

ωL

∣∣∣∣≡
∣∣∣∣δωω

∣∣∣∣ (3.76)

is the new distribution variable. To achieve this, the same procedure used to derive Eq.

(3.70) is followed. The corresponding change of variables is

fC(C) = fv(v)
∣∣∣∣ dv
dC

∣∣∣∣ , (3.77)

which implies the replacement

ωL

ωL0
−1 =⇒ δω

ω
(3.78)

of all such factors in distributions from Eqs. (3.70), (3.74) and (3.75), and does not include

the ωL0 factor in the denominator. These distributions then respectively read as [149]

fC

(
δω
ω

)
=

(
1

2πAmp kBT

)3/2

exp

⎛
⎜⎜⎜⎝−α2

0(MP c)2

β2
0

(
1−

√
1+4

β0

α2
0

(
δω
ω

))2

8Amp kBT

⎞
⎟⎟⎟⎠

× π
α0 (MP c)3

β2
0

(
1−

√
1+4

β0

α2
0

(
δω
ω

))2

√
1+4

β0

α2
0

(
δω
ω

) , (3.79)

for α0,β0 �= 0,

f Lin
C

(
δω
ω

)
=

(
1

2πAmp kBT

)3/2

exp

⎛
⎜⎝−(MP c)2

α2
0

(
δω
ω

)2

2Amp kBT

⎞
⎟⎠

× 4π
(MP c)3

α3
0

(
δω
ω

)2

, (3.80)
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for α �= 0 and β0 = 0, and

f Quad
C

(
δω
ω

)
=

(
1

2πAmp kBT

)3/2

exp

(
−(MP c)2

β0

δω
ω

2Amp kBT

)

× 2π
(MP c)3

β3/2
0

√
δω
ω

, (3.81)

for α0 = 0 and β0 �= 0. The QG induced broadening, implied by Eq. (3.79), for an ensemble

of 129Xe atoms, A = 129, is shown in Fig. 3.7, for different values of α0 and temperatures

T = 400K (top) and T = 1200K (bottom), where β0 =α2
0 was assumed. For various choices

of the parameter α0, the heights of the peaks of the distributions differ by several orders of

magnitude. Therefore, to present and compare them in the same figure, they are normalized,

such that each peak assumes a maximum value of unity. Notice that for α0 � 108, the

peak is close to, or even crosses the projected sensitivity of the magnetometer. Fig. 3.7

can be interpreted in the following way. The horizontal axis represents the magnitude of

QG corrections, while the vertical axis represents the fraction of atoms. Given a thermal

distribution of atoms and α0, the average magnitude of the QG signature will be localized

around the peak of the distribution, since most of the atoms display this deviation, due to

their movement with speeds near the average speed 〈v〉. Furthermore, since the horizontal

axis is in a logarithmic scale, the broadening of the distribution is much higher for larger

values of α0 and T .

For a better visualization of the broadening, the measures of the second moment (stan-

dard deviation) and the Full Width Half Maximum (FWHM) of the distribution are consid-

ered. The second moment of the distribution from Eq. (3.70) is [149]

σ2
ω=

∫ ∞

ωL0

(ωL −〈ωL〉)2 fω(ωL)dωL

=α2
0

(
3− 8

π

)
ω2

L0 Amp kBT
(MP c)2

−α0β0

√
8

π
2ω2

L0(Amp kBT )3/2

(MP c)3

+ β2
0

6ω2
L0 A2m2

pk2
BT 2

(MP c)4
. (3.82)
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Figure 3.7: Distributions of 129Xe atoms over δω/ω for different values of α0, at tempera-

tures T = 400K (top) and T = 1200K (bottom). The black vertical line is the experimental

precision limit.
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From the above one can see that such broadening is caused entirely by QG effects, since as

α0,β0 −→ 0, the σ2
ω vanishes. On the other hand, the FWHM of the distribution is obtained

as

FWHMω = ωFWHM
L2

−ωFWHM
L1

, (3.83)

where ωFWHM
L1

and ωFWHM
L2

are values, corresponding to both sides of the distribution at the

half of its maximum. These values are obtained from Eq. (3.70), by solving the following

equation

fω
(
ωFWHM

L1,2

)
=

fω
(
ωL,peak

)
2

. (3.84)

The above has no closed form solution for ωFWHM
L1

and ωFWHM
L2

. However, it is still possible

to obtain these values numerically, by the following procedure. A short manipulation of Eq.

(3.84) provides a transcendental equation [149]

α2
0 (MP c)2

β2
0

G2
1,2

8Amp kBT
+ ln

⎛
⎝4

β2
0

α2
0 (MP c)2

Amp kBT

1−2
β0

α0 (MP c)

√
2Amp kBT

⎞
⎠−1

= ln

(
G2

1,2

1−G1,2

)
, (3.85)

where

G1,2 = 1−
√√√√1+4

β0

α2
0

(
ωFWHM

L1,2

ωL0
−1

)
. (3.86)

The above transcendental equation can be numerically solved for G1,2. Note that one would

have also arrived at Eq. (3.85), by using distribution Eq. (3.79). To solve Eq. (3.85), one
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Figure 3.8: Intersection points of y1 and y2, for an example of an ensemble of 129Xe atoms.

A = 129, at T = 560K for α0 = 108.

needs to split it in two functions

y1 =
α2

0 (MP c)2

β2
0

G2
1,2

8Amp kBT
+ ln

⎛
⎝4

β2
0

α2
0 (MP c)2

Amp kBT

1−2
β0

α0 (MP c)

√
2Amp kBT

⎞
⎠−1 (3.87)

y2 = ln

(
G2

1,2

1−G1,2

)
, (3.88)

and plot them in the same graph. They are expected to intersect at two points, where

y1 = y2, which are the solutions for G1,2. An example of this is shown in Fig. 3.8 for

the relevant case of an ensemble of 129Xe atoms at T = 560K and for α0 = 108, where

β0 = α2
0 was assumed. It is then straightforward to obtain ωFWHM

L1
and ωFWHM

L2
from the

obtained values of G1,2, using Eq. (3.86). The FWHM for the above 129Xe case turns

out as FWHMω 
 1.5×10−7 Hz. Note that the FWHM values for distributions from Eqs.

(3.70) and (3.79) are related by FWHMω = ωL0 FWHMC. Therefore, one can also evaluate

FWHMC 
 2×10−15, which does not rely on the actual value of ωL0.
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Figure 3.9: Full width half maximum FWHMω (blue-cyan) and standard deviation σω (red-

yellow) of the Larmor frequency distribution, as a function of atomic mass number A and

temperature T , at α0 = 108.

The FWHMω is obtained, as described above, for a range of atomic mass numbers A

and temperatures T , at the relevant α0 = 108, and shown in Fig. 3.9, alongside 2σω (see Eq.

(3.82)). Note the factor 2 in front of σω. It is there to provide a measure of width, since σω

alone is a measure of deviation from the average. One can see that both, 2σω and FWHMω

scale approximately as a square root in both, A and T , and that they are of the same order of

magnitude at a given parameter α0, where the FWHMω is slightly greater. This is expected,

since FWHMω is the width of the distribution at half of its maximum value, and 2σω is the

width of the distribution at a slightly higher value than that of half maximum, which makes
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it slightly narrower. For the projected experimental precision q = 15, the line broadening

for α0 = 108 is within reach of detection.

3.2.3 Non-Thermal Distribution of Atom Velocities

In the previous sections, QG signatures induced by thermal distributions of ensembles

of atoms were considered. While such considerations provide promising results, they are

limited by the temperature dependence of QG signatures, which are expected to increase

with temperature. This is because high temperatures induce thermal noise and can there-

fore decrease the precision of the experiment. Since QG signatures in Larmor frequencies

depend on the velocities of atoms, one can introduce methods, other than thermal motion,

to control the velocities. For a non-thermal distribution of velocities, one can write the QG

correction as

〈C〉(α0,β0; A,v) = α0
Amp v
MP c

−β0

A2m2
pv2

(MP c)2
. (3.89)

For clarity, the logarithm of Eq. (3.89) is shown in Fig. 3.10, as a monotonically increasing

function of both, A and v, where β0 = α2
0 is assumed. The dependence is shown for several

different values of α0. The black flat surface corresponds to the experimental precision. One

can again see that QG signatures can be detected if α0 ≈ 108. In this case, the detection of

QG signatures, using 129Xe atoms with A = AXe = 129, would take place at v ≈ 300m/s,

given Eq. (3.89). Note that Fig. 3.10 is similar to Fig. 3.6. This is expected, since the same

form of 〈C〉 is used, with the difference that in Fig 3.6 the velocity is taken to be thermal.

One of the methods to induce non-thermal motion of atoms is convection, where a

current of atoms is passed through a duct. Once the flow is stationary, one can use the

two-photon laser spectroscopy method, to measure the Larmor frequency of atoms. For the

purposes of the proposed experiment, a velocity distribution of an incompressible, viscous
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Figure 3.10: Logarithmic dependence of 〈C〉 on mass number A and atom velocity v for

four different values of α0; purple: α0 = 102, blue: α0 = 104, green: α0 = 106 and red:

α0 = 108. The black flat surface is the experimental precision limit.

fluid in a square duct is assumed [150]

v = vmax

[
1−

(
x

a/2

)2
][

1−
(

y
a/2

)2
]
, (3.90)

where vmax is the maximum velocity in the centre of the duct and a is the length of the inner

side of the duct. Eq. (3.90) is then inserted in Eq. (3.57) to obtain the QG corrected Larmor

frequency, as a function of vmax, and the position x and y inside the duct as [149]

ωL(x,y)=ωL0

(
1−α0

Amp vmax

MP c

[
1−

(
x

a/2

)2
][

1−
(

y
a/2

)2
]

+β0

A2m2
p v2

max

(MP c)2

[
1−

(
x

a/2

)2
]2[

1−
(

y
a/2

)2
]2

⎞
⎠ . (3.91)
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A maximum QG induced deviation of the Larmor frequency is located at the centre of

the duct, where x = y = 0. In this case, 〈C〉 follows Eq. (3.89) for v = vmax (see Fig.

3.10). The same holds for any location (x,y) in the duct, where v from Eq. (3.90) is

considered. However, such point measurements are not possible in actual experimental

applications. Therefore, two possible scenarios are considered in the following, namely an

average measurement in a line perpendicular to the duct and an average measurement in the

total cross section of the duct.

In the case where the Larmor frequency is measured in a line which runs perpendicularly

through the duct, one needs to average Eq. (3.91) over either of the (x,y) dimensions as

ωL(x)=
1

a

∫ a/2

−a/2
ωL(x,y)dy

=ωL0

(
1−α0

2Amp vmax

3MP c

[
1−

(
x

a/2

)2
]

+β0

8A2m2
p v2

max

15(MP c)2

[
1−

(
x

a/2

)2
]2

⎞
⎠ , (3.92)

from where one can see that the maximum deviation is obtained for x = 0. In the case where

the Larmor frequency is measured over the whole cross section area of the duct, then one

needs to average Eq. (3.91) over both, x and y, as

ωL =
1

a2

∫ a/2

−a/2

∫ a/2

−a/2
ωL(x,y)dxdy

=ωL0

(
1−α0

4Amp vmax

9MP c
+β0

64A2m2
p v2

max

225(MP c)2

)
. (3.93)

One can see from Eqs. (3.92) and (3.93) that in either choice of measurements, QG signa-

tures will approximately be described by Eq. (3.89). The only difference is in the value of

the particle velocity, which is of order v ≈ vmax. It is not trivial to determine which of the

above two applications would work best in an actual experimental setup, due the non-linear

dependence of the atomic transition rate on intensity, and the dependence on the number of
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atoms in the illuminated volume [142].

3.2.4 Summary

The predicted QG signatures by either thermal or non-thermal velocities are promising.

It turns out that the Larmor frequency of an atom obtains QG corrections at non-vanishing

velocities. In this section, detailed considerations were provided in the case of thermal

movement of atoms, described by the MB distribution, and in the case of convection cur-

rents. Given the projected experimental precision of the magnetometer, using 129Xe atoms,

one can observe QG signatures for α0 = 108 in both cases. However, if QG signatures are

not observed, this experiment will set an unprecedented bound α0 < 108. It will improve

the electroweak bound, set by αEW = 1017, by nine orders of magnitude.
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Chapter 4

Cosmology

“We are like butterflies who flutter for a

day and think it is forever.”

Carl Sagan

Cosmology is a field of study, which concerns with the origin, evolution, structure and

the fate of the Universe. While a significant amount of QGP research is related to Earth-

based experiments (see Chapter 3) and Astrophysics [50, 54, 58, 61, 64, 70, 71, 74, 76, 77,

78, 151, 152, 153, 154], it is not as widely studied in cosmology. However, due to the unique

observations which cannot be recreated in Earth-based experiments, cosmology is emerging

as an important field in QGP [75, 76, 81, 84, 155, 156, 157, 158, 159, 160, 161, 162].

Contrary to Earth-based experiments, one cannot control the conditions and parameters

of cosmological events and needs to solely rely on observations of such events, as they

naturally occur. However, this does not present a significant drawback, as one may expect.

Cosmological observations provide a range of measurements of phenomena, which cannot

be explained, using standard theories of QT and GR. Since QG is believed to have played

a key role in the early stages of the Universe, it is reasonable to expect that the observed

anomalous phenomena are remnants of such QG effects. Therefore, it can provide a rich

ground for testing QG theories.

In this chapter, new QGP results from cosmology are presented. Specifically, viable

explanations of the observed EDGES anomaly (see Section 4.1) and the observed Baryon

Asymmetry in the Universe (see Section 4.2), are provided. The EDGES anomaly is ex-
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4.1. THE EDGES ANOMALY

plored in terms of modified dispersion relations, and the Baryon Asymmetry is explored in

terms of GUP.

4.1 The EDGES Anomaly

The Experiment to Detect the Global Epoch-of-reionisation Signature (EDGES) is a

radio observatory, located in western Australia, which aims to detect signatures of neutral

hydrogen in the early stages of the Universe. It is designed to probe the so-called reioni-

sation epoch, when the first stars were formed, through the absorption of radiation due to

the 21-cm hyperfine hydrogen transition. Specifically, as the UV light, emitted from the

first stars in the Universe, interacted with the primordial gas, it changed the ground state

excitation of hydrogen atoms. This happened due to the hyperfine splitting of energy levels,

induced by coupling between electronic and nuclear spins. The energy difference between

the hyperfine levels of the ground state, corresponds to the energy of a photon with wave-

length λ = 21cm (see Appendix B.1 for more details). A population of hydrogen atoms

in the primordial gas is expected to absorb the Cosmic Microwave Background (CMB)

photons with this wavelength and produce an absorption line in the CMB spectrum [163].

Recently, the EDGES collaboration has reported an unexpected result [164]. In the red-

shift range z ∈ (15, 20), they found an anomalous absorption profile in the radio spectrum

of the CMB, with a brightness temperature minimum at redshift z = zE 
 17.2, which has a

magnitude of about a factor of two greater than predicted by the Lambda Cold Dark Matter

(ΛCDM) model. In this section, an explanation of this anomaly is proposed, using Modi-

fied Dispersion Relations (MDRs). More precisely, MDRs are used to modify the thermal

spectrum of photons, which is applied to CMB, where the anomaly was observed. This

modification can be used to predict other effects in the CMB, such as the deviation of the

measured CMB temperature from the predicted value. Supporting material for this section

is found in Appendices A.1 and B.
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The general form of the MDRs reads as [35, 118, 165]

E2 f (E/EP)
2 − p2 c2 g(E/EP)

2 = m2c4 , (4.1)

where f (E/EP) and g(E/EP) are the modification (rainbow) functions (see Section 2.1.4,

and Refs. [166, 167, 168, 169, 170, 171, 172, 173] for more details). As shown in the

following, whenever f ,g �= 1, i.e., one deviates from the standard relativistic dispersion

relation, the Planck radiation spectrum changes as well. It turns out that the standard MDRs

do not adequately explain the EDGES anomaly. However, by imposing redshift dependent

MDR parameters, or by imposing a non-trivial power dependence for the MDRs (see Ref.

[174]), one can provide a viable explanation.

4.1.1 Modification of Thermal Spectrum

As shown in Section 2.1.4, MDRs are related to the modified Heisenberg commuta-

tor, which is predicted by various theories of QG (see Chapter 2), and have the general

form of Eq. (4.1). The modification functions can in general be expressed in a power

series expansion (MacLaurin series) as f (E/EP) = ∑∞
n=0

f (n)(0)
n! (E/EP)

n and g(E/EP) =

∑∞
n=0

g(n)(0)
n! (E/EP)

n, where constraints f (0) = 1 and g(0) = 1 must be imposed to obtain

the standard relativistic dispersion relation at low energies. Several interesting special cases

are considered in the following.

• Case 1: f (E/EP) = 1 and g(E/EP) =
√

1−η(E/EP)ω, which is one of the most

studied in literature. In the above, η is a parameter which signifies the effective scale

of the modification, and ω is the order of the modification. In general, the modifi-

cations for different values of η and ω can be studied. In particular, three special

cases are considered. The first case is compatible with LQG and non-commutative

space-time [7, 175], while the next two are compatible with the linear and quadratic

GUP, respectively [176, 177]:

94



4.1. THE EDGES ANOMALY

i) ω= 1 and η> 0 =⇒ f (E/EP) = 1 and g(E/EP) =
√

1−η(E/EP) ,

ii) ω= 1 and η=∓2α0 =⇒ f (E/EP) = 1 and g(E/EP) =
√

1±2α0 (E/EP) ,

iii) ω= 2 and η= 2β0 =⇒ f (E/EP) = 1 and g(E/EP) =
√

1−2β0 (E/EP)2 ,

where restrictions on α0 from Ref. [176] have been relaxed to include both positive

and negative values. In general, f (E/EP) �= 1 and, specifically, in the presence of a

strong gravitational field f (E/EP) = 1/
√−g00, where g00 is the 00 component of the

metric [176, 177]. However, in the reionization epoch, most of the hydrogen gas was

practically in a vanishing gravitational field, since the first gravitational objects just

started to form. Therefore, one can safely assume f (E/EP) = 1, as far as space-time

curvature corrections to the MDR are concerned.

• Case 2: f (E/EP) =
exp(α(E/EP))−1

α(E/EP)
and g(E/EP) = 1, proposed for explaining the

spectra from Gamma Ray Bursts at cosmological distances [101]. Note that α here is

different than the linear GUP parameter.

• Case 3: f (E/EP) = 1 and g(E/EP) = [1+(λE)γ ]δ = [1+λ′ (E/EP)
γ ]δ, with λ′ =

(λEP)
γ. For δ = 1/2 and λ = −η, one recovers Case 1. The special case δ = 1 has

been proposed for models in which a varying speed of light occurs [93], while the

special case γ = δ = 1 has been proposed in Refs. [41, 178]. It turns out that GUP,

including linear and quadratic terms, with β0 = α2
0, is a general case for the latter

[177]:

i) δ= 1, γ= 1 and λ′ =±α0 =⇒ f (E/EP) = 1 and g(E/EP) = 1±α0 (E/EP) .

In the above, η, α0, β0, α and λ′ are dimensionless parameters, where α0 and β0 are the

linear and quadratic GUP parameters, respectively, defined after Eq. (2.42). It is often

assumed that η, α0, β0, α, λ′ ∼ O(1), by candidate QG theories (see Chapter 1). However,

in the same way as discussed in Chapter 2 for α0 and β0, such a restriction on η, α and λ′,
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may be relaxed as well. Therefore, one can set a common upper bound η ∼ α0 ∼
√
β0 ∼

α∼ λ′ < αEW = 1017 (see Section 2.2).

To demonstrate how the thermal spectrum of photons is affected by the above modifi-

cations, one writes the MDR, given by Eq. (4.1) in the case where m = 0, as

E2 − p2c2F2 = 0 , where F =
g
f
. (4.2)

Using the above, one may derive the modified thermal spectrum of photons ρMDR, following

Refs. [93, 178]. The density of states per volume for photons (which have 2 polarization

states, i.e., degrees of freedom) is obtained as

Ω(p) = 2
gds(p,m = 0)

V
=

p2

π2�3
, (4.3)

where gds(p,m = 0) is the relativistic density of states for massless particles (see Eq. (A.3)

in Appendix A.1). By making a change of variables Ω(E)dE = Ω(p)dp, considering the

MDR in Eq. (4.2), one obtains

Ω(E) =
E2

π2�3ĉ2c̃
, (4.4)

where the above two “speeds” turn out as

ĉ =
E
p
= cF and c̃ =

dE
dp

=
cF

1− F ′E
F

, (4.5)

and F ′ = dF
dE . Therefore, one can write the modified density of states per volume as

Ω(E) =
E2

π2�3c3

1

F3

∣∣∣∣1− F ′E
F

∣∣∣∣ . (4.6)

Note that the above is analogous to Eq. (3.37) from the BEC considerations in Chapter 3.
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Since photons are bosons, their modified thermal spectrum is obtained using3 ρMDR(T,E)=

2π�E fBE(E)Ω(E), where fBE(E) is the BE distribution (see Eq. (A.4) in Appendix A.1).

It reads as

ρMDR(E,T ) = ρ(E,T )
1

F3

∣∣∣∣1− F ′E
F

∣∣∣∣≡ ρ(E,T )R , (4.7)

where

ρ(E,T ) =
2

π�2c3

E3

eβT E −1
(4.8)

is the standard thermal distribution of photons and R is the correction factor, formally de-

fined in the following section. Note that the standard result from Eq. (4.8) is obtained from

Eq. (4.7) when the MDR parameters vanish, i.e., η, α0, β0, α, λ′ −→ 0.

4.1.2 Experimental Bounds

The 21-cm cosmology is related to the history of the Universe, and represents a novel

framework for probing fundamental physics [181] (see also Refs. [182, 183, 184, 163, 185,

186, 187, 188, 189, 190]). In this section, the effects of the modified thermal spectrum of

photons, given by Eq. (4.7), on the 21-cm cosmology (see Appendix B.1) are explored. In

particular, the anomaly, recently discovered by the EDGES collaboration [164] (see also

Ref. [191]), is considered.

EDGES High and Low band antennas probe the frequency ranges 90− 200 MHz and

50− 100 MHz, respectively, overall measuring the 21-cm signal within the redshift range

z ∈ (6, 27), corresponding to a Universe age range 100Myr− 1Gyr, i.e., the dark ages.

This includes the epochs of reionization and cosmic dawn, in which the first astrophysical

sources form. At z = zE , the observed magnitude of the absorption line is about a factor of

two greater than the one predicted by the ΛCDM model. The frequency of CMB radiation

for this redshift is ν21(zE) 
 78MHz, where the measured 21-cm brightness temperature

is T21(zE) =−0.5+0.2
−0.5 K (99% C.L., including estimates of systematic uncertainties). Since

3This definition is used to obtain the standard thermal spectrum of photons, as can be found in [179, 180].

This differs from the definition used in [178], by an unimportant factor of 2π�, which has no effect on further

calculations or results.
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at z = zE one has (1+ δB)xHI(zE) 
 1, where δB is the baryon overdensity and xHI the

fraction of neutral hydrogen, Eq. (B.5) from Appendix B.1 implies Tγ(zE)/TS(zE) = 15+15
−5.5

[181, 191], where Tγ is the effective temperature of the photon background and TS the spin

temperature (see Eq. (B.6) in Appendix B.1 for details). On the other hand, in the context

of the ΛCDM model, one also gets

Tγ(zE) = TCMB(zE) = TCMB,0 (1+ zE)
 50K , (4.9)

where TCMB,0 
 2.73K is the CMB temperature in the current epoch, and

Tgas(zE)
 TCMB(z
gas
dec)

(
1+ zE

1+ zgas
dec

)2


 6K , (4.10)

where zgas
dec 
 150 and T gas

dec 
 410K are the redshift and the temperature, respectively, at

which the gas and radiation decouple. Using Eq. (B.5) from Appendix B.1, one infers

T21(zE) � −0.2K. Notice that the minimum is saturated for TS(zE) = Tgas(zE), which cor-

responds to Tγ(zE)/Tgas(zE)
 8. As a consequence of these results, one finds that the best

fit value for T21(zE) is about 2.5 times lower than expected within the ΛCDM model.

The energy density of photons from Eq. (4.8) can be used to describe the CMB spectrum

as a function of redshift z, by considering T = TCMB(z), and reads as

ρCMB(E,z) =
2

π�2c3

E3

eβTCMB(z)E −1
, (4.11)

where βTCMB(z) = 1/kBTCMB(z). To explain the EDGES anomaly, one rewrites ρMDR from

Eq. (4.7), in terms of ρCMB from Eq. (4.11), and defines the parameter R as

R ≡ ρMDR(E21,zE)

ρCMB(E21,zE)
=

1

F3

∣∣∣∣1− F ′E21

F

∣∣∣∣ , (4.12)

with ρMDR and ρCMB evaluated at E = E21 and z = zE . This is because neutral hydrogen

can absorb only photons with energy E21 from the CMB spectrum at T = TCMB(zE). It may
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appear that such a modification may affect the optical depth τν (introduced in Appendix

B.1) and therefore, the intensity and shape of the 21-cm line profile. However, as shown in

Appendix B.2, such a modification does not affect τν in any way. The experimental values

from the EDGES experiment can then be explained by imposing (see Ref. [191] for details)

R = 2.15+2.15
−0.8 . (4.13)

Parameter R, defined in Eq. (4.12), is then only a function of F , F ′ and E, since everything

else except the relevant correction cancels out. Since the modification functions f and g can

be written as a power series in E/EP, one can also write the function F = g/ f as a power

series expansion

F (E/EP) =
g(E/EP)

f (E/EP)
=

∞

∑
n=0

F(n)(0)

n!
(E/EP)

n . (4.14)

Note that F(0) = 1 corresponds to the standard ΛCDM result. The parameter R from Eq.

(4.12) for such F (E/EP) reads

R =

∣∣∣1−∑∞
n=1

F(n)(n−1)
n! (E/EP)

n
∣∣∣[

∑∞
m=0

F(m)

m! (E/EP)
m
]4

. (4.15)

Either, Eq. (4.12) or Eq. (4.15), can be used to estimate R for the cases studied here, and

compare it with experimentally measured values and, for the first time, obtain estimates on

the various parameters from the EDGES anomaly [156]:
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Case 1: f (E/EP) = 1 and g(E/EP) =
√

1−η(E/EP)ω . R reads as

R =
|1− (

1− ω
2

)
η(E/EP)

ω|
(1−η(E/EP)ω)5/2

(4.16)

for arbitrary parameters η and ω. For the special cases, one obtains:

i) ω= 1 and η> 0 :

R =
|1−ηE/2EP|
(1−ηE/EP)5/2

. (4.17)

R is plotted as a function of η in Fig. 4.1. To fit the EDGES experimental bounds,

the parameter is fixed at η= 6.5+4.0
−3.6 ×1032.

ii) ω= 1 and η=∓2α0 :

R =
|1±α0 (E/EP)|

[1±2α0 (E/EP)]5/2
. (4.18)

R is plotted as a function of α0 for both branches in Fig. 4.2. However, only the

branch with η = +2α0 can fix α0. To fit the EDGES experimental bounds, the pa-

rameter is fixed at α0 = 3.2+2.0
−1.8 ×1032.
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Figure 4.1: R vs η for fixed energy E = E12 
 5.9×10−6 eV.
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Figure 4.2: R vs α0 for fixed energy E = E12 
 5.9× 10−6 eV. The η = −2α0 branch is

presented in dash-dot blue and the η=+2α0 branch is presented in solid black.
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iii) ω= 2 and η= 2β0 :

R =
1

(1−2β0 (E/EP)2)5/2
. (4.19)

R is plotted as a function of β0 in Fig. 4.3. To fit the EDGES experimental bounds,

the parameter is fixed at β0 = 5.7+3.9
−3.3 ×1065.

Case 2: f (E/EP) =
exp(α(E/E p))−1

α(E/EP)
and g(E/EP) = 1 . R reads as

R =
expα(E/EP)(expα(E/EP)−1)2

(α(E/EP))2
. (4.20)

R is plotted as a function of α in Fig. 4.4. To fit the EDGES experimental bounds, the

parameter is fixed at α= 7.8+6.9
−4.7 ×1032.

Case 3: f = 1 and g = [1+λ′ (E/EP)
γ ]δ. R reads as

R =
|1+(1−δγ)λ′ (E/EP)

γ |
[1+λ′ (E/EP)γ ]3δ+1

, (4.21)

for arbitrary parameters λ′, γ and δ. For the special case, one obtains:

i) δ= 1, γ= 1 and λ′ =±α0 :

R =
1

(1±α0 (E/EP))4
. (4.22)

R is plotted as a function of α0 for both branches in Fig. 4.5. However, only the

branch with λ′ =−α0 can fix α0. To fit the EDGES experimental bounds, the param-

eter is fixed at α0 = 3.6+2.7
−2.1 ×1032.
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Figure 4.3: R vs β0 for fixed energy E = E12 
 5.9×10−6 eV.
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Figure 4.4: R vs α for fixed energy E = E12 
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Figure 4.5: R vs α0 for fixed energy E = E12 
 5.9× 10−6 eV. The λ′ = +α0 branch is

presented in dash-dot blue and the λ′ =−α0 branch is presented in solid black.

At this point it should be stressed that the above plots indicate that the MDRs provided

by cases 1, 2 and 3, give (η, α0,
√
β0, α, λ′)

∣∣z=zE ≈ 1032 at redshift z = zE . These values

are much larger than the bound set by the electroweak scale αEW = 1017. To verify the

compatibility with known observations, and obtain the bounds on the above parameters in

the current epoch (z = 0), the experimental precision of the CMB temperature
(
δT
T

)
exp

=

2× 10−4 [192] (see also Refs. [193, 194]) of a perfect black body, is compared to the

theoretical deviation due to MDRs in the current epoch [156]

δT
T

(z = 0) = (R(E)−1)
cosh(βTCMB(0)E)−1

eβTCMB(0)E −1

2

βTCMB(0)E
. (4.23)

In the above, R(E) is given by Eq. (4.12) and βTCMB(0) is given in terms of the CMB temper-

ature in the current epoch. Eq. (4.23) is obtained by expressing δT/T from ρMDR(E,T ) =

ρ(E,T )R ≈ ρ(E,T )+ dρ
dT(E,T ) δT . Given Eq. (4.23), the parameters in the current epoch

must satisfy an upper bound of (η, α0,
√
β0, α, λ′)

∣∣z=0 < 1028 to be consistent with the
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observed CMB spectrum in the current epoch. This bound is weaker than the bound set

by the electroweak scale αEW . Therefore, αEW should be considered as the relevant MDR

parameter bound in the current epoch. The MDR parameters, obtained from the EDGES

anomaly at z = zE , combined with the electroweak bound αEW at z = 0, suggest that MDR

parameters are increasing functions of redshift z. Therefore, R is also expected to increase

with z for a given energy E and have a value of R ≈ 1 at z = 0.

The compatibility of such MDRs with epochs earlier than zE should be taken into con-

sideration as well. For example, in the epoch of the Big Bang Nucleosynthesis (BBN),

at z ≈ 3× 108 [195], a bound of β0 � 1087 was obtained in Ref. [159] for the quadratic

GUP parameter β0, which corresponds to an upper bound � 1044 for the MDR parameters.

Therefore, the values of the MDR parameters, measured by the EDGES anomaly are con-

sistent with the BBN measurements, even if they increase to ∼ 1044 at z ≈ 3× 108. This

supports the increasing trend of the redshift dependence of the MDR parameters and may

in fact provide a clue in determining the exact form of this dependence. Estimations of

the MDR parameters from the modified CMB spectrum would not be relevant in the BBN

epoch, since it has not been created until the epoch of recombination at z = 1090 [195].

The standard MDRs used in this work can be found in Refs. [7, 41, 175, 176, 177, 178]

as mentioned in Section 4.1.1, but they consider the MDR parameters as constants. The

assumption that the MDR parameters are functions of another parameter, such as redshift,

is fairly new. However, such an assumption is indirectly supported by Ref. [152], where

the author finds a mass/radius dependent GUP parameter. This is also supported by the dif-

ference between estimations of the quadratic GUP parameter in Earth-based experiments,

where β0 > 0 [69, 71, 72, 130, 196], and astrophysical/cosmological observations, where

β0 < 0 [54, 81, 152, 153, 154, 157]. This shows that the MDR parameters can in fact be

dependent on scale or redshift.

Since the usual models of modified dispersion relations cannot explain the EDGES

anomaly without additional assumptions, it is also legitimate to investigate if it can be
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explained by considering the cases in which η, α0, λ′ = αEW , i.e., they are fixed to the

electroweak scale, while ω and δ are treated as free parameters [156]. Only cases 1 and 3

are considered, since case 2 has no other parameters to tweak. Also, the special case 1, iii)

is not separately considered, because it is automatically implied as ω−→ 2.
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Figure 4.6: R vs γ at δ = 1 for fixed energy E = E12 
 5.9× 10−6 eV. The λ′ = +1017

branch is presented in dash-dot blue and the λ′ =−1017 branch is presented in solid black.

In Fig. 4.6, R from Eq. (4.21) is plotted as a function of γ for fixed λ′ = ±1017 and

for fixed δ = 1. The values of R for λ′ = 1017 fall outside the EDGES bounds and cannot

provide an explanation for the EDGES anomaly. However, the values of R for λ′ =−1017

fall inside the EDGES bounds twice in a narrow range around γ ≈ 0.5, and can therefore

provide an explanation for the EDGES anomaly. Changing the δ parameter only moves the

peak to a different location.

The power dependencies on ω and δ of their respective cases are shown in Figs. 4.7

and 4.8, respectively. One can see that the EDGES anomaly can be explained by powers

ωmax < 0.544 and δmax <−0.05. Note that only an upper bound to the powers ω and δ can

be obtained, since αEW is still an upper bound for the new length scale.
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Figure 4.7: R vs ω for fixed η,α0 = 1017 and energy E = E12 
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negative branch), respectively.
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4.1.3 Summary

In this section, a framework in which MDRs can account for the EDGES anomaly, was

proposed. The estimation of the MDR parameters from the EDGES anomaly at z = zE and

the bound αEW at z = 0, suggest that the MDR parameters are functions of redshift z, and

as such could explain the EDGES anomaly. One can assume that the evolution of MDR

parameters with time in the current epoch is slow or nearly constant, since the same physics

is observed in all observable astrophysical objects, such as distant galaxies. However, the

time evolution of MDR parameters could have been faster in the early stages of the Universe

as the EDGES anomaly suggests.

On the other hand, one can set η, α0,
√
β0, α, λ′ = αEW , and treat the powers ω, γ and

δ of the MDRs as free parameters. The bounds on their values are obtained by fitting the

corresponding modified thermal spectra of photons to the EDGES anomaly, as seen in Figs.

4.6, 4.7 and 4.8. One can see that a narrow range around γ ≈ 0.5 provides a good fit for

the EDGES anomaly, while ω and δ obtain an upper bound. The stringent values of ω and

δ, with their respective uncertainties will be obtained in the future, once the true QG scale

is measured. It may be noted that the case of positive δ and negative λ′ (see Figs. 4.5 and

4.6), is equivalent to the case of negative δ and positive λ′ (see Fig. 4.8) to leading order.

This creates an ambiguity in their estimation, which can be resolved by probing signatures

of higher order corrections. However, due to experimental limitations, this is currently not

possible.

4.2 Baryon Asymmetry in the Universe

The origin of the observed baryon asymmetry in the Universe is an unsolved problem

up to this day. Observational evidence shows that the Universe is mostly made up of matter,

rather than equal amounts of matter and anti-matter, as expected from QT and GR [197].

For such asymmetry to occur, three necessary conditions, called Sakharov conditions, must

be met [198]: 1) Baryon number violation, 2) C and CP violation, 3) Deviation from thermal
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equilibrium. It should be pointed out that the CMB temperature anisotropies provide a

strong probe of the baryon asymmetry, since the acoustic peaks in the CMB power spectrum

allow measurements of large scale structures, and provide an indirect measurement of the

baryon asymmetry parameter η(CMB)
BA = (6.225± 0.170)× 10−10 [199]. ηBA is defined as

the difference of baryon and anti-baryon densities per unit entropy density (see Eq. (4.45)

for details). On the other hand, measurement of ηBA can also be carried out in the context

of the BBN. In this case, η(BBN)
BA ∈ (3.4, 6.9)× 10−10 [200], which agrees with η(CMB)

BA ,

although the two measurements are obtained from considerations in two different epochs in

the evolution of the Universe.

Although several explanations for the observed baryon asymmetry have been offered so

far [197, 201, 202], none of them has been confirmed yet. In this section, a proposal that the

baryon asymmetry manifests due to coupling of matter and space-time, and the existence of

a minimum measurable length, implied by GUP, is explored. In Refs. [155, 160, 161, 162],

it has been shown that GUP can modify the Friedmann equations, through modifying the

Bekenstein-Hawking entropy and using the holographic principle. In the following, this

approach is used to derive the exact modified Friedmann equations using GUP. This in turn

provides a general framework, which allows one to explore QG effects at cosmological

scales.

An interaction term, motivated by Supergravity proposals, which couples space-time

and baryon current is used to satisfy the first two Sakharov conditions, while the QG modi-

fied Friedmann equations break thermal equilibrium to satisfy the third Sakharov condition.

In contrast to Earth-based QGP, this prediction has an observational counterpart (such as

the EDGES anomaly; see Section 4.1), and thus offers an explanation for a measured and

established feature of Nature, i.e., the baryon asymmetry in the Universe. In addition, this

proposal predicts the values of the dimensionless GUP parameters, α0 ≈ 105 and |β0| ≈ 109,

and thus determines a possible minimum measurable length scale of �min ≈ 10−30 m. Sup-

porting material for this section is found in Appendix C.
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4.2.1 Modification of the Bekenstein-Hawking Entropy

To explain the origin of the baryon asymmetry in the Universe, one must first mod-

ify the Friedmann equations, since such modifications lead to energy density and pressure

variations. These variations break thermal equilibrium and allow the asymmetry to mani-

fest. In order to modify the Friedmann equations, one uses the holographic principle. The

holographic principle states that a description of a theory inside a d-dimensional volume

in space can be encoded in its (d − 1)-dimensional boundary, such as an event horizon

of a black hole, or the cosmic horizon [203, 204]. The holographic principle provides a

mechanism to introduce quantum corrections to large scale systems.

A QG modification of the Friedmann equations was derived in Ref. [155] (see also Ref.

[205]), using the quadratic GUP (KMM model; see Eq. (2.36)). To examine the conclusions

of a more general model, GUP given by Eq. (2.42) is considered. The corresponding

minimal modified uncertainty relation is Eq. (2.45), which is written again for convenience

ΔxΔp ≥ �

2

[
1−αΔp+4βΔp2

]
. (4.24)

As a particle gets absorbed by an apparent horizon, it will increase the total energy inside

the horizon and consequently change the area of that horizon [61, 206, 207]. A particle,

whose uncertainty is governed by GUP, as given by Eq. (4.24), will produce a QG corrected

change to the apparent horizon area, as shown in the following. Energy of such a particle is

taken to be E = Δpc [61, 207]. Therefore, one solves Eq. (4.24) for Δp as

Δp ≥ 2Δx+α�
8�β

⎛
⎝1−

√
1− 16�2β

4Δx2 +4α�Δx+�2α2

⎞
⎠ , (4.25)

where the negative solution has been chosen, because it is the only one which reduces to the

standard Heisenberg uncertainty relation for α,β −→ 0. The area of an apparent horizon

with radius R, which absorbs a particle with energy E, changes by ΔA ≥ 16π�2
P E R/�c
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[208, 209, 210]. As the particle gets re-emitted from the horizon, its position uncertainty is

the radius of the apparent horizon Δx=R (see Section 2.1.1), which determines the minimal

change of the area of the apparent horizon as

ΔAmin ≥ 16π�2
P

E Δx
�c

. (4.26)

Considering Δx = RS (the Schwarzschild radius of the apparent horizon; see Eq. (2.2)),

given in terms of the area of the apparent horizon A as Δx2 = A/4π and E = Δpc (Δp from

Eq. (4.49)), one can rewrite Eq. (4.26) as

ΔAmin 
 λBH
�2

P (A+α�
√
πA1/2)

�2β

(
1−

√
1− 16π�2β

A+2α�
√
πA1/2 +α2�2π

)
, (4.27)

where λBH is a normalization parameter, calibrated by the Bekenstein-Hawking entropy

formula as λBH = b/2π [206], with b defined by the minimal change in entropy ΔSmin =

kB b= kB ln2, corresponding to one bit of information [211]. Therefore, the minimal change

of entropy for a minimal change in the apparent horizon area reads

dS
dA

=
ΔSmin

ΔAmin
=

kBβ∗

8�2
P

(
A+α∗A1/2 −

√
A2 +2α∗A3/2 +(α∗2 −β∗)A

) , (4.28)

where α∗ =
√
π�α and β∗ = 16π�2β are defined for convenience. The standard result for

the entropy of a black hole reads as [212, 213]

S =
kB c3A
4�G

=
kB A
4�2

P
. (4.29)

Note that the holographic principle implies that the above entropy applies to any region of

space with a horizon. In general, if one wants to modify the entropy from Eq. (4.29), S and

A will no longer be linearly related, i.e., one defines f (A) [160]. Such modified entropy can

then be written as S = kB f (A)/4�2
P. By taking the derivative of this entropy over area A,
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one obtains

dS
dA

=
kB f ′(A)

4�2
P

. (4.30)

In the relevant case of GUP motivated QG modifications, f ′(A) can be identified by com-

paring the above derivative with the one in Eq. (4.28), and thus

f ′(A) =
1

2

β∗(
A+α∗A1/2 −

√
A2 +2α∗A3/2 +(α∗2 −β∗)A

) . (4.31)

It should be pointed out that one obtains the standard result f ′(A) = 1 for α∗, β∗ −→ 0. The

QG modified Bekenstein-Hawking entropy, using Eq. (4.31), is obtained for the first time

by integrating Eq. (4.28) over A, which reads as [157]

S=
kB

8�2
P

[
A

(
1+

√
1+2α∗ 1

A1/2
+(α∗2 −β∗)

1

A

)

+α∗A1/2

(
2+

√
1+2α∗ 1

A1/2
+(α∗2 −β∗)

1

A

)

− β∗ ln

(
1+

A1/2

α∗

(
1+

√
1+2α∗ 1

A1/2
+(α∗2 −β∗)

1

A

))]
, (4.32)

where the standard result from Eq. (4.29) is obtained for α∗, β∗ −→ 0. The above equation

includes both, linear and quadratic QG corrections to the Bekenstein-Hawking entropy, in

contrast to the one obtained in Ref. [155], which contains only quadratic corrections.

4.2.2 Modification of the Friedmann Equations

The QG modification of the Bekenstein-Hawking entropy obtained in Section 4.2.1 is

necessary to modify the Friedmann equations through the holographic principle. The mod-

ification of the Friedmann equations to second order in α∗ and first order in β∗ were consid-

ered separately (and perturbatively) in Ref. [162]. In the following, exact QG modifications

of the Friedmann equations, in terms of both, α∗ and β∗, are obtained. One starts with the
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standard Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) metric in spherical coordinates,

incorporating homogeneity and isotropy, in a (n+1)−dimensional space-time, which reads

as

ds2 = hcd dxcdxd + r̃2 dΩ2
n−1 , (4.33)

where hcd = diag(−1, a2/(1− k r2)), xc = (ct,r), r̃ = a(t)r, dΩn−1 is the angular part

of the (n−1)-dimensional sphere (see Appendix C.1 for details), a = a(t) the scale factor,

r the comoving radius and k the spatial curvature constant. Indices c and d can only take

values 0 and 1. The Friedmann equations, which govern the dynamics of the scale factor

a(t), and hence the evolution of the Universe, undergo modifications depending on the

precise form of the function f (A), introduced in Section 4.2.1. The derivation of modified

Friedmann equations for an arbitrary f (A) follows from the the first law of thermodynamics

and the holographic principle, which ensures that Eq. (4.32) is valid for the cosmic horizon.

A detailed derivation is shown in Appendix C.1. In a space-time with a metric from Eq.

(4.33), the modified Friedmann equations read

−8πG
n−1

(
ρ+

p
c2

)
=

(
Ḣ − k c2

a2

)
f ′(A) (4.34)

and

− 8πG
n(n−1)

ρ=
c2 (nΩn)

n+1
n−1

n(n−1)Ωn

∫
f ′(A)

dA

A
n+1
n−1

, (4.35)

where ρ is the matter density, p pressure and H = ȧ/a the Hubble parameter. The above

two Friedmann equations are written in the most general form, given an arbitrary function

f (A). When f (A) = A, one obtains the standard Friedmann equations, while f (A) �= A

gives rise to modified Friedmann equations. Modifications, implied by f (A), are quantum

in nature, since they come from the Bekenstein-Hawking entropy, which is of quantum
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origin. To obtain the QG modified Friedmann equations, one needs to plug Eq. (4.31) in

Eqs. (4.34) and (4.35). This yields a general and exact form, for a specific GUP given by

Eq. (2.42), of the QG modified Friedmann equations for n = 3, expressed in terms of the

standard cosmological parameters H, a, and k as [157]

−4πG
(
ρ+

p
c2

)
=

(
Ḣ − k c2

a2

)
β∗

8πc2

×
(

H2+ k c2

a2

)
1+ α∗

(4π)1/2 c

(
H2+ k c2

a2

)1/2−
√

1+ 2α∗
(4π)1/2 c

(
H2+ k c2

a2

)1/2
+ (α∗2−β∗)

4πc2

(
H2+ k c2

a2

) (4.36)

and

8πG
3

(ρ−Λ) =
1

2

(
H2+

k c2

a2

)
+

α∗

3(4π)1/2 c

(
H2+

k c2

a2

)3/2

+
2πc2(α∗2+2β∗)

3(α∗2−β∗)2

+

[
1

3

(
H2+

k c2

a2

)
+

(4π)1/2 cα∗

6(α∗2−β∗)

(
H2+

k c2

a2

)1/2

− 2πc2(α∗2+2β∗)
3(α∗2−β∗)2

]

×
√

1+
2α∗

(4π)1/2 c

(
H2+

k c2

a2

)1/2

+
(α∗2−β∗)

4πc2

(
H2+

k c2

a2

)
(4.37)

+
2πc2α∗β∗

(α∗2−β∗)5/2
ln

[
1+

(α∗2−β∗)
(4π)1/2 c(α∗+

√
α∗2−β∗)

(
H2+

k c2

a2

)1/2

+

√
α∗2−β∗

α∗+
√
α∗2−β∗

⎛
⎝
√

1+
2α∗

(4π)1/2 c

(
H2+

k c2

a2

)1/2

+
(α∗2−β∗)

4πc2

(
H2+

k c2

a2

)
−1

⎞
⎠
⎤
⎦ ,

where

A = 4π r̃2
A =

4πc2

H2+ k c2

a2

(4.38)

was used. In the above r̃A is the radius of the apparent horizon, and is defined in Eq. (C.2) in

Appendix C.1. For vanishing GUP parameters α∗, β∗ −→ 0 in Eqs. (4.36) and (4.37), one

obtains the standard Friedmann equations. Details of this limit are given in Appendix C.2.

It is evident that if one wants to study the radiation-dominated era, the tiny observed
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cosmological constant Λ will be ignored, and the spatial curvature constant has to be set

k = 0, consistent with the observed spatially flat Universe. As a result, the QG modified

Friedmann equations from Eqs. (4.36) and (4.37) are further simplified, respectively, to

−4πG
(
ρ+

p
c2

)
=

Ḣ β∗

8πc2

H2

1+ α∗
(4π)1/2 c

H −
√

1+ 2α∗
(4π)1/2 c

H + (α∗2−β∗)
4πc2 H2

(4.39)

and

8πG
3

ρ=
1

2
H2 +

α∗

3(4π)1/2 c
H3 +

2πc2(α∗2+2β∗)
3(α∗2−β∗)2

+

[
1

3
H2 +

(4π)1/2 cα∗

6(α∗2−β∗)
H − 2πc2(α∗2+2β∗)

3(α∗2−β∗)2

]

×
√

1+
2α∗

(4π)1/2 c
H +

(α∗2−β∗)
4πc2

H2

+
2πc2α∗β∗

(α∗2−β∗)5/2
ln

[
1+

(α∗2−β∗)
(4π)1/2 c(α∗+

√
α∗2−β∗)

H

+

√
α∗2−β∗

α∗+
√
α∗2−β∗

(√
1+

2α∗

(4π)1/2 c
H +

(α∗2−β∗)
4πc2

H2 −1

)]
. (4.40)

The above QG modified Friedmann equations provide a framework on which density and

pressure variations in the early Universe are studied. In the following, they will also be

used to break thermodynamic equilibrium, and explain the baryon asymmetry, formed in

the early Universe.

4.2.3 Gravitational Baryon Asymmetry

All three Sakharov conditions, listed at the beginning of Section 4.2, must be met to explain

the observed baryon asymmetry. As seen from the following considerations, the first two

Sakharov conditions are satisfied by introducing a coupling term, which couples space-

time to the baryon current, and the final Sakharov condition is satisfied by breaking thermal

equilibrium through the QG modified Friedmann equations, derived in Section 4.2.2.
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Within supergravity theories, a mechanism for generating baryon asymmetry during the

expansion of the universe, by means of dynamical breaking of CPT (and CP) symmetry,

is proposed [214, 215]. However, this mechanism does not break the thermal equilibrium,

thus not all Sakharov conditions are satisfied. The interaction, responsible for the CPT

violation, is described by a coupling between the derivative of the Ricci scalar curvature R

and the baryon current Jμ [216]

�
3

M2∗ c2

∫
d4x

√−g Jμ ∂μR , (4.41)

where M∗ is the cutoff scale characterizing the effective theory (see Refs. [217, 218, 219,

220, 221, 222, 223, 224, 225, 226] for further applications). The above term satisfies the

second Sakharov condition. If there exist interactions that violate the conservation of the

baryon number B in thermal equilibrium, such as those allowed in Grand Unified Theories

(GUT), to satisfy the first Sakharov condition, then a net baryon asymmetry can be gen-

erated and gets frozen-in below the decoupling temperature4 TD. By taking the integrand

from Eq. (4.41), i.e., the Lagrangian density, and noting that the spatial part of ∂μR vanishes

for the FLRW metric, one gets

�
3

M2∗ c2
Jμ ∂μR =

�
3

M2∗ c2
(nB −nB) Ṙ . (4.42)

The effective chemical potential for baryons, i.e., μB, and for anti-baryons, i.e., μB, can be

read from the equation above as

μB =−μB =− �
3 Ṙ

M2∗ c2
, (4.43)

4During the evolution of the Universe, the CPT symmetry violation generates the baryon asymmetry. This

occurs when baryon (or lepton) violating interactions are still in thermal equilibrium. The asymmetry is

frozen-in at the decoupling temperature TD, when the baryon (or lepton) number violation goes out of thermal

equilibrium. The temperature TD is derived from the relation Γ(TD)
 H(TD), where Γ is the interaction rate

of processes and H the expansion rate of the Universe. More specifically, in the regime Γ� H, or T > TD,

the B-violating processes are in thermal equilibrium, and at T = TD, i.e., Γ
 H, the decoupling occurs, while

when Γ< H, or T < TD the baryon asymmetry gets frozen-in.
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since Eq. (4.42) corresponds to the energy density term of a grand canonical ensemble. For

relativistic particles, the net baryon number density of matter in the early Universe is given

by [227]

nB −nB =
gB

6�3 c3
μB k2

BT 2 , (4.44)

where gB ∼ O(1) is the number of intrinsic degrees of freedom of baryons. The baryon

asymmetry is defined in the standard notation as [227]

ηBA ≡ nB −nB
nγ


 7kB
nB −nB

s
=− 105gB�

3

4π2 g∗ kB c2

Ṙ
M2∗ T

∣∣∣∣
TD

, (4.45)

where nγ 
 s/7kB is the number density of photons,

s =
2π2 g∗s k4

B
45�3 c3

T 3 (4.46)

the entropy per unit volume, i.e., entropy density, in the radiation-dominated era, and g∗s

is the number of degrees of freedom for particles which contribute to the entropy of the

Universe. It may be noted that g∗s takes values very close to the total number of degrees

of freedom of relativistic Standard Model particles g∗, i.e., g∗s ≈ g∗ ∼ 106, as discussed

in Ref. [227]. The parameter ηBA is different from zero, provided that the time derivative

of the Ricci scalar Ṙ is non-vanishing. In the ΛCDM model, the baryon asymmetry van-

ishes, because Ṙ = 0 in the radiation-dominated era, due to thermal equilibrium still being

satisfied, as is evident from the following consideration.

The deviation from thermal equilibrium is described in terms of variations in density

and pressure. The density and pressure, including these variations, can be written as

ρ= ρ0 +δρ and p = p0 +δp , (4.47)

where ρ0 and p0 are the equilibrium density and pressure, respectively. The above density
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and pressure expressions are then plugged in the QG modified Friedmann equations, namely

Eqs. (4.39) and (4.40), to obtain the QG induced variations as

δρ=
α∗

3c

√
8G
3

ρ3/2
0 − β∗

12c2
Gρ2

0 (4.48)

and

δp =
α∗ c

6

√
8G
3

(1+3w)ρ3/2
0 − β∗

12
G(1+2w)ρ2

0 , (4.49)

where w is defined through the equation of state p0 = wρ0 c2, and can take a range of

values w ∈ [−1, 1/3] for different epochs in the evolution of the Universe. To obtain the

variations in Eqs. (4.48) and (4.49), the QG modified Friedmann Eqs. (4.39) and (4.40)

were expanded in a Taylor series up to the fourth order in α∗ and second order in β∗, to

obtain all terms up to quadratic order in the GUP parameters.

In considerations of generating the baryon asymmetry, w is taken to be constant, since

all the relevant physics happens in the radiation-dominated era with w = 1/3. As seen

from the following, QG effects break thermal equilibrium and modify Ṙ, making it non-

vanishing. To obtain the QG corrected derivative of the Ricci scalar Ṙ, one takes the trace

of the Einstein equations

R =−8πG
c4

Tg =−8πG
c4

(ρc2 −3 p) , (4.50)

where Tg = ρc2 −3 p is the trace of the energy-momentum tensor. The QG corrected Ricci

scalar is obtained by plugging the density and pressure from Eq. (4.47), with their respec-

tive variations from Eqs. (4.48) and (4.49) in Eq. (4.50), and reads as

R =−8πG
c2

(1−3w)ρ0 +α∗ 8
√

2π
3
√

3c3
G3/2(1+9w)ρ3/2

0 −β∗
4π
3c4

G2(1+3w)ρ2
0 . (4.51)

Next, to compute the time derivative of the Ricci scalar from Eq. (4.51), one considers the
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continuity equation from Eq. (C.4) from Appendix C.1 for n = 3, which reads as

ρ̇0 +3H (1+w)ρ0 = 0 (4.52)

and the equilibrium form of the second Friedmann equation H2 = 8πGρ0/3 (as corrections

to the latter would only contribute to orders higher than those considered in this paper).

Also, even if the constant vacuum energy density Λ is not negligible, its time derivative

would vanish and the following results would remain unchanged. Therefore, the QG cor-

rected time derivative of the Ricci scalar turns out as

Ṙ=
√

3(8π)3/2 G3/2

c2
(1−2w−3w2)ρ3/2

0 −α∗ 16π3/2 G2

c3
(1+w)(1+9w)ρ2

0

+ β∗
(8π)3/2

√
3

G5/2

c4
(1+3w)(1+w)ρ5/2

0 . (4.53)

The above derivative of the Ricci scalar is then evaluated at the radiation-dominated era,

when w = 1/3, and reads as

Ṙ =−α∗ 256

3
π3/2 G2

c3
ρ2

0 +β∗ 8

(
8π
3

)3/2 G5/2

c4
ρ5/2

0 . (4.54)

From the above one can see, that QG effects provide an essential mechanism to break

the thermal equilibrium, thus satisfying the third and final Sakharov condition. One then

substitutes Eq. (4.54) in the baryon asymmetry formula from Eq. (4.45) to obtain [157]

ηBA =α0
112π2 g∗ gB

45

(
kBTD

MP c2

)7(MP

M∗

)2

−β0
896

√
5 π3 g3/2

∗ gB

675

(
kBTD

MP c2

)9(MP

M∗

)2

, (4.55)

where the gravitational constant is expressed in terms of the Planck mass, i.e., G = �c/M2
P,
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and the equilibrium density ρ0, in the radiation-dominated era, is replaced by [227]

ρ0 =
πg∗

30�3 c5
(kBT )4 . (4.56)

In order to obtain an estimate of the GUP parameters, the expression in Eq. (4.55) is

evaluated at the relevant epoch in the evolution of the Universe. That is, at the decoupling

temperature TD, given by kBTD = MI c2, where MI ∼ 2×1016 GeV/c2 is the upper bound on

the tensor mode fluctuation constraints in the inflationary scale [228], and the cutoff scale

M∗ is taken to be the reduced Planck mass, namely M∗ = MP/
√

8π. The baryon asymmetry

then reads as

ηBA = α0 2.08×10−15 −β0 2.16×10−19 . (4.57)

Given the measured baryon asymmetry 5.7× 10−10 � ηBA � 9.9× 10−10 [229, 230, 231,

232, 233, 234], the dimensionless GUP parameters can be estimated for four distinct cases

[157]:

• Only linear GUP (β0 = 0): 2.74×105 � α0 � 4.76×105

• Only quadratic GUP (α0 = 0): −4.58×109 � β0 �−2.64×109

• Linear and Quadratic GUP (β0 =−α2
0): 6.37×104 � α0 � 8.66×104 and −7.50×

109 � β0 �−4.05×109

• Linear and Quadratic GUP: α0 � 104 and β0 �−2.59×109

Based on the available measurements of the baryon asymmetry, the dimensionless GUP

parameters are estimated by the above ranges, depending on the choice of model. Overall,

the parameters α0 and
√−β0 are expected to lie between 5.14×104 and 4.76×105, except

for the last case, where the lower bounds α0 � 104 and
√−β0 � 5.09×104 are obtained.

To estimate these bounds β0 = α2
0 +β′0 was used in Eq. (4.57), since O(β0)∼ O(α2

0). Here
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β′0 is a deviation of β0 from α2
0. The first three cases set the minimum measurable length

scale to be 8.33×10−31 m � �min � 7.71×10−30 m, depending on the model. Note that the

dimensionless quadratic GUP parameter β0 has a negative value.

4.2.4 Summary

The baryon asymmetry produced in the radiation-dominated era of the Universe can be

explained, if there is a mechanism satisfying the three Sakharov conditions. In the above,

it has been shown that this mechanism can indeed be achieved within the context of QG

effects. The CP symmetry is broken by the coupling between the derivative of the Ricci

scalar and the baryon current, described by Eq. (4.41) and interactions which break the

baryon number B (GUT interactions, for example see Ref. [227]) are considered. Finally,

the thermal equilibrium is broken by QG effects, implied by GUP. Therefore, through this

mechanism, all three Sakharov conditions are satisfied.

The obtained values of GUP parameters, α0 and
√−β0 between 5.14×104 and 4.76×

105, are one of the most stringent that have been obtained so far, and can be interpreted as

their measurements. Note that a negative value of the quadratic GUP parameter, i.e., β< 0,

is a common result in cosmological QGP considerations [54, 81, 152, 154, 157].
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Chapter 5

The Quantum Equivalence Principle

“Nobody ever figures out what life is

all about, and it doesn’t matter. Explore

the world. Nearly everything is really

interesting if you go into it deeply

enough.”

Richard P. Feynman

Since the Equivalence Principle provided a basis for the formulation of GR, it is nat-

ural that a precise formulation of the Quantum Equivalence Principle (QEP) would be an

important step towards a successful theory of QG [235]. The classical Equivalence Prin-

ciple states that one can choose a locally inertial coordinate system at every point in an

arbitrary space-time background (i.e. in an arbitrary gravitational field), so that in a very

small region around that point, the laws of Nature take the same form as in an unaccel-

erated coordinate system in flat space-time (i.e., in a zero gravitational field) [236]. This

statement of the equivalence principle can be divided into three short postulates. First is the

weak equivalence principle (WEP), which states the equality between inertial and gravita-

tional masses of the test particle. Second, laws of physics, excluding gravitation, in a freely

falling reference frame are independent of the velocity of such a reference frame, which is

also known as local Lorentz invariance (LLI). Third, all laws of physics are independent

of the position and time, which is also known as local position invariance (LPI) [3]. Note

that the statements of WEP, LLI and LPI taken together, are known as the Einstein Equiv-
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alence Principle, and when extended to include gravitation, they are known as the Strong

Equivalence Principle [237].

A quantum formulation of the Equivalence Principle, encompassing all of the above,

was introduced in Ref. [238], where different inertial, gravitational and rest masses are

introduced and promoted to quantum operators. The equality of these mass operators con-

stitutes the QEP (see Eq. (5.7)). However, the application of QEP, in the above, is limited

to particles at non-relativistic speeds, weak gravitational fields and does not take the spin of

particles into account. Therefore, a generalized application of QEP, for particles at relativis-

tic speeds, arbitrary curved space-times and which is valid for bosons as well as fermions,

is important and proposed in this chapter. To the best of one’s knowledge, there are no

previous works on QEP, considering a formulation which is applicable to both, bosons and

fermions, and in an arbitrary curved space-time. If QEP is violated in Nature, the above

generalization implies that the Lorentz transformation and the space-time geometry obtain

modifications, which make them dependent on the massive test particle under considera-

tion. This in turn predicts deviations from standard results, obtained from QT and GR, and

provides a novel framework to conduct experimental tests of QEP. Such tests are important

to establish concepts which will lead towards a consistent theory of QG, and present a novel

approach in the field of QGP. In the following, the metric signature (+,−,−,−) is used.

Supporting material for this chapter is found in Appendix D.

5.1 Particle Statistics

To formulate a framework for QEP, valid for particles with arbitrary speeds and in

curved space-times, one must first consider the statistics of particles, i.e., the spin of parti-

cles. Special relativistic generalization of QM (relativistic QFTs) naturally introduces the

spin of particles, which is reflected in their equations of motion [239]. The relativistic

equations of motion, for spin-0 particles (bosons) and spin-1/2 particles (fermions), are the

Klein-Gordon equation and the Dirac equation, respectively, which can be generalized in an
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arbitrary curved space-time [4, 5] (see Eqs. (1.6) and (1.7)). In order to conveniently verify

that the following generalization agrees with the results obtained in Ref. [238], in the non-

relativistic and weak gravitational field limits, one adopts the Hamiltonian formalism. This

is achieved by using the Feshbach-Villars formalism [136] (see also Refs. [134, 135] and

the relativistic BEC considerations in Section 3.1.4), suitably adapted to obtain an effective

Hamiltonian in curved space-time for bosons, and by using the standard Dirac Hamiltonian

in curved space-time for fermions.

For a relativistic boson with mass m, one takes the effective Hamiltonian in the Fesh-

bach-Villars formalism, generalized in an arbitrary curved space-time, which reads as

H = τ3
1√
g00

mc2 − (τ3 + iτ2)
gi j√
g00

pi p j

2m
+(τ3 + iτ2)

g0i√
g00

p0 pi

m
, (5.1)

where τk (k = 1,2,3) are the Pauli matrices, gμν the curved space-time metric, p0 = i �c ∇0

the energy operator and pi = −i�∇i the momentum operators. The Pauli matrices in this

formalism are used simply for convenience, and in no way reflects the actual spin of the

particle. They are also not affected by the curvature of space-time. Note that the Feshbach-

Villars formalism in curved space-time has been studied previously in other representations

(see Refs. [240, 241]). However, the formulation in the representation, given by Eq. (5.1),

is introduced for the first time here, to the best of one’s knowledge. For details on ob-

taining the Klein-Gordon equation in curved space-time from the above Feshbach-Villars

Hamiltonian in curved space-time, see Appendix D.1.

For a relativistic fermion with mass m, one takes the Dirac Hamiltonian in curved space-

time, suitably adapted to the metric signature used here, which reads as [5]

H =
1

g00
γ0 γ i pi c+ i�Γ0 +

1

g00
γ0 mc2 , (5.2)

where γμ = eμ
a γa are the curved space-time Dirac gamma matrices, with eμ

a the tangent

space basis vectors, called vierbeins (or tetrads) and γa the flat space-time Dirac gamma
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matrices in the tangent space. The vierbeins are defined by gμν = eμ
a eνbη

ab, where ηab is the

Minkowski metric of the tangent space. The momentum operator pi =−i�Di is defined in

terms of the covariant derivative for fermions, which takes the form Dμ = ∂μ −Γμ, where

Γμ =−1

4
γa γb ea

ν gνλ eb
λ;μ (5.3)

is the spinor affine connection for a free fermion. In the above eb
λ;μ = ∂μ eb

λ−Γρ
μλ eb

ρ, where

Γρ
μλ are the standard Christoffel symbols. The curved space-time Dirac gamma matrices γμ

satisfy the algebra

γμ γν+ γν γμ = 2gμν . (5.4)

For details on obtaining the Dirac equation in curved space-time from the above Dirac

Hamiltonian in curved space-time, see Appendix D.1.

Hamiltonians in Eqs. (5.1) and (5.2) are the starting point for the generalization of the

formalism from Ref. [238]. In the non-relativistic and weak gravitational field limits, they

both reduce to

H = mc2 +
p2

2m
+mφ , (5.5)

where φ is the Newtonian gravitational potential. Note that a spin of a particle is no longer

relevant in these limits, which why Eqs. (5.1) and (5.2) reduce to the same expression. The

above Hamiltonian is used as a starting point in Ref. [238]. The first term corresponds to

the rest energy, the second term to the kinetic energy and the third term to the gravitational

energy of a classical particle.

125



5.2. GENERALIZED FORMALISM

5.2 Generalized Formalism

To formulate QEP, one must discriminate between the inertial, gravitational and rest

masses mI , mG and mR, respectively, of a test particle. Measurements show that their values

agree with each other up to a relative difference ∼ 10−15 for mI and mG (WEP) [242],

∼ 10−19 for mI and mR (LLI) [243], and ∼ 10−7 for mG and mR (LPI) [244], within the

current precision of experiments (see also Refs. [3, 245]). However, at some scale they

may be different from each other, since there is no known fundamental reason, why they

should be identical. In this case, the mass of a composite test particle can be affected

by internal quantum effects. To describe such effects, masses mα, where α = I, G, R, are

promoted to quantum operators mα −→ Mα as [238]

Mα = mα+
Hint,α

c2
, (5.6)

where Hint,α effectively describe internal quantum effects of the composite particle, related

to its internal degrees of freedom, and drives the non-trivial internal evolution (see Ref.

[238] for details on Hint,α). Note that operators Mα describe the total mass-energy of a

composite quantum particle, where mα is the ground state. Furthermore, the definition of

mass operators Mα in this generalization does not change from that in Ref. [238], since they

are defined in an unaccelerating frame of the particle. However, at relativistic speeds and

strong gravitational fields, their eigenvalues are expected to differ from the non-relativistic

ones. As in Ref. [238], QEP is postulated as

MI = MG = MR . (5.7)

The above equalities are quantum generalizations of the three short postulates of the clas-

sical Equivalence Principle. MI = MG corresponds to the WEP, Hint,R = Hint,I corresponds

to the LLI and Hint,R = Hint,G corresponds to the LPI.

To apply the above QEP to particles at relativistic speeds and arbitrary curved space-
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times, one must first identify masses mα in the Hamiltonian under consideration, before

promoting them to quantum operators. Such identification of masses is obvious for the

Hamiltonian in Eq. (5.5). The mass in the rest energy term corresponds to mR, the mass

in the kinetic energy term to mI and the mass in the gravitational energy term to mG. For

Hamiltonians in Eqs. (5.1) and (5.2), such identification of masses mα is more involved.

One starts with classical SR in flat space-time, continues with classical GR, and finally,

applies these results to Hamiltonians in Eqs. (5.1) and (5.2), where mα are promoted to

quantum operators.

5.2.1 Special Relativity

Since SR is formulated in flat space time, i.e., no gravitational field, one cannot define

mG for a massive relativistic particle in this context. On the other hand, such a particle at

rest has rest energy defined by mass mR, and can have kinetic energy when accelerated,

which implies it has inertial mass mI as well. The standard relativistic energy-momentum

dispersion relation E2 = p2c2 +m2c4 suggests there is only one mass m. However, by a

careful comparison with the above non-relativistic case (see Appendix D.2), one obtains a

modified energy-momentum dispersion relation as [246]

E2 =
mR

mI
p2c2 +m2

R c4 . (5.8)

Using the above, one can show that the Lorentz factor γ obtains corresponding modifications

(see Appendix D.2) as

γ=
1√

1− mI
mR

v2

c2

. (5.9)

To see how this affects the Lorentz transformation, one considers a particle at rest, p = 0,

with energy E = mR c2, and applies a Lorentz boost transformation to an inertial frame with

velocity v = (vx, vy, vz). The particle is now in motion, p = mI vγ, and has energy given by
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Eq. (5.8). Such a Lorentz boost transformation, obtained for the first time, reads as [246]

Λμ
ν(v, mα) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ −γ
√

mI
mR

vx
c −γ

√
mI
mR

vy
c −γ

√
mI
mR

vz
c

−γ
√

mI
mR

vx
c 1+(γ−1)

v2
x

v2 (γ−1)
vx vy
v2 (γ−1) vx vz

v2

−γ
√

mI
mR

vy
c (γ−1)

vy vx
v2 1+(γ−1)

v2
y

v2 (γ−1)
vy vz
v2

−γ
√

mI
mR

vz
c (γ−1) vz vx

v2 (γ−1)
vz vy
v2 1+(γ−1)

v2
z

v2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.10)

Such a modification can also be considered for a general Lorentz transformation, which

includes rotations. However, one would learn nothing new, since the rotational part remains

unmodified. The Lorentz transformation, given by Eq. (5.10), ensures that for an arbitrary

4-vector V μ, the norm |V |2 = VμV μ is preserved in any reference frame. Note that vectors

with modifications to the spatial components, such as seen in Eq. (D.14) from Appendix

D.2, also have their norm preserved. By considering a system with two non-interacting

particles, it turns out that the modified Lorentz transformation from Eq. (5.10) implies a

violation

Λμ
ν(v, m1,α) pν1 +Λμ

ν(v, m2,α) pν2 �= Λμ
ν(v, m1,α+m2,α)(pν1 + pν2) , (5.11)

from where one can see that the particle masses do not just simply add up under the new

Lorentz transformation. This is known as the soccer-ball problem [42], and is a common

feature in most candidate theories of QG. The above result implies that if Nature does not

exhibit this problem on any scale, the LLI must necessarily be satisfied. Note however, that

regardless of whether LLI holds, or is broken, the modified Lorentz transformation from

Eq. (5.10) still forms a group and the generators of this group are still the standard Lorentz

generators, since modifications affect only the boost parameters. The above modifications

can be effectively interpreted as modifications to the speed of light c′ = c
√

mR/mI , which

is different for particles with different masses. See Appendix D.2 for further details on

modifications of SR.
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5.2.2 General Relativity

Near gravitating objects, a massive test particle interacts with their gravitational fields,

where one can naturally define mG, and include it in the above considerations. In GR

gravitational fields are treated as curvature of space-time, described by a metric gμν. Note

that a contravariant metric is considered, in order for the following results to be directly

applicable in Eqs. (5.1) and (5.2), given their definitions. In principle, one could start with

a covariant metric gμν, but would then need to obtain its inverse to apply it in Eqs. (5.1) and

(5.2). To modify GR in this formalism, one must solve the Einstein equations (see Eq. (1.3))

for a given curved space-time, and carefully evaluate the integration constants, which turn

out to be affected by mα. The integration constants are evaluated in the asymptotic limit,

where the gravitational potential is classical, i.e., described by φ, and modified through

Newton’s second law

mI a =−mG∇φ , (5.12)

which defines the WEP. Since GR is a relativistic theory, mR appears by means of SR mod-

ifications. Therefore, the resulting gμν obtains modification factors in the form of mass

ratios mα/mα′ , where α, α′ = I, G, R. Note that similar proposals, where properties of

curved space-times depend on test particle properties, have been studied elsewhere (for ex-

ample, see Refs. [40, 165, 247, 248, 249, 250]). In this section, three special cases of

curved space-times are considered, namely a curved space-time corresponding to a spheri-

cally symmetric weak gravitational field, its generalization to the Schwarzschild space-time

and the Kerr space-time. The above mass ratios change the differential equations of GR

(Einstein equations) only in the constant κ (see Appendix D.4). They effectively modify

the universal gravitational constant G (see following sections) and the speed of light c (see

Section 5.2.1). This implies that such modifications are universal for a given test particle,

which also applies in the case of time dependent curved space-times, such as gravitational
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wave considerations [236] and particle emitting (or absorbing) objects, for example, de-

scribed by the Vaidya metric [251].

Weak Gravitational Field

The most relevant case for Earth-based experiments is that of a weak gravitational field,

i.e., |φ/c2| � 1. This approximation is also valid for gravitational fields of planets and

far from other gravitating objects. The standard metric of a weak gravitational field in

Cartesian coordinates is given by [252]

gμν =

⎡
⎢⎣ 1−2

φ
c2 O(c−5)

O(c−5) −13x3

(
1+2

φ
c2

)
⎤
⎥⎦ , (5.13)

where the off-diagonal elements are of order O(c−5) and can be ignored. In the standard

derivation of the above metric, there is one integration constant K =−2GM/c2 = 2φr/c2,

where M is the mass of the central object (in context of the different masses, M is the rest

mass of the central object). However, in the case where one identifies masses mα of a test

particle, it turns out that K obtains a factor mG/mR (see Appendix D.3), which affects the

metric as [246]

gμν(mα) =

⎡
⎢⎣ 1−2 mG

mR

φ
c2 O(c−5)

O(c−5) −13x3

(
1+2 mG

mR

φ
c2

)
⎤
⎥⎦ , (5.14)

from where one can see that the mass ratio mG/mR modifies the metric in the temporal and

all spatial components, while the inertial mass mI does not affect it. Note that the above

metric is given in a Cartesian coordinate system for convenience of use in Earth-based

experiments. Because of the weakness of the gravitational field, it is straightforward to

expand the g00 component in Hamiltonians from Eqs. (5.19) and (5.24) as a power series.
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Schwarzschild Space-time

One of the most studied space-times in GR is the Schwarzschild space-time. Its metric

is obtained by solving the vacuum Einstein equations under the assumptions of staticity,

spherical symmetry and asymptotic flatness. The standard Schwarzchild metric in spherical

coordinates is given by [253]

gμν =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1− 2GM

c2r

)−1
0 0 0

0 −
(

1− 2GM
c2r

)
0 0

0 0 − 1
r2 0

0 0 0 − 1
r2 sin2 θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5.15)

In the standard derivation, there is also one integration constant K =−2GM/c2. However,

in the case where one identifies masses mα of a test particle, it turns out that K obtains a

factor mG/mR (see Appendix D.3), which affects the metric as [246]

gμν(mα) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1− mG

mR
2GM
c2r

)−1
0 0 0

0 −
(

1− mG
mR

2GM
c2r

)
0 0

0 0 − 1
r2 0

0 0 0 − 1
r2 sin2 θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.16)

from where one can again see that the mass ratio mG/mR modifies the metric only in the

temporal and radial components, while the inertial mass mI does not affect it. Note that

the Schwarzschild metric in Eq. (5.16) and the weak field metric in Eq. (5.14) obtain

modifications in the same way. This is because the latter is a weak field limit of the former.

Kerr Space-time

One of the most interesting space-times in GR is the Kerr space-time, since it incorpo-

rates rotation of the central object. Most objects in the Universe, including astrophysical
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black holes, rotate at one rate or another and can in general be described by the Kerr space-

time. The Kerr metric is obtained by solving the Einstein equations under the assumptions

of stationarity, axisymmety and asymptotic flatness. The standard Kerr metric in spherical

coordinates is given by [253]

gμν =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ2

ρ2Δ 0 0 2 GM ar
c2 ρ2Δ

0 − Δ
ρ2 0 0

0 0 − 1
ρ2 0

2 GM ar
c2 ρ2Δ 0 0 −Δ−a2 sin2 θ

ρ2Δ sin2 θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.17)

where Σ2 =
(
r2 +a2

)2−a2Δ sin2θ, Δ= r2 − (2GM/c2)r+a2, ρ2 = r2 +a2 cos2θ and a

is the reduced angular momentum of the central object. In the standard derivation, there

are two integration constants K = −2GM/c2 and L = J/M c ≡ a, where J is the angular

momentum of the central object. K is obtained in the same way as in the Schwarzschild case

and L is obtained from the relativistic angular momentum, given by the energy-momentum

tensor of a rotating body [254]. However, in the case where one identifies test masses mα

of a test particle, it turns out K obtains a factor mG/mR and L obtains a factor
√

mI/mR (see

Appendix D.4), which affect the metric as [246]

gμν(mα) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σ2(mα)
ρ2(mα) Δ(mα)

0 0 2
mG m1/2

I

m3/2
R

GM ar
c2 ρ2(mα) Δ(mα)

0 − Δ(mα)
ρ2(mα)

0 0

0 0 − 1
ρ2(mα)

0

2
mG m1/2

I

m3/2
R

GM ar
c2 ρ2(mα) Δ(mα)

0 0 −Δ(mα)− mI
mR

a2 sin2 θ

ρ2(mα) Δ(mα) sin2 θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.18)

where Σ2(mα) =
(

r2 + mI
mR

a2
)2− mI

mR
a2Δ(mα) sin2θ, Δ(mα) = r2− mG

mR
(2GM/c2)r+ mI

mR
a2

and ρ2(mα) = r2 + mI
mR

a2 cos2θ. From the above modified Kerr metric, one can see that

all three masses mα modify the metric in all its non-vanishing components, unlike the
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Schwarzschild case in which only mG/mR are involved. If the rotation of such an object

vanishes, i.e., a −→ 0, then the modified Schwarzschild solution from Eq. (5.16) is recov-

ered. The fact that the inertial mass mI affects the metric only for the rotating (non-static)

case, can be interpreted as a consequence of inertial frame dragging induced by the rotation

of the central object.

The modifications from the above cases, can be effectively interpreted as modifications

to the universal gravitational constant G′ = GmG/mI . The modification of constant L (see

definition above), stems from the modification of c, shown in Section 5.2.1. To avoid the

above procedure for arbitrary space-times, one can assume G −→ G′ and c −→ c′ for a

given particle species, and solve the Einstein equations using standard methods.

5.2.3 Bosons

In the case of relativistic bosons in curved space-time, the Hamiltonian from Eq. (5.1)

contains three terms with mass. Since it has a form, similar to the classical Hamiltonian in

Eq. (5.5), one can identify mR and mI in the first two terms. The mass in the third term turns

out to be a combination of mR and mI , which is consistent with the modified Klein-Gordon

equation in curved space-time (see Appendix D.1). The gravitational mass mG plays a role

in the Hamiltonian through gμν(mα). The effective Hamiltonian for relativistic bosons from

Eq. (5.1) can then be written as

H = τ3
1√

g00(mα)
mR c2 − (τ3 + iτ2)

gi j(mα)√
g00(mα)

pi p j

2mI

+(τ3 + iτ2)
g0i(mα)√
g00(mα)

p0 pi√
mR mI

. (5.19)

From the above, one can obtain the modified Klein-Gordon equation in curved space-time

(see Appendix D.1), which is used to determine the corresponding modified scalar field
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Lagrangian in curved space-time [246]

L =
1

2
gμν(mα) ∂̃μΦ ∂̃νΦ− 1

2

m2
R c2

�2
Φ2 , (5.20)

where ∂̃μ =
(

1
c ∂0,

√
mR
mI
∂∂∂
)

(see Appendix D.2). The above Lagrangian can be used to test

QEP with bosons in the framework of QFT in curved space-time.

By promoting mα to quantum operators, mα −→ Mα as seen in Eq. (5.6), one notices

that the metric gets promoted to a quantum operator as well, gμν(mα) −→ gμν(Mα). Con-

sidering mα � 〈Hint,α〉/c2 and using Eq. (5.6), the Hamiltonian from Eq. (5.19) can be

written as [246]

H = τ3
1√

g00(Mα)
mR c2 − (τ3 + iτ2)

gi j(Mα)√
g00(Mα)

pi p j

2mI
+(τ3 + iτ2)

g0i(Mα)√
g00(Mα)

p0 pi√
mR mI

+ τ3
1√

g00(Mα)
Hint,R +(τ3 + iτ2)

gi j(Mα)√
g00(Mα)

Hint,I
pi p j

2m2
I c2

− (τ3 + iτ2)
g0i(Mα)√
g00(Mα)

Hint,R
p0 pi

2m3/2
R m1/2

I c2

− (τ3 + iτ2)
g0i(Mα)√
g00(Mα)

Hint,I
p0 pi

2m1/2
R m3/2

I c2
, (5.21)

where the additional terms with Hint,α represent first order corrections due to internal quan-

tum effects of a composite boson. They allow to make predictions to test such effects and

probe QEP. Note that terms with Hint,G are implicit in gμν(mα) and depend on the given

space-time. Note that also inverses of quantum operators are part of Eq. (5.21). Applying

this formalism to concrete physical problems may present a difficult computational chal-

lenge, which needs to be dealt with appropriately.

Considering the weak gravitational field space-time, given by the metric in Eq. (5.14),

one can see that the g0i(Mα) terms in the effective Hamiltonian in Eq. (5.21) vanish, be-

cause the off-diagonal components of the metric vanish. Since φ/c2 � 1, one can expand

g00(Mα) as a power series to first order in φ/c2. Eq. (5.21) in a weak gravitational field
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then reads as

H = τ3 mR c2 + τ3 mGφ+(τ3 + iτ2)
p2

2mI
+ τ3 Hint,R + τ3 Hint,G

φ
c2

+(τ3 + iτ2)
φ
c2

3mG p2

2mI mR
− (τ3 + iτ2)Hint,R

φ
c2

3mG p2

2mI m2
R c2

+(τ3 + iτ2)Hint,G
φ
c2

3 p2

2mI mR c2
− (τ3 + iτ2)Hint,I

φ
c2

3mG p2

2m2
I mR c2

− (τ3 + iτ2)Hint,I
p2

2m2
I c2

, (5.22)

which corresponds to a relativistic boson in a weak gravitational field. To obtain a Hamil-

tonian for a non-relativistic boson, one must diagonalize the above effective Hamiltonian,

represented by a 2× 2 matrix, and expand the obtained square root in a Taylor series, up

to terms of O(1/c2), since 〈p2〉 � m2
I c2 in the non-relativistic limit. The two diagonal el-

ements correspond to a particle and an anti-particle. The obtained Hamiltonian then reads

as

H = mR c2 +mGφ+
p2

2mI
+Hint,R −Hint,I

p2

2m2
I c2

+Hint,G
φ
c2

, (5.23)

which is exactly the non-relativistic, weak gravitational field result, obtained in Ref. [238].

One can use Eqs. (5.22) and (5.23) to test QEP in their respective regimes.

5.2.4 Fermions

In the case of relativistic fermions in curved space-time, the Hamiltonian from Eq. (5.2)

contains one term with mass, which can be identified as mR. By a similar reasoning as was

used to obtain Eq. (5.8) (see also Appendix D.3), one finds that the rest and inertial masses

also affect the first term in Eq. (5.2). The second term acquires no such modifications. The

gravitational mass mG plays a role in the Hamiltonian through gμν(mα), and implicitly also

through γμ and Γμ. The Dirac Hamiltonian for relativistic fermions from Eq. (5.2) can then
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be written as [246]

H =
1

g00(mα)
γ0 γ i

√
mR

mI
pi c+ i�Γ0 +

1

g00(mα)
γ0 mR c2 . (5.24)

From the above, one can obtain the modified Dirac equation in curved space-time (see

Appendix D.1), which is used to determine the corresponding modified Dirac Lagrangian

in curved space-time [246]

L =Ψ
(

i�γμ D̃μ −mR c
)
Ψ , (5.25)

where D̃μ =
(

1
c D0,

√
mR
mI

D
)

(see Appendix D.2). The above Lagrangian can be used to

test QEP with fermions in the framework of QFT in curved space-time.

As seen in the case for bosons, one needs to promote mα to quantum operators, mα −→
Mα, and the metric gets promoted to a quantum operator in the same manner, gμν(mα)−→
gμν(Mα). Considering mα � 〈Hint,α〉/c2 and using Eq. (5.6), the Hamiltonian from Eq.

(5.24) reads as

H =

√
mR

mI

1

g00(Mα)
γ0 γ i pi c+ i�Γ0 +

1

g00(Mα)
γ0 mR c2

+
1

2
√

mR mI c2

1

g00(Mα)
γ0 γ i Hint,R pi c− m1/2

R

2m3/2
I c2

1

g00(Mα)
γ0 γ i Hint,I pi c

+
1

g00(Mα)
γ0 Hint,R , (5.26)

where the additional terms with Hint,α represent first order corrections due to internal quan-

tum effects of a composite fermion. They allow to make predictions to test such effects

and probe QEP. Note that terms with Hint,G are implicit in gμν(mα), γμ and Γμ, and depend

on the given space-time. Note that inverses of quantum operators are part of Eq. (5.26)

as well. Applying this formalism to concrete physical problems, may present the same

computational challenge as in the case of bosons.
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Considering the weak field space-time, given by the metric in Eq. (5.14), one can

see that the vanishing off-diagonal terms do not explicitly change the form of the Dirac

Hamiltonian in Eq. (5.24), as is the case for bosons. Since φ/c2 � 1, one can again expand

g00(Mα) as a power series to first order in φ/c2. Eq. (5.26) in a weak gravitational field

then reads as

H =

√
mR

mI
γ0 γ i pi c+ γ0 mR c2 + γ0 mGφ+2

mG√
mR mI

γ0 γ i φ
c2

pi c+ γ0 Hint,R

+ γ0 Hint,G
φ
c2

+
1

2
√

mR mI c2
γ0 γ i Hint,R pi c− m1/2

R

2 m3/2
I c2

γ0 γ i Hint,I pi c

+
2√

mR mI c2
γ0 γ i Hint,G

φ
c2

pi c− mG

m3/2
R m1/2

I c2
γ0 γ i Hint,R

φ
c2

pi c

− mG

m1/2
R m3/2

I c2
γ0 γ i Hint,I

φ
c2

pi c , (5.27)

which corresponds to a relativistic fermion in a weak gravitational field. To obtain a Hamil-

tonian for a non-relativistic fermion, one must diagonalize the the above operator, repre-

sented as a 4×4 matrix, and expand the obtained square root in a power series, up to terms

of O(1/c2), since 〈p2〉� m2
I c2 in the non-relativistic limit. The obtained Hamiltonian then

reads as Eq. (5.23).

The non-relativistic boson and fermion cases in a weak gravitational field show that the

generalization of the QEP formalism in this chapter is necessary and sufficient to obtain

the earlier results of Ref. [238] as a special case for weak gravitational fields and non-

relativistic velocities.

5.3 Experimental Proposals

Although QEP is intrinsically quantum in nature, any violations are expected to leave

traces in the classical Lorentz transformation Λμ
ν(v, mα), as well as in the classical curved

space-time metric gμν(mα). They appear as averaged deviations of mass ratios from unity,

given by the expectation values 〈Mα/Mα′ 〉. In principle, this can provide measurable ef-
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fects. There are several ways in which QEP can be tested. The most common tests can be

performed in Earth-based experiments, which correspond to non-relativistic particle speeds

and a weak gravitational field (see Eq. (5.23)). These include the neutron interferometer

experiment by Colella, Overhauser and Werner (COW) [255] to test the WEP and the pro-

posals mentioned in Ref. [238] to test the LLI and the LPI. The COW experiment can be

used to measure the effective gravitational mass 〈MG〉 of the neutron, since the violation of

the QEP modifies the phase shift to [246]

ΔΦ=
mG gA
�v

+
Eint,G gA
�c2 v

, (5.28)

where g is the gravitational acceleration, A = lh the area, l the length and h the height of the

interferometer, v is the velocity of the neutron in the lower branch and Eint,G = 〈Hint,G〉 is

the deviation, obtained from the precision of measuring ΔΦ, which is ∼ 10−3 [256]. The ef-

fective inertial mass of the neutron corresponds to the accepted value of the mass of the neu-

tron, since it is measured kinematically. Comparing the obtained effective masses provides

an upper bound of ∼ 10−3 for the deviation of mG/mI from unity. Promoting the above

masses to quantum operators and considering the semi-classical limit, the above bound cor-

responds to the upper bound on the difference of eigenvalues (Eint,G −Eint,I)/mc2. This

provides a test for the WEP. See Ref. [3] for more similar tests.

To test the QEP at relativistic speeds in the absence of a gravitational field, one can, for

example, consider the mean lifetime τ of a particle in a cosmic ray shower, which is given

by

τ= γτ0 , (5.29)

where τ0 is the mean lifetime of the particle in its rest frame and γ is Lorentz factor, defined

in Eq. (5.9), containing the mass ratio mI/mR. Considering a charged pion decay, the mean

lifetime in its rest frame is τ0 = (26.0231± 0.0050)ns [257]. It can be shown that this
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measurement provides a speed dependent upper bound5of [246]

δ< 3.84×10−4

(
c2

v2
−1

)
(5.30)

for the deviation of mI/mR from unity. One can see that the upper bound becomes smaller

as the speed of the pion increases. Pions with the highest measurable energies travel with

speeds close to the speed of light v = 0.9999996c (inferred from Ref. [258]). For such

pions the above upper bound is δ< 3.33×10−10. Promoting the above masses to quantum

operators and considering the semi-classical limit, the above bound corresponds to the up-

per bound on the difference of eigenvalues δ= (Eint,I −Eint,R)/mc2, where Eint,I = 〈Hint,I〉
and Eint,R = 〈Hint,R〉. This provides a test of the LLI. Other tests of the LLI, using electro-

magnetic radiation, have been done in the past [3]. However, the results provided here are

the first test of LLI for a massive particle to one’s knowledge.

To test the QEP in strong gravitational fields and at relativistic speeds, one can, for

example, consider the perihelion precession of planets. Following the procedure outlined

in Ref. [236] (p. 194-200) and using the metric from Eq. (5.16), it turns out that the

perihelion precession during one orbit gets modified by the relevant mass ratio as [246]

Δϕ= 6π
mG

mR

GM
c2 a(1− e2)

, (5.31)

where a is the semimajor axis and e the eccentricity of the orbit. Considering a number of

orbits N around the central object, the above expression is multiplied by N and the devia-

5One can write the relevant mass ratio as

mI

mR
= 1+δ ,

where δ � 1 is the deviation of mI/mR from unity. By expanding γ over δ and comparing the obtained

deviation with the measurement uncertainty of τ

γστ0
≈ γ0στ0

= γ3
0

v2

2c2
τ0 δ ,

where γ0 = 1/
√

1− v2

c2 , one obtains the deviation in Eq. (5.30).
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tion should be detectable for a large enough N. It can be shown that the precision of the

measured precession of the perihelion of Mercury, ΔϕMercury = (42.9799± 0.0009)”/cy

[259], provides an upper bound of 2.1×10−5 for the deviation of mG/mR from unity. Pro-

moting the above masses to quantum operators and considering the semi-classical limit,

the above bound corresponds to the upper bound on the difference of eigenvalues (Eint,G −
Eint,R)/mc2. This provides a test for the LPI. See Ref. [3] for more similar tests.

5.4 Summary

In this chapter, a generalization of the applicability of QEP, introduced in Ref. [238], is

proposed. Specifically, such that it is valid for arbitrary velocities, arbitrary curved space-

times, and for bosonic and fermionic particles. The most important results that one obtains

here are the modifications of the Lorentz symmetry and the curved space-time geometry.

The modified Lorentz symmetry implies that particles with different masses have differ-

ent “speeds of light”, i.e., different maximum speed limits, in case of LLI violation. For

multi-particle systems, this introduces the soccer-ball problem, which commonly emerges

in candidate theories of QG. On the other hand, the curved space-time geometry probed by

a test particle, e.g., via the geodesic motion that it follows, depends on the ratios of masses

mα/m′
α of the test particle. In other words, the geometry experienced by an observer is no

longer just a function of the curved space-time metric, but also depends on the properties of

the observer itself, unless QEP holds exactly. A violation of QEP causes deviations of the

mass ratios from unity, which are expected to be very small. Therefore, no such violations

have been observed so far. However, with ever increasing precision of measurements, QEP

violations should eventually be observed. On the other hand, if QEP is preserved in Nature,

all mass ratios equal unity, and one would not be able to measure any such effects.

The generalization, introduced here, must hold for any choice of curved space-time

gμν, which turns out to be a quantum operator in general. The way it appears in the rele-

vant equations of motion, may present a significant computational challenge. Applying the
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formalism to concrete physical problems remains the central problem in calculating exact

dynamics of relativistic quantum particles in strong gravitational fields. One way out is to

consider the semi-classical limit, where there is no need to obtain the eigenfunctions related

to internal particle dynamics, and their eigenvalues become classical physical quantities.
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Chapter 6

Conclusions

“I think it’s much more interesting to

live not knowing than to have answers

which might be wrong.”

Richard P. Feynman

It is not unreasonable to expect that there will be a single theory, which describes the

Universe from the smallest to the largest scales. Such a theory is called a theory of Quantum

Gravity. Currently, there are two successful theories, separately describing small and large

scales, namely QT and GR, respectively. In Chapter 1 it was shown that there is no simple

way to construct a consistent theory of QG, since formalisms of QT and GR are not fully

compatible, due to differences in treating space-time and particle descriptions. Such a

theory of QG should be able to quantize gravitational interactions of particles, as well as

describe the fundamental nature space-time. So far, several attempts have been made to

provide a theory of QG. Among others, ST and LQG are the best studied candidate theories

of QG, while DSR is considered as a certain limit of QG (see Section 1.1). Since such

theories assume that QG effects manifest at energies around EP and scales around �P, while

current experimental capabilities can achieve energies Eexp � EP and scales �EW � �P, it

is currently not possible to directly test them.

Most candidate theories of QG agree on the existence of a minimum measurable length

�min ∝ �P. However, since there is no fundamental reason why the proportionality factor

between �min and �P to be of the order O(1), one can parameterize �min to be anywhere
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between �P and �EW . This brings detection of QG effects within the reach of low energy

Earth-based experiments, as well as in cosmological observations, and gives rise to the

field of QGP (see Chapter 2). It turns out that the existence of �min implies a modification

of the Heisenberg Uncertainty Principle (see Section 2.1). Such a modification is called

the Generalized Uncertainty Principle, which can take different forms as shown in Eqs.

(2.35), (2.36), (2.37) and (2.42) (see Section 2.2). GUP is a central tool in QGP, which is

used to provide predictions of QG signatures at low energies in Earth-based experiments

(see Chapter 3), and to provide explanations of anomalous phenomena in cosmological

observations (see Chapter 4). In this work (Chapters 3 and 4), the ADV model of GUP

from Eq. (2.42) is used, due to it being one of the most general forms of GUP, while other

GUP models correspond to special cases of this model. Note that the GUP parameters are

currently bound by the electroweak scale α0,
√
β0 < αEW = 1017, which means that QG

signatures are expected to be observed below this bound. As part of this work, QGP is also

explored from a different angle, where one proposes and explores novel concepts, such as

the Quantum Equivalence Principle (see Chapter 5), which may lead towards a formulation

of a consistent theory of QG.

6.1 Earth-based Experiments

QGP in Earth-based experiments (see Chapter 3) is one of the most important ap-

proaches towards QG. It makes predictions of QG effects, which can be tested under con-

trolled conditions, and compared to other effects of other origin, for the purpose of falsifica-

tion. In the case, where such experiments detect no QG signatures, one can constrain GUP

parameters, which sets an upper bound on their true value, and provides stricter conditions

for future QGP considerations. Note that all bounds on GUP parameters, obtained by QGP

in Earth-based experiments, depend on the precision of the considered experiment. Since

experimental precision increases with time, the upper bound on GUP parameters decreases.

This suggests that detection of QG signatures is only a question of time. In this work, QG
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signatures in two specific natural phenomena, testable in Earth-based experiments, were

explored in detail, namely Bose-Einstein condensates (see Section 3.1) and Larmor fre-

quencies of atoms in an external magnetic field, measured in a magnetometer experiment

(see Section 3.2).

6.1.1 Bose-Einstein Condensate

Bose-Einstein condensation is an interesting phenomenon, which has a variety of theo-

retical and experimental implications. For a BEC experiment with a high enough measure-

ment precision, signatures of extra compact dimensions and QG effects, motivated by GUP,

can be observable. Such signatures are predicted through respective modifications of the

critical temperature Tc and the fraction of bosons in the ground state f0 (see Section 3.1).

The predicted signatures which arise from the presence of extra compact dimensions

are many orders of magnitude smaller than the current experimental capabilities. However,

they imply interesting bounds on the sizes of such compact spaces. If such high precisions

were to be achieved, one obtains an upper bound R1, as well as the lower bound R2 for the

radius of compact dimensions, given the topology Rd × SN of the underlying spatial part

of the manifold. This is shown in Fig. 3.1, for d = 3 and N = 1. It turns out that the

lower bound is not useful in this context, since it is of the order R2 ∼ 1m [130]. However,

these results can have far-reaching implications in the search for extra compact dimensions,

which is an important ingredient in certain candidate theories of QG, such as ST.

The QG signatures, motivated by GUP, have been explored for three distinct cases of

BECs, namely non-relativistic, neutral relativistic and charged relativistic BECs. Their

respective QG modified observables are given by Eqs. (3.26), (3.40) and (3.41) for Tc,

and by Eqs. (3.28), (3.44) and (3.45) for f0. In all cases, increasing the number density n

of a boson gas, influences the magnitude of the QG corrections, and for sufficiently high

densities, this increase may be by one or more orders of magnitude. This is shown in Figs.

3.2 and 3.4 for Tc, while the same holds for f0, since the maximum of its QG correction
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is Δ f0 ∝ Tc. Furthermore, the range of Δ f0 increases with increasing Tc. In obtaining the

above QG modifications, linear and quadratic corrections were considered separately. If

both are considered simultaneously, the calculations would be notably more complicated,

but one would learn nothing new, since the results in Eqs. (3.26), (3.40), (3.41), (3.28),

(3.44) and (3.45) would change only by a numerical factor of order ∼ O(1) in the quadratic

correction term [130].

Currently, the only case that can be experimentally realized is a non-relativistic BEC.

Although a relativistic BEC has not been experimentally realized so far, the provided theo-

retical predictions will be applicable to test QG as soon as such a state is finally achieved.

The current experimental precision in BECs provide the GUP parameters bounds α0 < 1019

and β0 < 1046 from Tc measurement precision (see Fig. 3.2), and α0 < 1025 and β0 < 1052

from f0 measurement precision (see Fig. 3.3) [130]. Compared to the attainable elec-

troweak scale αEW , one can conclude that QG signatures are not expected to be observed

within the current BEC experiments. However, as experimental precisions increase, one

expects to observe QG signatures in BECs in the future.

6.1.2 Magnetometer Experiment

Magnetometers are highly advanced experimental apparatuses, which can be designed

to measure Larmor frequencies of atoms in an external magnetic field, with unprecedented

precision. This makes a magnetometer experiment an ideal candidate to search for QG

signatures. Such signatures are predicted through GUP motivated QG modifications of the

Larmor frequency of an atom in an external magnetic field [48]. A specific experimental

proposal is considered, where the Larmor frequency of 129Xe atoms in an external magnetic

field B = 1T is measured (see Section 3.2) [149].

Given the formulation of QG modifications of the Larmor frequency, it is proposed that

such modifications manifest through relative velocities of individual atoms. A natural way

to induce such velocities is to consider a thermalized ensemble of atoms. This means they
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follow a certain velocity distribution at a given temperature. It turns out that the Maxwell-

Boltzmann distribution is the relevant velocity distribution for the proposed experiment.

This gives rise to a QG induced distribution of Larmor frequencies of an ensemble of atoms,

given by Eq. (3.70). Such a distribution causes a deviation of the average Larmor frequency

from its standard prediction, given by Eq. (3.72) (see also Fig. 3.6). Furthermore, it causes

a distribution of deviations from the standard prediction, which implies a width of the QG

signature, described by the standard deviation or the FWHM, given by Eqs. (3.82) and

(3.83), respectively (see also Figs. 3.7 and 3.9).

On the other hand, velocities of atoms can also be induced by non-thermal methods.

One of such methods is using convection currents. In this case, a gas of atoms is passed

through a duct at a controlled velocity. For the proposed experiment, a square duct is

considered and a velocity distribution of an incompressible, viscous fluid is assumed. Since

the experiment can be designed to measure the Larmor frequency either in a line through

the cross section of the duct, or the whole cross section of the duct, one can predict the

corresponding QG signatures, given by Eqs. (3.92) and (3.93), respectively (see also Fig.

3.10).

The projected precision of the proposed magnetometer experiment suggests that QG

signatures in Larmor frequency measurements can be observable for α0 ≈ 108 (see Figs.

3.6 and 3.7 and 3.10) [149]. In the above, one assumes β0 = α2
0. Since this estimate is well

below αEW , there is a strong chance to detect QG signatures for the first time. In case no

such signatures are observed, an unprecedented bound of α0 < 108 will be set.

6.2 Cosmology

Cosmology (see Chapter 4) has proven to be an important arena for QGP research. It

provides a range of unique phenomena, which cannot be recreated in Earth-based exper-

iments. Furthermore, several cosmological observations contradict predictions, given by

frameworks of QT and GR. This suggests that there must be some kind of unknown funda-
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mental mechanism, which accounts for such anomalies. It turns out that a likely explanation

is QG, since it is believed to affect the evolution of the early Universe. Although QGP in

cosmology can be used to constrain GUP parameters through predicting deviations from

well understood phenomena, it can also be used to estimate the GUP parameters from the

observed anomalies, thus effectively explaining them. In this work, viable explanations of

two observed cosmological anomalies were provided, namely the EDGES anomaly (see

Section 4.1) and the observed Baryon Asymmetry in the Universe (see Section 4.2). Note

that the EDGES anomaly was considered in a more general QGP context, i.e., through

Modified Dispersion Relations.

6.2.1 The EDGES Anomaly

The EDGES collaboration has discovered an anomalous absorption signal in the CMB

radiation spectrum. This signal is larger by about a factor of 2 with respect to the expected

value (assuming that the background is described by the ΛCDM model), i.e., the EDGES

anomaly. A proposal that MDRs can account for the EDGES anomaly, was explored in

detail (see Section 4.1). The results indicate that considered MDRs (cases 1-3 in Section

4.1.1), originating from existing candidate theories of QG and thought experiments with

�min, can provide a viable mechanism which explains the EDGES anomaly, through mod-

ifying the thermal spectrum of photons, in two different scenarios. In the first scenario,

MDR parameters are not constant, i.e., they are functions of redshift z (or scale) (see Figs.

4.1, 4.2, 4.3, 4.4 and 4.5). In the second scenario, it is proposed that a consistent theory of

QG predicts non-trivial deformation parameters (see Figs. 4.6, 4.7 and 4.8).

In the first scenario, it was shown that the above MDRs lead to the estimation of the

MDR parameters (η, α0,
√
β0, α, λ′)

∣∣z=zE ≈ 1032 . This estimation is outside the bound

provided by the electroweak scale, i.e., (η, α0,
√
β0, α, λ′) |z=zE � αEW . On the other

hand, given the precision with which the CMB temperature in the current epoch, z = 0,

was measured, one obtains a constraint (η, α0,
√
β0, α, λ′) |z=0 < 1028, which is consistent
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with the observed CMB black body spectrum. The above suggests that the MDR parame-

ters are functions of redshift z and as such provide an explanation of the EDGES anomaly.

The time evolution of MDR parameters in the later stages of the Universe must be slow

or nearly constant, since the same physics can be observed at redshifts in the range of the

observable Universe, between z ≈ 13 to z = 0 [260]. However, in the earlier stages of the

Universe, it could have been faster, as the EDGES anomaly suggests. This can provide an

idea of the redshift dependence, and can point towards a phase transition of some sort.

In the second scenario, one lets the deformation parameters ω, γ and δ vary, in order to

explain the EDGES anomaly. One sets η, α0,
√
β0, α, λ′ =αEW and fits the MDR modified

thermal spectrum of photons to the anomaly, from which the bounds of the deformation pa-

rameters ω, γ and δ follow. Similar results were found in Ref. [174]. However, MDRs with

non-trivial power dependencies require further research to better understand their relevance

to QG. It will be interesting to study the consequences of such deformation parameters in

various contexts, such as Earth-based experiments and Gamma Ray Burst physics [101].

6.2.2 Baryon Asymmetry in the Universe

One can explain the observed baryon asymmetry in the Universe through a mechanism,

which satisfies the three Sakharov conditions. It has been shown that such a mechanism can

indeed be constructed in the context of QG effects in the early Universe (in the radiation-

dominated era, where the baryon asymmetry froze-in), applied through GUP (see Section

4.2). The baryon number B violating interactions are considered in the context of GUTs,

since the energies in the radiation-dominated era correspond to those in GUTs [227]. The

CP symmetry is broken by considering coupling between the derivative of the Ricci scalar

and the baryon current, i.e., coupling between space-time and matter, given by a Lagrangian

interaction term from Eq. (4.41). And finally, the thermal equilibrium is broken by QG

effects, introduced through GUP. Therefore, such a mechanism satisfies all three Sakharov

conditions. The first two Sakharov conditions are simply implied by proposing Eq. (4.41)
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at GUT energies, while the third is more involved.

It was shown that GUP modifies the apparent horizon area of a black hole (see Eq.

(4.27)), which in turn modifies the Bekenstein-Hawking entropy of a black hole (see Eq.

(4.32)). The holographic principle then ensures this entropy is valid for the apparent horizon

of the observable Universe. By using the first law of thermodynamics and the continuity

equation, one obtains the QG modified Friedmann equations (see Eqs. (4.36) and (4.37)),

which break thermal equilibrium. This ensures that the third Sakharov condition is met,

which in turn produces a non-vanishing freeze-in of the baryon asymmetry in the early

Universe (see Eq. (4.55)). It may be noted that the QG modified Friedmann Eqs. (4.36)

and (4.37) are exact for the considered GUP model (ADV model from Eq. (2.42)). By

comparing the prediction to the measured baryon asymmetry, it was possible to obtain

estimates on the dimensionless GUP parameters α0 ≈ 105 and |β0| ≈ 109, which determines

the QG length scale �min ≈ 10−30 m. This estimate is well within the bound, set by αEW ,

and is one of the most stringent that has been obtained so far. Furthermore, it may also

reflect the true QG scale. It is hoped that Earth-based experiments and observations in the

near future may be able to detect QG signatures at such a scale. Note that the obtained

values for the quadratic GUP parameter β0 are close to the upper and lower bounds on the

parameter found in a recent work (see Ref. [81]).

Finally, it should be mentioned that the baryon asymmetry results imply a negative value

of the GUP parameter, i.e., β0 < 0. This is commonly found in cosmological QGP consid-

erations [54, 81, 152, 154, 157], and can arise from non-trivial structures of the space-time,

such as the discreteness of space-time [66, 76, 261, 262, 263, 264, 265]. A similar result

follows also in the context of a crystal lattice [153]. This suggests that at the fundamental

level, space-time can have a lattice or granular structure.
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6.3 The Quantum Equivalence Principle

A precise formulation of QEP is a necessary step towards formulating a fully consistent

theory of QG, since in such a theory, gravity would be an intrinsically quantum interaction.

Based on the formulation from Ref. [238], a generalization was proposed. It extends to

bosonic and fermionic particles with arbitrary velocities and in generic curved space-times

(see Chapter 5). Relativistic descriptions of bosons and fermions in curved space-times (see

Eqs. (5.1) and (5.2)) were used as the starting point in formulating such a generalization.

The inertial, gravitational and rest masses of the test particle, mI , mG and mR (mα, where

α = I, G, R for short), respectively, were distinguished between each other, and identified

in these descriptions (see Eqs. (5.19) and (5.24)).

Such a generalization implies modifications of the Lorentz symmetry and curved space-

time geometries, which turn out to depend on ratios mα/m′
α, in case of QEP violation. In

other words, for such a violation, the Lorentz symmetry and curved space-time geometries

depend on properties of the particle itself. While it may be argued that such observer depen-

dence of measurable physical quantities is already a feature of standard QT, one can note

that the observer dependence in the context of QEP manifests even at the purely classical

level. Although seemingly counter-intuitive, there is nothing intrinsically impermissible

about it. One can interpret modifications of the Lorentz symmetry and curved space-time

geometries, effectively, as modifications of the speed of light c′ = c
√

mR/mI and the uni-

versal gravitational constant G′ = GmG/mI , respectively. This also implies a modification

of constant κ from the Einstein equations (see Appendix D.4). Note that such modifica-

tions cannot be used to simply redefine the above constants for a general case, since they

are different for different species of test particles.

For modifications in GR, three examples of curved space-times have been considered,

namely the weak gravitational field space-time, the Schwarzschild space-time and the Kerr

space-time. It turns out that all of them depend on mG and mR, while only the Kerr metric

additionally depends on mI , due to the rotation of the central object. From this, one may be
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tempted to conjecture that if any gravitating central object causes inertial frame dragging in

its vicinity, then mI will affect the metric as well.

Promoting masses mα to quantum operators, i.e., mα −→ Mα, gives rise to additional

terms with Hint,α, in the equations of motion (see Eqs. (5.21) and (5.26)), describing effects

due to internal dynamics of the test particle. In Ref. [238], the additional terms with Hint,α

describe first order corrections to internal dynamics of the test particle, corresponding to

special relativistic time dilation and gravitational time dilation. On the other hand, the

above generalization, provides exact corrections of such effects. This formulation must

hold for any choice of curved space-time, described by metric gμν. Note that in the non-

relativistic and weak gravitational limits, one obtains the results from Ref. [238], which

suggests that such a generalization is indeed correct.

Applying such a generalized formalism to concrete physical problems may present a

significant computational challenge, because the modified curved space-time metric be-

comes a quantum operator, gμν(mα) −→ gμν(Mα), when mα −→ Mα. For phenomeno-

logical considerations, one can consider the semi-classical limit, where the eigenvalues of

Hint,α become classical physical quantities Eint,α. This allows one to test QEP in a novel

way, using high-energy Earth-based experiments, such as particle accelerators, and strong

gravitational fields, such as near stars and black holes.

A handful of examples of experimental test of QEP were described in Section 5.3. The

bounds on deviations of the mass ratios from unity, obtained through QEP considerations

are � 10−3 for WEP, � 10−10 for LLI and � 10−5 for LPI, and bounds obtained through

standard methods are � 10−15 for WEP [242], � 10−19 for LLI [243] and � 10−7 for LPI

[244]. One can see that bounds obtained through QEP considerations are not as promising

as the ones, obtained through standard methods. However, the approach through QEP is

fairly new, and only a handful of test were considered. Considerations in other, more precise

tests may provide unprecedented bounds, or even detect QEP violations.
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6.4 Future Prospects

At this point, no QG signatures or QEP violations have been detected in Earth-based

experiments, while explanations of observed anomalies in terms of QG effects in cosmology

require further verification and understanding. There are also several theoretical issues

which need to be dealt with appropriately, such as the soccer-ball problem and conservation

laws in both, GUP and QEP considerations. However, the future of QGP looks promising.

There is an abundance of phenomenological considerations, which provide a variety of

predictions of QG signatures for different types of Earth-based experiments. Many of these

predictions are yet to be tested. Since the experimental precision is ever increasing, it is

expected that QG effects are detected in Earth-based experiments in the future. On the

other hand, cosmological QG considerations already provide estimates, which determine

�min. However, QEP violations have not been studied extensively, since it is a fairly new

proposal. Therefore, it is necessary to explore QEP in detail, in order to stringently test its

implications, and verify its relevance to the formulation of a consistent theory of QG.

The QGP considerations, discussed in this work, are only a small fraction of research,

which is required to test QG and its foundations. Attempts to observe QG effects and to

formulate candidate theories of QG are currently only in their initial stages. While one an-

ticipates experimental precisions to increase with time, further theoretical research is nec-

essary to learn as much as possible about the role and implications of QG in physics within

current experimental capabilities. Such theoretical research will be put under scrutiny, once

QG is experimentally confirmed. In the following, possible extensions and applications of

results, obtained in this work, are proposed.

6.4.1 Statistical Mechanics

Considering QG effects in BECs (see Section 3.1), one finds that QG signatures increase

with increasing n, while no upper bound on n was taken into account, allowing arbitrary

magnitudes of QG signatures. However, experimental realizations of BECs use low num-

152



6.4. FUTURE PROSPECTS

ber densities of bosons n ∈ (1019, 1021)m−3, in order to decrease the probability of them

colliding and forming molecules, thus ensuring a stable BEC state [123]. It will be interest-

ing to extend the analysis to include a maximum allowed number density nmax, which will

provide a more strict constraint on the magnitude of QG signatures.

In the above BEC considerations, also a QG modified density of states g(ε) was ob-

tained for cases of non-relativistic and relativistic particles (see Eqs. (3.24) and (3.37),

respectively). They are valid for both types of particles, bosons and fermions. It turns out

that all observables Y in statistical mechanics can be evaluated by ensemble averages, given

in terms of phase space integrals

〈Y 〉=
∫ ∞

0
Y(ε)g(ε) fBE(FD)

(ε)dε , (6.1)

where the density of states is essential in their construction (see Appendix A.1 for details).

This implies that the QG modified densities of states can be used throughout statistical me-

chanics considerations, thus providing a rich QGP in this field. For example, one can obtain

a QG modified neutron degeneracy pressure and apply it to neutron stars, which can provide

constraints and insights on the neutron star equation of state. Other QGP applications of

densities of states range from condensed matter physics, interstellar and intergalactic gases

and early universe cosmology.

6.4.2 Nuclear Physics

In the magnetometer experiment considerations (see Section 3.2), it was shown that a

QG modification of the Larmor frequency can be extended to the nucleus of an atom. In

doing so, the implicit form of a QG modified Schrödinger equation of an atomic nucleus

was obtained as

i�
∂
∂ t

ψN(r, t) = HQG
0N ψN(r, t) , (6.2)
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where HQG
0N is the relevant QG modified Hamiltonian of the nucleus (see Eq. (3.54)). It

turned out that the above was not relevant in the context of Larmor frequencies. However,

it can provide a framework to explore QG effects in nuclear physics. Specifically, one can

explore QG effects in the nuclear shell model.

6.4.3 Cosmology

The results, obtained in explaining the EDGES anomaly in terms of MDRs (see Sec-

tion 4.1), on one hand suggest the MDR parameters (including GUP parameters) must be

redshift (scale) dependent, to account for the observations. Similar results were obtained

in a work, where Dark Matter effects in rotational curves of galaxies are proposed to arise

as a consequence of QG, motivated by GUP [151]. Also, other cosmological considera-

tions provide a negative value for the quadratic GUP parameter β0 < 0, while Earth-based

experiments provide β0 > 0. Such results imply that the Planck length �P can indeed be

scale dependent. The only reasonable source of such a dependence can only be through the

universal gravitational constant G ∝ �2
P. Such a dependence of G was proposed by authors

of Ref. [266], which attribute Dark Matter and Dark Energy effects solely to gravity on dif-

ferent scales. Therefore, one can provide a connection between the results, found in such

works and explore the scale dependence of G, or equivalently �P.

On the other hand, a viable explanation of the EDGES anomaly was proposed also

in terms of non-trivial deformation parameters. Proposals of such MDRs are fairly new

and need further exploration to understand their relevance to QG. They can be tested in

other cosmological scenarios, such as explaining the observed baryon asymmetry in the

Universe and BBN, and precise Earth-based experiments, such as particle accelerators and

magnetometers. This will provide a clear comparison between this and the usual MDR

models, and point out any possible inconsistencies.

One of the results, obtained in the baryon asymmetry considerations (see Section 4.2), is

the QG modification of Friedmann equations (see Eqs. (4.36) and (4.37)). Since Friedmann
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equations, which are central in the standard model of cosmology, govern the dynamics of

the Universe, the QG modified Friedmann equations can provide a rich QGP in cosmology.

They can be applied to practically all cosmological considerations. For example, the BBN,

where GUP parameters can be bound from measurements of primordial abundances, frozen

in at the freeze-out temperature Tf as

δT
Tf

= α0
π3/2 G
3�c5

√
g∗

1620
k2

BT 2
0 f −β0

π3 g∗G2

135�2 c10
k4

BT 4
0 f . (6.3)

Note that the BBN measurements do not manifest any anomalies at the current measurement

precision. Therefore, only upper bounds on GUP parameters can be obtained. Another

interesting application of QG modified Friedmann equations would be at the inflationary

epoch of the Universe, where one expects strong QG effects.

6.4.4 The Quantum Equivalence Principle

QEP presents a novel approach to QG. It is believed to be the foundation of a con-

sistent theory of QG. Therefore, it needs to be rigorously tested, before it is accepted as

fundamental concept of Nature. In this work, a generalization of its applicability was intro-

duced for the first time, which provides a general framework, where QEP can be tested in

a range of different scenarios, namely weak gravitational fields, strong gravitational fields,

non-relativistic speeds, relativistic speeds and everything in between, for either bosons or

fermions. This provides a rich ground for QGP in the context of QEP. One can propose

separate tests for WEP, LLI and LPI in Earth-based experiments and in cosmological or

astronomical observations. For example, one can test the WEP in specifically designed

magnetometer experiments, the LLI in scattering cross sections, measured in particle col-

liders and the LPI in galactic centres or quasars. On the other hand, one can attempt to find

exact solutions of particle dynamics for Eqs. (5.21) and (5.26).
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6.5 Final Remarks

In the last 150 years, physics has developed at an unprecedented rate, compared to its

relatively long history, when classical mechanics was thought to be a complete description

of Nature. As new discoveries could no longer be explained in terms of classical mechanics,

it was clear that Nature is fundamentally more complex and requires a better description.

The introduction of QT has changed the concepts of position and velocity of a particle in

terms of the Heisenberg Uncertainty Principle, while the introduction of GR has changed

the notion of space and time in terms of a single entity known as space-time, which can

change its geometry in response to mass. Research in these fields has greatly advanced the

understanding of fundamental mechanisms of Nature. However, there is still a lot more to

be uncovered.

Considering the limits of QT and GR, one can find that both fail to consistently describe

certain scenarios, expected to be found in Nature, such as centres of black holes and the

beginning of the Universe. Similarly as in the advent of QT and GR, there is strong evidence

that a better description of Nature is required. A description which includes QT, GR and

more, i.e., a theory of QG, which implies the existence of a minimum measurable length

and a quantum description of gravity. However, it has been proven difficult to formulate

a consistent theory of QG. There have been several attempts to achieve this, such as ST

and LQG. It turns out that they do not address all questions that arise in approaches to

QG and in fact, give rise to new conceptual problems in their current forms. Compared

to the advent of QT and GR, when there was clear evidence of new phenomena, which

could not be accounted for by classical mechanics, the path to formulating a theory of QG

today does not have such a privilege. One must rely on properties, which are believed to be

generic predictions of QG, such as the existence of the minimum measurable length, and

search for signatures of such properties in Earth-based experiments and in astronomical or

cosmological observations.

One can find that QGP is a practical approach towards the QG problem, since it does
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not depend on any candidate theory of QG, and the diversity of applications can narrow

down the list of potential theories. Also, a new conceptual approach to QG is emerging, in

which fundamental concepts, such as the Quantum Equivalence Principle, which should be

a necessary ingredient for a consistent theory of QG, are put to the test.
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Aaron C. Vincent. The 21 cm signal and the interplay between dark matter annihila-

tions and astrophysical processes. JCAP, 08:004, 2016.

[186] D. Aristizabal Sierra and Chee Sheng Fong. The EDGES signal: An imprint from

the mirror world? Phys. Lett. B, 784:130–136, 2018.

[187] J. Colin Hill and Eric J. Baxter. Can Early Dark Energy Explain EDGES? JCAP,

08:037, 2018.

169



BIBLIOGRAPHY

[188] Maxim Pospelov, Josef Pradler, Joshua T. Ruderman, and Alfredo Urbano. Room

for New Physics in the Rayleigh-Jeans Tail of the Cosmic Microwave Background.

Phys. Rev. Lett., 121(3):031103, 2018.

[189] Takeo Moroi, Kazunori Nakayama, and Yong Tang. Axion-photon conversion and

effects on 21 cm observation. Phys. Lett. B, 783:301–305, 2018.

[190] Gaetano Lambiase and Subhendra Mohanty. Hydrogen spin oscillations in a back-

ground of axions and the 21-cm brightness temperature. Mon. Not. Roy. Astron. Soc.,
494(4):5961–5966, 2020.

[191] Marco Chianese, Pasquale Di Bari, Kareem Farrag, and Rome Samanta. Probing

relic neutrino radiative decays with 21 cm cosmology. Phys. Lett. B, 790:64–70,

2019.

[192] D. J. Fixsen. The Temperature of the Cosmic Microwave Background. Astrophys.
J., 707:916–920, 2009.

[193] D. J. Fixsen, E. S. Cheng, J. M. Gales, John C. Mather, R. A. Shafer, and E. L.

Wright. The Cosmic Microwave Background spectrum from the full COBE FIRAS

data set. Astrophys. J., 473:576, 1996.

[194] John C. Mather, D. J. Fixsen, R. A. Shafer, C. Mosier, and D. T. Wilkinson. Cali-

brator design for the COBE far infrared absolute spectrophotometer (FIRAS). As-
trophys. J., 512:511–520, 1999.

[195] B. Ryden. Introduction to Cosmology 2nd Edition. Cambridge University Press,

New York, USA, 2017.

[196] Pasquale Bosso, Saurya Das, Igor Pikovski, and Michael R. Vanner. Amplified trans-

duction of Planck-scale effects using quantum optics. Phys. Rev. A, 96(2):023849,

2017.

[197] Laurent Canetti, Marco Drewes, and Mikhail Shaposhnikov. Matter and Antimatter

in the Universe. New J. Phys., 14:095012, 2012.

[198] A. D. Sakharov. Violation of CP Invariance, C asymmetry, and baryon asymmetry

of the universe. Pisma Zh. Eksp. Teor. Fiz., 5:32–35, 1967.

[199] J. Dunkley et al. Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Ob-

servations: Likelihoods and Parameters from the WMAP data. Astrophys. J. Suppl.,
180:306–329, 2009.

[200] W. M. Yao et al. Review of Particle Physics. J. Phys. G, 33:1–1232, 2006.

[201] Andrew G. Cohen and David B. Kaplan. SPONTANEOUS BARYOGENESIS. Nucl.
Phys. B, 308:913–928, 1988.

170



BIBLIOGRAPHY

[202] Stephon Haigh-Solom Alexander, Michael E. Peskin, and Mohammad M. Sheikh-

Jabbari. Leptogenesis from gravity waves in models of inflation. Phys. Rev. Lett.,
96:081301, 2006.

[203] Gerard ’t Hooft. Dimensional reduction in quantum gravity. Conf. Proc. C,

930308:284–296, 1993.

[204] Leonard Susskind. The World as a hologram. J. Math. Phys., 36:6377–6396, 1995.

[205] Ted Jacobson. Thermodynamics of space-time: The Einstein equation of state. Phys.
Rev. Lett., 75:1260–1263, 1995.

[206] A. J. M. Medved and Elias C. Vagenas. When conceptual worlds collide: The GUP

and the BH entropy. Phys. Rev. D, 70:124021, 2004.

[207] Ronald J. Adler, Pisin Chen, and David I. Santiago. The Generalized uncertainty

principle and black hole remnants. Gen. Rel. Grav., 33:2101–2108, 2001.

[208] D. Christodoulou. Reversible and irreversible transforations in black hole physics.

Phys. Rev. Lett., 25:1596–1597, 1970.

[209] D. Christodoulou and R. Ruffini. Reversible transformations of a charged black hole.

Phys. Rev. D, 4:3552–3555, 1971.

[210] S. W. Hawking. Gravitational radiation from colliding black holes. Phys. Rev. Lett.,
26:1344–1346, 1971.

[211] Patrick J. Coles, Mario Berta, Marco Tomamichel, and Stephanie Wehner. Entropic

uncertainty relations and their applications. Rev. Mod. Phys., 89:015002, Feb 2017.

[212] Jacob D. Bekenstein. Black holes and entropy. Phys. Rev. D, 7:2333–2346, 1973.

[213] S. W. Hawking. Black Holes and Thermodynamics. Phys. Rev. D, 13:191–197, 1976.

[214] T. Kugo and S. Uehara. Improved Superconformal Gauge Conditions in the N = 1

Supergravity Yang-Mills Matter System. Nucl. Phys. B, 222:125–138, 1983.

[215] T. Kugo and S. Uehara. N = 1 Superconformal Tensor Calculus: Multiplets With Ex-

ternal Lorentz Indices and Spinor Derivative Operators. Prog. Theor. Phys., 73:235,

1985.

[216] Hooman Davoudiasl, Ryuichiro Kitano, Graham D. Kribs, Hitoshi Murayama, and

Paul J. Steinhardt. Gravitational baryogenesis. Phys. Rev. Lett., 93:201301, 2004.

[217] Nadeem Azhar, Abdul Jawad, and Shamaila Rani. Impact of f(G,T) and f(R,G) on

gravitational baryogenesis and observational bounds. Phys. Dark Univ., 32:100815,

2021.

[218] Hooman Davoudiasl. Gravitationally Induced Dark Matter Asymmetry and Dark

Nucleon Decay. Phys. Rev. D, 88:095004, 2013.

171



BIBLIOGRAPHY

[219] S. D. Odintsov and V. K. Oikonomou. Loop Quantum Cosmology Gravitational

Baryogenesis. EPL, 116(4):49001, 2016.

[220] S. D. Odintsov and V. K. Oikonomou. Gauss–Bonnet gravitational baryogenesis.

Phys. Lett. B, 760:259–262, 2016.

[221] V. K. Oikonomou and Emmanuel N. Saridakis. f (T ) gravitational baryogenesis.

Phys. Rev. D, 94(12):124005, 2016.

[222] Snehasish Bhattacharjee and P. K. Sahoo. Baryogenesis in f (Q,T ) gravity. Eur.
Phys. J. C, 80(3):289, 2020.

[223] E. H. Baffou, M. J. S. Houndjo, D. A. Kanfon, and I. G. Salako. f (R,T ) models

applied to baryogenesis. Eur. Phys. J. C, 79(2):112, 2019.
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Appendix A

Statistical Mechanics

A.1 Mathematical Tools
When a prediction of any physical observable in statistical mechanics is made, one

needs to compute averages, because in systems with many particles, one can only measure

macroscopic observables of the whole system, such as temperature, pressure and volume.

To compute an ensemble average of a physical, single particle quantity Y over the whole

energy range ε ∈ [0,∞), for a gas of bosons or fermions, the ensemble average is used

〈Y 〉=
∫ ∞

0
Y(ε)g(ε) fBE(FD)

(ε)dε , (A.1)

where

g(ε) =
V dΩd 2d/2−1 md/2 εd/2−1

(2π�)d (A.2)

is the d-dimensional density of states for non-relativistic particles,

g(ε) =
V dΩd ε

(
ε2 −m2c4

)d/2−1

(2π�c)d (A.3)

is the d-dimensional density of states for relativistic particles, where Ωd = πd/2/Γ(d/2+1),
and

fBE(FD)
(ε) =

1

eβT (ε−μ)∓1
, (A.4)

is the BE distribution (−) or FD distribution (+). In the above, βT = 1/kBT , ε the energy of

the particle and μ the chemical potential. For any single particle quantity Y(ε), all integrals

given by Eq. (A.1), which are calculated using the BE distribution from Eq. (A.4) (which

corresponds to the − sign), are of the following form

Iν(βT , βT μ) =
∫ ∞

0

εν

eβT (ε−μ)−1
dε=

Γ(ν+1)

βν+1
T

Liν+1(eβT μ) , (A.5)

where ν is the power of the energy in the integral, Γ(ν+1) is the gamma function evaluated

at ν+1 and

Liν(x) =
∞

∑
k=1

xk

kν
(A.6)
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is the polylogarithm function. For x = 1, which corresponds to the case μ = 0, the polylog-

arithm function in Eq. (A.6) reduces to the well known Riemann zeta function

ζ(ν) =
∞

∑
k=1

1

kν
. (A.7)

On the other hand, all integrals, which are calculated using the FD distribution from Eq.

(A.4) (corresponding to the + sign), are of the following form

Jν(βT , βT μ) =
∫ ∞

0

εν

eβT (ε−μ) +1
dε=−Γ(ν+1)

βν+1
T

Liν+1(−eβT μ) . (A.8)

For x =−1, corresponding to μ = 0, the polylogarithm function in Eq. (A.6) reduces to

Liν(−1) =−η(ν) , (A.9)

where

η(ν) =
∞

∑
k=1

(−1)k−1

kν
(A.10)

is the Dirichlet eta function. The values for the Riemann zeta and Dirichlet eta, as a function

of ν, where defined, can be found numerically.

As the simplest example, one can obtain the number of particles in a gas of bosons,

contained in a volume V , using the BE distribution and Eqs. (A.1) and (A.2), where Y = 1,

as

NBE =
∫ ∞

0
g(ε) fBE(ε)dε

=
V dΩd 2d/2−1 md/2

(2π�)d

∫ ∞

0

εd/2−1

eβT (ε−μ)−1
dε

=
V dΩd 2d/2−1 md/2

(2π�)d (kBT )d/2Γ
(d

2

)
Lid/2(e

βT μ)

d=3
=

V
8�3

(
2mkBT

π

)3/2

Li3/2(e
βT μ) , (A.11)

where Eq. (A.5) was used to evaluate the integral in line two. As the temperature ap-

proaches Tc, the chemical potential vanishes μ −→ 0, which reduces the polylogarithm

function in Eq. (A.11) to the Riemann zeta function ζ(3/2) 
 2.612. This is the regime

where the Bose-Einstein condensation begins to occur.

In the same manner one can obtain the number of particles in a gas of fermions, con-

tained in a volume V , using the FD distribution and Eqs. (A.1) and (A.2), where Y = 1,

as
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NFD =
∫ ∞

0
g(ε) fFD(ε)dε

=
V dΩd 2d/2−1 md/2

(2π�)d

∫ ∞

0

εd/2−1

eβT (ε−μ) +1
dε

= −V dΩd 2d/2−1 md/2

(2π�)d (kBT )d/2Γ
(d

2

)
Lid/2(−eβT μ)

d=3
= − V

8�3

(
2mkBT

π

)3/2

Li3/2(−eβT μ) , (A.12)

where Eq. (A.8) was used to evaluate the integral in line two. The above is an exact solution

for a Fermi gas at temperature T . In the case, when T −→ 0, the FD distribution reduces

to fFD(ε) = 1, and one obtains a finite, so-called Fermi energy E f , as an upper limit to

the integral, since this is the maximal energy a fermion can have in such conditions. This

would represent a degenerate fermion gas.

A.2 Linear GUP Operator
To evaluate the eigenvalues, corresponding to the linear GUP term, one must consider

the operator p0 =
√

p0k p0k , where p0i =−i�∂x0i . Note that p0 is a scalar operator, and ob-

taining its eigenvalues was considered a difficult computational problem. In the following,

a solution to this problem, including its proof, is introduced. Explicitly, p0 can be written

as

p0 =

√
−�2

(
∂2

∂x2
0

+
∂2

∂y2
0

+
∂2

∂z2
0

)
=

√
−�2∇2

0 = �
(−∇2

0

)1/2
. (A.13)

Without loss of generality, one can write the above as

p0 =
�

�

(
1− �2∇2

0 −1
)1/2

, (A.14)

where � is a non-zero constant and a 0 = 1−1 has been added inside the parenthesis. One

can interpret � as a length scale, and therefore assume it to be positive and non-vanishing.

This also ensures that the eigenvalues of p0 are positive. One can see that the above is of

the form (1+ x)1/2, where x =−�2∇2
0 −1, and can be represented as a Taylor series

(1+ x)1/2 =
∞

∑
m=0

cm xm . (A.15)

In the above, the expansion coefficients cm correspond to those of (1+x)1/2 and their exact

values are not required for the remainder of the proof. Using the above Taylor series, one

178



A.2. LINEAR GUP OPERATOR

can write Eq. (A.14) as

p0 =
�

�

∞

∑
m=0

cm
(−�2∇2

0 −1
)m

. (A.16)

In the above, the parenthesis on the right hand side, can be expanded in terms of the bino-

mial theorem

(a+b)m =
m

∑
q=0

(
m
q

)
am−q bq with a,b ∈ R , (A.17)

where (
m
q

)
=

m!

(m−q)!q!
. (A.18)

Using the above binomial theorem, one can rewrite Eq. (A.16) as

p0 =
�

�

∞

∑
m=0

cm

m

∑
q=0

(
m
q

)(−�2∇2
0

)m−q
(−1)q . (A.19)

Since the identity operator commutes with every other operator, i.e., [1,
(
∇2

0

)r
] = 0 in this

case, where r ∈ N∪{0}, one can rewrite Eq. (A.19) as

p0 =
�

�

∞

∑
m=0

cm

m

∑
q=0

(
m
q

)
(−1)q (

�2
)m−q (−∇2

0

)m−q
. (A.20)

In the BEC considerations, eigenfunctions of a three dimensional particle in a box |ψn〉 are

considered, where the eigenvalues of the operator −∇2
0 turn out as

−∇2
0 |ψn〉= k2

n |ψn〉 , (A.21)

where k2
n = k2

nx
+ k2

ny
+ k2

nz
= π2

L2 (n2
x + n2

y + n2
z ). Therefore, by squaring the operator −∇2

0,

one obtains (−∇2
0

)2 |ψn〉=
(−∇2

0

)(−∇2
0

) |ψn〉
=
(−∇2

0

)
k2

n |ψn〉
= k2

n
(−∇2

0

) |ψn〉
= k2

n k2
n |ψn〉

=
(
k2

n
)2 |ψn〉 . (A.22)

Similarly, for all other powers r ∈ N∪{0} of the operator −∇2
0, it can be proven by induc-

tion, that (−∇2
0

)r |ψn〉=
(
k2

n
)r |ψn〉 . (A.23)
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Having all necessary ingredients, one can now use the operator from Eq. (A.20) on the

eigenfunction |ψn〉, in order to obtain its eigenvalue as

p0 |ψn〉= �

�

∞

∑
m=0

cm

m

∑
q=0

(
m
q

)
(−1)q (

�2
)m−q (−∇2

0

)m−q |ψn〉

=
�

�

∞

∑
m=0

cm

m

∑
q=0

(
m
q

)
(−1)q (

�2
)m−q (

k2
n
)m−q |ψn〉

=
�

�

∞

∑
m=0

cm

m

∑
q=0

(
m
q

) (
�2 k2

n
)m−q

(−1)q |ψn〉

=
�

�

∞

∑
m=0

cm
(
�2 k2

n −1
)m |ψn〉

=
�

�

(
1+ �2 k2

n −1
)1/2 |ψn〉

=
�

�

(
�2 k2

n
)1/2 |ψn〉

= �
(
k2

n
)1/2 |ψn〉 . (A.24)

To compute the eigenvalue of the operator p3
0, found in the linear term in GUP, one uses

operators p0 and p2
0 consecutively on the state |ψn〉. It reads as

p3
0 |ψn〉= p2

0 p0 |ψn〉
= p2

0�
(
k2

n
)1/2 |ψn〉

= �
(
k2

n
)1/2

p2
0 |ψn〉

= �
(
k2

n
)1/2 (−�

2∇2
0

) |ψn〉
= �

(
k2

n
)1/2 (

�
2 k2

n
) |ψn〉

= �
3
(
k2

n
)3/2 |ψn〉 . (A.25)

To the best of one’s knowledge, this is the first time that the eigenfunctions of the

p3
0 operator in three spatial dimensions have been found by the above method, thereby

providing a simple solution for future research in QGP involving a linear GUP.

A.3 GUP Corrections
The QG corrected density of states is obtained in a similar way as it is obtained in

standard theory. In the standard theory, one considers the continuum limit and the disper-

sion relation ε(p) (classical or relativistic). The number of particles, and by extension the

density of states in three dimensions, are then obtained as

∑
n
≈

∫
d3n =

V
(2π�)3

∫ ∞

0
d3p =

V
2π2

∫ ∞

0
k2 dk =

∫ ∞

0
g(ε)dε , (A.26)
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where p = �k and d3p = 4π p2 dp were used. In the last equality one uses the relevant

dispersion relation to obtain the corresponding density of states. By using the modified

dispersion relations from Eqs. (3.23) and (3.36), one obtains the QG corrected density

of states for non-relativistic and relativistic particles, respectively. Both, k2 and dk are

modified, by expressing k in terms of the particle energy ε from Eq. (3.23) for the non-

relativistic case, and from Eq. (3.36) for the relativistic case, in the continuum limit (kn −→
k and εn −→ ε). For convenience, the linear and quadratic GUP corrections were considered

separately. Considering both contributions simultaneously would make the results change

by a numerical factor of O(1) in front of the quadratic term.

A.3.1 Quadratic GUP
For the quadratic QG corrections (α= 0), k is obtained from Eqs. (3.23) and (3.36), by

solving a quadratic equation for k2(ε). The solutions read as

k2
1,2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

10β�2

[
−1±

√
1+40βmε

]
, non-relativistic,

1

10β�2

[
−1±

√
1+20β

(
ε2

c2
−m2 c2

)]
, relativistic.

(A.27)

Each of the above cases gives rise to 4 solutions. However, in the following, only physically

relevant solutions are considered. Namely, k1,2 ∈ R and k1,2 > 0, since it is the radius of a

sphere in k−space. This reduces the number of solutions to just 1 for each case.

To obtain the quadratic QG corrected measure dk, one computes the derivatives of Eqs.

(3.23) and (3.36) (for α= 0) with respect to k, and expresses dk as

dk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dε
�2 k
m + 10β�4 k3

m

, non-relativistic,

εdε
�2 c2 k+10β�4 c2 k3

, relativistic.

(A.28)

To obtain the density of states with quadratic QG corrections, one plugs the solution

for k from Eq. (A.27) in Eq. (A.28), such that the measure is now completely dependent

on ε. Finally, one plugs Eqs. (A.27) and (A.28) in Eq. (A.26) to obtain the quadratic QG

corrected densities of states from Eqs. (3.24) and (3.37) (for α= 0) for non-relativistic and

relativistic particles, respectively. Note that a perturbative approach was necessary to obtain

the quadratic QG corrected densities of states, where terms of order equal to or higher than

O(β2) were ignored.

A.3.2 Linear GUP
To obtain the linear GUP corrections to the density of states, a procedure, similar as

for quadratic GUP corrections, was followed. For the linear QG corrections (β = 0), k is

obtained from Eqs. (3.23) and (3.36), by solving cubic equations for k(ε). This gives rise
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to 3 solutions for each, the non-relativistic case and the relativistic case, which read as

k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

6α�
[1− cos(ϕ(α))+

√
3 sin(ϕ(α)) ] ,

1

6α�
[1− cos(ϕ(α))−

√
3 sin(ϕ(α)) ] ,

1

6α�
[1+2 cos(ϕ(α)) ] ,

(A.29)

where

ϕ(α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

3
arctan

(
6
√

6α
√

mε
√

1−54α2 mε
1−108α2 mε

)
, non-relativistic,

1

3
arctan

⎛
⎜⎜⎝

2
√

27α
√

ε2

c2 −m2 c2

√
1−27α2

(
ε2

c2 −m2 c2
)

1−54α2
(
ε2

c2 −m2 c2
)

⎞
⎟⎟⎠ , relativistic.

(A.30)

Out of the above 3 solutions of Eq. (A.29), only the first is physically relevant, since the

second solution is negative, and the third solution diverges in the limit α −→ 0, implying

large QG effects, which are not observed. This reduces the number of solutions to just 1 for

each case.

To obtain the linear QG corrected measure dk, one computes the derivatives of Eqs.

(3.23) and (3.36) (for β= 0) with respect to k, and expresses dk as

dk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dε
�2 k
m − 3α�3 k2

m

, non-relativistic,

εdε
�2 c2 k−3α�3 c2 k2

, relativistic.

(A.31)

To obtain the density of states with linear QG corrections, one plugs the solution for k
from Eq. (A.29) in Eq. (A.31), such that the measure is now completely dependent on ε.
Finally, one plugs Eqs. (A.29) and (A.31) in Eq. (A.26) to obtain the linear QG corrected

densities of states from Eqs. (3.24) and (3.37) (for β= 0) for non-relativistic and relativistic

particles, respectively. Note that also here a perturbative approach was necessary to obtain

the linear QG corrected densities of states, where terms of order equal to or higher than

O(α2) were ignored.

A.4 Example of an Alternative Derivation of QG Corrections
Due to the complexity of the approach to obtain the density of states in Ref. [123],

only quadratic QG corrections (α = 0) for the non-relativistic case are considered in the

following. For a particle in a box in standard theory, one can define a dimensionless energy
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variable ε∗ as

ε∗ ≡ n2 = n2
x +n2

y +n2
z =

2mL2 ε
�2π2

. (A.32)

To introduce QG corrections in the above, one must solve the quadratic equation, from Eq.

(3.23) (α = 0) for n2 ≡ n2
x + n2

y + n2
z (see also the non-relativistic case from Eq. (A.27)).

The solutions read as

n2
1,2 =

L2

10βπ2�2
(−1±

√
1+40βmεn ) . (A.33)

In what follows, only the physically relevant + solution is considered. For the − solution,

the right hand side of Eq. (A.33) is negative, and hence n imaginary, whereas it is required

that nx,ny,nz ∈ Z.

The dimensionless energy in standard theory for a gas of N such particles is a sum of

single particle dimensionless energies ε∗, given by n2
r , where r ∈ (x, y, z), and reads as

3N

∑
r=1

n2
r =

2mL2 E
�2π2

≡ E∗ , (A.34)

where E = εn1
+ εn2

+ · · ·+ εnN is the sum of all single particle energies and E∗ = ε∗1 +
ε∗2 + · · ·+ ε∗N the sum of all single particle dimensionless energies. One follows the same

procedure, using the QG corrected dimensionless energy from Eq. (A.32). It turns out

that a perturbative approach is necessary, where a Taylor expansion up to second order√
1+ x ≈ 1+ x/2− x2/8 is used. The sum from Eq. (A.34) then reads as

3N

∑
r=1

n2
r =

2mV 2/3 E
�2π2

− 20βm2V 2/3 E2
s

�2π2
= E∗ , (A.35)

where E2
s = ε2

n1
+ ε2

n2
+ · · ·+ ε2

nN
is the sum of squares of all single particle energies and

V 2/3 = L2. Es is related to the total energy E through E2 = E2
s + 2E2

m = ε2
n1
+ ε2

n2
+ · · ·+

ε2
nN

+2εn1
εn2

+2εn1
εn3

+ · · ·+2εn2
εn3

· · · , where E2
m is the sum of all mixed terms.

To compute the number of microstates up to some arbitrary energy, one makes use of

the formula for a volume of a d-dimensional sphere

Vd(R) =
πd/2

Γ
(d

2 +1
) Rd , (A.36)

and applies it to E∗ space. One considers n2 ≥ 0, so just the upper half of a sphere remains.

Each degree of freedom of each particle (spatial degrees of freedom have been already

integrated out in V ), contributes one dimension in the dimensionless energy phase space.

Therefore, d = 3N and R =
√

E∗, and the number of microstates turns out as

ΣN(E∗) =
(

1

2

)3N
⎡
⎣ π

3N
2

Γ
(

3N
2 +1

) E∗3N
2

⎤
⎦ . (A.37)
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One then plugs Eq. (A.35) in the above to obtain

Σ(N,V,E) =
(

1

2

)3N

⎡
⎢⎣ π

3N
2

Γ
(

3N
2 +1

)
(

2mV 2/3 E
�2π2

− 20βm2V 2/3 E2
s

�2π2

)3N
2

⎤
⎥⎦ . (A.38)

The number of microstates in a spherical shell of thickness Δ is obtained as

Γ(N,V,E;Δ)=
∂Σ(N,V,E)

∂E
Δ

=
Δ
E

π
3N
2(

3N
2 −1

)
!

V N

23N π3N �3N

× [
2mE −20βm2

(
E2 −2E2

m
)]3N

2
1−20βm

(
E −2Em

∂Em
∂E

)
1−10βm

(
E −2

E2
m

E

) . (A.39)

On the other hand, one can obtain the number of microstates in an energy shell with

thickness Δ, by using the phase space integral Γ(N,V,E) = ω/ω0, where ω0 is the normal-

ization of the phase space, which is of main interest of this consideration, and

ω=
∫

d3Nx
∫

d3Np =V N
∫

2m
(

E−1
2 Δ

)
≤∑3N

i=1 y2
i ≤2m

(
E+1

2 Δ
) · · ·

∫
d3Ny

=V N Δ
E
(2πmE)

3N
2(

3N
2 −1

)
!

= Γ(N,V,E)ω0 . (A.40)

One then compares Eqs. (A.39) and (A.40) to obtain

ω0 =
(2π�)3N[

1−10βm
(

E −2
E2

m
E

)]3N
2 −1 [

1−20βm
(

E −2Em
∂Em
∂E

)] , (A.41)

which is valid for an arbitrary number of particles N. In the thermodynamic limit, where

N −→ ∞, Eq. (A.41) reduces to ω0 = (2π�)3N . In the case of a BEC, the relevant case is

N = 1, where

ω0 =
(2π�)3

1−25βmε
, (A.42)

where ε is again a single particle energy. It turns out that Γ(N = 1,V,ε) = g(ε) Note that

the density of states, derived using the modified normalization of the phase space integral,

is identical to that, obtained by using the method in Appendix A.3 for quadratic GUP.
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Appendix B

21-cm Cosmology

B.1 Standard Theory
In this Appendix, the main features of the 21-cm cosmology are briefly reviewed. First,

note that the 21-cm line is associated with the relative orientation of electron and proton

spins (anti-parallel for the singlet level with lower energy E↑↓ and parallel for the triplet

level with higher energy E↑↑). This gives rise to a hyperfine energy splitting between the

two energy levels of the 1S ground state of the hydrogen atom. The corresponding en-

ergy gap E21 ≡ E↑↑ −E↑↓ is measured at E21 = 5.87μeV, that of the absorbed or emitted

photons in consideration, which corresponds to a wavelength λrest
21 = 21cm, or frequency

νrest
21 = 1420MHz. Due to this 21-cm transition, neutral hydrogen after the epoch of re-

combination, with redshift z � zrec, can act as a detector of the background photons that

have been produced at higher redshifts. In the ΛCDM model, such a photon background

is produced by thermal radiation of the CMB, with temperature TCMB(z) = TCMB,0 (1+ z),
where TCMB,0 = 2.725K 
 2.35×10−4 eV/kB.

The frequency of the 21-cm transition falls in the Rayleigh-Jeans tail, where the inten-

sity Iν ∝ T , since E21 � kBTCMB(z) for z � zrec. To study absorption and emission of light,

one can therefore use the integrated radiative transfer equation (in a rest frame) written in

terms of temperature [163, 267]

Tb(τν) = TS
(
1− e−τν

)
+Tγ e−τν , (B.1)

where Tb(τν) is the observed absolute brightness temperature, TS the so-called spin temper-
ature, defined by the ratio of the atomic population in the excited state n2 and the ground

state state n1, given by

n2

n1
≡ g2

g1
e−

E21
kBTS , (B.2)

where g2/g1 = 3 indicates the ratio of the statistical degeneracy factors of the two hydrogen

hyperfine levels and τν is the optical depth, defined as [182, 163]

τν =
∫

ds σ21

(
1− e−

E21
kBTS

)
φ(ν)n0 ≈ σ21

(
hν

kBTS

)(
NHI

4

)
φ(ν) (B.3)

in the case of a hydrogen cloud. In the above, φ(ν) is the line profile, which is, in general,

described by a Voigt function, normalized as
∫
φ(ν)dν= 1, ds is the line element between
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the source and the observer, n0 is the number density of neutral hydrogen, NHI =
∫

dsn0

is the column density of neutral hydrogen and σ21 is the absorption cross-section for the

21-cm transition. The latter is defined as [182]

σ21 =
3c2 A21

8πν2
, (B.4)

where A21 is the Einstein coefficient for spontaneous emission. A relevant quantity in con-

text of the 21-cm cosmology is the brightness temperature, defined as [163, 182, 267]

T21(z)≡ δTb(z) =
TS(z)−Tγ(z)

1+ z
(1− e−τν)
 TS(z)−Tγ(z)

1+ z
τν


 23mK(1+δB)xHI(z)
(
ΩB h2

0.02

)(
0.15

Ωm h2

)1/2(
1+ z
10

)1/2[
1− Tγ(z)

TS(z)

]
, (B.5)

where ΩB h2 = 0.02226 is the baryon abundance, Ωm h2 = 0.1415 the matter abundance

[268], δB the baryon overdensity, xHI the fraction of neutral hydrogen and Tγ(z) the effective

temperature of the photon background radiation at frequency ν21(z) = νrest
21 /(1+ z). In the

ΛCDM model Tγ(z) coincides with TCMB(z). The above 21-cm brightness temperature

T21(z) is expressed relatively to the photon background at redshift z and can therefore be

negative as well. The spin temperature TS is related to the kinetic temperature of the gas

Tgas as

1− Tγ
TS


 xc + xα
1+ xc + xα

(
1− Tγ

Tgas

)
. (B.6)

In the above, the coefficients xc and xα describe the coupling between the hyperfine levels

and the gas. They are characterized by the fact, that for xc + xα � 1 (limit of strong cou-

pling), it follows TS = Tgas, while for xα = xc = 0 (no coupling), it follows TS = Tγ, which

implies that there is no signal.

B.2 MDR Modifications of the Einstein Coefficients
Considering a gas of atoms, MDR modifications of absorption, spontaneous emission,

and induced emission are explored. Such processes occur when background radiation with

specific frequency passes through the gas. This in turn provides a mechanism to explore

MDR modifications of the optical depth τν. In the subsequent considerations, the procedure

outlined in Ref. [269] is followed.

If there are N2 atoms in the higher energy state with E2, the atoms will spontaneously

decay to a lower energy state with E1 and emit photons with a specific frequency ν =
(E2 −E1)/h. The transition rate for spontaneous emission is then written as

W s
21 = A21 N2 , (B.7)

where A21 is the Einstein coefficient for spontaneous emission. Note that here 1 and 2 refer

to the lower and higher energy states of the atomic transition, respectively, and not as a

subscript for 21-cm.

On the other hand, if there are N1 atoms in the lower energy state, and they are exposed
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to radiation, which follows a MDR modified thermal spectrum, given by ρMDR(ν) = ρ(ν)R
(see Eq. (4.7)), photons with frequency ν will be absorbed, and a fraction of these atoms

will transition to the higher energy state. The transition rate for such induced absorption is

W12 = B12 N1ρ(ν)R , (B.8)

where B12 is the Einstein coefficient for induced absorption and R the MDR modification

of the thermal spectrum.

There is also a third possibility. If there are N2 atoms in the higher energy state, and

they are exposed to radiation, which follows a MDR modified thermal spectrum, given by

ρMDR(ν), photons with ν will induce emission of new photons with the same frequency,

originating from the induced transition of a fraction of these atoms to a lower energy state.

It turns out that such photons travel in the same direction as the incident radiation. The

transition rate for such induced emission is

W i
21 = B21 N2ρ(ν)R , (B.9)

where B21 is the Einstein coefficient for induced emission. The total transition rate for

emission is the sum of the spontaneous and induced emission transition rates

W21 =W s
21 +W i

21 = N2 (A21 +B21ρ(ν)R) . (B.10)

The principle of detailed balance states that in thermal equilibrium, the emission and

absorption rates are equal, i.e., W21 = W12. Using this, as well as Eqs. (B.2), (4.8) and

E = hν, one obtains the ratio of the Einstein coefficients

A21

B21
=

8πhν3

c3
R , (B.11)

and the ratio of induced absorption and emission coefficients

B12

B21
=

g2

g1
. (B.12)

From Eq. (B.11), one can see that while the ratio of the Einstein coefficients is modified,

it does not provide explicit information on how the individual coefficients are modified.

However, Eqs. (B.7), (B.8) and (B.9) suggest that only the B coefficients are modified by

R, and that the A coefficient remains unmodified, since

B12 ∝ B21 ∝
1

R
and A21 �∝ f (R) . (B.13)

In the following, it is shown that the absorption cross-section σ21 does not depend on R
as well. The driving equation to describe absorption and emission of radiation in a gas, is

the radiative transfer equation, written in the differential form as

dIν
ds

=−α(ν) Iν , (B.14)
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where Iν = cρ(ν)R = I0νR is the spectral intensity, I0ν the unmodified spectral intensity

and α(ν) the absorption coefficient. The emission term, expected in Eq. (B.14), is omitted,

since only information on absorption is required to obtain σ21. The absorption coefficient

α(ν) is related to the absorption cross-section σ21 as

α(ν) = n1σ21φ(ν) , (B.15)

where n1 is the number density of atoms in the lower energy state. By plugging Iν = I0νR
in Eq. (B.14), one finds that the same radiative transfer equation holds also for I0ν, since

R �= f (s), and reads as

dI0ν
ds

=−α(ν) I0ν . (B.16)

The power of the incident beam with frequencies between ν and ν+dν is absorbed by

N1 atoms, and reads as

−ΔP = hνW12φ(ν)dν= hνB12 N1ρ(ν)R φ(ν)dν , (B.17)

where hν is the energy of the absorbed photon, W12 the absorption transition rate, given by

Eq. (B.8), and φ(ν) the line profile defined in Eq. (B.3). Writing the number of atoms in

the ground state as N1 = n1 AΔs (confined inside a volume AΔs), and the thermal spectrum

ρ(ν) in terms of spectral intensity Iν, one obtains

−ΔP =
hν
c

B12 n1 AΔs I0νR φ(ν)dν . (B.18)

By the definition of the spectral intensity, it is known that ΔP
AdνΔs =⇒ dI0ν

ds . Therefore one

can rewrite Eq. (B.18) as

dI0ν
ds

=−hν
c

n1 B12 R φ(ν) I0ν . (B.19)

Comparing the above equation with Eqs. (B.16) and (B.15), one obtains the absorption

cross-section, which reads as

σ21 =
hν
c

B12 R . (B.20)

By using Eqs. (B.12) and (B.11) in the above, one can see that the factor R cancels, and the

final expression for the absorption cross-section reads as

σ21 =
3c2 A21

8πν2
, (B.21)

which is identical to Eq. (B.4). One can see that the above absorption cross-section does

not depend on R and therefore, MDRs do not modify the optical depth τν.
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Appendix C

Friedmann Equations

C.1 Derivation
In the following, a detailed derivation of the Friedmann equations is provided, and

follows the steps from Ref. [125]. The main assumptions of the holographic principle are

that the entropy of the apparent horizon is that, given by Eq. (4.29), while the temperature

of the apparent horizon is given by [270, 271]

T =
κ�c
2πkB

, (C.1)

where κ= (1/2
√−h) ∂c(

√−h hcd ∂br̃ ) =−(1/r̃A)(1− ( ˙̃rA/2H r̃A)) is the surface gravity

of the apparent horizon, h= det(hcd) and r̃A the radius of the apparent horizon. The location

of the apparent horizon is obtained from hcd ∂cr̃ ∂dr̃ = 0, and reads as [270]

r̃A =
c√

H2 + k c2

a2

, (C.2)

where H = ȧ/a is the Hubble parameter. As usual, one assumes that the matter in the

Universe is a perfect fluid, and is described by the energy-momentum tensor, which reads

as

Tμν =
(
ρ+

p
c2

)
uμ uν+ pgμν , (C.3)

where uμ is the four velocity, ρ the matter density, p the pressure and gμν the space-time

metric of the (n+1)-dimensional FLRW model (see Eq. (4.33)). The energy conservation

law, i.e., T μν
;ν = 0, for a perfect fluid gives rise to the continuity equation

ρ̇+nH
(
ρ+

p
c2

)
= 0 . (C.4)

The Friedmann equations, in context of the holographic principle, are obtained by consid-

ering the first law of thermodynamics for the matter content inside the apparent horizon,

which reads as

dE = T dS+WdV , (C.5)
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where E is the total energy inside the apparent horizon, given by E = ρc2V (here, V is the

volume of an n-dimensional sphere, given by V = Ωn r̃ n
A, with Ωn = πn/2/Γ(n/2+1) and

an area A = nΩn r̃ n−1
A ) and W the work density, defined as [272]

W =−c2

2
T cd hcd =

1

2

(
ρc2 − p

)
. (C.6)

Given the above information, one can obtain the first Friedmann equation, by explicitly

writing all the terms from Eq. (C.5). Using Eq. (C.4), one can write the energy differential

as

dE = nΩnr̃ n−1
A ρc2 dr̃A −nΩn r̃ n

A (ρc2 + p)H dt , (C.7)

where dV = nΩn r̃ n−1
A dr̃A has been used. The second term in Eq. (C.5) can be written using

Eqs. (4.30) and (C.1), and reads as

T dS =− �c
2πkBr̃A

(
1− ˙̃rA

2H r̃A

)
kB c3 f ′(A)

4�G
n(n−1)Ωn r̃ n−2

A dr̃A . (C.8)

Finally, the third term in Eq. (C.5) can be written using Eq. (C.6), and reads as

WdV =
1

2
nΩn r̃ n−1

A (ρc2 − p)dr̃A . (C.9)

By plugging Eqs. (C.7), (C.8) and (C.9) in Eq. (C.5), one obtains the first Friedmann

equation, which reads as

−8πG
n−1

(
ρ+

p
c2

)
=

(
Ḣ − k c2

a2

)
f ′(A) . (C.10)

To correctly derive the above Friedmann equation, one must consider ˙̃rA = 0, since the

apparent horizon radius is assumed to be fixed in an infinitesimal time interval, which con-

strains the possible equation of state to p 
 −ρc2. This must also be taken into account

for terms including (ρc2 − p). By integrating the first Friedmann equation, given by Eq.

(C.10), while using the continuity equation, as given in Eq. (C.4), one obtains the second

Friedmann equation, which reads as

− 8πG
n(n−1)

ρ=
c2 (nΩn)

n+1
n−1

n(n−1)Ωn

∫
f ′(A)

dA

A
n+1
n−1

. (C.11)

The Friedmann equations, obtained in Eqs. (C.10) and (C.11), are presented in the main

text as Eqs. (4.34) and (4.35).

After plugging f ′(A) from Eq. (4.31) in Eqs. (C.10) and (C.11) for n = 3 spatial

dimensions, one obtains the QG modified Friedmann equations, which read as

−4πG
(
ρ+

p
c2

)
=

(
Ḣ − k c2

a2

)
β∗

2

1

A+α∗A1/2 −
√

A2 +2α∗A3/2 +(α∗2 −β∗)A
(C.12)
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and

8πG
3

ρ=−4πc2
∫ β∗

2A2

dA(
A+α∗A1/2 −

√
A2 +2α∗A3/2 +(α∗2 −β∗)A

)
= 2πc2

[
1

A
+α∗ 2

3

1

A3/2
+

(
2

3

1

A
+

α∗

3(α∗2 −β∗)
1

A1/2
− 3α∗2 −2(α∗2 −β∗)

3(α∗2 −β∗)2︸ ︷︷ ︸
α∗2 +2β∗

3(α∗2 −β∗)2

)

×
√

1+2α∗ 1

A1/2
+(α∗2 −β∗)

1

A
(C.13)

+
α∗β∗

(α∗2 −β∗)5/2
ln

(
α∗+(α∗2 −β∗)

1

A1/2

+
√
α∗2 −β∗

√
1+2α∗ 1

A1/2
+(α∗2 −β∗)

1

A

)]
+C ,

where C is an integration constant. C is determined by considering the boundary conditions

in the vacuum energy (dark energy) dominated era, where the energy density goes to ρ =
ρvac = Λ, as the area of the apparent horizon of the universe goes to A −→ ∞, and reads as

C =
8πG

3
Λ+2πc2

[
α∗2 +2β∗

3(α∗2 −β∗)2
− α∗β∗

(α∗2 −β∗)5/2
ln

(
α∗+

√
α∗2 −β∗

)]
. (C.14)

C.2 Classical Limit
In the following, the limit for vanishing GUP parameters, i.e., α∗, β∗ −→ 0 is consid-

ered, in order to verify if the standard Friedmann equations can be obtained. For this, one

takes the truncated (for x � 1) Taylor expansions
√

1+ x ≈ 1+x/2−x2/8 and ln(1+ x)≈
x − x2/2, i.e., up to second order, as required. By second order, one means of course

that all terms up to those ∝ α∗2 and ∝ β∗ are retained and higher order terms are ignored.

Here, both GUP parameters are considered small simultaneously, as they are proportional

to Planck length and its square respectively, and therefore in the limit �P −→ 0, which is

required to obtain standard results, they both approach zero concurrently. In this limit, the

first QG modified Friedmann equation from Eq. (4.36) reduces to

− 4πG
(
ρ+

p
c2

)
≈

(
Ḣ − k c2

a2

)

× β∗

8πc2

(
H2+ k c2

a2

)
��1+

�����������
α∗

(4π)1/2 c

(
H2+ k c2

a2

)1/2− ��1−
�����������

α∗
(4π)1/2 c

(
H2+ k c2

a2

)1/2− (��α∗2−β∗)
8πc2

(
H2+ k c2

a2

) · · ·
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· · ·
+
���������
α∗2

8πc2

(
H2+ k c2

a2

)
+O(α∗3, β∗2)

=

(
Ḣ − k c2

a2

)
��β
∗

���8πc2

���8πc2

��β
∗

������

(
H2+ k c2

a2

)
������

(
H2+ k c2

a2

) = Ḣ − k c2

a2
, (C.15)

while the second GUP-modified Friedmann equation from Eq. (4.37) reduces to

8πG
3

(ρ−Λ)≈ 1

2

(
H2+

k c2

a2

)
+

α∗

3(4π)1/2 c

(
H2+

k c2

a2

)3/2

+
2πc2(α∗2+2β∗)

3(α∗2−β∗)2

+

[
1

3

(
H2+

k c2

a2

)
+

(4π)1/2 cα∗

6(α∗2−β∗)

(
H2+

k c2

a2

)1/2

− 2πc2(α∗2+2β∗)
3(α∗2−β∗)2

]

×
(

1+
α∗

(4π)1/2 c

(
H2+

k c2

a2

)1/2

+
(α∗2−β∗)

8πc2

(
H2+

k c2

a2

)

− α∗2

8πc2

(
H2+

k c2

a2

)
+O(α∗3, β∗2)

)

+
2πc2α∗β∗

(α∗2−β∗)5/2

[
(α∗2 −β∗)

(4π)1/2 c(α∗+
√
α∗2−β∗)

(
H2+

k c2

a2

)1/2

+

√
α∗2−β∗

α∗+
√
α∗2−β∗

(
α∗

(4π)1/2 c

(
H2+

k c2

a2

)1/2

+
(α∗2−β∗)

8πc2

(
H2+

k c2

a2

)
− α∗2

8πc2

(
H2+

k c2

a2

)
+O(α∗3, β∗2)

)

− 2(α∗2−β∗)3/2α∗+2α∗4−3α∗2β∗+β∗2

8πc2(2α∗2+2α∗√α∗2−β∗ −β∗)

(
H2+

k c2

a2

)

+ O(α∗3, β∗2)

]

=
���������

2πc2(α∗2+2β∗)
3(α∗2−β∗)2

−
���������

2πc2(α∗2+2β∗)
3(α∗2−β∗)2

+π1/2

⎡
⎢⎣

����������������

(
α∗3−α∗β∗

)(
α∗+

√
α∗2−β∗

)
3(α∗2−β∗)2

(
α∗+

√
α∗2−β2

) · · ·

· · ·
−
����������������

(
α∗3−α∗β∗

)(
α∗+

√
α∗2−β∗

)⎤
⎥⎦(H2+

k c2

a2

)1/2
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+

⎡
⎢⎢⎣ 5

6
+

����������������������

(
α∗2−β∗

)5/2
(

2α∗2+2α∗√α∗2−β∗ −β∗
)

6

����������������������

(
α∗2−β∗

)5/2
(

2α∗2+2α∗√α∗2−β∗ −β∗
)
⎤
⎥⎥⎦
(

H2+
k c2

a2

)

+O(α∗, β∗)

≈H2+
k c2

a2
. (C.16)

One arrives to the last line in the above, after some straightforward but tedious algebra. To

obtain first order GUP corrections in α∗ and β∗ to the Friedmann equations, one must use

the Taylor expansion up to fourth order to gather all required terms.
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Appendix D

Quantum Equivalence Principle

D.1 Details on Particle Statistics
In the following, a derivation of the Klein-Gordon equation in curved space-time, from

the effective Hamiltonian for bosons in curved space-time in the Feshbach-Villars formal-

ism (see Eq. (5.1)), is presented. The eigenstates of this Hamiltonian are represented by a

pair of scalar functions ϕ and χ as

Ψ=

[
ϕ
χ

]
. (D.1)

The Hamiltonian from Eq. (5.1) and the above wave function satisfy a Schrödinger-like

equation

HΨ= i� ∂0Ψ . (D.2)

In the above, the partial derivative with respect to time is identical to the covariant deriva-

tive, i.e., ∂0Ψ=∇0Ψ, sinceΨ consists of scalar functions. This identity is taken into account

in the following steps.

The Klein-Gordon field in this formalism is defined as Φ= ϕ+χ. To see that the above

formalism indeed represents the Klein-Gordon equation in curved space-time, one plugs

Eqs. (5.1) and (D.1) in Eq. (D.2), in order to obtain two coupled differential equations,

which read as

gi j �
2∇i∇ j

2m
Φ+g0i �

2∇0∇i

mc
Φ+mc2ϕ= i�

√
g00 ∇0ϕ , (D.3)

and

−gi j �
2∇i∇ j

2m
Φ−g0i �

2∇0∇i

mc
Φ−mc2χ= i�

√
g00 ∇0χ . (D.4)

The above pair of equations represent a coupled system of equations for ϕ and χ. However,

it is required to obtain the equation of motion for Φ, since it is defined as the Klein-Gordon

field. To achieve this, Eqs. (D.3) and (D.4) can be used to obtain additional relations

between ϕ and χ. Eqs. (D.3) and (D.4) may then be added together and derived over time
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to obtain a useful identity, which reads as

mc2(ϕ−χ) = i�
√

g00 ∇0Φ −→ mc2(∇0ϕ−∇0χ) = i�
√

g00 ∇0∇0Φ . (D.5)

In the above, the identity ∇α gμν = 0 has been used. Furthermore, subtracting Eq.(D.4)

from (D.3), one obtains another useful identity, which reads as

gi j �
2∇i∇ j

m
Φ+2g0i �

2∇0∇i

mc
Φ+mc2Φ= i�

√
g00 (∇0ϕ−∇0χ) . (D.6)

By plugging Eq. (D.5) in Eq. (D.6) and after a bit of algebraic manipulation, one obtains

the Klein-Gordon equation in curved space-time as [4](
gμν∇μ∇ν+

m2c2

�2

)
Φ= 0 . (D.7)

As expected, in the non-relativistic limit and in flat space-time, the standard quantum me-

chanical results are obtained. This shows that Eq. (5.1) is indeed the right Hamiltonian for

a bosonic particle in an arbitrary curved space-time.

By identifying masses mα in the Hamiltonian from Eq. (5.1), and following the above

procedure, one obtains a modified Klein-Gordon equation in curved space-time, which

reads as (
gμν(mα) ∇̃μ∇̃ν+

m2
R c2

�2

)
Φ= 0 , (D.8)

where ∇̃μ = ((1/c)∇0,
√

mR/mI ∇), which is consistent with the quantum version of Eq.

(D.14), when multiplied by i�.

The Hamiltonian from Eq. (5.2) satisfies the Schrödinger-like equation

HΨ= i� ∂0Ψ , (D.9)

where Ψ is the Dirac spinor wave function for fermions in this case. By plugging Eq. (5.2)

in the above, multiplying both sides by γ0 and using γ0 γ0 = g00 from Eq. (5.4), after a

bit of algebraic manipulation, one obtains the Dirac equation in curved space-time, which

reads as [5] (
i�γμ Dμ −mc

)
Ψ= 0 . (D.10)

It again follows that in the non-relativistic limit and in flat space-time, the standard quantum

mechanical results are obtained.

By identifying masses mα in the Hamiltonian from Eq. (5.2), and following the above

procedure, one obtains a modified Dirac equation in curved space-time, which reads as(
i�γμ D̃μ −mR c

)
Ψ= 0 , (D.11)
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where D̃μ = ((1/c)D0,
√

mR/mI D).
The above demonstrates that both the Klein-Gordon and the Dirac equations, relevant

for spin 0 and spin 1/2 particles, respectively, can be written as effective Hamiltonians for

Schrödinger-like equations.

D.2 Modification of Special Relativity
One first considers the relativistic dispersion relation and its non-relativistic limit. From

the non-relativistic limit of the energy-momentum dispersion relation one finds

E =
√

p2 c2 +m2 c4 ≈ mc2 +
p2

2m
−→ mR c2 +

p2

2mI
, (D.12)

where one identifies the mI and mR as seen in Ref. [238]. One can trace back the steps,

and in a straightforward manner identify where masses mα enter the standard relativistic

energy-momentum dispersion relation, which then reads as

E2 =
mR

mI
p2 c2 +m2

R c4 . (D.13)

Note that the form of Eq. (D.13) is necessary to obtain the non-relativistic limit of Eq.

(D.12). Since there is no corresponding non-relativistic relation for massless particles, there

is no equivalent of Eq. (D.13) for photons. Therefore, the issues related to the equivalence

principle and its quantum counterpart do not apply to massless particles. To satisfy Eq.

(D.13) and the Lorentz scalar for the four-momenta pμ pμ = m2
R c2, the four-momentum

must take the form of

pμ =

(
E
c
,

√
mR

mI
p
)

, (D.14)

where p = mI vγ is the relativistic momentum, γ the Lorentz factor and E = mR c2 γ the

relativistic energy of a particle, equivalent to Eq. (D.13). By using the definitions of E and

p containing the Lorentz factor γ, and plugging them in the Lorentz scalar product for four-

momenta pμ pμ = m2
R c2, one can immediately see that the Lorentz factor γ also contains a

ratio of inertial and rest masses, and reads as

γ=
1√

1− mI
mR

v2

c2

. (D.15)

The above modified Lorentz factor can be interpreted in terms of a modification to the time

dilation and length contraction of a relativistic particle, and implies the modified Lorentz

boost transformation from Eq. (5.10).

To define the four-velocity, one can write the four-momentum from Eq. (D.14) in terms
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of the four-velocity as

pμ =
√

mR mI c
(√

mR

mI
γ,

v
c
γ
)
=
√

mR mI c
(

1

c
cd t
dτ

,

√
mI

mR

1

c
dx
dτ

)
=
√

mR mI cuμ ,

(D.16)

where τ represents the proper time. In the above, factoring out the masses appears as such

that uμ uμ = mR/mI is satisfied. From the above, one can read out the zeroth component of

the four-velocity as

1

c
cdt
dτ

=

√
mR

mI
γ =⇒

(
cd t
dτ

)2

=
mR

mI
c2 γ2 . (D.17)

Using the modified Lorentz transformation from Eq. (5.10) with the four-velocity de-

fined above, for a particle moving in the x-direction, one finds the composition law for

velocities

v′ =
v0 − v

1− mI
mR

v0 v
c2

, (D.18)

where v0 is the particle velocity in the initial inertial frame, v is the velocity of the boosted

inertial frame and v′ is the particle velocity as measured in the boosted inertial frame.

D.3 Weak Gravitational Field and the Schwarzschild Metric
In the following, the formulation of the equivalence principle is generalized to curved

space-times, using masses mα. In GR, the motion of a particle in a background space-time

is described by the geodesic equation [253]

d2xμ

dτ2
+Γμ

ρσ
dxρ

dτ
dxσ

dτ
= 0 . (D.19)

In the case of the weak field limit of GR, when gμν = ημν+ hμν and |hμν| � 1, and the

Newtonian limit for which dxi/dτ � cd t/dτ, one has Γ i
00 =−∂i h00/2, and the above geodesic

equation reduces to

d2xi

dτ2
≈ d2xi

d t2
=−1

2
∂i h00

(
cd t
dτ

)2

. (D.20)

To obtain the modified h00, one must identify masses mα in d2xi/d t2 and cd t/dτ in the non-

relativistic limit. For the former, one considers Newton’s second law applied to gravity,

with identified mI and mG, which reads as

mI a =−mG∇φ , (D.21)
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where a is the particle acceleration, φ the gravitational potential and g = −∇φ the gravita-

tional acceleration. The acceleration a can be rewritten in component form as

d2xi

d t2
=−mG

mI
∂iφ . (D.22)

The modified cd t/dτ factor is given by Eq. (D.17). In the non-relativistic limit γ ≈ 1, since

v2 � c2. To evaluate the small deviation (in this case of the 00 component) of the metric

from the flat Minkowski space-time, due to a weak gravitational field, one plugs Eqs. (D.17)

and (D.22) in Eq. (D.20) to obtain

h00 = 2
mG

mR

φ
c2

=⇒ g00 = 1+h00 = 1+2
mG

mR

φ
c2

. (D.23)

One obtains the modifications for other components of the metric by relating them to h00.

Because the equations in QEP considerations use a contravariant metric gμν, one must ob-

tain the inverse of gμν. In the case of a diagonal metric, the inverse simply inverts the

diagonal elements. Therefore,

g00 =
1

g00
=

1

1+2 mG
mR

φ
c2

≈ 1−2
mG

mR

φ
c2

, (D.24)

since φ� c2. These results are then used to obtain the weak field metric in Eq. (5.14). It

turns out that every p2 obtains a factor 1/mI in front (or equivalently, every v2 obtains a mI
in front), every φ obtains a factor mG in front and every c2 obtains a factor of mR in front,

which can be used as a rule of thumb to identify masses mα in equations.

For a strong gravitational field, described by a Schwarzschild space-time, the general

solution for a covariant metric, before evaluating the integration constant K, can be written

as

gμν =

⎡
⎢⎢⎢⎣

(
1+ K

r

)
0 0 0

0 −(
1+ K

r

)−1
0 0

0 0 −r2 0

0 0 0 −r2 sin2θ

⎤
⎥⎥⎥⎦ . (D.25)

The constant K is obtained in the asymptotic limit, where r −→∞ and the gravitational field

is weak. This is exactly the weak field metric, considered earlier. Therefore, one can use

the result from Eq. (D.23) to compare to the g00 component of the above Schwarzschild

metric. It follows that

K = 2
mG

mR

φ
c2

r =−mG

mR

2GM
c2

. (D.26)

The inverse of the metric from Eq. (D.25), using the above constant, exactly corresponds

to the modified Schwarzschild metric in Eq. (5.16). Note that in the weak field limit of the

geodesic equation from Eq. (D.19) for the above metric, one obtains the second Newton’s

law from Eq. (D.21).
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D.4 Kerr metric
To obtain the additional integration constant L, due to the rotation of the central object,

the steps from Ref. [254] are followed. The general form of a covariant Kerr metric, before

evaluating constants K and L, can be written as [253]

gμν =

⎡
⎢⎢⎢⎢⎢⎣

(
1+ K r

ρ2

)
0 0 −K Lr

ρ2 sin2θ

0 −ρ2

Δ 0 0

0 0 −ρ2 0

−K Lr
ρ2 sin2θ 0 0 −

(
r2 +L2 − K L2 r sin2 θ

ρ2

)
sin2θ

⎤
⎥⎥⎥⎥⎥⎦ , (D.27)

where Δ = r2 +K r+L2 and ρ2 = r2 +L2 cos2θ. Since the procedure in Ref. [254] uses

Cartesian coordinates, it is convenient to write the above metric in Cartesian coordinates as

a line element [253]

ds2 =

(
1+

K r3

r4 +L2 z2

)
c2 d t2 −

(
1− K r3

(r4 +L2 z2)(r2 +L2)2
(Ly− r x)2

)
dx2

−
(

1− K r3

(r4 +L2 z2)(r2 +L2)2
(Lx+ r y)2

)
dy2 −

(
1− K r z2

r4 +L2 z2

)
dz2

+
2K r3

(r4 +L2 z2)(r2 +L2)
(Ly− r x) cd t dx− 2K r3

(r4 +L2 z2)(r2 +L2)
(Lx+ r y) cd t dy

− 2K r2 z
r4 +L2 z2

cd t dz− 2K r3

(r4 +L2 z2)(r2 +L2)2
(Ly− r x)(Lx+ r y) dx dy (D.28)

− 2K r2 z
(r4 +L2 z2)(r2 +L2)

(Ly− r x) dx dz+
2K r2 z

(r4 +L2 z2)(r2 +L2)
(Lx+ r y) dy dz ,

where x = (r cosϕ+L sinϕ) sinθ, y = (r sinϕ−L cosϕ) sinθ, z = r cosθ and r4−r2(x2+
y2+ z2−L2)−L2 z2 = 0. Note that the choice of the coordinate system in the above is such

that the rotational axis corresponds to the z-axis.

Following the procedure outlined in Ref. [254], one obtains the metric of a rotating

object in the asymptotic limit from the weak field Einstein equations (using gμν = ημν+hμν
with |hμν| � 1), which is later compared to the asymptotic limit of the metric in Eq. (D.28),

to obtain constants K and L. The weak field Einstein equations turn out as [254]

�γμν =−2κ 0Tμν , (D.29)

where

γμν = hμν− 1

2
ημν h , h = ηρσ hρσ , (D.30)

κ is the Einstein constant and 0Tμν is the special-relativistic energy-momentum tensor which

describes the source of the gravitational field for a weak gravitational field. The Kerr metric

is stationary, which means that the temporal derivative in Eq. (D.29) vanishes, and one
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obtains

∇2 γμν = 2κ 0Tμν . (D.31)

The general solution of the above equation reads as [254]

γμν(x) =− κ
2π

∫
1

R 0Tμν(X) d3X , (D.32)

where x is an arbitrary location outside the gravitating object, X is the location inside the

gravitating object, over which the integral is evaluated, and R is the distance between the

two locations, defined as

R2 = (xi −Xi)2 = r2 −2xi Xi +Xi Xi , (D.33)

where the Einstein summation rule is applied and r2 = xi xi is the square of the distance of

the observer from the central object. Note that in this notation x1 = x, x2 = y, x3 = z, and

X1 = X , X2 = Y , X3 = Z. Since all quantities must be evaluated in the asymptotic limit,

where Xi/r � 1, one can write 1/R (as given in Eq. (D.32)) as

1

R
=

1√
r2 −2xi Xi +Xi Xi

≈ 1

r
+

xi Xi

r3
. (D.34)

The energy-momentum tensor of a distribution of matter, also known as a dust distri-

bution, is defined as 0Tμν = ρc2 uμ uν, where uμ = ημν uν is defined in Eq. (D.16). For the

case of a rotating body, which rotates around the z-axis in a Cartesian coordinate system,

the components of 0Tμν turn out as

0T00 = ρ
mR

mI
c2 ,

0T01 = ρ
√

mR

mI
cv sinϕ≡

√
mR

mI

0
0T01 , (D.35)

0T02 =−ρ
√

mR

mI
cv cosϕ≡

√
mR

mI

0
0T02 ,

where ρ is the matter distribution density, v is the tangential velocity at the equator of the

rotating central object, assumed to be small v � c, and 0
0T01 and 0

0T02 are the unmodified

tensor components. Note that other tensor components vanish. Using the above energy-

momentum tensor and Eq. (D.34), one can write the off-diagonal components of the solu-

tion from Eq. (D.32) as

γ01 =− κ
2π

y
r3

∫
Y 0T01 d3X and γ02 =− κ

2π
x
r3

∫
X 0T02 d3X , (D.36)

where the axial symmetry of the system ensures that the 1/r terms and terms with other

coordinate components vanish. By choosing the z-axis as the axis of rotation, the special
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relativistic angular momentum reads

J z =
1

c

∫ (
X 0

0T
02 −Y 0

0T
01
)

d3X . (D.37)

The axial symmetry of the system also relates the two terms in the above definition as

∫
X 0

0T
02 d3X =−

∫
Y 0

0T
01 d3X =

c
2

J z . (D.38)

Note that the energy-momentum tensor components in the definition of the angular momen-

tum are contravariant. To make this consistent with the previous steps, it is easy to show

the relations with the covariant energy-momentum tensor components 0
0T

01 = −0
0T01 and

0
0T

02 = −0
0T02. Using these relations, the second and third expressions from Eq. (D.35),

and Eq. (D.38), the solutions from Eq. (D.36) turn out as

γ01 =− κcy
4πr3

√
mR

mI
J z and γ02 =

κcx
4πr3

√
mR

mI
J z . (D.39)

What remains is to evaluate is the Einstein constant κ. To do this, one must first consider

the first integral of the geodesic equation

gμν
dxμ

ds
dxν

ds
= 1 , (D.40)

where, in this case, gμν is the exact Kerr solution from Eq. (D.27), for which one wants

to evaluate the constants. To obtain constant K, one compares the above result with the

Newtonian limit, all terms (1/r)2 and higher in the above expression, are ignored. One

considers a geodesic trajectory for a particle orbiting the central object in the x− y plane.

After some algebraic manipulation of Eq. (D.40) and differentiating it over ϕ (see Ref.

[254], page 72 for more details), one obtains

d2

dϕ2

(
1

r

)
+

1

r
=− K

2�2
, (D.41)

where � ≡ r2 dϕ/ds is a constant of motion, related to angular momentum, for an orbiting

particle. According to Newtonian mechanics, the energy of an orbiting particle is constant

for any distance from the central object r, and reads as

mI ṙ2

2
− GmG M

r
= const. , (D.42)

where one can clearly identify mI and mG. Assuming the particle is orbiting the central

object in the x− y plane, one can write the particle position vector as r = r (cosϕ, sinϕ)
and its angular momentum as J = r×p =

√
mR mI c� ẑ, where p is the spatial part of Eq.

(D.16). Using the above, one can write J= Iω=mI r2 dϕ/d t ẑ and differentiate it with respect
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to ϕ, which turns out as

d2

dϕ2

(
1

r

)
+

1

r
=

mG

mR

GM
�2 c2

. (D.43)

By comparing Eqs. (D.41) and (D.43), one can identify the constant K, which is exactly

the same as in the Schwarzschild and weak field cases (see Eq. (D.26)). Note that the

angular momentum, used to derive Eq. (D.43) corresponds to the angular momentum of a

test particle orbiting the central object and is different from the angular momentum, defined

in Eq. (D.37), which corresponds to the rotation of the central object.

To obtain κ, one uses the first expression in Eq. (D.35) with Eq. (D.31), which turns

out as

∇2 γ00 = 2κ ρ
mR

mI
c2 , (D.44)

which corresponds to the Poisson’s equation for the Newtonian gravitational potential,

which reads as

∇2φ= 4πGρ . (D.45)

Note that the above Poisson’s equation does not get modified, since the mG/mI ratio would

modify it on both sides in the same way, which would then cancel. By comparing the above

two equations, one can see that

γ00 =
mR

mI

κc2

2πG
φ , (D.46)

and by using the inverse relation of Eq. (D.30), the g00 component in the weak field ap-

proximation turns out as

g00 = 1+
mR

mI

κc2

4πG
φ= 1+

K
r
. (D.47)

Precisely the same constant K appears in components g11, g22 and g33 of the weak field

approximation in the Cartesian coordinate system. Since the constant K and potential φ are

known (see Eq. (D.26)), the modified Einstein constant κ can easily be identified as

κ=
mG mI

m2
R

8πG
c4

, (D.48)

thus effectively modifying the Einstein equations as

Rμν− 1

2
Rgμν =

mG mI

m2
R

8πG
c4

Tμν . (D.49)

By plugging the modified Einstein constant from Eq. (D.48) in the expressions from
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Eq. (D.39) and using Eq. (D.30), one obtains

h01 = γ01 =−mG m1/2
I

m3/2
R

2G
c3

y
r3

J z and h02 = γ02 =
mG m1/2

I

m3/2
R

2G
c3

x
r3

J z . (D.50)

At this point one can define the constant a ≡ J z/M c. Using a and the above information,

one can write the line element of the metric of a rotating object as

ds2 =

(
1− mG

mR

2GM
c2 r

)
c2 d t2 −

(
1− mG

mR

2GM
c2

)
(dx2 +dy2 +dz2)

− mG m1/2
I

m3/2
R

4GM
c2

y
r3

a cd t dx+
mG m1/2

I

m3/2
R

4GM
c2

x
r3

a cd t dy . (D.51)

Comparing the above line element with the asymptotic limit of the line element from Eq.

(D.28), when r −→ ∞, one can identify the remaining constant L as

L =

√
mI

mR
a . (D.52)

The obtained constants K and L are then plugged in the metric from Eq. (D.27), which is

then inverted to obtain the contravariant Kerr metric as seen in Eq. (5.18).
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