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ABSTRACT

We demonstrate that one of the phases of a light-cone lattice gauge theory with
an infinite number of colors exactly describes free fundamental strings. The lattice
spacing does not have to be taken to zero. Thus, exact rotation and translation

invariance can coexist with discrete space.
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1. Introduction

Many bsv_'ystems in statistical mechanics and field theory exhibit string-like ex-
citations. Superconducting fluxoids, domain boundaries in 2+1 dimensional mag-
nets, Nielsén—Olesen vortices and electric flux tubes in QCD are a few examples.
In many respects these objects are similar to the idealized objects of string theory
which have attracted a lot of interest recently. There are however very significant
differences. In particular, the existence of massless gauge bosons and gravitons
does not occur in these other systems. This raises the following interesting ques-
tion: can ideal string behaviour occur in a more or less conventional field theoretic
or statistical mechanical system. A related question is whether string theory can
be simulated on a computer which stores information in terms of local degrees of
freedom and evolves it according to near neighbor interactions on a discrete lattice,
as in lattice gauge theory. The purpose of this paper is to show that the answer
is positive. The basic premise is that for such a system to work it must have an
instability which would ordinarily exclude it as a sensible theory. Indeed, almost
éverything one might think of calculating diverges except for the spectrum and the
S-matrix. The nature of this instdbility is best understood by considering what the
typical string or world sheet looks like in space-time. We will begin by considering
the wave function of a string in the light-cone frame. The points of a closed string
are parametrized by ¢ running from 0 to 1. The parameter o is defined so that
the total longitudinal momentum P7% is uniformly distributed over o. Thus the
longitudinal momentum on an interval do is dPT = P*do. In what follows we will
need to regulate the string by chopping it into IV segments each carrying longitu-
dinal momentum P*/N. Each segment is replaced by an indivisible ‘parton’. The

regulated string Hamiltonian is
o 1 32 /- hy AP =\ 2
H:;m{ﬂ_(zhL (XGE+1) - X))} (1.1)

where P, (i) and X () are the transverse momentum and position of the i-th parton,

and P7(7) is its longitudinal momentum. In the limit N — oo the usual continuum



limit is recovered. Replacing P ' (i)/60 by the canonical momentum density I 1(o)
and 6X /60 by 8X 0o we arrive at
1
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The regulated string with 2N + 1 partons has 2N normal modes of oscillation. A
rough way to represent the theory with finite N is to truncate the modes with wave
numbers beyond N. Another way to describe the regularization procedure is to
say that the string cannot be subdivided into pieces with longitudinal momentum
less than 1/N. Consider next the ground state wave function of the string with
regulator N. It is a functional of X (o), ¥(X (5)). To construct a particular cut-off

representation of the ground state, we decompose X (o) into normal modes:

X'(o)=X! + Z(sz cos(2rno) + X} sin(27no)) (1.3)
n>0
and take into account the modes with wave numbers from 1 to N. The probability

distribution factorizes in the normal mode basis:
P(X}) = (=)' exp(—n(X})?/2) (1.4)
v

A typical string configuration can be studied numerically by first generating a
set of 2N x (D — 2) random numbers X} and X? and then plotting the string
as a parametrized curve in the transverse space. In the previous paper [1] we
have constructed a large number of closed strings in this manner. In fact, an
overwhelming majority of this statistical ensemble have similar qualitative features.

In pdrticular we would like to call attention to the following.

1. The string is smooth. As the number of modes increaseg there is no tendency
to develop small-scale structure in space. Transverse line curvature is a
particular quantitative measure of smoothness. In any number of transverse
dimensions greater than two the expectation value of curvature is completely

cut-off independent.
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2. The total length of string grows linearly with N. The entire string consists of
O(N) ‘loops’. The structure of a loop is roughly independent of N. Adding
modes simply adds more loops. Furthermoré, each loop occupies a fraction
~ 1/N of the parameter space ¢. Thus, in a fairly uniform manner the

individual loops tend to carry a longitudinal momentum ~ P*/N.

3. The size of the region in transverse space occupied by string grows slowly

with N. In fact, it can be shown that the rms radius of string grows as

Vieg N.

4. The string becomes space-filling in the limit N — oco. Since the total length
grows as N while the radius grows only as 1/log N the string tends to cover
the same region of transverse space many times. As we remove the cut-off,

the string passes arbitrarily close to any point in space.

In addition to observing all of the above properties numerically we have de-
rived most of them analytically relying only on elementary probability theory [1].
Obviously, these properties are very peculiar. The string is unlike any ordinary ob-
ject studied in a conventional field theory. Consider, for example, the distribution
of longitudinal momentum in the transverse space. The density of longitudinal
momentum is TF+, a component of the energy-momentum tensor. In conventional
field theory there exists a sensible distribution of longitudinal momentum. On the
contrary, in string theory the longitudinal momentum becomes uniformly smeared
over all transverse space. This leads us to the following speculation. Whatever
dynamics can lead a system to have ideal string behaviour must be unstable with
respect to creation of more and more string bits of lower and lower longitudinal

momentum so that eventually string fills all space.

A related point concerns the theorem of Weinberg and Witten [2] on the ex-

istence of massless spin-2 bosons. This theorem states that a theory with a well-

“behaved Lorentz invariant energy momentum tensor cannot generate gravitons

dynamically. How do various theories get around this theorem? In Einstein grav-

ity one actually cannot define a Lorentz invariant energy momentum tensor. As we
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have seen, the form factors of the fundamental string, although Lorentz-invariant
by construgtion, are not at all well behaved. For example, as shown in ref. {1], in
the light-cone frame the Fourier transform of T‘H" is non-zero only at the origin.
Therefore, it is possible that string theory uses its infinite zero-point motion to

allow the existence of gravitons.

2. Lattice Theory on the Light Cone.

In this section we describe a light-cone gauge theory due to Bardeen, Pearson
and. Rabinovici [3] which has free string-like excitations in the large- N, limit. This
theory has a parameter, u, which governs the average length of string in the ground
state. For p greater than the critical value y. the average length of string is finite
in lattice units. For g = p. the average length of string diverges. We will be
interested in the range p < p. where the theory is unstable with respect to infinite
growth of strings. This instability is similar to the behaviour of the fundamental
strings reviewed in the previous chapter. In fact we will show that, for p < pc, the
strings in this light-cone lattice theory are identical to the fundamental strings.

This exact equivalence does not require lattice spacing to be taken to zero.

We introduce the light-cone variables 2t = (20 4+ 2P~1)/V/2, 2= = (2° —
2P=1)/+/2, and z*, where i labels the D — 2 transverse directions. Following
Bardeen, Pearson and Rabinovici we replace the transverse space by a (D — 2)-
dimensional cubic lattice 7 with integer coordinates. On each directed link of the

lattice L there is a unitary matrix-valued variable which satisfies

Uij(L7$_’—$+) = U;i(—L,:E_,CI?+) (2'1)

In the light-cone quantization the variable z7 is treated as time. After passing to



the light-cone gauge A_ = 0 the gauge theory light-cone Lagrangian becomes

—/d (St (0 U(D)U(~1)) + Y ir(U(L)U(L2)U(Ls)U(La)) +
links plag

/dm*'zm — IR, 27) (R, x ')}
(2.2)
In the above formula, oriented links Ly, ..., L4 form an elementary plaquette of the
cubic lattice, the index yu refers to the 4+ and — directions and the lattice spacing
has been set to 1 for convenience. The longitudinal momentum current at each

lattice site is given by
J™(i) = 7 Ztr{T’" _U(~L) — (6_-U(L)U(-L))} (2.3)

where 1™ are the U(N;) generators normalized to ¢tr(T™7T™) = §™"/2 and the
sum is taken over all directed links I beginning at the site 7. To make the theory
tractable, ref. [3] relaxes the condition of unitarity. Thus the matrices U are
replaced by gM where M(L,z~,z%) are general N x N complex matrices which
satisfy

Mi;(L,z~,2%) = M}(—L,z™,z%). (2.4)

Upon quantization this rule translates into

Mij(L,2™,a%) = MJ(—L,27,2") (2.5)

where { does not act on indices but has a purely quantum meaning. In order to

restore unitarity, ref. [3] introduces the effective potential for M:
V(M) =p M; M* + g%\ M M; leleJ (2.6)

The speculation of ref. [3] is that the continuum limit of the U(N,) gauge theory

can be obtained by tuning g and A along a renormalization group trajectory, as
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the lattice spacing is being taken to zero. In this paper we are not interested in
that. Instead we will argue that, with no fine tuning, there exists a broad range of
parameters where this theory exactly reproduces fundamental strings. In terms of

M the Lagrangian reduces to

/d:c {>° tr(0uM(L)0*M(~L)) — V(M(L))+

links

g* > tr(M(L)M (L) M(Ls)M(Ly))+ (2.7)
plag

g’ /d:c"' Z |27 — 27 |J (7, 27) I (7,2}

For our purposes it is necessary to add other terms quartic in M which would be
trivial if gM was unitary. These are the plaquette-like terms tr(M*) shown in
figure 1. The trace is taken around all possible loops of length 4 and zero area. In
fact the second term in (2.6) is of this type. All other terms of this type reside on

pairs of links, L and K, beginning at the same vertex:
L= —g2\ / da= 3" tr(M(L)M(=L)M(K)M(~K)) (2.8)
LK

Using standard methods we derive the light-cone Hamiltonian

—y / ds™{ 3 tr(S MM (=L)+ X M(L)M(-D)M(I)M(~1) +
links
N Ztr (—L)M(K)M(=K)) = > " tr(M(L1)M(L2)M(L3)M(L4))-
plag

/d:v"z l2™ — &I (7@, 27 ) I (A, )}

(2.9)
The link fields may be decomposed into creation and annihilation operators:
o0
M;;( T/ k) exp(—ikz™) + B;rj(k) exp(ikz ™)) (2.10)
0
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which obey the commutation relations

[Ai(k), AL (0)) = [Bis (), Bly(0)] = 6b28(k — q) (2.11)

Each link is assigned a direction and Azj(k) creates a string bit which carries
longitudinal momentum k and points from index ¢ to index j along the link’s
direction. Similarly, sz(k) creates a bit pointing from j to 7 and opposite to
the assigned direction. An oriented string state is defined in the following way.
Consider an oriented connected loop I' consisting of links L;, with ¢ running from

1 to N. The Fock state associated with this loop is
tr{OV(L1,k1)...O(Ly,kn)}|0 > (2.12)

where O]L = 1/ZAJr or N¢ 1/2 BT depending on whether a given string bit points

along or opposite the assigned direction.

An important feature of the N, = co theory is that the Hamiltonian maps the
set of connected oriented closed st-rings into itself. This allows for the construction

of a single-string Schroedinger equation. For example, the term
L / dz™ ) " tr(M(L)M(-L)) (2.13)
L

gives rise to the string potential energy ~ pu E{V ki_l. The value of p gets renor-
malized by normal ordering the J - J term and the plaquette-like terms shown in
figure 1. The other Hamiltonian terms are capable of acting as kinetic terms which
locally displace bits of string. The reader can check this by applylng various terms

in the Hamiltonian to simple string configurations.

Below we are going to discuss in detail the lattice model in one transverse
dimension. Then the transverse plaquette terms do not exist and the Hamiltonian

consists of the potential terms, the current-current terms and the plaquette-like



terms. Each lattice state can be mapped into a function X (o) used in the light-
cone description of the fundamental strings. Let the string carry longitudinal
momentum k. Starting with an arbitrary lattice site, we identify it with X (o =
0). The first link is represented by a segment between ¢ = 0 and o = ki /kiot.
Thereafter, each link is represented by a segment with length in parameter space
proportional to its longitudinal momentum. At the point o; the function X(o;)
is given by the lattice coordinates of the corresponding site. Between site o; and

Titl, X (o) can be defined by a linear interpolation.

It is clear that, for sufficiently large values of the string tension u, the ground
state will be dominated by strings with small number of links, each one carrying
a significant fraction of the total longitudinal momentum. In this case we do not
expect a behaviour similar to the fundamental strings. As we decrease u it becomes
energetically favorable to have a larger number of links with smaller k. In fact, it is
clear that, for a sufficiently negative p, an instability develops which favors strings
of infinitely many links each one carrying infinitesimal k. Evidently, in this case
the o-axis becomes densely populated suggesting the possibility of a continuum
description in o-space. Indeed, from here on ‘continuum limit’ will always refer to

the continuum limit in parameter space, and not in real space.

In order to discuss this phase we need a regulator in the form of a minimum
allowed longitudinal momentum. Following ref. [4] we will think of the matrices
M(z~) as anti-periodic in the z~ direction. Then the k-space is discretized and
the zero-momentum links are excluded so that each link carries an odd integer
multiple of the minimum momentum k. The total length of string cannot
exceed kiot/kmin = N in lattice units. The limit N — oo defines our lattice string

theory.



3. Effective Hamiltonian and Equivalence to a Free Field.

We —-Wiilhl begin studying this model in the limit p — —oo. In this limit the
ground state and low-lying excitations consist of strings of maximum possible
length ktot/kmin = N. To solve for their wave fﬁnctions we use degenerate per-
turbation theory in the ‘kinetic terms’ of the Hamiltonian. It turns out that the
normal ordered current-current interaction has vanishing matrix elements between
the states of maximum allowed length. The reason is the fact that all the links
of the ground state string carry equal longitudinal momenta and the matrix ele-
ments of the current-current term are proportional to the differences of momenta
between adjacent links. The only terms in the Hamiltonian that act to move the
string in the transverse dimension are the plaquette-like terms introduced above.
Fortunately, the model based on these terms is soluble exactly. Below we describe

the necessary construction in some detail.

If the maximum allowed length is N then the string configurations that need
to be included are labeled by series of N pluses and minuses subject to the closed
string constraint that their sum is zero. This requires N to be even. It is convenient

to think of these configuration as series of Ising spins o3(¢). There are two types

e of terms that need to be taken into account. The first one,

¥y / do™ Mij(m)Mjy(n + )M} (n + 1)M(n), (3.1)
is shown in figure 1b). The second one,
> / dz™ Mi;(n) M| (n) My (n) M} (n), (3.2)

is shown in figure Ic). It is not hard to show that, to leading order in N, the

action of (3.1) on states in the spin representation is equivalent to

+o4(n)o_(n+1)+o_(n)oy(n +1)) (3.3)

- /\’NZ(I +U3(n)203(n+ 1)

10



where in terms of the standard Pauli matrices

o1+ to9 3 o1 — 109
op= 2T L (3.4)

and we have set g2 N, = 1. Similarly, the term (3.2) is represented by
AN Z(l — o3(n)os(n + 1)) (3.5)
n

Let us choose temporarily 2A = X' = 1. Then, up to an additive constant, the

Hamiltonian is simply given by the quantum XY model:
H=N) (o4(n)o_(n+1)+0o_(n)or(n+1)) (3.6)

Actually, since we have ignored the center of mass motion of strings, the above
Hamiltonian is only applicable to states that are translation invariant on the trans-
verse lattice (have zero lattice momentum). A generalization of the effective Hamil-
tonian to states of finite lattice momentum will be given below. But first let us

show that the quantum XY model can be solved by introducing anti-commuting

variables

pin) =i I os(m)os(n), (37)

p_(n) =it [] os(m)o_(n). (3.8)

These are the staggered fermions on the lattice in the parameter space of the

string” In terms of these variables the fermion number on a site %—0’3(71) is given

_by %[1/)_,. (n),%—(n)]. The transverse spatial separation between any two points on

the string is then given by twice the fermion number contained between these two

% These fermions have nothing to do with the world sheet fermions of superstrings.

11



points. Since the string is closed, we must always work in the sector where the

total fermion number is zero. We define a fermion doublet

WW:%Uf&P) &9

Then in the continuum limit N — oo the Hamiltonian reduces to
H = /dmﬂ % (3.10)
do

together with the boundary condition ¥(c = 1) = —¢(¢ = 0). « acts on Dirac
indices as the Pauli matrix ;. It is well-known [5,6] that a Dirac fermion is
equivalent to a periodic boson variable ¢(o) which is defined so that the fermion

number density
S 9)(0) = =t (3.11)

From the previous discussion it follows that the separation between two points

on the string is %(qﬁ(al) — ¢(02)). Therefore the bosonized variable -—\/2—;(]5(0') is

[

a smeared version of the original lattice position X (o). The boson Hamiltonian

equivalent to (3.10) is
1 ~
02, + 27 Y m(alam + alyim) (3.12)
m

Since the field ¢ is defined on a circle of radius —2—1\/7 the center of mass momentum is
restricted to integer multiples of 24/7. This is connected with the fact that we are
studying the theory in the sector of zero lattice momentum: the states are invariant
under discrete shifts of 1 lattice unit. To introduce non-zero lattice momentum let
us consider string states which pick up a phase exp(ip) when translated by one

lattice unit. The effective Hamiltonian for this system is
H = NZ or(n)o_(n + 1)exp(2zp/N) + o_(n)og(n + 1) exp(—2ip/N)) (3.13)

To justify the appearance of phases in the above formula we note that whenever

o4(n)o_(n + 1) acts on a string state, the center of mass moves 2/N lattice units

12
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to the right. Similarly, the conjugate term moves the center of mass to the left.
In fact the interaction (3.13) can be obtained from (3.6) by introducing constant

vector potential along the string. Let us make the gauge transformation
o_(n) — o_(n)exp(—2ipn/N), oi(n) ——) o4(n)exp(2ipn/N) (3.14)
which reduces (3.13) to (3.6) at the expense of a non-trivial boundary condition
o-(N+1)=0_(1)exp(—2ip), o+(N +1) = o4 (1) exp(2ip). (3.15)
In terms of the continuum fermionic variables,

Y(o =1) = —¢p(o = 0) exp(—2ip). (3.16)

Upon bosonization, this condition changes the constraint on the values of the center

Of mass momentum:
Mem = 24/7(n + %), (3.17)

where n is an integer. It follows that, once we include string states with non-zero
lattice momentum, the zero mode in the boson Hamiltonian acquires continuous
spectrum. Therefore, (3.12) becomes the standard light-cone free string Hamil-
tonian. The physical reason for this is the fact that, as N — oo, the possible

positions of the string center of mass become continuous.

Now we would like to argue that relaxing the constraint A’ = 2\ on the co-
efficients of the plaquette-like terms does not in general violate the free boson

behaviour demonstrated above. In fact, this adds a term
—¢) " o3(n)os(n+1) ' (3.18)
L

to our effective Hamiltonian. This term can be interpreted as introducing depen-

dence on extrinsic line curvature into the string Hamiltonian [7]. Depending on the

13



sign of the coefficient ¢ it favors alignment or anti-alignment of adjacent links. The
< continuum limit of this new Hamiltonian is the Thirring model. For any positive
value of ¢, the Thirring model is equivalent to a free boson field. The only effect
of changing ¢ is rescaling of the string tension. Increasing ¢ makes string wiggles
look bigger on a fixed lattice scale. Therefore pairs of adjacent links become more
aligned in agreement with the fact that positive ¢ favors alignment. Small and
negative ¢ does not violate free boson behaviour either. However, there exists a
critical negative value of ¢ at which this behaviour collapses. Beyond this point
thé behaviour of lattice string is actually dominated by the lattice. The above dis-
cussion actually confirms the simple intuition that one should be allowed to take
the spatial continuum limit in our lattice model without changing the equivalence
with fundamental strings. However, if we increase the lattice spacing beyond the
typical size of string wiggles in the ‘fundamental’ phase, a transition to the lattice-
dominated phase takes place. Another implication of this discussion is that, for a
broad range of parameters, introduction of extrinsic curvature terms does not alter

the critical behaviour of strings.

We have demonstrated that the spatial behaviour and energy levels of our

lattice string theory are completely determined by the equivalence with a massless

free field in o-space. For example, as shown in ref. [1] and reviewed in the appendix,
this guarantees that the growth of the mean squared radius of string is logarithmic
in the length of string. Asin the usual string formalism, the ground state energy is
quadratically divergent in the cut-off. However, in our system it has the negative
sign. Conventionally, in the light-cone formalism this divergence is absorbed in

renormalization of the speed of light.

Consider next the corrections to the limit 4 — —oo. Then the terms in the
Hamiltonian which act to decrease the total length of string become important. For
—_— example, the plaquette-like terms can replace three links of lonéitudinal momentum

" " "kmin by one link of momentum 3k,,;,. Such perturbations act locally on the string
- and in the continuum limit can be represented by a series of operators local in

o-space. The only operators that can affect the critical behaviour in o-space are

14



renormalizable and super-renormalizable. Let us for simplicity restrict ourselves
to the case of zero lattice momentum. Then, the only operators that need to be
considered are symmetric under X — X +1 and X — —X. In terms of the bosonic

variable ¢(o) these operators can be written as

/daH2(a); /da(%:i)z; /daF(¢). (3.19)

The first two simply renormalize the already existing terms in the Hamiltonian.
Their only effect is rescaling of the string tension. The third operator is restricted
to even functions of ¢ periodic under ¢ — ¢+ %E This narrows the choice down to
F(¢) = cos44/mn¢ where n is an integer. Such operators have dimensions 4n?: for
any n they are non-renormalizable and therefore irrelevant. The above arguments
indicate that a range of ¢ must exist in which the effect of corrections is absorbed in
renormalizing the string tension. Since for large and positive y there exists another
phase of the theory where strings have finite length, there must be a critical value

- §'= pc where a phase transition occurs.

A straightforward generalization of the lattice field theory described above can
be given in any number of dimensions. If the number of transverse dimensions is
24 then, in the phase where strings are infinite, all the finite energy spectrum is
identical to the spectrum of the conventional bosonic string. The same equivalence

applies to the expectation values of products of vertex operators.

4. Conclusions.

Perhaps the most striking result of this paper is that a discrete theory is com-
pletely equivalent to a free string in continuous space. No spatial continuum limit
is required. This occurs because the instability only allows str‘ing bits with vanish-
“ingly small longitudinal momentum. Typically the light cone time scale for motion
of the i-th string bit is ~ P*(7), i.e., the string bits move very rapidly. These rapid

motions completely wash out any memory of the lattice. Presumably this is deeply

15



connected with the critical behaviour of two-dimensional field theory and probably
cannot occur for objects other than strings. It is evident that this equivalence does
not depend on the details of any particular lattice ‘structure. We expect that there
exists a very large universality class of discrete theories which exhibit identical
behaviour for a broad range of parameters. The important ingredient in all such

theories is the existence of the instability.

Another interesting question is the connection between the theory discussed
above and the N, = oo QCD. The original work of ref. [3] suggested that QCD is
a very special limit of this theory in which the spatial continuum limit is taken as
the parameters are carefully tuned along some renormalization group trajectory.
This should be contrasted with the fundamental string behaviour which occurs for

a broad range of parameters, without necessity of taking the lattice spacing to zero.

The construction of a discrete field theory which exactly reproduces bosonic
strings makes it clear that string theory has vastly fewer short distance degrees of
freedom in space than a conventional quantum field theory: roughly one degree of
freedom per Planck unit is sufficient. This was already suggested by the smoothness
of the string pictures of ref. [1]. This probably underlies the exponential fall-off of
fixed angle scattering amplitudes at high energy(8].

The model we have studied required the number of colors N, to be taken to
infinity. It is interesting to inquire what new effects are induced by a finite N.. We
find that the string can then split and join in a manner qualitatively similar to the
conventional picture of string interactions. The string coupling constant is of order
1/Nc. It should be possible to determine whether the 1/N, expansion reproduces

the bosonic string amplitudes. This is the subject of our current investigation.

e —
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FIGURE CAPTIONS

1) The plaquette-like terms which would be trivial if the link variables were

unitary.
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