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Abstract: An automatic optimization procedure is proposed for some operational parame-

ters of a Parallel-Plate Avalanche Counter with Optical Readout, a detector designed for

heavy-ion tracking and imaging. Exploiting differentiable programming and automatic

differentiation, we model the reconstruction of the position of impinging 5.5 MeV alpha

particles for different detector configurations and build an optimization cycle that mini-

mizes an objective function. We analyze the performance improvement using this method,

exploring the potential of these techniques in detector design.

Keywords: differentiable programming; machine learning; detector optimization;

nuclear physics

1. Introduction

Over the last decades, the availability of high-performance computing and the de-

velopment of deep learning [1] have transformed the optimization of complex systems.

When the dimensionality of the space of relevant design parameters exceeds a few units or

the relationships between different parameters are not trivial, automated processes can be

developed to identify configurations corresponding to the minimum of a carefully specified

objective function.

The core of these optimization searches is differentiable programming (DP), a

paradigm in which computer programs can be differentiated end-to-end automatically, en-

abling gradient-based optimization of parameters within the program leveraging automatic

differentiation (AD) [2–5].

Despite the long-established use of AD in various fields, such as circuit design, aero-

dynamic design, and engineering in general [6–8], its application to particle and nuclear

physics detectors remains challenging. This difficulty primarily arises from the intrinsic

stochasticity introduced by the quantum nature of the physical processes involved. As a

result, building differentiable pipelines becomes complex, since most Monte Carlo (MC)

particle simulators, such as GEANT4 [9–11], are not inherently differentiable. Although

efforts have been made to overcome this limitation for specific physical processes [12], the

full optimization of particle detectors remains an open challenge. To date, only a handful

of studies have addressed this problem [12–17].

This approach is becoming feasible due to the ongoing efforts of collaborative research

such as MODE Collaboration [12], which aims to utilize DP and AD for optimizing de-

tector designs in particle physics by developing modular and customizable differentiable
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pipelines for the optimization of objective functions. The recent success of MODE Collabo-

ration in applying these concepts to fully model a muon tomography system and develop

a package called TomOpt [18] led to this study, where this package is adapted to a gaseous

detector designed for heavy-ion tracking and imaging: the Optical Parallel-Plate Avalanche

Counter (O-PPAC).

The basic design of the O-PPAC, introduced by Cortesi et al. in Reference [19], consists

of two parallel squared electrodes separated by a small 3 mm gap filled with a low-pressure

scintillating gas, with an array of small, collimated photo-sensors along the edges of the

gap. The position of an impinging particle is reconstructed using the information provided

by the distributions of detected photons along the edges of the gas gap.

The main goal of this study is to identify the optimal values of two detector parame-

ters: the pressure of the scintillating gas (p) and the length of the collimator (L), both of

which affect the spatial resolution. To achieve this, a differentiable pipeline is developed

to minimize the reconstruction error as a function of the detector parameters. This is per-

formed by developing a surrogate model that replicates an existing GEANT4 simulation

of this detector fully described in Reference [19], where 5.5 MeV alpha particles traverse

the detector perpendicularly to the electrodes.

The surrogate acts as a differentiable approximation of the detector’s behavior, en-

abling a gradient-based optimization using AD. In this study, PyTorch’s [20] AD features

are employed.

The structure of the document is as follows: Section 2 briefly introduces the operational

principle of the detector and provides a detailed explanation of the optimization methods

applied. Section 3 presents the results obtained from the optimization process. Lastly,

Section 4 discusses the conclusions drawn from this work.

2. Materials and Methods

2.1. The O-PPAC Detector

Despite being an older detector concept, position-sensitive parallel-plate avalanche

counters (PPACs) remain widely used today in various subatomic physics applications,

particularly for heavy-ion position and timing measurements [21].

As discussed in Reference [19], unlike conventional PPACs that use charge division

or delay-line methods, electroluminescence-based detectors benefit from high-sensitivity

solid-state photosensors, such as SiPMs, which provide better signal-to-noise ratios and

energy resolution, making them well suited for heavy-ion tracking and imaging.

One example of this approach is the O-PPAC design [19], which consists of two

parallel electrodes separated by a narrow 3 mm gap. This gap is filled with a low-pressure

scintillating gas, such as CF4, known for its high electroluminescence light yield. Along the

edges of the avalanche gap, arrays of small, collimated SiPMs are strategically arranged to

maximize light collection and improve detection efficiency.

When an ionizing particle crosses the active volume, it releases a small amount of en-

ergy in the form of ionization electrons, which are multiplied in the gas by a uniform electric

field established between the two metalized parallel plates. The scintillation light emitted

during the avalanche process, known as secondary scintillation or electroluminescence, is

reflected back and forth by the two metallized electrode foils and guided to be recorded

by the arrays of collimated photo-sensors (see Figure 1). The collimation is crucial for the

precise localization of the impinging particles, as it narrows down the detected photon

distributions, so its peak is more heavily weighted near the position of the avalanche.

In this study, the parameters of interest were the pressure of the scintillating gas and

the length of the collimator, as they are crucial parameters for the characteristics of the

detected photon distributions.
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Figure 1. Schematic representation of the operational principle of the Optical Parallel-Plate Avalanche

Counter (O-PPAC). The photosensors are highlighted in yellow, the collimator in black, and the

gas volume in blue. The left side shows a lateral view of the O-PPAC, illustrating the avalanche

process initiated when a particle traverses the active medium, with the scintillating photons and their

trajectories highlighted in red. On the right, the front view of the detector is presented, demonstrating

the effect of collimation. Image adapted from Reference [19].

The pressure of the gas is directly related to the electroluminescence yield, as explained

in Reference [22]. As a general rule, higher pressure implies a higher electroluminescence

yield, which translates into a higher number of detected photons in each event and, there-

fore, higher statistics in the detected photon distributions.

As the width of the collimator walls (1 mm) is determined by the manufacturing

constraints of the SiPMs selected by the detector designers [19] and alternative technologies

were not explored in this study, the optimization efforts were focused on the other relevant

parameter regarding collimation: the collimator length. The optimal collimator length

results from a trade-off between achieving more accurate light spot localization with larger

L and obtaining higher statistics with smaller L.

It is also worth mentioning that the number of SiPMs was fixed to 33 per wall, the

SiPM effective area was 2 × 3 mm2, the pitch was 3 mm long, and the cathode and anode

metalized foils (Al) were characterized by a reflectivity of 90%. The remaining simulation

parameters not mentioned in this study are exactly as detailed in Reference [19], with the

exception of the collimator length and pressure, which are studied in this work.

2.2. End-to-End Optimization

As mentioned earlier, applying gradient-based optimization techniques requires the

detector response to be in a differentiable form. However, GEANT4 simulations remain

non-differentiable, which makes it challenging to directly apply gradient-based methods.

To overcome this, approximate surrogate models can be used as an alternative to

Monte Carlo simulations [23]. These models, which are typically obtained by employing

some form of supervised training on events previously generated by the MC simulator,

not only enable differentiation but also offer practical benefits: once trained, they run

significantly faster than a gradient-aware MC simulation and often provide a smoother

approximation, which is better suited for gradient-based optimization [24,25].

In this study, a surrogate model is obtained by training a Neural Network (NN) on a

grid of MC simulated points of the parameter space. After the training step, a differentiable
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model that can be inserted into a differentiable pipeline just as a closed-form expression is

obtained, which is the key to this approach. Specifically, once trained, this NN will predict

the reconstructed position of the particle as a function of the detector parameters and its

initial position.

Once the model is trained, the next step is to build an optimization loop that will

minimize an objective function by iteratively updating the values of the detector parameters

according to the gradients of this function at each step.

In the following subsections, each step involved in the optimization of the detector is

described in detail.

2.2.1. Simulation

The first step to optimize the detector is to generate a set of datasets corresponding

to a grid of the interest parameters and the beam position. As stated before, our goal is to

simulate a reduced number of datasets and then train an NN model that extrapolates all

the possible configurations with a differentiable model. For this, the GEANT4 simulation

described in Reference [19] is employed.

The grid of parameters employed for the simulation is provided in Table 1. It is

important to highlight that each dataset consisted of 10,000 events, each involving a 5.5 MeV

alpha particle entering the detector perpendicular to the parallel plates.

Table 1. Summary of the simulated parameter values. The simulation explored all possible combina-

tions of the listed parameters, resulting in a total of 2025 unique configurations.

Parameter Simulated Values

Pressure (Torr) 10, 20, 30, 40, 50
Collimator length (mm) 5, 16.25, 27.5, 38.75, 50.

X position of the beam (cm) −4, −3, −2, −1, 0, 1, 2, 3, 4
Y position of the beam (cm) −4, −3, −2, −1, 0, 1, 2, 3, 4

As can be observed, the pressure and the collimator length were bound to lie within

a certain interval. The minimum pressure value is justified by the photon distribution

statistics, as trial simulations showed that below 10 Torr, few to no photons were detected.

The upper limit of 50 Torr is determined by the fact that higher pressure requires an increase

in the voltage between the parallel plates, which cannot exceed a certain maximum.

In a similar manner, the lower limit of the collimator length is set taking into account

the poor precision obtained, as the dispersion of the distribution when L < 5 mm is too

high. The upper limit is set due to the poor statistics obtained when L > 50 mm.

2.2.2. Reconstruction of the Position

The reconstruction of the avalanche location, which corresponds to the position of the

charged-particle crossing the detector volume (x̂, ŷ), is achieved by combining the data

recorded by the four photo-sensor arrays located in each wall of the PPAC, as illustrated in

Figure 2.

This task can be performed in several ways, but the simplest is to compute the arith-

metic mean between the photon distribution peaks recorded by each pair of opposing

arrays weighted by the total number of detected photons and the dispersion of each

distribution [19]:

x̂ =

(

Px1 · Nx1

σx1
+

Px2 · Nx2

σx2

)

/

(

Nx1

σx1
+

Nx2

σx2

)

(1)
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ŷ =

(

Py1 · Ny1

σy1
+

Py2 · Ny2

σy2

)

/

(

Ny1

σy1
+

Ny2

σy2

)

, (2)

where P and σ correspond to the mean and the standard deviation of the distribution on

each wall and N is the total number of photons detected in each wall.
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Figure 2. Illustration of the reconstruction process for a simulated event induced by a 5.5 MeV alpha

particle at the center of the parallel plates. The photon counts registered by each photosensor are

used to generate four distributions, one for each wall. The resulting plots provide the statistical

information required for reconstruction, with the mean of each distribution highlighted in red. The

particle’s position along each axis is determined by analyzing the signals from opposing walls.

2.2.3. Surrogate Model

As stated before, the algorithm employed to parametrize the reconstruction is a Neural

Network developed employing PyTorch [20]. This particular NN receives four inputs (x, y,

p, L) and predicts two outputs (x̂, ŷ), i.e., the reconstructed position.

In order to optimize, train, and evaluate the model, the simulated events were divided

into different datasets, as illustrated in Table 2. For instance, a small fraction (around

5 × 104 events) was employed for hyperparameter tuning, a bigger dataset for training

(around 1 million), and the remaining MC events were used for the evaluation of the NN.

Table 2. Number of simulated events used in the different phases of the surrogate model development

process, including hyperparameter tuning, training, and evaluation.

Dataset Training Validation Evaluation

Hyperparameter
tuning

2.5 × 104 2.5 × 104 —

Training 5 × 105 5 × 105 —
Evaluation — — 2 × 107
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It is worth mentioning that the splitting in the different datasets was made maintaining

the proportion of the different parameters, so that all combinations are equally represented

in each dataset.

To optimize the performance of the NN, a hyperparameter tuning process was con-

ducted to identify the optimal set of model parameters. The package employed for hyper-

parameter tuning was Optuna [26], which utilizes the Tree-structured Parzen Estimator

(TPE) as its default algorithm for sampling candidates in the search space. TPE is a widely

utilized Bayesian optimization method that iteratively constructs two probability density

functions: one for the hyperparameters of successful trials (i.e., favorable configurations),

and another for unsuccessful trials (i.e., unfavorable configurations). The algorithm em-

ploys these probability density functions to sample new hyperparameters that are likely

to improve the objective function. This method has demonstrated greater efficiency and

effectiveness compared to other well-established hyperparameter tuning methods, such as

Grid Search or Randomized Search.

The hyperparameter tuning process was conducted in two distinct phases: the initial

phase focused on architecture optimization, while the subsequent phase aimed at further

enhancing performance and regularization.

To achieve this objective, the hidden size, number of hidden layers, and learning rate

are optimized in the initial phase. The considered values of these hyperparameters, along

with the optimal parameters obtained from 100 trials, are detailed in Table 3.

Table 3. Results from the first hyperparameter tuning with Optuna, showing the best trial out of 100.

The table lists the hyperparameters considered, their tested values, and the optimal values based on

model performance.

Hyperparameter Considered Values Best Trial

Hidden size 32, 64, 128, 256, 512 64
Number of layers 2, 3, 4, 5, 6, 7, 8 3

Learning rate From 0.001 to 0.1 0.0352

As stated before, the second phase of the hyperparameter tuning was focused on fur-

ther improving the performance of the NN, on regularization and stability. For this purpose,

hyperparameters like dropout, optimizer, learning rate scheduler, batch normalization, and

activation function were studied. Again, the considered options and the Optuna’s best trial

out of 1000 trials is specified in Table 4.

Table 4. Results from the second hyperparameter tuning with Optuna, showing the best trial out

of 1000. The table lists the hyperparameters considered, their tested values, and the optimal values

based on model performance.

Hyperparameter Considered Values Best Trial

Dropout 0, 0.1, 0.2, 0.3, 0.4, 0.5 0
Optimizer Adam, NAdam, Adamax Adamax

Step Size Scheduler 1, 2, 3, 4, 5 2
Gamma Scheduler 0.9, 0.99, 0.999 0.9

Use Batch Normalization True, False False
Activation Function ReLU, SELU, ELU, LeakyReLU ELU

In Table 5, the evaluation of the models for each round of hyperparameter tuning

is shown. Specifically, the root mean squared error (RMSE) between the reconstructed

position and the NN prediction is evaluated for the large dataset. As shown, the evaluation

yields an RMSE of 0.035 cm both for the x- and y-axes after the second phase, which is
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an improvement with respect to the model resulting from the first phase of hyperparame-

ter tuning.

RMSE =

√

1

n

n

∑
i=1

|⃗xi
NN − ˆ⃗xi|2 (3)

Table 5. NN prediction error (RMSE) after each step of the hyperparameter tuning process. The table

shows the root mean square error (RMSE) for both the x- and y-coordinates at each step of the tuning.

Step RMSE(x̂, xNN ) [cm] RMSE(ŷ, yNN ) [cm]

1 0.040 0.041
2 0.035 0.035

Additionally, the learning curve for the final model is illustrated in Figure 3. As can be

seen, the validation loss curve exhibits an erratic behavior during the first 20 epochs, but

it stabilizes afterwards, with the training loss value closely matching the validation loss,

which suggests a low level of overfitting.
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Epochs

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

Lo
ss

 (R
M

SE
) [

cm
]

Training
Validation

Figure 3. Learning curve of the NN surrogate model following the second phase of hyperparameter

tuning. The plot illustrates the model’s training progress, with early stopping applied using a

tolerance (δ) of 0.001 and a patience of 10 epochs to prevent overfitting and reduce computational time.

2.2.4. Optimization

This section provides an overview of the optimization process and its implementation

in the repository [27]. It describes the core components of the optimization package and

offers a detailed explanation of the optimization loop. It is important to note that this code

is derived from TomOpt package [28].

Below are the key components necessary for implementing the optimization, along

with their descriptions:

Alpha Batch:

In order to perform the optimization loop, a class named AlphaBatch is built. This

class has the main goal of producing batches of alpha beams in the form of random Pytorch

tensors. The random numbers are generated uniformly both in the x- and y-axes in the

interval [−4, 4] cm, as the surrogate model is trained on that interval.
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Volume:

The Volume refers to the detector volume itself, represented as a class defined by the

detector parameters at each step in the optimization loop. It is initialized with values for

pressure and collimator length, which are the parameters of interest.

The primary purpose of this class is to accept a specific detector configuration and an

alpha batch, then to predict the reconstructed position for each impinging alpha particle

using the surrogate model.

Moreover, the Volume class includes a method that ensures the parameter values

remain within a predefined interval during the optimization loop. If a parameter exceeds

the boundaries of this interval during training, its value is clamped to the nearest limit. This

functionality is crucial for the optimization process, as the surrogate model is trained only

within specific parameter ranges and should not be extrapolated outside these intervals.

Objective function:

The objective function is the metric minimized during the optimization process. It

can be designed to prioritize parameter combinations that enhance both the detector’s

performance and cost-efficiency. In this study, the objective function was performance-

focused, using the root mean square error (RMSE) between the reconstructed position and

the beam position as the optimization criterion.

Volume Wrapper and optimization Loop:

The Volume class includes a Wrapper that contains the fit method, responsible for

optimizing the detector by determining the optimal configuration based on the NN re-

construction model. This optimization is conducted within a loop designed to iteratively

identify the best detector configuration. The structure of this loop is illustrated in Figure 4.

Optimization Loop

Volume

Alpha Batch

NN predicts 

reconstructed position

Compute loss (MSE)Backpropagate Loss

End

Update detector 

parameters

epoch == 

n_epochs Yes

No

epoch = 0

epoch+=1

VolumeWrapper.fit(n_epochs)

Figure 4. Breakdown of the detector optimization loop, outlining the process of initializing and

updating the parameters (p and L) based on the gradient of the loss function. The loop runs through

multiple epochs, where each iteration includes model prediction, loss calculation, and parameter

updates to minimize the loss function.
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As explained in Figure 4, the first step is to initialize an alpha batch with N alphas

generated in random positions in the interval [−4, 4] cm both in the x- and y-axes. Then, the

volume wrapper class is initialized with the alpha batch and initial values of the pressure

(p) and the collimator length (L).

Before initializing the loop, the optimizer is initialized to update the values of both

parameters based on the gradient of the loss function, according to a previously specified

learning rate. In this study, the Adam optimizer was employed with a learning rate of 0.1

and default values for (β1, β2).

At each epoch, the NN reconstruction model receives the inputs, which are the alpha

batch and the initial detector configuration. The model then predicts the reconstructed

position of each alpha particle.

These predicted positions, along with the real beam positions, are fed into the loss

function. The next step involves backpropagating the loss to compute the gradients of

this function with respect to the parameters to be optimized (p, L). Once the gradients are

obtained, the optimizer takes a step, updating the detector parameters according to the

computed gradients.

This process is repeated over a certain number of epochs until all values stabilize and,

as a result, the detector configuration that minimizes the loss function is obtained.

3. Results

3.1. Optimization for a Random Initial Configuration

First, a single optimization loop was carried out with an alpha batch of 10,000 alphas

located at random positions and a random initial configuration of the detector during

1500 epochs. In Figure 5, the evolution of the loss function, as well as the evolution of the

parameters throughout the optimization loop is presented.

The optimal values of the pressure and the collimator length found with this method

are presented in Table 6.

Table 6. Optimal values of pressure (p) and collimator length (L) found for a random initial configu-

ration and an Alpha Batch of 105 particles, randomly distributed following a uniform distribution in

the interval [−4, 4] cm.

Parameter Found Optimal Value

Pressure 39.03 Torr
Collimator length 15.11 mm

The result for the collimator length agrees with a previous result obtained in

Reference [19], where traditional optimization techniques were employed, involving simu-

lations of the detector under different parameter combinations, assessing their performance,

and selecting the optimal one. In Figure 6, the spatial resolution as a function of the col-

limator length for different number of SiPMs per wall is illustrated. The minimum of

the curve for 33 SiPMs, which is the value used in this study, corresponds to a collimator

length of approximately 15 mm. This is very close to the value obtained through automatic

optimization for a similar pressure (30 Torr).
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Figure 5. Evolution of the (a) collimator length, (b) pressure, and (c) loss function throughout the

optimization loop for a random initial configuration of pressure and collimator length. The figures

show the progression of these parameters as the optimization loop iterates, with the values adjusting

to minimize the loss function and improve the detector configuration.

Figure 6. Position resolution as function of the collimator length, for SiPMs arrays of different

granularity—the number of photo-sensor per array ranges from 12 to 33 elements. The pressure was

fixed to 30 Torr. Image from Reference [19].
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3.2. Optimization for a Detector Configuration Grid

To verify whether the previous result is independent of the initial configuration of the

parameters—which would indicate that the identified minimum is the absolute minimum of

the objective function—the optimization loop was repeated across a grid of initial detector

configurations. The values considered for both parameters are detailed in Table 7.

This grid translates into 400 different configurations and, therefore, 400 optimization

loops that are carried out just as described in Section 3.1.

As shown in Figure 7, all configurations converge to the same optimal values for

pressure and collimator length, indicating that this minimum of the loss function is the

absolute minimum within the studied range.
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Figure 7. Evolution of the (a) collimator length, (b) pressure, and (c) loss function throughout the

optimization loop for a grid of initial configurations of pressure and collimator length. Despite

different starting points, the optimization process consistently converges to the same final result,

suggesting that the found minimum of the loss function is the absolute minimum.

Lastly, Figure 8 presents a 3D representation of several optimization curves. This visu-

alization effectively ’samples’ the function E(p, L), where E represents the reconstruction

error in the z-axis, p is the pressure in Torr in the x-axis, and L is the collimator length

in mm in the y-axis. From this, it can be inferred that the collimator length has a greater
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impact on the reconstruction error than the pressure, as the gradient along L is steeper than

the gradient along p.

Table 7. Initial values of the parameter grid considered for the optimization loop, specifying the

range of values tested for both the pressure (p) and collimator length (L).

Parameter Values

Pressure 20 values uniformly distributed between 10 and 50 Torr
Collimator length 20 values uniformly distributed between 5 and 50 mm

(a)

(b)

Figure 8. 3D representation of several optimization curves along (a) the collimator length axis and

(b) the pressure axis, starting from 30 random initial configurations. The minimum of the curve along

both axes is clearly observed. Additionally, a significantly higher gradient is observed along the

collimator length axis compared to the pressure axis.
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4. Discussion

This study aimed to optimize a Parallel-Plate Avalanche Counter with Optical Readout

(O-PPAC) for heavy-ion tracking and imaging, focusing on two key detector parameters:

pressure and collimator length. A surrogate model was developed to predict the outputs

of a GEANT4 simulation based on inputs provided to the simulator. By integrating this

model into an optimization loop, we identified the optimal combination of parameters that

minimizes reconstruction error. The optimization was performed on a batch of 105 alpha

particles, and the optimal parameters for a randomly generated distribution of particles

covering an area of 8 × 8 cm2 were found to be a pressure of 39.03 Torr and a collimator

length of 15.11 mm.

As shown in Section 3, the optimal collimator length is in agreement with previous

results obtained with traditional methods, as reported in Reference [19], which validates the

approach used in this study. The pressure value, on the other hand, is relatively high within

the specified range, which could be attributed to the higher statistics observed at increased

pressures. However, this result cannot be explained purely by the statistics, as this would

suggest that the optimal pressure should be the highest value within the imposed limits. We

hypothesize that other factors, potentially related to the physical behavior of the detector

or the limitations of the simulation, may be influencing the outcome.

To ensure the robustness of the results, a grid of different initial configurations was

explored. This analysis confirmed that the minimum value of the loss function is indepen-

dent of the initial values of pressure and collimator length, suggesting that the identified

minimum represents the absolute minimum of the reconstruction error. Furthermore, a 3D

representation of the optimization curves was used to illustrate the loss function and the

difference in the gradient along the two axes. A significantly larger gradient was found

along the collimator length axis, indicating that this parameter has a greater influence on

the loss function compared to pressure.

These findings align with recent efforts to apply DP techniques to particle and nuclear

physics detectors. As remarked before, despite the extensive application of DP in other

technical fields, its application to particle detectors remains challenging mainly due to the

stochasticity of quantum processes. However, the development of modular differentiable

pipelines such as TomOpt [18] is gradually making detector and experiment optimization in

nuclear and particle physics more feasible. As proof, this study was successfully conducted

by adapting TomOpt software to the specific problem of the O-PPAC optimization.

5. Summary and Conclusions

Recent advancements in deep learning and computational capabilities have signifi-

cantly enhanced the ability to optimize complex systems. Differentiable programming and

automatic differentiation are at the forefront of this transformation, enabling automated

optimization of complex processes. This study demonstrates the potential of applying these

techniques to optimize detectors in nuclear and particle physics. By developing a surrogate

model, we were able to identify the optimal parameters for an O-PPAC detector designed

for heavy-ion tracking and imaging.

The next steps in this research will focus on incorporating the position reconstruction

process directly into the differentiable pipeline, as the expressions applied to the photon

distributions in order to obtain the reconstructed position are differentiable. This will

involve exploring generative models that can directly predict photon distributions instead

of the reconstructed position. Future work will also involve optimizing additional parame-

ters, potentially including cost-related factors in the loss function. Furthermore, we plan

to extend this research to a more complex system, which incorporates the O-PPAC as a
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fundamental component. This could include exploring the effects of higher particle rates,

different particle types, and other operational conditions that may influence performance.

In conclusion, this study highlights the potential of differentiable programming and

machine learning in the design and optimization of particle detectors. The ongoing work

and future directions will further refine this approach, expanding its applicability to a

wider range of detector designs and experimental setups.
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