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Abstract The quantum theories of boson and fermion
fields with quadratic nonstationary Hamiltoanians are rig-
orously constructed. The representation of the algebra of
observables is given by the Hamiltonian diagonalization pro-
cedure. The sufficient conditions for the existence of uni-
tary dynamics at finite times are formulated and the explicit
formula for the matrix elements of the evolution operator
is derived. In particular, this gives the well-defined expres-
sion for the one-loop effective action. The ultraviolet and
infrared divergencies are regularized by the energy cutoff in
the Hamiltonian of the theory. The possible infinite particle
production is regulated by the corresponding counterdiabatic
terms. The explicit formulas for the average number of par-
ticles Np recorded by the detector and for the probability
w(D) to record a particle by the detector are derived. It is
proved that these quantities allow for no-regularization limit
and, in this limit, Np is finite and w(D) € [0, 1). As an
example, the theory of a neutral boson field with stationary
quadratic part of the Hamiltonian and nonstationary source is
considered. The average number of particles produced by this
source from the vacuum during a finite time evolution and the
inclusive probability to record a created particle are obtained.
The infrared and ultraviolet asymptotics of the average den-
sity of created particles are derived. As a particular case,
quantum electrodynamics with a classical current is consid-
ered. The ultraviolet and infrared asymptotics of the average
number of photons are derived. The asymptotics of the aver-
age number of photons produced by the adiabatically driven
current is found.

1 Introduction
The quantum field theories (QFTs) with quadratic Hamilto-
nians are the classical subject for investigation in theoretical

physics. These models represent the base for perturbation
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theory and, per se, describe a wide range of phenomena. It
is not surprising that there is a huge literature devoted to this
subject (see, e.g., the books [1-12]). Although it appears that
the problem of description of QFTs with quadratic Hamil-
tonians having linear equations of motion is somewhat triv-
ial, the presence of infinite degrees of freedom considerably
complicates the issue. There are different methods to tackle
this problem and perhaps the most straightforward Hamil-
tonian approach is not the commonly used one. Our aim is
to fill this gap. We shall obtain the solution of this prob-
lem using the Hamiltonian formalism, i.e., we shall find the
matrix elements of the finite time evolution operator gen-
erated by the nonstationary Hamiltonian of a general form
for both bosons and fermions imposing rather mild assump-
tion on the parameters of the Hamiltonian. In other words,
we shall obtain the solution of the Cauchy problem for the
quantum-field Schrédinger equation. To this end, we shall
modify the theory in the ultraviolet and/or infrared regions
unaccessible for experiments in such a way that the finite
time unitary evolution exists. Of course, when one discusses
the existence of a certain QFT, not only the Hamiltonian and
the algebra of observables should be specified but also their
representation must be given. Different representations of the
same algebra may be unitary inequivalent. We adopt in this
paper the representation of the algebra of observables in the
Fock space that is specified by the Hamiltonian diagonaliza-
tion procedure (see, e.g., [1,13]). The physical arguments in
favor of this representations will be presented below.

The fact that we consider the evolution of QFT with non-
stationary Hamiltonian during a finite interval of time plays
a crucial role. Nonstationarity gives rise to new physical phe-
nomena and mathematical issues that are absent in the sta-
tionary case. The most prominent problem is that, in many
cases, the background nonstationary fields complying with
all the physically reasonable requirements such as an infinite
smoothness, a compact support or a rapid decrease at spatial
infinity, and a finiteness of the spatial volume of the sys-
tem studied lead to the infinite particle production and so to
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the nonunitary dynamics1 [1,9,14-20]. The presence of this
problem depends on the choice of the representation of the
algebra of observables and the various approaches were elab-
orated to overcome it [1,3,5,8,11,12,16,17,20-29]. As we
have already mentioned, we use the Hamiltonian diagonal-
ization procedure as the means to specify the representation
of the algebra of observables and regularize the Hamiltonian
in the region of particle energies where the theory is, in fact,
unknown. The possible infinite particle production in this
energy domain will be compensated by the corresponding
counterdiabatic terms [30] ensuing the adiabatic evolution
for these modes. As a result, the unitary evolution operator
is obtained that provides a solid basis for nonperturbative
calculations. In no-regularization limit, the initial ill-defined
expression is recovered. Notice that we will not consider
in the present paper the situation when the unitarity of a
quadratic QFT is violated by the appearance of instabilities
and the corresponding phase transitions (see, e.g., [4,31]).
Though it is not difficult to generalize the formalism to this
case.

As is known [10,32,33], the vacuum-to-vacuum ampli-
tude of the quadratic part of some QFT on a given background
with zero sources defines the one-loop correction to the effec-
tive action of the complete QFT [3-8,10-12,34] that “sums”
an infinite number of the one-loop Feynman diagrams. Fairly
often, it turns out that thereby obtained effective action is non-
analytic in the coupling constant near zero and the series of
the standard perturbation theory is only an asymptotic expan-
sion of the nonperturbative expression [32,35]. We shall also
obtain the well-defined nonperturbative expression for the
one-loop effective action before the removal of regulariza-
tion.

Apart from the construction of unitary evolution, we shall
investigate a class of observables that allow for removal of
regularization even in the case when the dynamics are not
unitary in this limit. Namely, we shall consider the aver-
age number of created particles recorded by the detector and
the probability to record a particle by the detector. We shall
find the explicit expressions for these quantities and show
that for any reasonable detector they are well-defined in no-
regularization limit. Here the particles are defined by the
Hamiltonian diagonalization procedure. This definition of
the representation of the algebra of observables in the Fock
space is local in time, i.e., the representation is determined by
the configuration of background fields at the present instant
of time. In the stationary case, this is the standard definition
of particles confirmed by numerous experiments. This is the
standard definition in condensed matter physics. Besides, it
is clear that such a representation must make sense in the case

! Throughout this paper, we call the evolution unitary if the evolution
operator at any finite time is a unitary map in the separable Hilbert space
of states.
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of background fields slowly varying in time. This fact is con-
firmed experimentally for many systems, too. Another reason
is the adiabaticity argument. It says that if the background
fields vary slowly and the system starts its evolution from
the vacuum state, then the present state of the system will be
close to the vacuum state of the instantaneous Hamiltonian
[36-41], i.e., to the Fock vacuum of creation-annihilation
operators that diagonalize the Hamiltonian at a given instant
of time. Hence, it is reasonable to suppose that such a defi-
nition of the representation of the algebra of observables is
valid, at least, in the case of the background fields smoothly
depending on time. Moreover, it was proved in [16] that,
in the inertial reference frame in Minkowski spacetime, this
representation of observables leads to the unitary evolution
of a quantum Dirac field in the external classical electro-
magnetic field. The restrictions on the electromagnetic fields
imposed in [16] are fulfilled for any physically realizable sys-
tem. Of course, once the unitary theory is constructed, one
may choose any other unitary equivalent representation of
the observables.

It should be stressed that we define particles as a mere
convenient means to specify the state of a system of quan-
tum fields in the Hilbert space. Since we consider the finite
time evolution, such particles are often called virtual in the
literature (see, e.g., [42,43]) to distinguish them from the par-
ticles in the i n- and out-states at t = FF00. However, we will
not use this nomenclature as, in the real experiments lasting
a finite interval of time, any particle is virtual, albeit with
small virtuality, according to this terminology. Due to the
energy-time uncertainty relation, the virtual particles created
from the vacuum can possess very large energies at a given
instant of time but most of them quickly annihilate during
the evolution.

Some comments about the energy cutoff regularization are
also in order. Of course, the energy cutoff regularization pro-
cedure is ambiguous as any other regularization. This ambi-
guity just reflects the fact that we do not know physics for
very small and very large energies. Nevertheless, this regu-
larization possesses certain merits:

(a) Itis the regularization, i.e., it does not change physics at
energies observable in experiments;

(b) It is nonperturbative, i.e., the initial Hamiltonian of the
system is modified rather than the separate terms of the
series of perturbation theory;

(c) It is gauge-invariant when properly formulated (see the
example in Sect. 4.2);

(d) It preserves unitarity of QFT.

Moreover, in Sect. 3, we shall construct the observables that
are well-defined in no-regularization limit. They do not con-
tain the regularization parameter and are independent of the
regulator.
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The paper is organized as follows. In Sect. 2, the general
formalism is developed for description of quadratic QFTs.
The regularization is defined by the energy cutoff of the gen-
erator of evolution in the time dependent basis diagonalizing
the Hamiltonian of the system. This, in particular, introduces
the counterdiabatic terms into the initial Hamiltonian. The
evolution generated by the Hamiltonian is developed not in
one Fock space but in the Hilbert bundle of such spaces with
the base being the manifold of background field configura-
tions. This bundle is equipped with the trivial connection
and parallel transport that allow one to bring the evolution
into one Fock space. That evolution is unitary for the regu-
larized dynamics. The explicit formulas for the matrix ele-
ments of the evolution operator are derived in this section.
In particular, the well-defined expression for the one-loop
effective action is deduced. Section 2.1 is devoted to bosons,
whereas Sect. 2.2 is for fermions. As for bosons, many for-
mulas appearing in Sect. 2.1 were already given in [20]. In the
present paper, we shall generalize them to the case of theories
with sources. Notice that the energy cutoff for gauge theo-
ries should be done in some gauge that uniquely separates the
physical degrees of freedom as, for example, the Coulomb
gauge in quantum electrodynamics (QED). The other method
to introduce the energy cutoff in a gauge invariant way is
to use the Hamiltonian Becchi-Rouet-Stora-Tyutin quantiza-
tion (see, e.g., [44]), but we will not develop this approach
here. The example of a gauge theory with the energy cutoff
is considered in Sect. 4.2. In Sect. 3, the detection of created
particles is considered. The general formulas for the average
number of particles Np recorded by the detector and for the
inclusive probability w(D) to record a created particle are
derived. It is proved that under very mild assumptions this
quantities allow for removal of regularization. In this limit,
Np is finite and w(D) € [0, 1). In Sect. 4, the simple exam-
ples of the developed formalism are investigated. In Sec. 4.1,
the quadratic boson QFT with stationary quadratic part of the
Hamiltonian and nonstationary source is studied. The gen-
eral formulas obtained in Sects. 2, 3 are particularized for this
case. In particular, we shall find the infrared and ultraviolet
asymptotics of the average number of created particles. In
Sect. 4.2, QED with a classical current is considered. This
is the classical example model investigated in many papers
and books [23,43,45-50]. A special attention is paid to the
influence of a finite duration of the evolution to the observed
quantities such as the inclusive probabilities and the aver-
age number of created photons. We shall find the infrared
and ultraviolet asymptotics of the average number of created
photons and obtain the general formula for the number of
photons produced by the adiabatically driven current. In Con-
clusion section, the main results of the paper are summarized.
In Appendix A, the general formula for the matrix elements
of the evolution operator of a quadratic QFT is derived. In
comparison with [56], we shall present the detailed proof of

the existence of the unitary evolution and shall generalize
formulas to the fermionic case. As has been already men-
tioned, there is an overwhelming number of papers and books
devoted to both general theory and applications considered
in the present paper (see some of them [51-55]). Therefore,
the reference list is utterly incomplete. Only the main papers
and books that are immediately related to the subject matter
and are known to the author are cited.

2 General formulas
2.1 Bosons

In this section, we shall construct the quantum theory of
a boson field with nonstationary Hamiltonian of a general
form. The representation of the algebra of observables in the
Fock space will be realized with the aid of diagonalization
of the Hamiltonian. In fact, we shall generalize the results
of [20] to the case of nonstationary quadratic Hamiltonians
containing a linear part with respect to the field operators.
In the simplest case of a scalar field interacting with nonsta-
tionary classical current in the Minkowski spacetime in the
inertial reference frame, such a procedure was presented, for
example, in [1,22]. The adaptation of the general notation
presented below to the case of an electromagnetic field is
given in Sec. 4.2 (for a scalar field see [20,56]).

The nonstationary quadratic Hamiltonian of a neutral
boson field of a general form in the Schrodinger representa-
tion is written as

~ 1 . ~ ~
H(t) = EZAHABmZB +Ka()Z4,

54 _ [aﬁp(x)]’ 0

ﬁp(x)

(24,281 =iJ"8 = [_Ol, 8} 518(x —y),
where p, ¢ are the indices numerating the field components
and

Hap = Hga = Hap. ()

Henceforth the bar over the expression means complex con-
jugation, the condensed notation is used, and the Einstein
summation convention is implied. In particular, the index A
includes both discrete, p, and continuous, X, variables and in
formula (1) summation and integration over repeated indices
are understood. Notice that, in the models we are interested
in, the dependence on ¢ enters into (1) only through the back-
ground fields and currents ®# (¢) taken at the different times 7.
The relations (2) follow from the requirement that H is self-
adjoint. Usually H4p defines a positive-definite quadratic
form. We will not demand this property and only will assume
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that H4p is nondegenerate and
HAP = (HHAP. 3)

Then, introducing the Schrodinger field operators explicitly
depending on time,

82 =7+ H¥ (1)K (1), )
we have

. 1 4 . 1

H(t) = E<sz;‘HA,_L; (1828 — EKA(t)HAB(t)KB(t). (5)

As a result, the problem of construction of QFT with the
Hamiltonian (1) is reduced to similar problem considered in
[20] but with the field operators explicitly depending on time
in the Schrodinger representation.

Asin [20], we introduce the mode functions as the solution
of the spectral problem of the self-adjoint operator —iJ4p
with respect to the quadratic form Hxp (¢):

~iJapuB (1) = oy () Hap ()08 (1),

wy ' (OTL O Hap )V (1) > 0, (©6)
where
0 -1
Jap = [1 0 }afa(x—y), )

and vo‘;‘ satisfy the boundary conditions following from the
problem statement. The second condition in (6) specifies the
splitting of modes into the positive- and negative-frequency
ones. For simplicity, we assume for a while that the spectrum
Wy 1is real-valued and discrete. Besides, for any A > Othere
exists a finite number of eigenvalues such that w, < A and
wy 7# 0. As a rule, these properties are satisfied for systems
confined to a box of a finite volume V' (the volume is defined
with respect to some positive definite metric §;;). Below,
in discussing the inclusive probabilities, we will relax these
requirements and will consider the limit V' — oo. Notice that
wqy (1) can be negative when H 4p (¢) is not positive definite.

For example, consider a massive scalar field on the back-
ground with the metric g,,. Its action functional without
sources is

S[e] = /de£= %dex

Vigl (3.98" 0,6 — m?). ®)
The canonical momentum reads as

mi= 1] (89 + 5" 0i9) ©)
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where ¢ = 9;¢. The Hamiltonian density is given by

g di¢
00

.
2Lg% /T8l 8
~ VIgl@0:09,6 — m*¢?)|

_ 1[(n — V181" i¢)°

2 g%VIgl

— VIgl(g g0, — m*¢H)].

H=ndp—L=

(10)

where g/ = g/ — g% g0/ /g% = (g;;)~!. The quadratic
form H4p becomes
. i0
3;+/1818"9; + /TgIm? 31'2%
Hpp = 0i

—8 5 1
g0 §%lgl

S(x—y). (11

The eigenvalue problem (6) takes the form

oy i0
0 (v/ |g|gljaj“ot) + |g|m2uo¢ + ai(gmwa)

0i
Py W
GO0 T g0 /g

:ia)a|:_w: ], Uﬁ(z):[ua(l)}. (12)

a We (1)

Combining these expressions, we come to the equations

[ (5 + wug)VIgle (B + wag))
2
w
+Vigl(—= — mz)]ua =0, (13)
800

_ ij(h P
we = —i/|gl| &g’ (Pj +wagj) + —| Ua,
800

where p; = —id;. In the stationary case, when the metric
does not depend on time, the first equation in (13) coincides
with the Klein-Gordon equation Fourier transformed with
respect to time. In this case, the first equation in (13) reads
as

V1gle! (V. V* 4+ m?)e ™ uy (x) = 0, (14)

where V,, is a covariant derivative constructed with the aid
of the space-time metric g, . For further examples, see Sect.
4.2.

Now we revert to a general theory. Suppose that the follow-
ing orthonormality and completeness relations are satisfied:

{Uolvvﬂ}z{l_)olvl_}ﬂ}:05 {Uaaﬁﬂ}z_isaﬁ,
iJAB = Zuy‘af], (15)
o

where {v, w} := JapvAw?. The square brackets mean anti-
symmetrization without the factor 1/2. The normalization of
the wave functions is chosen to be

_A B A _B
Uy, Hapv, = v, HapUy = wqy. (16)
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The vectors (vy,U, ) constitute a symplectic basis. Notice that
Hap = — Z waJAA/U(A/Df,)JB/B,

HAB — Z“) 1 (A B) (17)

where the round brackets mean symmetrization without the
factor 1/2. If Hap(t) is positive definite, the background
fields are smooth enough, and V is finite, then the above
properties of the spectrum and the mode functions are ful-
filled for the Hamiltonians (1) describing relativistic field
theories and wy () > 0 (see, e.g., [57]). Henceforth, we just
suppose that these properties hold.

Introduce the complete set of creation-annihilation oper-
ators,

o (1) = {0 (1), 8Z,),  al(0) == (v (1), 824}, (18)

specifying the representation of the field operators in the Fock
space F;,

AR [U(f(t)&(x(t) - f;;)(t)&;(r)] . (19)

So long as the dependence on ¢ enters into (1) only through
the background fields @ (z), the representation of the algebra
of observables in the Fock space F; is determined by the
values of the background fields at the present instant of time,
i.e., we have the representation in Fg ;). For brevity, in what
follows we denote F; = Fo(), au(t) = ao (P (1)), va(t) =
Vg (D (1)), etc.
In particular, substituting (19) into (5), we obtain

A=Y {%wa(t) (3] 0 (0) + a0} 0]

—w;l(r>|v£(r>KA(r>|2}. (20)

For the Hamiltonian (20) to be defined in F;, we introduce
the ultraviolet regularization by means of the projector

P (1) = 6(A — 05 (1))8ap, 21

which acts in the one-particle Hilbert space. When the mass-
less theories are considered at V. — oo, the regularizing
projection may also include the infrared cutoff characterized
by the parameter 1. Notice that the sharp cutoff regularization
can be substituted for the smooth cutoff one, i.e.,

PL() > f(A = wu(t)dup. (22)

with some smooth function f(A — x) tending sufficiently
fast to zero in the energy domain excluded by the projector
P . Hereinafter, for simplicity, we suppose that

P} = Py. (23)

The regularized Hamiltonian takes the form
Hp@ (@), a(0), 1) = Z P;)x(t){ g <t>[aa (Nag (1)

+ &amal(r)} - w;‘(rﬂuﬁ(t)KA(r)P}

Z D (D (1) (1) (1)

+3 Wm{ wu (1) — 0z {OWLOK A }
(24)

Notice that, in a general case, this regularization is insuf-
ficient for the dynamics generated by (24) to be unitary
[3,5,11,12,17,20,24,27,28]. The Hamiltonian defining a
unitary evolution will be given below.

Supposing that the creation-annihilation operators (18)
specify the representation of the same field operators Z (the
generators of the algebra of observables) in the Fock spaces
Fy,

A Z [u (1)ag (1) — DA(z)fﬁ(t)] — H2B (1)K (1)

o

= — Z [U?(lin)&a(tin) -

HA (t1,)K g (tin),

we find the relation between the creation-annihilation opera-
tors at different instants of time in the form of a linear canon-
ical transform:

&(l) _ F(Z tin) G(t tin) &(tin) h(t, fin)
at) | TGty Pt | Lat@n | T L |

54 (il (tm)} 25)

(26)
where
Fap = =020, vpin)},  Gap = i{Da(0), ptn).
hat i) = {00, HT OK ) = B @)K (6))
27)

Henceforth, to shorten formulas, we use the matrix notation.
For example,

ad = agby, 4'Ca=4dlCopag,  etc. (28)

The creation-annihilation operators related by the transform
(26) can be realized in one Fock space if and only if G4 is
Hilbert-Schmidt (HS) and /4, is square-integrable (see [1,2,
58] and Appendix A), i.e.,

SpG'G <00,  hh < . (29)

As a rule, these conditions are violated in relativistic QFTs
(see, e.g., [1,9,14-20,59]). Therefore, it is necessary to
assume that @, (r) act in the different Fock spaces F; labeled
by ¢.

@ Springer
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Let us consider the Hilbert bundle of Fock spaces Fog,
the base being the manifold of background fields ®. The
Fock spaces are constructed by means of the Hamiltonian
diagonalization procedure as it was described above. In this
bundle, there exists a unitary operator of parallel transport
such that [20]

Wou), o0, * Fow,) = Fow, (30)
where

ag(t) = Wr,tl-n&a En)Wi 1
lvac, 1) : = Wy, Jvac, tiy), (31)

and |vac, t) is the vacuum vector in F;. This operator obeys
the equation

— i Wy, =@ @), at), OW, 4, (32)

where

N 1 .
F@' ,am,n:=[2a" 00O, vola)

—af{uv), v(®)la()

—at 0o, o0t o) (33)
+ia'O{o®), 9 (H ' (K (1)}
—iaM{v(@), (H (K (1)},

and th,tm = 1. The parallel transport defines the trivial
self-adjoint connection

A [ OU . L. év .
Ipy:=a {— U}a — —a{—, U}a
SOH 2 L5opH
1. 80 S(H™'K
—sat| s ofat +iat{o, SHK) )}
2 L5oH SOH
" { S(H™'K) }
—iayv, ———
SOH
in the Hilbert bundle.

The evolution operator U t[,\tm generated by (24) maps the
Fock space Fy,, into F;. The parallel transport operator allows
one to bring the evolution into one Fock space where the mea-
surements are performed (the scalar products are calculated).
The physically measured amplitudes are the matrix elements
of the operator

(34)

A

St[,\fm = 1/‘A/tin’tl?t[,\tin (35)

in the Fock space F7;, . This operator satisfies the equation
i9,8%, = [ﬁA(&T(nnx a(tin). 1)

+0@" tin). altin), r)}ﬁﬁ,,.,, (36)
with the initial condition S2 , = 1.

@ Springer

It turns out that for many physical systems as, for exam-
ple, the relativistic QFT on nonstationary gravitational back-
ground of a general form [20], for the quantum fields on
cosmological backgrounds [3,5,11,12,17,24,27,29], or for
the quantum fields interacting with singular classical sources
[1,2,45,60], the operator S ,‘},in is notunitary due to creation of
an infinite number of particles during the evolution. Besides,
unitarity of Stl,\rm can be violated in the limit of V — oo.
Therefore, we define the regularized evolution operator as
the solution of the the equation (see also [20])

i0,81%, = [ﬁA(&*(rm, atin), 1)
+TA@" (tin)., altin), r)]ﬁzﬁm, 37)

with the initial condition S‘,’fn‘ i, = 1, where ", is obtained
from I’ by the replacement

Ao (tin) = Pap(Dag(tin), (38)

1.€e.,

Ca@ (tin), altin), 1) : = %[261*(@-")&{6, U}PAG(tin)
—a(tin) Pa{vU, v}Ppa(tiy)
— " (tin) PA{D, D}PA&*(rm)]

+ia" (tin) Pa{D, 3 (H™'K))
—ia(tin) Pafv, & (H'K)}.
(39)

It is clear that the operator S,”}m is unitary under the above
assumptions about the spectrum and the projector Pp. The
passage from (36) to (37) corresponds to addition of the coun-
terdiabatic terms [30] to the initial Hamiltonian. This proce-
dure gives rise to adiabatic evolution for the modes distin-
guished by the projector Pa(t) :=1— PA(t). The dynamics
of the rest modes remain unchanged. Of course, in general,
the projector P (r) picks out different modes at different
times. The explicit expression for the matrix elements of the
operator S’;f}m is given in (247). The existence conditions of
the theorem 2 are satisfied as P is a finite rank projector. It
should also be noted that such a modification of the Hamil-
tonian is not related to introduction of the so-called adiabatic
vacuum [3,5,11,12,17,24,26,27].

It is not difficult to find the explicit expression for the
Hamiltonian generating the evolution (37) and the corre-
sponding counterdiabatic terms. By definition, the evolution
operator 0,/[,‘”7 : Fy, — Fris

TIN LT /A
Ut,t,‘,, T Wt’tin St,f,',,' (40)
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It satisfies the Schrodinger equation
9,05 =H,0)U} (41)
with the generator

Ay @' 0),a0).0 = Ax@' @), a0, 1)
+0a@ ®.a0,0-ta@"o.am.0n,  (42)

[a = =a"(Pa{D, v)Pa — {0, v))a

&(PA{U, U}PA - {f), U})&

—

— =a"(PAlD, D}PA — (U, D})a"

[\

—ia"Pp{D, 8,(H 'K)} +iaPa{v, 9,(H™'K)}.

All the operators and functions in this expression are taken at
the instant of time 7. The regularized Hamiltonian (42) can be
written in terms of the field operators ZA if one substitutes
(4), (18) into (42). This Hamiltonian is self-adjoint, local
in time, and passes into the initial Hamiltonian (1) in no-
regularization limit. The terms (43) are the counterdiabatic
terms. They disappear after the removal of regularization.
Now we turn to the Heisenberg representation

&a(in) = &a(tin)a

A SIA ~ TIA

da (OMZ) = U’in slout da (tout)Utour »lin (44)
_ /A A N OIA
- Stinvtuur da (ln)Stautatin :

The creation-annihilation operators (&a(in),&; (in)) and
(aq (out), &:; (out)) act in the same Fock space F;,,. Their
vacuum states are

lin) :=|vac, tin) € Fy,,
— SNIA
|0ut) = Ul/in,tout|vacv tOllt) € F’in’ (45)

where |vac, t,y;) is defined in (31). Let
2A0 = 02,2000, iz00 =240, A o).
(46)

where H A (t) is the Hamiltonian (42) written in the Heisen-
berg representation. As is seen, the field operators obey the
regularized Heisenberg equations. In particular, if one applies
this general formalism to a massive scalar field then the
operator of the scalar field in the Heisenberg representa-
tion evolves in accordance with the regularized Klein-Gordon
equation which, by construction, possesses a better ultravi-
olet behavior. After the removal of regularization, the regu-
larized Hamiltonian turns into the initial one and so the reg-
ularized Klein-Gordon equation passes into the usual Klein-
Gordon equation.

1
2 (43)

It follows from (19), (44) that
821 o) = =i [0 o) Cour) = 9 ()" (0un) |

823 (i) = =i [0 wnatin) — 94 6" im)).

tin

(47)

In order to find the relation between the in and out creation-
annihilation operators, one needs to solve the Heisenberg
equations (46) that have the form

A ~
i8Z, (1) = iJ g (HT'K)B(t) + TABH-8ZC (1),(48)
where

Ty =T Jcp,  iTRB@) =0 () PA)DB ().

(49)
Let us introduce the commutator Green’s function
GaB(t.1) = [Z2(1), ZP () = 821 (). 8ZF (1)),
Ghp(t, 1)y =GRC(t, ) Jcs (50)

t
=i Texp [ / erACHg}B(r)}.
r/

It is clear that, in no-regularization limit, GﬁB (t, t) tends to
the commutator Green’s function associated with the initial
Hamiltonian H (). At a finite cutoff, G?\B (t,t") does not
possess the Hadamard asymptotic form at the diagonal [17,
26]. The Green’s function allows one to write the solution of
the Heisenberg equations

sZA

Lout

(tour) = _iGﬁB(toura tin)(SZB (tin)

tin
Tout 2 A
—1 / dt Gy g (tour, T)
tin

xJB- (o [H K] (x). (51)

Employing the orthonormality and completeness relations
for the mode functions, we obtain

alout) | [® W a(in) g
[&%(out):| - |:\TJ d_>:|[5ﬁ(in):|+[g]’ (52)
where
cbaﬁ(tuut) = _1_}&4 (tour)éﬁB (tour tin)Ug (tin),

Wap (tour) = U} (tour) G 4 p (out tin) UF (lin),

. Tout _ - (53)
8a(tour) = —i / dTU?(IUuI)G,[L}B(touts 7)
1,

x JB-()a. [H K] (1),
and G4, = JacGS 5. Comparing (52) with (262) and (37)

with (241), we see that the explicit expression for the evolu-
tion operator (247) contains the operators @ and W presented
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in (53), where one should replace ¢,,; — ¢, the functions
1 _
d(t) = Y P, 0] 300 (0) = 0 Ol KA.
o

f@t) =iPp{D, 8 (H'K)},
x() =@ (gt) —w (g (54)

t
= —i/ dto (tin)GA g (tin, T)
t

x JB. (03, [H'K] (0,
and the operators
Cap = waPay + (P, 0}PP) .
Az =1 pA

Agp = —(P {v, v}P )aﬁ' (55)
Thereby (247) gives the explicit expression for an arbitrary
matrix element of the evolution operator S{f}in.

The vacuum-to-vacuum amplitude is given by

(vac. tou| U2, . lvac. tin)

= (vac, t;y|S;2 , |vac, tin) = (outlin). (56)
The time-dependent phases of the mode functions v, (¢) are
not specified by (6), (15). Nevertheless, it is not difficult to
show [56] that (56) does not depend on the choice of these

phases. It is convenient to fix the phases by imposing the
condition

{Ua, Ua} = 0. (57)

Then

SPC = Por (@0 + (Vo Va}) = D wu Pl (58)
o o

Using the general formula (265), we obtain [2,10]
(outlin) = [ det ®(t0u)] "%, (59)

in the absence of sources. This form for the one-loop effective
action holds only before the removal of regularization and on
fulfillment the additional condition imposed on the phases of
the mode functions that makes the second term in the trace
(58) vanish.

The average field is written as

t
ZA) = (in|Z4@)|in) = —i/ dtG4 51, 7)

tin

x JE- () [H'K]  (t) — HAB (1)K p (1)

t
=—i / erﬁB(r,f)[H,;AC(r) (60)
li

- fg\c(r)af}(H_lK)C(r)

+ iGAp(t, ti) HBC (ti) K e (tin),

@ Springer

where ]f\‘B = Sg‘ — JX‘B and Jfl‘B = JACJKB. In no-
regularization limit, we have

t
ZAt) = —i/ dtGAB(t, 1)K p(7)
tin

+iGY(t, tin)HBC (ti) K (tin). (61)

The first term describes the field created by the current K ()
at T € [t;,, t]. The second term describes the evolution of the
field —(H ~'K)(#,) that was present in the state |vac, t;,).

2.2 Fermions

Letus consider the nonstationary quadratic theory of fermionic
fields of a general form and construct the corresponding QFT
by means of the Hamiltonian diagonalization procedure. This
procedure is analogous to the one developed in [1,16,23] for
the Dirac spinors interacting with classical electromagnetic
fields in the inertial reference frame. In many respects, this
procedure repeats the construction of the previous section.
Therefore, we only outline the main steps.
Let the Hamiltonian be

q 1 AT S I A R
A = SR (§707 =079 ) + 00 0 + 0,
[&", zpj] = 5 = 8, 8(x —y), (62)

where p, g are the spinor indices and n(¢), 1(¢) are Grass-
mann odd functions (sources). Hereinafter, the graded com-
mutators are implied. Suppose that the operator R(¢) is self-
adjoint with respect to the metric §;;, i.e.,

R (t) = R(1), (63)

and it does not possess zero eigenvalues. The latter condition
can be relaxed but we will not investigated this possibility
[4,18].

For example, for the Dirac fields evolving on the external
electromagnetic background in the inertial reference frame

R =eAg+my® —y27(i9; — eA)). (64)

For smooth background fields A, (x) with compact spatial
support, this operator is self-adjoint with respect to the stan-
dard scalar product

(0.} = / dxg" (1, )Y (2, %) 65)

on Dirac spinors. The restriction imposed on the electromag-
netic fields can be relaxed (see, e.g., [15,18]).
Introducing the Schrodinger field operators,

89 ="+ a0ORT @),
(66)

8y =V + R On(),
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we have

N | QU A1 A
H(1) = 551//,'R(z)sw,—isw,RT(z)sw;f — iR 0.
(67)

In order to split the complete set of eigenfunctions of the
operator R (¢) into positive- and negative-frequency ones and
to construct the representation of the algebra of observables
in the Fock space, we introduce the one-particle self-adjoint
charge operator ¢ (¢) such that

=1, [R(),qn]=0. (68)
Then
R(t)ug(t) = ESP (Dug (1),

Q(t)ua(t) = Moz(t); 6
R()ug(t) = —ES7 (g (1),

(69)
q(Hug(t) = —vu(1),
where the eigenfunctions u, v, are assumed to be orthonor-
mal.

It is clear that there is an ambiguity in the definition of
the operator ¢ (¢) (see the discussion in [4,16,18]). The most
natural choice of this operator is such that the projector

(I+4(0)/2 (70)

projects to the states associated with the positive eigenvalues
of R(t). In this case, Eéi) (t) > 0. Nevertheless, one can
introduce other splittings of the set of eigenfunctions of R(¢)
[4,18]. In particular, by analogy with the boson fields consid-
ered in the previous section, the splitting into positive- and
negative-frequency modes can be defined by the requirement

IES"
om

> 0, (71)

where m is the mass of (anti)particle. From physical point of
view, this requirement means that the energy of states of par-
ticles and antiparticles grows with the mass of these particles.
As regards the Dirac fermions, the condition (71) results in
the splitting of the eigenfunctions of the operator R(¢) into
positive- and negative-frequency ones in accordance with the
sign of the Dirac scalar product

/dxu;‘;(r, x)yuq (1, x) > 0,

f dxu] (t, %)y ug (t,x) < 0. (72)

In the stationary case, this splitting complies with the stan-
dard ie prescription in the sense that if m > 0 and m —
m —ie, then m? — m? —ie and sgn Im Eéi) = Fl,1i.e., the
poles of the propagator corresponding to particles lie below
the real axis, whereas the antiparticle poles lie above the real
axis.

Various splittings (69) of the eigenfunctions into the
positive- and negative-frequency ones that differ by redef-
inition of a finite number of modes lead to unitary equiva-

lent theories (see, e.g., [18] and below). Therefore, all the
physically reasonable splittings of the mode functions (69)
are unitary equivalent under natural assumptions such as the
smoothness of the background fields, and the boundedness in
space of the system at issue. Henceforth, we will assume that
a certain splitting (69) is chosen. The explicit form of such a
splitting will be irrelevant for our study. The only assumption
is that such a splitting is determined by the configuration of
the background fields at the present instant of time as in the
case when it is specified by the properties of the spectrum of
R(1).

Let us introduce the creation-annihilation operators in the
Fock space F; of fermions

al(e) == (g (1), 89;,),
bi(t) := (Tu(t), 877,).

o (1) = (ug (1), 891),

. . (73)
b (1) == (Ve (1), 8Y1),

Then, employing the completeness of the mode functions, we
obtain the representation of the field operators (the generators
of the algebra of observables) in F;:

8¥y = u(n)a) +v()b' (1),
50 = 0(b(t) + ana’ ). (74)

Substituting (74) into (67) and introducing the regularization,
we arrive at

Hp(t) =) [PRESY (0ad (1)ag (1)

o

+PAE 0L (0ba (0] + EL. (1), (75)
where
EA =

e == {Pa% <r>[§E§ﬁ 0

o

n (n(0), ug (1)) (ua (1), n(l))}

76
E @) 7o

LA m[ Lpop - 0O} n(t»”

ES ()
and
PA () =6 (A —ESP (x)) S
PG =0 (A — Egﬂ(z)) Sap- 77

If it is necessary, the infrared cutoff can also be included into
IfA, P} . Notice that the symmetric ordering of operators v,
¥ T is chosen in (67). This results in the symmetric contribu-
tion of particles and antiparticles to the vacuum energy of the
Hamiltonian (75). If one takes the asymmetric Hamiltonian

Hy(t) == ¥ ROV + 4 @) + i), (78)
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then the vacuum energy in the absence of sources has the
form [35,61]

=Y PAMED @), (79)

o
i.e.itis equal to the energy of the Dirac “sea”. For the system
of Dirac fermions confined to a domain with finite volume,
the difference between the finite parts of the vacuum ener-
gies (76) and (79) in the absence of sources takes the form of
a certain surface integral [62]. Notice that, in applying this
formalism to condensed mater physics, the asymmetric def-
inition (78) of the Hamiltonian is preferable as the Dirac sea
of the valence electrons is actually present.
By definition, the charge operator is

0, =a"naw) — b (1)b). (80)

Evidently, it commutes with the Hamiltonian (75). The index
t of the operator marks that it is realized in the space F;.
Recall that as long as the dependence on ¢ enters into the
Hamiltonian (62) only through the background fields ® (),
the representation of Q ¢ in Fy = Fg(y) is determined by the
configuration of background fields at the present instant of
time, viz., Q[ = Q¢(,).

Supposing that the creation-annihilation operators (73)
provide the representation of the same generators of the alge-
bra of observables 1/}, 1/?* in the Fock spaces F;, we deduce
the relations

) | | Ft.tin) G, tin) || E(tin) h(t, tin)
& | TG ) Fatm | & | T Rt |
81)

where, for brevity, we have introduced a unified notation for
the creation-annihilation operators

Ca(t) 1= (Gu (1), Bp(1)),  E5(0) == @), b)), (82)
and
[ ua ), uptin) 0 ]
Ftin) = [ 0 (@) Dt |’
N 0 (1 (1), Vg (tin)) ]
G“’t’")‘[wa(rwﬁ(nn» o |0 ®
Bt = [<ua<t>, RN em(6) = R™ (tin)n(tin)) ]
T a0, RO = R i) |

The creation-annihilation operators related by the linear
canonical transform (81) can be realized in one Fock space if
and only if the conditions (29) are satisfied. As for relativistic
QFTs, these conditions are not fulfilled in a general position.
Therefore, as in the case of boson fields, it is necessary to
introduce the Hilbert bundle of Fock spaces F¢ with the base
being the supermanifold of background field configurations
at a given instant of time.

@ Springer

Introduce the parallel transport operator (30),

Ca®) = Wi, Caltin)We, 1,

lvac, t) = Vf/z,zinlvac, tin), (84)
and the corresponding self-adjoint trivial connection
— i Wyy, = D@ @), e00), OWr s, (85)
where
tet @, e, = %[26%)“06(:)
+eOMT (e + gf(t)M@aT(,)]
+&T O f'0) + Flnéw),
_ [ a®.up@) 0 } (86)
L(’)"[ 0 (Bu(). op0) |
. 0 (e (1), VB (1))
M@ =i [(éau),ﬁﬂ(r)) 0 ]
N <ua(r>,a,(R*1n>>]
fo=i [wa(z), o Ry |
and
A .| Su ~sl OU A
A ~ P -
Pui=ia <3q>u’“>a+’b <5c1>u’v>b
) A A &
(87)

SR™'M\ | iy SRR

LA DT

+ia <u, SOE >+lb <U, SOn >

o SR\, SR\ A
il 2RI, SR Ty,
SPH sPH
Then the physically measurable amplitudes are the matrix
elements of the operator

SA 1P AA oA .
Sz,zin = WlirzwlUT,t,',,’ Sl,tin . Fffn —> Ftin’ (88)

where U f},m : F,, — F; is the evolution operator generated
by (75). The operator (88) satisfies the equation

10,8, = [HAC (tin). E(tin). 1)

+0E i), etin). 0]SP,, (89)

=1.

It was proved in [16] that the operator S’t’_\tm is unitary
for massive fermions described by the Dirac equation for
a sufficiently wide class of external electromagnetic fields.
However, the example of a massive scalar field studied in
[20] shows that St[,\fm is not unitary in noninertial reference
frames in the flat spacetime or in the nonstationary spacetime
of a general configuration. In order to secure the unitarity
of evolution, we regularize the generator of the evolution
operator (89). The regularized evolution operator obeys the
equation

with the initial condition S

tin

10,8 = [ﬁA(éTmn), &(tin). 1)
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+0A @ (tin), E(tin), r)}ﬁ;ﬁ,.n, (90)
with the initial condition S , =1, where
DA tin), é(tin), 1)
= %[26* (i) TTA (DL (D TTA (D)
+ E(t) A (OM T (OTTA()Etin) 1)
+ G (OM (OTTA ()6 (m)}

+ & G)TIA @) /(1) + FOTA i),

and

P2 0
A7) :=[ ag(t) P,g(t)]. (92)

The replacement I Y provides the adiabatic evolution
for the modes of a quantum field with the energies larger than
A. In virtue of the fact that ITx (¢) is a finite rank projector,
the conditions of the theorem 2 are satisfied and the operator
S’;{}m is unitary under the assumption that the operator @ (¢)
given in (104) is nondegenerate. Notice that degeneracy of
the operator ®(#) depends on the way of splitting of the
eigenfunctions of R (#) into positive- and negative-frequency
ones.

By definition, the regularized evolution operator, U,“,\m :
Fy,, — F, has the form (40). It is generated by the Hamil-
tonian

AL @ (0. 6.0 = HaCET @), 6. 1)
+EA@ 0, 60,0 - TE @, e0,0,  (93)

where

P B ] .

FA—F=E[ZéW(HALHA—L)é—i—é(l‘lAMkl'lA—M')&
+efMaMIIy — M)e-T] — &M = FHpC. (94)

All the operators and functions in this expression are taken
at the instant of time ¢. The projector I:IA(t) =1 =TI ().
The terms (94) are the counterdiabatic terms. Substituting
(73) into (93), the regularized Hamiltonian can be written in
terms of the field operators. It is self-adjoint, local in time,
and turns into (62) in no-regularization limit.

In the Heisenberg representation

P ~ ~ YIA A YIA
Ca(in) = Cq(tin), Cq(out) = Ufin,fou,Ca(t()ut)Uf(,ut,zin

_ QA A e N QIA

= Stinotour M Sty 17, 95)
— . ) —\ _ VA X
lin) == |vac, tiy) € Fy,,, lout) 1= Ufin-lautlvat’ tout) € Fyy»

where |vac, t,,,) is defined in (84). Let

B =02 000 i 6 =0, Hy 1. 96)

In particular, in the absence of sources, = 1 = 0, the charge
operator

A TN A TTIA SIN A A A
0:(t) = U[in,[Q[U[,fjn = St,',,,tQtin Sl,f[n = Qliy» 7

since Q 1, commutes with the evolution generator (90). In
other words, the average charge of the system does not
depend on time provided n = = 0.

It follows from (74), (95) that

8Vt tour) = t(tour)@(out) + v(tou)b' (out),

8V, (tin) = ultin)a(in) + v(6i)b' in), o9
The Heisenberg equations (96) are written as
’8‘?’;—“) =ipra()d,(R™"'n) () + Ry ()89 (1), )
189, (1) = ipr, (D3 (R™') (1) — R ()87, (1),
where
pra(t) = [u(®)PA )@ + [vO)PA (@], (100)

and pr , is the complex conjugate operator to pr , . Introduce
the fermionic commutator Green’s function

§i, (0. ) 1= =il (@) YT ()] = ~il807 (). 83 (1)),
_ b (101)
Sa; = —i Texp{ — i/ drR;’\j(t)}.

r/

Recall that, in the case at hand, the graded commutator is the
anticommutator. In no-regularization limit, S A(t, 1) tends to
the commutator Green’s function associated with the initial
Hamiltonian R(#). The solution of the Heisenberg equations
(99) has the form

Sﬂzt(w, (tout) = iSA (tauts Z‘1‘11)5&&,, (tin)

Lout -
i / dTSa (tout. T) Prp ()3 (R0 (1),
’

in

(102)
From (98) we obtain
Clout) | _[o W ¢(in) g

[6T(out)} B [@ ci:] [éf(m) el (109
where

D(tour) =1

[ (u(tour), SA(touts tin)u(lin)) B 0

L 0 —(0(tour)s SA (tout  tin)V(tin)) '
W(tour) =i

[ _ 0 (utout), gA(fout: tin)v(tin)) (104)
| —(0our), Saour, tin)it(tin)) 0 ’
8a(tour) =1

[ (ultour). [ dTSA (tour. T) pra (Ddr (R i)(D)

| —(@our). [0 dTSA(tour. DIPTA (e R™)(D)) |
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The operators @ (¢) and W (¢) enter into the explicit expression
(247) for the evolution operator. Furthermore,

d(t) = Efe (1), f0) =TIA@Mf (0,
= of vl (nz
X (t)g(t)+t (t)iz(t) 1 (105)
[ win). fi, dTSAGin, ) pra@de (R™In) (@)
=1 ~ - )
—(0(tin). fy, dTSA Ui DA (D (R™1(D)

and
A ()
oo |:PaﬁEﬁ 0

0 P/AE( )

:|+HALHA, A=TIAMII,.
af =B

(106)

These expressions substituted into (247) give the explicit

form for the matrix elements of the unitary evolution operator
QIA
ttin®
The vacuum-to-vacuum amplitude takes the form (56).

Imposing the conditions on the phases of the mode functions

(ltg, ug) =0, (U, Vo) =0, (107)
and keeping in mind the relations
1 A A
d|7] ij= 0=__( PaaE(gz-H ZPO/Z(IE(S( )>’
SpC = Z (E(“ + it Ua)) (108)

+ZP;2<E§—> + i (D, D))
o

we obtain from the general formula (265) that [2,10]

(outlin) = [ det ®(t0u)]"", (109)

for vanishing sources. Just as in the case of bosons, this for-
mula for the one-loop effective action is valid only before the
removal of regularization and on supposing the additional
condition on the phases of the mode functions that removes
the second terms in the trace of C in (108). Furthermore, the
cancelation of the terms in the exponent in (265) occurs only
for the symmetric ordering of operators in (67). As regards
the asymmetric ordering (78), such a cancelation does not
happen and the additional factor in (109) remains.
The average field is

t ~
Y (@) = (inly (0)lin) =i/ dtSa(t, 7)
1,

in

x pra(0)d: (R™'n)(x) — R~ (t)n(r)

. (110)
=/ dtSa(t, )[R\ (1) — ipra (1)d; ]
tin

x (R™') (1) — iSat, i) R (tin) 0 (tin),

where pr, := 1 —pr,.Inno-regularization limit, we deduce

t
v = / 4TSt ) — iS5G )R G0 Gin). (111)
1

in
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The vacuum average ¥ (¢) of the fermionic field is a Grass-
mann odd function.

3 Inclusive probabilities

First of all, we formalize the notion of a particle detector.
It follows from the postulates of quantum theory that the
detector of one particle can be characterized by some self-
adjoint projector (not to be confused with Py ),

p=rf (112)

in the space of one-particle states. The number of quantum
states of a particle that can be recorded by the detector can be
estimated from the uncertainty relation. If Vp is the volume of
the detector, £2, is the domain of particle’s momenta that can
be detected by the detector, and N; is the number of spin states
of the particle, then the number of quantum states that can be
recorded by the detector is not larger than NyVpQ,/ (271)3.
Thus a physically realizable detector is characterized by the
projector P of a finite albeit very large rank. For bosons,

K
sz_izw,f‘@ffcm Py =JP,
y=1
P*=P, SpP =K, (113)
Wy, ¥y} =Wy, ¥y} =0,
{1/[]/9 Jf}//}z_isy}/’, Y, )//: l,K

The functions v, should be linear combinations of the
positive-frequency modes vy (¢5,¢), 1.€.,

{va (four), ¥y} = 0, Va. (114)
In the basis (vy, Uy), we have
K —
= — > ABaltour), Yy My, Vg toun)},
y=1
Pf=pP, P’=P, SpP=K. (115)
For fermions,
K
P=>"1W) Wyl Wyly) =8y, v.v' =1K,
y=I
(116)
and

<”(x(t0ur) wantlpa.rt> = 0, Va.
(117

(Ve (tour) Y5y = 0,

In the basis of eigenfunctions of the Hamiltonian, we obtain

K

= Z(”a(tout)’ Yy ) Wy, upour)),

=1

part
P o
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' _ _ inclusive process (119) is equal to
Pag ™ =3 (D ltous) ¥y ) (Wy O (tour)).- (118)
y=1

Henceforth, we will denote these projectors as P. Besides,
P:=1-P.

Consider the process of particle creation from the vacuum
in the nonstationary background fields

0— e, +X, (119)

where e, denotes the particle in the state ¥, y = 1K,
and X is for other particles. The average number of particles
recorded by the detector at the instant of time ¢, is, by
definition,

YIA ~ ~ YIA .
Np = (vac, ti|U2, & (tow) Paltou) U, . Ivac, tiy)
= (inla"(out)Pa(out)|in)
/A AT ~ /A
= (vac, tin|S,, ", a'(tin)Paltin)S,, . lvac, tin)

= Sp [ W (tout) PV (tour) | + & (tour) P (tour).
(120)

Hereinafter, a denotes the annihilation operators irrespective
of the sort of particles and " are the corresponding creation
operators. The explicit expressions for ¥ and g are given in
(53) and (104). The average number of recorded particles,
Np, is finite if and only if PW is HS and Pg is square-
integrable. Before the removal of regularization, Np < oo.
Moreover, the concrete examples show that the average num-
ber of particles can diverge in no-regularization limit only for
infinitely large energies of particles or, in the massless case,
for particle energies tending to zero. Here it is assumed that
the particles are defined by means of diagonalization of the
Hamiltonian of quantum fields evolving in the smooth back-
ground fields, the background fields tending sufficiently fast
to zero at spatial infinity, for example, being with a compact
support.

As has been already mentioned in the Introduction, we
define particles as the perturbations of the corresponding vac-
uum state. In the expression (120), this state is |vac, fy,;). To
put it differently, according to this definition, the particles are
just a convenient means to specify the state of a system of
quantum fields in the Hilbert space. Since in (120) the finite
time evolution is considered, such particles are often called
virtual in the literature [42,43]. We will not use this nomen-
clature as, for experiments lasting a finite interval of time,
any particle is virtual, albeit with small virtuality, according
to this terminology.

In order to find the probability of inclusive process (119),

recall that the operator
cexp(—a' Pa) : (121)

is the projector to the states of Fock space that do not con-
tain (anti)particles in the states v,. Then the probability of

wa (D) = (vac, t;,| U™

inslout

|:1— : exp(—&T(t(,u,)

X Pa(tour)) : }U;(QW lvac, tin). (122)
It is clear that
0 < wyp(D) < 1. (123)

The probability wx (D) # 1 as otherwise the vacuum-to-
vacuum amplitude is zero (see (247), (263)). The latter is
impossible at a finite cutoff. Recall that we assume the oper-
ator ®(¢) is nondegenerate for fermions. However, it may
happen that the probability of the inclusive process (119)
becomes unity after the removal of regularization. This would
obviously reveal the violation of unitarity in this limit. Below,
we shall prove that, in no-regularization limit,

w(D):= lim w(D) € [0.1), (124)

where it is assumed that in this limit

1. The operator ®¢ is bounded, where € = 41 distinguishes
the statistics of the particles;
2. The operator PW is HS and P g is square-integrable.

Notice that the boundedness of ®~¢ follows from (236). If
the condition 1 is satisfied, then W is bounded for both boson
and fermions. Therefore, the operator P W is HS for the finite
rank projectors P of the form (113), (116). Of course, PV
can be HS in the case when P is not a finite rank projector.
As it was mentioned above, the concrete examples show that
PW is HS and Pg is square-integrable when P projects to
the closed domain of energies that does not include zero and
infinity.
Let us write the probability in the form

wa (D) = (vac, tin| S}

|:1— s exp(—=a’ (tin) Pa(tin)) }

Tout

xS L Jvac, tin) =: 1 — b (D).

out »

(125)

In order to calculate it, it is useful to pass into the Bargmann-
Fock representation (see Appendix A). Then

la)(al :

tinslout

Wa(D) = / DaDaDa' Da'e==44 (0| §/A
x texp(—a' (i) Paltin)) + la')(@'|S;2 . 10).
(126)

The explicit expression for the matrix elements of the oper-
ator S,’lﬁh,’,n is presented in (247). However, in our case, we

may use formula (240) as the phase of the matrix element
(247) does not contribute to (125). One should also bear in
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mind that formula (240) gives the matrix element of the oper-

ator ST Asa result,

toutstin

Wa(D) = (det ®T) /% exp {1eXg + 1gX g — 2g}
x / DaDaDa'Da' exp {§a'X"a
+e(g—gXHa +ea(@—Xg)
+$aXa+aPa —aa—ad'a'}, (127)

where

X =Uo ! =exT =@ HTw', (128)

Under the above assumptions, the operator X is bounded in
no-regularization limit.

The functional integral (127) is the Gaussian integral of
the form (227) with

-X 0 1 0
_pT

B_ 0 0 -pP" 1 ,

e —P O 0

L 0 e 0 —xT

[e(g—Xg)

0

F = 0 (129)

| §—Xg

Employing the formula for the inverse of a block matrix, it
is not difficult to obtain

B*l
ePY IXTPT PxT(y—HT e —1HT ePYy~!
| e IXTPT ey —IxT yTIXTATX ey!
- Y1 exPXTr—HT  er-1x eXPy~!
¥ —HT pT @ HT e HTPTX ePTxPY!
(130)
where
Y =1-eX'PTXP, Y :=1-exPX'PT. 131

Then the exponential factor in (127), (227) is written as
exp {%g}?g + %gXTg —gg+ %FTB_IF}
=exp{—gPg+egPX'PTY 'XPg

+5gPY ' XTP Tz + SePTY X Pg). (132)

As for fermions, wp (D) atn =n =0, 1.e,atg =g =0, is
only physically meaningful. Nevertheless, the expression for
w (D) at nonzero sources is of some value since it can be
used to find the probability of the inclusive process (119) in
higher orders of the perturbation theory. Strictly speaking, in
this case one has to suppose that the sources (1, 17) entering
into the operators Sl/zﬁtvtin and St/i[:,tom in (126) are different
for each operator [6,10,11,50,63,64]. This leads to obvious
changes in formulas (127) and (132). We will not present this
generalization here.

@ Springer

Let us prove that under the above assumptions the oper-
ators Y ! and Y ! are bounded in no-regularization limit.
For fermions,

Yy 'l=1-x"PTxPa+Px'PTxpP)". (133)

In virtue of the fact that the operator PXTPTXP is positive
definite, the operator

A+PxPTxp)! (134)

is bounded and, consequently, so is Y1 Analogously one
can prove that ¥ ~! is bounded. As for bosons, we first note
that it follows from (236) and the boundedness of ® that

IXTXI = 1x)* < 1. (135)
Hence,

IPXTPTXP| < IX)? < 1. (136)
Consequently, the operator

1—-PX"PTxp)™! (137)
is bounded. As long as

Y '=14+Xx"PTxP1 - Px'PTxP)7 !,

Y 'l=14+xPa-Px'PTxP)'x"PT, (138)

the operators Y- Y ! are also bounded.
The preexponential factor stemming from (127), (227) is
given by

(det ®DT)~/*[det(1 — e PT X PXT)] /7. (139)
The determinant can be written as

det[®dT (1 —ePTXPXT))

=det[l +edT (PTxPXxT + xPXx™) (140)

=det[1+ed” PT @ HT U PW + e PU] = det, (1 + Q),
where we have use the property of the Fredholm determinant,

det(1 + BG) =det(1 + GB),

Bl < o0, [IGl1 < oo, (141)

and the relations (236). We cannot remove the regulariza-
tion in (140) as the second operator in the argument of the
determinant in the last expression in (140) is only HS and not
trace-class. The last operator in the argument of the determi-
nant is trace-class. Let us introduce the regularized Fredholm
determinant [65]

det(1 + Q) = 5P % det(1+ )
= o< SPQVIPY=OTPT@THIVIPY), der(1 + Q)
(142)

where we have used the relations (236) and the properties of
the trace. The regularized Hilbert-Carleman determinant is
uniquely defined when €2 is HS. The operator under the trace
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sign on the right-hand side of (142) remains trace-class in no-
regularization limit. Therefore, the right-hand side of (142)
is well-defined after the removal of regularization. Hencefor-
ward, det(1 + €2) means the right-hand side of (142). Notice
that due to nondegeneracy of ® and Y T the determinant (140),
(142) does not vanish.

Thus we obtain the well-defined expression for w(D) €
(0, 1] in no-regularization limit. The point w(D) = 0 is
excluded, because the expression in the exponent (132) is
finite and the determinant (142) is not zero or infinity. Hence,

w(D) = 1 — [det(1 + Q)]~¢/?

_ s spyipTy—1
xexp{ gPg+egPX'P'Y 'XPg (143)

+sgPY'XTPT g+ ggPTf—lxpg},

and w(D) € [0, 1) provided the conditions 1 and 2 above are
fulfilled. In the case when the particle creation is small, viz.,

g~e W 00T = @ c1>—1+0( ) (144)
where ¢ is some small parameter, then, in the leading order

in g,
1
w(D)~ Np — > Sp [q:TPT(cD‘)T\yTP\y] < Np. (145)

In the particular case, ¥ = 0, we arrive at the formula (52)
of [66].

4 Examples
4.1 Boson field with a classical source

To display the formalism developed above, we shall consider,
as the simplest example, the quadratic theory of a neutral
boson field with a classical source and a stationary quadratic
part, i.e., we suppose that the Hamiltonian of the theory has
the form (1) and

dwe(t) =0,  duy(t) =0. (1406)
Then the regularized Hamiltonian (42) is given by
H), = %52{‘}1[%52}3 - %KAHI(‘BKB
—8Z} TR IH'K 15, (147)
where
HYy = HypdB, = — Zwa PA Taav N 0B Jgig,
(148)

HAB = g, HA® = Za) LpA S AGE).

The last contribution in (147) is the counterdiabatic term. It
disappears in no-regularization limit. The creation-annihilation
operators in the Fock spaces F; are related by the Bogolyubov
transform (26) with

Faﬁzgaﬁv G(xﬁ:O

ha (1, tin) = iy DL TK A1) = K a(tin)]. (149)

This canonical transform is unitary in one Fock space if and
only if Ay is square-integrable.

The regularized commutator Green’s function (50) takes
the form

~AB A=B —iwg PL, (t—1'
G (t,t’)=Z|:Ua B o—ion e (T—17)

UAUBeza)a aa(t t)i|
a

-3 Audageriont=) (150)
_l—}AUBeza)a(f t)i|+l-j1<13.
In particular,
GAB (1, ) Ip g = GAB (1, 0) I b 5,
TAGABG 1y = T2, GYB @, 1), (151)

where G458 (t,1') is the commutator Green’s function in
no-regularization limit. Also we shall need the symmetric
Green’s function

GAB(1,1) = _IE sen(t — t)GAB (1, 1), (152)

the positive-frequency Green’s function

GE\+)AB(I’ /) = —i(inl[zA(f) — (ZA(I))]

x [Z4a") =z @'))]liny =—ZZU eTlouPiu =),
(ZAW) = (in|ZA)lin),
(153)
the Hadamard function
Gy =i G0y = G )
_ Z [UAUBe—zwaPA t—t")
o
+'UA B Ime (l f)] (154)
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and the Feynman propagator
Gl (1) = —i<in|T{[Z*‘(r> —(Z")]
x [24()) - <2A<r’>>]}|in>
=GB, 1) - %G§3>A3(z, t'

. - . AN (44t
= —i Z |:9(t — A8 emivaat=1)
o

(155)

+ 00" — t)ﬁfvfeiwapfﬁi(’_[/)]

All these Green’s functions satisfy the relations of the form
(151).

Now we find the matrix elements of the evolution operator
St/,[;m’ the average number of particles (120) recorded by the
detector, and the probability of the inclusive process (119).
The general formulas (53), (54), and (55) imply

Cop = thPof;\f}’ Agp =0,
fult) = =, 'PROAKAD),

Dp (1) = Pof/\se*iwa(l*lin) + ﬁof/\ﬁ
= (@) 5 (1) = (Ri.1,)ap Yap(t) =0,

t
gall) = —i / dreient=0) £ (1)

tin

t
=i/ dre™'@a=D -1 pA AR,
t

(156)

oo o
where R; ;, is the operator from the theorem 2. In the case
at hand, the determinant appearing in (248) is equal to unity.
The operator @ is bounded in no-regularization limit. The
expression for d(¢) is the same as in the general case (54).
Besides,

t .
Yalt) = —i / dreienlin=D £, (7)

tin
t
. Ciwu(ig—t) A (157)
:zﬁ dre™'@alin=0 =1 pA GAK
@H N Ox ) =g,
and
Lout _ . tout t
I :=—/ d;f(clﬂ)—lX:i/ dt/ dt
tin tin tin
XY fult) fu(r)e D (158)

o
t(/ll[ t . .

=/ dtf de[H'R 1A ()G @, olH K1 (o),
tin tin

@ Springer

where Gf:%) =J ACG(+)CD Jpp. The last expression can be
written in terms of the Feynman propagator

tOll[ A B
Iz_/ dzdr[HA—lk] ()G Ap (¢, r)[H,;lk] (7).
tin
(159)

Separating the real and imaginary parts, we have
1 flow 1A A _121B
5| didtlH KV 0G as. D K1 (1)
S (160)
1 out 1. 1.
- Z/ dtdt[Hy ' K1* )G\ ¢, H 'K 1B (7).
tin

Whence

tout . _ .
| = 5/ dtdt[H ' K12 ()G ap(t, T)[H ' K15 (1)
1,

in

I
+5;|ga<rom>|2. (161)

Substituting all these expressions into the general formula
(247), we obtain the matrix element of the evolution operator
S{f}in in the Bargmann-Fock representation

(O —— {é@(rom)a + ag(tour) — ax (tour)

tout
+i1—i/ dtd(t)}.
1,

in

(162)

The average number of particles (120) recorded by the detec-
tor is

Np = g(tour) Pg(tour)- (163)

In particular, the average number of particles created from
the vacuum becomes (cf. formula (41.3) of [36])

N = Z |ga(t0L1t)|2 =2Im/. (164)
o

The probability (143) of the inclusive process (119) is written
as [66]
w(D)=1-—¢Np, (165)

The quantity

c(tout) = Uy tin

tout
= exp{il —i/ dtd(t)} (166)
g

in

is the generating functional of free Green’s functions. Let us
show that

82 1n ¢ (tour)

o/ g4 /GA/B(tl, 1),
8K 4(11)5K p(t2) AA

(167)
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for t1 2 € (tin, tour) and t; # tr. Indeed, integrating by parts,
we have

7 tour ,
il = _lif dtdTK o(t) I}, GYB(t, 1)K p(T)
tin
l' tour AB
- = dtKs(t)H\" Kp (1)
llf‘l

i Lour . B
+ E/ di[H™'K (01472, [H*‘K(t)]
fin (168)

T=lin

Tout
—i[ Atk AOG 10 [H lK(r)]BVf’é“'
1,

in

A
—i [H‘IK(zm,,)] G A8 (tour- ti)[H Y 'K (6i0)]

——Z 2 02 (152K atoun) P + 152K altin) ).

The second term on the first line on the right-hand side of the
equality is canceled out by the same term contained in d(¢)
(see (54), (166)). It is easy to see that (167) holds.

For comparison we present here the expression for the
matrix element of the evolution operator U, fout-tiy At is
obtained without the Hamiltonian diagonalization procedure,
i.e., written in terms of the creation-annihilation operators
diagonalizing the Hamiltonian (1) without the source K 4.
For brevity, we will refer to the particles associated with these
creation-annihilation operators as the bare ones, whereas the
particles associated with the creation-annihilation operators
a(tour), @' (tour) will be called dressed. Supposing that (146)
is fulfilled, we deduce

Cly = wadap,  Alg =0,

) = ivfKa),
aﬂ(t) _8 ﬁe —liwy (t—tip) _
= (R;,[l-n)olﬁ,

t
gobl(t) = —i/ dre_’wa(’_f)f‘f(r)
tin

= (®") 4 (1)

Whs (1) =0, (169)

t
:/ dre i @«DGAK
tlll
Also

t

xow) = —if dre~@ain=0) fh(7),
tin

1

b — —
d’ = Za: 2600,,
(170)
/ dt / erfO,(r)fa(r)
lll‘l

. tout
xe l@alt=T) —’5/ dtdtK o(t)GAB (¢, 1)K 5 (T).
1,

in

@ kb @) = b,

i1’ =

Therefore,

7b

Lout stin

= exp {a® (tour)a + ag” (tou)

tout
—ax"(tous) +i1" —i/ dtdh}. (171)
tin
We shall consider the connection between bare and dressed
particles in more detail below in discussing QED with a clas-
sical current. Here we only note that if D(f K A(t) tends to zero

at [t| — oo for all « then, after the removal of regularization,

8 = 80, (172)

for t;;, - —o00, tyur — 00. In this case, the average number
of created particles, the average number of particles, recorded
by the detector, and the probability of the inclusive process
(119) are the same for both the bare and dressed particles.

When ¢;,, t,u: are finite, this is not the case. If the source
K 4(t) is a sufficiently smooth function of ¢, i.e., for large wy,
we have

102K aluy ~ 102K aluy, (173)

then the average number of bare particles created with high
energies

Z |g2(t0ut)|2

acUV

(174)

behaves worse than (164) in no-regularization limit. From
(156), (169) we see that in a general position (cf. the asymp-
totics of (88) and (92) in [20])

180 (tou) 3y ~ 032182 (toun) 137y - (175)

The representation of the algebra of observables in the Hilbert
bundle of Fock spaces defined by means of the Hamiltonian
diagonalization procedure improves the ultraviolet behavior
of the average number of particles [23] by the two powers of
energy.

In the infrared limit, for massless particles and finite ¢;,,
tour, the situation is opposite. As long as the relation (175)
holds, the average number of bare particles created at small
energies behaves better than (164) in no-regularization limit.
It is not hard to find the infrared asymptotics of the expres-
sions entering into (162), (171). Taking into account that

2~ f . va ~ w0y =pI7'2,
o

it follows from (158) or (168) for dressed particles in no-
regularization limit

(176)

Tout 1 .
iI—if dtd(t)) _ ! { 1Ak o
( tin IR 2Q§R o o 1
tout df .
+/ SRl K0}, (177)
tin wo{
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where the summation is carried out over the quantum num-
bers o with the energies w, much less than all other energy
scales and it is assumed that wy, (f,,; —tjn) < 1. The last con-
dition implies that the radiation is not formed at the energies
gy - The second term in (177) is negligibly small in compari-
son with the first one as the mode functions corresponding to
zero energy can always be chosen real-valued (see (6)), and
SO

Vo8l = o(w;h), (178)
for w, — 0. As a result,
. . fout 1 —1-A Tout 2
(ll —z/ dtd(t))IR == Z wy Uy Ka 0
lin aclR
(179)

The infrared asymptotics of created dressed particles is writ-
ten as

Nir = Z |ga(t0ut)|2: Z CU(;II_J(;?KA ;T:t
aelR aelR
= > 1hatour tin) . (180)
aelR

Therefore, the dynamics in the infrared region are unitary if
and only if the canonical transforms (26) define the unitary
transforms in one Fock space in the infrared region. In other
words, the use of Hilbert bundle of Fock spaces defined by the
Hamiltonian diagonalization does not improve the infrared
behavior of dynamics of a massless field. From physical point
of view, this fact is not a trouble as one can always suppose
that the system at issue is confined into a large box.
As for bare particles, we have

1 tout 2
ifp=—5 2. ‘/ Aot K a0 (181)
acIR “lin
and
Lout 2
Nig =D 1gbtaun)? =) ‘/t At K 40| . (182)

aelR aelR

For the space dimension d > 2, the number of particles N g
is finite for smooth sources K 4 (¢) tending sufficiently fast to
zero at spatial infinity.

4.2 Quantum electrodynamics with a classical current

Let us apply the above general formulas to QED with a clas-
sical current in the Minkowski spacetime in the inertial ref-
erence frame [23,43,45-50]. The Minkowski metric is

N =diag(—=1,1,1,1). (183)

@ Springer

The Hamiltonian of the electromagnetic field in the Coulomb
gauge reads as (see, e.g., [42,43,67])

A I,, 1= 5 A A
H = dx| =7 + = ,'I‘Otl-j AJ""AI‘]L +VC0ula

270 2

Veou = —%jOA‘U“’, (184)
where j#(x) is the conserved classical current,
9t (x) =0, (185)
and
JL=it—anTley il =8l (186)
In the Coulomb gauge,
¥mi =0, A =0. (187)
The canonical commutation relations are
[Ai(x), #;(¥)] = i85(x — y). (188)
Using the notation from (1), we have

~ A it

=[] k=[]
Hap — roéizj 8%:| i (189)
Jap = -(1) _Ol} &5, I = [_01 (1)} 5.

Introducing the notation for the components of the mode
functions,

A M&(X)
e [w; ® |’
the complete set of solutions (6), (15) can be taken in the
form of plane waves

(190)

es)(K) kg

u, = e w, = —i,/—'k' e (K)e'™,
V2KV 2V
Vdk
=k ) = A _\3°
u=lkl 2 =) / @)

where V is the normalization volume, o = (s,Kk), s =1, 2,
and

(191)

e (Kk =0, Zelf”(k)é;”(k) = 8;j — kik; /K = 8.
N

(192)
Then
dk e~ K%l (1,K)
AB _ J s
H KB(t)—/—(2n)3k2|: 0 , (193)
where
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ji(t,K) ::/dxelkx it,x),  jlt, k) = ji(t, —K).

(194)
In particular, for charged point particles
J k) =) e 00 k) =
n

3 epel k),
n

(195)

where e, is the charge of the n-th particle and B is its velocity.
The Schrodinger field operators (4) are written as

7lkaiL([’ k)

A% = 8A(x) — f (196)

(2 )3k2
The last term is nothing but the Biot-Savart field [68] pro-
duced by the current jf-. At large distances from the source,
in the wave zone, this contribution tends to zero and the oper-
ators A,-(x) and SA,,- (x) coincide.

The creation-annihilation operators dg (¢), &; () at differ-
ent times are related by the canonical transform (26) with

Fop = 8ap. Gup =0,

. =(s) Hi Hi

i eVt k) = [ (tin, )]
ho (2, tiy) = — . 197

(1 i) = T (197)

Therefore,

2
Zm (t. tin)| (2 )3 2|k|3[ JjH (k)

— 7 in, WL (2, ) = 7 (tin, K1

(198)

In particular, the relation between the annihilation operators
of bare and dressed particles is

~(s)
i e (k) j(t,k)
ao (1) = by + —a——zwav

where bg are the annihilation operators of bare photons. Tak-
ing into account that

i) = =i Z/ @) 2|k

X [E§S)<k)e’kx‘<s>(k 0 - de ™ (k; r>]

At = Z/ @3y 2|k

x [ef”(k)e"kxé(s)(k) —e® (k)e_ikxl;(Ts)(k)],

(199)

(200)

it follows from (196) that the excitations of the quantum
electromagnetic field described by bare and dressed photons
almost coincide in the wave zone. The canonical transform

(199) is unitary provided

dk (1K) ji(t, K)
f @Qm) 2k

(201)

Notice that in the case of a stationary current, jiJ- (t) =0,1it
is the states of the Fock basis constructed by the use of the
operators &; (t) acting on their vacuum, which are stationary.
To put it differently, in this case the stable particles are the
dressed photons rather than the bare ones. In the stationary
case at a finite temperature, the dressed photons, and not the
bare ones, are distributed over the energies in accordance
with the Bose-Einstein distribution. On the other hand, the
bare photons enter into the decomposition of the quantum
electromagnetic field (200) and, in this sense, it is these par-
ticles which interact with other fields in the theory that are not
included into the Hamiltonian (184). The shift (199) results
in that the other fields of the theory interact with the classical
Biot-Savart field plus the quantum perturbations described
by the dressed photons.

Introducing the regularization as in (147) and using the
general formulas (156), we come to

f (t) (Y) l(l k)
o 0[0( m|k|3/2
B &% ji(t, k)

=i [ dre-iMe—pa & I
a0 ’/ " o TR 202)
d(r) = / s P VIK

Lo, K)1> — | ji+(, k)|2]

2k?2 '

The expressions for the operators C, A, ®, and W are the
same as in (156). Besides,

' Ko pa &4 (1K)
0= [ vy oy
Xa . a“m|k|3/2
and
tout L %J—
7 — dt d A i !
’/ / ’/(2 7 e P
tOll[
omilkia—n _ 1 / drdt sgn(t — 1)
4 tin
dk PA . . . _ (204)
X/(Zn)3 2|li‘|¥3 [ (. )i (z ke~ KD
_ ]_lJ_ ([’ k)j'iJ_(.[’ k)eilkl(r_r)]
i dk Pﬂ{; tout

. . 2
dre'™ jL (1, k)

@2m)3 2|3

Substituting these expressions into (162), we obtain the
matrix element of the evolution operator S{f}in. The average
number of photons recorded by the detector and the proba-
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bility of the inclusive process (119) are given by the formulas
(164), (165).

Let us provide the physical interpretation to the derived
formulas. The first term in d (¢) is the energy of vacuum fluc-
tuations. The second term in d (¢) is the energy of a Coulomb
interaction. The third term in d(¢) is the energy of interaction
due to the Biot-Savart field. This quantity is negative (see,
e.g., [69]) as it includes not only the energy of the magnetic
field but also the energy of interaction of this field with the
current. The average number of created dressed photons is
([23], see also formula (41.3) of [36])

dk P2,
@2m)3 2/k|?

N = Z |gtx(tout)|2 =
o

Lout . . 2
x ‘ / dre= I L, k)( . (205)
1,

in

As it was noted in the previous section, for ¢, — —oo,
tour — 00, the integration by parts turns this formula into the
standard formula for the average number of photons radiated
by a classical current [68]. In particular, |g,|> possesses the
standard infrared asymptotics [43,45,48,67,68,70] provided
the trajectories of charged particles in the i n and out regions
tend to a uniform rectilinear motion. For this asymptotics
takes place, itis assumed that |K|(1—8,) (tour —tin) > 1,1.e.,
the radiation has time to form at a given energy. The change
of phase of the wave function of the system (the Coulomb
phase) during the infinite interval of time, (¢,,; — tin), also
becomes divergent in the infrared domain.

For finite #;,,, t,,; the quantity (205) determines the aver-
age number of dressed photons in the quantum state of the
field at the instant of time ¢#,,; in the following experimental
setup. For 7 < #;,, the stationary system, jl-L (1) = 0, is in the
ground (vacuum) state. Then for ¢ € (¢, t,,) the classical
current, jiL(x),is changing. Attheinstantoftime ¢ = 7,,;, the
detector records the number of dressed photons and is turned
off or for t > t,,; the current does not depend on time. Of
course, in order to measure the average number of photons,
one needs to carry out a series of identical experiments. The
real detector cannot precisely measure the quantity (205) or
its density for any momentum as it was discussed in Sec. 3.
If 7, is the typical switching off time of the detector, then
the detector can measure the density of (205) for the photon
energies |k|t; < 1. The very quantity (205) is independent
of the detector characteristics and it is the question of the
detector design for how to measure the density of (205) in a
certain spectral range.

Notice that for finite #;,, #,,, the quantity (205) is not
zero even for a charge moving uniformly and rectilinearly.
It is not surprising as, in the Schrodinger representation, the
state of the quantum electromagnetic field depends on time
even for a uniformly and rectilinearly moving charge (the
bound electromagnetic field depends on time at every point of
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space). In terms of particles, this change of the state looks as
the result of creation and annihilation of photons representing
the perturbations of the Fock vacuum. The same situation
takes place in describing the evolution in terms of the bare
photons (see the discussion in [43]).

Let us find the infrared and ultraviolet asymptotics of the
expressions entering into the evolution operator for finite #;,,,
tous- If

3jiH(1,K)

1]
Ji (t3 k)|k=0’ 81{[ k:O’

t € (tin, tour), (206)
are defined, what is valid, for example, for the current jiL (x)
that depends smoothly on time, possesses a compact sup-
port with respect to the spatial variables, and does not have
nonintegrable singularities for any x, then the integral over
k on the third and fourth lines in (204) is convergent in the
infrared region. This follows from the fact that j'l.l t, 0 eR
and complies with the general statement made in the previous
section. The quantities entering into d(¢) are infrared finite,

too. The only singularity appears in the imaginary part of 1,

. 1 dk 1j(t,0) — jt(tin, 0)?
ilig=—3 3 3
2 Jig 27) 20K
1 do . ) 2
=3/ o2, Ui (6. 0) = itin, 0%, (207)

where it is supposed that |K|(¢,,; — tin) < 1. The expression
(207) diverges logarithmically. The zero mode has the form

jl@,0) = /dxji(t,x) =Y By

d ; d
= Xn: ey (1) = —-d' (1), (208)
where d'(¢) is the dipole moment of the system (not to be
confused with d(¢)). This zero mode determines the leading
contribution to the multipole expansion of the electromag-
netic potential of a neutral system of charges at large dis-
tances from the source (see Sec. 44 of [68] and, for example,
formula (14) of [71]). As a rule, this quantity is negligibly
small in the multipole expansion since it is of order |d|/T
for a system of charges evolving in a bounded domain after
averaging over the interval of time T — oo. The infrared
divergence appearing in (207) is responsible for reconstruc-
tion of the Biot-Savart field at large distances from the non-
stationary source. As it was mentioned, from physical point
of view, this infrared divergence is not a problem since one
can always suppose that the system under study is confined
into a sufficiently large box. Furthermore, the assumption
that the initial state is the ground state of the Hamiltonian of
the theory is valid only in the bounded region of space. The
typical size of this region or of the box can be taken as the
natural infrared cutoff. Nevertheless, if the size of the cham-
ber where the experiment is carried out is sufficiently large
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and |K|(z,ur — tin) < 1, then there exists a region of pho-
ton energies where the infrared asymptotics of the density
of radiated photons following from (207) can be observed
experimentally.

As far as the ultraviolet asymptotics is concerned, the
Fourier transform of an infinitely smooth current j*(¢, x)
tending to zero at |x| — oo faster than any power of Ix|~!
vanishes at |k| — oo faster than any power of |k|~!. There-
fore, all the integrals appearing in the evolution operator con-
verge at large momenta in no-regularization limit?, except,
of course, the energy of zero point fluctuations. Neverthe-
less, it is interesting to find the ultraviolet asymptotics of the
average number of dressed photons created from the vacuum
by the system of charged point particles (195). For such a
system

J &) =Y enlBy + By (B k)M, (209)

Substituting this expression into (205) in the regularization
limit and integrating by parts, we find in the leading order

mB,)? B2 — (nB,)?
N 2 n n n
wv = /Uv (2n>3[z "2KP (1 - (n,))?
,mB,)? By — (mB,)?
t2a 2k (1— (nB,))? r=t(,m]’

where n := k/|K|. Integrating over the angular variables, we
obtain

_ dw 2
Nyv = /UV 16n3w[Zn:e”f('3”)|f=”"

t=tip

(210)

+Y enf Bl ] @11)
where n
f B =87[ 2 B )aﬂgnﬂn i ~2
= 81—75[/3;,4+---=2n[—1n#_23_0+...].
(212)

The number of particles (211) diverges logarithmically. In
this case, the natural ultraviolet cutoff parameter is the inverse
of the wave packet size. It is also clear that (211) does not
take into account the quantum recoil due to radiation of hard
photons [49]. The account for quantum recoil results in that
|ji(z, k)| rapidly tends to zero for |k| larger than the total
energy of the radiating particle. The current (195) does not
satisfy this property. To observe the asymptotics (211), it is

2 Notice that such a situation does not always take place. Namely,
infinitely smooth background fields of a general form rapidly vanishing
at infinity, or with a compact support, may lead to the average number
of particles divergent at large energies (see Introduction).

necessary that the photon energy be much smaller than 1 /7
and the ultraviolet cutoff parameter and be much larger than
any typical energy of the radiation formed.

Let us find the estimate for the number of dressed photons
produced during the adiabatic change of the current ]J- (t, k).
Suppose that

JEEK) =T /T K), (o — tin) /T > 1, (213)

where 7 is the adiabaticity parameter and ]L(t k), ]L(t k)
are assumed to vanish sufficiently fast at [k|] — oo. Let A
be the infrared cutoff (see above) and A g (tour — tin) < 1,
A[ R > A. Then

AR dk
N = —_
L 1673|k|3

© gk ow 2
+/ —‘f =ikt g1t ), k)‘ .
A 63K T !

(214)

10141

. . 2
dre= I L, k)‘

If ]IJ‘ (¢, k) is absolutely integrable for ¢ € [¢;,, ,,:] then, on
integrating by parts and using the Riemann-Lebesgue lemma,
it is easy to see that the second term is of order 1/72. This
estimate is valid for AjgT > 1. Substituting (207), (208)
into the first integral, we obtain in the leading order
In(Ar /M)
672

®© dk
+/ ‘e—l‘kh J_(t k)
INT 167'[31(4

If d' (1) is of order 1/7, then the first term is of order 1/72.
Thus, in the adiabatic limit,

N =0(?).

N ~ (d (tour) — d' (tin))?

qur

(215)

(216)

The asymptotics (216) is in agreement with the standard esti-
mate following from the uniform adiabatic theorem [41,61].
The infrared cutoff A provides the energy gap between the
vacuum and the first excited state of the system.

For comparison we present here the analogous formulas
for the bare photons. The general formulas (169), (170) are
written as

(Y) -
j(t, k)
fhoy =i
«/2V|k|1/2
—(s) i
L= [ ' dre-ie—n & (10 @17)
“ V2V k|12
dk Ljo(t, k)|?
d’t) = V1k _—).
@) /(2n)3< T )
Also
! J(t, k)
b _ l‘k‘(fm_f) l
t) = dte”
X /t ~/2V|k|1/2
. l tout " »
ir’ = —5/ dxdyj ()G (x, ) j/ (). (218)
tin
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Recall that, in the Coulomb gauge,

/ Ak 8;
—l1 —e
(27)3 2|K|

Substituting these expressions into (164), (165), (171), we
deduce the average number of bare photons recorded by the
detector, the probability of the inclusive process (119), and
the matrix element of the evolution operator. The average
number of produced bare photons reads as

NP _/’ dk
o 167

For finite ¢, t,,;, this quantity determines the average num-
ber of bare photons in the following experiment. For ¢ < ¢;,
the current is shielded, the bare photons are absent in the ini-
tial state. For ¢ € (t;,, tour) the shielding is switched off. At
t = tou the detector counts the number of bare photons and
is turned off or the current is shielded once again. Such a sit-
uation can be realized, for example, by using the conducting
screens: the charges are injected in the region of space where
the detector is located and the shielding is absent. Then the
charges escape this region and move behind the screen.

The integrals defining db 1), 1 b and N? are finite in
the infrared domain for |K|(#,,; — t;,) < 1 provided that
jf-(t, k = 0) exists. By the same reasons as in the case of
dressed photons, these integrals are finite in the ultraviolet
region as well for a smooth current j*(¢, x) tending to zero
at [x| — oo faster than any power of |x|~!. As for the current
of charged point particles (195), the ultraviolet asymptotics
(220) has the form

b dk , B2 — (nB,)?
Nov = /Uv 1673 k|3 [Z "(1— (nB,))>

iky (xF—yH) )
k=K

G .y = (219)

Lout

dre” "I Lz, k) (220)

=tin

2 ﬂn (nﬁn)z
. 221
G B b @20
Integrating over the angular variables, we have
Vor = [ e S e,
n
+>eaf’ B, (222)
n
where
b _ arth 8, ) 8_71 5
P =8 (S5 1) = S8+
B (1—Bu)?
_2n[ In == 4+~-~]. (223)

The average number of particles (222) diverges logarithmi-
cally. It is clear from (210) and (221) that Nyy < N{}V.
This property is in accord with the general statement that the
representation of the algebra of observables by means of the
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Hamiltonian diagonalization procedure improves the ultravi-
olet behavior of the theory. In the present case, the estimate
(175) is not fulfilled as the estimate (173) does not hold for
the current of point particles. Notice that £(8,) — f?(Bn)
for g, — 1.

To conclude this section, we find the average number of
bare photons created from the vacuum during the adiabatic
evolution of the current j; (1, k). To this end, we integrate
by parts with respect to ¢ in (220). Then, in the leading order
in 1/7, we obtain

v N/ 16n3'|k|3“(€_”k“ D[]

The integral discarded in this expression tends to zero as
T — oo provided that ]l (1, k) is absolutely integrable for
t € [tin, tou] and the other assumptions about ]ll(t, k) are
satisfied (see above). The quantity (224) does not tend to zero
for t — oo. This is, of course, an expected result.

(224)

5 Conclusion

Let us summarize the results. We developed the quantum the-
ory of fields with nonstationary quadratic Hamiltonians of a
general form for both bosons and fermions. A special atten-
tion was paid to the existence of unitary evolution during a
finite interval of time in the separable Hilbert space of quan-
tum states. To this end, the representation of the algebra of
observables was realized by means of the Hamiltonian diag-
onalization procedure, the energy cutoff regularization was
explicitly introduced into the Hamiltonian, and the divergen-
cies in the average number of created particles were regulated
by the corresponding counterdiabatic terms in the Hamilto-
nian. The regularized Hamiltonian is self-adjoint, local in
time, and reduces to the initial Hamiltonian after the removal
of regularization.

In no-regularization limit, the theory may become nonuni-
tary due to the divergent number of created particles in
the ultraviolet and/or infrared spectral domains. Neverthe-
less, we investigated the observables that allow for no-
regularization limit. Namely, we considered the probability
that the detector records a particle in a certain set of states,
i.e., the probability w(D) of the inclusive process (119). In
addition, we considered the average number of particles Np
recorded by the detector in the aforementioned set of states.
It is these quantities that are measured in experiments. We
showed that under rather mild assumptions these quantities
allow for the removal of regularization. In this limit, Np
is finite and w(D) € [0, 1) as for the regularized theory.
The explicit formulas for Np and w(D) were found. The
formula for w(D) generalizes the formula obtained in [66].
Of course, the issues with unitarity of the theory after the
removal of regularization do not vanish. They reappear in
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the form of dangerous asymptotics of the average number
of created particles in the ultraviolet and/or infrared regions.
However, one cannot prove experimentally such violation of
unitary so long as one cannot measure the number of particles
at infinite and/or zero energies.

As a simple example for application of the developed for-
malism, we considered the theory of a neutral boson field with
the Hamiltonian possessing a stationary quadratic part and a
nonstationary source. We particularized the general formu-
las for this simple case and found the infrared and ultraviolet
asymptotics of the average number of particles created from
the vacuum during a finite time evolution. For such simple
theories, it is not difficult to compare the observables calcu-
lated in the different representation of their algebra. Thus we
found the average number of particles recorded by the detec-
tor when the Fock space is defined by means of diagonaliza-
tion of the Hamiltonian without the nonstationary source (the
bare particles). As a rule, for massless particles without the
infrared cutoff, this representation is not unitary equivalent to
the representation defined by means of diagonalization of the
full nonstationary quadratic Hamiltonian (the dressed parti-
cles). We showed that the average number of dressed particles
created from the vacuum possesses a better ultraviolet behav-
ior than the same quantity for the bare particles. The infrared
issues with unitarity can be resolved, for example, by placing
the system into a large box. In fact, such a “box” is always
present in any experimental setup. Then the both represen-
tations become unitary equivalent and, to a large extent, the
use of different definitions of particles becomes a question
of terminology. All the observables in one representation can
be rewritten in the other one, although one representation can
be more suitable than another for solving a given problem?.
So this model is not a quite good representative for display-
ing the peculiarities stemming from unitary inequivalent rep-
resentations of the algebra of observables. The issues with
unitarity of QFT resulting from a poor ultraviolet behavior of
the average number of created particles for infinitely smooth
background fields with compact support are severer and can-
not be resolved by analogous simple physical arguments (see
the examples in [14-16,18,20]). There is not a natural ultra-
violet cutoff in these model. So it has to be introduced by
hand or other representations of the algebra of observables
have to be considered.

3 Of course, there are certain restrictions on the choice of the repre-
sentations of the algebra of observables. There must exist at least one
representation among unitary equivalent ones that is determined by the
state of the background fields at the present moment at every instant of
time, i.e., in this representation, the creation-annihilation operators are
the functionals of the background field configurations ®(¢). For exam-
ple, such functionals can simply be independent of ®(¢). If there are
not such local in time representations of the algebra of observables, one
cannot pose the Cauchy problem.

Having investigated this model, we considered its partic-
ular case — QED with a classical current in the Minkowski
spacetime in the inertial reference frame. This is the classi-
cal example that was investigated in many papers and books
[23,43,45-50]. We found the average number of dressed and
bare photons created from the vacuum during a finite time
evolution and the probability of the inclusive process (119).
The production of photons during the adiabatic change of
the source was also studied. The infrared asymptotics of the
average number of dressed and bare photons were obtained.
As for the ultraviolet asymptotics, they were derived for the
current of charged point particles. All these asymptotics can
be verified experimentally.

As regards the possible applications of the developed for-
malism, they are numerous. One may mention the nonsta-
tionary problems in condensed matter physics, in QED in
continuous anisotropic media and in strong electromagnetic
fields, in QFTs on gravitational backgrounds, etc. It can also
be used for description of finite time quantum-field processes
with wave packets.
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A Symbol of the evolution operator

Let us find the normal symbol of the evolution operator of
QFT of bosons or fermions of a general form with nonsta-
tionary quadratic Hamiltonian. As for quadratic theories of
bosons, the explicit expression for this symbol was found in
[56], where, in fact, the results of [2] were generalized to
a nonstationary case (see also [1] and for relatively recent
studies [72,73]). Other representations of the solution to the
quantum-field Schrodinger equation with quadratic Hamil-
tonian are given in [9,74].
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Let (aq, &;) be a complete set of bosonic (¢ = 1) or
fermionic (¢ = —1) creation-annihilation operators. By the
standard means we construct the Bargmann-Fock represen-
tation [1,2,75]. Introduce the coherent states

aa

@l = (0%,  (ala) = e,

(alal = (alay,

la) == ¢7'%|0),

agla) = agla),

(225)

where |0) is the Fock vacuum and a,, a, are some functions
with the Grassmann parity (1 — €)/2. Recall that we use the
matrix notation of the form (28). The completeness relation
reads as

i:/D&Dae_‘_’“m)(&l, /D&Dae“_’“ =1. (226)

The last equality specifies the normalization of the measure
of the Gaussian functional integral. This functional integral
obeys the relations [2]

/D&Daexp{ —%[aé]B [g]+[a&]F}

Az A22:| )‘1/2
A A

/D&Daexp{%[a a)B [Z} +[aa]F|

= exp {%FTB_IF}(detB)l/z,

:exp{%FTB]F}<det[ 27

where the first equality is for bosons, whereas the second
one is for fermions. The Grassmann parity of F is equal to
(1 — €)/2. Besides,

B = [A“ A“]. (228)

Az Axp
The determinant on the first line on the right-hand side of
(227) is well-defined provided Ajj, Ay are the Hilbert-
Schmidt (HS) operators and A1y — 1 and A — 1 are trace-
class. As for fermions, the operators A2, A2 must be HS,
and A1; — 1 and Ay — 1 must be trace-class (see for details
[2D).
The states of the Fock space and the kernels of operators
acting in it,

@) := (@a®), A@,a):= (alAla), (229)

are the functionals of a, ay. It is clear from (225) that
A, a) = A@a, a)e™, (230)

where A(a, a) is the normal (Wick) symbol of the operator
A. The functional

®(a) := (Dla) (231)

is obtained from ®(a) by the complex conjugation that, in
particular, replaces a, — a, and arranges the functions a,, in
the inverse order as on transposition. The same is valid for the
functional corresponding to the kernel of the operator A" and
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for the normal symbol of the operator AT, viz., one should
take the complex conjugation and arrange the functions a,,
a inthe inverse order. In the Bargmann-Fock representation,
we have

8P (a)
Sag

i |®) < al|®) o ag (@),

N 8
agA < (aa+f)A(aya)y g A < agA(a, a),
Say

-

. . 3

Adg < A@, a)aq, Aal o A(Zz,a)(ﬁa + —)
Sag

.+ 8A@.a) a
Ay A < — s agA < agAa,a),
Say
-«
~ _ Py . 8
Ady < Aa, a)ay, Aday < Aa,a)—,
Say

(232)

for both bosons and fermions.

Let us given the two sets of the creation-annihilation oper-
ators (dgy, &;) and (b, l;l) related by the linear canonical
transform

(] [oew][a f

AR HIR N
where

fow][ 0 1][eT vi] [o01 234
_\i’&) —0||vT oT |7 | —c0 |’ (234)
or

RV of  —ewT

Uo||—ewt of

of —evT oW 10
:[—ew @7 pr 6}2[01]' (235)

In terms of components, we have

o =1+e0’¥,
ofw =cw’,
@)y T=1-0'wve 'y,
o'W = e(@ '),
(236)

o' =1+ ecww,
o’ = ewo’,
(<I><I>T)’] —1—- ((DT)—I\I,T(@T)—I\I,T,
v =ewdHT,

where it is assumed on the last two lines that there exists the
bounded operator ®~!. This is always valid for bosons. As
for fermions, we will suppose that & possesses a bounded
inverse. The case of degenerate @ with even-dimensional
kernel can be obtained by a limiting process from the nonde-
generate case [2]. Notice that it follows from (236) that the
operators ¢ and W are bounded in the fermionic case.

Theorem 1 The linear canonical transform (233), (235)
corresponds to the unitary transform

by =Ua,U', bl =0al0", (237)

if and only if
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1. VisHS 3. The operator
T
Sp(v W) < oo; (238) F(7) := / dsRosA(s)R;.0 (245)
0

2. fa belongs to the Hilbert space is HS and || F (7)||2 is locally integrable for t € [0, t];

_ 4. The operator

ff < oo. (239)

In this case, the matrix element U (a, a) of the operator U
takes the form

- 1, . Ul e(@HT
o=conl3loat[4% ][]

Ta(f —Tolf) - aqr‘f},
o | (240)

“ T detddhye/s P {Z [77]

@ Hlwh  —e f
x —1 @ YT || F }

where @ is an arbitrary phase.

The proof of this theorem is given in [2]. As long as the
operator W is HS in the theorem, ®d" — 1 is trace-class
and the Fredholm determinant in (240) is well-defined. This
determinant is not zero for fermions inasmuch as we assume
that ® is nondegenerate.

Let the Hamiltonian of the system be

L1
H = E[zaﬁcma +aA"(Ha

+&TA(t)&T:| +a' f(O)+ fa+dw), (241)
where C(t) = C'(¢) is a self-adjoint operator, AT (1) =
€ A(t) is an (anti)symmetric operator, f,(¢) are some func-
tions of the Grassmann parity (1 —€)/2, and d(¢) is a Grass-
mann even function. Introduce the standard notation for the
operator norms

IAlll == SpVATA,  ||All2:=[Sp(ATANY2 (242)

Theorem 2 Let the Hamiltonian of the system take the form
(241) and the following conditions be satisfied:

1. There exists the unitary operator
T
Reo = Texp [ - i/ dsC(s)], rel0,6]:  (243)
0

2. The operator A(t) is uniformly bounded for t € [0, t]:

da > 0: ||A(7)|| < a, VT €[0,1]; (244)

G (1) := Ry A(T)R; 0F (1) (246)

is trace-class and |G (t)||1 is locally integrable for T €
[0, 71,

5. f(r)f(f) < b < o0 and d(t) is absolutely locally inte-
grable for T € [0, t];

6. Inthe fermionic case, the operator ® (1) defined in (249)
has a bounded inverse for t € [0, t].

Then the matrix element of the evolution operator (7,,0 is
written as

) 1 5—1 y—1 a
Uro(a,a) = c(t) eXP{z [@a] [fg—l _(fé)—l\if} [Z}

+a@hH) 'y —ea(x + cirllilx)}, (247)
where

x1_ .| [
[i]_ l/odTDO’T[—f(T)]

c(t) = [det Ry, ()]~

t € (248)
— 7 Tyd-la |
exp | l/o dr[Sx @ A@H "y
+ f(@) 'y +a’(r)]},
and
_ | P@ Y@ | _ ! Cx) A®)
o= [‘i’(’) é(’)] - Texp{ 71/0 a [—A(r) —C_(r)] } (249)

Proof The proof of this statement is the same as given in
[2] with the exception that now the Hamiltonian depends on
time. The formal proof of this theorem for bosons is presented
in [56]. As for fermions, the formal proof is conducted along
the same lines as for bosons apart from some signs arising
due to anticommutativity of a,, ay, fu, and fa.

The proof of the existence of (247) is reduced to the proof
of the existence of (249) and that the operator W is HS, the
operator Ry, ®(t) — 1 is trace-class, and the expressions in
the exponents (247), (248) are bounded. Let

h) ::[ C@t) AQ) }: [C(r) 0 }

—A@) =C 1) 0 —C®)
0 A | _.
+ [—A(t) 0 ] =: ho(t) + v(?),

(250)
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where hg(t) is the first matrix and v(z) is the second one.
Introduce the operator

L) M(r)] 0 _|:R12,11 0 ]

770 _| L) M _
SI,O = UO,th,O - |:M(l‘) L(T) .ty 0 th»tl

(251)

There is the standard representation for the operator S; ¢ in
the form of the series of nonstationary perturbation theory

o0 t
So=1+> 8%, s = —i/ vy ()SUy P (252)
0
n=1

and
v (1) = UQ, o)UY, (253)

Substituting the matrix representations for the operators, we
come to the recurrence relations

_ t 1 _ _
M(”)(t):/ dzl/ dtiyRo, A(ty)
0 0

X Riy 0R0.1, A(t2) Ry oM "2 (12),

; " (254)
L™W(@) = / dn / dtyRo.4 A(t1) Ry, 0Ro 1)

0 0

x A(t2) Ry, oL (1),
and
t
L9 =1, mMY0=irw, LP =/dG ,
1) (1) =iF (1) (1) A TG (1) (255)

MO = @D — 0 4 =0, 0.

It follows from the properties of the operator norms (see, e.g.,
[57,76]) and the recurrence relations (254) that

_ t | _
10l <o [an [P
0 0 (256)

t |
ILD Ol < o / dn / dn||L""? @)1
0 0

Using these recurrence relations and the initial data (255), it
is easy to see that on fulfillment of conditions of the theorem

[Si00], <o [SL00] <o @57
=0 n=1

The first inequality implies that the operator

M(t) = Ro, W (t) (258)

is HS. Consequently, W(¢) is also HS. The second inequality
in (257) implies that the operator

L(#)—1=Rp;P(t) -1 (259)

is trace-class. This proves the existence of the determinant
entering into (248), the existence of the linear canonical trans-
form (249), and that the latter corresponds to the unitary
transform. The boundedness of the expressions in the expo-
nents in (247), (248) is evident under the assumptions of the
theorem.

]

@ Springer

Some assumptions of the theorem can be relaxed but we
will not investigate this point here. In particular, for fermions,
in the case when ®(¢) possesses an even-dimensional ker-
nel, the matrix elements of the evolution operator can be
obtained from (247) by a passage to the limit in the formula
for the nondegenerate case [2]. A thorough investigation of
the dynamics of electrons in the overcritical fields resulting
in degeneracy of the operator ®(¢) can be found in [4,18].

We shall also need the relation between the creation-

annihilation operators in the Heisenberg representation
o (1) :=Uo,4a(Uro,  al(t) == Uoal (0T, o. (260)

These operators obey the Heisenberg equations with the
Hamiltonian (241),

Tan]_ a() f@
The solution of these equations is
[an ] _ a(0) Q)
Laty ] =P [&WO)} * [gm}
_ a(0) x ()
= D[,O [&T(O)] + Df,() |:)Z(l)i| N (262)

where D, o and x(¢) are defined in the formulation of the
theorem 2.
Notice that

U1000.0)] ;. _7 _ = [det Ro, ()] /%™ 474 (263)

This expression determines the vacuum-to-vacuum ampli-
tude (56) in the absence of sources and, in fact, gives the
one-loop effective action of the theory [3-8,10-12,32-34].
The function c(¢) in the presence of sources is the unnormal-
ized generating functional of free Green’s functions, i.e., the
Green’s functions of quadratic theory on the given classical
background. The expression (263) can be rewritten in other
form under the additional assumption that C(7) in (243) is
trace-class and ||C (7)||; is locally integrable for t € [0, ¢].
Then using the nonstationary perturbation theory as in the
proof of the theorem 2, it is not difficult to show that R, o — 1
is trace-class and continuously depends on C(7), t € [0, ¢],
with respect to the norm || - || 1. If C (7) is a finite-rank operator
for t € [0, t], then the Liouville theorem holds

t
det R,o = exp { _i f dt SpC(r)}. (264)
0
The Fredholm determinant det(1 + X) is a continuous func-
tion of X with respect to the norm || - || (see, e.g., [65]). The
algebra of finite rank operators is a dense subset in the trace-
class operators with respect to || - [|;. Consequently, taking
the limit in (264), we see that (264) is valid when C (1) is
trace-class and ||C (7)||; is locally integrable for t € [0, ¢].
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In this case, under the assumptions of the theorem 2, we have

000,001, _r_o = [det (0] /2 fat[sspcm-a@]

(265)

We shall simplify this formula further in considering the con-
crete models in Sect. 2.
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