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We have performed a pulse-shape analysis of signals from Si detectors to identify low-energy charged
particles with neural networks (NNs). We acquired pulse shapes of proton, deuteron, triton, 3He and
4He from a CH2 target bombarded by α particles. We trained the NNs using the pulse shapes for
known particles and evaluated their particle-identification ability of the NNs. The NNs successfully
distinguished helium isotopes from hydrogen isotopes, but could not separate the helium isotopes
into 4He and 3He.
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1. Introduction

1.1 Motivation
Recent cluster-model calculations predict that α condensed states emerge in self-conjugated N =

4n nuclei. In the α condensed states, all of the α particles are condensed in the lowest-energy orbits,
and their matter density is as low as 1/4–1/5 of normal nuclear states [1]. Thus, observation of the α
condensed states is important for clarifying physical properties of the low-density nuclear matter, for
example, appearing on the surface of neutron stars.

T. Yamada and P. Schuck calculated energies of the α condensed states in N = 4n nuclei and
suggested that α condensed states appear at 1–3 MeV above Nα decay thresholds [2]. The wave
functions of the α condensed states in the N = 4n nuclei have large overlaps with those in the lighter
N = 4n nuclei. Once the α condensed states are excited, they are expected to decay by emitting
multiple α particles with energies of 1–3 MeV. Thus, we aim at searching α condensed states by
measuring low-energy α particles over large solid angles around a target in the inelastic α scattering.

However, it is not easy to detect and identify such low-energy particles over large solid an-
gles. One of the conventional particle identification (PID) methods is an E-∆E method. In the E-
∆E method, a couple of ∆E and E detectors are used. The ∆E detector is a thin detector which
charged particles penetrate, while the E detector is a thick detector in which charged particles stop.
The charged particles are identified froms the correlation between dropping energies at ∆E and E
detectors. This is a very reliable method, but cannot be applied to our research because there are cur-
rently no large Si detectors which low-energy α particles with E < 3 MeV can penetrate. Another PID
method is a time of flight method, in which PID is performed by using a correlation between flight
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time from a target to a detector and the detected energy, but this method can determine mass num-
bers only. In addition, since it is necessary to keep distance between the detector and the target long
enough to achieve good mass resolution, consequently solid angles of the detectors become smaller.
Therefore, in order to search for α condensed states with high sensitivity, it is essential to develop a
new PID method for low-energy charged particles over large solid angles.

1.2 Pulse-Shape Analysis
In the present study, we have attempted to identify particles by a pulse-shape analysis (PSA). The

PSA utilizes a property that the pulse shapes induced by charged particles stopping in Si detectors
differ depending on the type of the particles. This technique was studied in many previous researches
and established for high-energy (> about 100 MeV) heavy ions (A ≥ 12) [3–8], but not enough for
low-energy light ions. Particularly, there are no reports that low-energy particles with E < 2 MeV
were successfully separated by the PSA.

In the conventional PSA method, PID was performed by defining several parameters that re-
flect the pulse shapes, and comparing them between different particles. Therefore, multi-dimensional
information from the pulse shapes was contracted to the several parameters and some parts of the
information were lost. To solve this problem, we tried to introduce a multi-dimensional analysis with
neural networks (NNs). The PSA with NNs was performed in a previous research [8], but only high-
energy heavy ions were analyzed. Thus, we detected light charged particles with E = 1–3 MeV by Si
detectors and acquired pulse shapes induced by these particles to train NNs. In this paper, we report
the experimental details, the construction of the NNs, and their PID ability.

2. Experiment

The measurement to acquire pulse shapes was performed at Research Center for Nuclear Physics,
Osaka University in July, 2018. A 4He beam at 87.2 MeV bombarded a CH2 target and charged
particles (proton, deuteron, triton, 3He, 4He) emitted from the target were detected by three stacked
Si detectors. Signals from the second layer Si detector (325 µm thick, 2304 mm2 as active area), in
which α particles with energy below 35 MeV stopped, were used for the PSA. The first Si detector
(65 µm thick, 2304 mm2 as active area) was installed as a ∆E detector. In other words, we acquired
signals for both the E-∆E method and the PSA at the same time. In the analysis described below,
the particle types were determined by the E-∆E method at first, and the PSA with the NNs was
performed for these particles. Additionally, the third Si detector (500 µm thick, 2304 mm2 as active
area) was installed to veto punch through events in which charged particles penetrated the E detector
(the second layer Si detector), because we were interested in particles stopping at the second detectors
only.

The Si detectors were connected to the charge-sensitive pre-amplifier and the pulse shapes were
acquired by the FADC (CAEN V1730), which recorded 4100 points per event with a sampling rate of
500 MHz. The measured energies were calibrated by using the 148Gd, 241Am, and 244Cm α sources.

3. Making Data Set

Figure 1 shows the correlation between energies measured by the first Si detector (E1) and the
sum of E1 and energies measured by the second Si detector (E2) when charged particles penetrate the
first detector. It can be seen that hydrogen isotopes (proton, deuteron, and triton) and helium isotopes
(3He and 4He) are clearly separated.

Then, we selected low-energy particles. Since it is necessary to identify particles with E = 1–3
MeV for our purpose, we analyzed low-energy particles with 1 MeV < E2 < 3 MeV only. Since the
number of recoded tritons (3He) was small, we enlarged the energy ranges to 1 MeV < E2 < 5 (10)

2■■■

011050-2JPS Conf. Proc. , 011050 (2020)31

Proceedings of the 15th International Symposium on Origin of Matter and Evolution of Galaxies (OMEG15)
Downloaded from journals.jps.jp by Deutsches Elek Synchrotron on 04/04/20



0

20

40

60

80

100

120

140

160

180

0 10 205 15

6

10

4

0

2

8

25
E1+E2 [MeV]

E
1
 [
M
e
V
]

p

d
t

4He
3He

Fig. 1. Correlation between E1 and the sum of E1
and E2. E1 and E2 mean deposited energies at first
and second Si detectors.
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Fig. 2. (a) Typical pulse shapes of the RDS. (b)
Typical pulse shapes of the SDS.

MeV when we analyzed these particles.
In this experiment, peak time, namely the time when pulse heights became maximum, differs

depending on types and energies of detected particles due to the experimental conditions. So, NNs
were likely to be biased by the peak time which could change event by event. To prevent this bias,
we prepared two data sets in which the timing information was modified. In the first data set ”random
data set (RDS)”, the peak time of signals was randomly shifted in the step of 2 ns between 1200 and
1400 ns as seen in Fig. 2(a). On the other hand, in the second data set ”simultaneous data set (SDS)”,
the peak time was fixed at 1300 ns as seen in Fig. 2(b). Each event in these data sets contains 3900
points which correspond to 0–7798 ns in units of 2 ns after fixing the peak times. We applied these
data sets to the NNs as described in next section.

4. Neural Networks
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Fig. 3. Structure of the
present NN.

NNs generally consist of the three kinds of layers, the input layer,
the output layer, and the hidden layers which connect between the input
and output layers. Various NNs with different structures of hidden layers
are available for diverse purposes. In the present work, we selected the
convolutional neural network (CNN) for the PSA. The CNN is mainly
used for image recognition, but also for analyzing time-series data as in
the present case. We used the Keras [9] and Tensorflow [10] libraries to
construct the CNN as shown in Fig. 3.

In the present NNs, the two convolution layers find features of input
pulse shapes. The following max pooling layer compresses the output in-
formation from the convolution layer to enable NNs to identify particles
regardless of the peak time. Next, the first fully connected layer (FCL)
correlates the features outputted from the pooling layer and determines
the important features. Finally, the second FCL transforms outputs from
the first FCL into the probability of each particles. Each layer has several
parameters which we should tune manually. We adjusted these parame-
ters to maximize PID accuracy by the NNs.
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5. Training and Result

We trained four CNNs for discriminating α particles and other particles (proton, deuteron, triton
and 3He) to maximize their PID ability. The accuracy was evaluated by comparing their outputs
with the correct answers acquired from the E-∆E method. Even if the NNs can correctly identify
other particles used for training, it is not always possible to correctly identify particles not used for
training. Thus, we used 80% of the RDS for training and we tested the networks by 20% of the RDS
after the training. Additionally, we applied these networks to the SDS. The results are summarized in
Table I. Helium and hydrogen were successfully separated with ≥ 95% accuracy for both of the RDS
and SDS. But, He isotopes could not be separated.

Table I. Accuracy of PID by the NNs presented with (numbers of successful PID events)/(number of total
events).

p & α d & α t & α 3He & α
Energy range [MeV] 1–3 1–3 1–5 1–10
Train data accuracy 955/960 948/960 954/960 886/1280

99.5% 98.8% 99.4% 69.22%
Test data accuracy 237/240 230/240 238/240 192/320

98.8% 95.8% 99.2% 60.0%
SDS accuracy 1193/1200 1171/1200 1190/1200

99.42% 97.58% 99.17%

6. Summary and Future

We attempted a PSA with NNs in order to discriminate low-energy light particles. We acquired
pulse shapes of signals from the Si detector induced by charged particles which were identified by
the conventional E-∆E method. These data were used for training and testing the NNs. As a result,
the NNs successfully distinguished α particles from hydrogen isotopes, but hardly separated Helium
isotopes into 3He and 4He.
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