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Abstract
This article studies the breaking of the Lorentz symmetry at the Planck length in
quantum mechanics. We use three-dimensional ℘-adic vectors as position vari-
ables, while the time remains a real number. In this setting, the Planck length is
1/℘, where ℘ is a prime number, and the Lorentz symmetry is naturally broken.
In the framework of the Dirac-von Neumann formalism for quantum mech-
anics, we introduce a new ℘-adic Dirac equation that predicts the existence
of particles and antiparticles and charge conjugation like the standard one.
The discreteness of the ℘-adic space imposes substantial restrictions on the
solutions of the new equation. This equation admits localized solutions, which
is impossible in the standard case. We show that an isolated quantum system
whose evolution is controlled by the ℘-adic Dirac equation does not satisfy the
Einstein causality, which means that the speed of light is not the upper limit
for the speed at which conventional matter or energy can travel through space.
The new ℘-adic Dirac equation is not intended to replace the standard one; it
should be understood as a new version (or a limit) of the classical equation at
the Planck length scale.
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1. Introduction

This article revolves around the breaking of the Lorentz symmetry, models of quantum mech-
anics (QM) at the Planck scale, and the Volovich conjecture on the ℘-adic nature of space-
time at the Planck scale. The Lorentz symmetry is one of the most essential symmetries of the
quantum field theory. While the validity of this symmetry continues to be verified with a high
degree of precision [1], in the last thirty-five years, the experimental and theoretical studies of
the Lorentz breaking symmetry have been an area of intense research, see, e.g. the reviews [2,
3] and the references therein. The quantum-gravity perspective is considered in [4–8]. When
both QM and general relativity are considered, there should be a Planck scale limitation to the
localization of a space-time point. This naturally leads one to consider discretized space-times.

In the Dirac-von Neumann formulation of QM, the states of a quantum system are vectors
of an abstract complex Hilbert space H, and the observables correspond to linear self-adjoint
operators inH, [9–12]. A particular choice of spaceH goes beyond the mathematical formu-
lation and belongs to the domain of physical practice and intuition, [12, chapter 1, section 1.1].
LetΨ0 ∈H be the state at time t= 0 of a specific quantum system. Then, at any time t, the sys-
tem is represented by the vector Ψ(t) = e−itHΨ0, t⩾ 0, where H is the observable associated
with the total energy of the system. It is crucial to mention that this description of the evolution
of quantum states requires real-time (t ∈ R). Nowadays, we do not have a convenient notion
of unitary semigroup with ℘-adic time.

By ℘-adic QM, where ℘ is a fixed prime number, we mean QM with H= L2(Q3
℘), where

Q℘ is the field of ℘-adic numbers. Since the time and the position are not interchangeable
(t ∈ R, x ∈Q3

℘), such theory is not Lorentz-invariant. The geometry of Q3
℘ radically differs

from that of R3. The ℘-adic space Q3
℘ is a completely disconnected topological space, while

R3 is an arcwise connected topological space. Intuitively, Q3
℘ has discrete geometry, while

R3 has a continuous one; see [13] for a further discussion. In addition, there is no algebraic
and topological isomorphism between Qm

℘ and Rm, because as topological fields Q℘ is not
isomorphic to R, [14, chapter I, sections 3, 4]. We propose the ℘-adic QM as a model of QM
at the Planck length.

The ℘-adic QM is a model of the standard QM in the space Q3
℘. This space is invariant

under the transformations of the form x→ a+Ax, where A ∈ GL3 (Q℘). This group is the
substitute of the Poincaré group in the ℘-adic framework. In particular, this group contains
scale transformations of the type x→ a+℘Lx, where a ∈Q3

℘, and L ∈ Z. Given two different
points x,y ∈Q3

℘, after a suitable scale transformation, one may assume that x= a+℘b ̸= 0,

with a,b ∈ {0,1, . . . ,℘− 1}3, y= 0. Then, the distance between these points is
∥∥a+℘Lb

∥∥
℘
,

and this quantity can take two values, 1 or ℘−1, which means that the Planck length is exactly
℘−1, see also [13, section 5]. It is relevant to reemphasize that the existence of a Planck length
is invalid if we replace Q3

℘ with R3, and also that the ℘-adic QM is not a replacement of the
standard QM, but a model of the standard one at the Planck length.

In the last forty years ℘-adic QM has been studied intensively; see, e.g. [15–42], among
many available references. There are several different types of ℘-adic QM. In particular, the
one in which the time is ℘-adic, e.g. [18], radically differs from the one considered here. If
the time is ℘-adic, we cannot use the classical theory of semigroups; then, a new theory for
the computation of quantum expectation values is required. Using real-time allows us to do
calculations using the standard axioms of QM, with the same physical interpretations but in a
discrete space.
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In the 1930 s Bronstein showed that the general relativity and QM imply that the uncertainty
∆x of any length measurement satisfies

∆x⩾ LPlanck, (1.1)

where LPlanck is the Planck length, [43]. This inequality establishes an absolute limitation on
length measurements, so the Planck length is the smallest possible distance that can, in prin-
ciple, be measured. Below the Planck scale there are no intervals just points. The choice of R
as a model the unidimensional space is not compatible with inequality (1.1) because, R con-
tains intervals with arbitrarily small length. On the other hand, there are no intervals in Q℘,
i.e. the non-trivial connected subsets are points. SoQ℘ is the prototype of a discrete space with
a very rich mathematical structure. This idea is a reformulation of the Volovich conjecture on
the ℘-adic nature of the space at the Planck scale, [44]. It is relevant to mention that another
interpretation of Bronstein’s inequality drives to quantum gravity, [45].

Since 1925, all the parents of the QM have been aware of the need to abandon the classical
notion of continuous space-time in studying phenomena at the quantum scale. The reader may
consult [46] for an in-depth historical review. For instance, according to [46], Einstein and
Born believed that the traditional concept of space-time of macroscopic physics cannot simply
be transferred to quantum physics. But all the efforts (especially from Born and Jordan) to
construct physical theories with discrete space-times failed.

The theoretical study of quantum models admitting Lorentz symmetry breaking is relevant,
[2, 3]. Here, we review some ideas presented in [8] directly related to this discussion. Based
on the inequality E−1∆E≳ 1, where ∆E is the uncertainty in energy measurement, where
ℏ= c= 1 so the Planck length is

√
G, in [8] is argued that the uncertainty in the energy of a

particle is more significant than its rest mass and this makes the concept of particle unclear.
The Planck length imposes a resolution limit for relativistic QM: localizing a particle with
better accuracy than its Compton wavelength is impossible. These features are reflected in the
difficulty of defining a position operator (in the sense of Newton and Wigner). This operator,
whose eigenvalues give the positions of a certain particle, has the following property. If a
particle is localized in a certain region at a certain time, then at any arbitrarily close instant
of time, there is a non-zero probability of finding it anywhere; therefore, the particle would
travel faster than light. Finally, the author argues, without giving additional details, that this
paradox disappears when, instead of dealing with a single particle, one allows the possibility
of particle creation and annihilation.

The simplest quantum model of the phenomena just described is the ℘-adic Dirac equation.
This article introduces a such equation which shares many properties with the standard one.
In particular, the new equation also predicts the existence of pairs of particles and antiparticles
and a charge conjugation symmetry. The ℘-adic Dirac spinors depend on the standard Pauli-
Dirac matrices. The new equation is a version of the standard Dirac Equation at the Planck
scale, where the breaking of the Lorentz symmetry naturally occurs. In this framework, the
Einstein causality is not valid.

The derivation of the ℘-adic Dirac equation is based on the fact that the plane wave solu-
tions of the standard Dirac equation have natural analogs when one considers the position and
momenta as elements of a metric, locally compact topological group; the construction of these
analogs does not require Lorentz invariance, just a version of the relativistic energy formula,
with c= 1. This last normalization, or a similar one, is essential because, in the new theory, the
speed of light is not the upper bound for the speed at which conventional matter or energy can
travel through space. We warn the reader that our relativistic energy formula with c= 1 is not
a substitute for the classical one. It provides the proper geometric restriction for the existence
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of ℘-adic plane waves. We do not discuss the Planck units in the space-time R×Q3
℘; instead,

we use ‘natural units’ to simplify the discussion of our model.
Our ℘-adic Dirac equation has the form

i
∂

∂t
Ψ(t,x) = (α ·∇℘ +βm)Ψ(t,x) , t ∈ R, x ∈Q3

℘, (1.2)

where α, ·, m has the standard meaning,

ΨT (t,x) =
[
Ψ1 (t,x) Ψ2 (t,x) Ψ3 (t,x) Ψ4 (t,x)

]
∈ C4,

∇T
℘ = [ Dx1 Dx2 Dx3 ], where Dxk denotes the Taibleson–Vladimirov operator. We start

with an ansatz that describes the ℘-adic counterparts of the classical plane waves in terms of
the classical Pauli–Dirac matrices and a version of the relativistic energy formula, with c= 1.
Using these particular solutions, we derive a new ℘-adic Dirac equation. It turns out that the ℘-
adic Dirac equation shares many properties with the usual one. Indeed, we use several results
from [11, chapter 1]; our notation follows closely the one used in this reference.

The geometry of space Q3
℘ imposes substantial restrictions on the solutions of (1.2). The

℘-adic Dirac equation admits space-localized planes wavesΨrnj (t,x) for any time t⩾ 0, which
is, supp Ψ rnj (t, ·) is contained in a compact subset of Q3

℘; see theorem 6.1. This phenomenon
does not occur in the standard case; see, e.g. [11, section 1.8, corollary 1.7]. On the other hand,
we compute the transition probability from a localized state at time t= 0 to another localized
state at t> 0, assuming that the space supports of the states are arbitrarily far away. It turns out
that this transition probability is greater than zero for any time t ∈ (0, ϵ), for arbitrarily small
ϵ; see theorem 9.1. Since this probability is nonzero for some arbitrarily small t, the system
has a nonzero probability of getting between the mentioned localized states arbitrarily shortly,
thereby propagating with superluminal speed.

The concept of discrete space-time is not uniform in the literature, and thus, many dif-
ferent QM over discrete spaces occur; see, e.g. [47, 48]. For instance, in [48, section 3], the
author considers discrete the space-time of type Zm ⊂ Rm, i.e. the space-time is a lattice of
the standard Euclidean space. This approach is not convenient here because the discreteness
of Zm is a relative property in Rm; this choice does not change the Poincaré group of Rm, and
the discrete space is not invariant under all these symmetries. Finally, the discussion about the
Planck length requires a mathematical framework where the notion of length measurements
using rational numbers may be formulated. For all these reasons, the approach considered in
[47, 48] is not useful here.

The article is organized as follows. Section 2 gives a quick review of the results of ℘-
the analysis required here. In section 3, we derive the ℘-adic Dirac equation. The section 4
is dedicated to studying the spectrum of the ℘-adic Dirac operator. The charge conjugation is
studied in section 5, while section 6 is dedicated to showing the existence of localized particles
and antiparticles. The semigroup attached to the free Dirac operator is studied in section 7. The
position and momenta operators are considered in sections 8 and 9 is dedicated to the violation
of Einstein causality. In the last section, we give some final comments and conclusions.

2. Basic facts on ℘-adic analysis

In this section we fix the notation and collect some basic results on ℘-adic analysis that we
will use through the article. For a detailed exposition on ℘-adic analysis the reader may consult
[27, 49–51].
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2.1. The field of ℘-adic numbers

Along this article ℘ denotes a prime number. The field of ℘−adic numbers Q℘ is defined as
the completion of the field of rational numbersQwith respect to the ℘−adic norm | · |℘, which
is defined as

|x|℘ =

{
0 if x= 0

℘−γ if x= ℘γ a
b
,

where a and b are integers coprime with ℘. The integer γ = ord℘(x) := ord(x), with
ord(0) := +∞, is called the ℘−adic order of x. We extend the ℘−adic norm to QN

℘ by taking

||x||℘ := max
1⩽i⩽N

|xi|℘, for x= (x1, . . . ,xN) ∈QN
℘.

By defining ord(x) =min1⩽i⩽N{ord(xi)}, we have ||x||℘ = ℘−ord(x). The metric space(
QN

℘, || · ||℘
)
is a complete ultrametric space. As a topological space Q℘ is homeomorphic

to a Cantor-like subset of the real line; see, e.g. [27, 49].
Any ℘−adic number x ̸= 0 has a unique expansion of the form

x= ℘ord(x)
∞∑
j=0

xj℘
j, (2.1)

where xj ∈ {0,1, . . . ,℘− 1} and x0 ̸= 0. In addition, any x ∈QN
℘ ∖ {0} can be represented

uniquely as x= ℘ord(x)v, where ∥v∥℘ = 1.

2.2. Topology of QN
℘

For r ∈ Z, denote by BNr (a) = {x ∈QN
℘; ||x− a||℘ ⩽ ℘r} the ball of radius ℘r with center at

a= (a1, . . . ,aN) ∈QN
℘, and take B

N
r (0) := BNr . Note that B

N
r (a) = Br(a1)× ·· ·×Br(aN), where

Br(ai) := {x ∈Q℘; |xi− ai|℘ ⩽ ℘r} is the one-dimensional ball of radius ℘r with center at ai ∈
Q℘. The ball BN0 equals the product of N copies of B0 = Z℘, the ring of ℘−adic integers. A
polydisc is a set of the form

Br1(a1)× ·· ·×BrN(aN).

We denote by SNr (a) = {x ∈QN
℘; ||x− a||℘ = ℘r} the sphere of radius ℘r with center at a=

(a1, . . . ,aN) ∈QN
℘, and take SNr (0) := SNr . We notice that S10 = Z×

℘ (the group of units of Z℘),
but (Z×

℘ )
N ⊊ SN0 . The balls and spheres are both open and closed subsets in QN

℘. In addition,
two balls in QN

℘ are either disjoint or one is contained in the other.
As a topological space (QN

℘, || · ||℘) is totally disconnected, i.e. the only connected subsets
of QN

℘ are the empty set and the points. A subset of QN
℘ is compact if and only if it is closed

and bounded in QN
℘; see, e.g. [27, section 1.3], or [49, section 1.8]. The balls and spheres are

compact subsets. Thus (QN
℘, || · ||℘) is a locally compact topological space.

Notation 1. We will use Ω(℘−r||x− a||℘) to denote the characteristic function of the ball
BNr (a) = a+℘−rZN

℘, where

ZN
℘ =

{
x ∈QN

℘;∥x∥℘ ⩽ 1
}

is the N-dimensional unit ball. For more general sets, we will use the notation 1A for the char-
acteristic function of set A.
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2.3. The Haar measure

Since (QN
℘,+) is a locally compact topological group, there exists a Haar measure dNx, which

is invariant under translations, i.e. dN(x+ a) = dNx, [52]. If we normalize this measure by the
condition

´
ZN℘

dNx= 1, then dNx is unique.

2.4. The Bruhat-Schwartz space

A complex-valued function φ defined on QN
℘ is called locally constant if for any x ∈QN

℘ there
exist an integer l(x) ∈ Z such that

φ(x+ x ′) = φ(x) for any x ′ ∈ BNl(x). (2.2)

A function φ :QN
℘ → C is called a Bruhat–Schwartz function (or a test function) if it is locally

constant with compact support. Any test function can be represented as a linear combination,
with complex coefficients, of characteristic functions of balls. The C-vector space of Bruhat-
Schwartz functions is denoted by D(QN

℘). For φ ∈ D(QN
℘), the largest number l= l(φ) satis-

fying (2.2) is called the exponent of local constancy (or the parameter of constancy) of φ.

2.5. Lρ spaces

Given ρ ∈ [1,∞), we denote by Lρ
(
QN

℘

)
:= Lρ

(
QN

℘,d
Nx
)
, theC−vector space of all the com-

plex valued functions g satisfying

∥g∥ρ =

ˆ
QN

℘

|g(x)|ρ dNx


1
ρ

<∞,

where dNx is the normalized Haar measure on
(
QN

℘,+
)
.

If U is an open subset of QN
℘, D(U) denotes the C-vector space of test functions with sup-

ports contained in U, then D(U) is dense in

Lρ (U) =

φ : U→ C;∥φ∥ρ =


ˆ

U

|φ(x)|ρ dNx


1
ρ

<∞

 ,
for 1⩽ ρ <∞; see, e.g. [49, section 4.3].

2.6. The Fourier transform

By using expansion (2.1), we define the fractional part of x ∈Qp, denoted {x}p, as the rational
number

{x}℘ =


0 if x= 0 or ord(x)⩾ 0

℘ord(x)∑−ord(x)−1
j=0 xj℘ j if ord(x)< 0.

We now setχ℘(y) := exp(2π i{y}℘) for y ∈Q℘. The mapχ℘(·) is an additive character onQ℘,
i.e. a continuous map from (Q℘,+) into S (the unit circle considered as multiplicative group)
satisfying χ℘(x0 + x1) = χ℘(x0)χp(x1), x0,x1 ∈Q℘. The additive characters of Q℘ form an
Abelian group which is isomorphic to (Q℘,+). The isomorphism is given by ξ→ χ℘(ξ x);
see, e.g. [49, section 2.3].
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Set p · x :=
∑N

j=1 pjxj, for p= (p1, . . . ,pN), x= (x1, . . . ,xN) ∈QN
℘. The Fourier transform

of φ ∈ D(QN
℘) is defined as

Fφ(ξ) =
ˆ

QN
℘

χ℘ (p · x)φ(x)dNx for p ∈QN
℘,

where dNx is the normalized Haar measure onQN
℘. The Fourier transform is a linear isomorph-

ism from D(QN
℘) onto itself satisfying

(F (Fφ))(x) = φ(−x) ; (2.3)

see, e.g. [49, section 4.8]. We also use the notation Fx→pφ and φ̂ for the Fourier transform
of φ.

The Fourier transform extends to L2. If f ∈ L2(QN
℘), its Fourier transform is defined as

(F f)(p) = lim
k→∞

ˆ

||x||℘⩽℘k

χ℘ (p · x) f(x)dNx, for p ∈QN
℘,

where the limit is taken in L2(QN
℘). We recall that the Fourier transform is unitary on L2(QN

℘),
i.e. || f ||2 = || F f ||2 for f ∈ L2(QN

℘) and that (2.3) is also valid in L
2(QN

℘); see, e.g. [51, chapter
III, section 2].

2.7. Distributions

The C-vector space D ′(QN
℘) of all continuous linear functionals on D(QN

℘) is called the
Bruhat–Schwartz space of distributions. Every linear functional on D(QN

℘) is continuous, i.e.
D ′(QN

℘) agrees with the algebraic dual of D(QN
℘); see, e.g. [27, chapter 1, VI.3, lemma].

We endow D ′(QN
℘) with the weak topology, i.e. a sequence {Tj}j∈N in D ′(QN

℘) converges
to T if limj→∞Tj(φ) = T(φ) for any φ ∈ D(QN

℘). The map

D ′ (QN
℘

)
×D

(
QN

℘

)
→ C

(T,φ) → T(φ)

is a bilinear form which is continuous in T and φ separately. We call this map the pairing
between D ′(QN

℘) and D(QN
℘). From now on we will use (T,φ) instead of T(φ).

Every f in L1loc defines a distribution f ∈ D ′(QN
℘) by the formula

(f,φ) =
ˆ

QN
℘

f(x)φ(x)dNx.

2.8. The Fourier transform of a distribution

The Fourier transform F [T] of a distribution T ∈ D ′(QN
℘) is defined by

(F [T] ,φ) = (T,F [φ]) for all φ ∈ D
(
QN

℘

)
.

The Fourier transform T→F [T] is a linear and continuous isomorphism from D ′(QN
℘) onto

D ′(QN
℘). Furthermore, T(φ) = F [F [T](−φ)].
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2.9. The Taibleson-Vladimirov operator

We denote by Dz the Taibleson–Vladimirov derivative, where z ∈Q℘, which is defined as

(Dzφ)(z) =
1−℘

1−℘−2

ˆ
Q℘

φ(z− y)−φ(z)

|y|2℘
, for φ ∈ D (Q℘) .

Dz is an unbounded operator with a dense domain in L2 (Q℘).
We denote by C(Q℘,C) the C-vector space of continuous C-valued functions defined on

Q℘. We use the symbol Ω(t) to denote the characteristic function of the interval [0,1].
The Taibleson–Vladimirov derivative Dxi is a pseudo-differential operator of the form

Dxi : D (Q℘) → C(Q℘,C)∩L2 (Q℘)

φ → (Dxiφ)(xi) = F−1
pi→xi

{
|pi|pFxi→piφ

}
;

(2.4)

see, e.g. [27, chapter 2, section IX] and [50, section 2.2].
The set of functions {ψrnj} defined as

ψrnj (xi) = ℘
−r
2 χ℘

(
℘−1j(℘rxi− n)

)
Ω
(
|℘rxi− n|p

)
, (2.5)

where r ∈ Z, j ∈ {1, · · · ,℘− 1}, and n runs through a fixed set of representatives of Q℘/Z℘,
is an orthonormal basis of L2(Q℘) consisting of eigenvectors of operator Dxi :

Dxiψrnj (xi) = ℘1−rψrnj (xi) for any r, n, j; (2.6)

see, e.g. [53, theorem 3.29] and [49, theorem 9.4.2]. Notice that ψrnj (xi) is supported on the
ball

Br
(
℘−rn

)
= ℘−rn+℘−rZ℘ =

{
z ∈Q℘;

∣∣z−℘−rn
∣∣⩽ ℘r

}
. (2.7)

3. ℘-adic Pseudo-differential equations of Dirac type

3.1. A ℘-adic version of the Dirac equation

We denote the Pauli matrices as

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
,

where i =
√
−1 ∈ C , and the 4× 4 Dirac matrices

β =

[
1 0
0 −1

]
, αk =

[
0 σk
σk 0

]
, for k= 1,2,3,

where 1 denotes the 2× 2 identity matrix, and 0 denotes the 2× 2 zero matrix.
We set

∇℘ :=

 Dx1
Dx2
Dx3

 ,
and

α ·∇℘ :=
3∑

k=1

αkDxk , and σ ·∇℘ :=
3∑

k=1

σkDxk .
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We suppress Einstein’s convention because we need just a version of the ‘relativistic energy
formula.’

We define the free Hamiltonian as the operator

H0 :=α ·∇℘ +βm=

[
m1 σ ·∇℘

σ ·∇℘ −m1

]
. (3.1)

We assume that the constant m ∈ R (the mass) has a similar meaning as in the standard QM.
The matrix-valued operator H0 acts on functions

ϕ(x) =

 ϕ1 (x)
...

ϕ4 (x)

 ∈ D (Q℘)
⊕

D (Q℘)
⊕

D (Q℘)
⊕

D (Q℘) :=D (Q℘)
⊗

C4.

We denote by Ψ(t,x) a vector-valued wavefunction, where t ∈ R, x= (x1,x2,x3) ∈Q3
℘.

defined as

Ψ(t,x) =

 Ψ1 (t,x)
...

Ψ4 (t,x)

 ∈ C4.

Our ℘-adic version of the Dirac equation has the form

i
∂

∂t
Ψ(t,x) =H0Ψ(t,x) . (3.2)

This version of the Dirac equation can be derived using the original Dirac’s argument. Starting
with the relativistic energy formula (with c= 1)

E2 =
(
p2x + p2y + p2z

)
+m2 =: p2R +m2,

with px, py, pz ∈ R, and using the following adhoc quantization scheme

E→ i
∂

∂t
and pR →∇℘, (3.3)

one formally obtains

i
∂

∂t
Ψ(t,x) =

√
D2
x1 +D2

x2 +D2
x3 +m2Ψ(t,x) .

Now, the square root is computed using Dirac’s original reasoning. These calculations are
embedded in the demonstration of proposition 3.1.

Remark 1. As discussed in the introduction, the Planck length implies that localizing a particle
with better accuracy than its Compton wavelength (λCompton) is impossible. Then, the notion of
particle does not make sense. Instead of this notion, we introduce the idea of localized particle,
but for the sake of simplicity, we will use the word particle. The localization property means
that the position function is a locally constant with an exponent of local constancy controlled
by λCompton, which implies that the assertion the position of a particle is x= (x1,x2,x3) ∈Q3

℘

means that the particle is in a ball of radius controlled by λCompton. We will use the expressions
localized states or localized waves to mean that they are functions with compact support.

9
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3.2. Plane waves

Given x= (x1,x2,x3), p= (p1,p2,p3) ∈Q3
℘, we set∣∣p∣∣

℘
:=
(
|p1|℘ , |p2|℘ , |p3|℘

)
∈ R3, and

∣∣p∣∣2
℘
:= |p1|2℘ + |p2|2℘ + |p3|2℘ .

We recall that ∥p∥℘ =max1⩽i⩽3

{
|pi|℘

}
, and that p · x=

∑3
i=1 pixi.

A ℘-adic counterpart of the Dirac equation is worthwhile if it predicts the existence of
particles and antiparticles with spin- 12 on a space-time of the form R×Q3

℘. The following
definition describes our anzatz for ℘-adic plane waves.

Definition 1. By a plane wave, we mean a function of the form

Ψ(t,x) = e−iEtχ℘ (p · x)w(p) , (3.4)

where

E2 =
(
|p1|2℘ + |p2|2℘ + |p3|2℘

)
+m2 =

∣∣p∣∣2
℘
+m2,

and

w(p) =

 w1 (p)
...

w4 (p)

 ∈ C4. (3.5)

The functions w(p) are ‘radial,’ i.e. w(p) = w
(∣∣p∣∣

℘

)
, and they have the form

w1 (p) =


[

1
0

]
σ·|p|

℘

E+m

[
1
0

]
 ,w2 (p) =


[

0
1

]
σ·|p|

℘

E+m

[
0
1

]
 , (3.6)

w3 (p) =


−σ·|p|

℘

E+m

[
0
1

]
[

0
1

]
 ,w4 (p) =


−σ·|p|

℘

E+m

[
1
0

]
[

1
0

]
 . (3.7)

The ℘-adic plane waves described above are the natural counterparts of the standard ones;
see, e.g. [54, 55]. The plane waves for the ordinary Dirac equation have the form

Ψ(t,xR) =
(
e−iEt

∏3

k=1
e(ip

k
Rx

k
R)
)
w(pR) , (3.8)

where xR =
(
x1R,x

2
R,x

3
R,
)
, pR =

(
p1R,p

2
R,p

3
R,
)
∈ R3. The term exp(−iEt) is not affected by the

hypothesis of the discreteness of space; for this reason it appears in (3.4). This choice implies
that a version relativistic energy for formula for E should be valid in the ℘-adic framework.
For the other terms in (3.8), we use the correspondence

exp
(
2π − ipkRx

k
R
)
→ exp

(
2π − i{pkxk}℘

)
, (3.9)

10
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where pk,xk ∈Q℘. Since pkxk should be dimensionless quantity, we require a constant h℘ = 1
with dimensionML2T−1, so that pkxkh℘

be a ℘-adic number. In addition, we need the formula

Dxiχ℘ (pixi) = Dxi exp
(
2π − i{pixi}℘

)
= |pi|℘χ℘ (pixi) , (3.10)

see [27, chapter 2, section IX, example 4]. Finally, we need a℘-adic counterpart for the term
w(pR) in (3.8). Assuming that the Dirac bispinors are the correct description of particles/anti-
particles with spin- 12 , one is naturally driven to use the correspondence

σ · pR
E+m

→
σ ·
∣∣p∣∣

℘

E+m
.

Proposition 3.1. The ℘-adic Dirac equation admits plane waves of type (3.4)–(3.7) as
solutions.

Proof. The demonstration is just a variation of the classical calculation showing the existence
of plane waves for the Dirac equation. By replacing Ψ(t,x), see (3.4), in (3.2), and using
∂
∂tΨ(t,x) =−iEΨ(t,x), and formula (3.10), one obtains that

Ew(p) =
(
α ·
∣∣p∣∣

℘
+βm

)
w(p) . (3.11)

Which is a system of linear equations in the variables w1 (p) , . . . ,w4 (p) with coefficients in

C
[
|p1|℘ , |p2|℘ , |p3|℘

]
, more precisely,



−E+m 0 |p3|℘ |p1|℘ − i |p2|℘

0 −E+m |p1|℘ + i |p2|℘ −|p3|℘

|p3|℘ |p1|℘ − i |p2|℘ −E−m 0

|p1|℘ + i |p2|℘ −|p3|℘ 0 −E−m



×



w1 (p)

w2 (p)

w3 (p)

w4 (p)


=



0

0

0

0


.

The condition for non-trivial solutions forw(p) is that the determinant of this system vanishes:(
m2 +

∣∣p∣∣2
℘
−E2

)2
= 0.

The calculation of the determinant is the same as in the classical case. Then, necessarily

E=±
√
m2 +

∣∣p∣∣2
℘
.

We now consider (3.11) as an eigenvalue/eigenvector problem in the ring

C
[
|p1|℘ , |p2|℘ , |p3|℘

]
. The solution of this problem follows the classical reasoning and drives

to the announced solutions; see, e.g. [54, 55].

11
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4. The free Dirac operator and its spectrum

4.1. Some function spaces

This section uses a notation similar to the one used in [11, chapter 1] to compare the standard
and the ℘-adic Dirac operators quickly. Furthermore, we use several results and calculations
in [11, chapter 1]. We set

H : = L2 (Q℘)
⊕
L2 (Q℘)

⊕
L2 (Q℘)

⊕
L2 (Q℘)

= L2 (Q℘)
⊗

C4 = L2 (Q℘)
4
,

and identify the elements of H with column vectors of the form

ψ (x) =

 ψ1 (x)
...

ψ4 (x)

 .
The inner product is given by

(ψ (x) ,ϕ(x)) =
ˆ

Q3
℘

4∑
i=1

ψi (x)ϕi (x)d
3x,

where the bar denotes the complex conjugate, and the norm is given by

∥ψ∥=

√√√√√ 4∑
i=1

ˆ

Q3
℘

|ψi (x)|2 d3x.

Given an integrable function ψ ∈ H its Fourier transform is defined as

(Fψ)(p) = ψ̂ (p) =

 ψ̂1 (p)
...

ψ̂4 (p)

 ,
where

(Fψi)(p) = ψ̂i (p) =
ˆ

Q3
℘

χ℘ (p · x)ψi (x)d3x, for i = 1,2,3,4.

The Fourier transform extends to a uniquely defined operator (denote asF) in the Hilbert space
H.

We now introduce a℘-adic analogue of the first Sobolev space.We define the scalar product

(ψ,ϕ)H1 =

ˆ

Q3
℘

4∑
i=1

ψ̂i (p)
(
max

(
1,∥p∥℘

)) 1
2
ϕ̂i (p)d

3p,

and the corresponding norm ∥ψ∥H1 =
√

(ψ,ψ)H1 . We define

H1
(
Q3

℘

)
= (D (Q℘)

⊗
C4,∥·∥H1),

12
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where the bar de notes the completion ofD (Q℘)
⊗

C4 with respect to the distance induced by
∥·∥H1 . It also verifies that

H1
(
Q3

℘

)
= {ψ ∈ H;∥ψ∥H1 <∞} .

The results about the space H1
(
Q3

℘

)
are just variations of well-known results about ℘-adic

Sobolev spaces; see, e.g. [53, section 10.2], [56], and the references therein.
The Hamiltonian H0 is a matrix operator on Dx1 , Dx2 , Dx3 . From now on, we consider the

Taibleson–Vladimirov derivative as a pseudo-differential operator, see (2.4). With the above
notation, it follows that the mapping

H1
(
Q3

℘

)
→ H

ψ → H0ψ

is a well-defined bounded, linear operator.
The operator

(
H0,H1

(
Q3

℘

))
is self-adjoint, and

(
H0,D

(
Q3

℘

)⊗
C4
)
is essentially self-

adjoint, see [50, theorem 3.2], [57, proposition 7]. Then, by Stone’s theorem the initial value
problem  i ∂∂tΨ(t,x) =H0Ψ(t,x) , t⩾ 0, x ∈Q3

℘

Ψ(0,x) = Ψ0 (x) ,

has a unique solution given by

Ψ(t,x) = e−itH0Ψ0 (x) .

4.2. The free Dirac operator in the Fourier space

The results presented in this section are analogs of the results of the standard Dirac operator. In
particular, the calculations used here are the same as the ones given in [11, section 1.4.1]. The
HamiltonianH0 is amatrix pseudo-differential operator onDx1 ,Dx2 ,Dx3 defined onH

1
(
Q3

℘

)
⊂

H. Any such operator is transformed via F into a matrix multiplication operator in H. In the
case of H0, we have

(H0ϕ)(x) = F−1
p→x (h(p)Fx→pϕ) , for ϕ ∈ H1

(
Q3

℘

)
, (4.1)

where

h(p) :=

[
m1 σ ·

∣∣p∣∣
℘

σ ·
∣∣p∣∣

℘
−m1

]
.

The matrix h(p) = h
(∣∣p∣∣

℘

)
is a 4× 4 Hermitian matrix which has the eigenvalues

λ1

(∣∣p∣∣
℘

)
= λ2

(∣∣p∣∣
℘

)
=−λ3

(
|p|℘

)
=−λ4

(∣∣p∣∣
℘

)
=: λ

(∣∣p∣∣
℘

)
=

√(
|p1|2℘ + |p2|2℘ + |p3|2℘

)
+m2.

We also use the notation λ(p) = λ
(∣∣p∣∣

℘

)
.

13
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The unitary transformation u(p) = u
(∣∣p∣∣

℘

)
, which diagonalizes h(p) is

u(p) =
(m+λ(p))1+βα· |p|℘√

2λ(p)(m+λ(p))
= a+ (p)1+ a− (p)β

α·
∣∣p∣∣

℘√
|p1|2℘ + |p2|2℘ + |p3|2℘

,

u−1 (p) = a+ (p)1− a− (p)β
α·
∣∣p∣∣

℘√
|p1|2℘ + |p2|2℘ + |p3|2℘

where 1 is the 4× 4 matrix identity,

a± (p) =
1√
2

√
1± m

λ(p)
,

and the diagonal form of h(p) is

u−1 (p)h(p)u(p) = βλ(p) . (4.2)

By using (4.1) and (4.2), the unitary transformation

W := uF : H→ H

converts the ℘-adic Dirac operator H0 into a multiplication operator by the diagonal matrix
βλ(p),

H0 =W−1βλ(p)W (4.3)

in H.

4.3. The spectrum of H0

In the Hilbert spaceWH the ℘-adic Dirac operator is diagonal, see (4.3). The upper two com-
ponents of the wavefunctions belong to positive energies, while the lower two components
belong to the negative energies. Following, Thaller’s book [11, section 1.4.2], we introduce
the subspaces of positive energies Hpos ⊂ H spanned by vectors ψpos, and negative energies
Hneg ⊂ H spanned by vectors ψneg, where

ψpos =W−1 1
2
(1+β)Wψ, ψneg =W−1 1

2
(1−β)Wψ, ψ ∈ H,

where 1 is the 4× 4 identity matrix. Since (1+β)(1−β) = 0,Hpos is orthogonal toHneg, then

H= Hpos
⊕

Hneg. (4.4)

Taking

ϕ± :=
1
2
(1±β)Wψ, (4.5)

we have

(ψpos,H0ψpos) =
(
W−1ϕ+,W−1βλ(p)ϕ+

)
= (ϕ+,βλ(p)ϕ+) = (ϕ+,λ(p)ϕ+)> 0,

14
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which means that Hpos is invariant under H0. Similarly, one shows that Hneg is invariant under
H0. The orthogonal projection operators onto the positive/negative energy subspaces are given
by

Ppos
neg

=W−1 1
2
(1±β)W =

1
2

(
1± H0

|H0|

)
, (4.6)

where 1 is the identity operator on H, and |H0| is the pseudo-differential operator on H with
symbol √(

|p1|2℘ + |p2|2℘ + |p3|2℘
)
+m21.

We identify |H0| with the operator
√
H2

0 =
√(

D2
x1 +D2

x2 +D2
x3

)
+m2. Like in the standard

case, we have

H0ψpos
neg

=±|H0|ψpos
neg
,

and if we define sgn H0 =
H0
|H0| , then H0 = |H0|sgn H0, which is polar decomposition of H0.

Again, following the classical case, we define the Foldy–Wouthuysen transformation as

UFW = F−1W.

It transforms the free Dirac operator into the pseudo-differential operator

UFWH0U−1
FW =

 √(D2
x1 +D2

x2 +D2
x3

)
+m2 0

0 −
√(

D2
x1 +D2

x2 +D2
x3

)
+m2


= β |H0| .

We interpret this formula as the fact that the free Dirac equation is unitarily equivalent to a
pair of (two component) square-root Klein–Gordon equations.

Theorem 4.1. The free Dirac operator is essentially self-adjoint on the dense domain
D (Q℘)

⊗
C4 and self-adjoint in the Sobolev space H1

(
Q3

℘

)
Its spectrum σ (H0) is the union

of the essential range of the functions ±λ(p) :Q3
℘ → R.

Remark 2. We denote by σ
(
HArch

0

)
the spectrum of the standard free Dirac operator, by [11,

theorem 1.1],

σ
(
HArch

0

)
= (−∞,−m]∪ [m,∞) .

Then σ (H0)⊂ σ
(
HArch

0

)
. Notice that we use the normalization c= 1 in the Archimedean case

too.

Proof. By (4.3) the spectrum of H0 equals the spectrum of the multiplication operator βλ(p),
which is essential range of the functions ±λ(p); see [58, section VII.2].

5. Charge conjugation

Following the standard case, see [11, section 1.4.6], the ℘-adic Dirac operator for a charge
e ∈ R in an external electromagnetic field (ϕ,A) ∈ R×R3 is given by

H(e) :=α · (∇℘ − eA(t,x))+βm+ eϕ(t,x)1.
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We define the charge conjugation C as the antiunitary transformation

CΨ = UCΨ,

where UC =−iβα2 is a 4× 4 unitary matrix.

Lemma 5.1. With the above notation, if Ψ(t,x) is a solution of

i
∂

∂t
Ψ(t,x) =H(e)Ψ(t,x) , (5.1)

then

i
∂

∂t
CΨ(t,x) =H(−e)CΨ(t,x) .

Moreover, C−1H(e)C =−H(−e).

Proof. Taking the complex conjugate in (5.1), then multiplying by −iβα2, and using that
α1 = α1, α2 =−α2, α3 = α3, α2

2 = 1, βαk = αkβ, and αkαj =−αjαk for k ̸= j, one gets that

−i ∂
∂t
CΨ(t,x) =−α ·∇℘CΨ(t,x)+ eα ·ACΨ(t,x)

−βmCΨ(t,x)− eϕ(t,x)CΨ(t,x) .

The announced formulas follow from this calculation.

Then negative energy subspace of H(e) is connected via a symmetry transformation with
the positive energy subspace of the Dirac operator H(−e) for a particle with opposite charge
(antiparticle, positron). For Cψ (x) in the positive energy subspace of H(−e), by interpreting
|Cψ (x)|2 as a position probability density, the equality

|Cψ (x)|2 = |ψ (x)|2

shows that the motion of a negative energy electron state ψ is indistinguishable from that of a
positive energy positron. Then, one obtains the interpretation:

a state ψ ∈ Hneg describes an antiparticle with positive energy.

Here, we do not discuss the problem that the Hilbert space H contains states which are super-
positions of positive and negative energy states, [11, section 1.4.6].

6. Localized particles and antiparticles

By using that {ψrnj}rnj is an orthonormal basis of L2 (Q℘) and some well-known results, we
have

L2 (Q℘,dx1)⊗L2 (Q℘,dx2)⊗L2 (Q℘,dx3) = L2
(
Q3

℘,d
3x
)
,

where ⊗ denotes the tensor product of Hilbert spaces. Furthermore,

ψrnj (x) =
3∏

i=1

ψriniji (xi) , (6.1)

where r= (r1,r2,r3) ∈ Z3, n= (n1,n2,n3) ∈ (Q℘/Z℘)
3, j= ( j1, j2, j3) ∈ {1, · · · ,℘− 1}3, is

an orthonormal basis for L2
(
Q3

℘,d
3x
)
, see, e.g. [58, chapter II, proposition 2, theorem II.10-

(a)].
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Definition 2. By a space-localized plane wave, we mean a function of the form

Ψrnj (t,x) = e−
iE
ℏ tψrnj (x)wr

(
℘(1−r1),℘(1−r2),℘(1−r3)

)
,

where r= (r1,r2,r3) ∈ Z3, n= (n1,n2,n3) ∈ (Q℘/Z℘)
3, j= ( j1, j2, j3) ∈ {1, · · · ,℘− 1}3,

E2 =
(
℘2(1−r1) +℘2(1−r2) +℘2(1−r3)

)
+m2,

and wr
(
℘(1−r1),℘(1−r2),℘(1−r3)

)
= w

(
℘(1−r1),℘(1−r2),℘(1−r3)

)
, with w

(
|p1|℘ , |p2|℘ , |p3|℘

)
defined as (3.5)–(3.7).

The term space-localized means that Ψrnj (t, ·) has support on the polydisc

Br1
(
℘−r1n1

)
×Br2

(
℘−r2n2

)
×Br3

(
℘−r3n3

)
. (6.2)

Notice that the support of Ψrnj (t,x) is

[0,∞)×Br1
(
℘−r1n1

)
×Br2

(
℘−r2n2

)
×Br3

(
℘−r3n3

)
.

Theorem 6.1. (i) The localized plane waveΨrnj (t,x) is a solution of the℘-adic Dirac equation
for any r, n, j. (ii) Set

Ψ±
rnj (t,x) =W−1 1

2
(1±β)WΨrnj (t,x) .

Then, Ψ+
rnj (t,x) is a particle, resp. Ψ

−
rnj (t,x) is an antiparticle, space-localized in the poly-

disc (6.2). In particular,

Ψ+
rnj (0,x) ∈ Hpos, Ψ

−
rnj (0,x) ∈ Hneg.

Proof. (i) It follows from (2.6), by using the calculations done in the proof of proposition 3.1.
(ii) It follows from (4.4 )–(4.5).

Remark 3. In the standard case, a wavefunction with positive energy cannot be initially loc-
alized in a proper subset of R3. Any wavefunction with positive energy has to be spread over
all space (R3) at all times. In more precise form, for any state ψ ∈ Hpos (or Hneg), the support
of ψ is R3; see [11, corollary 1.7]. The falsity of this result implies the violation of Einstein
causality; see [11, section 1.8.2]. Then, theorem 6.1 provides a strong indication that Einstein
causality is not valid in a discrete space (Q3

℘); this result will be established later.

7. The free time evolution

We define the Lizorkin space of test functions of second kind as

L
(
Q3

℘

)
=

φ ∈ D
(
Q3

℘

)
;

ˆ

Q3
℘

φ(x)d3x= 0

=
{
φ ∈ D

(
Q3

℘

)
; φ̂(0) = 0

}
.

This space in dense in L2
(
Q3

℘

)
; see [49, theorem 7.4.3].
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Theorem 7.1. With the above notation, for ψ ∈ L
(
Q3

℘

)⊗
C4,

(
e−iH0tPpos

neg
ψ
)
(x) =

ˆ

Q3
℘


ˆ

Q3
℘

χ℘ ((x− y) · p)e∓λ(p)t
(
±λ(p)+ h(p)

2λ(p)

)
d3p

ψ (y)d3y

=

ˆ

Q3
℘

{
χ℘ (−x · p)e∓λ(p)t

(
±λ(p)+ h(p)

2λ(p)

)
ψ̂ (p)d3p

}
.

Proof. Like in the standard case, see proof of theorem 1.2 in [11], by taking t± := t∓ iϵ, we
have

lim
ϵ→0

e−iH0t±ϕ± = e−iH0tϕ±for ϕ± ∈ Hpos
neg
.

Then, by using (4.2) and (4.6),(
e−iH0t±Ppos

neg
ψ
)
(x) = F−1

p→x

(
e∓iλ(p)t± 1

2

(
1± h(p)

λ(p)

)
Fx→pψ

)
(x) , (7.1)

where F is the Fourier transform in H= L2
(
Q3

℘

)⊗
C4. Since ψ ∈ L

(
Q3

℘

)⊗
C4, and Fx→pψ

is a test function (i.e. an element of L
(
Q3

℘

)⊗
C4) satisfying Fx→pψ (0) = 0 in some ball BNl

around the origin, then, the function(
1± h(p)

λ(p)

)
Fx→pψ (p) = 0for p ∈ BNl ,

is continuous on the support of Fx→pψ, which is a compact subset. Thus, the function

e∓iλ(p)t± 1
2

(
1± h(p)

λ(p)

)
Fx→pψ

is integrable. Consequently, we can rewrite (7.1) as follows:

(
e−iH0t±Ppos

neg
ψ
)
(x) =

ˆ

Q3
℘


ˆ

Q3
℘

χ℘ ((y− x) · p)e∓iλ(p)t± 1
2

(
1± h(p)

λ(p)

)
d3p

ψ (y)d3y

=

ˆ

Q3
℘

χ℘ (−x · p)e∓iλ(p)t± 1
2

(
1± h(p)

λ(p)

)
ψ̂ (p)d3p.

In order to compute the limit ϵ→ 0, we first observe that if

ψ̂ (p) =
[
ψ̂1 (p) , . . . , ψ̂4 (p)

]T
,

18
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then

χ℘ (−x · p)e∓iλ(p)t± 1
2

(
1± h(p)

λ(p)

)
ψ̂ (p)

= χ℘ (−y · p)e∓iλ(p)t±



1
2 ψ̂1 (p)+ 1

λ(p)

4∑
j=1

A1
j (p) ψ̂j (p)

...

1
2 ψ̂4 (p)+ 1

λ(p)

4∑
j=1

A4
j (p) ψ̂j (p)


,

where the functions Akj (p) are continuous. Now, taking

S :=
4⋃

j=1

supp
(
ψ̂j

)
,

which is compact subset of Q3
℘, we have∣∣∣∣∣∣χ℘ (−y · p)e∓iλ(p)t±

1
2
ψ̂k (p)+

1
λ(p)

4∑
j=1

Akj (p) ψ̂j (p)

∣∣∣∣∣∣
⩽ e−ϵ|λ(p)|

∣∣∣∣∣∣12 ψ̂k (p)+ 1
λ(p)

4∑
j=1

Akj (p) ψ̂j (p)

∣∣∣∣∣∣⩽ C
4∑

j=1

∣∣∣ψ̂j (p)∣∣∣ ,
where

C :=
1
2
+ max

1⩽j,k⩽4

{
sup

p∈S∖BNl

Akj (p)

λ(p)

}
.

Since
∑4

j=1

∣∣∣ψ̂j (p)∣∣∣ is an integrable function, by using the dominated convergence theorem,

we conclude that

lim
ϵ→0

(
e−iH0t±Ppos

neg
ψ
)
(x) =

ˆ

Q3
℘


ˆ

Q3
℘

χ℘ ((y− x) · p)e∓iλ(p)t 1
2

(
1± h(p)

λ(p)

)
d3p

ψ (y)d3y

=

ˆ

Q3
℘

χ℘ (−x · p)e∓iλ(p)t 1
2

(
1± h(p)

λ(p)

)
ψ̂ (p)d3p.

8. Position and momentum operators

Like the standard equation, the ℘-adic Dirac equation predicts the existence of particles/anti-
particles of spin- 12 ; for this reason, we proposeH0 as the ℘-adic counterpart of the operator for
the energy of a free electron. The definition of the self-adjoint operators for other observables
is a highly non-trivial problem.
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The position of a particle corresponds to a point x= (x1,x2,x3) ∈Q3
℘. The Fourier trans-

form sends a function f(x) to a function f̂(p), p= (p1,p2,p3) ∈Q3
℘. For this reason, we identify

p with the momentum of the particle. We use the quantization pk → Dxk , k= 1,2,3, where Dxk
is a pseudo-differential operator with symbol |pk|℘. Here, there is an important difference with
standardQM.Now, it is natural to take the position operator as themultiplication by |xk|℘, more
precisely,

Dom
(
|xk|℘

)
=

ψ ∈ H;

ˆ

Q3
℘

4∑
j=1

|xk|℘ |ψj (x)|d
3x<∞

 ,
and

(
|xk|℘ψ

)
(x) =

 |xk|℘ψ1 (x)
...

|xk|℘ψ4 (x)

 ,
k= 1,2,3. The position operator |xk|℘, k= 1,2,3, is self-adjoint. The spectrum of |xk|℘ is the
essential range of the function

|xk|℘ :Q℘ →Q,

which is the set {℘m;m ∈ Z}.

8.1. Spectral projections for the position operator

For λ ∈ R, we define mλ ∈ Z as the unique integer number satisfying

℘mλ ⩽ λ < ℘mλ+1.

We also set

Ω·
λ (t) =

{
1 −∞< t⩽ λ
0 otherwise.

Then, Ω·
λ : R→ R is a Borel measurable, bounded, function. Now,

Ω·
λ ◦ |xk|℘ =

{
1 |xk|℘ ⩽ ℘mλ

0 otherwise.
=Ω

(
℘−mλ |xk|℘

)
,

which is the characteristic function of the ball ℘−mλZp. The spectral projection of |xk|℘ is the
operator

E(Bmλ
) : ψ (x)→ Ω

(
℘−mλ |xk|℘

)
ψ (x) .

By the functional calculus,

E(Bmλ
) = E(Bmλ

)
2
, E(Bmλ

)
∗
= E(Bmλ

) ,

which means that E(Bmλ
) is an orthogonal projection.

Given a polydisc Bmλ1
×Bmλ2

×Bmλ3
, we define the operator

E
(
Bmλ1

×Bmλ2
×Bmλ3

)
= E

(
Bmλ1

)
E
(
Bmλ2

)
E
(
Bmλ3

)
.
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Then the probability of finding the particle in the region Bmλ1
×Bmλ2

×Bmλ3
is

(
ψ,E

(
Bmλ1

×Bmλ2
×Bmλ3

)
ψ
)
=

ˆ

Bmλ1
×Bmλ2

×Bmλ3

|ψ (x)|2 d3x

=

ˆ

Bmλ1
×Bmλ2

×Bmλ3

4∑
j=1

|ψj (x)|2 d3x.

Consequently, |ψ (x)|2 can be interpreted as the position probability density, but, this inter-
pretation holds true only for region of the form Bmλ1

×Bmλ2
×Bmλ3

. We do not know if
this interpretation is valid for arbitrary Borel subsets of Q3

℘. In the standard case the region
Bmλ1

×Bmλ2
×Bmλ3

can be replaced by an arbitrary Borel subset of R3.

9. The violation of Einstein causality

In the ℘-adic framework, the Dirac equation predicts the existence of localized particles/anti-
particles; see theorem 6.1.We now consider a single particle and assume that it has the property
of being localized in some region of Q3

℘. To show that this property is an observable, we con-
struct a self-adjoint operatorΠB in H which describes the two possibilities of being localized
within B or outside B. Thus,ΠB should have only two eigenvalues 1 (within B), and 0 (outside
of B), and consequently, it is a projector operator.

Let B⊆Q3
℘ be a Borel subset. We set

L2 (B) =

f : B→ C;∥f∥2,B :=

√√√√ˆ
B

|f(x)|2 d3x<∞

 .
By extending any function from L2 (B) as zero outside of B, we have a continuous embedding

1B : L2 (B) → L2
(
Q3

℘

)
f → 1Bf,

where 1B is the characteristic function of B. We set

H(B) := L2 (B)
⊗

C4 = L2 (B)
⊕
L2 (B)

⊕
L2 (B)

⊕
L2 (B) .

Then, H(B) is a closed subspace of H, and thus H(B) has an orthogonal complement H⊥(B),
i.e.

H= H(B)
⊕

H⊥ (B) .

We setΠB as the projection H→ H(B). Notice thatΠB (ψ) = 1Bψ, and thatΠB is a bounded,
self-adjoint operator, which is an extension of operator E(Bmλ1

×Bmλ2
×Bmλ3

). We use the
notation ΠB instead of E(B) to emphasize that the construction of ΠB is not based on the
spectral theorem. We interpret ΠB as the property of a system to be localized in B. If the
state of a system is ψ ∈ H, ∥ψ∥= 1, then the probability of finding the system in state ΠBψ
localized in B is (ψ,ΠBψ).
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Lemma 9.1. Set ϕ(xi) := ℘
R0
2 Ω
(
℘R0 |xi|℘

)
, where R0 ∈ Z. With this notation the following

assertions hold true:

(i)

Ω
(
℘R0 |xi|℘

)
ψrnj (xi) =



ψrnj (xi) if n℘−r ∈ ℘R0Z℘, r⩽−R0

℘− r
2Ω
(
℘R0 |xi|℘

)
if n℘−r ∈ ℘−rZ℘, r⩾−R0 + 1

0 if n℘−r /∈ ℘−rZ℘, r⩾−R0 + 1.
(9.1)

(ii) The Fourier expansion of ϕ(xi) respect to the basis {ψrnj (xi)}rnj is given by

ϕ(xi) = ℘− R0
2

∑
r⩾−R0+1

∑
j

℘− r
2ψr0j (x) ,

where the support of ψr0j (xi) is ℘−rZ℘.

(iii) The Fourier expansion of Ω
(
℘R0 ∥x∥℘

)
⊂Q3

℘ in the basis {ψrnj (x)}rnj is

℘
3R0
2 Ω
(
℘R0 ∥x∥℘

)
= ℘− 3R0

2

∑
r1⩾−R0+1
r2⩾−R0+1
r3⩾−R0+1

∑
j1,j2,j3

℘− (r1+r2+r3)
2 ψr0j (x) ,

where r= (r1,r2,r3), j= (j1, j2, j3).

Proof. (i) The formula is well-known by the experts. For the sake of completeness, we
review it here. Recall that supp ψrnj = n℘−r+℘−rZp. The cases that appear in (9.1) cor-
responds to

n℘−r+℘−rZp ⊆ ℘R0Zp, (9.2)

n℘−r+℘−rZp ⊋ ℘R0Zp, (9.3)

n℘−r+℘−rZp ∩℘R0Zp =∅. (9.4)

In the first case, n℘−r ∈ ℘R0Zp, and thus ℘−rZp ⊆ ℘R0Zp, which equivalent to −r⩾ R0.
Conversely −r⩾ R0 (i.e. ℘−rZp ⊆ ℘R0Zp) and n℘−r ∈ ℘R0Zp imply (9.2). In the second
case, 0 ∈ n℘−r+℘−rZ, and since any point of a ball is its center, we have n℘−r+℘−rZ=
℘−rZ, which implies that n℘−r ∈ ℘−rZ. Now, the condition,℘−rZp ⊋ ℘R0Zp is equivalent
to R0 >−r. The converse assertion can be easily verified. The last case follows from the
first two cases.

(ii) The Fourier expansion of ϕ(xi) in the basis {ψrnj}
rnj
is given by

ϕ(xi) =
∑
rnj

Crnjψrnj (xi) , with Crnj =
ˆ

Q℘

ϕ(xi)ψrnj (xi)dxi.
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Then, the coefficient Crnj depends on restriction of ψrnj (xi) to the ball ℘R0Z℘. The
condition np−r ∈ ℘−rZ℘, r⩾−R0 + 1 in the second in (9.1), is equivalent to n= 0,
r⩾−R0 + 1. If the support of ψrnj (xi)⊆ ℘R0Zp, this case corresponds to the first line
in (9.1), by using thatˆ

Q℘

ψrnj (xi)dxi = 0,

we have Crnj = 0. If the support of ψrnj (xi)⫌ ℘R0Zp, this case corresponds to the second
line in (9.1), then

Cr0j = ℘
R0
2

ˆ

Q℘

℘− r
2Ω
(
℘R0 |xi|℘

)
dxi = ℘− R0

2 − r
2 , r⩾−R0 + 1.

Therefore,

ϕ(xi) =
∑

r⩾−R0+1

∑
k

℘− R0
2 − r

2ψr0j (xi) .

(iii) It follows directly form (ii).

We set

℘1−r :=
(
℘1−r1 ,℘1−r2 ,℘1−r3

)
, CT =

[
C1 C2 C3 C4

]
∈ C4. (9.5)

Lemma 9.2. (i) With the above notation, it verifies that(
e−iH0tPpos

neg
Cψrnj

)
(x) = e∓λ(℘1−r)t

(
±λ
(
℘1−r

)
+h

(
℘1−r

)
2λ(℘1−r)

)
Cψrnj (x) .

(ii) Take ψ (x) =
∑

rnjψrnj (x) and C as in (9.5), such that
ψ (x)C ∈ Hpos

neg
.

Then (
e−iH0tψC

)
(x) =

∑
rnj

e∓λ(℘1−r)t

(
±λ
(
℘1−r

)
+h

(
℘1−r

)
2λ(℘1−r)

)
Cψrnj (x) .

Proof. The Fourier transform of ψriniji (xi) is

ψ̂riniji (pi) = ℘
ri
2 χ℘

(
℘−rinipi

)
Ω
(∣∣℘−ripi+℘−1ji

∣∣
p

)
,

and then

ψ̂rnj (p) =
3∏

i=1

ψ̂riniji (pi) .

Now, for a radial function a
(∣∣p∣∣

℘

)
= a

(
|p1|℘ , |p2|℘ , |p3|℘

)
, it verifies that

a
(∣∣p∣∣

℘

)
ψ̂rnj (p) = a

(∣∣℘r1−1j1
∣∣
℘
,
∣∣℘r2−1j2

∣∣
℘
,
∣∣℘r3−1j3

∣∣
℘

)
ψ̂rnj (p)

= a
(
℘1−r1 ,℘1−r2 ,℘1−r3

)
ψ̂rnj (p) = a

(
℘1−r) ψ̂rnj (p) .
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By using this formulae, we have

e∓iλ(p)t 1
2

(
1± h(p)

λ(p)

)
Cψ̂rnj (p) = e∓λ(℘1−r)t

(
±λ
(
℘1−r

)
+h

(
℘1−r

)
2λ(℘1−r)

)
Cψ̂rnj (p) .

The result follows from this formula by theorem 7.1.
(ii) It follows from the first part.

Theorem 9.1. Take aT =
[
a1 a2 a3 a4

]
∈ R4, with ai > 0, i = 1,2,3,4,

|a|=
√
|a1|2 + |a2|2 + |a3|2 + |a4|2 ̸= 0,

and L ∈ Z, and the normalized state ψ+
0 ,
∥∥ψ+

0

∥∥= 1, defined as

ψ+
0 (x) = Ppos

℘ 3L
2

|a|
Ω
(
℘L ∥x∥℘

)
a1
a2
a3
a4


 . (9.6)

We fix the ball

B3
l0

(
℘−l0b

)
= ℘−l0b+℘−l0Z3

℘,

where l0 ∈ Z and b= (b1,b2,b3) ∈ (Q℘/Z℘)
3 satisfy

℘−l0bi /∈ ℘−l0Z℘, i = 1,2,3, and l0 ⩾−L+ 1.

The distance between the balls B3
−L = ℘LZ3

℘ and B
3
l0

(
℘−l0b

)
is ℘

l0 ∥b∥℘ > 0. Then(
e−itH0ψ+

0 ,ΠB3
l0
(℘−l0b)e

−itH0ψ+
0

)
> 0for any t ∈ (0,∞) .

Remark 4. The result is also valid if we replace Ppos by Pneg in (9.6). By lemma 9.1(i),

B3
−L ∩B3

l0

(
℘−l0b

)
=∅.

Now take y ∈ Z3
℘, with ∥y∥℘ > ℘−L, i.e. y /∈ B3

−L, by using the ultrametric property of ∥·∥℘
we have ∥x− y∥℘ =max

{
∥x∥℘ ,∥y∥℘

}
= ∥y∥℘ for any x ∈ B3

−L, then

dist
(
B3
−L,y

)
= inf

x∈B3
−L

∥x− y∥℘ = ∥y∥℘ .

Now the distance between the balls B3
−L, B

3
l0

(
℘−l0b

)
is given by

dist
(
B3
−L,B

3
l0

(
℘−l0b

))
= inf

x∈B3
−L

y∈B3
l0
(℘−l0b)

∥x− y∥℘ = inf
y∈B3

l0
(℘−l0b)

(
inf

x∈B3
−L

∥x− y∥℘

)

= inf
y∈B3

l0
(℘−l0b)

(
∥y∥℘

)
=
∥∥℘−l0b

∥∥
℘
= ℘

l0 ∥b∥℘ .
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Proof. By lemmas 9.1 and 9.2, with L= R0, and

(
λ
(
℘1−r

)
+h

(
℘1−r

)
2λ(℘1−r)

)
a1
a2
a3
a4



=
1

2λ(℘1−r)


a1λ

(
℘1−r

)
+ c2ma1 + ca3℘

−r3+1
3 + a4

(
c℘−r1+1

1 − ic℘−r2+1
2

)
a2λ

(
℘1−r

)
+ c2ma2 − ca4℘

−r3+1
3 + a3

(
c℘−r1+1

1 + ic℘−r2+1
2

)
a3λ

(
℘1−r

)
− c2ma3 + ca1℘

−r3+1
3 + a2

(
c℘−r1+1

1 − ic℘−r2+1
2

)
a4λ

(
℘1−r

)
− c2ma4 − ca2℘

−r3+1
3 + a1

(
c℘−r1+1

1 + ic℘−r2+1
2

)



=:


A1
(
℘1−r

)
A2
(
℘1−r

)
A3
(
℘1−r

)
A4
(
℘1−r

)
 ,

we have

e−itH0ψ+
0 (x) = ℘− 3L

2

∑
r1⩾−L+1
r2⩾−L+1
r3⩾−L+1

∑
j1,j2,j3

℘− (r1+r2+r3)
2 e−λ(℘1−r)tψr0j (x)


A1
(
℘1−r

)
A2
(
℘1−r

)
A3
(
℘1−r

)
A4
(
℘1−r

)
 ,

where r= (r1,r2,r3). We now compute

ΠB3
l0
(℘−l0b)e

−itH0ψ+
0 =

℘− 3L
2

∑
r1⩾−L+1
r2⩾−L+1
r3⩾−L+1

∑
j1,j2,j3

℘− (r1+r2+r3)
2 e−λ(℘1−r)tΩ

(∥∥℘l0x− b
∥∥
℘

)
ψr0j (x)


A1
(
℘1−r

)
A2
(
℘1−r

)
A3
(
℘1−r

)
A4
(
℘1−r

)
 .

Now, since

suppψr0j (x) = ℘−r1Z℘ ×℘−r2Z℘ ×℘−r3Z℘,

by taking l0 ⩾−rj, since ord(bj)⩾ 0, we have −l0 + ord(bj)⩾−rj and

℘−l0bj+℘−l0Z℘ ⊆ ℘−rjZ3
℘, for j = 1,2,3.

Therefore

℘−l0b+℘−l0Z3
℘ ⊆ suppψr0j (x) for rj ⩾−min{L− 1, l0} , j = 1,2,3,
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and

ΠB3
l0
(℘−l0 b)e

−itH0ψ+
0 = ℘− 3L

2

∑
r1⩾−min{L−1,l0}
r2⩾−min{L−1,l0}
r3⩾−min{L−1,l0}

∑
j1,j2,j3

℘− (r1+r2+r3)
2 e−λ(℘1−r)tψr0j (x)


A1

(
℘1−r)

A2
(
℘1−r)

A3
(
℘1−r)

A4
(
℘1−r)

 .

Finally,(
e−itH0ψ+

0 ,ΠB3
l0
(℘−l0b)e

−itH0ψ+
0

)
=

4∑
k=1

℘− 3L
2

∑
r1⩾−min{L−1,l0}
r2⩾−min{L−1,l0}
r3⩾−min{L−1,l0}

∑
j1,j2,j3

℘− (r1+r2+r3)
2 e−λ(℘1−r)t

ˆ

Q3
℘

|ψr0j (x)|2
∣∣Ak (℘1−r)∣∣2 d3x

= ℘− 3L
2

4∑
k=1

∑
r1⩾−min{L−1,l0}
r2⩾−min{L−1,l0}
r3⩾−min{L−1,l0}

∑
j1,j2,j3

℘− (r1+r2+r3)
2 e−λ(℘1−r)t ∣∣Ak (℘1−r)∣∣2 > 0,

for any t ∈ (0,∞).

The Einstein causality requires a finite propagation speed for all physical particles. In the
standard case, any solution of the Dirac equation propagates slower than the speed of light.
This requires that the support of any state ψ ∈ Hpos ∪Hneg be the whole R3; see [11, section
1.8.2]. By theorem 9.1, the transition probability from a localized state in a ball B3

−L to a state
localized in a ball B3

l0

(
℘−l0b

)
, which is arbitrary far away from B3

−L, is positive for any time
t ∈ (0, ϵ), where ϵ is arbitrarily small. Then, the system has a non-zero probability of getting
from B3

−L to B3
l0

(
℘−l0b

)
in an arbitrary short time, thereby propagation with superluminal

speed. This feature is a consequence of the discrete nature of the space Q3
℘.

10. Conclusions

Although the validity of the Lorentz symmetry has been experimentally proven with great
precision [1], there is a consensus within the community of quantum-spacetime phenomeno-
logy (particularly in the quantum-gravity community) that the breaking of Lorentz symmetry
occurs at the Planck scale, [3]. The breakdown of this symmetry has been investigated in con-
nection with many other physical phenomena, [2].

The study of the limit of QM at the Planck length is a central scientific problem connected to
the unification of general relativity and QM. Since 1990, it has been recognized that the Planck
length has substantial implications in QM. Among them, the localization of a particle with
better accuracy than its Comptonwavelength is impossible. Then, it is necessary to abandon the
notion of particles in favor of localized particles. Also, it was recognized that the discreteness
of space-time may imply the possibility that particles would travel faster than light. However,
it was pointed out that this paradox disappears when allowing the creation and annihilation of
particles, [8].

The ℘-adic Dirac equation is the simplest model where the abovementioned matters can
be discussed in a precise mathematical form. The new model uses R×Q3

℘ as space-time,
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with t ∈ R and x ∈Q3
℘, and thus the Lorentz symmetry is naturally broken. The space Q3

℘ is
a completely disconnected topological space, which means that the only connected subsets
are points or the empty set, i.e. the there are no ‘intervals.’ This space is a self-similar set
admitting a group of symmetries of the form x→ a+Ax, a ∈Q3

℘, A ∈ GL3(Q3
℘). The action

of this group on the space Q3
℘ imposes a Planck length of exactly ℘−1, which is independent

of the speed of light. In contrast, the classical model does not have a Planck length because,
in R, the Archimedean axiom implies the existence of arbitrary small segments.

The two types of Dirac equations have common properties; particularly, both predict the
existence of pairs of particle and antiparticles. However, in the℘-adic case, the geometry ofQ3

℘

allows localized states (particles) to exist. In contrast, this possibility is ruled out in the standard
case since it implies the violation of Einstein’s causality. Our main result states the violation
of the Einstein causality in the space-time R×Q3

℘ in the Dirac-von Neumann formalism of
QM.

The ℘-adic nature of space-time was conjectured by Volovich in 1980 s, [44]. Quantum
mechanical theories with ℘-adic space and time are possible, see, e.g. [23–31, 59–61], and the
references therein. The assumption that the time is ℘-adic requires abandoning the QM in the
sense of Dirac-von Neumann because the evolution of quantum states is based on the theory
of semigroups, which uses real-time. This, in turn implies that we cannot compute transition
probabilities in classical way. Since the study of the Einstein causality is based on computing
transition probabilities, here we do not use a ℘-adic time.

Finally, this work indicates the difficulty of unifying QM and gravity. Assuming as space-
time R×R3, QM and general relativity together imply that

LPlanck =

√
ℏG
c3

and Einstein causality principle. (10.1)

Interpreting the Bronstein inequality ∆x⩾ LPlanck as the non-existence of intervals below the
Planck length and assuming as space-time R×Q3

℘, QM implies that

LPlanck = ℘−1and the violation of Einstein causality principle. (10.2)

Now, due to the non-existence of topological and algebraic isomorphism between R and Q℘,
the conclusions (10.1) and (10.2) cannot ‘mixed’. This fact evokes the old idea of the adelic
nature of space, [27].
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