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Abstract

Quantum Theory and General Relativity are two of the most successful theories of Nature
in their respective regimes. In situations where effects from both are non-negligible, the
regime of Quantum Gravity emerges. Many theories, such as String Theory, Loop Quan-
tum Gravity and Doubly Special Relativity, attempt to address the high-energy regime of
Quantum Gravity. The structures of such theories suggest the existence of a minimum
measurable length. This in turn modifies the Heisenberg Uncertainty Principle, to the so-
called Generalized Uncertainty Principle (GUP). In this work, GUP is used to construct
phenomenological models, which can be used to verify the existence of a minimum mea-
surable length. Specifically, in Earth-based experiments, the magnetometer experiment and
Bose-Einstein condensation are considered, and in cosmology, explanations of the baryon
asymmetry in the Universe and the EDGES anomaly are provided. Furthermore, a novel
conceptual approach to Quantum Gravity, namely the Quantum Equivalence Principle, is

explored.
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Chapter 1

Introduction

“If you wish to make an apple pie from
scratch, you must first invent the

Universe.”

Carl Sagan

The workings of Nature have been studied and contemplated since ancient times by
philosophers such as Democritus, Aristotle, Pythagoras, Archimedes and many others.
Their descriptions and explanations of observed phenomena were based mostly on geo-
metric principles. The modern picture of physics started forming after the discoveries of
Copernicus, Galileo and Newton between the 15th and 17th centuries. More specifically,
physics took a more modern form after the publication of Philosophiae Naturalis Principia
Mathematica by Isaac Newton [1]. However, physics has developed significantly through-
out the last hundred-fifty years, compared to the rest of its long history. Quantum Theory
(QT) changed the classical concepts of position and velocity of a particle and the theory
of General Relativity (GR) identified space-time as a dynamic variable, which changes in
response to mass. These two theories are very successful in explaining and predicting ob-
servable phenomena to a high degree of precision at microscopic and macroscopic length
scales, respectively [2, 3]. They are also considered to be fundamental theories of Nature,
since their descriptions include the most basic known building blocks of the Universe and
they both reduce to the well known standard Newtonian physics of everyday life in the

classical and non-relativistic limits.



1. INTRODUCTION

Physics at the small scale and non-relativistic speeds is described within the framework

of Quantum Mechanics (QM) and is governed by the Schrodinger equation

2m

oy(x,t h?
ih%: (——V2+V(x)> w(x,1) (1.1)
where i = h/2m is the reduced Planck constant (% is the Planck constant), m is the par-
ticle mass, y(x,7) is the wave function describing the particle in consideration and V (x)
is the classical potential. It introduces the concept that one cannot measure the position
and momentum of a particle simultaneously. This concept is described by the Heisenberg

Uncertainty Principle

Axdp> 7 (12)

where Ax is the uncertainty in position and Ap the uncertainty in momentum. The product
of these two uncertainties has a constant lower bound. This means that the more one knows
about the position of a particle, the less one knows about the momentum of that particle,
and vice versa.

On the other hand, physics at the large scale and relativistic regimes is described within

the framework of GR, and is governed by the Einstein equations

1 8nG
Ry — Engv +Agw = C_4T/JV ; (1.3)

where R,y = aprf,v — a,,rsp + Fgc Iy — 1“20 ng is the Ricci tensor,
1
F,BV = Egpc (a,ugVG‘Jl‘avg,uG_aGgyV) (1.4)

are the Christoffel symbols, R = g"Y R,y = R,' is the Ricci scalar, g,y is the space-time
metric, A is the cosmological constant, G is the universal gravitational constant, ¢ is the

speed of light and 7,y is the energy momentum tensor. In the above, the Einstein summation

2
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rule 1s used
3
Y aub =a,b", (1.5)
u=0

for any two same indices in the above configuration. This rule is used for all relativistic
considerations in this work. The Greek indices denote space-time components, which can
take values u,v =0,1,2,3 , with O representing the time component and 1,2, 3 the spatial
components, denoted with Latin indices i, j, when considered separately. The Einstein
equations, presented in Eq. (1.3) describe dynamics of a space-time (M, g,y ), defined on a
manifold 9, as a response to the energy content 7, within that space-time.

QM has also been modified to include special-relativistic effects on a flat Minkowski
space-time, neglecting gravitational interactions. The resulting theory is called relativistic
Quantum Field Theory (QFT), which successfully quantizes three out of four fundamental
forces of Nature, namely the Electromagnetic, Weak nuclear and Strong nuclear forces. In
the formulation of relativistic QFTs, the spin of the considered particle becomes relevant.
It is relevant to the extent that the equations of motion for particles with different spin
will take different forms. The Klein-Gordon equation describes relativistic spin-0 particles
(bosons), and can be generalized in an arbitrary curved space-time, described by a metric

8uv as [4]
v m?c?
(g’u VFVV -+ F) (I)(X,t) = 0 5 (16)
where V,, is the covariant derivative, related to gy, and ®(x,t) is the Klein-Gordon field.
The Dirac equation describes relativistic spin-1/2 particles (fermions), and can also be

generalized in an arbitrary curved space-time, described by a metric g,y as [5]
thqm,—mc>q«x¢):o, 1.7)

where y* are the space-time dependent Dirac gamma matrices, D,, = d,, + I, in which I',,
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is the spinor affine connection (see Section 5.1 for details on ¥ and '), and ¥(x,?) is the
Dirac spinor field. Note that Egs. (1.6) and (1.7) include gravity in a classical sense, as a
background geometry, and do not imply a quantization of the force of gravity. Therefore,
gravity is the remaining fundamental force, which still lacks a quantum description, and a
consistent theory which bridges the two regimes is still up for debate [6].

Despite their success, QT and GR are incomplete theories. They both display inconsis-
tencies at small distance and time scales (Planck length /p = \/W =1.62x 10" ¥ mand
Planck time tp = \/W/c5 =5.39 x 10~ s, respectively), i.e., very high energies (around
the Planck energy Ep = \/m = 1.22 x 10?8 eV), where contributions from each regime
are expected. At those scales QT becomes inconsistent, because it does not explain effects
of high energy particles on space-time, which become prominent, while GR displays sin-
gularities when studying black holes and the origin of the Universe [7]. In this context,
space-time is expected to no longer be a passive background, but an active and interacting
physical object.

The predictions of QT work remarkably well within the range of current highest experi-
mentally achievable energies in particle colliders, which reach E,, S 1013 eV in the specific
case of the Large Hadron Collider (LHC). However, around E), gravitational effects can no
longer be neglected. Since such high energies are experimentally not achievable now or in
the near future, such effects cannot be directly observed [7]. Such high energy scenarios
may also take place near black holes, cosmological singularities, and perhaps at large dis-
tances as well, where dark components and/or modifications of GR are invoked to explain
Dark Matter effects and the accelerated phase of the present Universe. It is expected that
the inconsistencies at small scales (high energies) can be resolved within the framework of
Quantum Gravity (QG), which must incorporate the principles of QT and GR, and must
provide a description of the microstructure of space-time at the Planck scale. However,
there is no simple way of combining the two theories to describe phenomena in high en-

ergy scenarios, where effects of both domains are applicable simultaneously. It can be seen
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that Eqgs. (1.1) and (1.3) are not compatible, since only Eq. (1.3) is relativistic. Although
QM can be generalized to a relativistic QFT, as discussed above, the two are still incom-
patible, since Eqgs. (1.1), (1.6) and (1.7) use a probabilistic approach to describe particles
using wavefunctions or fields, while Eq. (1.3) treats particles in a completely deterministic
way. QT and GR have some concepts in common, such as the notion of space-time, but
they consider them in a different way. In QT the space-time metric is considered to be a
passive static background, while the space-time metric in GR is a dynamic variable.

The above reasons prevent a straightforward unification of the two theories, although
both have relativistic descriptions [7]. It is expected that space-time should not have a
classical geometry such as in GR, but that it should be quantized. Candidate theories of QG
aim to accomplish this. Among the existing candidate theories of QG, String Theory and
Loop Quantum Gravity are the two of the best studied. However, there has not been a single
experiment or observation which support or refute any theory of QG, due to the currently
unattainable immensity of the Planck energy scale. Therefore, it is important to look for
indirect signatures of these theories in accessible, low energy laboratory-based experiments

[7, 8].

1.1 Quantum Gravity Theories and Approaches

In the well established QFTs which describe the fundamental forces of Nature, ex-
cept gravity, one is often lead to infinite scattering amplitudes, which can be mitigated by
using standard renormalization procedures. The same process of quantization and renor-
malization can be attempted with gravity, but one quickly realizes that the infinities do not
disappear due to the dimensionful coupling constant G. One way out could be a higher-
derivative theory of gravity where renormalization works to obtain finite results, but gives
rise to other issues, such as non-physical ghost fields [9]. Therefore, a novel theory of QG
is required. There are several candidate theories of QG, which could explain phenomena

at or near the Planck scale. They attempt to reconcile the probabilistic nature of QT with
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the geometrical interpretation of GR. As QT and GR both reduce to Newtonian physics in
the classical and non-relativistic limits, also a theory of QG must reduce to QT and GR in
their respective regimes. As is the case in other areas of physics, a successful theory should
explain previously unexplained observable phenomena and predict new effects. In the fol-
lowing, several candidate theories of QG and approaches to QG are briefly summarized,

namely String Theory, Loop Quantum Gravity and Doubly Special Relativity.

1.1.1 String Theory

One of the best studied candidate theories of QG is String Theory (ST) [10, 11, 12, 13].
In ST, one hopes to resolve the problem of classical singularities and removing quantum in-
finities, by describing fundamental building blocks of matter as tiny strings. It was initially
developed to describe the strong nuclear force, but a more consistent Yang-Mills theory
was adapted for that interaction instead. ST was revived when attempts were made to unify
gravity with the other fundamental forces of Nature. Several, apparently different STs were

proposed in the mid 1980’s, during the so-called first superstring revolution [13]:

* Type I: formulated in 10 dimensions, and contains unoriented open and closed strings.

* Type IIA: formulated in 10 dimensions, contains oriented closed strings and is a non-

chiral theory.
* Type IIB: similar to type IIA, with the difference that it is a chiral theory.

* SO(32) heterotic: left moving excitations propagate in 26 dimensions, while right
moving excitations propagate in 10 dimensions. Contains closed strings and imple-

ments the gauge group SO(32).

* Eg x Eg heterotic: similar to SO(32) heterotic, with the difference that it implements

the gauge group Eg X Eg.

It was later discovered, that they are all equivalent and are different limits of one underly-

ing theory, known as M-Theory [6, 13]. At low energies it can describe gauge interactions,

6
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using stringy Feynman diagrams, and gravity, where it predicts a massless spin-2 particle
(graviton), whose dynamics effectively describe GR at large distances. ST uses Super-
symmetry [14] and compactified extra dimensions [10, 11, 12, 13] in its formulation. The
required extra dimensions, which are suggested to be of the size of /p, lead to QG effects.
Therefore, since the stringy behaviour is supposed to manifest at energies of the order of
Ep [15], ST cannot predict directly measurable effects at relatively low energies, currently
achievable in accelerators, which is also the case with many other candidate theories of
QG. The theory is also formulated on a fixed, as opposed to a dynamical curved space-time

background, and therefore cannot address all aspects of QG.

Strings

In standard QFT, world lines are graphical representations, used to describe a path of a
point particle in space-time. The main idea of ST is to replace point-like particles which
have no size, with string-like objects which have a non-zero length, as the fundamental
building blocks of matter in the Universe. This effectively replaces a one-dimensional
world line of a particle with a two-dimensional world sheet of a string in a space-time
diagram (see Fig. 1.1). A world line of a point particle is described by a single parameter,
while for a world sheet, a second parameter needs to be introduced to describe the path of
a string in space-time (see Eq. (1.9)). The size of a string is assumed to be no smaller than
the Planck length /p, but can be larger. Therefore, it is considered as a free parameter of
the theory.

To transition from classical to quantum mechanics, one needs to introduce Planck’s
constant A, and to transition from classical to relativistic mechanics, one needs to introduce
the speed of light ¢. Similarly, one needs to introduce a fundamental constant o, called
string tension, when a transition to ST is made. This approach has several advantages.
For example, when regular 4-point Feynman diagrams are considered (see figure 1.2 a)),

infinities appear in such calculations, which arise from interactions taking place in infinitely
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a) b)

Figure 1.1: Replacing a world line a) with a world sheet b). Adapted from Ref. [6]. Credit
of Nancy Barajas.

Figure 1.2: Replacing a regular 4-point Feynman diagram a) with a stringy Feynman dia-
gram b). Adapted from Ref. [6]. Credit of Nancy Barajas.
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small volumes, and have to be mitigated by renormalization. However, when ST is applied
to such processes (see figure 1.2 b)), the singular vertex interaction points are no longer
present and the infinities do not appear. Therefore, renormalization is not required.

The following review of ST is based on Ref. [12]. The action for a relativistic point
particle in curved space-time, parameterized with proper time T can be written as

dx# dXV
/ dr(n g (X) 4 mz), (1.8)

where 1 is the world line tetrad and X* the space-time coordinate. As mentioned earlier, to
consider an action for a string, a second parameter must be introduced. This new parameter,
labeled as o, is called proper position. The set of parameters for a string can then be written
as 6 = (0,7) and the position in space-time as X*(c*). This formulation is used to describe
the dynamics of a string. The action for the string is called the Polyakov action and reads
as

S=

dx* dx"
/dcdthl/zhabnw o7 da? (1.9)

4o/
where 4 is the Euclidian world sheet metric with signature (+,+), h= det(h®) and 1,y is
the Minkowski metric, describing flat space-time. Note that the entire expression is divided
by the string tension . One can see that Eq. (1.8) has an explicit term for mass, which is

a free parameter of the theory, while Eq. (1.9) does not. In ST, particle masses depend on

o/ and are not free parameters themselves. The masses of particles in ST read as

1 2-D
2
— (N4 2 1.10
" oc’<+24>’ (1.10)

where N is the level of excitation of the string and D the space-time dimensionality. For an

arbitrary classical space-time metric g,y, the action (1.9) can be rewritten as

dx* dxv

1/2 pab
WA g (X) o ot

(1.11)




1.1. QUANTUM GRAVITY THEORIES AND APPROACHES

It turns out that Eq. (1.11) is all one needs to compute stringy Feynman diagrams.
Quantizing a string, described by the above action, gives rise to interesting new results.
One of the most important results, which appears in such considerations is the emergence
of a quantized gravity.

To demonstrate how gravity emerges from ST, one introduces a slowly evolving scalar

dilaton field ®p, coupled to the Ricci curvature scalar R in the action from Eq. (1.11) as

dx* dxV

1
S:4m,/dcdrh1/2 (h“”guv(X)d—deb +Oc'R<I>D(X)> : (1.12)

From the above, one can compute the renormalization group f—functions, which appear as

Dp 1
By + 8T g Ba, —o (R“V -3 g,,VR) + o/ fu (V2®p) +O(a'?) (1.13)

where fy (V2®p) is a tensor function of second derivatives of ®p and represents the source
terms. The requirement of ST to be Weyl invariant ensures that Bf,v = B®» = 0. From Eq.
(1.13) one can see that the Einstein equations, coupled to the dilaton field ®p are obtained.

When ST, formulated on a fixed flat or curved space-time is quantized, one obtains
excitations of various masses and spins, which includes, interestingly, a massless spin-2
particle, which can be identified with the perturbative graviton, which is the force carrier
in a quantized theory of gravity. To quantize ST, one can use the standard quantization
methods, such as Feynman path integrals or canonical quantization [10, 11, 12, 13]. The
canonical quantization is briefly summarized below, following Ref. [10].

For a specific class of a world sheet parameterization, the equations of motion for both
open and closed strings turn out to be wave equations X# — X*” = (), where " denotes the
derivative over T and ' the derivative over 6. The canonically conjugate momentum densi-

ties in this case turn out as

1 . 1
P™M=_——X" and P°*=—

XH 1.14
2mo! 2o/ ( )
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1.1. QUANTUM GRAVITY THEORIES AND APPROACHES

The above conjugate momentum densities hold for any gauge of the considered class. The
canonical quantization turns out to be identical for open and closed strings, and is expressed

by the equal-time canonical commutation relations

[X*(t,0), P*(1,6")] =ikn*¥ 8(c — 0') ,

[X*(t,0), X¥(t,0')] = [P™(t,0), P*V(1,6")] =0,

[x (1), p"(v)] =—ih, (1.15)

where 8(6 — ') is the Dirac delta function, and x~ and p™ are the 0—th components of po-
sition and momentum vectors in the light-cone coordinate system. The solutions of X*(t, )
for open and closed strings turn out to be different. On one hand, the solution for an open
string is expressed in terms of open string oscillation modes o,", where n € NU{0}. Given
the commutation relations in Eq. (1.15), the open string oscillation modes, which are now
quantum operators, obey

[ o0V = —nn* S - (1.16)

On the other hand, the solution for a closed string is expressed in terms of closed string
oscillation modes a," and o, ". Given the commutation relations in Eq. (1.15), the closed

string oscillation modes, which are now quantum operators obey

[afnluu(xflv] - _nn'uv 6m+n,0 9 [a;{u7afzv] - _”nw 5m+n,0 and [(X;lu?aflv] = O : (117)

The commutation relations in Eqgs. (1.16) and (1.17) govern the quantum behaviour of
strings and are a fundamental feature in ST. They are used as ladder operators to construct
quantum states, and quantum operators for physical observables, such as number operators,

momentum operators, Hamiltonians and others.

11



1.1. QUANTUM GRAVITY THEORIES AND APPROACHES

Summary

As promising as ST appears, it still has several issues which need to be addressed to be
considered as a consistent theory of QG. One such issue is the requirement for Supersym-
metry [14]. Supersymmetry states that all bosons and fermions from the Standard Model of
particle interactions have supersymmetric counterparts with opposite particle statistics and
equal masses, if the symmetry is to be preserved. Supersymmetric particles have not been
detected so far, which suggests that such particles do not exist, or that Supersymmetry is
broken and the supersymmetric particles are much heavier. Also, ST assumes the existence
of compact dimensions, which lack experimental confirmation. The compact dimensions
can form different topologies, depending on the number of compact dimensions, and are
described by Calabi-Yau manifolds [13]. For two compact dimensions there are only two
cases, C and a two-torus T2. For four compact dimensions there are two cases, K3 and a
four-torus T* (there are also two non-compact cases, C? and C x T2 in four dimensions).
For six compact dimensions, which is the most interesting case, found in superstring mod-
els, there is a large number ~ 10'%° of possible Calabi-Yau three-folds. This introduces an

ambiguity, called the vacuum selection problem.

1.1.2 Loop Quantum Gravity

The next candidate theory of QG is Loop Quantum Gravity (LQG) [16, 17, 18, 19,
20, 21, 22], which provides a novel theoretical framework for a quantum description of
space-time and attempts to quantize GR in a non-perturbative way. It considers GR in four
space-time dimensions as the starting point for its formulation, as opposed to ST, which
considers GR to be a low energy approximation of a more fundamental theory in higher
dimensions. LQG uses a background independent Hamiltonian approach. In other words,
no background is assumed. It introduces several new techniques and concepts, of which the
Ashtekar variables and the formulation of space-time in terms of finite loops incorporated

into a network, are the most important. Networks of such loops are called spin networks or

12



1.1. QUANTUM GRAVITY THEORIES AND APPROACHES

spin foam, and require the introduction of non-separable Hilbert spaces and representations
of operators, compatible with such Hilbert spaces [22]. Time evolution in LQG systems
takes place in increments of the size of /p, which indicates quantization of space-time. This
can provide a viable explanation of the Planck scale departures from Lorentz symmetry and

make predictions in early Universe cosmology [7].

Canonical General Relativity

The formalism of LQG is that of canonical GR. To transition to a canonical description,
one needs to rely on the use of vierbeins (tetrads), labeled by ¢;, and defined through g,v =
€y e\lj Na»- Here, Ngp 1s the Minkowski space-time metric of the tangent space and a, b are

the tangent space indices. The vierbeins are covariantly conserved, which means
Dyéy =Vues— o ey, =0, (1.18)

where cozb is the spin connection. According to the standard ADM prescription (named
after R. Arnowitt, S. Deser and W. Misner), one takes a globally hyperbolic manifold M,
which can be foliated as M = X x R, where X is a spatial manifold and R the temporal

manifold. Usually, a triangular gauge is chosen for the vierbeins

N NA
e = , (1.19)
0 e,

where e is a spatial dreibein, m and A represent curved and flat indices, respectively, while
N and N4 are the Lagrange multipliers, called lapse and shift, respectively. The space-time

metric g,y then takes the form

—N24+N4sN4s N,
v = , (1.20)

Nm gmn
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1.1. QUANTUM GRAVITY THEORIES AND APPROACHES

where g, = €/} ena refers to the spatial part of the metric. Using the standard procedure,
one can obtain the canonically conjugate momenta from the Einstein-Hilbert Lagrangian

LEH as

SLEH 1
M= ——= = —cef (Kag— 04K 1.21
A 5 drelh 2€€B(AB 1w K) , (1.21)

where Kap = eﬁ e}, Vyevo = Wapo and K = Ky 4 are the extrinsic curvature tensor and scalar
of X, respectively, e = det (6’,3‘1) and 045 the Kronecker delta. The conjugate momenta from

Eq. (1.21) are used to construct the Hamiltonian density through a Legendre transformation
H =0l T — Ly =NHy+NyHy , (1.22)
where Hy = D,, I},
Ho:elolwrug—%rﬁ>—eR@L (1.23)

Myp = ITY eﬁ, IT =114 and R the spatial Ricci scalar. Setting Hy ~ 0 represents the
classical Hamiltonian constraint. A standard canonical quantization of the above can be
performed by promoting the dreibein 2 to a multiplication operator and writing the canon-

ically conjugate momenta as a functional differential operator as

d

M) = —ibg s

(1.24)

By this substitution, the previously mentioned Hamiltonian constraint becomes a quantum
equation, called the Wheeler-DeWitt equation, which generates dynamics in LQG and is

given by

Ho(x)W[e] =0, (1.25)

14



1.1. QUANTUM GRAVITY THEORIES AND APPROACHES

where W[e] is a wave functional, which can in general depend on more variables. It is also
known as the wave function of the Universe, since it is expected to contain all information
about the Universe from its beginning to its end. However, by using the conjugate mo-
mentum operator from Eq. (1.24) to solve Eq. (1.25), one obtains a highly singular and
ill-defined form of a functional differential equation. This creates a significant obstacle in
constructing appropriate Hilbert spaces with befitting scalar products for wave functionals.
Therefore, LQG approaches quantization of gravity by virtue of the Ashtekar variables,

which complement the above canonical formalism of GR.

Loops

A new set of canonical variables was introduced by Abhay Ashtekar in 1986, which
provide a connection representation in canonical GR. They present a novel way to write
the metric canonical variables within slices X, using a SU(2) gauge field. As shown in the
following, LQG uses the Ashtekar variables to introduce loops, which comprise the spin
network description of space-time. They are derived in detail in Refs. [23, 24] (see also

Ref. [25]) where the first variable is the SU(2) gauge field connection, which reads as

1
Apa = —5 &ABC Ompc +Y Kina (1.26)

where €4pc is the Levi-Civita anti-symmetric tensor, 7y is the Barbero-Immirzi parameter1
and K;,4 = Kpa €5 In classical considerations y has no physical interpretation. However,
when the theory is quantized, ¥ sets the scale for fundamental areas and volumes. The

second variable is the so-called inverse densitized spatial dreibein and is defined as E}' =

'The Barbero-Immirzi parameter y was initially taken to be complex. More specifically, for y = +i the
Hamiltonian constraint is expressed in terms of the new variables polynomially and simplifies the calculations
significantly. However, this choice implies that the phase space of GR is complex, and turns out to be an issue
when quantizing gravity. It poses a problem in defining suitable hermiticity conditions of states and operators,
which has not been resolved so far. Therefore, to obtain the real phase space of GR and avoid quantization
issues, the Barbero-Immirzi parameter is currently taken to be real, y € R.
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1.1. QUANTUM GRAVITY THEORIES AND APPROACHES

eel. It can be straightforwardly verified that the Ashtekar variables (4,4 from Eq. (1.26)

and E}") obey the Poisson algebra

{Ana(x), A,8(y)} =0,
{EJ (x), E5(y)} =0,

{0, E4(y) } =867, 80 x—y) | (1.27)

where 8C)(x —y) is the spatial Dirac delta function. From the above one can see that y
renormalizes the universal gravitational constant G.

LQG is formulated using spin networks and spin foams, represented by loops. De-
scription of such loops is based on holonomies. The loop representation is related to the
connection from Eq. (1.26) by the loop transform, which is a functional analog to a Fourier
transform. In contrast to using functionals, such as W[ 4|, which are defined on the entirety
of X, it is more convenient to use holonomies, which are gauge covariant functionals, de-
fined on one-dimensional curves within X and designated by e. A holonomy for a given

curve inside ¥ is a matrix valued functional, defined as

he[A] = P exp (/ﬁlmdxm) : (1.28)

where 4,, = 4,4t with t being the generators of SU(2), i.e., the Pauli matrices, 4 =
bz eff‘tA and P denotes path ordering from shortest paths on the left, to longest paths on
the right. It turns out that the trace of a holonomy in Eq. (1.28) for a closed loop is gauge

invariant and is called a Wilson loop, which reads as
W,[A| = Tr [h[A4]] . (1.29)

The Wilson loops can be used to quantize gravity non-perturbatively, since they form a basis

for expansion of any gauge invariant functional W[ 4| = Y, W[e] W, [4]. Since the size of the
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1.1. QUANTUM GRAVITY THEORIES AND APPROACHES

curves, described by their individual e, can be arbitrarily small in X, the basis comprised
of Wilson loops forms a so-called spin network space. However, such a space does not
address all constraints of the theory. Therefore, a larger space is required. To obtain this
larger space, LQG assumes quantization of the holonomy #%,[A4] and its conjugate variable,
the flux vector F¢'[E] through any surface S embedded in X, where E = det (E7") (see Refs.
[16, 17, 18, 19, 20, 21, 22] for details on F§‘ [E] and the commutation relations between
the quantized variables). The non-separable Hilbert space of LQG, denoted by §, is then
constructed by linear combinations of functionals Wr [ 4] =y (h, [4], he,[A], ...) = [¥T)
over all possible graphs I' C X, containing edges ¢; € I" and vertices v € I'. Here, Y is some
function of holonomies.

Using Fg“ [E], one can construct surface and volume operators, which have discrete spec-
tra proportional to K%y and Ef)yy 2, respectively [26] (see Section 2.1.3 for an example). This
implies that LQG predicts the existence of a minimal area and volume, parameterized by
Y. In this context, the spin network quantizes space-time. Note that the spin network is
embedded within a continuous manifold ¥ and is considered to be a fundamental physical

object of space-time.

Summary

LQG manifests a number of important features a theory of QG must have, such as back-
ground independence and quantization of space-time. However, it still has its shortcomings
and open problems, which need to be addressed for it to be considered a consistent theory
of QG. For example, it is unclear how to obtain the classical limit of LQG, where stan-
dard GR with a smooth space-time emerges. The reason for this is that the quantum states
in LQG are significantly different than quantum states in the standard Fock space quan-
tization. In addition, LQG cannot address the two-loop divergence, which is expected to
appear when expanding the non-perturbative quantized gravity in Newton’s constant. Such

an expansion has not been performed, since the semi-classical state, which should manifest
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1.1. QUANTUM GRAVITY THEORIES AND APPROACHES

this divergence, has not been found. There is also little justification for the Hamiltonian
constraint operator, which is central in LQG, and it is not clear if the space-time covariance
can be recovered. Including matter in LQG also raises some issues. It appears that LQG
imposes no restrictions for types of matter and their interactions with themselves as well
as with gravity. Therefore, it is not clear if the consistency requirements from perturbative

relativistic QFTs on matter can be recovered.

1.1.3 Doubly Special Relativity

Doubly Special Relativity (DSR) [27, 28, 29, 30] is a theoretical framework, which
aims to explore what happens to the Lorentz symmetry at or near the Planck scale /p. It
is not considered as a candidate theory of QG, such as ST and LQG, but it is believed to
emerge as a certain limit of QG. Despite the expected departures from Special Relativity
(SR) at the Planck scale, the principle of relativity (equivalence of inertial frames) remains
unmodified in the context of DSR. The doubly in DSR comes from the main assumption of
the theory, which states that there are two observer-independent scales, in contrast to SR,

which contains only one, the speed of light c. This gives rise to a modified set of postulates:

* Principle of relativity: all inertial frames are equivalent, which means that all laws of

physics take the same form in all inertial frames.

* There exist two observer-independent scales: the speed of light ¢ and the Planck

length /p, parameterized by K o 1/¢p, i.e., K < Mp and has units of mass, where
Mp =1/ hC/G

Note that the standard SR is obtained by k¥ — co. The problem to incorporate both
observer-independent scales in a theory is non-trivial, since from SR one expects to mea-
sure different lengths from different inertial frames. However, it is possible to incorporate
both scales by introducing concepts, such as space-time non-commutativity and description

of space-time symmetries using quantum groups [27, 28, 29, 30]. This results in a non-
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classical description of space-time with properties somewhat similar to those of a phase
space in standard QM.

Analogously as in SR, the postulates in DSR suggest that the symmetry group should
be ten dimensional. However, because of the inclusion of a second observer-independent
scale, the symmetry group cannot be the standard Poincaré group. This suggests a modi-
fication to the standard energy-momentum dispersion relation E> = p2c? + m?c* from SR.
By considering the framework of SR, it does not permit an introduction of another observer-
independent scale. However, a complete theory of QG must include further observer-
independent constants i, G and A. Therefore, one can argue that in limits of QG, where
gravitational interactions and quantum effects are negligible, space-time becomes locally
flat, and traces of QG persist in terms of the previously introduced scale K.

The new scale k then modifies the Poincaré algebra to the quantum k-Poincaré algebra.
Specifically, SO(3,1) — SO4(3,1) for three dimensions and SO(3,2) — SO,(3,2) for
four dimensions, where g = exp (A 1? / chz) [30]. For Kk — o, ¢ = 1 and one obtains the
standard Poincaré algebra. In DSR, a specific basis for the k-Poincaré algebra is chosen,
where only the translational sector is modified and the Lorentz sector remains unmodified
[31]. However, in the four dimensional case, the generators of physical quantities need to
be renormalized? to obtain finite results [32, 33]. Such renormalization introduces a family
of contractions, parameterized by r € R. It turns out that only r = 1 returns the required

four dimensional k-Poincaré algebra, which reads as [30]

i, Jj) =€k Ji ,
Vi, Kj| =i€;jx K ,
(Ki,Kj| = —i€ijxJi ,

i pjl=igijidi ,

2Note that renormalization in this context does not refer to the renormalization of the gravitational field,
but ensuring that energy and momentum variables remain finite in the representation of SO,(3,2).
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[Jiap()]:()?
2
. Kc _ . P .DiPj
Ki.pil=id;; _<1_ 2PO/KC> ¥ o) _ e
[ ’pj] ! ](2 ¢ +2Kc ch7
[Ki, po] =ipi , (1.30)

where J; are the rotation generators, K; the boost generators and p,, the translation operators,
1.e., the four-momentum. The feature that the Lorentz sector remains unmodified shows
that Lorentz symmetry is not broken. However, its action on momenta is non-linear. By
computing the Casimir invariant, one arrives at the modified energy-momentum dispersion
relation

ch4cosh<K£C2> = %pzczeE/Kc2 +ch4cosh(%) , (1.31)
where po = E /¢ was used. From the above, one can see that by increasing the momentum
to p = |p| — K, the energy approaches infinity py — oo for any observer. This confirms
that K is observer-independent and sets an upper bound to the possible physical momenta
of particles in DSR. One can verify that Eq. (1.31) also implies a momentum-dependent
speed of light for massless particles

_JE ¢
S dp 1-L7

Kc

(1.32)

1%

where one can see that it diverges for p — k. This result will be subject to tests in the
future [34].

The above formulation of DSR, based on the algebra from Eq. (1.30) is only one possi-
ble realization, often called DSR1. Another realization of DSR, explored in Refs. [28, 35],
often called DSR2, uses a choice of a slightly different basis for the k-Poincaré algebra.

In the basis of DSR2, the algebra differs from the one in Eq. (1.30) only in the last two
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expressions as

. DbiPj
Kiopjl=i(3p0— P20
[Ki,pjl=i(dijpo cC
Kipo =i (1-22) i, (1.33)

while the rest remain unchanged. Therefore, the Lorentz sector remains unmodified in this
formulation as well. By computing the Casimir invariant for this case, one arrives at the
modified energy-momentum dispersion relation

E2 2.2
R e al (1.34)

2 2
E E
(“rcz) (“@)

where again po = E/c was used. From the above, one can see that an upper limit on the

energy E < kc¢? is implied. One can verify that Eq. (1.34) does not suggest a varying speed
of light. Note that there exists a third realization of DSR, explored in Refs. [36, 37, 38], but
will not be discussed here, since it would provide no further insight into DSR.

One of the interesting features of DSR is that the four-momentum space is not described
by a flat manifold, but a manifold with constant curvature k2. A consequence of this is
that space-time coordinates do not commute. Therefore, a space-time of DSR is a non-

commutative manifold, the k-Minkowski space-time [31, 39], where
[0, x:] =—%xl~, and [x;,x;] =0, (1.35)

valid for all realizations of DSR. For comparison, in standard QM it is not possible to
simultaneously measure the position and momentum of a particle. This feature is given in
terms of non-commutativity of position and momentum. Similarly, for the above space-time
non-commutativity, there exists a similar limitation of simultaneously measuring a time and
a space coordinate [7].

As a final note, the authors in Ref. [40] proposed an extension of DSR to include space-
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time curvature, known as Doubly General Relativity. One of the important results of this
extension is that the geometry of space-time depends on the energy E of the particle used

to probe it (gravity’s rainbow) [41].

Summary

Since DSR is not formulated as a theory of QG, but as a limit of QG, it provides an
insightful description of the space-time symmetries and relativistic dynamics of high energy
particles in negligible gravitational fields. However, DSR still has several open problems
which need to be addressed for it to be complete and consistent. While single particle
dynamics are understood well, it has several issues describing multi-particle dynamics,
manifesting as the so-called soccer-ball problem [42]. It is also not completely clear how
DSR emerges from a limit of QG and what are its conservation laws. Justification of why
Nature would choose the SO, (3,2) algebra as a limit of QG and r = 1 to renormalize
physical quantities, also remain open questions. Finally, DSR is formulated on momentum

space and there is still no consistent formulation in position space.

1.1.4 Other Approaches to Quantum Gravity

From the candidate theories of QG, reviewed in this work, ST quantizes the perturba-
tions of the graviton field on a fixed background, LQG quantizes space-time itself, and DSR
addresses the behaviour of space-time symmetries in limits of QG. In contrast to the above,
there are several other candidate theories of QG and approaches to QG, which introduce
new concepts to address the QG problem. However, they will not be discussed in this work,

but will only be mentioned, including a reference for the interested reader:
* Discrete causal sets [43]: Lorentzian metric used as geometry and causal structure.

e Causal Dynamical Triangulations [44]: gravitational path integral on a differential
manifold realized explicitly, non-perturbative and with no dependence on the back-

ground.
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* Asymptotically safe QG [45]: non-perturbative construction of a QFT of the metric

tensor.

* Non-commutative QFT [46]: Formulation of a QFT on a non-commutative space-

time.
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Chapter 2

Quantum Gravity Phenomenology

“I have a naive trust in the Universe —
that at some level it all makes sense,
and we can get glimpses of that sense if

we try.”

Mihaly Csikszentmihalyi

By taking a close look at competing candidate theories of QG (e.g., theories reviewed
in Section 1.1), one notices that it is difficult to provide experimentally testable predictions
within their frameworks. This difficulty is mainly attributed to technological limitations of
contemporary experiments, which can be quantified in terms of energy. Currently, the high-
est experimentally achievable energies in particle colliders reach E,, < 1013 eV, an upper
bound set by the LHC experiments. As explained in Chapter 1, QG effects are believed to
manifest at energies comparable to the Planck energy Ep ~ 10?8eV. This is 15 orders of
magnitude greater than the energy, which can currently be achieved. Therefore, direct tests
of candidate theories of QG are currently not possible. However, QG effects are shown to
be universal [7, 8, 47], which implies they must also persist at low and accessible energies,
where although their signatures are expected to be small, they may still be detectable in high
precision experiments. In other words, by taking the low energy limit of a theory of QG,
which must give rise in QT and GR, the QG effects are expected to appear as corrections to
established results from QT and GR. These corrections are expected to be non-vanishing,

even in the regime of Newtonian mechanics. Therefore, if precise enough experiments are
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designed, signatures of such effects are expected to be observable. Endeavours to provide
observable predictions and explanations of anomalous phenomena (observed phenomena,
which have no explanation within the standard frameworks of QT and GR) in terms of these
corrections, comprise the field of Quantum Gravity Phenomenology (QGP) [7].

In QGP, phenomenological models are constructed in order to test general properties,
as well as specific predictions which a consistent theory of QG may exhibit (e.g. Refs.
[48, 49, 50]). An abundance of research on QGP has been produced in the last 30 years,
which is evident from this extensive (yet incomplete) sample of Refs. [15, 48, 49, 50, 51,
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74,
75,76, 77,78, 79, 80, 81, 82, 83, 84], covering predictions and constraints of QG effects
from atomic to cosmic scales. QGP does not assume any specific candidate theory of QG
as the correct one. It considers the consequences of quantization of gravity and a quantized

space-time, such as a minimum measurable length £,,,;,,.

2.1 Motivation for Minimum Length

In QG considerations, the notion of space-time at Planck scales must be reconsidered,
from which corrections to quantum principles are expected to follow. For example, one of
the consequences of ST (as well as M-Theory) and DSR is space-time non-commutativity
[85, 86, 87, 88, 89, 90]. It leads to modified dispersion relations [91] and in some situations,
may also exhibit a varying speed of light [92, 93], which gives rise to non-local field theories
and the modification of the standard canonical commutation relation of the Heisenberg
Uncertainty Principle [62, 80, 94, 95, 96] (see also Refs. [8, 68, 97, 98]).

The above results imply the existence of a non-vanishing minimum measurable length.
In general, most candidate theories of QG and the pertinent thought experiments agree on
the existence of a minimum measurable length in one way or another [6, 7, 27, 41, 63, 69,
72,99, 100, 101, 102, 103, 104, 105, 106, 107]. In the following, a handful of examples of

the emergence of a minimum measurable length are discussed. Specifically, the black hole
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thought experiment, ST, LQG and DSR.

2.1.1 A Thought Experiment with a Black Hole

In the region near the apparent horizon of a small black hole, both QT and GR effects
become important. Therefore, it is reasonable to assume that QG effects can manifest there.
This thought experiment implies QG effects by means of measuring the area of the apparent
horizon of a black hole. In this approach, only model-independent QG properties are used.
The main physical process underlying this thought experiment is Hawking radiation.

Hawking radiation is a nearly black body radiation, with a characteristic temperature,
known as the Hawking temperature of the black hole, as seen by an asymptotic observer
[108]. One of the consequences of Hawking radiation is loss of black hole mass, resulting
in black hole evaporation. In this context, if a black hole does not gain mass by accretion
or other mechanisms, it will shrink and eventually vanish.

The main idea is to perform the Heisenberg microscope thought experiment, where the
observed quantum particle is replaced by a black hole with a non-vanishing area of the
apparent horizon. For simplicity, a Reissner-Nordstrom black hole with mass M and charge

Q is considered, given by the metric [109]
~1
R« RZ R< RZ
ds? = — (1 _s _§> cdr? + (1 _55 _ZQ) dr? +r?(d®? +sin*9 de?) , (2.1)
r r r

where

(2.2)

€o the electric constant, s the invariant interval, ¢ time, and r, & and ¢ are the standard
spherical coordinates. Note that for charge Q = 0, Eq. (2.1) reduces to the Schwarzschild
metric.

A Reissner-Nordstrom black hole has two horizons. The outer apparent horizon and the

inner horizon. The latter is in general located at a shorter radius than the former. The hori-
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zons of any given black hole are found where the rr component of its metric in a spherical
coordinate system diverges, i.e., gr_r1 = 0. For a Reissner-Nordstrom black hole, described

by Eq. (2.1), they turn out as

GM 0>
Rf= " | 14+4/1—-— = 2.3
h =2 \/ AmeogGM? | (2:3)

where + denotes the outer apparent horizon solution and — the inner horizon solution. A
Reissner-Nordstrom black hole is extremal when the above two horizons coincide R,J{ =
R, . This equality is satisfied when Q? = 4meg GM?. Tt turns out that an extremal black
hole does not emit spontaneous Hawking radiation, because it has a vanishing Hawking
temperature, and is therefore an ideal candidate for the Heisenberg microscope thought
experiment. It is also assumed, that the black hole does not discharge. The goal of this
thought experiment is to examine the limitations to the precision of measuring R;lr [58].

In classical GR, an observer cannot obtain information beyond the apparent horizon,
which implies that nothing is emitted from the black hole. However, the area of a black
hole can be measured indirectly, by observing the motion of test particles at infinity. In this
way, the mass M and the charge Q of the black hole are obtained. By using the + solution
of Eq. (2.3), the area of the apparent horizonis A = 471:R;{2. However, a black hole can emit
Hawking radiation due to quantum effects near its apparent horizon. Therefore, a stationary
observer at r > RZ can detect a signal, which allows for a direct measurement of the area
of the apparent horizon.

By using the Heisenberg microscope thought experiment, one can measure the area of
the apparent horizon. A photon with wavelength A is sent from infinity towards an extremal
Reissner-Nordstrom black hole, where it gets absorbed. The mass of the black hole after
absorption is M + AM, where

h

AM = (2.4)

and follows from the conservation of energy AMc?> = hv = hc/A. Due to this change
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in mass, the black hole is not extremal anymore, and is expected to decay back to the
extremal state through Hawking radiation. It is assumed that a single photon of the same
wavelength A is emitted from the black hole and detected by the microscope (see Fig. 2.1).
The measurement is repeated many times, so a complete image of the black hole is obtained.
From this, the radius of the apparent horizon R;l“ can be determined.

If a Schwarzschild black hole was chosen instead, it would eventually evaporate through
Hawking radiation and it would also not be possible to discriminate the re-emitted photon
from the background Hawking radiation. If an extremal Kerr-Newman black hole was
chosen instead, the flattening of the apparent horizon and frame dragging effects would
need to be taken into account, when determining where the photon came from. However,
the following results would not change [58].

In the standard Heisenberg microscope thought experiment, the resolving power of the
microscope and the wavelength of the detected photon determine the uncertainty in mea-
suring the position of a particle. The exact same factors determine the first contribution to
the uncertainty of measuring the radius of an apparent horizon of a black hole, which reads

as

A
(1) ~
Avt = sin®

5 (2.5)
where 0 defines the angular size of the microscope as seen from the apparent horizon of the
black hole. It is related to the resolving power of the microscope, given by its lens diameter
D and focal length f as sin® = D/2 f. Also, the photon itself poses a limitation. It cannot
resolve length scales smaller than its wavelength A.

The uncertainty in measuring the momentum of the black hole after re-emitting the

photon is also the same as in the standard case, which reads as

Ap ~ % sin® . (2.6)

Multiplying the above by Eq. (2.5), one obtains the standard form of the Heisenberg Un-
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D

Figure 2.1: The Heisenberg microscope with a lens of diameter D and focal length f,
observing a black hole (BH) through Hawking radiation. Credit of Nancy Barajas.

certainty Principle

ADap~h. 2.7)

Note the interchange between the Planck constant 4 and the reduced Planck constant /. In
estimations such as here, one can safely assume A ~ h.

For a black hole, there exists another contribution in determining the uncertainty of the
radius of the apparent horizon. As the black hole emits the photon, its mass decreases
from M + AM to M, and as a consequence, the apparent horizon radius also changes by

Ax?) = Rf(M +AM) — R, (M), which turns out as

GAM GM GAM\* GQ? GM\* GQ? _ 2GAM
2)
Al = c2 +\/(7+c—2> _4n£0_\/( c2 ) 4me = 2 28)

By plugging Eq. (2.4) in the above, the second contribution to the uncertainty becomes

2
Ax?) > Z = %P (2.9)

Q

>
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By considering the inequality A/sin® > A the dependence on the microscope is eliminated.

The terms Ax(!) and Ax(?) can then be linearly added to obtain
62
szxjuBTP, (2.10)

where B is a dimensionless constant, determining the magnitude of the second contribution.
Elimination of the dependence on the microscope also implies considering the inequality

Ap/sin® > Ap. Using this with Eq. (2.6), one can rewrite Eq. (2.10) as

h Ap h
Ax> — +BR=2 = "~ + BGA 2.11

where B = B/ c3. The modified uncertainty relation from Eq. (2.11) can be written in a

more familiar form as the modified Heisenberg Uncertainty Principle
N 5 2
AxApzh%—BEAp =h+BGAp~, (2.12)

where it can be seen that an extra term appears, compared to the standard Heisenberg Un-
certainty Principle. The term is squared in the uncertainty of momentum and it contains
the gravitational constant G, which implies that the correction is of gravitational origin. As
/2 = G, the correction term is also related to minimum length. To estimate the minimum

length, one finds the minimum of Eq. (2.11), which turns out as ¢,,;, = Axin = VB/p.

2.1.2 String Theory

From considerations of ST, discussed in Section 1.1.1, it can be concluded that there is
no strict constraint on the string size. Therefore, ST allows the sizes of extra dimensions to
be larger than the Planck scale. Specific choices of sizes and number of extra dimensions
provide a range of observable effects. Other ST inspired phenomenological approaches

introduce new fields, which give rise to new observable effects. Possible future reformu-
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lations of ST could include a variety of space-time quantization, which could successfully
predict measurable phenomena [7].

In ST the emergence of a minimum length can be demonstrated from considerations of
dualities. A simple example, giving a general idea about dualities, comes from condensed
matter physics [110]. A two-dimensional Ising model represents a dual spin system. The
dual lattice has a Z, symmetry, where spins on one lattice are oriented in one direction,
while spins on the dual lattice are oriented in the opposite direction (see Fig. 2.2). Black
and white dots represent opposite spins of the lattices, with temperatures 7 and 1 /T respec-
tively. There is one phase transition in such a system and it occurs at the critical temperature
T. = 1, at which the lattices switch roles and the system behaves the same at temperatures

T > T, as at temperatures T < T¢. This is called 7T-duality [6].

o oo
B S S S
o o o« o
T
SERERER.
- o o o

Figure 2.2: Dual lattice of a two-dimensional Ising model. Credit of Nancy Barajas.

T-duality is also found in ST and it implies the existence of a smallest circle, at which
the radii R and o /R of dual circles are equal. To see this, one considers a space, where

at least one dimension is periodic with period 2w R. One then proceeds to shrink R below
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V. It turns out that the circle will begin to expand again. This means that the circle radius
can’t get smaller than v/o [6]. On such a circle with radius R, a massless string (assumed

for simplicity) has momentum and energy

n n
pzh}—e and En:hc%, (2.13)

where n € Z are the excitation levels of the string (momentum modes). Strings can also
be wrapped around the circle. If a string is wrapped m times around the circle (winding

modes), their energy increases by
E,=hc—-. (2.14)

Momentum modes and winding modes are analogous to the Ising dual spin system, where
the symmetry Z; is generalized to Z. A scheme of a string on a circle with momentum
and energy spectra at different values of R is shown on Fig. 2.3, from where one can see
that the role of the string momentum modes and the winding modes interchange through
the equivalence R <= o//R, as the circle is shrunk below Vo, This is how T-duality
manifests in ST.

An immediate consequence of not being able to compress a circle below a certain size,
is the existence of a minimum length. According to the Heisenberg Uncertainty Principle,
distance scales are probed with momentum (energy) as Ax ~ h/Ap. However, this does
not work for very large energies, since the strings begin to re-expand with increasing en-
ergy after a certain threshold, which is determined by the string tension o. The smallest

uncertainty in momentum is the difference between two neighbouring momentum modes

n (n—1) & h
P R TR Ap @.15)

As the T-duality, R <— o/ /R, and the above relation is taken into account, one can see
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Figure 2.3: String on a circle for shrinking R with it’s spectrum. Here 7 = ¢ =1 is assumed.
Adapted from [6]. Credit of Nancy Barajas.

that momenta in ST manifest 7-duality as well
— = o —. (2.16)

Since contributions of both of the above terms are present at all energies (momenta), the
sum of these terms expresses the uncertainty in position of a particle, as a consequence of
T-duality as

Ax> — 4o — . (2.17)

The above can be written in the form of a modified Heisenberg Uncertainty Principle
a/
AxAth#—EApz. (2.18)

Using the same reasoning as for Eq. (2.11) at the end of Section 2.1.1, one finds the min-
imum length by calculating the minimum of Eq. (2.17). In the framework of ST, one can

see that the minimum length is ¢,,,;, = Axyi = VO o< ¢p. A similar result is obtained in a
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study of scattering processes of strings at energies ~ Ep [73].

2.1.3 Loop Quantum Gravity

One of the most important results, obtained within the framework of LQG, discussed
in Section 1.1.2, is the discreteness of space-time, as seen by studying spin networks. This
concept introduces fundamental discrete area and volume spectra [26], as well as a discrete
length spectrum [111], implying the existence of a minimum measurable length. To see
exactly how a minimum measurable length emerges within LQG, dimensional physical
operators must be introduced.

In LQG one can construct length, area and volume operators. The simplest operator to
construct is the area operator, defined on a two-dimensional surface S C X. This surface
is then subdivided into N small surfaces S;, where I = 1,2,...,N and S = U;S;. The area

operator is constructed using the flux vector operator F_é [E] and the above division of S as
AslE]= lim Y \/FAE]FAIE] . (2.19)

For simplicity, a simple wave functional |Wr) of a single fixed graph I', which has L(I")
edges e, € I, is taken. In this case, every surface S; is crossed by one edge of the spin

network. The eigenvalue of the area operator from Eq. (2.19) on such a wave functional is

L(T)
As|Wr) =8nephy Y \[ip(jp+1) [¥r) (2.20)
p=1

where j, # 0 are the spins of the edges e,. In the most minimalistic case, one considers a
graph I, which contains only one edge e in the ground state with spin j = 1/2. In this

case, the smallest possible area eigenvalue is

AAS ‘q’rmin> = 4\/§Tc£%h’y |‘Prmin> ) (221)
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which is called the area gap and is the smallest area an edge can carry. One can construct
volume and length operators in a similar fashion, but it is a significantly more involved
process, and will not be covered here. To understand in detail how the F§‘ [E] operator
works on holonomies, which are the main components of spin network wave functionals,
and how they are used to construct volume and length operators, the reader can consult
Refs. [16, 17, 18, 19, 20, 21, 111].

Within the framework of LQG, the area operator eigenvalue obtained in Eq. (2.21)
is the smallest quantum of area, while the smallest eigenvalue of a length operator is
Coin = V'3 yl/ 20p / V2 [111], and implies the existence of a minimum measurable length.
The Barbero-Immirzi parameter y defines the magnitudes of the minimum area, minimum
volume and minimum length in terms of /p, and remains a free parameter in LQG.

To probe such a space-time (spin network), described by LQG, one needs to introduce
matter. For simplicity, a scalar field is considered. In LQG, matter must also be quantized
in a background independent way. One way to approach a background independent quan-
tization of scalar fields, is called polymer quantization [112, 113, 114, 115, 116]. Such
quantization introduces a new length scale u o< ’yl/ 20p, called polymer length. In this formu-
lation, the scalar particle in consideration can be effectively described by the approximate

position and momentum operators [115, 117]

h . (u
x=xp, and p—;sm <ﬁpo>, (2.22)

where xg and pg are the standard canonical operators from QM, and are given in one dimen-
sion for simplicity. Using the above, one can construct a commutation relation between x

and p as

2

lx,p] =ih (1 —Grtt O(u“)) : (2.23)
which is the commutator form of the modified Heisenberg Uncertainty Principle. From
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the above, one can see that the standard Heisenberg commutation relation is obtained in
the limit 4 — 0. The modification of the above commutation relation, emerging from
LQG, appears as a quadratic correction to the standard case in terms of the scalar particle

momentum p, with its magnitude parameterized by u.

2.1.4 Doubly Special Relativity

In a similar way as seen in the above considerations, DSR incorporates the existence of a
minimum measurable length. The k-Poincaré algebra, introduced in Section 1.1.3, suggests
modifications of QT in terms of the canonical commutation relations. Such modifications
arise as a consequence of the modification of energy-momentum dispersion relation. In

general, a modified dispersion relation can be written as [35, 118]

E*f2 —p*ctg® = mPct, (2.24)

where f = f(E/xc? p*/x*c?) and g = g(E /xc?, p*/x*c?) are model dependent modifica-
tion functions of two variables, and can be used to define the auxiliary energy and momen-
tum variables as € = E f(E /xc?, p?/x*c?) and m; = p; g(E/xc?, p?/x*c?), for convenience.

To see how the above modifications affect QM, one can construct commutation relations
between ¢, x;, E and p;, once promoted to quantum operators (see Ref. [118]). However,
to demonstrate the emergence of a minimum measurable length, only the commutation
relation between the position x; and momentum p; variables is relevant. Since DSR is
formulated on momentum space (see Section 1.1.3), it is natural to choose a momentum
representation to define quantum operators. This makes p; the multiplication operator and
x; = i h oy, the translation operator in momentum space. Note that the x; operator is defined
in terms of the derivative over the variable 7; and not the physical momentum p;. In mo-
mentum space, this can always be done, when g == 1 [35] (see also Ref. [63]). Using these

definitions of x; and p;, when the energy-momentum dispersion relation is modified by f

36



2.1. MOTIVATION FOR MINIMUM LENGTH

and g, the resulting commutation relation reads as [118]

_ ., dp; ik pir; N
[xlapj]_lha_ni—g(al]_ZW5 ) (225)
where
E
N:falg‘f’@ (01f d2g —02f 012) (2.26)
and
=i P, P E
D= f+1<_c2 if g+2K2_c2 28 _2K2_c2 183 of - (2.27)

In the above, d; and 9, denote partial derivatives of the modification functions f and g, over
their first and second arguments, respectively. The right-hand side of Eq. (2.25) is obtained
by a straightforward, yet involved algebra of € and =;.

In the case of the DSR1 realization, where the modified energy-momentum dispersion

relation is given by Eq. (1.31), the modification functions are given by

1 p2 eE/Kcz e_E/KCZ
2 2,22 L B
F(E/xe p? /) = 2 [(1 + chz) R (2.28)
and
g(E/xc?) = eE/xe (2.29)

where g turns out to not depend on p>. Plugging the above modification functions f and g
in Eq. (2.25), the modified commutation relation reads as

PiDj

- nl=ih *E/K6‘25..
i-pjl = ih]e i+ K2c? cosh(m/x)

, (2.30)
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which can be rewritten in the phenomenologically relevant low particle mass limit, m < K,

as

2
. P m-c m PipPj _
[xi,pj]zzh[(l——— +—)5ij+K2_cé+O(K 4)} ; (2.31)

or in the massless case, m = 0, as

[xi,pj]:ih[(l—£> 5,-j+i;fﬂ . (2.32)

From the above modification of the canonical commutation relations, one can see that the
standard QM commutation relation is obtained in the limit K — o. The modification in the
DSRI1 realization appears as linear and quadratic corrections to the standard case in terms
of the particle momentum p, with their magnitude parameterized by K.

In the case of the DSR2 realization, where the modified energy-momentum dispersion

relation is given by Eq. (1.34), the modification functions are given by

1

E
1 Kc?

f(E/xc?) =g(E/xc?) = , (2.33)

where both take the same shape and neither of them depend on p?. Plugging the above
modification functions f and g in Eq. (2.25), the modified commutation relation reads as

E
[xi, pj] = i1 (1 —@> : (2.34)

From the above modification of the canonical commutation relations, one can also see that
the standard QM commutation relation is obtained in the limit K — oo. The modification
in the DSR2 realization appears only as a linear correction to the standard case in terms of
the particle energy E, with its magnitude parameterized by K.

Comparing Egs. (2.30), (2.31) and (2.32) with Eq. (2.34), one can see that the DSR1

modification contains corrections up to second order in K, while the DSR2 modification
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contains corrections only up to first order in k, and that the DSR1 modification is given
in terms of the particle momentum p, while the DSR2 modification is given in terms of
the particle energy E. However, the two realizations are equivalent, since there exists a
mapping between the variables of DSR1 and DSR2 [37, 38].

Considerations in Sections 2.1.1 and 2.1.2 demonstrate that a modified Heisenberg Un-
certainty Principle implies the existence of a minimum measurable length. The Heisenberg
Uncertainty Principle, as well as an uncertainty relation between any two quantum opera-
tors, can also be expressed in terms of commutation relations (see Section 2.2). Therefore,
Egs. (2.30), (2.31), (2.32) and (2.34) represent modifications of the Heisenberg Uncer-
tainty Principle. They imply the existence of a minimum measurable length, parameterized
by 1/K o< {p, emerging from the framework of DSR. Furthermore, DSR imposes an addition
of a linear correction term, while considerations in Sections 2.1.1 and 2.1.2 propose only a
quadratic correction term. This addition implies the existence of a fundamental maximum

energy-momentum scale, parameterized by K o< Mp.

2.2 Generalized Uncertainty Principle

Examples in Section 2.1 provide a strong motivation for the existence of a minimum
measurable length ¢,,;,, and suggest that a fully consistent theory of QG must provide a
fundamental description of space-time in terms of ¢,,;,. Given the variety of formulations
in these approaches to QG, it is very interesting to note that they all share a common phe-
nomenological feature; a modification of the Heisenberg Uncertainty Principle, parameter-
ized by an unknown minimum length scale /,,;, < £p. The Heisenberg Uncertainty Prin-
ciple, modified in this manner, is known as the Generalized Uncertainty Principle (GUP).
It can be used to probe QG signatures at low and accessible energies, as well as in the
absence of strong gravity objects, such as black holes. Overall, this feature of QG is com-
pletely model independent. GUP shifts the focus from searching for QG effects in high

energy experiments to searching for them in high precision experiments. Therefore, low
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energy signatures of QG effects are expected to be discovered eventually, as the precision
of experiments increases with time. However, higher experimental energies are still fa-
vorable, as they amplify the QG signatures. GUP and its implications have been studied
extensively in the past [15, 48, 49, 50, 54, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
71,72,73,74,75,76, 77,78, 79, 80, 81, 82, 83, 84], and remain relevant in searching for

signatures of QG in previously unexplored fields.

2.2.1 The GUP Model
For practical applications, a specific model of GUP needs to be introduced. There are
several different realizations of GUP models used in QGP research. For example, some of

the commonly used models, given in commutator form in one dimension, are [63, 69, 72]

[X,p]:ih(l—(xp) ’ (235)
[, pl=in(1+Bp*) (2.36)
e p) =0 /142 (p2 +m2c?) 2.37)

where o and [ are the dimensionful GUP parameters, defined below Eq. (2.42). At phe-
nomenologically relevant energies, the GUP model from Eq. (2.37) is equivalent to the
GUP model from Eq. (2.36). In literature, the most widely used GUP model is the quadratic
one, presented in Eq. (2.36), which was explored in detail by Kempf, Mangano and Mann
(KMM) in Ref. [63]. Therefore, this model is referred to as the KMM model, for conve-
nience. A short summary of its implications follows.

In a well defined Hilbert space representation, the wave functions must be normal-
izable, while the position and momentum operators should have finite expectation val-
ues and uncertainties. To demonstrate how the KMM model affects QM, two arbitrary
wave functions, y(p) and ¢(p), defined in the momentum space representation, are intro-
duced. The momentum operator is defined as py(p) = py(p) and the position operator as

fy(p) =ih(1+Bp*)d,¥(p) to satisfy the KMM model. The scalar product in momentum
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space is then

wio) = | )l 2.38)

and the identity operator takes the form

_/w1+5p2’P (ol (2.39)

Because a minimal position uncertainty is introduced, a physical state that corresponds to
a position eigenstate cannot be retrieved. However, one can obtain a quasi position wave

function y(§) in the form

2 o0 d ;& (v/Bp)
9=\ \7t/B/—oo(1+Bf?2)3/Ze v, 249

with the position and momentum operators represented in the quasi position space as

an(—i ) an(—i B )
aew@):(amst ( ’%E é)>w<&,>, and py(E)=" hfﬁfi ©. @4

One can see that the operators £ and p are expressed as functions of § and —i i ag, for which

the standard Heisenberg commutation relation [§, —ih d¢| = ih holds. Furthermore, the
above implies that the physical states are distinct from those in standard QM. The standard
QM states and operators are retrieved when § — 0.

However, in this work the linear and quadratic form of the GUP, consistent with all ap-
proaches to QG, is considered, which was introduced and explored by Ali, Das and Vagenas
(ADV) in Refs. [66, 68]. Therefore, this model is referred to as the ADV model, for con-
venience. For the ADV model, the above phase-space considerations are similar, but more

involved (see Ref. [119]). In three dimensions, the ADV model is given by

[Xi,pj] =1ih (8,’j—(x (p&,]—F%) +B(p28,'j—|-3p,'pj>) , (2.42)
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where o = 0l/(Mpc) and B = Bo/(Mpc)?, with o and By the dimensionless linear and
quadratic GUP parameters, respectively, and p = ,/p;p;. In general, o and By are dif-
ferent, which implies two length scales o ¢p and \/E fp. They correspond to a maxi-
mum measurable momentum py,, o< 1 /0o £p =< Mp c/0 and a minimum measurable length
Conin o< \/E {p, respectively. The upper bound on experimentally achievable energies E,y,
determines the smallest experimentally achievable probing length scale (g ~ 10~ m,
through the Heisenberg Uncertainty Principle. It is called the electroweak length scale, be-
cause it successfully probes the domain of the electroweak force. In terms of /p, it can be
expressed as ogw = Cepw /lp = 10'7. Since no QG effects have been observed at this scale,
the actual value of /,,;,, can be anywhere between ¢p < ¢,,;, < {gw. The only restrictions
on GUP, imposed by this scale, are bounds og < oz = 10'7 and By < OL%W =103,

The connection between the position-momentum commutator and the Heisenberg Un-
certainty Principle is called the Robertson uncertainty relation. In general, this connection
relates a commutator and the uncertainty relation between any two quantum operators A
and B as

AAAB > %|<[A,B]>|. (2.43)

The Robertson relation for the position-momentum commutator in one dimension reads as

AxAp > 5|([x, p])

, and returns

AxAp> D (1B ()

=S (1+BAP* +B(p)*)

= —(1+PBAp?) (2.44)

NS S

in the case of the KMM model from Eq. (2.36), and

Axdp> 2 (1-20(p) + 4B ()
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h o
22 1+(m+4B>AP2+4B<P>2—20‘ <p2>]
=2 aaprapap? (2.45)

in the case of the ADV model from Eq. (2.42), where the relation Ap> = (p?) — (p)? and

mirror symmetric states (p) = 0 were considered.

—— Heisenberg
- Quadratic GUP (KMM)
—— Linear + Quadratic GUP (ADV)

1
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1
T

Ap(AXmin)
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Figure 2.4: The Generalized Uncertainty Principle (KMM model (orange) and ADV model
(green)), compared to the Heisenberg Uncertainty Principle (blue).

One can compare the KMM model from Eq. (2.44) and the ADV model from Eq.
(2.45) with the standard Heisenberg Uncertainty Principle from Eq. (1.2) by plotting them
alongside each other, as seen in Fig. 2.4. For simplicity, the prefactors (o< 3) of the quadratic
terms Ap? are taken to be the same, neglecting the factor 4 in Eq. (2.45). One can notice
that each of the modified cases deviate from the standard Heisenberg case and predict a
different minimum length. In the phenomenologically relevant, low energy range of Ap, the
magnitude of the deviation is greater for the ADV model, compared to the KMM model.

Also, in the same energy range, the ADV model deviates to the left of the Heisenberg case
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due to the presence of the p,,. scale in the linear term, compared to the purely quadratic
KMM model, which deviates to the right. The above observations suggest that the ADV
model predicts stronger QG effects than the KMM model, and provides a way to verify the
existence of a maximum measurable momentum scale p,,,., once QG effects are observed
for the first time. This reinforces the phenomenological relevance of the ADV model, and

is therefore used throughout this work.

2.2.2 Challenges

GUP motivated QGP also faces some challenges, which need to be taken into consider-
ation. For example, Newton’s gravitational constant G, which determines the Planck length
Up o< VG, is commonly assumed to be constant on all scales. However, this assumption
has no solid verification. Therefore, one should carefully examine whether G is constant
across the diverse energy scales, from the very small to the very big. This can have direct
consequences on GUP, since it depends on /p.

GUP is used to provide simple phenomenological models. A limitation of this approach
is that most of testable QG signatures, described by GUP, are based only on the minimum
measurable length, and not on other QG features. However, this limitation is at the same
time a strength of GUP, since it is model independent. A full test theory should be able
to provide additional information, alongside the form of GUP and the corresponding dis-
persion relation (the two are related; see Section 2.1.4). It must also address the following

issues [7]:

* Universality of GUP. Is the modification parameter always the same, or is it different

for different particles?

* How is the soccer-ball problem addressed for multi-particle dynamics, described by

GUP and the corresponding modified dispersion relation?

* Is the standard energy-momentum conservation law assumed valid in general, given

a modified dispersion relation?
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In the worst case scenario, the suppression factor o< E" /E}, where n € N, may com-
pletely prevent observations of any QG effects in low energy experiments [7]. However,
even in this scenario, the development of more detailed phenomenological models and the
increasing precision of low energy experiments, may provide ever stronger bounds on ¢,
(see Chapter 3). On the other hand, cosmological considerations do not only bound /,,,,
but determine it (see Chapter 4). Both, improvements on the bound of /,,;, in low energy
experiments and measurements of /,,;, in cosmological considerations, drive the progress
of QGP, and encourage future research in this field. Furthermore, testing fundamental con-
cepts, which are believed to lead towards a consistent theory of QG, such as the Quantum

Equivalence Principle (see Chapter 5), proves to be an equally important branch of QGP.
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Chapter 3

Earth-based Experiments

“The beauty of a living thing is not the
atoms that go into it, but the way those

atoms are put together.”

Carl Sagan

Earth-based experiments provide a wide scope of tests, where the bulk of QGP research
is applied [49, 15, 48, 51, 52, 53, 55, 56, 57, 62, 65, 66, 67, 68, 69, 72,73, 79, 80, 120, 121,
122]. They are crucial in QGP, since it is possible to control the conditions and parameters
of a given experimental setup. This allows for a dedicated search for QG effects in well
defined conditions.

In this chapter, new results of QGP in Earth-based experiments are presented. Specif-
ically, GUP motivated QG signatures in Bose-Einstein condensates and in magnetometer
experiments, are explored in detail. Furthermore, QG signatures in a Bose-Einstein Con-

densate are also explored in terms of extra compact dimensions.

3.1 Bose-Einstein Condensate

The phenomenon of a Bose-Einstein Condensate (BEC) is explained within the frame-
work of statistical mechanics [123]. Although, QG effects in statistical mechanics have
not been studied extensively, some proposals suggest to search for QG signatures in BECs
[120, 121, 122], and signatures of compact extra dimensions in BECs [124, 125, 126].

Work in this section explores QG signatures in BECs, where two novel approaches are
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3.1. BOSE-EINSTEIN CONDENSATE

used. They provide a number of new results and are based on compact extra dimensions
and GUP, respectively. They imply QG corrections to observables in BEC, such as the
critical temperature 7, and fraction of bosons in the ground state fj.

The aforementioned two approaches are considered independently of each other in the
following. In the approach with extra compact dimensions, it is shown that the modifica-
tions of observables enter through the energy-momentum dispersion relation in a space-time
with compact dimensions. In the approach with GUP, it is shown that GUP modifies the
energy levels of a particle in a box, and hence the corresponding phase space volume. This
directly modifies the density of states. When such a modification is applied to phase-space
integrals of a BEC, modifications of observables follow. Supporting material for this section

is found in Appendix A.

3.1.1 From Classical to Quantum Gases

Description of a classical gas at relatively high temperatures neglects the interactions
between the constituent particles. This can be safely assumed, since the thermal de Broglie
wavelength Ag = h//2tmkgT, at high temperature, is much smaller than the mean free
path between particles of the gas. Here kp is the Boltzmann constant and 7 the temperature

of the gas. This condition can be written as

W
M= o < (3.1)

(ZﬂkaT)

where n is the number density of the gas, related to the mean free path as Zfree =1/ n'/3.

When the temperature of the gas is lowered, the parameter n?% approaches unity and all
physical quantities of the system correspond to its classical properties. As the temperature
decreases to a certain value, n?% is still small, but becomes non-negligible. Therefore, the
various physical quantities of the system can be expanded as a power series of this param-
eter. This implies that the condition in Eq. (3.1) can still be satisfied at low temperatures

of the gas. However, the effects of quantum statistics, which arise from the spin of parti-
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3.1. BOSE-EINSTEIN CONDENSATE

cles comprising the gas, become important. Such effects turn out to be different for bosons
and fermions (see Eq. (A.4) in Appendix A.1). In general, for lower temperatures, higher
particle densities and lower particle masses, quantum phenomena become more prominent

[123].

3.1.2 Standard Bose-Einstein Condensation

The phenomenon of BEC occurs when a dilute gas of bosons is cooled below a certain
temperature, where the bulk of these bosons occupy the ground state. This temperature is
known as the critical temperature 7;.. Since the Bose-Einstein (BE) statistics (see Eq. (A.4)
in Appendix A.1) allows for an arbitrary number of bosons in any state, there could theoret-
ically be an infinite number of bosons in the ground state. In the following, a few important
results, related to a standard BEC, are reviewed. Note that the standard BEC observables
T, and fj are given in terms of an arbitrary number of Euclidean spatial dimensions d.

The critical temperature 7. is the threshold at which all of the bosons are still in the
excited states. As soon as the gas temperature 7' drops below T, the bosons rapidly start to
decay to their ground state. Furthermore, considering the non-relativistic case, the chemical
potential vanishes uy — 0 at T < T, in the thermodynamic limit Ny — oo, where Ny is
the number of bosons in the ground state. In d-dimensional space, with d > 3 (a non-
relativistic BEC in d = 1,2 dimensions does not exist [125]), the critical temperature of a

non-relativistic BEC (obtain by means of Eq. (A.11) from Appendix A.1) reads as

27Ch2 2/d

S — 32
kam(Dza " 2

C

where {(d/2) is the Riemann zeta function, evaluated at d/2 (see Eq. (A.7) in Appendix
A.1). From the above T, one can see that the critical temperature of a non-relativistic BEC
will be higher for high boson densities and light boson masses. Note that Eq. (3.2) for
d = 3, is identical to Eq. (3.1) up to an unimportant numerical factor when its right hand

side is set to unity. From this, one can see that at 7;, the thermal de Broglie wavelength
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A equals the mean free path between particles Zfree, where the interactions between the
constituent particles become significant. Furthermore, at temperatures lower than 7;., where
Ag >0 free» the particles start to form a BEC for bosons, and a degenerate gas for fermions.
The second important observable in BEC is the fraction of bosons in the ground state fj. If
ng is the number density of bosons in the ground state, n(7) the number density of bosons
in the excited states at temperature 7 < 7. and n the total number density of bosons, one

can relate these number densities as

7\ /2 7\ /2
n:no—l—n(T):n(ﬁ—n(i) - fozr;—ozl—(i) , (3.3)

where n(T) is obtained by means of Eq. (A.11) from Appendix A.1. From the above fj,
one can see that at T = T, there are no bosons in the ground state, since fy = 0. The bosons
start to occupy the ground state at 7 < T¢, where fy > 0, and completely occupy the ground
state at T = 0K, where fo = 1.

The critical temperature 7, and fraction of bosons in the ground state fy for the rel-
ativistic case can be found in a similar manner, by using the relativistic density of states
instead (see Eq. (A.3) from Appendix A.1). There are two distinct cases of BECs for rela-
tivistic bosons. The first, when a gas of neutral bosons is considered, is associated with the

following critical temperature

T. =

d—1-d/2+d dprdy\ 9
! (2 s r(§)> a4 (3.4)

kp [(d)&(d)

where I'(d) is the gamma function, evaluated at d. The above T, is valid in arbitrary d > 2
spatial dimensions (a neutral relativistic BEC in d = 1 dimension does not exist [127, 128]).
Note that it does not depend on boson mass, unlike the non-relativistic result given in Eq.
(3.2). However, it continues to depend on the boson number density, albeit with a different

(positive) power. The fraction of relativistic neutral bosons in the ground state turns out to
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be

T d
fozl—(i) . (3.5)

The reasoning behind the above fj is the same as for Eq. (3.3), but with a different power
dependence of T /T.. The second relativistic case considers a gas of charged particles,
consisting of bosons and antibosons. The distribution function for such a gas is the to-
tal charge density n (in the previous two cases, n refers simply to the number density of
bosons), obtained as the difference between the respective BE distributions. One sub-
tracts the BE distribution of antibosons (where u(7;) = —mc?) from the BE distribution
of bosons (where u(7,.) = mc?). The relativistic boson-antiboson critical temperature, valid
in arbitrary d > 3 spatial dimensions (a charged relativistic BEC does not existind = 1,2

dimensions [127, 128]), reads as

T, =

d—2—d/2 +d d—21rdy\ /(@1
1 (2 /2 pd ¢ F(i)) /@1 (3.6)

ke \ mI(@)Cd—1)

where 7, increases with increasing total charge density n and decreasing boson mass m.
Note that the above 7. depends on both, m and n, compared to the relativistic neutral boson
case, where 7. depends only on n. The fraction of relativistic charged bosons in the ground

state turns out to be

(d-1)
fo—1- (1) . (3.7)

The reasoning behind the above f is the same as for the previous two cases, but with a
different power dependence of 7'/T..

To summarize, one can see that a 7. of a BEC depends on powers of m and n, determined
by the above cases and the dimensionality d of a chosen Euclidean space. Similarly, a fj

of a BEC depends on powers of T'/T., determined by the above cases and d. Note that the
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charged relativistic BEC is the most general case, which reduces to the other two cases in

corresponding limits.

3.1.3 Bose-Einstein Condensation in Compact Dimensions

Compact extra dimensions are interesting from the point of view of QG, since they are
an essential component in ST, where they are usually assumed to be tiny, most often, of the
order of /p [11]. In the following, it is examined whether compact dimensions have an effect
on the 7;. and fj of a BEC, in which case they may be measurable. Interestingly, it turns out
that there is indeed such an effect. To demonstrate this, one considers a charged relativistic
BEC, described by charge density n, given in d non-compact Euclidean dimensions and N

compact spherical dimensions (space topology of RY x SV) as [124]

. id /°° dk 1
_Z:O ¢ 0 (27E)d eBT(\/h2k2c2+m2c4+h2m§ —y) 1
1
N 2122 2 L 22 ’ (3.8)
eBr(\/h k*c2+m?ct+-hr oy +/J) 1
where
_ (2¢+N—-1)T({+N-1) ¢

are the degeneracy factors and energy contributions from compact dimensions, respectively,
Br = 1/kgT is the inverse temperature and R is the radius of the compact S¥. Currently,
the only available experimental realization of creating a BEC, is the non-relativistic case.
Therefore, a non-relativistic BEC is considered in the following, for which kpT < mc?.

This condition reduces Eq. (3.8) to
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- 1 dj2 1 / 2 "
nﬁﬁ;)dgm(k[;n) / C_d ( hzﬂ)g +m2C4)

v i Lefn Br. (\/ h2a]+m2c* fmcz> (3.10)

/2 ,

evaluated at 7.. Note that the second sum in the above, equals the polylogarithm func-
tion Liy (exp [—BTC <, [R2007 +m2ct — mc2>]> (see Eq. (A.6) in Appendix A.1). Fur-
thermore, it is assumed that the radius of the compact dimensions R is very small, since
R o< ¢p. In this situation, the Compton wavelength of the boson is much greater than R,
i.e., (mc/h)R < 1 (or equivalently Ay >> mc?). This implies that all terms in the sum
over ¢, except for £ = 0, are exponentially suppressed by the Boltzmann factor from the
second sum. However, they do not completely vanish for R > 0, no matter how small.
Therefore, only the largest, first order contribution, ¢ = 1, of the compact dimensions is
kept, and higher orders, ¢ > 1, neglected. This allows to predict measurable signatures of
compact dimensions. For £ = 1 and small R, the above polylogarithm function reduces to
Lig/>(exp (—BTC%\/N )), where the argument is also small. For a small argument of the
polylogarithm function, one can write Liz/»(exp (—BTC% N)) =~ exp (—BTC% N) [129].
Therefore, for a small radius R of the compact dimensions, the number density of bosons

from Eq. (3.10) can be written as

(3.11)

no~ (kaTc)d/z [ (d hd/z(N+1)Nd/4e*BTC%\/N

27 h? 2 RA/2pd/2 cd/2 ’
where the first term agrees with the standard non-relativistic BEC and the second term is a
correction, induced by extra compact dimensions. The Boltzmann suppression factor makes
this correction very small, since it vanishes as R — 0. One is interested in the critical
temperature 7T, which is extracted from Eq. (3.11) by using a perturbative approach. To

accomplish this, one needs to define 7, = TC(O) + AT(R), where TC(O) is the standard theory
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critical temperature and AT(R) the correction to the critical temperature, induced by extra
compact dimensions. Such a critical temperature, obtained for the first time in Ref. [130],

reads as

(0) he
L 2mR Ly ARKORN N R
© kgm{(4)Y/4 " kg d RA/2m(@+2)/2 /2 ()2 +d)/d s

(3.12)

where B(T?. ) — 1 /kBTC(O). From Eq. (3.12), one can see that the first term is identical to
Eq. (3.2), and that the magnitude of the correction term increases with increasing n and
decreasing m. Furthermore, the correction term has a non-trivial dependence on R. This
dependence is discussed in terms of the relative magnitude of the correction, obtained from

Eq. (3.12) as

RN 4 1) N/ ¢ B VN
N dR4/2md/2 /2 C(%)

=107"<1077. (3.13)

In the above, r and ¢ take positive values, such that 1079 denotes the precision at which
the critical temperature of a BEC can currently be measured, and 10~" denotes the required
precision of such measurements to observe extra compact dimensions. The inequality in
Eq. (3.13) stems from the fact that the above AT(R) has not been observed in experiments
so far. This subsequently puts bounds on the size of extra compact dimensions, as shown
below. The important point to note here is that the right-hand side of Eq. (3.13) contains
the compact dimension radius R in the denominator as well as in the numerator, via the
exponential Boltzmann factor. Therefore, interestingly, as one spans the range of R from
very small to larger values, the correction term initially increases and then starts to decrease.
This behaviour is shown in Fig. 3.1 for a BEC of a helium gas, where d =3 and N = 1
are assumed. The blue line therein depicts the relative correction, given by Eq. (3.13),
and the horizontal orange line signifies a hypothetical precision, expected to be attainable

in the future (a line corresponding to current precision at ~ 10~7 [131] would lie well
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Figure 3.1: Relative correction as a function of radius R/%c (in energy units) of the extra
compact dimension for a helium gas BEC (blue), where m = mg,, n = 103 m—3 ,d=3and
N =1, and a hypothetical precision of an experiment (orange).

above the blue curve). Note that the curves intersect at two points, corresponding to Rj
and R, on the horizontal axis. Therefore, if no traces of extra compact dimensions are
found in experiments, in terms of the above correction, it would mean that the correction
effect can manifest for R either below R or above R,. In other words, one obtains an
upper as well as a lower bound on the size of R. More precisely, the peak is located at
Riax = 2[3;8 )hc\/ﬁ /d, and the two bounds always satisfy R| < Ryax and Ry > Rpax for
upper and lower bounds, respectively. Furthermore, from the example shown in Fig. 3.1,
one can obtain R, = 1.77m. Since the actual size of extra compact dimensions cannot
be of this order, otherwise they would have already been detected, it must be much smaller
R < Rpax, and the lower bound R; is not useful in this context. One can also notice that

Eq. (3.13) is implicitly dependent on the number density n through [3%) ), since the latter
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depends on n. Therefore, if n is increased, the exponential factor increases and the relative
correction increases.

The order of magnitude of the correction from Eq. (3.13), signified by the quantity r,
which one hopes to minimize, is given in terms of R, the number of compact dimensions N,

the boson mass m and implicitly on the boson density n as

d/2,d/2 d/2¢(d -
ARPmRERYS) potew) (.14)
2h4/2(N + 1) N4/4

r=rqn(R,m)=1log (

The above gives an estimate of what the precision of the temperature measurements in
BECs must be, to detect such a deviation from standard theory and obtain signatures of
extra compact dimensions. The second observable, the fraction of bosons in the ground
state, including corrections induced by extra compact dimensions, is obtained through the
standard derivation, presented in Eq. (3.3), while using the modified number density from
Eq. (3.11). Such a fraction of bosons in the ground state reads as

7\ 92 RPN )N g he () g ey
fO:l_(i) [1+Rd/2md/2cd/2C(%) (e (T)_e o ) - G

from where one can see, that for R — 0, the above is identical to Eq. (3.3) from the
standard non-relativistic BEC. Also, the correction term in square brackets in Eq. (3.15)
vanishes for T = T, as expected.

In this analysis, a spherical space topology SV was assumed for the extra compact di-
mensions, where there is only one R, no matter how many extra compact dimensions N
are considered. If the space topology of extra compact dimensions is toroidal instead, for
example T(N), then each of the N extra compact dimensions could have its own distinct
radius. In this case, the above calculations would be similar, with the difference that the
energy contributions in Eq. (3.9) would be functions of all N radii, instead of only one.

However, for N = 1, no difference between the two topologies is expected.
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3.1.4 Bose-Einstein Condensation and GUP

As shown in Sections 3.1.2 and 3.1.3, the theoretical framework for describing BECs
is statistical mechanics (see also Appendix A.1). The phase space integrals in statistical
mechanics are normalized by a phase space volume of a particle in a box, which is where
GUP introduces QG corrections. Such corrections also modify the density of states, which
is used to calculate the QG corrected number density of bosons in a BEC, and by extension,
the corresponding critical temperature and fraction of bosons in the ground state. To apply
GUP, given by Eq. (2.42), to a particle in a box, one considers the energy-momentum
dispersion relation of a particle, confined inside a box-like potential. In QM, this is the
Hamiltonian

H=T(p)+V(x), (3.16)

where T (p) is the kinetic energy of the particle, p = |p| the magnitude of p, the physical
momentum of the particle, and V (x) the external box-like potential at a physical position X,
given by V(x) = 0 inside the box and V(x) — oo outside the box. In general, Eq. (3.16)
satisfies the stationary Schrodinger equation Hy = EV (see Eq. (1.1)), where v is the
particle wave function and E the corresponding energy eigenvalue.

One can notice that the standard QM operator for momentum —i %29, cannot be used for
pi, because it does not satisfy the GUP commutation relation from Eq. (2.42). However, a
set of canonical operators xo; and po; can be defined, such that they satisfy the standard QM
commutation relation [xo;, poj| = ih8;;. Therefore, one can write pg; = —ihdy,. In terms

of xp; and po;, one can define a transformation

x; =xo; and p; = poi (1 —0apo+2Pp3) . (3.17)

between physical and canonical operators, where pg = \/pox pox- Note that the above trans-
formation is one of several equivalent transformations, which satisfy the GUP commutation

relation from Eq. (2.42). For convenience, transformation from Eq. (3.17) is used in what
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follows, to compute QG corrections to the non-relativistic and relativistic Hamiltonians,

and to examine corresponding QG signatures in a BEC.

Non-relativistic

In this case, a non-relativistic particle of mass m and kinetic energy T (p) = p?/2m, is
considered. The potential is defined as a three dimensional box with edges Ly, L, and L,
and takes values V(x) = 0 inside the box and V(x) — oo outside the box. This implies
the wave function boundary conditions y(0,y,z) = y(x,0,z) = y(x,y,0) = y(L,y,z) =
y(x,Ly,z) = y(x,y,L;) = 0. To compute the QG corrected energy spectrum of a non-
relativistic particle in a three dimensional box, one first writes the QG corrected Hamil-

tonian, by using Eq. (3.17) to express p in terms of py, as

2
p P O 3, 5B 4
H=—"—="—“——pi+—py=Hy+H{+H 3.18
3 2 Po 3 Po 0 1 2, ( )

where Hy = p§/2m, Hy = —a.p3/m and Hy = 5B p$/2m. The corrections to the energy
spectrum due to H; and H; are computed to linear order in B and quadratic order in o (note
that these are of a similar order or magnitude, i.e., O(B) ~ O(a?)). It is well known, that
the eigenfunctions of an unperturbed Hamiltonian H, for a particle in a three dimensional

box, are given as [132]

8
|wn(x0)) Ewnhnyjnz(xo,yo,z()) = \/; sin(t’i" xo) sin(nL—’zyyo) Sil’l(nL—’:ZZ()) , (3.19)

where V = L, L, L, is the volume of the box and n,,ny,n, € N are quantum numbers, de-

scribing the excitation state of a particle in a three dimensional box. The above eigen-
functions span a Hilbert space # = {|Wyn); n € N>}, where one can write a general state

wave function as [¥(Xo)) = Yn¢n |Wn(X0)), for cp € C. The standard energy spectrum of a
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particle in a three dimensional box, considering an unperturbed Hamiltonian Hy, is

h2m2
€’ = . = (Yn(%0) [HolWn(x0)) = Sz ety ) (3-20)

where L = L, = L, = L, was assumed, without loss of generality. To obtain the QG correc-
tion to the energy spectrum from Eq. (3.20), the time independent, first order perturbation
theory is used. It provides the linear (see Appendix A.2) and quadratic corrections of per-

turbations H; and H,, respectively, as

3

h3n3

Aén"™" = (y(x0) [H1 [Wn(x0)) = == - (1} + 3 +n2)/ (3.21)
» 5phtnt
A2 — (g (30) Hali(x0) = % (1t

+2miny+2ninl +2n0n2) . (3.22)

The energy spectrum of a particle in a three dimensional box, up to quadratic order of the

QG corrections, is then simply the sum of Egs. (3.20), (3.21) and (3.22)

1 S 00 Ak & 3/
e = gz ) = 2 ()
5Bt
7 (n+ n;L + i+ Zn)%n% +2n%n? + 2n§n§)
h? ok’ 5Bk
— -4+ b K (3.23)
2m m 2m
where k2 ( +n +n ) was used in the last line. From the above, one can see that

the QG corrections to the energy spectrum of a particle in a three dimensional box are
dependent on quantum numbers 7y, ny, and n;, with different powers. A procedure to obtain
the exact QG corrected energy spectrum, given Eq. (2.42), of a particle in a one dimensional
box, without using perturbation theory, is described in Ref. [133].

Using the QG corrected energy spectrum for a particle in a three dimensional box, given

by Eq. (3.23), and taking the continuum limit (k, — k = €, — €; see Appendix A.3),
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the QG corrected density of states, obtained for the first time in Ref. [130], reads as

V(2m) %2

ypars (1+160n/me'/?> —25Bme) . (3.24)

g(e) =

One can see that the above reduces to the usual density of states, given by Eq. (A.2) in
Appendix A.1, when o, — 0. The above QG corrected density of states is central in
predicting QG effects in non-relativistic statistical mechanics. It is used to modify the
non-relativistic BEC observables in the following. A more general procedure, described in
Appendix A.4 can also be used to obtain the QG corrected density of states. However, its
use is currently limited to the non-relativistic case, and for quadratic corrections only, due
to the complexity of calculations.

The number of particles in the system is calculated using Eq. (A.1) from Appendix A.1
and the QG corrected density of states in Eq. (3.24). The integral is evaluated at T,., where
u — 0, and divided by the spatial volume V, to obtain the QG corrected number density

of bosons

vV 2m2h3
V2 m3?

RPTEE

ePre | 0 ePre—1 o ePre 1

32 [ poo o1/2 oo o 3/2
po o _ V2m l/ " de+160y/m ©  _de—25pm [ —° de]
0

1673/2
3

[(kBTc)S/zf;(%H aﬂ(kﬂcf—§3m<k3n>5/2c<%>], (3.25)

where one can see that it reduces to the usual number density, given by Eq. (A.11) (as
u — 0) in Appendix A.1, when a, 3 — 0. Note that it is not possible to extract a closed
form expression of 7, from Eq. (3.25). Therefore, a perturbative approach is used instead.
One defines T, = TC(O) +AT(o) +AT(B), to express the QG corrected T, where AT(at) o< o
and AT(PB) o< B. The standard critical temperature TC(O) is equal to that in Eq. (3.2) for d = 3.
The QG corrected critical temperature, then reads as

2mh? o5 32VBTH 1007274 E(3) 43

“lamt"  “okgme3p " P gme @y

T. (3.26)
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where one can see that the QG corrections increase with increasing number density n and
decreasing boson mass m. One can also see that higher order QG corrections (e< 3) have a
stronger dependence on n. This is a direct consequence of terms of higher order in 7. from

Eq. (3.25). The magnitude of the relative correction is then

T

70

C

16V8h )3 8
— PO

_ (3) 2/3
M oMt (Mpo)2g(3)5i" (3.27)

where the definitions of o and 3, found below Eq. (2.42), were used. The above increases
with increasing n, but does not depend on the boson mass. This dependence is presented in
Fig. 3.2 for a BEC of a helium gas, where the black line represents the current experimental
precision, which will continue to improve with time. Eq. (3.27) differs from a similar
result in Refs. [120, 121], where the relative correction decreases with increasing n as
|AT / Tc(0)| o< otg/n'/3. Note that as the particle number increases in a given volume, the
total energy approaches Ep, thus magnifying the QG effects [34]. This shows that the

above result is perfectly reasonable.
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Figure 3.2: Relative temperature QG correction for a non-relativistic BEC, as a function of
the number density n, at different values of parameter o, where By = OL(Z). The black line
represents the experimental accuracy. The parameters of the example BEC are those of a
helium gas.
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Figure 3.3: QG correction of fy for a non-relativistic BEC, as a function of the condensate
temperature 7', at different values of parameter o), where By = OL%. The black line represents
the experimental accuracy. The parameters of the example BEC are those of a helium gas.

The second important observable is the fraction of bosons in the ground state. Following
the derivation from Eq. (3.3), while using the number density from Eq. (3.25), the QG

corrected fraction of bosons in the ground state for a non-relativistic BEC reads as

3/2 3/2 7 [73/2 2
f():l— (_) + o 167{3 ka T B T
TC 3(;(2) MPC TC TC3/2
75¢(3) mkg [T3/2 T5/2]

"203) (Mpe? |12 3

- B (3.28)
where one can see that a standard result from Eq. (3.3) is recovered for 0,9 — O.
Furthermore, one can see that at T = T, the QG corrections vanish and fy = 0, as expected,
even when 0, Bo # 0. This means that a deviation in fraction of bosons in the ground state,
induced by QG effects, can be observed at temperatures T < 7.. The corrections terms
from Eq. (3.28) are presented in Fig. 3.3 for a BEC of a helium gas. One can see that

the correction has a maximum between absolute zero and the critical temperature 7. It is
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located at

2025C(2) /mk
Tmzin—@ 8() vm B 32 (3.29)
16 0y 256m3/2 Mpc

This suggests that experiments, able to measure the fraction of bosons in the ground state

with high accuracy, would most likely observe QG signatures around temperature 7;,.

Relativistic

For the relativistic case, the procedure outlined in Ref. [134] is followed to obtain the
QG corrected energy spectrum of a relativistic boson in a three dimensional box. This is
then used to obtain the relativistic density of states, the QG corrected critical temperature T¢,
and fraction of bosons in the ground state f, for a relativistic BEC. Two distinct relativistic
cases, mentioned in Section 3.1.2, are considered. In the first case, the neutral relativistic
BEC is considered, and in the second case, the charged relativistic BEC is considered.

Relativistic scalar bosons (spin-0 particles) are described by the Klein-Gordon equation
(see Eq. (1.6) in a flat space-time, g"¥ = n*V), which gives rise to the following effective

relativistic Hamiltonian in the Feshbach-Villars formalism [134, 135, 136]

2
Hy = (t3+it2) 2p—m+173m02 : (3.30)

where 7; (i = 1,2,3) are the Pauli matrices. Note that the Pauli matrices are not related
to the spin of the particle in this context, but are used as a mathematical aid instead, to
obtain the above classical-like Hamiltonian. The corresponding wave function satisfies the
Schrodinger-like equation i .0, ¥ = H,¥. The vector-like eigenfunctions ¥ of the effective

Hamiltonian in Eq. (3.30), are given by a pair of scalar eigenfunctions ¢ and  as

Y= . (3.31)
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By defining the Klein-Gordon field as y = @+ %, and using the above definitions of H, and

W, it is straightforward to show that y satisfies the Klein-Gordon equation

12y, md?

One can impose a three dimensional box potential V (x), such as seen in the non-relativistic
case, to H,. This determines the boundary conditions for ¢ and ), which are the same as
for the non-relativistic wave function from Eq. (3.19). It turns out that the time dependent

solutions for ¢ and ¥, given H, for a relativistic particle in a three dimensional box, are

8 E, . (Tn . (Tn . [Tn
i)y it (5 sn () ()

8
=S ek sm(nL,zx ) (L_y> (L_) 633

where V = L, L, L, is the volume of the box, ny,ny,n, € N the particle excitation quan-

tum numbers and @7 (p), %5 (p) relativistic momentum-dependent functions, which satisfy
((pf)'E)2 — ()(f)t)2 = +1, with &£ denoting particle and anti-particle solutions. Eq. (3.31) can
then be rewritten in terms of Eq. (3.33) as ¥ (x). One can notice that the solutions in Eq.
(3.33) are similar to those in the non-relativistic case from Eq. (3.19). They differ only by
the relativistic momentum-dependent functions ¢; (p) and X5 (p)-

To obtain the QG corrected energy spectrum of a relativistic particle in a box, one

modifies the effective Hamiltonian H,, using the transformation from Eq. (3.17), as

. p% 2 . o 3 . 5P 4
HrQG:(1:3+ztz)ﬁ+13mc —(13-1—112);]70—1—(‘534-112)%]?0
=Hyo+Hn+Hp, (3.34)
where one defines H,o = (T3 + i) p§/2m+t3mc?, Hyy = — (13 + i) apy /m and Hyp =

(t13+i12)5PB pg /2m. The energy spectrum of a relativistic particle in a three dimensional

63



3.1. BOSE-EINSTEIN CONDENSATE

box, considering an unperturbed effective Hamiltonian H,(, turns out to be

&) = i\/ Cziz# (n2 412 +n2) + m2c* (3.35)
where L = L, = L, = L, was assumed, without loss of generality, and =+ signifies the particle
and anti-particle solutions. The energy spectrum in Eq. (3.35) is obtained by computing the
eigenvalues of the H,( operator, for the state ¥;. To obtain the QG correction to the energy
spectrum in Eq. (3.35), one considers the complete QG corrected, effective Hamiltonian
H,oc from Eq. (3.34), and uses the result from Appendix A.2. The QG corrected energy

spectrum is then

en = £/ W22hE — 20Lh3CG + 5 Bhtc2kd + mPct (3.36)

which is obtained by computing the eigenvalues of the effective Hamiltonian H, g¢, for the
state W In the above, k2 = [’E—j (n)% + n§ + ng) was again used, and the = sign plays no role
in further considerations, since the square of Eq. (3.36) is used. Using the QG corrected
energy spectrum for a particle in a three dimensional box, given by the relativistic relation
in Eq. (3.36), and taking the continuum limit (k, — k =— €, — €; see Appendix A.3),

the QG corrected relativistic density of states reads as [130]
Vever —m2ct 1 25 1
= 2 24 2 2 4
g(e) = Y2 <1+4OCE\/8 —meet = - B_cz (8 —m-c )) , (3.37)

One can see that the above reduces to the usual relativistic density of states, given by Eq.
(A.3) in Appendix A.1, when a, — 0. The above QG corrected density of states is
central in predicting QG effects in relativistic statistical mechanics. It is used to modify
the relativistic BEC observables in the following. It may be noted that the integrals, which
take the form of Eq. (A.1) from Appendix A.1, cannot be expressed in closed form, when

using the relativistic density of states from Eq. (3.37). However, they can be expressed in a
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closed form in the ultra-relativistic limit, where € > mc?.

The number of particles in the system is obtained using Eq. (A.1) from Appendix A.1
and the QG corrected density of states from Eq. (3.37). The integral is evaluated in the
ultra-relativistic limit at 7;, where u — 0, and divided by V to obtain the QG corrected

number density for the neutral relativistic BEC as

N 1 - & o [~ & 25 B = &
BE
= pu— 4— —_———
! 4 2m2h3c? {/0 €BTC‘°'—1d8+ ¢ Jo eBTcg—ldE 2 ¢ Jo eBTce—lde}
1 21t o B
= 23 {(kBTc)3C(3)+ F;(lqz;Tc)“— 1505 (kBTC)SC(S)] : (3.38)

and for the charged relativistic BEC as

UR—-BB
2 83

n—NBE = " /w—g d8+4—/°°—
V. 2m2h3ckgT, |Jo cosh(Bre)—1 ¢ Jo cosh(Bre)—1
- E e—dg
2 2 Jo cosh(Bre)—1

[(kBTC)z + ;—3 (7. ¢(3) 107 C—BZ (kBTC)“} , (3.39)

de

m

3h3c

where one can see, that both cases retrieve the number densities as in the standard relativis-
tic BECs [127], when o, — 0. Since it is also not possible to obtain a closed form of
respective critical temperatures from Egs. (3.38) and (3.39), a perturbative approach is used
in the same way as in the non-relativistic case. The QG corrected critical temperatures then
read as

TC2/3FLC 1/3 2 7'516/37”120 2/3 507‘527130 (5)

c :Wn —GEWVZ T@n’ (340)

for the neutral relativistic BEC, and as

B 3\ 1/2 3 2 9\ /2
BB 1<3h c) nl/z_oclogh z;(3)n+l3157t (3h) n? (3.41)

¢ kg \ m kg m kg \m3c
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for the charged relativistic BEC, where one can see that the QG corrections increase with
increasing number density » in both cases. In the charged case, the QG corrections increase
with decreasing boson mass m, while the neutral case is independent of boson mass. One
can also notice that higher order QG corrections have a stronger dependence on n, which
is also seen in the non-relativistic case. The standard results from Eqgs. (3.4) and (3.6), for
d = 3, are recovered from Eqs. (3.40) and (3.41), when o, 3 — 0. The magnitude of the

relative correction of the critical temperature for the neutral case is

ATB 2143 h 50m! /2R3 (5
AT g2 s gy OIS s (3.42)
7% 45Mpcl(3)%/ (Mpc)?(3)3/
while for the charged case, it is
ATBB 108 73/2¢(3 152K
—|=a SG) g, 15TA (3.43)
Tc( ) V3TM2Mpcy/me (Mpc)*mc

where the definitions of o and f3, found below Eq. (2.42), were used. From the above one
can see that the relative correction increases only with increasing n and does not depend
on m for the neutral case and increases with increasing n and decreasing m for the charged
case. The relative corrections are presented in Fig. 3.4. One can see that the QG correction
in the charged case requires a higher oy (about 5 orders of magnitude) to reach the same
magnitude as the QG correction in the neutral case. In other words, the corrections are
much smaller in the charged case.

One must address the second important observable, the fraction of bosons in the ground
state, in context of relativistic BECs. Following the derivation from Eq. (3.3), while using
the number densities from Eqs. (3.38) and (3.39), the QG corrected fraction of bosons in

the ground state read as

T>3 21t kg lT3 T4}_B0150§(5) K3 lT3 TS

B
—1-(L Sl L B | ,(44
fo (TC TSR My T2 T3 C(3) M| T, TE] G4
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Figure 3.4: Relative temperature QG correction for a relativistic BEC, as a function of
the number density n, at different values of parameter oy, where o = (x(z). The solid lines
represent the neutral case and the dashed lines represent the charged case. The parameters
of the example BEC are those of a helium gas.

for a neutral relativistic BEC, and as

B T\ ~72((3) ks [T* TP 10723 T

BB 27

=1- 4~ £~ 72 _ 4
fO (TC) +(x() TC2 MPC2 ]"C TCZ BO M%,CA - | > (3 5)

for a charged relativistic BEC. From the above, one can see that the standard results from
Egs. (3.5) and (3.7) are recovered, when o, 30 — 0. Note that at 7 = T, the QG cor-
rections vanish and, as expected fy = 0, even when 0, g # 0. Therefore, as in the non-
relativistic case, the QG signatures in the fraction of bosons in the ground state can be
observed for T < T..

The corrections terms from Eqs. (3.44) and (3.45) are presented in Fig. 3.5. Since only
the charged case is dependent on the boson species, an example of a helium gas was chosen
to plot it. In the same manner as in the non-relativistic case, one can see that the correction

has a maximum between the absolute zero and the critical temperature 7. It is located at

3 Bo 3375C(5) kp .,
f ey T 4
"TA ay mt Mp e (346)
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Figure 3.5: QG correction of f; for a relativistic BEC, as a function of the condensate
temperature 7', at different values of parameter oy, where g = OL(Z). The solid lines represent
the neutral case and the dashed lines represent the charged case. The parameters of the
example BEC are those of a helium gas.

for the neutral case and

¥l 2 Bo 5754 kB
ey R T2 3.47
™37 g 54((3) Mpc? € (347)

for the charged case. This suggests that experiments, able to measure the fraction of bosons
in the ground state for a relativistic BEC with high accuracy, would most likely observe QG
signatures around temperature T2 BB
Summary

In this section, six observables were considered, for which theoretical predictions of QG
signatures are provided. These are the three critical temperatures from Eqgs. (3.26), (3.40)
and (3.41), and three fractions of bosons in the ground state from Eqs. (3.28), (3.44) and
(3.45). Out of these possibilities, only the non-relativistic BEC can currently be realized in
an experimental setup, and with ever-improving measurement precisions, one expects that

such QG signatures may be observable in the future. One can also expect that relativistic

68



3.2. MAGNETOMETER EXPERIMENT

BECs will be possible to produce in experiments in the future, which will further increase
the chances to measure potential QG signatures.

Currently, the detection threshold for critical temperatures is of the order ~ 10~ 1K
[131], which implies oty < 10'” when By = o3 (the same holds when By ~ 0), and By < 104
for only quadratic QG corrections (i.e., 09 = 0). Since the attainable electroweak scale
agw bounds the GUP parameters to 0y < 10'7 and Bo < 1034, the BEC bounds do not
present an improvement and QG signatures are not expected to be observed in current BEC
experiments. However, the theoretical framework provided here, should be useful to test
QG, as experimental precisions improve.

The fraction of bosons in the ground state in a BEC is measured by integrating the mea-
sured velocity distribution within the ranges of velocities, where the gas is in the condensate
state [137]. The precision of such a measurement is around 1072, i.e., about 1% [138, 139].
It is expected that this precision will increase with time as well, and reach a stage in the
foreseeable future where the predicted effects will either be measurable, or one will be able
to put strict bounds on the GUP parameters. The bounds on GUP parameters obtained
by considering the precision of measuring the fraction of bosons in the ground state are
oy < 10% for By = (x(z) (or B ~ 0) and By < 10°? for 0y = 0. These bounds are not as good
as the ones obtained using critical temperature. Therefore, measuring QG signatures with

the fraction of bosons in the ground state is phenomenologically not yet as interesting.

3.2 Magnetometer Experiment

In this section, an approach to measure QG signatures in a magnetometer experiment is
proposed. A magnetometer is a device, which can measure magnetic fields or dipole mo-
ments of atoms, depending on its purpose. A realization of the latter, where the interactions
of nuclear spins with external magnetic fields are measured, is considered. It turns out that
optical magnetometers are ideal to test fundamental physics, due to their high precision

[140]. In optical magnetometer experiments, one uses light to measure the response of an-
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gular momenta of atoms in an external magnetic field. In this context, the QG signatures
are explored through GUP inspired modifications of the Larmor frequency of probed atoms.
Specifically, QG modifications of the Larmor frequency of '>*Xe atoms are considered in
detail. The '*Xe species is chosen because it has non-zero nuclear spin, is stable and has
a long relaxation time in normal conditions (7" = 20°C and p = 1 atm), which allows to
make highly precise measurements. One of the methods to measure the Larmor frequency
of such atoms is the two-photon laser spectroscopy, described in detail in Ref. [141].

The idea of the experiment is based on Refs. [140, 141, 142]. The 129X e atom in
the ground state 5p® 'Sy (see Ref. [143] for notation convention), with a quantum number
of total angular momentum quantum number F = 1/2 (F is defined through the operator
sum F = J+ 1, where J is the total electron angular momentum and I the total nuclear
angular momentum) and projection mp = —1/2, is excited by a circularly polarized UV
light with Ay = 256 nm to the state 5p° (2P /2) 6p 2[5/2],. This state then decays to one of
two intermediate states 5p° (2P; /2) 6p 2[3/2]1 2, which emits IR photons with wavelengths
Ar1 = 905nm and Azz> = 993 nm, respectively, before decaying back to the ground state.
The '?°Xe atom has two ground state sublevels with mp = —1/2 and mp = +1/2, due to
the hyperfine interaction. Probability that the above intermediate states decay to either of
these sublevels is 1/2. Since the mp = +1/2 state cannot absorb the UV light, an ensemble
of '2?Xe atoms will eventually become spin polarized, where all atoms are in the same spin
state of mp = +1/2. Then a uniform external magnetic field B is applied to induce the so-
called Larmor precession of '*Xe atoms. They start to oscillate between the mp = +1/2
and mp = —1/2 states with the corresponding Larmor frequency. As the UV light reinitiates
the above excitation-decay process of atoms, which pass through the state mp = —1/2,
the IR emission starts to oscillate with the exact Larmor frequency of the '>°Xe atoms,
which can be precisely measured. A similar experiment, considering two-photon laser
spectroscopy of an ensemble of '??Xe atoms, has been conducted by the authors in Ref.

[144], where they use an atomic transition, different than the one described above.
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To apply QG modifications to the Larmor frequency of an atom, one needs to consider
contributions of electrons and the nucleus, which comprise the atom in question. From the
ground state structure 5p% 'Sy of the 1>°Xe atom, one can see that the total electron angu-
lar momentum J = 0, and the total angular momentum F = I. Therefore, the electrons do
not provide a magnetic dipole moment and consequently do not contribute to the Larmor
precession. Furthermore, the only cause of the magnetic dipole moment and the Larmor
precession is the nucleus. To describe the interaction between the magnetic dipole mo-
ment of the nucleus and the external magnetic field B, a suitably adapted Hamiltonian is

considered [145, 146]

2

e
Hy=Hoy—my-B+_——Y (B xr)’
N = Hoy —Imy +8mpc2 i( ri)

=Hoy +Hpy +Hin (3.48)

where Hoy is the Hamiltonian of the nucleus in the absence an external magnetic field, my
the nuclear magnetic dipole moment operator, e = +e( the proton charge, m, the proton
mass and r; the radius of proton i in the nucleus. The sum in the last term from Eq. (3.48)
goes over all protons i in the nucleus. The notation of Hgy and Hyy in Eq. (3.48) is defined
for convenience. It is useful to estimate the magnitudes of terms from Eq. (3.48), to have
an idea which effects are expected to contribute most in the following considerations. The
expectation value of the leading order term (Hoy) is clearly the largest of the three [145],
and needs no further discussion in this context. However, the other two terms from Eq.
(3.48) need to be examined carefully.

The magnitude of the Hpy term can be estimated by taking an experimentally plausible
external magnetic field B = 1T Z [142], assumed parallel to the nuclear spin orientation,
and by evaluating the expectation value of the nuclear magnetic dipole operator my in the
ground state of 129%e. This expectation value turns out as (my)x. = gx.uy I Z, where gx, is

the nuclear gyromagnetic factor for '2*Xe and uy = eh/ 2my, the nuclear magneton [145].
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The magnitude of Hpy can then be estimated as
|(Hpn)| = |gxepunIB] =3.93 x 107777, (3.49)

where gx, = —1.556 [147],1=F = 1/2 and uy = 5.05 x 10727 J /T were used. One can
find the nuclear magnetic dipole moment of the '2°Xe atom as uix, = gxeun I = —0.778 uy =
—3.39 x 10727 J/T. The magnitude of the Hyy term can be estimated by the external mag-
netic field B, assumed above, and a distribution of protons in the nucleus, which maximizes
the contribution of this term. This provides a theoretical upper bound of the magnitude,
which the Hy term can contribute. Such a distribution of protons, which maximizes the
Hy term, is realized by assuming all protons are located in a circle on the surface of the
nucleus (|r;| ~ Rx, for all i, where Ry, is the radius of a 129X e nucleus), where this circle is
perpendicular to the external magnetic field, i.e., r; 1. B for all i, which maximizes the cross
products from Hiy in the ground state of '?°Xe. The radius of a stable '>°Xe nucleus is
approximated by Ry, = R()A)I(/e3 = 6.06 x 10~ m, where Ry = 1.2 x 10~>m is an experi-
mentally determined nuclear scale, and Ax, = 129 the atomic mass number of 129%e [145].
Since the sum in Hjy goes only over the protons in the nucleus, there will be as much terms
in the sum, as there is protons in the 129X e nucleus, which is Zxe = 54. The magnitude of

Hy can then be estimated as

2 2
e 27e
|<H1N>| S 3 D 54BZR§(6 = 0

B?Ry, =4.2x107°°] (3.50)
mpc mpc

2

where the accepted values for m,, ey and ¢ were used. One can then compare the contribu-

tions of the Hpy and Hjy terms, given by Eqgs. (3.49) and (3.50), respectively, as

[(Hin)]
|(Hpn)|

S107%, 3.51)

from where it can be seen that the contribution of the Hjy term is more than 29 orders of
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magnitude smaller than the contribution of the Hpy term. This implies the H;y term can
be safely neglected in further considerations. Given the estimation of the GUP parameters
obtained in the following, the Hjy term is also negligible compared to the GUP correction

terms.

3.2.1 Larmor Frequency and GUP

The QG corrections, motivated by GUP from Eq. (2.42), to the Larmor frequency of
atoms, has been explored in detail in Ref. [48], where the analysis considers the Larmor
precession of atoms, caused by the the total electron spin J. However, for the purposes of the
proposed '2*Xe experiment, one needs to generalize this analysis to include nuclear spin,
since J = 0 and F = L. It turns out that such a generalization is straightforward, following
Ref. [48], where an arbitrary nucleus with a nuclear gyromagnetic factor g, and a nuclear
magnetic dipole moment i, = gnuc tin I 1s considered. To achieve this, one considers the
nuclear Hamiltonian from Eq. (3.48), suitably modified by GUP through Eq. (3.17) and
denoted by ngG, while neglecting the Hyy term. The GUP corrected electron magnetic

moment operator is replaced by a GUP corrected nuclear magnetic moment operator

my =myo (1 —apo+Bpi), (3.52)

8nuc MN
h

where myg = —

I and pg operators act on the nuclear wave function

W (r,2) =y (r,1)[a(t) [+)n +b() |=)n] - (3.53)

In the above Yy (r,7) is the spatial part and the linear combination a(t) |[+)n +b(7) |—)n is
the spin part, with a() and b(¢) time dependent functions, which satisfy |a(t)|> 4 |b(1)?| =
1. For a quantization axis 2, parallel to B, it turns out that my; |+)y = ptnuc |+)n and

myz | —)N = —tnue |—)n- Considering the above generalizations, one solves the Schrodinger
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equation ihd,¥y(r,t) = H]gG Wy (r,1) (see also Eq. (1.1)), which splits in two equations

0
ih s Y (r.1) = HES wn(r,1) (3.54)

and

m%[auwmbw—m —

—myo-B(1—apo+Bpd)lalt)|+)n+b(r)|-)n] . (3.55)

It turns out that Eq. (3.54) is not relevant in describing the Larmor precession, and is
therefore ignored in the following considerations. However, it can provide QG corrections
to the nuclear shell model, which can be a topic for a future project. On the other hand, the
solutions of a(t) and b(t) of Eq. (3.55) return harmonic solutions of the Larmor precession,

which oscillate with a QG corrected Larmor frequency

. Z#nuc B

w7, = 3

(1—a(p)+B(p*), (3.56)

where the expectation values of powers of momentum p, are related to the nuclear spin
I of the atom. In principle, one could additionally consider corrections arising from the
internal structure of the nucleus, which would manifest as corrections to .. Note that the
above Larmor frequency takes the same shape as in Ref. [48], with the difference that u,;,.
refers to the magnetic dipole moment of the nucleus, and p is now related to the spin of the
nucleus. Since p represents a measure of momentum, related to I, it can be interpreted as the
momentum of the nucleus up to leading order (see Ref. [148] for higher order corrections).
Such a generalization can be done for any atom, where both, J # 0 and I # 0, cause the
Larmor precession through the total spin F = J+ 1. Eq. (3.56) remains the same, where the
total magnetic dipole moment is just the sum of the electron and nuclear magnetic dipole

moments to = Upye + Ue, and p can be interpreted in the same way.
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The velocities of atoms in the proposed experiment are expected to be non-relativistic
[142] (see Section 3.2.2). Therefore, the expectation value of momentum and its square can
be written in terms of the classical momentum as (p) = m (v) and (p?) = m?(v?), respec-
tively, where m is the mass of an atom, (v) the expectation value of its velocity and (v?) the
expectation value of the square of its velocity. Therefore, one can rewrite Eq. (3.56) as

~ 2|u|B
L—

- (1 —om(v) +Bm2<v2>) , (3.57)

where the absolute value |ug| is taken, without loss of generality, since only the magnitude
of 7, can be measured. For convenience, one can define the expectation value of the QG
correction as (C) = oum(v) —Bm?(v?). The above Larmor frequency can then be simplified

as

2 |uo| B
o) — \uh!

(1-(C)). (3.58)

To discuss experimental implications of the above QG corrected Larmor frequency, one
needs to quantify the magnitude of the QG correction (C) and compare it to the precision
of the proposed experiment, quantified in the same manner. The magnitude of the relative

QG correction is quantified by r as

50)L

®ro

=(C)=10", (3.59)
oG

where r € N and w79 = 2 |uo|B/h. The above allows one to compare the QG corrections

with the precision of the proposed experiment [142]

oy

~107P =107, (3.60)
o

exp

where g = 15 quantifies the experimental precision. The main idea of this discussion is to

optimize the parameters aly, o, m and v, in order to bring r as close to g as possible. The
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same method for comparison with experimental precision in terms of r and g was used in
Section 3.1.3. Such optimization provides an estimate of conditions, at which QG effects
are most likely to be detected. Since Eq. (3.58) is valid for any atom, different species
of atoms with different m and yg are explored, while providing detailed estimates for the

129X e atom.

3.2.2 Thermal Distribution of Atom Velocities

In this section, QG signatures in measurements of the Larmor frequency, using ensem-
bles of atoms, are explored. Since the considered magnetometer experiment is proposed to
be conducted in normal conditions [142], the thermal velocity distribution of an ensemble of

chosen atoms with masses m, i1s assumed to be the three dimensional Maxwell-Boltzmann

(MB) distribution [123, 146]

(ssir) oo () =
Hlv)= exp 4mv” (3.61)

2mkgT " 2kgT

where v € [0,e0). In the following, QG signatures are discussed in terms of average ther-
mal velocities of atoms, suggested by (C), and in terms of individual velocities of atoms,
described by (C) — C. Note that (C) corresponds to a single particle. Therefore, for a

distribution, C can take a range of values, as explained in detail later in this section.

Average Thermal Velocities

The provided version of QG corrections (C) = aum (v) — Bm?(v?) suggests that it is
natural to take the average thermal velocity (v) and the mean square of the velocity (1)
of an atom in a thermalized ensemble, obtained from the MB distribution, to estimate the
magnitude of (C). For convenience, one can approximately parameterize the atom mass
with the atomic mass number A, as m = Am,, [145]. Using this parameterization, one can

write the average thermal velocity of species A at temperature 7" as
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(3.62)

and the mean square of the velocity as

o 3kgT
<v2>:/ vzfv(v)dv: B
0 m
1 3kgTrr T
A mp TRT
1 T

=1 (Vi)RT Tor (3.63)

which are given in terms of the average velocity and the mean square of the velocity of an
ensemble of Hydrogen atoms at room temperature Tgr = 20°C as (vy)rr ~ 2480 m/s and
(v} rr = 7.256 x 10°m? /s2, respectively. Plugging Egs. (3.62) and (3.63) in the definition

of (C), and considering the parameterization of m, one obtains [149]

VAm (VH)R VH rRT T
C) (0, B A, T) = P , 3.64
(C) (a0, Po; A, T) Mpc \/ B MPC2 Ter (3.64)

where the definitions of o and 3, found below Eq. (2.42), have been used. For clarity, the
logarithm of Eq. (3.64) is shown in Fig. 3.6, as a monotonically increasing function of
both, A and T, where By = (x% is assumed. The dependence is shown for several different
values of 0. The black flat surface corresponds to the experimental precision. One can see
that QG signatures can be detected if 0y ~ 108. In this case, the detection of QG signatures,

using 2°Xe atoms with A = Ay, = 129, would take place at 7 ~ 560K, given Eq. (3.64).
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250

Figure 3.6: Logarithmic dependence of (C) on mass number A and temperature 7 for four
different values of olp; purple: o = 102, blue: o = 104, green: O = 10° and red: o9 = 108.
The black flat surface is the experimental precision limit.
Distribution of Thermal Velocities

In the above, it was assumed that the expectation values in (C) refer to the averages of
the whole distribution of atoms. However, Eq. (3.58) is derived for a single atom, which
suggests that the expectation values (p) and (p?) correspond to the single particle momen-
tum p and its square p> for that atom, and not to the averages of the whole ensemble. This
single atom correspondence then implies (C) — C, (v) — v and (v?) — V2. Therefore,
it turns out that atoms are distributed over ranges of ®; and C as well, since they are MB
distributed over all velocities v € [0,00), following Eq. (3.61), resulting in a QG induced

broadening of the Larmor frequency. To see this, one rewrites Eq. (3.57), considering the
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single atom correspondence and atomic mass number parameterization, as
_ 2.2 2
o = oz (1 —aAm,v+BAm,»*) . (3.65)

For convenience, one can also rewrite the MB distribution from Eq. (3.61) in terms of the

atomic mass number A as

m 3/2 Amyv?
f(v) = (m) A3 exp (— P )4nv2. (3.66)
B

To obtain a QG corrected distribution of atoms over Larmor frequencies f,(®y ), given Egs.

(3.65) and (3.66), one makes the following change of variables

dv

Hv)dv = folop)de, = folor) = fi(v) do;

(3.67)

The derivative |dv/dm.| on the right-hand side of Eq. (3.67) is obtained by solving Eq.
(3.65) for

o _ B (o
V= Spam (1 \/1+4(X2 (mLo 1)) (3.68)

where only the — solution was considered, since the + solution does not recover the stan-

dard result ®; = ®;o for v =0, and deriving v over ®z, which then reads as
B 1 1
N oA mp®ro B ® ‘

\/ 1+425 (w—fo - 1)

By using Eqgs. (3.68) and (3.69) in the change of variables from Eq. (3.67), the distribution

(3.69)

dv
doy

of atoms over ®y, is obtained for the first time, as [149]
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2
Bo(on
1 32 o (Mpc)? (1_\/”40%(0)5) 1))
275AmpkBT) Ll 8 Ay kT
2
_ Bo (o
nOLO(Mpc)3 (1 \/1+40‘% (“’LO 1))

B%(DLO Bo [ ®
1+4a—%<m—5)—1)

where the definitions of o and B, found below Eq. (2.42), have been used. From the above

Jo(or) = (

: (3.70)

distribution, one can obtain, for the first time, the standard phenomenological quantities,
similarly as with the MB distribution, such as the most probable Larmor frequency (at the

peak of the distribution; dfi,/dw; = 0)

\/ZAmPkBT_*_B 2Am,,kBT> a1

O, peak = OLO <1 — O Mpc 0 (Mp c)2

the average Larmor frequency

VEAm k5T 3AmykgT
AL L Wil AL ) (3.72)

(or) = [ o folor)dor = arg (1—0‘0 VEMpe T (Mpep

and the mean square of the Larmor frequency

@)= | wom% Folor)dor

2 | 8Am, kgT 3Am,kgT
2 p B 2 p KRB
= l_a o 2]3 —r -
LO( OMpc o ( 0 0) (Mpc)2

8 8(Am,kgT)3/? 15AZm? kT2
—O(OBO\/; (Amp k) + B2 pET ) (3.73)

(Mpc)? (Mpc)*

One can see that the correction terms in Eq. (3.72) correspond exactly to Eq. (3.64),

if expressed in terms of (vy)gr and (v%) rT- However, this consideration provides more
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information, since now one has the distribution fi,(®z).
For detailed phenomenological research, where different GUP models are considered,
one can straightforwardly reduce Eq. (3.70) to obtain f,(®;) for such models. For the

linear GUP model (g — 0), the above distribution turns out as [149]

2
o
Lin 1 32 (Mpc)? <‘°_LL0_ )
o O)=\5"7"7=] xp| "3

ZﬁAmpkBT O(,O 2AmpkBT

3 2
wagMeel (oL T (3.74)
o3 00 \ Wro

for which (Dkffieak and <0)L>Li“ are those from Eqs. (3.71) and (3.72), respectively, when
Bo — 0. Next, for the quadratic GUP model (atg — 0), the distribution from Eq. (3.70)

turns out as [149]

oL
Quad(w )= 1 3/2exp _(MPC)2 (“)LO 1)
© T\ 2nAm, kgT Bo 2Am,kpT
Mpc) [0
¥ 2m (3/56) L_q, (3.75)
0 ®Lo Lo
for which wﬁ;ﬁik and (07)Q"4 are those from Eqgs. (3.71) and (3.72), respectively, when
oy — 0.

From Eqgs. (3.71) and (3.72) one can see that the peak and mean of the Larmor frequen-
cies are shifted with respect to the standard theory Larmor frequency ®y, as long as T > 0.
Furthermore, Eq. (3.70) implies a broadening of the measured Larmor frequency, due to
thermal motion of atoms. With increasing o and Py, the deviation of ®; from ®;o gets
larger and the width of the distribution gets broader, and vice-versa. Increasing the temper-
ature T and the atomic mass number A, provide the same effect on the distribution. Since
the distribution of QG corrections, described by Eq. (3.70), is so close to ®zg, the sam-

pling of such small steps of ®; is not possible with current computing power. Therefore,
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it is more convenient to visualize the distribution of atoms over QG corrections C instead,

where

C— Amp A2 ’8(DL

MPC (MPC

‘ (3.76)

is the new distribution variable. To achieve this, the same procedure used to derive Eq.

(3.70) 1s followed. The corresponding change of variables is

dv
Je(€) = fu(v) ac (3.77)
which implies the replacement
)
L= 22 (3.78)
070 ®

of all such factors in distributions from Eqgs. (3.70), (3.74) and (3.75), and does not include

the ¢ factor in the denominator. These distributions then respectively read as [149]

2
1—,/1+4B (S0 )
fe (5_03):( l )3/26xp _O‘g(MPC)Z( °‘0<°’>

Q) 2TCAmpkBT 2 SAmpkBT

X ] (3.79)
0 Bo (3w
e (%)
fOI‘(X,(),Bo#O,
2
o)
len 8_0‘) _ 1 3/2CX _(MPC)2 <Ew>
¢ \o ) \2rAm kst P 02 2Am,ksT
Mpc)® (80 ?
< 4z Mr€) (—“)) , (3.80)
(XO (O]
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for o # 0 and By = 0, and

o
fQuad 8_03 _ 1 3/26Xp _ (Mpc)? ©
¢ o 2Am, kgT Bo 2Am,kT

(MPC>3 dw
X 2m P ’/E’ (3.81)

for op = 0 and B # 0. The QG induced broadening, implied by Eq. (3.79), for an ensemble

of 129Xe atoms, A = 129, is shown in Fig. 3.7, for different values of ¢y and temperatures
T =400K (top) and T = 1200K (bottom), where By = oc% was assumed. For various choices
of the parameter 0, the heights of the peaks of the distributions differ by several orders of
magnitude. Therefore, to present and compare them in the same figure, they are normalized,
such that each peak assumes a maximum value of unity. Notice that for og > 108, the
peak is close to, or even crosses the projected sensitivity of the magnetometer. Fig. 3.7
can be interpreted in the following way. The horizontal axis represents the magnitude of
QG corrections, while the vertical axis represents the fraction of atoms. Given a thermal
distribution of atoms and o, the average magnitude of the QG signature will be localized
around the peak of the distribution, since most of the atoms display this deviation, due to
their movement with speeds near the average speed (v). Furthermore, since the horizontal
axis is in a logarithmic scale, the broadening of the distribution is much higher for larger
values of oig and 7.

For a better visualization of the broadening, the measures of the second moment (stan-
dard deviation) and the Full Width Half Maximum (FWHM) of the distribution are consid-

ered. The second moment of the distribution from Eq. (3.70) is [149]

o - [ °°O<coL — (o) folor) doy,

8\ w2, Am,kgT 8 22 (Am, kgT)3/?
:0c8<3——) L0 p "B —Oﬂoﬁo\/; LO( pB)

n)  (Mpc)? (Mpc)3
5 607, A2m2kgT? 3.82)
O (Mpo)? '
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Correction distribution (normalized) for T=400 K
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Figure 3.7: Distributions of 1>°Xe atoms over 8w/ for different values of o, at tempera-
tures T = 400K (top) and T = 1200K (bottom). The black vertical line is the experimental

precision limit.
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From the above one can see that such broadening is caused entirely by QG effects, since as
00, Bo — 0, the G%o vanishes. On the other hand, the FWHM of the distribution is obtained

as

FWHM,, = o)™ — o] VMM | (3.83)

FWHM

where o, FWHM

and @] are values, corresponding to both sides of the distribution at the

half of its maximum. These values are obtained from Eq. (3.70), by solving the following

equation
Jo (0L peak
fo (@) = o (@ pen) o ). (3.84)
The above has no closed form solution for OJE}NHM and OJE;NHM. However, it is still possible

to obtain these values numerically, by the following procedure. A short manipulation of Eq.

(3.84) provides a transcendental equation [149]

o} (Mpc)?®  Gia o4 0 AmpkpT 1
2 / n 2 2 B B
BO 8AmpkBT OCO(MPC) 1—2WA91PC)M2AmPkBT
2
92 ) (3.85)
I1-Gip
where
FWHM
BO (Dle
=1—,|1+4— : —-1]. (3.86)
G2 o3 \

The above transcendental equation can be numerically solved for Gy ». Note that one would

have also arrived at Eq. (3.85), by using distribution Eq. (3.79). To solve Eq. (3.85), one
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

G le—15

Figure 3.8: Intersection points of y; and y,, for an example of an ensemble of '>?Xe atoms.
A=129,at T = 560K for o9 = 108.

needs to split it in two functions

2(Mpc)?  GP 2 AmpkgT
i = o (Mre) IE P! P . s ~1 (3.87)
Bo  8AmpksT 0y (Mpe)* 1 =2 s /2Amy, kpT
ymn (912 ) (3.88)
1-Gio

and plot them in the same graph. They are expected to intersect at two points, where
y1 = y2, which are the solutions for Gj,. An example of this is shown in Fig. 3.8 for
the relevant case of an ensemble of '??Xe atoms at 7 = 560K and for oy = 103, where
Bo = oc% was assumed. It is then straightforward to obtain (DEVHM and (DE;NHM from the
obtained values of G, using Eq. (3.86). The FWHM for the above 129Xe case turns
out as FWHM,, ~ 1.5 x 107" Hz. Note that the FWHM values for distributions from Egs.
(3.70) and (3.79) are related by FWHMg, = w0 FWHM_c. Therefore, one can also evaluate

FWHM¢ ~ 2 x 10~ which does not rely on the actual value of oyy.
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(20, FWHM,,)[1/s] x 107

250

300

Figure 3.9: Full width half maximum FWHM, (blue-cyan) and standard deviation G, (red-
yellow) of the Larmor frequency distribution, as a function of atomic mass number A and

temperature 7', at 0lg = 108.

The FWHM,, is obtained, as described above, for a range of atomic mass numbers A
and temperatures T, at the relevant o,g = 108, and shown in Fig. 3.9, alongside 2 6, (see Eq.
(3.82)). Note the factor 2 in front of G,. It is there to provide a measure of width, since G,
alone is a measure of deviation from the average. One can see that both, 26, and FWHM,,
scale approximately as a square root in both, A and 7', and that they are of the same order of
magnitude at a given parameter 0, where the FWHM, is slightly greater. This is expected,

since FWHMy, is the width of the distribution at half of its maximum value, and 2 G, is the

width of the distribution at a slightly higher value than that of half maximum, which makes
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it slightly narrower. For the projected experimental precision g = 15, the line broadening

for 0y = 10® is within reach of detection.

3.2.3 Non-Thermal Distribution of Atom Velocities

In the previous sections, QG signatures induced by thermal distributions of ensembles
of atoms were considered. While such considerations provide promising results, they are
limited by the temperature dependence of QG signatures, which are expected to increase
with temperature. This is because high temperatures induce thermal noise and can there-
fore decrease the precision of the experiment. Since QG signatures in Larmor frequencies
depend on the velocities of atoms, one can introduce methods, other than thermal motion,
to control the velocities. For a non-thermal distribution of velocities, one can write the QG
correction as
Ampv  ATmy?

P
. 3.89
Mpe PO Mpen? (3.89)

(C)(00,Bos A, v) = a

For clarity, the logarithm of Eq. (3.89) is shown in Fig. 3.10, as a monotonically increasing
function of both, A and v, where By = oc% is assumed. The dependence is shown for several
different values of ay. The black flat surface corresponds to the experimental precision. One
can again see that QG signatures can be detected if 0y =~ 103. In this case, the detection of
QG signatures, using 129% e atoms with A = Ax. = 129, would take place at v ~ 300m/s,
given Eq. (3.89). Note that Fig. 3.10 is similar to Fig. 3.6. This is expected, since the same
form of (C) is used, with the difference that in Fig 3.6 the velocity is taken to be thermal.
One of the methods to induce non-thermal motion of atoms is convection, where a
current of atoms is passed through a duct. Once the flow is stationary, one can use the
two-photon laser spectroscopy method, to measure the Larmor frequency of atoms. For the

purposes of the proposed experiment, a velocity distribution of an incompressible, viscous
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200
A 250

Figure 3.10: Logarithmic dependence of (C) on mass number A and atom velocity v for
four different values of op; purple: o = 102, blue: oy = 10%, green: O = 10° and red:
oo = 108. The black flat surface is the experimental precision limit.

fluid in a square duct is assumed [150]

S ) ) A

where v,y 1s the maximum velocity in the centre of the duct and a is the length of the inner
side of the duct. Eq. (3.90) is then inserted in Eq. (3.57) to obtain the QG corrected Larmor

frequency, as a function of v,,,x, and the position x and y inside the duct as [149]
oz(x,y) =0 | 1 g 2 Vmas | 4 Y 1 Y
xX,y)= — —\ = -\ 5
L\X,Y L0 0 Mpc a/2 Cl/2
2
A2m2 2 O\ 2 2

p Vmax y
— |1 —= 1—(—= . (391
ey [ (an) (a2) 3D
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A maximum QG induced deviation of the Larmor frequency is located at the centre of
the duct, where x =y = 0. In this case, (C) follows Eq. (3.89) for v = v, (see Fig.
3.10). The same holds for any location (x,y) in the duct, where v from Eq. (3.90) is
considered. However, such point measurements are not possible in actual experimental
applications. Therefore, two possible scenarios are considered in the following, namely an
average measurement in a line perpendicular to the duct and an average measurement in the
total cross section of the duct.

In the case where the Larmor frequency is measured in a line which runs perpendicularly

through the duct, one needs to average Eq. (3.91) over either of the (x,y) dimensions as

1 ra/2
o= [ o
B 2AmMp Viax X 2
_(DL()<1—(X,()3TPC[1—<E) ]
8A2 max X 2]

from where one can see that the maximum deviation is obtained for x = 0. In the case where
the Larmor frequency is measured over the whole cross section area of the duct, then one

needs to average Eq. (3.91) over both, x and y, as

a/2
@L—— / L (x,y) dxdy
—a/2J—a/2
4Am,v 64A%m
= 1-o pmax max . 3.93
Lo( O " Gppe PO 225(MPC)> (3.5)

One can see from Egs. (3.92) and (3.93) that in either choice of measurements, QG signa-
tures will approximately be described by Eq. (3.89). The only difference is in the value of
the particle velocity, which is of order v & v;,,y. It is not trivial to determine which of the
above two applications would work best in an actual experimental setup, due the non-linear

dependence of the atomic transition rate on intensity, and the dependence on the number of
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atoms in the illuminated volume [142].

3.2.4 Summary

The predicted QG signatures by either thermal or non-thermal velocities are promising.
It turns out that the Larmor frequency of an atom obtains QG corrections at non-vanishing
velocities. In this section, detailed considerations were provided in the case of thermal
movement of atoms, described by the MB distribution, and in the case of convection cur-
rents. Given the projected experimental precision of the magnetometer, using '?*Xe atoms,
one can observe QG signatures for oy = 108 in both cases. However, if QG signatures are
not observed, this experiment will set an unprecedented bound oy < 108. Tt will improve

the electroweak bound, set by oz = 107, by nine orders of magnitude.
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Chapter 4

Cosmology

“We are like butterflies who flutter for a

day and think it is forever.”

Carl Sagan

Cosmology is a field of study, which concerns with the origin, evolution, structure and
the fate of the Universe. While a significant amount of QGP research is related to Earth-
based experiments (see Chapter 3) and Astrophysics [50, 54, 58, 61, 64, 70, 71, 74,76, 77,
78,151,152, 153, 154], itis not as widely studied in cosmology. However, due to the unique
observations which cannot be recreated in Earth-based experiments, cosmology is emerging
as an important field in QGP [75, 76, 81, 84, 155, 156, 157, 158, 159, 160, 161, 162].

Contrary to Earth-based experiments, one cannot control the conditions and parameters
of cosmological events and needs to solely rely on observations of such events, as they
naturally occur. However, this does not present a significant drawback, as one may expect.
Cosmological observations provide a range of measurements of phenomena, which cannot
be explained, using standard theories of QT and GR. Since QG is believed to have played
a key role in the early stages of the Universe, it is reasonable to expect that the observed
anomalous phenomena are remnants of such QG effects. Therefore, it can provide a rich
ground for testing QG theories.

In this chapter, new QGP results from cosmology are presented. Specifically, viable
explanations of the observed EDGES anomaly (see Section 4.1) and the observed Baryon

Asymmetry in the Universe (see Section 4.2), are provided. The EDGES anomaly is ex-
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plored in terms of modified dispersion relations, and the Baryon Asymmetry is explored in

terms of GUP.

4.1 The EDGES Anomaly

The Experiment to Detect the Global Epoch-of-reionisation Signature (EDGES) is a
radio observatory, located in western Australia, which aims to detect signatures of neutral
hydrogen in the early stages of the Universe. It is designed to probe the so-called reioni-
sation epoch, when the first stars were formed, through the absorption of radiation due to
the 21-cm hyperfine hydrogen transition. Specifically, as the UV light, emitted from the
first stars in the Universe, interacted with the primordial gas, it changed the ground state
excitation of hydrogen atoms. This happened due to the hyperfine splitting of energy levels,
induced by coupling between electronic and nuclear spins. The energy difference between
the hyperfine levels of the ground state, corresponds to the energy of a photon with wave-
length A = 21cm (see Appendix B.1 for more details). A population of hydrogen atoms
in the primordial gas is expected to absorb the Cosmic Microwave Background (CMB)
photons with this wavelength and produce an absorption line in the CMB spectrum [163].

Recently, the EDGES collaboration has reported an unexpected result [164]. In the red-
shift range z € (15, 20), they found an anomalous absorption profile in the radio spectrum
of the CMB, with a brightness temperature minimum at redshift z = zg ~ 17.2, which has a
magnitude of about a factor of two greater than predicted by the Lambda Cold Dark Matter
(ACDM) model. In this section, an explanation of this anomaly is proposed, using Modi-
fied Dispersion Relations (MDRs). More precisely, MDRs are used to modify the thermal
spectrum of photons, which is applied to CMB, where the anomaly was observed. This
modification can be used to predict other effects in the CMB, such as the deviation of the
measured CMB temperature from the predicted value. Supporting material for this section

is found in Appendices A.1 and B.
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The general form of the MDRs reads as [35, 118, 165]
E*f(E/Ep)* — p*c*g(E/Ep)* = m*c*, 4.1

where f(E/Ep) and g(E/Ep) are the modification (rainbow) functions (see Section 2.1.4,
and Refs. [166, 167, 168, 169, 170, 171, 172, 173] for more details). As shown in the
following, whenever f,g # 1, i.e., one deviates from the standard relativistic dispersion
relation, the Planck radiation spectrum changes as well. It turns out that the standard MDRs
do not adequately explain the EDGES anomaly. However, by imposing redshift dependent
MDR parameters, or by imposing a non-trivial power dependence for the MDRs (see Ref.

[174]), one can provide a viable explanation.

4.1.1 Modification of Thermal Spectrum

As shown in Section 2.1.4, MDRs are related to the modified Heisenberg commuta-
tor, which is predicted by various theories of QG (see Chapter 2), and have the general
form of Eq. (4.1). The modification functions can in general be expressed in a power
series expansion (MacLaurin series) as f (E/Ep) =Y. i <2!(0) (E/Ep)" and g(E/Ep) =

Yo £(0) (E/Ep)", where constraints f(0) = 1 and g(0) = 1 must be imposed to obtain

n=0 " p!

the standard relativistic dispersion relation at low energies. Several interesting special cases

are considered in the following.

e Case 1: f(E/Ep)=1and g(E/Ep) = /1 —m(E/Ep)®, which is one of the most
studied in literature. In the above, 1 is a parameter which signifies the effective scale
of the modification, and ® is the order of the modification. In general, the modifi-
cations for different values of n and ® can be studied. In particular, three special
cases are considered. The first case is compatible with LQG and non-commutative

space-time [7, 175], while the next two are compatible with the linear and quadratic

GUP, respectively [176, 177]:
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i) o=1landn>0= f(E/Ep)=1and g(E/Ep) = /1 —M(E/Ep),

ii) o=1andn=F20p = f(E/Ep) =1 and g(E/Ep) = \/1+209 (E/Ep) ,

iii) @=2andn =2By = f(E/Ep) =1and g(E/Ep) = \/1—2Bo (E/Ep)?,

where restrictions on 0 from Ref. [176] have been relaxed to include both positive
and negative values. In general, f (E/Ep) # 1 and, specifically, in the presence of a
strong gravitational field f (E/Ep) = 1/y/—g00, where gop is the 00 component of the
metric [176, 177]. However, in the reionization epoch, most of the hydrogen gas was
practically in a vanishing gravitational field, since the first gravitational objects just
started to form. Therefore, one can safely assume f (E/Ep) = 1, as far as space-time

curvature corrections to the MDR are concerned.

* Case 2: f(E/Ep) = % and g (E/Ep) = 1, proposed for explaining the
spectra from Gamma Ray Bursts at cosmological distances [101]. Note that o here is

different than the linear GUP parameter.

e Case 3: f(E/Ep)=1and g(E/Ep) = [14+ (AE)Y]® = [1+ N (E/Ep)']?, with X' =
(MEp)". For § = 1/2 and A = —n), one recovers Case 1. The special case § = 1 has
been proposed for models in which a varying speed of light occurs [93], while the
special case Y= 0 = 1 has been proposed in Refs. [41, 178]. It turns out that GUP,
including linear and quadratic terms, with o = Oc%, is a general case for the latter

[177]:
i) §=1,y=land N = Loy => f(E/Ep) = | and g (E/Ep) = 1 £ 0y (E /Ep) .

In the above, 1, 0, Bo, & and A’ are dimensionless parameters, where 0 and B¢ are the
linear and quadratic GUP parameters, respectively, defined after Eq. (2.42). It is often
assumed that M, otg, Bo, &, A’ ~ O(1), by candidate QG theories (see Chapter 1). However,

in the same way as discussed in Chapter 2 for o and B, such a restriction on 1, o and A/,
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may be relaxed as well. Therefore, one can set a common upper bound 1 ~ 0y ~ +/Po ~
o~ AN < agw = 107 (see Section 2.2).
To demonstrate how the thermal spectrum of photons is affected by the above modifi-

cations, one writes the MDR, given by Eq. (4.1) in the case where m = 0, as
E? —1)202F2 =0, where F = § . 4.2)

Using the above, one may derive the modified thermal spectrum of photons pspr, following
Refs. [93, 178]. The density of states per volume for photons (which have 2 polarization

states, i.e., degrees of freedom) is obtained as

gas(p,m=0)  p?
Q(p) =25 ; )=n2h3, (43)

where g45(p,m = 0) is the relativistic density of states for massless particles (see Eq. (A.3)
in Appendix A.1). By making a change of variables Q(E)dE = Q(p)dp, considering the

MDR in Eq. (4.2), one obtains

EZ
E)=——= 4.4
where the above two “speeds” turn out as
E dE F
0="—¢F and e="— = 4.5)
p dp 1-LE
and F' = 3—2. Therefore, one can write the modified density of states per volume as
E? 1 F'E
QE)= 55— 1|1— . 4.6
8= g7 4o

Note that the above is analogous to Eq. (3.37) from the BEC considerations in Chapter 3.
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Since photons are bosons, their modified thermal spectrum is obtained using> pmpr(T,E) =

2nhE fpe(E)Q(E), where fpr(E) is the BE distribution (see Eq. (A.4) in Appendix A.1).

It reads as
pMDR(E,T):p(E,T)I% 1—FF£’ =p(E,T)R, 4.7)
where
p(E,T) = 2 48)

Th2c3 ePrE —
is the standard thermal distribution of photons and R is the correction factor, formally de-
fined in the following section. Note that the standard result from Eq. (4.8) is obtained from

Eq. (4.7) when the MDR parameters vanish, i.e., n, o, Bo, o, ' — 0.

4.1.2 Experimental Bounds

The 21-cm cosmology is related to the history of the Universe, and represents a novel
framework for probing fundamental physics [181] (see also Refs. [182, 183, 184, 163, 185,
186, 187, 188, 189, 190]). In this section, the effects of the modified thermal spectrum of
photons, given by Eq. (4.7), on the 21-cm cosmology (see Appendix B.1) are explored. In
particular, the anomaly, recently discovered by the EDGES collaboration [164] (see also
Ref. [191]), is considered.

EDGES High and Low band antennas probe the frequency ranges 90 — 200 MHz and
50 — 100 MHz, respectively, overall measuring the 21-cm signal within the redshift range
z € (6,27), corresponding to a Universe age range 100Myr — 1Gyr, i.e., the dark ages.
This includes the epochs of reionization and cosmic dawn, in which the first astrophysical
sources form. At z = zg, the observed magnitude of the absorption line is about a factor of
two greater than the one predicted by the ACDM model. The frequency of CMB radiation
for this redshift is v,i(zg) ~ 78 MHz, where the measured 21-cm brightness temperature

is Th1(zg) = —O.nggK (99% C.L., including estimates of systematic uncertainties). Since

3This definition is used to obtain the standard thermal spectrum of photons, as can be found in [179, 180].
This differs from the definition used in [178], by an unimportant factor of 27 4, which has no effect on further
calculations or results.
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at z = zg one has (14 8p)xm,(ze) ~ 1, where 8p is the baryon overdensity and xg, the
fraction of neutral hydrogen, Eq. (B.5) from Appendix B.1 implies Ty(zg)/Ts(z£) = 152:55
[181, 191], where Ty is the effective temperature of the photon background and T the spin
temperature (see Eq. (B.6) in Appendix B.1 for details). On the other hand, in the context

of the ACDM model, one also gets

Ty(ze) = Tem(ze) = Temso (1 +26) ~ 50K, (4.9)

where Teypo ~ 2.73 K is the CMB temperature in the current epoch, and

: 1+zg 2
Tyas(ze) =~ Tems(Z5,,) (Tzzas> ~ 6K, (4.10)
ec

where z5. ~ 150 and 7. ~ 410K are the redshift and the temperature, respectively, at
which the gas and radiation decouple. Using Eq. (B.5) from Appendix B.1, one infers
T>1(ze) 2 —0.2K. Notice that the minimum is saturated for Ts(zg) = Tgqs(2£ ), Which cor-
responds to Ty(zr)/Teas(2£) ~ 8. As a consequence of these results, one finds that the best
fit value for 7»1(zg ) is about 2.5 times lower than expected within the ACDM model.

The energy density of photons from Eq. (4.8) can be used to describe the CMB spectrum

as a function of redshift z, by considering T = Tryp(z), and reads as

2 E3
Th2c3 PreusDE _

PcmB(E,z) = : (4.11)

where Br,.,,,(z) = 1/kgTcmp(z). To explain the EDGES anomaly, one rewrites pypg from

Eq. (4.7), in terms of pcyp from Eq. (4.11), and defines the parameter R as

F'Ey
F

pcmB(E21,2E)

pupr(E21,ze) 1

R 1—

3

, (4.12)

with pypr and pcyp evaluated at E = E»; and z = zg. This is because neutral hydrogen

can absorb only photons with energy E»; from the CMB spectrum at T = Teyp(zg ). It may
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appear that such a modification may affect the optical depth Ty (introduced in Appendix
B.1) and therefore, the intensity and shape of the 21-cm line profile. However, as shown in
Appendix B.2, such a modification does not affect Ty in any way. The experimental values

from the EDGES experiment can then be explained by imposing (see Ref. [191] for details)

R=2.15"%¢. (4.13)

Parameter R, defined in Eq. (4.12), is then only a function of F, F’ and E, since everything
else except the relevant correction cancels out. Since the modification functions f and g can
be written as a power series in E/Ep, one can also write the function F = g/ f as a power

series expansion

(E/Ep)" . (4.14)

Note that F(0) = 1 corresponds to the standard ACDM result. The parameter R from Eq.
(4.12) for such F (E/Ep) reads

n=1 n!

) (n— n
11—, 2200 (/)

R (4.15)

S0 &/

Either, Eq. (4.12) or Eq. (4.15), can be used to estimate R for the cases studied here, and
compare it with experimentally measured values and, for the first time, obtain estimates on

the various parameters from the EDGES anomaly [156]:
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Case 1: f(E/Ep)=1and g(E/Ep) =+/1—m(E/Ep)® . R reads as

_ 1= (1= 3)n(E/Ep)®|

4.16
(T (E/Er))P o
for arbitrary parameters 1 and ®. For the special cases, one obtains:
i) o=1landn>0:
1—-mE/2E
g — L=NE/2E 4.17)

(1-mE/Ep)/*

R is plotted as a function of 1 in Fig. 4.1. To fit the EDGES experimental bounds,

the parameter is fixed atm = 6.5Jj‘3‘:2 x 1032,

i) ®=1landn=F200:

|1+ oo(E/EP)|
C[1£200 (E/Ep)]/?

(4.18)

R is plotted as a function of o for both branches in Fig. 4.2. However, only the
branch with n = +2 o can fix 0. To fit the EDGES experimental bounds, the pa-

rameter is fixed at o = 3.27%9 x 1032,
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Figure 4.1: R vs 1 for fixed energy E = E1, ~ 5.9 x 10 %eV.
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Figure 4.2: R vs 0 for fixed energy E = E ~ 5.9 x 107%eV. The 1 = —20 branch is
presented in dash-dot blue and the = 42 0y branch is presented in solid black.
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i) ®@=2andm =2fp:

1
AT A o

R is plotted as a function of By in Fig. 4.3. To fit the EDGES experimental bounds,

the parameter is fixed at Bp = 5.7733 x 109,

Case2: f(E/Ep) = % and g(E/Ep) = 1. R reads as

_ expo(E/Ep)(expa.(E/Ep) — 1)? |

K ((E/Ep))?

(4.20)

R is plotted as a function of o in Fig. 4.4. To fit the EDGES experimental bounds, the

parameter is fixed at ot = 7.8:?:2 x 1032,

Case3: f=1landg=[1+N (E/EP)Y]S. R reads as

_ I+ (=8N (E/Ep)|

1+ 2 (B o 2D
for arbitrary parameters A/, v and 3. For the special case, one obtains:
i) =1, y=1land N = +ay :
R— ! , (4.22)
(1£ao (E/Ep))*

R is plotted as a function of o for both branches in Fig. 4.5. However, only the
branch with A’ = —q can fix 0. To fit the EDGES experimental bounds, the param-

eter is fixed at alg = 3.6%} x 1032,
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Figure 4.4: R vs a. for fixed energy E = Ej» ~ 5.9 x 1070V,
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Figure 4.5: R vs o for fixed energy E = Ej» ~ 5.9 x 107%eV. The A/ = +aiy branch is
presented in dash-dot blue and the M’ = — 0 branch is presented in solid black.

At this point it should be stressed that the above plots indicate that the MDRs provided
by cases 1, 2 and 3, give (1, du, \/%, o, A) ‘Z:ZE ~ 1032 at redshift z = zz. These values
are much larger than the bound set by the electroweak scale oz = 10'7. To verify the
compatibility with known observations, and obtain the bounds on the above parameters in
the current epoch (z = 0), the experimental precision of the CMB temperature (STT)exp =
2 x 1074 [192] (see also Refs. [193, 194]) of a perfect black body, is compared to the
theoretical deviation due to MDRs in the current epoch [156]

6_T
T

cosh (BTCMB(O) E) —1 2
eBTCMB(O)E —1 BTCMB(())E '

(z=0)=(R(E)—1) (4.23)

In the above, R(E) is given by Eq. (4.12) and B7,,,,(0) is given in terms of the CMB temper-
ature in the current epoch. Eq. (4.23) is obtained by expressing 67 /T from pypr(E,T) =
p(E,T)R~p(E,T)+ g—g(E ,T) 8T. Given Eq. (4.23), the parameters in the current epoch

must satisfy an upper bound of (1, 0, v/Bo, &, 1) |.—o < 10** to be consistent with the
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observed CMB spectrum in the current epoch. This bound is weaker than the bound set
by the electroweak scale agw. Therefore, ougw should be considered as the relevant MDR
parameter bound in the current epoch. The MDR parameters, obtained from the EDGES
anomaly at z = zg, combined with the electroweak bound agw at z = 0, suggest that MDR
parameters are increasing functions of redshift z. Therefore, R is also expected to increase
with z for a given energy E and have a value of R~ 1 at z = 0.

The compatibility of such MDRs with epochs earlier than zg should be taken into con-
sideration as well. For example, in the epoch of the Big Bang Nucleosynthesis (BBN),
at z~3 x 10% [195], a bound of By < 1087 was obtained in Ref. [159] for the quadratic

GUP parameter By, which corresponds to an upper bound < 10*

for the MDR parameters.
Therefore, the values of the MDR parameters, measured by the EDGES anomaly are con-
sistent with the BBN measurements, even if they increase to ~ 10* at z ~ 3 x 10%. This
supports the increasing trend of the redshift dependence of the MDR parameters and may
in fact provide a clue in determining the exact form of this dependence. Estimations of
the MDR parameters from the modified CMB spectrum would not be relevant in the BBN
epoch, since it has not been created until the epoch of recombination at z = 1090 [195].

The standard MDRs used in this work can be found in Refs. [7, 41, 175, 176, 177, 178]
as mentioned in Section 4.1.1, but they consider the MDR parameters as constants. The
assumption that the MDR parameters are functions of another parameter, such as redshift,
is fairly new. However, such an assumption is indirectly supported by Ref. [152], where
the author finds a mass/radius dependent GUP parameter. This is also supported by the dif-
ference between estimations of the quadratic GUP parameter in Earth-based experiments,
where Bo > 0 [69, 71, 72, 130, 196], and astrophysical/cosmological observations, where
Bo < 0 [54, 81, 152, 153, 154, 157]. This shows that the MDR parameters can in fact be
dependent on scale or redshift.

Since the usual models of modified dispersion relations cannot explain the EDGES

anomaly without additional assumptions, it is also legitimate to investigate if it can be
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explained by considering the cases in which 1, 0p, A’ = ogw, i.e., they are fixed to the
electroweak scale, while ® and d are treated as free parameters [156]. Only cases 1 and 3
are considered, since case 2 has no other parameters to tweak. Also, the special case 1, iii)

is not separately considered, because it is automatically implied as @ — 2.
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k len= 1.35
1- >
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Y

Figure 4.6: R vs yat 8 = 1 for fixed energy E = E;p ~ 5.9 x 107%eV. The = +10"7
branch is presented in dash-dot blue and the A’ = —10'7 branch is presented in solid black.

In Fig. 4.6, R from Eq. (4.21) is plotted as a function of y for fixed A’ = +10!7 and
for fixed & = 1. The values of R for A’ = 10'7 fall outside the EDGES bounds and cannot
provide an explanation for the EDGES anomaly. However, the values of R for A’ = —10!”
fall inside the EDGES bounds twice in a narrow range around Yy ~ 0.5, and can therefore
provide an explanation for the EDGES anomaly. Changing the & parameter only moves the
peak to a different location.

The power dependencies on ® and & of their respective cases are shown in Figs. 4.7
and 4.8, respectively. One can see that the EDGES anomaly can be explained by powers
Opax < 0.544 and ,,,c < —0.05. Note that only an upper bound to the powers ® and & can

be obtained, since Oy is still an upper bound for the new length scale.

106



4.1. THE EDGES ANOMALY

Rmax =4.30

0.51

0.52

0.53 0.54 0.55 0.56 0.57 0.58
w

Figure 4.7: R vs o for fixed M, 09 = 10'7 and energy E = Ej» ~ 5.9 x 107%eV. The solid
black, the dash-dot blue and dotted red lines represent cases 1) i) and ii) (positive and
negative branch), respectively.
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Figure 4.8: R vs & for fixed A’ = 10'7 and energy E = E1» ~ 5.9 x 10 %¢V. The dash-dot
blue, solid black and dotted red lines represent y = 0.49, 0.50, 0.51, respectively.
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4.1.3 Summary

In this section, a framework in which MDRs can account for the EDGES anomaly, was
proposed. The estimation of the MDR parameters from the EDGES anomaly at z = zx and
the bound oy at z = 0, suggest that the MDR parameters are functions of redshift z, and
as such could explain the EDGES anomaly. One can assume that the evolution of MDR
parameters with time in the current epoch is slow or nearly constant, since the same physics
is observed in all observable astrophysical objects, such as distant galaxies. However, the
time evolution of MDR parameters could have been faster in the early stages of the Universe
as the EDGES anomaly suggests.

On the other hand, one can set 1, 0, \/E , o, A = agw, and treat the powers ®, Y and
0 of the MDRs as free parameters. The bounds on their values are obtained by fitting the
corresponding modified thermal spectra of photons to the EDGES anomaly, as seen in Figs.
4.6, 4.7 and 4.8. One can see that a narrow range around Y~ 0.5 provides a good fit for
the EDGES anomaly, while ® and & obtain an upper bound. The stringent values of ® and
9, with their respective uncertainties will be obtained in the future, once the true QG scale
is measured. It may be noted that the case of positive & and negative A’ (see Figs. 4.5 and
4.6), is equivalent to the case of negative & and positive A’ (see Fig. 4.8) to leading order.
This creates an ambiguity in their estimation, which can be resolved by probing signatures
of higher order corrections. However, due to experimental limitations, this is currently not

possible.

4.2 Baryon Asymmetry in the Universe

The origin of the observed baryon asymmetry in the Universe is an unsolved problem
up to this day. Observational evidence shows that the Universe is mostly made up of matter,
rather than equal amounts of matter and anti-matter, as expected from QT and GR [197].
For such asymmetry to occur, three necessary conditions, called Sakharov conditions, must

be met [198]: 1) Baryon number violation, 2) C and CP violation, 3) Deviation from thermal
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equilibrium. It should be pointed out that the CMB temperature anisotropies provide a
strong probe of the baryon asymmetry, since the acoustic peaks in the CMB power spectrum
allow measurements of large scale structures, and provide an indirect measurement of the
baryon asymmetry parameter ngiMB) = (6.22540.170) x 10719 [199]. npy4 is defined as
the difference of baryon and anti-baryon densities per unit entropy density (see Eq. (4.45)
for details). On the other hand, measurement of ng4 can also be carried out in the context
of the BBN. In this case, nl(giBN) € (3.4,6.9) x 10719 [200], which agrees with néiMB),
although the two measurements are obtained from considerations in two different epochs in
the evolution of the Universe.

Although several explanations for the observed baryon asymmetry have been offered so
far [197, 201, 202], none of them has been confirmed yet. In this section, a proposal that the
baryon asymmetry manifests due to coupling of matter and space-time, and the existence of
a minimum measurable length, implied by GUP, is explored. In Refs. [155, 160, 161, 162],
it has been shown that GUP can modify the Friedmann equations, through modifying the
Bekenstein-Hawking entropy and using the holographic principle. In the following, this
approach is used to derive the exact modified Friedmann equations using GUP. This in turn
provides a general framework, which allows one to explore QG effects at cosmological
scales.

An interaction term, motivated by Supergravity proposals, which couples space-time
and baryon current is used to satisfy the first two Sakharov conditions, while the QG modi-
fied Friedmann equations break thermal equilibrium to satisty the third Sakharov condition.
In contrast to Earth-based QGP, this prediction has an observational counterpart (such as
the EDGES anomaly; see Section 4.1), and thus offers an explanation for a measured and
established feature of Nature, i.e., the baryon asymmetry in the Universe. In addition, this
proposal predicts the values of the dimensionless GUP parameters, ¢y ~ 10° and |Bo| ~ 10°,

and thus determines a possible minimum measurable length scale of £,,;, ~ 107>m. Sup-

porting material for this section is found in Appendix C.
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4.2.1 Modification of the Bekenstein-Hawking Entropy

To explain the origin of the baryon asymmetry in the Universe, one must first mod-
ify the Friedmann equations, since such modifications lead to energy density and pressure
variations. These variations break thermal equilibrium and allow the asymmetry to mani-
fest. In order to modify the Friedmann equations, one uses the holographic principle. The
holographic principle states that a description of a theory inside a d-dimensional volume
in space can be encoded in its (d — 1)-dimensional boundary, such as an event horizon
of a black hole, or the cosmic horizon [203, 204]. The holographic principle provides a
mechanism to introduce quantum corrections to large scale systems.

A QG modification of the Friedmann equations was derived in Ref. [155] (see also Ref.
[205]), using the quadratic GUP (KMM model; see Eq. (2.36)). To examine the conclusions
of a more general model, GUP given by Eq. (2.42) is considered. The corresponding

minimal modified uncertainty relation is Eq. (2.45), which is written again for convenience
h 2
AxAp > 2 [1—aAp+4BAp7] . (4.24)

As a particle gets absorbed by an apparent horizon, it will increase the total energy inside
the horizon and consequently change the area of that horizon [61, 206, 207]. A particle,
whose uncertainty is governed by GUP, as given by Eq. (4.24), will produce a QG corrected
change to the apparent horizon area, as shown in the following. Energy of such a particle is

taken to be E = Apc [61, 207]. Therefore, one solves Eq. (4.24) for Ap as

(4.25)

2Ax+ ok 1612B
Ap2 ———=— | 1—-4/1- ;
8h P 4Ax% +4ahAx + h2o2

where the negative solution has been chosen, because it is the only one which reduces to the
standard Heisenberg uncertainty relation for o, § — 0. The area of an apparent horizon

with radius R, which absorbs a particle with energy E, changes by AA > 16756123E R/hc
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[208, 209, 210]. As the particle gets re-emitted from the horizon, its position uncertainty is
the radius of the apparent horizon Ax = R (see Section 2.1.1), which determines the minimal

change of the area of the apparent horizon as

E
AAin > 1605 h—Acx : (4.26)

Considering Ax = Ry (the Schwarzschild radius of the apparent horizon; see Eq. (2.2)),
given in terms of the area of the apparent horizon A as Ax’> = A /4w and E = Apc (Ap from

Eq. (4.49)), one can rewrite Eq. (4.26) as

2 1/2 2
My AR VTA )(1_\/1 167 2B ) )

2B A+20hTAY2 + 02R2

where Agy is a normalization parameter, calibrated by the Bekenstein-Hawking entropy
formula as Agy = b/27 [206], with b defined by the minimal change in entropy AS,;, =
kpb = kpIn2, corresponding to one bit of information [211]. Therefore, the minimal change

of entropy for a minimal change in the apparent horizon area reads

§ o ASmin o kBB*
dA AApin 86123 (A+(X*A1/2—\/A2+2(X*A3/2+((X*2—B*)A>

, (4.28)

where o = /mha and B* = 16Th*p are defined for convenience. The standard result for
the entropy of a black hole reads as [212, 213]

_ kpcPA kA

=22 DB 4.2
4hG 403 (429

Note that the holographic principle implies that the above entropy applies to any region of
space with a horizon. In general, if one wants to modify the entropy from Eq. (4.29), S and
A will no longer be linearly related, i.e., one defines f(A) [160]. Such modified entropy can

then be written as S = kp f(A)/ 46%. By taking the derivative of this entropy over area A,
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one obtains

ds kg f'(A)

4.30
dA 44 (430

In the relevant case of GUP motivated QG modifications, f'(A) can be identified by com-

paring the above derivative with the one in Eq. (4.28), and thus

1 B’
’ <A+oc*A1/2 — VA2 200432 (o2 — B*)A> |

flAa)= 4.31)

It should be pointed out that one obtains the standard result f'(A) = 1 for o*, B* — 0. The
QG modified Bekenstein-Hawking entropy, using Eq. (4.31), is obtained for the first time
by integrating Eq. (4.28) over A, which reads as [157]

kg

S=_>_
802

1 1
Al/2 A

*11Al/21\/12*1 2 )2 4.32
—B*In o |1 +ocm+(oc _B)Z , (4.32)

where the standard result from Eq. (4.29) is obtained for o*, B* — 0. The above equation

includes both, linear and quadratic QG corrections to the Bekenstein-Hawking entropy, in

contrast to the one obtained in Ref. [155], which contains only quadratic corrections.

4.2.2 Modification of the Friedmann Equations

The QG modification of the Bekenstein-Hawking entropy obtained in Section 4.2.1 is
necessary to modify the Friedmann equations through the holographic principle. The mod-
ification of the Friedmann equations to second order in o* and first order in * were consid-
ered separately (and perturbatively) in Ref. [162]. In the following, exact QG modifications

of the Friedmann equations, in terms of both, o* and *, are obtained. One starts with the
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standard Friedmann-Lemaitre-Robertson-Walker (FLRW) metric in spherical coordinates,
incorporating homogeneity and isotropy, in a (n+ 1)—dimensional space-time, which reads
as

ds? = hegdxdx? + 72 dQ2 (4.33)

n—1 »

where h.q = diag(—1, a®/(1 —kr?)), x° = (ct,r), ¥ =a(t)r, dQ,_ is the angular part
of the (n — 1)-dimensional sphere (see Appendix C.1 for details), a = a(z) the scale factor,
r the comoving radius and k the spatial curvature constant. Indices ¢ and d can only take
values 0 and 1. The Friedmann equations, which govern the dynamics of the scale factor
a(t), and hence the evolution of the Universe, undergo modifications depending on the
precise form of the function f(A), introduced in Section 4.2.1. The derivation of modified
Friedmann equations for an arbitrary f(A) follows from the the first law of thermodynamics
and the holographic principle, which ensures that Eq. (4.32) is valid for the cosmic horizon.
A detailed derivation is shown in Appendix C.1. In a space-time with a metric from Eq.

(4.33), the modified Friedmann equations read

dnG P\ _ [, kc?\
50 52)=(1-45)
and
8TG 2 (nQ,)r1 gy A e
_n(n—l)p_n(n—l)Qn/f( )A%’ (4.35)

where p is the matter density, p pressure and H = d/a the Hubble parameter. The above
two Friedmann equations are written in the most general form, given an arbitrary function
f(A). When f(A) = A, one obtains the standard Friedmann equations, while f(A) # A
gives rise to modified Friedmann equations. Modifications, implied by f(A), are quantum

in nature, since they come from the Bekenstein-Hawking entropy, which is of quantum

113



4.2. BARYON ASYMMETRY IN THE UNIVERSE

origin. To obtain the QG modified Friedmann equations, one needs to plug Eq. (4.31) in
Eqgs. (4.34) and (4.35). This yields a general and exact form, for a specific GUP given by
Eq. (2.42), of the QG modified Friedmann equations for n = 3, expressed in terms of the

standard cosmological parameters H, a, and k as [157]

4o (on )= (15 ) ik

2
(H2 kac2 )
X

(4.36)
i 2\1/2 . 2\2 (e C
and
87:G( N (Y e (e ke 3/2+27t02( 24 28%)
P=A)=3 a2 )" 3an)2e a2 3 (2 — )
/2 2( o2 x
L[ o ke (An)Pcor [, kA\"? 2mc(a?+2B7)
HA 5 H -
e ) e (7 ) Sy
)1+ =2 HZ-I-k—CZ R ol 0 H2—|—kc2 4.37)
(4m)1/2¢ C4mce? ‘
* Q% * * 1/2
2ncot B |14 (02— pB*) (HZ_i_I(_CZ)/
(a2 — Br)5/2 (472 (o4 /ar2— B*) a?
/ " % 1/2 *2 _ R* 2
+ B +L(Hz+kL) _|_((x B)<H2+ki)_1 ,
oF + /a2 — B 4m)l/2c a? 4mc? a?
where
41c?
_ =2
A=4ni; = oy 2 (4.38)

was used. In the above 74 is the radius of the apparent horizon, and is defined in Eq. (C.2) in
Appendix C.1. For vanishing GUP parameters a*, B* — 0 in Egs. (4.36) and (4.37), one
obtains the standard Friedmann equations. Details of this limit are given in Appendix C.2.

It is evident that if one wants to study the radiation-dominated era, the tiny observed
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cosmological constant A will be ignored, and the spatial curvature constant has to be set
k = 0, consistent with the observed spatially flat Universe. As a result, the QG modified

Friedmann equations from Eqgs. (4.36) and (4.37) are further simplified, respectively, to

H *
_4nG(p+£2> =3 BZ (4.39)
C TcC 1 H_ \/1 4 20* (a*2_B*) H2
1/2 (4m) 1/20 T 4m?
and
8nGp_ 1H2 of 3 2me (o2 4-2B%)

3 3(4m) /e 3 (02— pr)?
L @mlear . 2mc(a *2+ZB*)]

3 el (=B
X\/1+<2a* H+(a*2 B*)

471;)1/20 4mc?
2nct ot B (02— PB*) o
(a*Z_B*)S/Z (47[)1/26((X*+\/m

Vo 20 (02 p)
+0€*—l—\/0€*2 B* b (4m)/2c H 4mc? SN (4.40)

The above QG modified Friedmann equations provide a framework on which density and

In| 1+

pressure variations in the early Universe are studied. In the following, they will also be
used to break thermodynamic equilibrium, and explain the baryon asymmetry, formed in

the early Universe.

4.2.3 Gravitational Baryon Asymmetry

All three Sakharov conditions, listed at the beginning of Section 4.2, must be met to explain
the observed baryon asymmetry. As seen from the following considerations, the first two
Sakharov conditions are satisfied by introducing a coupling term, which couples space-
time to the baryon current, and the final Sakharov condition is satisfied by breaking thermal

equilibrium through the QG modified Friedmann equations, derived in Section 4.2.2.
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Within supergravity theories, a mechanism for generating baryon asymmetry during the
expansion of the universe, by means of dynamical breaking of CPT (and CP) symmetry,
is proposed [214, 215]. However, this mechanism does not break the thermal equilibrium,
thus not all Sakharov conditions are satisfied. The interaction, responsible for the CPT
violation, is described by a coupling between the derivative of the Ricci scalar curvature R
and the baryon current J* [216]

h3
M2 c?

/ d*x/—g MR , (4.41)

where M, is the cutoff scale characterizing the effective theory (see Refs. [217, 218, 219,
220, 221, 222, 223, 224, 225, 226] for further applications). The above term satisfies the
second Sakharov condition. If there exist interactions that violate the conservation of the
baryon number B in thermal equilibrium, such as those allowed in Grand Unified Theories
(GUT), to satisfy the first Sakharov condition, then a net baryon asymmetry can be gen-
erated and gets frozen-in below the decoupling temperature* 7. By taking the integrand
from Eq. (4.41), i.e., the Lagrangian density, and noting that the spatial part of d,R vanishes
for the FLRW metric, one gets

K3 B3

The effective chemical potential for baryons, i.e., up, and for anti-baryons, i.e., uz, can be

read from the equation above as

W3R

- W 9 (4.43)

pp = —pig =

“During the evolution of the Universe, the CPT symmetry violation generates the baryon asymmetry. This
occurs when baryon (or lepton) violating interactions are still in thermal equilibrium. The asymmetry is
frozen-in at the decoupling temperature 7p, when the baryon (or lepton) number violation goes out of thermal
equilibrium. The temperature 7p is derived from the relation I'(7p) ~ H(Tp), where T is the interaction rate
of processes and H the expansion rate of the Universe. More specifically, in the regime I' > H, or T > Tp,
the B-violating processes are in thermal equilibrium, and at T = Tp, i.e., I ~ H, the decoupling occurs, while
when I' < H, or T < Tp the baryon asymmetry gets frozen-in.
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since Eq. (4.42) corresponds to the energy density term of a grand canonical ensemble. For
relativistic particles, the net baryon number density of matter in the early Universe is given

by [227]
8B
np— l’lE = W‘UB kéTz y (444)

where gg ~ O(1) is the number of intrinsic degrees of freedom of baryons. The baryon

asymmetry is defined in the standard notation as [227]

_ np—ng ng—ng 105g3ﬁ3 R
= ~Tk =— 4.45
MNBA P B 42 g kpc? M2T |, (4.45)
where ny =~ s/7 kg is the number density of photons,
212 gus ki
5= Su b p? (4.46)

45h3 3

the entropy per unit volume, i.e., entropy density, in the radiation-dominated era, and g
is the number of degrees of freedom for particles which contribute to the entropy of the
Universe. It may be noted that g, takes values very close to the total number of degrees
of freedom of relativistic Standard Model particles g, i.e., g« ~ g« ~ 106, as discussed
in Ref. [227]. The parameter npy4 is different from zero, provided that the time derivative
of the Ricci scalar R is non-vanishing. In the ACDM model, the baryon asymmetry van-
ishes, because R = 0 in the radiation-dominated era, due to thermal equilibrium still being
satisfied, as is evident from the following consideration.

The deviation from thermal equilibrium is described in terms of variations in density

and pressure. The density and pressure, including these variations, can be written as

p=po+op and p=po+op, (4.47)

where pg and pg are the equilibrium density and pressure, respectively. The above density
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and pressure expressions are then plugged in the QG modified Friedmann equations, namely

Egs. (4.39) and (4.40), to obtain the QG induced variations as

8G 3,2 B* 2

o = 3c 3P0 T a0 (4.48)
and
6p2“6c,/7(1+3 )po/? - B G(1+2w)p3, (4.49)

where w is defined through the equation of state pg = wpgc?, and can take a range of
values w € [—1, 1/3] for different epochs in the evolution of the Universe. To obtain the
variations in Egs. (4.48) and (4.49), the QG modified Friedmann Eqgs. (4.39) and (4.40)
were expanded in a Taylor series up to the fourth order in o and second order in B*, to
obtain all terms up to quadratic order in the GUP parameters.

In considerations of generating the baryon asymmetry, w is taken to be constant, since
all the relevant physics happens in the radiation-dominated era with w = 1/3. As seen
from the following, QG effects break thermal equilibrium and modify R, making it non-
vanishing. To obtain the QG corrected derivative of the Ricci scalar R, one takes the trace

of the Einstein equations

8nG 87tG
T, = (pc -3p), (4.50)

where T, = p c? — 3 p s the trace of the energy-momentum tensor. The QG corrected Ricci
scalar is obtained by plugging the density and pressure from Eq. (4.47), with their respec-
tive variations from Eqgs. (4.48) and (4.49) in Eq. (4.50), and reads as

831G . 8V2m 8V2R 3

2 (I =3w)po+a 3303

3/2 41

R=— B

(1+9w)py G*(1+43w)p3 . (4.51)

Next, to compute the time derivative of the Ricci scalar from Eq. (4.51), one considers the
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continuity equation from Eq. (C.4) from Appendix C.1 for n = 3, which reads as
Ppo+3H(1+w)po=0 (4.52)

and the equilibrium form of the second Friedmann equation H> = 8t G pg/3 (as corrections
to the latter would only contribute to orders higher than those considered in this paper).
Also, even if the constant vacuum energy density A is not negligible, its time derivative
would vanish and the following results would remain unchanged. Therefore, the QG cor-

rected time derivative of the Ricci scalar turns out as

3/2 2
R= \/5(8%)3/2Gc—2 (1=2w—3w2)p2 — o 1672 Z (1 4 w) (14 9w) p3

c3
. (8w 3/2 G5/2
(¢)§ C—4(1+3W)(1—|—W)pg/2. (4.53)

The above derivative of the Ricci scalar is then evaluated at the radiation-dominated era,

when w = 1/3, and reads as

. 256 4, G . (8nN2G5? )

From the above one can see, that QG effects provide an essential mechanism to break
the thermal equilibrium, thus satisfying the third and final Sakharov condition. One then

substitutes Eq. (4.54) in the baryon asymmetry formula from Eq. (4.45) to obtain [157]

112n2g*g3 kBTD 7 Mp 2
MNBa = Qo

45 ]\/IPC2 M*
B 89675 62 gn (kaTp \' (Mp’ 4.55)
0 675 Mpc2) \M, ) ‘

where the gravitational constant is expressed in terms of the Planck mass, i.e., G = hic/ Ml%,
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and the equilibrium density pg, in the radiation-dominated era, is replaced by [227]

TG«

= 3om3es keT)" (4.56)

Po

In order to obtain an estimate of the GUP parameters, the expression in Eq. (4.55) is
evaluated at the relevant epoch in the evolution of the Universe. That is, at the decoupling
temperature Tp, given by kpTp = M| c?, where M; ~2 x 10'°GeV / c? is the upper bound on
the tensor mode fluctuation constraints in the inflationary scale [228], and the cutoff scale
M., is taken to be the reduced Planck mass, namely M, = Mp/ /8 7. The baryon asymmetry

then reads as

Nea = 002.08 x 107> —By2.16 x 10717 . (4.57)

Given the measured baryon asymmetry 5.7 x 10710 <mps < 9.9 x 10719 [229, 230, 231,
232, 233, 234], the dimensionless GUP parameters can be estimated for four distinct cases

[157]:
* Only linear GUP (By = 0): 2.74 x 10° < g < 4.76 x 10°
* Only quadratic GUP (09 = 0): —4.58 x 10° < By < —2.64 x 10°

e Linear and Quadratic GUP (Bp = —0): 6.37 x 10* < ap < 8.66 x 10* and —7.50 x
107 < By < —4.05 x 10°

* Linear and Quadratic GUP: o > 10* and By < —2.59 x 10°

Based on the available measurements of the baryon asymmetry, the dimensionless GUP
parameters are estimated by the above ranges, depending on the choice of model. Overall,
the parameters 0 and \/__BO are expected to lie between 5.14 x 10* and 4.76 x 10°, except
for the last case, where the lower bounds o,y > 10* and \/—_[30 >5.09 x 10* are obtained.

To estimate these bounds By = a3 + B, was used in Eq. (4.57), since O(Bo) ~ O(03). Here
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By is a deviation of By from Oc(z). The first three cases set the minimum measurable length
scale to be 8.33 x 1073 m < £, <7.71 x 10739 m, depending on the model. Note that the

dimensionless quadratic GUP parameter 3y has a negative value.

4.2.4 Summary

The baryon asymmetry produced in the radiation-dominated era of the Universe can be
explained, if there is a mechanism satisfying the three Sakharov conditions. In the above,
it has been shown that this mechanism can indeed be achieved within the context of QG
effects. The CP symmetry is broken by the coupling between the derivative of the Ricci
scalar and the baryon current, described by Eq. (4.41) and interactions which break the
baryon number B (GUT interactions, for example see Ref. [227]) are considered. Finally,
the thermal equilibrium is broken by QG effects, implied by GUP. Therefore, through this
mechanism, all three Sakharov conditions are satisfied.

The obtained values of GUP parameters, 0 and \/—_Bo between 5.14 x 10* and 4.76 x
10°, are one of the most stringent that have been obtained so far, and can be interpreted as
their measurements. Note that a negative value of the quadratic GUP parameter, i.e., B <0,

is a common result in cosmological QGP considerations [54, 81, 152, 154, 157].
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Chapter 5

The Quantum Equivalence Principle

“Nobody ever figures out what life is
all about, and it doesn’t matter. Explore
the world. Nearly everything is really
interesting if you go into it deeply

enough.”

Richard P. Feynman

Since the Equivalence Principle provided a basis for the formulation of GR, it is nat-
ural that a precise formulation of the Quantum Equivalence Principle (QEP) would be an
important step towards a successful theory of QG [235]. The classical Equivalence Prin-
ciple states that one can choose a locally inertial coordinate system at every point in an
arbitrary space-time background (i.e. in an arbitrary gravitational field), so that in a very
small region around that point, the laws of Nature take the same form as in an unaccel-
erated coordinate system in flat space-time (i.e., in a zero gravitational field) [236]. This
statement of the equivalence principle can be divided into three short postulates. First is the
weak equivalence principle (WEP), which states the equality between inertial and gravita-
tional masses of the test particle. Second, laws of physics, excluding gravitation, in a freely
falling reference frame are independent of the velocity of such a reference frame, which is
also known as local Lorentz invariance (LLI). Third, all laws of physics are independent
of the position and time, which is also known as local position invariance (LPI) [3]. Note

that the statements of WEP, LLI and LPI taken together, are known as the Einstein Equiv-
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alence Principle, and when extended to include gravitation, they are known as the Strong
Equivalence Principle [237].

A quantum formulation of the Equivalence Principle, encompassing all of the above,
was introduced in Ref. [238], where different inertial, gravitational and rest masses are
introduced and promoted to quantum operators. The equality of these mass operators con-
stitutes the QEP (see Eq. (5.7)). However, the application of QEP, in the above, is limited
to particles at non-relativistic speeds, weak gravitational fields and does not take the spin of
particles into account. Therefore, a generalized application of QEP, for particles at relativis-
tic speeds, arbitrary curved space-times and which is valid for bosons as well as fermions,
is important and proposed in this chapter. To the best of one’s knowledge, there are no
previous works on QEP, considering a formulation which is applicable to both, bosons and
fermions, and in an arbitrary curved space-time. If QEP is violated in Nature, the above
generalization implies that the Lorentz transformation and the space-time geometry obtain
modifications, which make them dependent on the massive test particle under considera-
tion. This in turn predicts deviations from standard results, obtained from QT and GR, and
provides a novel framework to conduct experimental tests of QEP. Such tests are important
to establish concepts which will lead towards a consistent theory of QG, and present a novel
approach in the field of QGP. In the following, the metric signature (+,—,—,—) is used.

Supporting material for this chapter is found in Appendix D.

5.1 Particle Statistics

To formulate a framework for QEP, valid for particles with arbitrary speeds and in
curved space-times, one must first consider the statistics of particles, i.e., the spin of parti-
cles. Special relativistic generalization of QM (relativistic QFTs) naturally introduces the
spin of particles, which is reflected in their equations of motion [239]. The relativistic
equations of motion, for spin-0 particles (bosons) and spin-1/2 particles (fermions), are the

Klein-Gordon equation and the Dirac equation, respectively, which can be generalized in an
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arbitrary curved space-time [4, 5] (see Egs. (1.6) and (1.7)). In order to conveniently verify
that the following generalization agrees with the results obtained in Ref. [238], in the non-
relativistic and weak gravitational field limits, one adopts the Hamiltonian formalism. This
is achieved by using the Feshbach-Villars formalism [136] (see also Refs. [134, 135] and
the relativistic BEC considerations in Section 3.1.4), suitably adapted to obtain an effective
Hamiltonian in curved space-time for bosons, and by using the standard Dirac Hamiltonian
in curved space-time for fermions.

For a relativistic boson with mass m, one takes the effective Hamiltonian in the Fesh-
bach-Villars formalism, generalized in an arbitrary curved space-time, which reads as

ij 1 0i .
mcz—(’C3—|—i’Cz) 8 plpj—l—(’Cg—i—i’Cz) 8 Do Di

1
/g00 g00 2m g00 m

H=13 (5.1)
where T, (k = 1,2,3) are the Pauli matrices, g"¥ the curved space-time metric, pg = i % Vo
the energy operator and p; = —ihV; the momentum operators. The Pauli matrices in this
formalism are used simply for convenience, and in no way reflects the actual spin of the
particle. They are also not affected by the curvature of space-time. Note that the Feshbach-
Villars formalism in curved space-time has been studied previously in other representations
(see Refs. [240, 241]). However, the formulation in the representation, given by Eq. (5.1),
is introduced for the first time here, to the best of one’s knowledge. For details on ob-
taining the Klein-Gordon equation in curved space-time from the above Feshbach-Villars
Hamiltonian in curved space-time, see Appendix D.1.

For a relativistic fermion with mass m, one takes the Dirac Hamiltonian in curved space-

time, suitably adapted to the metric signature used here, which reads as [5]

1

H:gm'_yo'_YlpiC‘f—lhr()—‘rgm'_Yomcz, (5.2)

where Y# = ¢;y? are the curved space-time Dirac gamma matrices, with ¢4 the tangent

space basis vectors, called vierbeins (or tetrads) and y“ the flat space-time Dirac gamma
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matrices in the tangent space. The vierbeins are defined by g*¥ = ¢/, ey N, where N is the
Minkowski metric of the tangent space. The momentum operator p; = —i h D; is defined in

terms of the covariant derivative for fermions, which takes the form D,, = By —1I'y, where

1
VA b
r,= —Zya’ybeﬁg 2 (5.3)
is the spinor affine connection for a free fermion. In the above e?. = 9,2 —I', ¢2, where
Au M=) LA TP

FL)X are the standard Christoffel symbols. The curved space-time Dirac gamma matrices y*
satisfy the algebra

Yy Yyt =2g" . (5.4)

For details on obtaining the Dirac equation in curved space-time from the above Dirac
Hamiltonian in curved space-time, see Appendix D.1.

Hamiltonians in Egs. (5.1) and (5.2) are the starting point for the generalization of the
formalism from Ref. [238]. In the non-relativistic and weak gravitational field limits, they

both reduce to

2

H=m*+ 2 +mo, (5.5)
2m

where ¢ is the Newtonian gravitational potential. Note that a spin of a particle is no longer
relevant in these limits, which why Egs. (5.1) and (5.2) reduce to the same expression. The
above Hamiltonian is used as a starting point in Ref. [238]. The first term corresponds to
the rest energy, the second term to the kinetic energy and the third term to the gravitational

energy of a classical particle.
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5.2 Generalized Formalism

To formulate QEP, one must discriminate between the inertial, gravitational and rest
masses my, mg and mg, respectively, of a test particle. Measurements show that their values
agree with each other up to a relative difference ~ 10~ for m; and mg (WEP) [242],
~ 107" for m; and mg (LLI) [243], and ~ 10~ for mg and mg (LPI) [244], within the
current precision of experiments (see also Refs. [3, 245]). However, at some scale they
may be different from each other, since there is no known fundamental reason, why they
should be identical. In this case, the mass of a composite test particle can be affected
by internal quantum effects. To describe such effects, masses mq, where o = I, G, R, are

promoted to quantum operators my — My as [238]

H;
Mo = mo+ —5 (5.6)
C

where H;,; ¢ effectively describe internal quantum effects of the composite particle, related
to its internal degrees of freedom, and drives the non-trivial internal evolution (see Ref.
[238] for details on Hjy o). Note that operators My describe the total mass-energy of a
composite quantum particle, where my, is the ground state. Furthermore, the definition of
mass operators Mp, in this generalization does not change from that in Ref. [238], since they
are defined in an unaccelerating frame of the particle. However, at relativistic speeds and
strong gravitational fields, their eigenvalues are expected to differ from the non-relativistic

ones. As in Ref. [238], QEP is postulated as

My = Mg =My . (5.7

The above equalities are quantum generalizations of the three short postulates of the clas-
sical Equivalence Principle. M; = M corresponds to the WEP, Hj,, g = Hips 1 corresponds
to the LLI and H;;;; g = H; G corresponds to the LPL

To apply the above QEP to particles at relativistic speeds and arbitrary curved space-
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times, one must first identify masses myg in the Hamiltonian under consideration, before
promoting them to quantum operators. Such identification of masses is obvious for the
Hamiltonian in Eq. (5.5). The mass in the rest energy term corresponds to mpg, the mass
in the kinetic energy term to my; and the mass in the gravitational energy term to mg. For
Hamiltonians in Egs. (5.1) and (5.2), such identification of masses mg is more involved.
One starts with classical SR in flat space-time, continues with classical GR, and finally,
applies these results to Hamiltonians in Egs. (5.1) and (5.2), where my, are promoted to

quantum operators.

5.2.1 Special Relativity
Since SR is formulated in flat space time, i.e., no gravitational field, one cannot define
mg for a massive relativistic particle in this context. On the other hand, such a particle at
rest has rest energy defined by mass mpg, and can have kinetic energy when accelerated,
which implies it has inertial mass m; as well. The standard relativistic energy-momentum
dispersion relation E? = p?c? + m?c* suggests there is only one mass m. However, by a
careful comparison with the above non-relativistic case (see Appendix D.2), one obtains a
modified energy-momentum dispersion relation as [246]
E? = @pzcz—i—m,zec“ . (5.8)
my
Using the above, one can show that the Lorentz factor y obtains corresponding modifications

(see Appendix D.2) as

1
V= —F—. (5.9)
1 mjy V2
T

To see how this affects the Lorentz transformation, one considers a particle at rest, p = 0,
with energy E = mgc?, and applies a Lorentz boost transformation to an inertial frame with

velocity v = (v, vy, v;). The particle is now in motion, p = m; v7, and has energy given by
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Eq. (5.8). Such a Lorentz boost transformation, obtained for the first time, reads as [246]

Y Ve W  Vymee
2 ]

Ve A+ (=15 (D2 (v 1) EF
2

/Y (y= DR IS (v 1)

my Ve Vz Vx VzVy v2
Yo =D=3 (v 1+(@-13

A4V, mg) = (5.10)

Such a modification can also be considered for a general Lorentz transformation, which
includes rotations. However, one would learn nothing new, since the rotational part remains
unmodified. The Lorentz transformation, given by Eq. (5.10), ensures that for an arbitrary
4-vector V¥, the norm |V|? = V,, V¥ is preserved in any reference frame. Note that vectors
with modifications to the spatial components, such as seen in Eq. (D.14) from Appendix
D.2, also have their norm preserved. By considering a system with two non-interacting
particles, it turns out that the modified Lorentz transformation from Eq. (5.10) implies a

violation

AY (v, mi ) Y+ A (Y, mo,0) py # AV(Y, m1a+m2.0) (P14 P3) (5.11)

from where one can see that the particle masses do not just simply add up under the new
Lorentz transformation. This is known as the soccer-ball problem [42], and is a common
feature in most candidate theories of QG. The above result implies that if Nature does not
exhibit this problem on any scale, the LLI must necessarily be satisfied. Note however, that
regardless of whether LLI holds, or is broken, the modified Lorentz transformation from
Eq. (5.10) still forms a group and the generators of this group are still the standard Lorentz
generators, since modifications affect only the boost parameters. The above modifications
can be effectively interpreted as modifications to the speed of light ¢/ = c\/m, which
is different for particles with different masses. See Appendix D.2 for further details on

modifications of SR.
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5.2. GENERALIZED FORMALISM

5.2.2 General Relativity

Near gravitating objects, a massive test particle interacts with their gravitational fields,
where one can naturally define mg, and include it in the above considerations. In GR
gravitational fields are treated as curvature of space-time, described by a metric g"¥. Note
that a contravariant metric is considered, in order for the following results to be directly
applicable in Egs. (5.1) and (5.2), given their definitions. In principle, one could start with
a covariant metric gy, but would then need to obtain its inverse to apply it in Egs. (5.1) and
(5.2). To modify GR in this formalism, one must solve the Einstein equations (see Eq. (1.3))
for a given curved space-time, and carefully evaluate the integration constants, which turn
out to be affected by mq. The integration constants are evaluated in the asymptotic limit,
where the gravitational potential is classical, i.e., described by ¢, and modified through

Newton’s second law

mra= —mqu) s (5.12)

which defines the WEP. Since GR is a relativistic theory, mg appears by means of SR mod-
ifications. Therefore, the resulting g"¥ obtains modification factors in the form of mass
ratios mg/mgy, where a, o/ = I, G, R. Note that similar proposals, where properties of
curved space-times depend on test particle properties, have been studied elsewhere (for ex-
ample, see Refs. [40, 165, 247, 248, 249, 250]). In this section, three special cases of
curved space-times are considered, namely a curved space-time corresponding to a spheri-
cally symmetric weak gravitational field, its generalization to the Schwarzschild space-time
and the Kerr space-time. The above mass ratios change the differential equations of GR
(Einstein equations) only in the constant K (see Appendix D.4). They effectively modify
the universal gravitational constant G (see following sections) and the speed of light ¢ (see
Section 5.2.1). This implies that such modifications are universal for a given test particle,

which also applies in the case of time dependent curved space-times, such as gravitational
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wave considerations [236] and particle emitting (or absorbing) objects, for example, de-

scribed by the Vaidya metric [251].

Weak Gravitational Field

The most relevant case for Earth-based experiments is that of a weak gravitational field,
i.e., |0/c?| < 1. This approximation is also valid for gravitational fields of planets and
far from other gravitating objects. The standard metric of a weak gravitational field in

Cartesian coordinates is given by [252]

1-22% O(c=3
gV — ¢t ™) : (5.13)

O(C_S) —]]_3x3 (I—I—Z%)

where the off-diagonal elements are of order O(c~>) and can be ignored. In the standard
derivation of the above metric, there is one integration constant K = —2GM/c* =2¢r/c?,
where M is the mass of the central object (in context of the different masses, M is the rest
mass of the central object). However, in the case where one identifies masses m,, of a test
particle, it turns out that K obtains a factor mg/mpg (see Appendix D.3), which affects the

metric as [246]

| —2m6 9 O(c™)
¢ (me) = e , (5.14)
0(cS)  —Tan <1+2ﬁ—,§%>

from where one can see that the mass ratio mg/mg modifies the metric in the temporal and
all spatial components, while the inertial mass m; does not affect it. Note that the above
metric is given in a Cartesian coordinate system for convenience of use in Earth-based
experiments. Because of the weakness of the gravitational field, it is straightforward to

expand the g% component in Hamiltonians from Eqgs. (5.19) and (5.24) as a power series.
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Schwarzschild Space-time

One of the most studied space-times in GR is the Schwarzschild space-time. Its metric
is obtained by solving the vacuum Einstein equations under the assumptions of staticity,
spherical symmetry and asymptotic flatness. The standard Schwarzchild metric in spherical

coordinates is given by [253]

_ . .
1 —2GM 0 0 0
cr
0 _ (1 _ ZGTM) 0 0
g = “r ) (5.15)
0 0 —% 0
1
| 0 0 0 ~ 2sin?@
In the standard derivation, there is also one integration constant K = —2GM/ c2. However,

in the case where one identifies masses my, of a test particle, it turns out that K obtains a

factor mg/mpg (see Appendix D.3), which affects the metric as [246]

i » -
(1-zozgy) 0 0 0
0 ~(1-ma2) 0 o
8" (ma) = e . (510
0 0 -5 0
1
L 0 0 0 ~ 2sin’e

from where one can again see that the mass ratio mg/mpg modifies the metric only in the
temporal and radial components, while the inertial mass m; does not affect it. Note that
the Schwarzschild metric in Eq. (5.16) and the weak field metric in Eq. (5.14) obtain

modifications in the same way. This is because the latter is a weak field limit of the former.

Kerr Space-time
One of the most interesting space-times in GR is the Kerr space-time, since it incorpo-

rates rotation of the central object. Most objects in the Universe, including astrophysical
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black holes, rotate at one rate or another and can in general be described by the Kerr space-
time. The Kerr metric is obtained by solving the Einstein equations under the assumptions

of stationarity, axisymmety and asymptotic flatness. The standard Kerr metric in spherical

coordinates is given by [253]

2
5 o o 2%
0o -4 0 0
g = P : (5.17)
0 0 —p—lz 0
GMar A—a?sin’0
L 20292A 0 ~ p2AsinZf

where £2 = (r? + az)Z_ a?Asin?0, A=r?—(2GM /) r+a?, p>=r>+a*cos’@and a
is the reduced angular momentum of the central object. In the standard derivation, there
are two integration constants K = —2GM /c? and L = J/M ¢ = a, where J is the angular
momentum of the central object. K is obtained in the same way as in the Schwarzschild case
and L is obtained from the relativistic angular momentum, given by the energy-momentum
tensor of a rotating body [254]. However, in the case where one identifies test masses mig,
of a test particle, it turns out K obtains a factor m¢g/mg and L obtains a factor \/W (see

Appendix D.4), which affect the metric as [246]

Y2(mg,) mg m/ GMar
P7la) A(mia) 0 0 27 Tna) Alma)
0 —Ama) g 0
¢(mg) = p*(ma) , (5.18)
1

0 0 o) 0

meII/2 GMar A(mm)f:;—llza2 sin? 0

2 37 2 p¥Hma) Alma) 0 0 ~ pX(ma) Almg) sin@

m g2 A

2, mp 2
r-+-—a e

mg

2 ) 2 mg 2 my 2
) - (ma) sin®®, A(mg) =r?—"¢ (2GM/*)r+"a

and pz(ma) =rl4 %az cos20. From the above modified Kerr metric, one can see that

where X2(mq) = (
all three masses mgy modify the metric in all its non-vanishing components, unlike the

132



5.2. GENERALIZED FORMALISM

Schwarzschild case in which only mg/mg are involved. If the rotation of such an object
vanishes, i.e., a — 0, then the modified Schwarzschild solution from Eq. (5.16) is recov-
ered. The fact that the inertial mass my affects the metric only for the rotating (non-static)
case, can be interpreted as a consequence of inertial frame dragging induced by the rotation
of the central object.

The modifications from the above cases, can be effectively interpreted as modifications
to the universal gravitational constant G’ = Gmg/m;. The modification of constant L (see
definition above), stems from the modification of ¢, shown in Section 5.2.1. To avoid the
above procedure for arbitrary space-times, one can assume G — G’ and ¢ — ¢’ for a

given particle species, and solve the Einstein equations using standard methods.

5.2.3 Bosons

In the case of relativistic bosons in curved space-time, the Hamiltonian from Eq. (5.1)
contains three terms with mass. Since it has a form, similar to the classical Hamiltonian in
Eq. (5.5), one can identify mg and m; in the first two terms. The mass in the third term turns
out to be a combination of mg and m;, which is consistent with the modified Klein-Gordon
equation in curved space-time (see Appendix D.1). The gravitational mass mg plays a role
in the Hamiltonian through g*¥(mg,). The effective Hamiltonian for relativistic bosons from

Eq. (5.1) can then be written as

1 2 . gij(moc) PiDj
H=13——mpc —(‘53—1—1‘52)
0(ma) /e(mg) 2
01, .
(1 ity) E) _POP: (5.19)

§%(me,) /MMy

From the above, one can obtain the modified Klein-Gordon equation in curved space-time

(see Appendix D.1), which is used to determine the corresponding modified scalar field
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Lagrangian in curved space-time [246]

2.2
mpecC

1
S @2 (5.20)

L= %g“v(ma) éyCI) oy —
where éu = (% 90, ﬁ—’;&) (see Appendix D.2). The above Lagrangian can be used to test
QEP with bosons in the framework of QFT in curved space-time.

By promoting mg, to quantum operators, my — My, as seen in Eq. (5.6), one notices
that the metric gets promoted to a quantum operator as well, g*¥(mq) — g¥(My). Con-
sidering mq > (Hint.a1)/ ¢? and using Eq. (5.6), the Hamiltonian from Eq. (5.19) can be

written as [246]

H=1 WW ¢~ (13+im) \/g;;%% Zin]j; +t{s+in) \?:i’og(f‘z) \/1')7315’;1
+ 13 mHinl,R + (T3 +iT2) Q;J(Eog(l’;t[l) tnt,d 2}:7;;22
—(13+it) % Hin R #
— (13 +iT2) —g:’(fj(\/[;[i) int.I —Zm}ﬁoﬂg/z 2 (5:21)

where the additional terms with H;,, o represent first order corrections due to internal quan-
tum effects of a composite boson. They allow to make predictions to test such effects and
probe QEP. Note that terms with Hj, ¢ are implicit in g*V(mq) and depend on the given
space-time. Note that also inverses of quantum operators are part of Eq. (5.21). Applying
this formalism to concrete physical problems may present a difficult computational chal-
lenge, which needs to be dealt with appropriately.

Considering the weak gravitational field space-time, given by the metric in Eq. (5.14),
one can see that the gOi(%) terms in the effective Hamiltonian in Eq. (5.21) vanish, be-
cause the off-diagonal components of the metric vanish. Since ¢/c? < 1, one can expand

a%(My) as a power series to first order in ¢/c?. Eq. (5.21) in a weak gravitational field
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then reads as

2
H=13mgc* +13mg 0+ (13 +i12) zp—m + T3 Himr+13 Hint,GCi)z

.0 3mgp? - ¢ 3mgp?
T2 +iTh) — —(B+it)Hur—S —> 5
+(B+in) c2 2mympg (7 +i%2) Hin ¢ 2mympyc?
3 p? o 3mgp?
B +i0) Hin6 5 57— — (B3 +i0) Hing > 5
+ (3 +i72) Hint,G c2 2mympg 2 (%3 +%2) Hip 1 c? 2m%mR(,‘2
2
(3t i) Hyy - 5.22
( 3 2) lm’IZm%CZ ( )

which corresponds to a relativistic boson in a weak gravitational field. To obtain a Hamil-
tonian for a non-relativistic boson, one must diagonalize the above effective Hamiltonian,
represented by a 2 x 2 matrix, and expand the obtained square root in a Taylor series, up
to terms of O(1/c?), since (p?) < m? ¢? in the non-relativistic limit. The two diagonal el-
ements correspond to a particle and an anti-particle. The obtained Hamiltonian then reads
as

r’ r’ 0

H=mpc* +mgd+ 2m; +Hijp R — Hine 1 Tl +Hi G 2o (5.23)
1

which is exactly the non-relativistic, weak gravitational field result, obtained in Ref. [238].

One can use Eqgs. (5.22) and (5.23) to test QEP in their respective regimes.

5.2.4 Fermions

In the case of relativistic fermions in curved space-time, the Hamiltonian from Eq. (5.2)
contains one term with mass, which can be identified as mg. By a similar reasoning as was
used to obtain Eq. (5.8) (see also Appendix D.3), one finds that the rest and inertial masses
also affect the first term in Eq. (5.2). The second term acquires no such modifications. The
gravitational mass mg plays a role in the Hamiltonian through g*V(mg,), and implicitly also

through y* and I'y. The Dirac Hamiltonian for relativistic fermions from Eq. (5.2) can then
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be written as [246]

1 : mpg 1
H= Oyt [ == pic+ihTo+ ——— Y mgc? . 5.24
gOO(ma)Y ¥ m ¥ cti 0+g00(ma)l( MR ¢ (5.24)

From the above, one can obtain the modified Dirac equation in curved space-time (see
Appendix D.1), which is used to determine the corresponding modified Dirac Lagrangian

in curved space-time [246]
L= (ihy" Dy~ mge)®, (5.25)

where Du = <%Do, ”;—’;D) (see Appendix D.2). The above Lagrangian can be used to
test QEP with fermions in the framework of QFT in curved space-time.

As seen in the case for bosons, one needs to promote m to quantum operators, ngy —
My, and the metric gets promoted to a quantum operator in the same manner, g"¥(my) —
gV (My,). Considering mq > (Hips )/ ¢? and using Eq. (5.6), the Hamiltonian from Eq.
(5.24) reads as

[mg 1 0. . 1 )
H=,|——— ic+ihl'g+ ————=7Y mgc
my QOO(M)X Yp 0 900(%)1( R

1/2
T 1 2 oo1 VY Hin g pic — mR/ oo1 Y0¥ Hin g pic
2 i (0 2mi e 00)
1 0
+ Hin R (5.26)
g()()(%)y ll’ll7R

where the additional terms with H;,; o represent first order corrections due to internal quan-
tum effects of a composite fermion. They allow to make predictions to test such effects
and probe QEP. Note that terms with Hj,, ¢ are implicit in g*¥(mg,), Y* and I, and depend
on the given space-time. Note that inverses of quantum operators are part of Eq. (5.26)
as well. Applying this formalism to concrete physical problems, may present the same

computational challenge as in the case of bosons.
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Considering the weak field space-time, given by the metric in Eq. (5.14), one can
see that the vanishing off-diagonal terms do not explicitly change the form of the Dirac
Hamiltonian in Eq. (5.24), as is the case for bosons. Since ¢/c” < 1, one can again expand
a%(My,) as a power series to first order in ¢/c?. Eq. (5.26) in a weak gravitational field

then reads as

H= \/m_IYO'YlpiC+'YOmRC2+YOmG¢+2WYOYI C%PiC+YOHim7R

1/2
0 0 1 0,0 mg 0.
+Y Hu—5+—5Y Y Hurpic— Y'Y Hip 1 pic
¢z 2 /mrmyc? Zm;/zcz

2 i mg

0 ¢ 0. ¢
+———— YV HinG 5 Pic— 5755V ¥ Hinr 5 pic
mRm[C2 nt C2 1 mi/zmll/zcz int C2 4

mg

0. o
— 7535 =Y Y Hni1-5pic, (5.27)
mlle/Zm?ﬂcz c?

which corresponds to a relativistic fermion in a weak gravitational field. To obtain a Hamil-
tonian for a non-relativistic fermion, one must diagonalize the the above operator, repre-
sented as a 4 x 4 matrix, and expand the obtained square root in a power series, up to terms
of O(1/c?), since (p?) < m? ¢? in the non-relativistic limit. The obtained Hamiltonian then
reads as Eq. (5.23).

The non-relativistic boson and fermion cases in a weak gravitational field show that the
generalization of the QEP formalism in this chapter is necessary and sufficient to obtain
the earlier results of Ref. [238] as a special case for weak gravitational fields and non-

relativistic velocities.

5.3 Experimental Proposals

Although QEP is intrinsically quantum in nature, any violations are expected to leave
traces in the classical Lorentz transformation A4 (v, my,), as well as in the classical curved
space-time metric g"¥(mg,). They appear as averaged deviations of mass ratios from unity,

given by the expectation values (M /My ). In principle, this can provide measurable ef-
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fects. There are several ways in which QEP can be tested. The most common tests can be
performed in Earth-based experiments, which correspond to non-relativistic particle speeds
and a weak gravitational field (see Eq. (5.23)). These include the neutron interferometer
experiment by Colella, Overhauser and Werner (COW) [255] to test the WEP and the pro-
posals mentioned in Ref. [238] to test the LLI and the LPI. The COW experiment can be
used to measure the effective gravitational mass (M) of the neutron, since the violation of

the QEP modifies the phase shift to [246]

_ mGgA n EintG8A

AD = 5.28
hv hetv ( )

where g is the gravitational acceleration, A = [h the area, [ the length and / the height of the
interferometer, v is the velocity of the neutron in the lower branch and Ej,; ¢ = (Hin ) is
the deviation, obtained from the precision of measuring A®, which is ~ 1073 [256]. The ef-
fective inertial mass of the neutron corresponds to the accepted value of the mass of the neu-
tron, since it is measured kinematically. Comparing the obtained effective masses provides
an upper bound of ~ 1073 for the deviation of mg/m; from unity. Promoting the above
masses to quantum operators and considering the semi-classical limit, the above bound cor-
responds to the upper bound on the difference of eigenvalues (Ejy G — Eint.1)/m c2. This
provides a test for the WEP. See Ref. [3] for more similar tests.

To test the QEP at relativistic speeds in the absence of a gravitational field, one can, for
example, consider the mean lifetime T of a particle in a cosmic ray shower, which is given

by
T=9YT, (5.29)

where T is the mean lifetime of the particle in its rest frame and 7y is Lorentz factor, defined
in Eq. (5.9), containing the mass ratio m;/mg. Considering a charged pion decay, the mean

lifetime in its rest frame is Tp = (26.0231 £ 0.0050) ns [257]. It can be shown that this
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measurement provides a speed dependent upper bound’of [246]

2
5<3.84x10* (C—2 = 1) (5.30)
1%

for the deviation of m;/mg from unity. One can see that the upper bound becomes smaller
as the speed of the pion increases. Pions with the highest measurable energies travel with
speeds close to the speed of light v = 0.9999996 ¢ (inferred from Ref. [258]). For such
pions the above upper bound is & < 3.33 x 10~'°. Promoting the above masses to quantum
operators and considering the semi-classical limit, the above bound corresponds to the up-
per bound on the difference of eigenvalues 8 = (Ejn 1 — Eine g)/m 2, where Eine.1 = (Hint 1)
and Ejy g = (Hine g). This provides a test of the LLI. Other tests of the LLI, using electro-
magnetic radiation, have been done in the past [3]. However, the results provided here are
the first test of LLI for a massive particle to one’s knowledge.

To test the QEP in strong gravitational fields and at relativistic speeds, one can, for
example, consider the perihelion precession of planets. Following the procedure outlined
in Ref. [236] (p. 194-200) and using the metric from Eq. (5.16), it turns out that the

perihelion precession during one orbit gets modified by the relevant mass ratio as [246]

GM
A(p:6n@ 3

mg c?a(l—e?)’ 531

where a is the semimajor axis and e the eccentricity of the orbit. Considering a number of

orbits N around the central object, the above expression is multiplied by N and the devia-

50ne can write the relevant mass ratio as

ﬂ:1+8,
mg

where 8 < 1 is the deviation of m;/mg from unity. By expanding Yy over 8 and comparing the obtained
deviation with the measurement uncertainty of T

2
Vv
YGTU %’YOG‘CO :Y(3) 2C2 TOSa

where Yo = 1/4/1— Z—i, one obtains the deviation in Eq. (5.30).
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tion should be detectable for a large enough N. It can be shown that the precision of the
measured precession of the perihelion of Mercury, AQpsercury = (42.9799 £+ 0.0009)” /cy
[259], provides an upper bound of 2.1 x 10~> for the deviation of mg /mg from unity. Pro-
moting the above masses to quantum operators and considering the semi-classical limit,
the above bound corresponds to the upper bound on the difference of eigenvalues (Eju ¢ —

Ein R) /m c2. This provides a test for the LPI. See Ref. [3] for more similar tests.

5.4 Summary

In this chapter, a generalization of the applicability of QEP, introduced in Ref. [238], is
proposed. Specifically, such that it is valid for arbitrary velocities, arbitrary curved space-
times, and for bosonic and fermionic particles. The most important results that one obtains
here are the modifications of the Lorentz symmetry and the curved space-time geometry.
The modified Lorentz symmetry implies that particles with different masses have differ-
ent “speeds of light”, i.e., different maximum speed limits, in case of LLI violation. For
multi-particle systems, this introduces the soccer-ball problem, which commonly emerges
in candidate theories of QG. On the other hand, the curved space-time geometry probed by
a test particle, e.g., via the geodesic motion that it follows, depends on the ratios of masses
mg,/my, of the test particle. In other words, the geometry experienced by an observer is no
longer just a function of the curved space-time metric, but also depends on the properties of
the observer itself, unless QEP holds exactly. A violation of QEP causes deviations of the
mass ratios from unity, which are expected to be very small. Therefore, no such violations
have been observed so far. However, with ever increasing precision of measurements, QEP
violations should eventually be observed. On the other hand, if QEP is preserved in Nature,
all mass ratios equal unity, and one would not be able to measure any such effects.

The generalization, introduced here, must hold for any choice of curved space-time
g"v, which turns out to be a quantum operator in general. The way it appears in the rele-

vant equations of motion, may present a significant computational challenge. Applying the
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formalism to concrete physical problems remains the central problem in calculating exact
dynamics of relativistic quantum particles in strong gravitational fields. One way out is to
consider the semi-classical limit, where there is no need to obtain the eigenfunctions related

to internal particle dynamics, and their eigenvalues become classical physical quantities.
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Chapter 6

Conclusions

“I think it’s much more interesting to
live not knowing than to have answers

which might be wrong.”

Richard P. Feynman

It is not unreasonable to expect that there will be a single theory, which describes the
Universe from the smallest to the largest scales. Such a theory is called a theory of Quantum
Gravity. Currently, there are two successful theories, separately describing small and large
scales, namely QT and GR, respectively. In Chapter 1 it was shown that there is no simple
way to construct a consistent theory of QG, since formalisms of QT and GR are not fully
compatible, due to differences in treating space-time and particle descriptions. Such a
theory of QG should be able to quantize gravitational interactions of particles, as well as
describe the fundamental nature space-time. So far, several attempts have been made to
provide a theory of QG. Among others, ST and LQG are the best studied candidate theories
of QG, while DSR is considered as a certain limit of QG (see Section 1.1). Since such
theories assume that QG effects manifest at energies around Ep and scales around ¢p, while
current experimental capabilities can achieve energies E,,, < Ep and scales {pw > (p, it
is currently not possible to directly test them.

Most candidate theories of QG agree on the existence of a minimum measurable length
Cmin o< Lp. However, since there is no fundamental reason why the proportionality factor

between £,,;;, and {p to be of the order O(1), one can parameterize £,,;, to be anywhere
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between /p and (g . This brings detection of QG effects within the reach of low energy
Earth-based experiments, as well as in cosmological observations, and gives rise to the
field of QGP (see Chapter 2). It turns out that the existence of ¢,,;, implies a modification
of the Heisenberg Uncertainty Principle (see Section 2.1). Such a modification is called
the Generalized Uncertainty Principle, which can take different forms as shown in Eqgs.
(2.35), (2.36), (2.37) and (2.42) (see Section 2.2). GUP is a central tool in QGP, which is
used to provide predictions of QG signatures at low energies in Earth-based experiments
(see Chapter 3), and to provide explanations of anomalous phenomena in cosmological
observations (see Chapter 4). In this work (Chapters 3 and 4), the ADV model of GUP
from Eq. (2.42) is used, due to it being one of the most general forms of GUP, while other
GUP models correspond to special cases of this model. Note that the GUP parameters are
currently bound by the electroweak scale o, \/% < ogw = 10", which means that QG
signatures are expected to be observed below this bound. As part of this work, QGP is also
explored from a different angle, where one proposes and explores novel concepts, such as
the Quantum Equivalence Principle (see Chapter 5), which may lead towards a formulation

of a consistent theory of QG.

6.1 Earth-based Experiments

QGP in Earth-based experiments (see Chapter 3) is one of the most important ap-
proaches towards QG. It makes predictions of QG effects, which can be tested under con-
trolled conditions, and compared to other effects of other origin, for the purpose of falsifica-
tion. In the case, where such experiments detect no QG signatures, one can constrain GUP
parameters, which sets an upper bound on their true value, and provides stricter conditions
for future QGP considerations. Note that all bounds on GUP parameters, obtained by QGP
in Earth-based experiments, depend on the precision of the considered experiment. Since
experimental precision increases with time, the upper bound on GUP parameters decreases.

This suggests that detection of QG signatures is only a question of time. In this work, QG
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signatures in two specific natural phenomena, testable in Earth-based experiments, were
explored in detail, namely Bose-Einstein condensates (see Section 3.1) and Larmor fre-
quencies of atoms in an external magnetic field, measured in a magnetometer experiment

(see Section 3.2).

6.1.1 Bose-Einstein Condensate

Bose-Einstein condensation is an interesting phenomenon, which has a variety of theo-
retical and experimental implications. For a BEC experiment with a high enough measure-
ment precision, signatures of extra compact dimensions and QG effects, motivated by GUP,
can be observable. Such signatures are predicted through respective modifications of the
critical temperature 7, and the fraction of bosons in the ground state fj (see Section 3.1).

The predicted signatures which arise from the presence of extra compact dimensions
are many orders of magnitude smaller than the current experimental capabilities. However,
they imply interesting bounds on the sizes of such compact spaces. If such high precisions
were to be achieved, one obtains an upper bound R, as well as the lower bound R, for the
radius of compact dimensions, given the topology R? x SV of the underlying spatial part
of the manifold. This is shown in Fig. 3.1, for d =3 and N = 1. It turns out that the
lower bound is not useful in this context, since it is of the order Ry ~ 1 m [130]. However,
these results can have far-reaching implications in the search for extra compact dimensions,
which is an important ingredient in certain candidate theories of QG, such as ST.

The QG signatures, motivated by GUP, have been explored for three distinct cases of
BECs, namely non-relativistic, neutral relativistic and charged relativistic BECs. Their
respective QG modified observables are given by Eqs. (3.26), (3.40) and (3.41) for T,
and by Eqgs. (3.28), (3.44) and (3.45) for fy. In all cases, increasing the number density n
of a boson gas, influences the magnitude of the QG corrections, and for sufficiently high
densities, this increase may be by one or more orders of magnitude. This is shown in Figs.

3.2 and 3.4 for T,, while the same holds for fj, since the maximum of its QG correction
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is Afg o< T.. Furthermore, the range of Afj increases with increasing 7;.. In obtaining the
above QG modifications, linear and quadratic corrections were considered separately. If
both are considered simultaneously, the calculations would be notably more complicated,
but one would learn nothing new, since the results in Egs. (3.26), (3.40), (3.41), (3.28),
(3.44) and (3.45) would change only by a numerical factor of order ~ O(1) in the quadratic
correction term [130].

Currently, the only case that can be experimentally realized is a non-relativistic BEC.
Although a relativistic BEC has not been experimentally realized so far, the provided theo-
retical predictions will be applicable to test QG as soon as such a state is finally achieved.
The current experimental precision in BECs provide the GUP parameters bounds o < 10
and By < 10% from 7, measurement precision (see Fig. 3.2), and 0 < 10% and Bo < 1072
from fy measurement precision (see Fig. 3.3) [130]. Compared to the attainable elec-
troweak scale 0w, one can conclude that QG signatures are not expected to be observed
within the current BEC experiments. However, as experimental precisions increase, one

expects to observe QG signatures in BECs in the future.

6.1.2 Magnetometer Experiment

Magnetometers are highly advanced experimental apparatuses, which can be designed
to measure Larmor frequencies of atoms in an external magnetic field, with unprecedented
precision. This makes a magnetometer experiment an ideal candidate to search for QG
signatures. Such signatures are predicted through GUP motivated QG modifications of the
Larmor frequency of an atom in an external magnetic field [48]. A specific experimental
proposal is considered, where the Larmor frequency of '?°Xe atoms in an external magnetic
field B = 1T is measured (see Section 3.2) [149].

Given the formulation of QG modifications of the Larmor frequency, it is proposed that
such modifications manifest through relative velocities of individual atoms. A natural way

to induce such velocities is to consider a thermalized ensemble of atoms. This means they
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follow a certain velocity distribution at a given temperature. It turns out that the Maxwell-
Boltzmann distribution is the relevant velocity distribution for the proposed experiment.
This gives rise to a QG induced distribution of Larmor frequencies of an ensemble of atoms,
given by Eq. (3.70). Such a distribution causes a deviation of the average Larmor frequency
from its standard prediction, given by Eq. (3.72) (see also Fig. 3.6). Furthermore, it causes
a distribution of deviations from the standard prediction, which implies a width of the QG
signature, described by the standard deviation or the FWHM, given by Eqs. (3.82) and
(3.83), respectively (see also Figs. 3.7 and 3.9).

On the other hand, velocities of atoms can also be induced by non-thermal methods.
One of such methods is using convection currents. In this case, a gas of atoms is passed
through a duct at a controlled velocity. For the proposed experiment, a square duct is
considered and a velocity distribution of an incompressible, viscous fluid is assumed. Since
the experiment can be designed to measure the Larmor frequency either in a line through
the cross section of the duct, or the whole cross section of the duct, one can predict the
corresponding QG signatures, given by Egs. (3.92) and (3.93), respectively (see also Fig.
3.10).

The projected precision of the proposed magnetometer experiment suggests that QG
signatures in Larmor frequency measurements can be observable for o ~ 103 (see Figs.
3.6 and 3.7 and 3.10) [149]. In the above, one assumes By = oc(z). Since this estimate is well
below agyw, there is a strong chance to detect QG signatures for the first time. In case no

such signatures are observed, an unprecedented bound of oy < 10® will be set.

6.2 Cosmology

Cosmology (see Chapter 4) has proven to be an important arena for QGP research. It
provides a range of unique phenomena, which cannot be recreated in Earth-based exper-
iments. Furthermore, several cosmological observations contradict predictions, given by

frameworks of QT and GR. This suggests that there must be some kind of unknown funda-

146



6.2. COSMOLOGY

mental mechanism, which accounts for such anomalies. It turns out that a likely explanation
is QG, since it is believed to affect the evolution of the early Universe. Although QGP in
cosmology can be used to constrain GUP parameters through predicting deviations from
well understood phenomena, it can also be used to estimate the GUP parameters from the
observed anomalies, thus effectively explaining them. In this work, viable explanations of
two observed cosmological anomalies were provided, namely the EDGES anomaly (see
Section 4.1) and the observed Baryon Asymmetry in the Universe (see Section 4.2). Note
that the EDGES anomaly was considered in a more general QGP context, i.e., through

Modified Dispersion Relations.

6.2.1 The EDGES Anomaly

The EDGES collaboration has discovered an anomalous absorption signal in the CMB
radiation spectrum. This signal is larger by about a factor of 2 with respect to the expected
value (assuming that the background is described by the ACDM model), i.e., the EDGES
anomaly. A proposal that MDRs can account for the EDGES anomaly, was explored in
detail (see Section 4.1). The results indicate that considered MDRs (cases 1-3 in Section
4.1.1), originating from existing candidate theories of QG and thought experiments with
Upin, can provide a viable mechanism which explains the EDGES anomaly, through mod-
ifying the thermal spectrum of photons, in two different scenarios. In the first scenario,
MDR parameters are not constant, i.e., they are functions of redshift z (or scale) (see Figs.
4.1,4.2,4.3,4.4 and 4.5). In the second scenario, it is proposed that a consistent theory of
QG predicts non-trivial deformation parameters (see Figs. 4.6, 4.7 and 4.8).

In the first scenario, it was shown that the above MDRs lead to the estimation of the
MDR parameters (1, 0, \/E, o, \) ’Z:ZE ~ 1032. This estimation is outside the bound
provided by the electroweak scale, i.e., (1, &o,/Bo, & A') .=z, > agw. On the other
hand, given the precision with which the CMB temperature in the current epoch, z = 0,

was measured, one obtains a constraint (1, ¢, \/Bo, &, ') |.—o < 10?3, which is consistent
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with the observed CMB black body spectrum. The above suggests that the MDR parame-
ters are functions of redshift z and as such provide an explanation of the EDGES anomaly.
The time evolution of MDR parameters in the later stages of the Universe must be slow
or nearly constant, since the same physics can be observed at redshifts in the range of the
observable Universe, between z ~ 13 to z = 0 [260]. However, in the earlier stages of the
Universe, it could have been faster, as the EDGES anomaly suggests. This can provide an
idea of the redshift dependence, and can point towards a phase transition of some sort.

In the second scenario, one lets the deformation parameters ®, y and  vary, in order to
explain the EDGES anomaly. One sets 1, 0lo, \/E , o, M = ogw and fits the MDR modified
thermal spectrum of photons to the anomaly, from which the bounds of the deformation pa-
rameters ®, y and O follow. Similar results were found in Ref. [174]. However, MDRs with
non-trivial power dependencies require further research to better understand their relevance
to QG. It will be interesting to study the consequences of such deformation parameters in

various contexts, such as Earth-based experiments and Gamma Ray Burst physics [101].

6.2.2 Baryon Asymmetry in the Universe

One can explain the observed baryon asymmetry in the Universe through a mechanism,
which satisfies the three Sakharov conditions. It has been shown that such a mechanism can
indeed be constructed in the context of QG effects in the early Universe (in the radiation-
dominated era, where the baryon asymmetry froze-in), applied through GUP (see Section
4.2). The baryon number B violating interactions are considered in the context of GUTs,
since the energies in the radiation-dominated era correspond to those in GUTs [227]. The
CP symmetry is broken by considering coupling between the derivative of the Ricci scalar
and the baryon current, i.e., coupling between space-time and matter, given by a Lagrangian
interaction term from Eq. (4.41). And finally, the thermal equilibrium is broken by QG
effects, introduced through GUP. Therefore, such a mechanism satisfies all three Sakharov

conditions. The first two Sakharov conditions are simply implied by proposing Eq. (4.41)
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at GUT energies, while the third is more involved.

It was shown that GUP modifies the apparent horizon area of a black hole (see Eq.
(4.27)), which in turn modifies the Bekenstein-Hawking entropy of a black hole (see Eq.
(4.32)). The holographic principle then ensures this entropy is valid for the apparent horizon
of the observable Universe. By using the first law of thermodynamics and the continuity
equation, one obtains the QG modified Friedmann equations (see Egs. (4.36) and (4.37)),
which break thermal equilibrium. This ensures that the third Sakharov condition is met,
which in turn produces a non-vanishing freeze-in of the baryon asymmetry in the early
Universe (see Eq. (4.55)). It may be noted that the QG modified Friedmann Eqs. (4.36)
and (4.37) are exact for the considered GUP model (ADV model from Eq. (2.42)). By
comparing the prediction to the measured baryon asymmetry, it was possible to obtain
estimates on the dimensionless GUP parameters o ~ 10° and |Bo| = 10, which determines
the QG length scale ¢,,;, ~ 1073%m. This estimate is well within the bound, set by agw,
and is one of the most stringent that has been obtained so far. Furthermore, it may also
reflect the true QG scale. It is hoped that Earth-based experiments and observations in the
near future may be able to detect QG signatures at such a scale. Note that the obtained
values for the quadratic GUP parameter 3 are close to the upper and lower bounds on the
parameter found in a recent work (see Ref. [81]).

Finally, it should be mentioned that the baryon asymmetry results imply a negative value
of the GUP parameter, i.e., By < 0. This is commonly found in cosmological QGP consid-
erations [54, 81, 152, 154, 157], and can arise from non-trivial structures of the space-time,
such as the discreteness of space-time [66, 76, 261, 262, 263, 264, 265]. A similar result
follows also in the context of a crystal lattice [153]. This suggests that at the fundamental

level, space-time can have a lattice or granular structure.
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6.3 The Quantum Equivalence Principle

A precise formulation of QEP is a necessary step towards formulating a fully consistent
theory of QG, since in such a theory, gravity would be an intrinsically quantum interaction.
Based on the formulation from Ref. [238], a generalization was proposed. It extends to
bosonic and fermionic particles with arbitrary velocities and in generic curved space-times
(see Chapter 5). Relativistic descriptions of bosons and fermions in curved space-times (see
Eqgs. (5.1) and (5.2)) were used as the starting point in formulating such a generalization.
The inertial, gravitational and rest masses of the test particle, m;, mg and mg (mg, where
o = I, G, R for short), respectively, were distinguished between each other, and identified
in these descriptions (see Eqgs. (5.19) and (5.24)).

Such a generalization implies modifications of the Lorentz symmetry and curved space-
time geometries, which turn out to depend on ratios mg/ m&, in case of QEP violation. In
other words, for such a violation, the Lorentz symmetry and curved space-time geometries
depend on properties of the particle itself. While it may be argued that such observer depen-
dence of measurable physical quantities is already a feature of standard QT, one can note
that the observer dependence in the context of QEP manifests even at the purely classical
level. Although seemingly counter-intuitive, there is nothing intrinsically impermissible
about it. One can interpret modifications of the Lorentz symmetry and curved space-time
geometries, effectively, as modifications of the speed of light ¢’ = c\/m and the uni-
versal gravitational constant G’ = Gmg/my, respectively. This also implies a modification
of constant k¥ from the Einstein equations (see Appendix D.4). Note that such modifica-
tions cannot be used to simply redefine the above constants for a general case, since they
are different for different species of test particles.

For modifications in GR, three examples of curved space-times have been considered,
namely the weak gravitational field space-time, the Schwarzschild space-time and the Kerr
space-time. It turns out that all of them depend on mg and mg, while only the Kerr metric

additionally depends on my, due to the rotation of the central object. From this, one may be
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tempted to conjecture that if any gravitating central object causes inertial frame dragging in
its vicinity, then m; will affect the metric as well.

Promoting masses myg, to quantum operators, i.e., mq — My, gives rise to additional
terms with H;,; o, in the equations of motion (see Egs. (5.21) and (5.26)), describing effects
due to internal dynamics of the test particle. In Ref. [238], the additional terms with Hj; o
describe first order corrections to internal dynamics of the test particle, corresponding to
special relativistic time dilation and gravitational time dilation. On the other hand, the
above generalization, provides exact corrections of such effects. This formulation must
hold for any choice of curved space-time, described by metric g"¥. Note that in the non-
relativistic and weak gravitational limits, one obtains the results from Ref. [238], which
suggests that such a generalization is indeed correct.

Applying such a generalized formalism to concrete physical problems may present a
significant computational challenge, because the modified curved space-time metric be-
comes a quantum operator, gt¥(mg) — g*V(My), when my — M. For phenomeno-
logical considerations, one can consider the semi-classical limit, where the eigenvalues of
Hint o, become classical physical quantities Ej;; o. This allows one to test QEP in a novel
way, using high-energy Earth-based experiments, such as particle accelerators, and strong
gravitational fields, such as near stars and black holes.

A handful of examples of experimental test of QEP were described in Section 5.3. The
bounds on deviations of the mass ratios from unity, obtained through QEP considerations
are < 1073 for WEP, < 10710 for LLI and < 10~ for LPI, and bounds obtained through
standard methods are < 10~13 for WEP [242], < 10~ for LLI [243] and < 10~ for LPI
[244]. One can see that bounds obtained through QEP considerations are not as promising
as the ones, obtained through standard methods. However, the approach through QEP is
fairly new, and only a handful of test were considered. Considerations in other, more precise

tests may provide unprecedented bounds, or even detect QEP violations.
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6.4 Future Prospects

At this point, no QG signatures or QEP violations have been detected in Earth-based
experiments, while explanations of observed anomalies in terms of QG effects in cosmology
require further verification and understanding. There are also several theoretical issues
which need to be dealt with appropriately, such as the soccer-ball problem and conservation
laws in both, GUP and QEP considerations. However, the future of QGP looks promising.
There is an abundance of phenomenological considerations, which provide a variety of
predictions of QG signatures for different types of Earth-based experiments. Many of these
predictions are yet to be tested. Since the experimental precision is ever increasing, it is
expected that QG effects are detected in Earth-based experiments in the future. On the
other hand, cosmological QG considerations already provide estimates, which determine
Cmin. However, QEP violations have not been studied extensively, since it is a fairly new
proposal. Therefore, it is necessary to explore QEP in detail, in order to stringently test its
implications, and verify its relevance to the formulation of a consistent theory of QG.

The QGP considerations, discussed in this work, are only a small fraction of research,
which is required to test QG and its foundations. Attempts to observe QG effects and to
formulate candidate theories of QG are currently only in their initial stages. While one an-
ticipates experimental precisions to increase with time, further theoretical research is nec-
essary to learn as much as possible about the role and implications of QG in physics within
current experimental capabilities. Such theoretical research will be put under scrutiny, once
QG is experimentally confirmed. In the following, possible extensions and applications of

results, obtained in this work, are proposed.

6.4.1 Statistical Mechanics

Considering QG effects in BECs (see Section 3.1), one finds that QG signatures increase
with increasing n, while no upper bound on n was taken into account, allowing arbitrary

magnitudes of QG signatures. However, experimental realizations of BECs use low num-
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ber densities of bosons n € (10'°, 10?!)m~3, in order to decrease the probability of them
colliding and forming molecules, thus ensuring a stable BEC state [123]. It will be interest-
ing to extend the analysis to include a maximum allowed number density 7,,,,, which will
provide a more strict constraint on the magnitude of QG signatures.

In the above BEC considerations, also a QG modified density of states g(€) was ob-
tained for cases of non-relativistic and relativistic particles (see Egs. (3.24) and (3.37),
respectively). They are valid for both types of particles, bosons and fermions. It turns out
that all observables Y in statistical mechanics can be evaluated by ensemble averages, given

in terms of phase space integrals

¥) = | Y©)8(8) fy o) e ©1)

where the density of states is essential in their construction (see Appendix A.1 for details).
This implies that the QG modified densities of states can be used throughout statistical me-
chanics considerations, thus providing a rich QGP in this field. For example, one can obtain
a QG modified neutron degeneracy pressure and apply it to neutron stars, which can provide
constraints and insights on the neutron star equation of state. Other QGP applications of
densities of states range from condensed matter physics, interstellar and intergalactic gases

and early universe cosmology.

6.4.2 Nuclear Physics

In the magnetometer experiment considerations (see Section 3.2), it was shown that a
QG modification of the Larmor frequency can be extended to the nucleus of an atom. In
doing so, the implicit form of a QG modified Schrédinger equation of an atomic nucleus
was obtained as

0
ih’EWN(rJ) - H()QNGIVN(rat) s (6.2)
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where HOQNG is the relevant QG modified Hamiltonian of the nucleus (see Eq. (3.54)). It
turned out that the above was not relevant in the context of Larmor frequencies. However,
it can provide a framework to explore QG effects in nuclear physics. Specifically, one can

explore QG effects in the nuclear shell model.

6.4.3 Cosmology

The results, obtained in explaining the EDGES anomaly in terms of MDRs (see Sec-
tion 4.1), on one hand suggest the MDR parameters (including GUP parameters) must be
redshift (scale) dependent, to account for the observations. Similar results were obtained
in a work, where Dark Matter effects in rotational curves of galaxies are proposed to arise
as a consequence of QG, motivated by GUP [151]. Also, other cosmological considera-
tions provide a negative value for the quadratic GUP parameter By < 0, while Earth-based
experiments provide Bg > 0. Such results imply that the Planck length /p can indeed be
scale dependent. The only reasonable source of such a dependence can only be through the
universal gravitational constant G o< E%,. Such a dependence of G was proposed by authors
of Ref. [266], which attribute Dark Matter and Dark Energy effects solely to gravity on dif-
ferent scales. Therefore, one can provide a connection between the results, found in such
works and explore the scale dependence of G, or equivalently /p.

On the other hand, a viable explanation of the EDGES anomaly was proposed also
in terms of non-trivial deformation parameters. Proposals of such MDRs are fairly new
and need further exploration to understand their relevance to QG. They can be tested in
other cosmological scenarios, such as explaining the observed baryon asymmetry in the
Universe and BBN, and precise Earth-based experiments, such as particle accelerators and
magnetometers. This will provide a clear comparison between this and the usual MDR
models, and point out any possible inconsistencies.

One of the results, obtained in the baryon asymmetry considerations (see Section 4.2), is

the QG modification of Friedmann equations (see Egs. (4.36) and (4.37)). Since Friedmann
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equations, which are central in the standard model of cosmology, govern the dynamics of
the Universe, the QG modified Friedmann equations can provide a rich QGP in cosmology.
They can be applied to practically all cosmological considerations. For example, the BBN,
where GUP parameters can be bound from measurements of primordial abundances, frozen
in at the freeze-out temperature 7 as
oT 26 [ g.
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Note that the BBN measurements do not manifest any anomalies at the current measurement
precision. Therefore, only upper bounds on GUP parameters can be obtained. Another
interesting application of QG modified Friedmann equations would be at the inflationary

epoch of the Universe, where one expects strong QG effects.

6.4.4 The Quantum Equivalence Principle

QEP presents a novel approach to QG. It is believed to be the foundation of a con-
sistent theory of QG. Therefore, it needs to be rigorously tested, before it is accepted as
fundamental concept of Nature. In this work, a generalization of its applicability was intro-
duced for the first time, which provides a general framework, where QEP can be tested in
a range of different scenarios, namely weak gravitational fields, strong gravitational fields,
non-relativistic speeds, relativistic speeds and everything in between, for either bosons or
fermions. This provides a rich ground for QGP in the context of QEP. One can propose
separate tests for WEP, LLI and LPI in Earth-based experiments and in cosmological or
astronomical observations. For example, one can test the WEP in specifically designed
magnetometer experiments, the LLI in scattering cross sections, measured in particle col-
liders and the LPI in galactic centres or quasars. On the other hand, one can attempt to find

exact solutions of particle dynamics for Egs. (5.21) and (5.26).
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6.5 Final Remarks

In the last 150 years, physics has developed at an unprecedented rate, compared to its
relatively long history, when classical mechanics was thought to be a complete description
of Nature. As new discoveries could no longer be explained in terms of classical mechanics,
it was clear that Nature is fundamentally more complex and requires a better description.
The introduction of QT has changed the concepts of position and velocity of a particle in
terms of the Heisenberg Uncertainty Principle, while the introduction of GR has changed
the notion of space and time in terms of a single entity known as space-time, which can
change its geometry in response to mass. Research in these fields has greatly advanced the
understanding of fundamental mechanisms of Nature. However, there is still a lot more to
be uncovered.

Considering the limits of QT and GR, one can find that both fail to consistently describe
certain scenarios, expected to be found in Nature, such as centres of black holes and the
beginning of the Universe. Similarly as in the advent of QT and GR, there is strong evidence
that a better description of Nature is required. A description which includes QT, GR and
more, i.e., a theory of QG, which implies the existence of a minimum measurable length
and a quantum description of gravity. However, it has been proven difficult to formulate
a consistent theory of QG. There have been several attempts to achieve this, such as ST
and LQG. It turns out that they do not address all questions that arise in approaches to
QG and in fact, give rise to new conceptual problems in their current forms. Compared
to the advent of QT and GR, when there was clear evidence of new phenomena, which
could not be accounted for by classical mechanics, the path to formulating a theory of QG
today does not have such a privilege. One must rely on properties, which are believed to be
generic predictions of QG, such as the existence of the minimum measurable length, and
search for signatures of such properties in Earth-based experiments and in astronomical or
cosmological observations.

One can find that QGP is a practical approach towards the QG problem, since it does
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not depend on any candidate theory of QG, and the diversity of applications can narrow
down the list of potential theories. Also, a new conceptual approach to QG is emerging, in
which fundamental concepts, such as the Quantum Equivalence Principle, which should be

a necessary ingredient for a consistent theory of QG, are put to the test.
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Appendix A

Statistical Mechanics

A.1 Mathematical Tools

When a prediction of any physical observable in statistical mechanics is made, one
needs to compute averages, because in systems with many particles, one can only measure
macroscopic observables of the whole system, such as temperature, pressure and volume.
To compute an ensemble average of a physical, single particle quantity Y over the whole
energy range € € [0,0), for a gas of bosons or fermions, the ensemble average is used

) = [ ¥€)8(6) s (©)de (A1)
where d/2—1,.d/2 od/2—1
VdQ 2% == mt/ =gt~
g(e) = 7 (A.2)
(2mh)
is the d-dimensional density of states for non-relativistic particles,
d/2—1
VdQue (e — m*c*
g(e) = ( ) (A.3)

(2mhc)d

is the d-dimensional density of states for relativistic particles, where Q; =n¢/2/T'(d/2+1),

and
1

fBE(FD)(g) = oBr(e—u) -1 )

is the BE distribution (—) or FD distribution (+). In the above, Br = 1/kpT, € the energy of
the particle and u the chemical potential. For any single particle quantity Y(€), all integrals
given by Eq. (A.1), which are calculated using the BE distribution from Eq. (A.4) (which
corresponds to the — sign), are of the following form

(A.4)

* ev r'v+1) .
IV(BT; BT:U) = /O eBT(S—,U) 1 de = ([3V+l )le+1(eBT:“) , (AS)
T

where V is the power of the energy in the integral, I'(v+ 1) is the gamma function evaluated

atv+1 and .

m@:i% (A.6)
k=1
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A.1. MATHEMATICAL TOOLS

is the polylogarithm function. For x = 1, which corresponds to the case u = 0, the polylog-
arithm function in Eq. (A.6) reduces to the well known Riemann zeta function

gm:iﬁ. (A7)
k=1

On the other hand, all integrals, which are calculated using the FD distribution from Eq.
(A.4) (corresponding to the + sign), are of the following form

o ev I'(v+1) .
JV(BT: BT,U) = /O mdg = —%LZV_H(—@BT’U) . (AS)
T

For x = —1, corresponding to u = 0, the polylogarithm function in Eq. (A.6) reduces to

Liy(—1) = —-m(v), (A.9)

where ( )k X
o) _ 1 —
v =L

is the Dirichlet eta function. The values for the Riemann zeta and Dirichlet eta, as a function
of v, where defined, can be found numerically.

As the simplest example, one can obtain the number of particles in a gas of bosons,
contained in a volume V, using the BE distribution and Eqs. (A.1) and (A.2), where Y =1,
as

(A.10)

Ny = [ sle) fnle)de

Vd Q42 pd/2 e gd/2-1
- (2nh)d /0 Brie—m _ |

Vd Q2421 2
- (2nh)d
=3V (kaBT

de

(kT )T (%) Lid/z(eﬁw)

3/2 ;
-yl ) Lizj(e”*) (A.11)

where Eq. (A.5) was used to evaluate the integral in line two. As the temperature ap-
proaches T, the chemical potential vanishes u — 0, which reduces the polylogarithm
function in Eq. (A.11) to the Riemann zeta function {(3/2) ~ 2.612. This is the regime
where the Bose-Einstein condensation begins to occur.

In the same manner one can obtain the number of particles in a gas of fermions, con-
tained in a volume V, using the FD distribution and Egs. (A.1) and (A.2), where ¥ =1,
as
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A.2. LINEAR GUP OPERATOR

Ney = | gle)frule)de
Vd Q2421 dl2 e gd/2-1
- (2mh)d /o ePr(e—u) 41
VdQ, 247 1 m?/?

~ (my (ksT)"T () Ligjo(—eP¥)

32
= (_zkaT) Lis p(—ePTiy | (A.12)

de

8h3 o

where Eq. (A.8) was used to evaluate the integral in line two. The above is an exact solution
for a Fermi gas at temperature 7'. In the case, when T — 0, the FD distribution reduces
to frp(€) = 1, and one obtains a finite, so-called Fermi energy Ey, as an upper limit to
the integral, since this is the maximal energy a fermion can have in such conditions. This
would represent a degenerate fermion gas.

A.2 Linear GUP Operator

To evaluate the eigenvalues, corresponding to the linear GUP term, one must consider
the operator po = /pok pok » Where po; = —ihdy,,. Note that py is a scalar operator, and ob-
taining its eigenvalues was considered a difficult computational problem. In the following,
a solution to this problem, including its proof, is introduced. Explicitly, pg can be written

as
02 9?2 92 1/2
— |2 — ) =\/-mV:=Hh(-V} . A.13
Po \/ (8x0+8y0+az%) 0 ( O) ( )

Without loss of generality, one can write the above as

20 Z(I—EZVO—I)I/Z (A.14)

where £ is a non-zero constant and a 0 = 1 — 1 has been added inside the parenthesis. One
can interpret £ as a length scale, and therefore assume it to be positive and non-vanishing.
This also ensures that the eigenvalues of pg are positive. One can see that the above is of
the form (1 —i—x)l/ 2, where x = — (2 V(z) — 1, and can be represented as a Taylor series

(1+x)/2 = Zcm . (A.15)

In the above, the expansion coefficients c,, correspond to those of (14 x) 1/2 and their exact

values are not required for the remainder of the proof. Using the above Taylor series, one

178



A.2. LINEAR GUP OPERATOR

can write Eq. (A.14) as

Po :7% i em (—2V5—1)". (A.16)

m=0

In the above, the parenthesis on the right hand side, can be expanded in terms of the bino-
mial theorem

m
(a+b)" =Y (’") " p with a,bER, (A.17)
g=0 \4
where
m m!
= (A.18)
(Cl> (m—q)'q!
Using the above binomial theorem, one can rewrite Eq. (A.16) as
h & o (m -
Po=7 X cn) ( ) (~95)" (1) (A.19)
m=0 g=0 q

Since the identity operator commutes with every other operator, i.e., [1, (V(z))r] = 0 in this
case, where r € NU {0}, one can rewrite Eq. (A.19) as

ha o - -
Po=7 Y en ), (’Z) (=07 ()" (=v5)" . (A20)
m=0 ¢g=0

In the BEC considerations, eigenfunctions of a three dimensional particle in a box |yy) are
considered, where the eigenvalues of the operator —V% turn out as

~V§Wn) = kg [ W) (A21)

where k2 = k,%x + k,%y + k%z = (n2 + n% + ng) Therefore, by squaring the operator —V%,

LZ
one obtains

— (k2)° [wn) - (A22)

Similarly, for all other powers r € NU {0} of the operator — V3, it can be proven by induc-
tion, that

(=V5) Iwa) = (k3)" [wa) - (A.23)

179



A.3. GUP CORRECTIONS

Having all necessary ingredients, one can now use the operator from Eq. (A.20) on the
eigenfunction |yy,), in order to obtain its eigenvalue as

o 3 () =0 ()" (-98)"
(1) 0 (" 6)" )
cmz( ) (1) (= 1) [y}

q=0

Po ’Wn

s

i
(e}
AN

s

>

m 0

Il
o
<

m
m
m

3
gk

Cm (62 k2 — ) |Wn)

s

Il
o

(1+E28 -1 >”2 )
(

€2k2)1/2
)1/2

>t lermlsr ~| S ler e\lm ler

—~
?\T‘
=18

V) - (A.24)

To compute the eigenvalue of the operator pg, found in the linear term in GUP, one uses
operators po and p(% consecutively on the state |yy). It reads as

pg |l|fn> = p(z) Po |\|fn>

=12 (12)"” v - (A.25)

To the best of one’s knowledge, this is the first time that the eigenfunctions of the
pg operator in three spatial dimensions have been found by the above method, thereby
providing a simple solution for future research in QGP involving a linear GUP.

A.3 GUP Corrections

The QG corrected density of states is obtained in a similar way as it is obtained in
standard theory. In the standard theory, one considers the continuum limit and the disper-
sion relation €(p) (classical or relativistic). The number of particles, and by extension the
density of states in three dimensions, are then obtained as

V (e} V (e} (o5}
o | a3, 3. 245 —
N/dn_(znh)3/() dp_ﬁ/o kdk_/O g(e)de, (A.26)
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where p = hik and d®p = 4np>dp were used. In the last equality one uses the relevant
dispersion relation to obtain the corresponding density of states. By using the modified
dispersion relations from Egs. (3.23) and (3.36), one obtains the QG corrected density
of states for non-relativistic and relativistic particles, respectively. Both, k> and dk are
modified, by expressing k in terms of the particle energy € from Eq. (3.23) for the non-
relativistic case, and from Eq. (3.36) for the relativistic case, in the continuum limit (k, —
k and €, — €). For convenience, the linear and quadratic GUP corrections were considered
separately. Considering both contributions simultaneously would make the results change
by a numerical factor of O(1) in front of the quadratic term.

A.3.1 Quadratic GUP

For the quadratic QG corrections (o0 = 0), k is obtained from Eqgs. (3.23) and (3.36), by
solving a quadratic equation for k%(€). The solutions read as

0B [— 1+£+/1+40 Bme} , non-relativistic,
iz = 1 g2 (A27)
1072 —1£4/1+20p (; —m? 02> , relativistic.

Each of the above cases gives rise to 4 solutions. However, in the following, only physically
relevant solutions are considered. Namely, ki > € R and ki » > 0, since it is the radius of a
sphere in k—space. This reduces the number of solutions to just 1 for each case.

To obtain the quadratic QG corrected measure dk, one computes the derivatives of Egs.
(3.23) and (3.36) (for oo = 0) with respect to k, and expresses dk as

de . . .
Wk 10BRAE , non-relativistic,
T
%= (A.28)
ede o
R k+10BRA I3 relativistic.

To obtain the density of states with quadratic QG corrections, one plugs the solution
for k from Eq. (A.27) in Eq. (A.28), such that the measure is now completely dependent
on €. Finally, one plugs Eqs. (A.27) and (A.28) in Eq. (A.26) to obtain the quadratic QG
corrected densities of states from Egs. (3.24) and (3.37) (for o = 0) for non-relativistic and
relativistic particles, respectively. Note that a perturbative approach was necessary to obtain
the quadratic QG corrected densities of states, where terms of order equal to or higher than
O(B?) were ignored.

A.3.2 Linear GUP

To obtain the linear GUP corrections to the density of states, a procedure, similar as
for quadratic GUP corrections, was followed. For the linear QG corrections (f = 0), & is
obtained from Egs. (3.23) and (3.36), by solving cubic equations for k(€). This gives rise
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A.4. EXAMPLE OF AN ALTERNATIVE DERIVATION OF QG CORRECTIONS

to 3 solutions for each, the non-relativistic case and the relativistic case, which read as

4

1 .
o [1—cos (@(a)) +v/3sin(p(w))]

1 )
k=1 ——[1-cos(p(@) - V3sin(g(@)] (A29)

| oo 142 cos(0(@)]

where

, non-relativistic,

4
1 JmeV1—5402
5arctan<6\/6(x me 540 me)

1—10802me

o) = (A.30)
| Zma\/i—;—mzcz\/1—27062<i—§—m2c2>

— arctan 5 , relativistic.
3 1 —5402 <%—m2c2>

\

Out of the above 3 solutions of Eq. (A.29), only the first is physically relevant, since the
second solution is negative, and the third solution diverges in the limit @ — 0, implying
large QG effects, which are not observed. This reduces the number of solutions to just 1 for
each case.

To obtain the linear QG corrected measure dk, one computes the derivatives of Eqgs.
(3.23) and (3.36) (for B = 0) with respect to k, and expresses dk as

de e
YT s non—relatIVIStlc,
k=4 " " (A31)
ede

relativistic.

h?c2k—3ah3 2k’

To obtain the density of states with linear QG corrections, one plugs the solution for &
from Eq. (A.29) in Eq. (A.31), such that the measure is now completely dependent on €.
Finally, one plugs Egs. (A.29) and (A.31) in Eq. (A.26) to obtain the linear QG corrected
densities of states from Eqs. (3.24) and (3.37) (for B = 0) for non-relativistic and relativistic
particles, respectively. Note that also here a perturbative approach was necessary to obtain
the linear QG corrected densities of states, where terms of order equal to or higher than
O(a?) were ignored.

A.4 Example of an Alternative Derivation of QG Corrections

Due to the complexity of the approach to obtain the density of states in Ref. [123],
only quadratic QG corrections (o0 = 0) for the non-relativistic case are considered in the
following. For a particle in a box in standard theory, one can define a dimensionless energy
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variable €* as

— 2 2
€ =n"=ni+n,+n; = P
To introduce QG corrections in the above, one must solve the quadratic equation, from Eq.
(3.23) (ov = 0) for n% = n)zc + ng + ng (see also the non-relativistic case from Eq. (A.27)).
The solutions read as

(A.32)

2 L?

In what follows, only the physically relevant 4 solution is considered. For the — solution,
the right hand side of Eq. (A.33) is negative, and hence n imaginary, whereas it is required
that ny,ny,n, € Z.

The dimensionless energy in standard theory for a gas of N such particles is a sum of
single particle dimensionless energies €*, given by n%, where r € (x, y, z), and reads as

3N 2
2mL-E
2 %
E n, = —h2n2 =F y (A34)

where E = €,, + €y, + --- + €p, is the sum of all single particle energies and E* = &} +
€5 +--- + &y the sum of all single particle dimensionless energies. One follows the same
procedure, using the QG corrected dimensionless energy from Eq. (A.32). It turns out
that a perturbative approach is necessary, where a Taylor expansion up to second order
V1+x~1+x/2—x?/8is used. The sum from Eq. (A.34) then reads as

N, 2mVPBE 20BmPVREZ
Zlnr 7 R v e O (A.35)
r=

where E2 = 8,211 + 8,2,2 + -4 SIZ,N is the sum of squares of all single particle energies and
V?/3 = [2. Ej is related to the total energy E through E> = E2+2E2 = 8%1 + 81212 4+
3121,\, +2€n, €ny +2€n, €ny + -+ 2€p, En, - -, Where E,% 1s the sum of all mixed terms.

To compute the number of microstates up to some arbitrary energy, one makes use of
the formula for a volume of a d-dimensional sphere
/2 ,

Vy(R) = —— R4 | (A.36)
r'(4+1)

and applies it to E* space. One considers n> > 0, so just the upper half of a sphere remains.
Each degree of freedom of each particle (spatial degrees of freedom have been already
integrated out in V'), contributes one dimension in the dimensionless energy phase space.
Therefore, d = 3N and R = /E*, and the number of microstates turns out as

S D B S
2
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A.4. EXAMPLE OF AN ALTERNATIVE DERIVATION OF QG CORRECTIONS

One then plugs Eq. (A.35) in the above to obtain

3N 3N
" 2 (2mVPE  20BmPVRE?\ 2
£(N,V,E) = (_> o my"E_20Bm VITE; (A.38)
2 F(T + 1) hr hr
The number of microstates in a spherical shell of thickness A is obtained as
JdX(N,V,E)
I'(N,V,E;A) = ——=———FA
(N.V, ) oE
3N
A w2 %4
o E (% . 1)| 23N 73N j3N
w 1-20Bm (E-2E, %)
x [2mE —20Bm? (E*—2E2)] 2 SL . (A39)

1—IOBm<E 2E2>

On the other hand, one can obtain the number of microstates in an energy shell with
thickness A, by using the phase space integral I'(N,V, E) = @/, where @y is the normal-
ization of the phase space, which is of main interest of this consideration, and

m:/dSNx/d3Np:VN/ 1 /d31v
2m<Ef§A)<ZW 2<2m

N
_ynA A 2rmmE) 2

E (1) —T(N,V,E)ay . (A.40)

One then compares Eqgs. (A.39) and (A.40) to obtain

3N
Wy = 3(2 mh) , (A41)

[1 —10Bm (E—z“j;—%)]TNl [1 —20Bm (E 2Emﬁ)}

which is valid for an arbitrary number of particles N. In the thermodynamic limit, where
N — oo, Eq. (A.41) reduces to 0y = (27h)*". In the case of a BEC, the relevant case is
N =1, where

(2nh)3

_— A42
1—-25Bme’ ( )

My =

where € is again a single particle energy. It turns out that T'(N = 1,V,€) = g(¢) Note that
the density of states, derived using the modified normalization of the phase space integral,
is identical to that, obtained by using the method in Appendix A.3 for quadratic GUP.
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Appendix B

21-cm Cosmology

B.1 Standard Theory

In this Appendix, the main features of the 21-cm cosmology are briefly reviewed. First,
note that the 21-cm line is associated with the relative orientation of electron and proton
spins (anti-parallel for the singlet level with lower energy E4| and parallel for the triplet
level with higher energy E44). This gives rise to a hyperfine energy splitting between the
two energy levels of the 1S ground state of the hydrogen atom. The corresponding en-
ergy gap Exy = Ey — E4 is measured at E>; = 5.87ueV, that of the absorbed or emitted
photons in consideration, which corresponds to a wavelength A7 = 21 cm, or frequency
V4" = 1420MHz. Due to this 21-cm transition, neutral hydrogen after the epoch of re-
combination, with redshift z < z,., can act as a detector of the background photons that
have been produced at higher redshifts. In the ACDM model, such a photon background
is produced by thermal radiation of the CMB, with temperature Tcyp(z) = Temp,o (1+7z2),
where Teypo = 2.725K ~2.35 x 10~*eV /kg.

The frequency of the 21-cm transition falls in the Rayleigh-Jeans tail, where the inten-
sity Iy o< T, since Ep| < kpTemp(z) for z S zpee. To study absorption and emission of light,
one can therefore use the integrated radiative transfer equation (in a rest frame) written in
terms of temperature [163, 267]

Tp(w)=Ts(1—e ™)+ Tye ™, (B.1)

where Tj(Ty) is the observed absolute brightness temperature, T the so-called spin temper-
ature, defined by the ratio of the atomic population in the excited state n, and the ground
state state np, given by

n _ B
M2 _ 82 5t | (B.2)
ni 81

where g5 /g1 = 3 indicates the ratio of the statistical degeneracy factors of the two hydrogen
hyperfine levels and 7y is the optical depth, defined as [182, 163]

_ by h N
Ty = /ds 621 (1 —e kBTS> O(V)no ~ oy (ﬁ) (%) o(v) (B.3)

in the case of a hydrogen cloud. In the above, ¢(Vv) is the line profile, which is, in general,
described by a Voigt function, normalized as [ ¢(v)dv = 1, ds is the line element between
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B.2. MDR MODIFICATIONS OF THE EINSTEIN COEFFICIENTS

the source and the observer, ng is the number density of neutral hydrogen, Ny; = [dsng
is the column density of neutral hydrogen and G5 is the absorption cross-section for the
21-cm transition. The latter is defined as [182]

— (B.4)

where A, is the Einstein coefficient for spontaneous emission. A relevant quantity in con-
text of the 21-cm cosmology is the brightness temperature, defined as [163, 182, 267]

Ts(z) — Ty(z) Ts(z) — Ty(z)

Ti(z) =8Tp(z) = 1Tz (1—e™™) W

Qsh?\ [ 015 \'2/ 14\ [ T(2)
_23mK(1+83)xH1(z)(0'02)(thz) (T) {1_T5(Z)]’ (B.5)

where Qph? = 0.02226 is the baryon abundance, ,, h? = 0.1415 the matter abundance
[268], &p the baryon overdensity, x; the fraction of neutral hydrogen and 7y(z) the effective
temperature of the photon background radiation at frequency v21(z) = V47" /(1 +z). In the
ACDM model 7y(z) coincides with Tepp(z). The above 21-cm brightness temperature
T»1(z) is expressed relatively to the photon background at redshift z and can therefore be
negative as well. The spin temperature Ts is related to the kinetic temperature of the gas

Tgqus as
1—32“—%‘(1— TV). (B.6)
Ts I +x¢+xg Tgas

In the above, the coefficients x, and x4 describe the coupling between the hyperfine levels
and the gas. They are characterized by the fact, that for x, +x¢ > 1 (limit of strong cou-
pling), it follows Tg = Ty, While for xo, = x. = 0 (no coupling), it follows Tg = Ty, which
implies that there is no signal.

B.2 MDR Modifications of the Einstein Coefficients

Considering a gas of atoms, MDR modifications of absorption, spontaneous emission,
and induced emission are explored. Such processes occur when background radiation with
specific frequency passes through the gas. This in turn provides a mechanism to explore
MDR modifications of the optical depth Ty. In the subsequent considerations, the procedure
outlined in Ref. [269] is followed.

If there are N, atoms in the higher energy state with E;, the atoms will spontaneously
decay to a lower energy state with E; and emit photons with a specific frequency v =
(E; — E1)/h. The transition rate for spontaneous emission is then written as

Wy, =A21 N2, (B.7)

where Aj; is the Einstein coefficient for spontaneous emission. Note that here 1 and 2 refer
to the lower and higher energy states of the atomic transition, respectively, and not as a
subscript for 21-cm.

On the other hand, if there are N atoms in the lower energy state, and they are exposed
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to radiation, which follows a MDR modified thermal spectrum, given by pypr(v) = p(V)R
(see Eq. (4.7)), photons with frequency v will be absorbed, and a fraction of these atoms
will transition to the higher energy state. The transition rate for such induced absorption is

Wi2 = B2 N1p(V)R, (B.8)

where B, is the Einstein coefficient for induced absorption and R the MDR modification
of the thermal spectrum.

There is also a third possibility. If there are N> atoms in the higher energy state, and
they are exposed to radiation, which follows a MDR modified thermal spectrum, given by
pmpr(V), photons with v will induce emission of new photons with the same frequency,
originating from the induced transition of a fraction of these atoms to a lower energy state.
It turns out that such photons travel in the same direction as the incident radiation. The
transition rate for such induced emission is

Wi, =By Nap(V)R, (B.9)

where B»; is the Einstein coefficient for induced emission. The total transition rate for
emission is the sum of the spontaneous and induced emission transition rates

War = W3, + Wi, = N2 (A21 + B2 p(V)R) . (B.10)

The principle of detailed balance states that in thermal equilibrium, the emission and
absorption rates are equal, i.e., W1 = Wj,. Using this, as well as Egs. (B.2), (4.8) and
E = hv, one obtains the ratio of the Einstein coefficients

Aoy - 87'Ch\/3
B,y 3

R, (B.11)

and the ratio of induced absorption and emission coefficients

B _ &

(B.12)
By &

From Eq. (B.11), one can see that while the ratio of the Einstein coefficients is modified,
it does not provide explicit information on how the individual coefficients are modified.
However, Egs. (B.7), (B.8) and (B.9) suggest that only the B coefficients are modified by
R, and that the A coefficient remains unmodified, since

1
BiyocByjos 5 and Ay of f(R). (B.13)
In the following, it is shown that the absorption cross-section 6 does not depend on R

as well. The driving equation to describe absorption and emission of radiation in a gas, is
the radiative transfer equation, written in the differential form as

di,
= (V) B.14
dS OL(V) Vo ( )
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where Iy = cp(V)R = Ipy R is the spectral intensity, Ipy the unmodified spectral intensity
and o(v) the absorption coefficient. The emission term, expected in Eq. (B.14), is omitted,
since only information on absorption is required to obtain 67;1. The absorption coefficient
o(Vv) is related to the absorption cross-section G| as

a(v) =n16210(V) , (B.15)

where n; is the number density of atoms in the lower energy state. By plugging Iy = lyy R
in Eq. (B.14), one finds that the same radiative transfer equation holds also for Ipy, since
R # f(s), and reads as

dloy
— = —0o(V) Iy . B.16
ds ( ) ov ( )

The power of the incident beam with frequencies between v and v + dv is absorbed by
N; atoms, and reads as

—AP =hvWi6(v)dv =hvBia2Nip(V)R ¢(v)dv, (B.17)

where AV is the energy of the absorbed photon, Wi, the absorption transition rate, given by
Eq. (B.8), and ¢(V) the line profile defined in Eq. (B.3). Writing the number of atoms in
the ground state as N1 = n1 A As (confined inside a volume A As), and the thermal spectrum
p(v) in terms of spectral intensity /,, one obtains

hv
—AP = —BjoniAAslyy R ¢(V)dV . (B.18)
C
By the definition of the spectral intensity, it is known that f% — dé%. Therefore one
can rewrite Eq. (B.18) as
d]() hv
i = o mBRROM) oy . (B.19)
s c

Comparing the above equation with Eqs. (B.16) and (B.15), one obtains the absorption
cross-section, which reads as

h
O] = %BlzR . (B.ZO)

By using Egs. (B.12) and (B.11) in the above, one can see that the factor R cancels, and the
final expression for the absorption cross-section reads as

, (B.21)

which is identical to Eq. (B.4). One can see that the above absorption cross-section does
not depend on R and therefore, MDRs do not modify the optical depth Ty.
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Appendix C

Friedmann Equations

C.1 Derivation

In the following, a detailed derivation of the Friedmann equations is provided, and
follows the steps from Ref. [125]. The main assumptions of the holographic principle are
that the entropy of the apparent horizon is that, given by Eq. (4.29), while the temperature
of the apparent horizon is given by [270, 271]

Khc

T = C.1
Yrks (C.1)

where kK = (1/2v/—h) d.(v/—h h*@9p7) = —(1/74)(1 — (¥4 /2H 7)) is the surface gravity
of the apparent horizon, i = det(h°?) and 7, the radius of the apparent horizon. The location
of the apparent horizon is obtained from hed 9.7 9,47 = 0, and reads as [270]

. — (C.2)

2

where H = d/a is the Hubble parameter. As usual, one assumes that the matter in the
Universe is a perfect fluid, and is described by the energy-momentum tensor, which reads
as

T = (P55 )ttty + Py (€3)

where u,, is the four velocity, p the matter density, p the pressure and g,y the space-time
metric of the (n+ 1)-dimensional FLRW model (see Eq. (4.33)). The energy conservation
law, i.e., T" \\’, =0, for a perfect fluid gives rise to the continuity equation

p+nH<p+C£2>=0- (C.4)
The Friedmann equations, in context of the holographic principle, are obtained by consid-

ering the first law of thermodynamics for the matter content inside the apparent horizon,
which reads as

dE =TdS+WdV , (C.5)
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where E is the total energy inside the apparent horizon, given by E = pc?V (here, V is the
volume of an n-dimensional sphere, given by V = Q, 7%, with Q, = n"/2/T'(n/2+ 1) and
an area A =nQ, fz_l) and W the work density, defined as [272]

2

1

W=——T%y==(pc*—p) . (C.6)
2 2

Given the above information, one can obtain the first Friedmann equation, by explicitly

writing all the terms from Eq. (C.5). Using Eq. (C.4), one can write the energy differential

as

dE = nQ, 7t 'pctdiy —nQ, 75 (p* +p)Hdr (C.7)

where dV =nQ,, f:{_lde has been used. The second term in Eq. (C.5) can be written using
Egs. (4.30) and (C.1), and reads as

he (1 f’A > kBC3f/(A)

TdS = — -
2TEkaA 2HfA 4hG

n(n—1)Q, 7 2dFy . (C.8)

Finally, the third term in Eq. (C.5) can be written using Eq. (C.6), and reads as
1 e -
Wdv = 2nQ, 7y Lpc?—p)diy . (C.9)

By plugging Egs. (C.7), (C.8) and (C.9) in Eq. (C.5), one obtains the first Friedmann
equation, which reads as

8nG . ke,
—=T (H%):(H—a—cz)f(f\)- (C.10)

n—1

To correctly derive the above Friedmann equation, one must consider #4 = 0, since the
apparent horizon radius is assumed to be fixed in an infinitesimal time interval, which con-
strains the possible equation of state to p ~ —p¢?. This must also be taken into account
for terms including (pc? — p). By integrating the first Friedmann equation, given by Eq.
(C.10), while using the continuity equation, as given in Eq. (C.4), one obtains the second
Friedmann equation, which reads as

(C.11)

8nG  *(nQ,)! , dA
nn—1) P nn—1)Q, /f A)

The Friedmann equations, obtained in Egs. (C.10) and (C.11), are presented in the main
text as Egs. (4.34) and (4.35).

After plugging f'(A) from Eq. (4.31) in Egs. (C.10) and (C.11) for n = 3 spatial
dimensions, one obtains the QG modified Friedmann equations, which read as

p . kc2> B* 1
—AnG(p+5)=|H—— | = C.12
<p 62> ( a? 2 A+(X*A]/2—\/A2—|—2(X*A3/2—|—(06*2—B*)A ( )
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and
—87.5Gp:—47tc2 Bz u
3 2A <A+oc*A1/2—\/A2+20c*A3/2+(0c*2—B*)A>
1 2 1 21 o 1 3o —2(a*?—f)
|l oS —— s _
Te A—’_Oc 3A3/2+ < 3A+3(O(*2—B*) Al/2 (a*2 B*) )
*2+2B*
(06*2 B*)>
1
O{’*B* * *2 * 1
+—(0°*2—B*)5/2 In (oc + (o™ —P )m
1 1
*2 _ R * *2 _ Rx) _
+4/ a2 - \/1+20c A1/2+(oc B)A>]
+C,

where C is an integration constant. C is determined by considering the boundary conditions
in the vacuum energy (dark energy) dominated era, where the energy density goes to p =
Pyac = A, as the area of the apparent horizon of the universe goes to A — oo, and reads as

871G o[ a?+2f o' . 2 _ g
C= 3 A+ | s G g of +y /a2 =B ) | . (C.14)

C.2 C(lassical Limit

In the following, the limit for vanishing GUP parameters, i.e., o*, f* — 0 is consid-
ered, in order to verify if the standard Friedmann equations can be obtained. For this, one
takes the truncated (for x < 1) Taylor expansions v/1+x =~ 1 +x/2—x*>/8 and In (1 +x) ~
x—x%/2, i.e., up to second order, as required. By second order, one means of course
that all terms up to those o< o;*> and o B* are retained and higher order terms are ignored.
Here, both GUP parameters are considered small simultaneously, as they are proportional
to Planck length and its square respectively, and therefore in the limit /p — 0, which is
required to obtain standard results, they both approach zero concurrently. In this limit, the
first QG modified Friedmann equation from Eq. (4.36) reduces to

—4nG(p+C£2) <H—kaiz>

2., ke?
B* <H +aL2> oo
87EC2 ¥ k 2 1/2 B k 2 1/2 (W{_B*) ke
W g (i) 0 g (k) - U ()
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T ym (HAEES ) + 00, B2)

= (H_ )fb\&?\&w (C.15)

while the second GUP-modified Friedmann equation from Eq. (4.37) reduces to

2 * 3/2 2 *2 *
SRG(p—A)%l(H2+%)+3(OC (H—i—]l) +ZTEC( +2B%)

3 2 4m)/2¢ 3 (a2 —B*)?
1/ 5 kc? (Am)\2cat [, ke? 1/2 ch( o2 +2B%)
+ 3 (H + a2 ) +6(0€*2—B*) H™+ —- a2 3(a*2_B*)2
* 1/2 *2 * 2
o (ip KON @B (1 kS
8 <1+ (4m)/2c (H * a? ) + 81 c? H a?
o2 kc? 3 o
 8mc? <H2+?) O™, B 2)>
N 271',C20(,* B* (a*z_ﬁ*) (H2+ E)I/Z
(2= B*)>/2 | (4m)1/2 ¢ (arr+ /02— B¥) a?
V2= pr ot <H2+ﬁ>1/2
o+ Oﬂ*z—B* (475)1/26 a2
(a2 =B*) (0 ke B o2 2, ke? 3 2
+ 81 c? A a? 81 c? B a? +0(a”, B)

2(0(.*2—B*)3/206*—|—20(.*4—3(X*2[3*—|—B*2 (H2+ kc2)

8 (22 + 205 /o2 — B* — B¥)
+ 0(06*3, *2)

_2m(a?+2BY)  2m(a?+2pY)
302 —F)P— 3 (a2 Pp—
(06*3— a * o2 — B*>

3 (o2 —B) (oc*+ \/m>
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5 (a*2_ B*) * ok — B* _ B*) ) kcz
+l et (H - ?)
6 (G*Z_ B*) *Jok2— B* o B*)
+0(a, BY)
2
~H>+ kiz . (C.16)
a

One arrives to the last line in the above, after some straightforward but tedious algebra. To
obtain first order GUP corrections in o* and * to the Friedmann equations, one must use
the Taylor expansion up to fourth order to gather all required terms.
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Appendix D

Quantum Equivalence Principle

D.1 Details on Particle Statistics

In the following, a derivation of the Klein-Gordon equation in curved space-time, from
the effective Hamiltonian for bosons in curved space-time in the Feshbach-Villars formal-
ism (see Eq. (5.1)), is presented. The eigenstates of this Hamiltonian are represented by a
pair of scalar functions ¢ and 7 as

¢
Y= . D.1
M ®

The Hamiltonian from Eq. (5.1) and the above wave function satisfy a Schrodinger-like
equation

HY =ihdo¥ . (D.2)

In the above, the partial derivative with respect to time is identical to the covariant deriva-
tive, i.e., dg¥ = VP, since ¥ consists of scalar functions. This identity is taken into account
in the following steps.

The Klein-Gordon field in this formalism is defined as ® = @ + . To see that the above
formalism indeed represents the Klein-Gordon equation in curved space-time, one plugs
Egs. (5.1) and (D.1) in Eq. (D.2), in order to obtain two coupled differential equations,
which read as

2 2
gif%qwgo"%zviqwmc%:ih\/gﬁwp, (D.3)

and

i PV S VoV,

®—mc?y=ih\/g% Voy . (D.4)
2m mc

—8
The above pair of equations represent a coupled system of equations for ¢ and . However,
it is required to obtain the equation of motion for ®, since it is defined as the Klein-Gordon
field. To achieve this, Eqs. (D.3) and (D.4) can be used to obtain additional relations
between ¢ and . Egs. (D.3) and (D.4) may then be added together and derived over time
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to obtain a useful identity, which reads as

mc*(Q—x) =ih\/g0 Vo® — mc*(Vop—Vox) =ih/g® VoVod@.  (D.5)

In the above, the identity Vy g*¥ = 0 has been used. Furthermore, subtracting Eq.(D.4)
from (D.3), one obtains another useful identity, which reads as
i PViV; VoV,

J¢+2g0i7®+mcz¢=ih\/g00 (Voo — Vo) - (D.6)

8

By plugging Eq. (D.5) in Eq. (D.6) and after a bit of algebraic manipulation, one obtains
the Klein-Gordon equation in curved space-time as [4]

2.2
<g‘“v V.V + mh_2c> ®=0. (D.7)
As expected, in the non-relativistic limit and in flat space-time, the standard quantum me-
chanical results are obtained. This shows that Eq. (5.1) is indeed the right Hamiltonian for
a bosonic particle in an arbitrary curved space-time.
By identifying masses mg in the Hamiltonian from Eq. (5.1), and following the above
procedure, one obtains a modified Klein-Gordon equation in curved space-time, which
reads as

2.2

(guV(ma) V. + mgzc ) D=0, (D.8)

where V,, = ((1/c) Vo, /mg/m; V), which is consistent with the quantum version of Eq.
(D.14), when multiplied by i h.
The Hamiltonian from Eq. (5.2) satisfies the Schrodinger-like equation

HY = ih ¥, (D.9)

where W is the Dirac spinor wave function for fermions in this case. By plugging Eq. (5.2)
in the above, multiplying both sides by y° and using Y?y" = g% from Eq. (5.4), after a
bit of algebraic manipulation, one obtains the Dirac equation in curved space-time, which
reads as [5]

(iny"Dy—me)w=0. (D.10)
It again follows that in the non-relativistic limit and in flat space-time, the standard quantum
mechanical results are obtained.

By identifying masses mg in the Hamiltonian from Eq. (5.2), and following the above
procedure, one obtains a modified Dirac equation in curved space-time, which reads as

(ih«_yﬂb,,—ch)\on, (D.11)
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where D, = ((1/c) Do, \/mg/m; D).
The above demonstrates that both the Klein-Gordon and the Dirac equations, relevant
for spin 0 and spin 1/2 particles, respectively, can be written as effective Hamiltonians for

Schrodinger-like equations.

D.2 Modification of Special Relativity

One first considers the relativistic dispersion relation and its non-relativistic limit. From
the non-relativistic limit of the energy-momentum dispersion relation one finds

2 2
E = p2c2—i—m2c4%mc2+p— — ch2+p—, (D.12)
2m 2my
where one identifies the m; and mp as seen in Ref. [238]. One can trace back the steps,
and in a straightforward manner identify where masses mg, enter the standard relativistic
energy-momentum dispersion relation, which then reads as

E2="R 22 2t (D.13)
my

Note that the form of Eq. (D.13) is necessary to obtain the non-relativistic limit of Eq.
(D.12). Since there is no corresponding non-relativistic relation for massless particles, there
is no equivalent of Eq. (D.13) for photons. Therefore, the issues related to the equivalence
principle and its quantum counterpart do not apply to massless particles. To satisfy Eq.

(D.13) and the Lorentz scalar for the four-momenta p*p, = m12e ¢?, the four-momentum

must take the form of

E

pr = (—, @p) , (D.14)
C my

where p = my vy is the relativistic momentum, 7y the Lorentz factor and E = mgc?Y the
relativistic energy of a particle, equivalent to Eq. (D.13). By using the definitions of E and
p containing the Lorentz factor vy, and plugging them in the Lorentz scalar product for four-
momenta p“p, = m12e 2, one can immediately see that the Lorentz factor Y also contains a
ratio of inertial and rest masses, and reads as

1

V= —F—. (D.15)

_mpy?

mp c?
The above modified Lorentz factor can be interpreted in terms of a modification to the time
dilation and length contraction of a relativistic particle, and implies the modified Lorentz

boost transformation from Eq. (5.10).

To define the four-velocity, one can write the four-momentum from Eq. (D.14) in terms
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of the four-velocity as

1 cdt 1d
p”z\/mc(,/@%zv) :\/m_RmIC<_ZT71/ﬂ_2) = /mgmy cu,
my c c

mp c dT
(D.16)

where T represents the proper time. In the above, factoring out the masses appears as such
that u* u, = mg/my is satisfied. From the above, one can read out the zeroth component of
the four-velocity as

1 cdt mg cdt)? MR »
= IR — ) == ) D.17
c drt my v ( drt ) my s ( )

Using the modified Lorentz transformation from Eq. (5.10) with the four-velocity de-
fined above, for a particle moving in the x-direction, one finds the composition law for
velocities

V= (D.18)

1 — Moy
mg 2

where v is the particle velocity in the initial inertial frame, v is the velocity of the boosted
inertial frame and V' is the particle velocity as measured in the boosted inertial frame.

D.3 Weak Gravitational Field and the Schwarzschild Metric

In the following, the formulation of the equivalence principle is generalized to curved
space-times, using masses mq. In GR, the motion of a particle in a background space-time
is described by the geodesic equation [253]

dZet L dxP dx®

— D.1
dr2 T o dt dt (D-19)

In the case of the weak field limit of GR, when g,y = My + A,y and |hw| < 1, and the
Newtonian limit for which dx'/ar < ¢dt/ar, one has ', = —0;100/2, and the above geodesic
equation reduces to

It (D.20)

~ —5 9ihoo

@1 cdr\?
2 T d2 2

To obtain the modified Ay, one must identify masses my, in ¢°x'/d> and ¢d//4z in the non-
relativistic limit. For the former, one considers Newton’s second law applied to gravity,
with identified m; and mq, which reads as

mia=—mgvVo, (D.21)
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where a is the particle acceleration, ¢ the gravitational potential and g = —V¢ the gravita-
tional acceleration. The acceleration a can be rewritten in component form as

d%x! mg

— =——00. D.22

dt2 m] 1 (I) ( )
The modified ¢d7/az factor is given by Eq. (D.17). In the non-relativistic limit y ~ 1, since
v2 < ¢%. To evaluate the small deviation (in this case of the 00 component) of the metric
from the flat Minkowski space-time, due to a weak gravitational field, one plugs Egs. (D.17)
and (D.22) in Eq. (D.20) to obtain
, MG 9 mg ¢

— _2 .

— = goo=1+hp=1+2—
mpg C mg C

hoo = (D.23)
One obtains the modifications for other components of the metric by relating them to hqp.
Because the equations in QEP considerations use a contravariant metric g"¥, one must ob-
tain the inverse of g,y. In the case of a diagonal metric, the inverse simply inverts the
diagonal elements. Therefore,

1 1
o__ 1 ,m0 (D.24)

go 142268 mg ¢’

since ¢ < ¢*. These results are then used to obtain the weak field metric in Eq. (5.14). It
turns out that every p? obtains a factor 1 /my in front (or equivalently, every v2 obtains a m;y
in front), every ¢ obtains a factor m¢ in front and every ¢ obtains a factor of mp in front,
which can be used as a rule of thumb to identify masses m,, in equations.

For a strong gravitational field, described by a Schwarzschild space-time, the general
solution for a covariant metric, before evaluating the integration constant K, can be written
as

(1+5) 0 0 0
-1
0o —-(1+5" o0 0
- D.25
S 0 0 20 (D22
0 0 0 —r2sin’0

The constant K is obtained in the asymptotic limit, where r — o and the gravitational field
is weak. This is exactly the weak field metric, considered earlier. Therefore, one can use
the result from Eq. (D.23) to compare to the goo component of the above Schwarzschild
metric. It follows that

e @%r:_@mz]”_ (D.26)
mpgr C mpg C
The inverse of the metric from Eq. (D.25), using the above constant, exactly corresponds
to the modified Schwarzschild metric in Eq. (5.16). Note that in the weak field limit of the
geodesic equation from Eq. (D.19) for the above metric, one obtains the second Newton’s
law from Eq. (D.21).
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D.4 Kerr metric

To obtain the additional integration constant L, due to the rotation of the central object,
the steps from Ref. [254] are followed. The general form of a covariant Kerr metric, before
evaluating constants K and L, can be written as [253]

(1+%) o o —KLr sin 0
2
0 -5 0 0
G = ’ e ’ . (D27)
~Khrsin’ 0 0 - (2417 KEL0) gin2g

where A = r? + Kr+L? and p> = r? + L? cos”@. Since the procedure in Ref. [254] uses
Cartesian coordinates, it is convenient to write the above metric in Cartesian coordinates as
a line element [253]

KI”3 Kr3
2 2 4.2 2\ 4.2
e (1+r4+LZZZ)C - (1_ GRS (RN R A )dx
KI’3 K”Zz
— (1= L 2 d 2 l———"* 14 2
< EEVECEEL ”"”) ’ ( r4+L2z2> )
2Kr3 2Kr3
Ly— drdx— L drd
BGEECE RS AR R LTy edidy
2Kr?z 2K 3
— a2 cdt dz — CEVEE RV EE (Ly—rx)(Lx+ry) dxdy (D.28)
2Kr?z 2Kr?z

— (Ly—rx)dxdz+

L
P+ 122)(r2 + I2) (Lx+ry)dydz,

(}’4 + 12 Z2) (}"2 + LZ)
where x = (r cos@+ L sin®) sin®, y = (r sin@ — L cos @) sin®, z = r cos® and r* — r? (x> +
y? 4+ 72 —L?) — L? 72 = 0. Note that the choice of the coordinate system in the above is such
that the rotational axis corresponds to the z-axis.

Following the procedure outlined in Ref. [254], one obtains the metric of a rotating
object in the asymptotic limit from the weak field Einstein equations (using g,v = My + Ay
with |h,y| < 1), which is later compared to the asymptotic limit of the metric in Eq. (D.28),
to obtain constants K and L. The weak field Einstein equations turn out as [254]

OYw = —2% o1 (D.29)
where
1
Vv = My — ETI;N h, h=nPf° hoo (D.30)

K is the Einstein constant and o7}y is the special-relativistic energy-momentum tensor which
describes the source of the gravitational field for a weak gravitational field. The Kerr metric
is stationary, which means that the temporal derivative in Eq. (D.29) vanishes, and one
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obtains
VY = 2% 0Ty - (D.31)

The general solution of the above equation reads as [254]

K 1
Yun(X) = r / R oT(X) d°X (D.32)

where X is an arbitrary location outside the gravitating object, X is the location inside the
gravitating object, over which the integral is evaluated, and R is the distance between the
two locations, defined as

R =(x'—X)?=r2—2x' X'+ X'X" (D.33)

where the Einstein summation rule is applied and > = x'x is the square of the distance of
the observer from the central object. Note that in this notation x' = x, x> =y, x> =z, and
X'=X, X>=Y, X3 =Z. Since all quantities must be evaluated in the asymptotic limit,

where X' /r < 1, one can write 1/R (as given in Eq. (D.32)) as

R Vi 2xxtXixi r 1

1 1 1 ¢
~o 42 (D.34)

The energy-momentum tensor of a distribution of matter, also known as a dust distri-
bution, is defined as o7,y = pc2 uy uy, where u, = Nyyu' is defined in Eq. (D.16). For the
case of a rotating body, which rotates around the z-axis in a Cartesian coordinate system,
the components of o7,y turn out as

mR 2
olopp=p—c",
mj

olo1 :pQ/@cvsin(pE 1/@%]})1 , (D.35)
my my
meg meg
()TOZZ—pH—CVCOS(pE A /—8T()2,
my niy

where p is the matter distribution density, v is the tangential velocity at the equator of the
rotating central object, assumed to be small v < ¢, and 8T01 and 8T02 are the unmodified
tensor components. Note that other tensor components vanish. Using the above energy-
momentum tensor and Eq. (D.34), one can write the off-diagonal components of the solu-
tion from Eq. (D.32) as

Ky 3 K X/ 3
=——% [ Yolp1d°X and =———= [ XoTpnd’X D.36
Yol r r3/ oZo1 and Y02 on 3 | Xolnd'X, (D.36)

where the axial symmetry of the system ensures that the 1/r terms and terms with other
coordinate components vanish. By choosing the z-axis as the axis of rotation, the special
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relativistic angular momentum reads

1
ﬂ:_/(x&”—y&m)&x. (D.37)
C

The axial symmetry of the system also relates the two terms in the above definition as
/X&”&X:—/Yﬁméngﬂ. (D.38)

Note that the energy-momentum tensor components in the definition of the angular momen-
tum are contravariant. To make this consistent with the previous steps, it is easy to show
the relations with the covariant energy-momentum tensor components 8T01 = —8T01 and
8T02 = —8T02. Using these relations, the second and third expressions from Eq. (D.35),
and Eq. (D.38), the solutions from Eq. (D.36) turn out as

Kcy [mp Kcx  [mg
Yo1 = _47'5}’3 m—IJZ and Yo2 = a3 EJZ . (D.39)

‘What remains is to evaluate is the Einstein constant k. To do this, one must first consider
the first integral of the geodesic equation

dx* dx¥
8V 4y 1, (D.40)
where, in this case, g,y is the exact Kerr solution from Eq. (D.27), for which one wants
to evaluate the constants. To obtain constant K, one compares the above result with the
Newtonian limit, all terms (1/r)? and higher in the above expression, are ignored. One
considers a geodesic trajectory for a particle orbiting the central object in the x — y plane.
After some algebraic manipulation of Eq. (D.40) and differentiating it over ¢ (see Ref.
[254], page 72 for more details), one obtains

d? /1 1 K
o= D.41
d(p2 (r) r 2027 ( )

where ¢ = r?d0/us is a constant of motion, related to angular momentum, for an orbiting
particle. According to Newtonian mechanics, the energy of an orbiting particle is constant
for any distance from the central object r, and reads as

mn”z GmgM
2 r

= const. , (D.42)

where one can clearly identify m; and mg. Assuming the particle is orbiting the central
object in the x — y plane, one can write the particle position vector as r = r(cos @, sin@)
and its angular momentum as J = r x p = \/mgmjc{Z, where p is the spatial part of Eq.
(D.16). Using the above, one can write J = I w = my r> do/d; 2 and differentiate it with respect

201



D.4. KERR METRIC

to @, which turns out as

2
d (1> I mg GM D43)

de2 \r) " r mg 022

By comparing Eqgs. (D.41) and (D.43), one can identify the constant K, which is exactly
the same as in the Schwarzschild and weak field cases (see Eq. (D.26)). Note that the
angular momentum, used to derive Eq. (D.43) corresponds to the angular momentum of a
test particle orbiting the central object and is different from the angular momentum, defined
in Eq. (D.37), which corresponds to the rotation of the central object.

To obtain K, one uses the first expression in Eq. (D.35) with Eq. (D.31), which turns
out as

V200 =2k p 2R 2 (D.44)
my

which corresponds to the Poisson’s equation for the Newtonian gravitational potential,
which reads as

Vip=4nGp. (D.45)

Note that the above Poisson’s equation does not get modified, since the m¢/my ratio would
modify it on both sides in the same way, which would then cancel. By comparing the above
two equations, one can see that

Yoo = e 270G 0, (D.46)

and by using the inverse relation of Eq. (D.30), the goo component in the weak field ap-
proximation turns out as

2
mpr Xc

=14+ —
500 + my 4G

¢:1+§ (D.47)

Precisely the same constant K appears in components g1y, g22 and g33 of the weak field
approximation in the Cartesian coordinate system. Since the constant K and potential ¢ are
known (see Eq. (D.26)), the modified Einstein constant K can easily be identified as

_mgmy 8nG

K= e oG D.48
my ¢t (D.45)

thus effectively modifying the Einstein equations as

1 mgmy 8TG
R,uv — ERg'uv = m—l% C—4 T,uv . (D49)

By plugging the modified Einstein constant from Eq. (D.48) in the expressions from

202



D.4. KERR METRIC

Eq. (D.39) and using Eq. (D.30), one obtains

1/2 1/2
mgm;"” 2G mgm;"” 2G x
mR cdr mR c r

At this point one can define the constant a = J*/M ¢. Using a and the above information,
one can write the line element of the metric of a rotating object as

2GM 2GM
ds2=<1—”ﬁ )czdtz—(1—@ )(dx2+dy2+dz2)

mrp c*r mr 2

me}/Z 4GM x

B me}/z 4GM y X
3/2 2 3
Mg

Wc—zﬁacdtdx—k acdrdy. (D.51)
R

Comparing the above line element with the asymptotic limit of the line element from Eq.
(D.28), when r — oo, one can identify the remaining constant L as

L=/"q. (D.52)
mpe

The obtained constants K and L are then plugged in the metric from Eq. (D.27), which is
then inverted to obtain the contravariant Kerr metric as seen in Eq. (5.18).
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