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1
Introducción

Los tres pilares principales de esta tesis se encuentran en el t́ıtulo. El primer concepto
que en él encontramos es el de simetŕıas o, más concretamente, el de simetŕıas rotas. En
f́ısica, la siemtŕıa ha sido una herramienta de gran utilidad desde tiempos inmemoriales.
La definición matemática de simetŕıa es “invariancia bajo una transformación”. Esta idea
aparentemente simple esconde una vasta cantidad de profundas implicaciones en nuestra
manera de entender la naturaleza. Tal es aśı que el teorema de Noether (que establece
la existencia de corrientes conservadas en base al contenido de simetŕıas de la teoŕıa) se
conoce como el teorema principal de la f́ısica teórica. Sin embargo, en esta tesis, no son
exactamente las simetŕıas sino sus versiones rotas lo que nos interesa. No solo en f́ısica,
la idea de simetŕıa rota hace referencia a una simetŕıa que hab́ıa antes y que de algún
modo ya no hay. Sin embargo se entiende que debe haber cierta memoria, cierto rema-
nente de dicha simetŕıa ausente: una simetŕıa rota no es lo mismo que la ausencia total
de simetŕıa. Para nosotros los restos de una simetŕıa pueden ser de igual o más valor que
la propa simetŕıa en si misma. En este sentido los f́ısicos somos más afortunados que otros.

La segunda noción básica de este trabajo es la de transporte. De nuevo, el signifi-
cado que tiene esta palabra para la f́ısica no dista mucho del que tiene para todo el mundo:
transportar algo significa moverlo de un sitio a otro. A pesar de que los seres humanos
han transportado cosas durante miles de aos, la importancia de este concepto aumentó
dramáticamente con la revolución industrial y el desarrollo de la termodinámica: la necesi-
dad de un a descripcion concisa de sistemas de muchos cuerpos dio lugar a los conceptos
de transporte de enerǵıa, part́ıculas etc... A pesar de lo antiguo de estos conceptos, aun
queda mucho por descubrir. Cada d́ıa se descubren nuevos materiales con propiedades
fascinantes: Los superconductores de alta temperatura siguen siendo un misterio desde el
punto de vista teórico. EL grafeno promete revolucionar nuestras vidas con sus extremas
propiedades. Los fenómenos de transporte no disipativos esperan a la vuelta de la esquina.
Sin duda, es una época interesante en lo que se refiere a los fenómenos de transporte. A
pesar de esto, una tesis sobre la relación entre transporte y simetŕıa seŕıa más propia de
mediados del siglo XX. Es precisamente el tercer (y más exótico) concepto que aparece en
el t́ıtulo el que nos trae de vuelta al siglo XXI.

Holograf́ıa, la dualidad gauge/gravedad o simplemente AdS/CFT es una idea surgida
hace menos de veinte aos y que ha abierto un puerta de gran interés y profundidad para
la f́ısica teórica. Esta dualidad relaciona teoŕıas gauge en acoplo fuerte con teoŕıas de
gravedad en acoplo débil y viceversa. Su descubriemiento tuvo y sigue teniendo un fuerte
impacto en la comunidad cient́ıfica. Por un lado, la conexión entre teoŕıas de gravedad
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Chapter 1. Introducción

y teoŕıas gauge es una de las más impresionantes y sugestivas que uno pueda imaginar
dentro del campo de la f́ısica teórica. Lo que este inesperado matrimonio intenta decirnos
no ha sido comprendido completamente aún. Por otro lado, la dualidad nos brinda una
oportunidad única para desarrollar las herrmaientas adecuadas para estudiar sistemas en
acoplo fuerte, uno de los problemas abiertos en la f́ısica de las últimas décadas.

Obtener una comprensión más profunda sobre la relación de estos conceptos es el
objetivo de esta tesis. A lo largo de los siguientes caṕıtulos se presenta un estudio de varios
modelos, con énfasis en sus fenómenos de transporte desde el punto de vista holográfico.
Para ello el concepto de simetŕıa será nuestra herrmienta principal e indispensable. Por
ello, comprender cómo esta se manifiesta en la dualidad es de vital importancia.

La tesis está organizada del siguiente modo. En la primera parte revisamos los
conceptos anteriormente mencionados: Ruptura de simet́ıa en las seciones 2-3, transporte
en la seción 4 y holograf́ıa en la sección 5. Estos repasos se hacen con el fin de servir como
recordatorio de los conceptos más básicos, haciendo énfaiss en las ideas que aparecen en
nuestros modelos holográficos.

En el caṕıtulo 2 introducimos el concepto de ruptura espontánea de simetŕıa. En
la sección 2.2 presentamos el teorema de Goldstone y sus extensiones. Este caṕıtulo está
basado en [1, 2].

En el caṕıtulo 2 revisamos la idea de anomaĺıas, invluyendo la derivación de integral
de camino, el teorema de no renormalización y algunos apuntes sobre las definiciones
covariante y consistente de las anomaĺıas. Además se incluye una introducción a los
fenómenos de transporte anómalos, haciendo incapié en el efecto magnético quiral. Este
caṕıtulo está basado en [3–7].

El caṕıtulo4 esta dedicado al estudio del transporte y la hidrodinámica. Se presenta
una introducción a los conceptos necesarios para comprender la seguna parte de la tesis:
hidrodinámica, respuesta lineal y transiciones de fase, todo ello conectado con el concepto
de ruptura de simetŕıa. Este caṕıtulo esta basado en [8–12]. En el caṕıtulo5 revisamos
los aspectos básicos de la correspondencia AdS/CFT. Se exponen la ideas de la formula
GKPW y el paperl de las expansiones asintóticas. Se hace una detallada revisión del pro-
cedimiento de renormalización holográfica con el método de Hamilton-Jacobi. Finalmente
se exploran las consecuencias que tiene la presencia de agujeros negros en la dualidad.
Este caṕıtulo esta basado en [13–17].

La segunda parte de esta tesis está dedicada a la investigación original realizada
por el autor en colaboración con Daniel Arean, Irene Amado, Karl Landsteiner, Luis Mel-
gar and Ignacio Salazar-Landea. El caṕıtulo 6, está enfocado al mecanismo de ruptura
espontánea de simetŕıa y sus consecuenccias en los fenómenos de transporte. Concre-
tamente, se presenta una extenśıon no abeliana del superconductor holográfico. Esta
extensión contiene bosones de Nambu-Goldstone exóticos. Con este modelo es posible es-
tudiar los teoremas de contaje modernos introducidos al comienzo del caṕıtulo. Además,
se exploran las implicaciones que la ruptura espontánea de una simetŕıa global en el lado
gravitatorio. Hasta donde llega nuestro conocimiento esta es la primera vez que se realiza
dicho estudio. También estudiamos el espectro de excitaciones, sus relaciones de dispersión
y el comportamiento de las conductividades del sistema. Este caṕıtulo está basado en [18].

En el caṕıtulo 7 se hace una extensión del análisis anterior, incoroporando velocidad
finita de la componente superfluida del sistema. Se estudian las restricciones que dicha
velocidad impone en la estabilidad del sistema basándonos en el criterio de Landau. Se
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Chapter 1. Introducción

comparan estos resultados con los obtenidos en estudios basados en la enerǵıa libre. De
este modo se encuetra una inestabilidad previamente desconocida en el diagrama de fases
del superconductor holográfico. Este caṕıtulo está basado en [19].

En el capitulo8 se presenta el primer modelo de superconductor holográfico tipo s+p.
Dicha fase aparece en cierta zona del diagrama de fases del modelo estudiado en el caṕıtulo
6. Se estudian la relación entre las fases s y p y se encuentra que para ciertos valores de
las variables termodinámocas la fase favorecida es aquella en la que ambos condensados
coexisten. Este caṕıtulo está basado en [20].

En el caṕıtulo 9 pasamos a estudiar la ruptura de simtŕıas abelianas via anomaĺıas
y los fenómenos de transporte relacionados con estas. Concretamente se estudia el efecto
que tienen los procesos de rescattering de grados de libertad gauge internos. Con el fin
de implementar dichos efectos de manera efectiva se le da masa al fotón utilizando el
mecanismo de Stueckelberg en el bulk. Este caṕıtulo está basado en [21].

En el caṕıtulo 10 se estudia la relación entre anomaĺıas y simetŕıas espontáneamente
rotas en holograf́ıa. Para ellos se estudia el efecto que la presendia de un superfluido
tiene en las conductividades anómalas. Se propone una formula de Kubo para el efecto
eléctrico quiral y se estudia su comportamiento en dos modelos distintos. De manera
adicional, se identifica un efecto que se hab́ıa pasado por alto en la literatura “efecto de
generación de carga quiral”. Nuestros resultados confirman la conjetura de universalidad
de la conductividad quiral magnética a temperatura cero en superfluidos quirales hecha
en [22]. Este caṕıtulo está basado en [23]. Finalmente en 11 se presentan las conclusiones.
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Chapter 1. Introducción

TRANSPORT

The study of transport, or transport phenomena, is concerned with the exchange of certain
quantities along/between many body systems. Traditionally the quantities under consid-
eration were mass, electric charge, energy and momentum. From now on we will refer to
these, and other non-traditionally studied quantities, as charges. Transport does not only
happen in fluids, of course. However along this thesis we will focus on the hydrodynamic
regime of several theoretical systems. Therefore we will always refer to hydrodynamic
transport. Hydrodynamic transport phenomena are characterized by certain coefficients
in the constitutive relations: transport coefficients. Within hydrodynamics there are two
key concepts to consider: transport coefficients and hydrodynamic modes. These two are
closely related and a great part of our research will focus on this relation. As any other
macroscopical description of nature, we can 1 express hydrodynamics as an effective ver-
sion of an underlying consistent and complete Quantum Field Theory (QFT). One says
that hydrodynamics can be viewed as a coarse grained version of an underlying QFT. As
any effective theory, this is accomplished by removing (integrating out) massive degrees
of freedom (d.o.f.) from the spectrum. In the case of hydrodynamics one is only left to
the massless degrees of freedom and calls them hydrodynamic modes. From the QFT
point of view these modes are still nothing else that poles in certain correlators. In this
sense, since hydrodynamic modes and hydrodynamic transport phenomena are so closely
related, it should not come as a surprise that transport coefficients are related to certain
correlators too. Such a relation is accomplished by means of the Kubo-Martin relations.
This relations appear within linear response theory: the formalism that allows us to study
the response to slight perturbations of systems.

SYMMETRY BREAKING

Symmetries are a major concept in theoretical physics. Symmetry considerations allow
us to obtain information that would be very difficult to get by other means. Since the
world around us is highly non-symmetric, how to break symmetries and the consequences
of doing so are very active and fruitful areas of research. Several ways to accomplish the
breakdown of a symmetry are known within QFT: explicit symmetry breaking, sponta-
neous symmetry breaking and anomalous symmetry breaking or just anomalies. The case

1For some cases this ”can should be substituted by ”expect to be able to”.
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Chapter 1. Introducción

of spontaneous symmetry breaking is probably the best known one. Specially after the
discovery of the Higgs boson in 2014. But the crucial signature of spontaneous symmetry
breaking: Nambu-Goldstone modes do not only affect the vacuum. Actually it was in
the context of condensed matter where this concepts where born. Regarding transport,
a special role was played by the physicist Lev Landau. He gave a clear interpretation of
the relation between symmetry breaking and (certain) phase transitions. Something we
expect is that new phases of matter behave in a different manner. This naturally affects
the transport phenomena, allowing us to make a link to the diagram for transport. We
could just add (spontaneous symmetry breaking) before every concept there. Hydrody-
namics are affected by spontaneous symmetry breaking. This leads to new hydrodynamic
modes and new transport coefficients. There are obvious good phenomenological reasons
to expect that hydrodynamics of different phases should be different. However this is not
the only path one may take to reach such idea. Hydrodynamics can be viewed as an effec-
tive field theory. Since the Nambu-Goldstone modes are massless, they should survive the
process of coarse graining. It cannot be surprising that new hydrodynamic modes and new
transport coefficients arise. As stated before, these can be related to certain correlators.
Some of these correlators will now show some new poles: the NG modes.
One can play an analogous game in the presence of anomalies. Rather recently it was
discovered that anomalies can give rise to new transport phenomena under certain cir-
cumstances (see section 3.4). So we can in principle go through figure in the revious page
adding “anomalous” or “in presence of anomalies” next to every concept. One can con-
sider how hydrodynamics gets modified by the presence of anomalies [24]. Not surprisingly
there are anomalous transport coefficients. Anomalies do not give rise to massless modes
in the spectrum of a QFT. Despite of this, as we will see, new massless modes have been
shown to appear in the hydrodynamic regime.

5



Chapter 1. Introducción

HOLOGRAPHY

Holography relates gauge theories and gravity theories2 in an amazingly convenient way:
the coupling in one side is, roughly, the inverse of the coupling in the other side. In prin-
ciple one may take advantage of this in both directions. Nevertheless, we will focus on the
perspective depicted in the diagram above: obtaining information of the strongly coupled
gauge theory from the gravitational side. Exploring the previous diagrams (transport and
symmetry) in the strongly coupled regime is the basic idea of this work. In order to do
so we need to understand how the concepts of symmetry, symmetry breaking, correlators,
thermodynamic variables... etc are translated to the weakly coupled side. This is accom-
plished by means of the so called holographic “dictionary”. Understanding and expanding
the dictionary within this topics is one of the main objectives of this thesis. Another
important aim of the current work is to give concrete solutions of how to compute and
obtain the desired quantities. Last but not least, we are interested in the concrete quanti-
ties that we will obtain from a phenomenological point fo view. Although the duals to our
systems are extremely idealized systems, we are able to obtain significative results about
the (broken symmetry related) transport phenomena in strongly coupled systems.

2With gauge theories we mean theories with gauge fields of spin< 2.
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2
Breaking Symmetries with the Vacuum

2.1 Spontaneous Symmetry Breaking

When we say that a theory is invariant or symmetric under certain transformation we
usually mean that the dynamics of the theory respect that symmetry AND that there are
observables which are invariant under those transformations too. However it is possible
that a symmetry is only respected at the level of the dynamics, with no realization from
the observables point of view. In this case one says that the theory is symmetric but
the vacuum breaks the symmetry: this phenomenon is known as Spontaneous Symmetry
Breaking . The idea is that of the existence of a continuum (we will just focus on the case
of continuous symmetries) of degenerate vacua, all connected by some transformation, the
“ broken” symmetry transformation. Despite of the degeneracy of the vacua, the actual
physical system chooses one point in the orbit of the transformation. A more rigorous way
to characterize this is to say that a symmetry is spontaneously broken if there exists an
operator ψ̂ such that

〈0|Ψ̂|0〉 ≡ 〈0|[Q̂, ψ̂]|0〉 6= 0 . (2.1)

The operator Ψ is called the order parameter, in clear connection with the concept of
phase transitions. The more prominent physical consequences of spontaneous symmetry
breaking are

• Some operator(s) acquire a non-zero vev: The order parameter

• Appearance of massless modes in the spectrum: Nambu-Goldstone modes

• The symmetry affects only the dynamics: No multiplets in the spectrum

Let us review the most common example in classical field theory: U(1) spontaneous sym-
metry breaking in λφ4. Consider the following U(1) symmetric Lagrangian for a complex
scalar

L = −∂µφ†∂µφ−m2φ2 − 1

4
λ(φ†φ)2 . (2.2)

If m2 < 0 the potential takes a mexican-hat shape and it has therefore a continuum of
degenerate vacua given by

φ =
v√
2
e−iθ =

√
2|m|√
λ

e−iθ . (2.3)

Where theta is the phase that parametrizes the position in the flat direction. To see
how the spectrum is affected let us study perturbations on top of one of these backgrounds.

7



Chapter 2. Breaking Symmetries with the Vacuum

Figure 2.1: Pictorial representation of a spontaneous symmetry breaking potential “the
mexican hat”. The flat direction in field space gives rise to the massless mode. The radial
direction has a usual U shaped “massive potential” and gives rise to a gapped mode.

For simplicity we choose θ = 0 and

φ(x) =
1√
2

(v + ρ(x))e−iχ(x)/v . (2.4)

Then the Lagrangian looks

L = −1

2
∂µρ∂

µρ− 1

2

(
1 +

ρ

v

)2
∂µχ∂

µχ+m2ρ2 −
√
λ

2
|m|ρ3 − 1

16
λρ4 . (2.5)

Which describes a massless excitation parametrized by the perturbation of the phase χ
and a massive mode described by the perturbation of the modulus ρ. In the mexican hat
picture these correspond to a ball moving in the angular (flat, massless) and in the radial
(U shape, massive) directions. This extends naturally to the non-abelian case. Moreover,
the effects of the quantization do not affect the main results, as the masslessness of the
NG-mode.
A subtle concept is that of spontaneous symmetry breaking of gauge symmetries, nowadays
termed the Higgs mechanism. An analogous model to the previous one can be implemented
if the symmetry is promoted to a local symmetry. However, due to the fact that local
symmetries are actually redundancies, these cannot be broken (Elitzur’s theorem). A
broken local symmetry leads to inconsistencies in the theory. So spontaneous symmetry
breaking of gauge symmetries is a bit of a misnomer. In reality this mechanism is a
combination of spontaneous symmetry breaking of the global part of the symmetry and
gauge fixing. The apparent breakdown of the local symmetry is actually due to the gauge
fixing; it is not trivial to see that the theory is still gauge invariant once a particular gauge
has been chosen.

Let us see how this works in the simplest model a U(1) gauge field coupled to a
complex scalar with the appropriate potential

L = −(Dµφ)†Dµφ− 1

4
λ(φ†φ− 1

2
v2)2 − 1

4
FµνFµν . (2.6)

8



Chapter 2. Breaking Symmetries with the Vacuum

This potential is minimized for a non-zero vev of the scalar field, that we can parametrize
as vev + perturbations

φ(x) =
1√
2

(v + ρ(x))ei(θ−χ(x)) . (2.7)

As in the global case we can use the global part of the symmetry to set θ = 0. The
Lagrangian now looks

L = −1

4
FµνFµν + ∂µρ(x)∂µρ(x) +

1

4
λv2ρ(x)2 +

(v + ρ(x))2

v2
(∂µχ+ vAµ) (∂µχ+ vAµ) .

(2.8)

This Lagrangian is explicitly gauge invariant. However, we can now use a gauge transfor-
mation1 to set χ(x) = 0. This is a concrete gauge, called unitary gauge. Of course, if we
now look at the lagrangian

L = −1

4
FµνFµν + ∂µρ(x)∂µρ(x) +

1

4
λv2ρ(x)2 + (v + ρ(x))2AµAµ . (2.9)

we see that it is not gauge invariant anymore. This should not be a surprise since we
have chosen a particular gauge. In addition we see (this was clear before gauge fixing too)
that the photon has acquired a mass. So we see that the (apparent) Nambu-Goldstone
boson was non-physical in this case, since it could be removed by the appropriate choice
of gauge. The number of d.o.f. however remains unaltered compared to the global spon-
taneous symmetry breaking case, since now the photon has a mass and therefore an extra
polarization mode. The massive mode ρ remains there and cannot be removed by gauge
transformations: this is the Higgs mode.
Let us go back to the Lagrangian (2.10). We can think of λ being very big and integrate
out the Higgs mode

L = −1

4
FµνFµν + (∂µχ+ vAµ) (∂µχ+ vAµ) , (2.10)

and arrive to the Stueckelberg action. This model was proposed by Stueckelberg as a
gauge invariant way to give mass to the photon. In his approach he just imposed the ap-
propriated symmetry transformation to the “Stueckelberg field” χ such that the mass term
remained invariant. Here we have seen that the Stueckelberg and the Higgs mechanisms
are not independent, since the former is a truncation of the latter. Nevertheless, there
are further differences. Although both the global spontaneous symmetry breaking and
the gauge spontaneous symmetry breaking mechanisms can be extended to non-abelian
symmetries, the Stueckelberg mechanism gives rise to non renormalizable theories in this
case. In chapter 9 we will see how these ideas are implemented in AdS space.
A central piece in the study of spontaneous symmetry breaking is the Nambu-Goldstone
theorem, that shows that massless modes must always appear in the spectrum after spon-
taneous symmetry breaking. Moreover in certain cases it is possible to determine how
many of these modes must appear.

1This is a “true” gauge transformation: it vanishes at infinity.
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Chapter 2. Breaking Symmetries with the Vacuum

2.2 Counting Nambu-Goldstone Bosons

Let us review the state of art of the theorems on Goldstone bosons. First we have of
course the actual Goldstone theorem. Its proof assumes the existence of a conserved
current jµ such that the broken charge is Q =

∫
ddxj0 (with d spatial dimensions). The

theorem then states that spontaneous breaking of a continuous global symmetry implies
the existence of a mode whose energy fulfills

lim
k→0

ω(k) = 0 . (2.11)

The theorem by itself does not make any statement about the number of these modes,
nor does it fix the k-dependence of the frequency. In the presence of Poincaré symmetry
one can make however a stronger statement, namely that the dispersion relation of the
Goldstone mode has to be linear and that the number of Goldstone bosons equals the
number of broken generators.

Lorentz symmetry might be absent however for various reasons: the theory might
be non-relativistic or the system under consideration might be in a Lorentz symmetry
breaking state, at finite density for example. In these cases another theorem classifies
Goldstone bosons as type I if their dispersion relation depends on a odd power of the
momentum or as type II if their energy goes as an even power of the momentum, both
in the low momentum limit. The number of type I and type II Goldstone bosons has to
fulfill then

nI + 2nII ≥ NBG , (2.12)

where NBG is the number of broken generators [25]. The number of type I and type II
Goldstone bosons can be further constrained. Upon assuming that the broken symmetry
generators obey 〈[Qa, Qb]〉 = Bab the number of Goldstone bosons has to fulfill [26–28]
(see also [2, 29,30] for more on counting rules of Goldstone bosons).

nI + nII = NBG −
1

2
rank(B) . (2.13)

This counting rule was proven in [27]. In the same paper where the proof was
given, a new classification for the NG modes was introduced. Within this classification
the massless modes appearing after spontaneous symmetry breaking can be identified as
type A and type B. The difference relies on whether the polarization vector of the gapless
modes is in the kernel of the previously defined matrix B. This matrix can be obtained
from the effective action [29] after linearization of the terms with just one time derivative
in the action. In this language the counting rule reads

nA = NBG − rank(B) nB =
1

2
rank(B) . (2.14)

Generically type A NG modes are type I whereas type B are type II. In this case the
above counting rule confirms (2.13). However, one may fine tune the effective action in
order to have type A NG modes with quadratic dispersion relations, etc... which ultimately
implies that (2.14) si more general. There is a simple way to understand how this can
happen. In order to have non-linear dispersion relations it is needed that the time and
space derivatives have different powers. The origin of such difference, however, may arise
in different ways. One possible example is that of Lifshitz scaling. In this case one imposes

10



Chapter 2. Breaking Symmetries with the Vacuum

the anisotropic behaviour by hand, setting |∇φ|2z where z is the Lifshitz parameter and
z = 1 corresponds to the isotropic case. Another possiblity is to add a chemical potential
A0 = µ, which gives rise to a term linear in time derivatives ∼ µ(φ∂tφ̄ − φ̄∂tφ. The fact
that these two possibilities may give the same dispersion relation (for z=2) does not imply,
however, that the counting rules are the same. Concretely the Lifshitz case corresponds
to Type A whereas the chemical potential option gives rise to Type B NG bosons. The
latter is reviewed in section 6.2, where the model of [31], which shows type II (B) NG
bosons in the spectrum, is reproduced. It is placed in chapter 6 for it was the motivation
for our holographic model. The cases we consider there are of generic nature in the sense
explained before, therefore we will adopt the language of type I and type II NG bosons.
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3
Breaking symmetries with ~

3.1 Anomalies

Anomalies in the quantum theories of chiral fermions belong to the most emblematic prop-
erties of relativistic quantum field theory. They provide stringent consistency conditions
on possible gauge interactions and also predict physical processes that would be otherwise
highly suppressed such as the decay of the neutral pion into two photons.
Anomalies are not only important for the phenomenology of particle physics but they also
are of utmost importance to the theory of quantum many body systems containing chiral
fermions. Anomaly cancellation plays a crucial role in the field theoretic understanding of
the electro response of quantum hall fluids for example. Chiral fermions appear as edge
states and the associated anomalies have to be canceled by appropriate anomaly inflow
from a gapped bulk reservoir of charge. From the point of view of symmetry breaking,
anomalies signal the failure of classical symmetry to survive the process of quantization
and regularization. The existence of anomalies was discovered due to the tension between
the measured neutral Pion decay into two photons and the symmetry based theorem by
Veltman and Sutherland that forbade this decay. The solution to this problem was found
by Adler, Bell and Jackiw [32, 33]: a symmetry of the (classical) Lagrangian can be bro-
ken after quantizing the theory. When this happens, loop corrections modify the Ward
identity for the classically conserved current:

∂µJ
µ5 = 2imP −→ ∂µJ

µ5 = 2imP +
e2

16π2
εµναβFµνFαβ . (3.1)

Where P = ψ̄γ5ψ. This symmetry breaking mechanism is completely different from
spontaneous symmetry breaking. Spontaneous symmetry breaking happens at the classical
level. In addition, the dynamics of the theory in the spontaneous symmetry breaking case
remain symmetric, it is the vacuum that breaks the symmetry. Anomalies, however, do
break the symmetry at the level of the (quantum) dynamics. A big difference between both
mechanisms is that spontaneous symmetry breaking can be switched off by conveniently
tuning the value of some parameter (the negative mass in the concrete case of the previous
chapter). Since anomalies appear when ∼ ~ effects are taken into account this is more
complicated; switching off Plank’s constant is not a good solution. However, in the large
N limit it is possible to study how anomaly related effect arise [34]. This is due to the
suppresion of the anomaly coefficient in the large Nc expansion. On the other hand, as
it happened with spontaneous symmetry breaking, only global symmetries are allowed to
be anomalous in a consistent theory. The breakdown of a gauge symmetry leads to an
unavoidable breakdown of unitarity. Let us remark that all kinds of classical symmetries
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are potentially affected by anomalies. The most studied examples are the axial anomaly,
the conformal anomaly and the gravitational and mixed chiral-gravitational anomalies. In
chapter 9 we study implications of the axial anomaly on transport from the holographic
point of view. More concretely, we focus on situations in which the matrix elements of
the divergence of the current do receive radiative corrections beyond 1-loop. This might
seem contrary to the Adler-Bardeen non-renormalization theorem.However, it was actually
Adler who realized this in the first place. Let us first review the basics of the axial anomaly
and then introduce the ideas the non-renormalization theorem.

The axial anomaly appears in theories of massless fermions1, which are invariant
under a global U(1)A transformation. There are several ways to compute the anomaly.
Here we will follow the path integral derivation first elucidated by Fujikawa.
From the classical point of view a symmetry exists if the Lagrangian is invariant under the
corresponding transformation (without spontaneous symmetry breaking). One possibility
to check wether a symmetry remains conserved after quantization is to compute the ward
identities for the divergence of the current. This is related to the usual triangle diagram
computation of the anomaly. This is however not the only way that symmetries can be
tested in a quantum theory. If the symmetry is respected at the quantum level then the
generating functional (quantum action) must be invariant under the (classical) symmetry
transformation. It can happen that a quantum action does not respect an invariance of
the Lagrangian. The theory is anomalous. One can therefore directly study the generating
functional with no need to compute current correlators. Let us consider massless fermions
minimally coupled to a photon. The expression for the generating functional

eWeff [Aµ] ≡
∫
DΨDΨ̄eS[Ψ,Aµ] . (3.2)

We have only integrated over fermion configurations since Aµ is not a dynamical d.o.f. of
this theory. The theory is invariant under a certain transformation “g” if

δgWeff = 0 . (3.3)

Since δgL = 0 the only possible origin of the non-conservation is the measure of the path
integral in3.2.

eδWeff [Aµ] = δ

∫
DΨDΨ̄eS[Ψ,Aµ] =

∫
δ(DΨDΨ̄)eS[Ψ,Aµ] . (3.4)

Where L = Ψ̄ /DΨ. In order to compute the variation of the measure we first decompose the
spinors in orthonormal eigenfunctions of the Dirac operator /Dφn = λnφn and Grassmann
variables

Ψ(x) =
∑

anφn(x) =
∑

an〈x|n〉 . (3.5)

Then
DΨDΨ̄ =

∏
n

dandb̄n . (3.6)

Where b̄n are the Grassman coefficients in the decomposition of Ψ̄. We can now perform
the axial transformation to the measure

Ψ′ = (1+ iβ(x)γ5)Ψ = (1+ iβ(x)γ5)
∑
m

amφm =
∑
n

a′nφn . (3.7)

1Anomalies depend on the number of space-time dimensions. In this chapter we will implicitly always
refer to 3+1 space times
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So we have
a′n =

∑
m

Cnmam . (3.8)

with

Cnm = δnm + i

∫
d4xβ(x)φ†n(x)γ5φm(x) . (3.9)

So one can finally write
δ(DΨDΨ̄) = (detC)−2DΨDΨ̄ . (3.10)

Only if (detC)2 = 1 the theory will remain invariant under the symmetry transformation
at the quantum level. Using detC = eTr logC

(detC)−2 = e−2i
∫
d4xβ(x)

∑
n φ
†
nγ5φn . (3.11)

The sum in last expression is not well defined and must be regularized. Several regular-
ization schemes can be chosen now. However we can divide them in two groups: gauge
(recall the field Aµ is associated with a vector symmetry) invariant schemes and others.
All possible schemes in the first group give rise to the same answer

(detC)−2 = e−
∫
d4xβ(x) −i

16π2 F∧F . (3.12)

Where F is the field strength of the external vector field. This is the case of Fujikawas
gaussian regularization scheme∑

n

φ†nγ5φn = lim
M→∞

∑
n

φ†nγ5φne
− λ2

n
M2 . (3.13)

Nevertheless, there are schemes, those contained in the second group, that give rise to a
different answer. One can even choose a scheme in which

∑
n φ
†
nγ5φn = 0. But this does

not mean that the anomaly has been cancelled. In order to get a different result in (3.12)
one has to choose a scheme which does not respect vector invariance. In order to “save”
the axial symmetry one has to spoil the vector symmetry. In the case of massless QED this
is unacceptable since it gives rise to negative norm states. When none of the symmetries is
gauged there is however an ambiguity, one can choose where the anomaly can be located.
In this sense it is said that the anomaly appears from the tension between two different
symmetries in the process of quantization. Fujikawa proposed an uncertainty principle to
illustrate this. He found that this tension can be expressed from the non-commutativity
of the Dirac operator (which vector gauge field) and γ5

〈Ψ̄|[ /D, γ5]|Ψ〉 =
−i

16π2
F ∧ F . (3.14)

The previously commented ambiguity is not only visible from the path integral
formalism. When computing the triangle diagrams an ambiguity in the regularization of a
linearly divergent integral appears. The concrete choice made alters the expectation value
of the divergence of the current.

The axial and vector Ward identities can be expressed as

〈∂µJµaxial〉 = 0→ (kλ1 + kλ2 )Tµνλ = 0 , (3.15)

〈∂µJµvector〉 = 0→ (kλ1 )Tµνλ = 0 . (3.16)

15



Chapter 3. Breaking symmetries with ~

Figure 3.1: Triangle diagrams give rise to the anomalous conservation of the current.

when computing the triangle diagram in momentum space. Tµνλ is the (one loop) axial
current to two vector currents amplitude as depicted in figure 3.1. The ambiguity in the
computation of the triangle can be parametrized, and gives rise to the following expressions

(kλ1 + kλ2 )Tµνλ =
β − 1

4π2
εµναβk

α
1 k

β
2 , (3.17)

(kλ1 )Tµνλ =
β + 1

8π2
εµναβk

α
1 k

β
2 . (3.18)

Where β is the parameter that controls the specific shift made in the regularization of
the divergent integral. Here one can see more clearly how the tension among symmetries
occur: there is no value of β that cancels both contributions. Either one or both currents
are not conserved due to 1-loop corrections.
Once we have introduced the basic ideas related to the axial anomaly we are ready to
comment on two related concepts that will appear in our holographic studies: the non-
renormalization theorem and the distinction between consistent and covariant anoma-
lies/currents.

3.2 Adler-Bardeen theorem

The Adler-Bardeen theorem [5] is one of the features that make anomalies so special and
useful. The standard assertion based on this theorem is that “the anomaly is 1-loop
exact”. However such affirmation is not very concrete, and may give rise to the wrong
assumption that any anomaly related quantity is 1-loop exact. In the original paper, Adler
and Bardeen show that in spinor electrodynamics the operator equation

∂µJ
µ
5 = 2im0J5 +

α

4π
εαβγηFαβFγη . (3.19)

is exact at 1-loop. This means that the coefficients appearing in the previous equation are
not modified by higher loop corrections. In [5] they considered a process Jµ5 → nfermions+
mbosons.

They found that only diagrams with a triangle loop of virtual fermions attached
to the axial current could give rise to the anomalous term. Moreover any internal pho-
ton/meson line in the triangle lowers the degree of divergence, thus not allowing for ambi-
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Figure 3.2: Possible diagrams mediating Jµ5 → something. Only the left diagram gives
rise to an anomaly proportional term. Linear divergences in the loop integrals are absent if
the current is not attached to a closed triangle fermion loop (right) or radiative corrections
are included in it (center).

guities in the regularization scheme2. In their own words The coefficient of the anomalous
term is exactly α/4π and does not involve an unknown power series in the coupling con-
stant coming from higher orders int he perturbation theory
This does not mean, however, that the divergence of the axial current does not renormal-
ize! If one considers the photons as dynamic degrees fo freedom (in contrast to external
fields) then the operator ∼ F ∧ F may, and does, renormalize. Among others this gives
rise to an anomalous dimension for the axial current J5. Therefore, it is NOT enough to
just compute the triangle diagram to obtain an amplitude proportional to the anomaly.
The photon rescattering process in figure 3.3

Figure 3.3: Rescattering processes can modify the expectation value of the axial current
divergence

is an example of this.

Despite of this, Adler and Bardeen were able to show that certain anomaly pro-
portional amplitudes where 1 loop exact in a special kinematic regime. More concretely,
they showed that the expectation value of the “naive (classical) divergence”

〈2im0J5〉 =
−2π

α
. (3.20)

is exact to all orders in the perturbation theory. This, however only holds to leading order
in the energy expansion (k1, k2 << m0) and for k1 · k2 = 0. It is pretty clear that such
result cannot hold in massless QED. Moreover, when considering strongly coupled theories
the radiative corrections to anomaly related quantities can be of great importance. We
explore further in this direction in chapter 9.

2As commented in by the end of the previous chapter, the anomaly arises form the ambiguity in the
regularization of a linearly divergent integral that appears in the triangle diagram
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3.3 Covariant and consistent currents

In 3.17 we wrote down the modified Ward identities for the axial and vector currents
due to the existence of the anomaly. In the Fujikawa computation of the anomaly, we
saw that only those regularizations that respected gauge (vector) invariance gave rise to
a conserved vector current and an anomalous axial current. These currents are called
consistent currents, for the non-divergence found in the axial current, i.e. the anomaly,
fulfils the Wess-Zumino consistency condition. Nevertheless the consistent currents are not
covariant under the anomalous symmetry. This is an unavoidable effect of the anomaly.
In order to get a covariant version of the currents one has to modify the definition of them,
by adding a Bardeen-Zumino term to the currents. By doing so the gauge covariance of
the currents is reinstored. These are called the covariant currents. The definition of the
current is frequently chosen when dealing with anomalous hydrodynamics. In the case of
the abelian axial anomaly, and with the choice ∂µJ

µ = 0 in presence of external axial and
vector fields the concrete BZ terms are

JµA cov = JµA cons +
1

12π2
εµνρσAνF

V
ρσ , (3.21)

JµV cov = JµV cons +
1

4π2
εµνρσAνF

A
ρσ . (3.22)

Let us remark that the covariant currents cannot be obtained from the variation of a
vacuum functional. In addition neither the axial nor the vector covariant currents are
conserved in presence of axial and vector external fields.

∂µJ
µ
A cov = 2imP +

e2

16π2
εµναβ

(
F VµνF

V
αβ + FAµνF

A
αβ

)
, (3.23)

∂µJ
µ
V cov = − 1

8π2
εµναβFAµνF

V
αβ . (3.24)

This cannot be changed by changing the regularizations scheme: they are unambiguously
determined. The Wess-Zumino consistency condition provides an elegant way to under-
stand why the consistent anomaly is not unique. Let us briefly review this.
Define the (BRS) operator s

sAµ = Dµc sc = −ic2 , (3.25)

where c is a Faddeev-Popov ghost. The s operator generatres the BRST symmetry that
leaves invariant a Lagrangian after gauge fixing by means of the ghost fields. Since it
acts on the gauge fields as a gague transformation, the anomaly can be obtained by acting
with s on the generating functional

sWeff [Aµ] = A . (3.26)

Where A is the anomaly. Since s is nilpotent, it is clear that sA = 0. This is the Wess-
Zumino consistency condition. Now, an anomaly exists in the theory if the Wess-Zumino
condition is non-trivially satisfied, i.e. if A 6= sB[Aµ] where B is any local functional.
Moreover, it is clear that by adding B[Aµ] terms to the generating funtional the anomaly
as defined in (3.26) is still consistent

W̃ [aµ] ≡W [Aµ] +B[Aµ] → Ã = W̃ [aµ] = A+ sB[Aµ] . (3.27)

The local functional B corresponds to the Bardeen counterterms that allow us to “place”
the consistent anomaly in the current (think here of the U(1)xU(1) case) we choose.
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3.4 Anomalous transport

Anomalies are a central piece of QFT and have played a major role since they were
discovered in 1969. In recent years some effects that link anomalies to transport coefficients
have been proposed: The Chiral Magnetic Effect (CME), the Chiral Separation Effect
(CSE) and the Chiral Vortical Effect (CVE). The CME describes the generation of an
electric current parallel to a magnetic field in presence of a non-zero chiral imbalance. On
the other hand the CSE describes the generation of an axial current parallel to a magnetic
field in presence of a non-zero electric charge. The CVE is an analogous effect in which the
current generated is parallel to a vertex instead of a magnetic field. It has been argued that
these may be observed in Heavy Ion Collisions and therefore present a unique opportunity
for the study of the theory. From this point of view the fact that anomalous transport
coefficients have gained much attention within the last years should not be surprising at
all; anomalies are a very deep and subtle property of QFT and their manifestations have
a great interest. It is an important task for both theoretical and experimental physicists
to find macroscopic and (possibly) measurable! effects that may be, not only related,
but unambiguously determined by anomalies. Let us review the most prominent of these
effects: the Chiral Magnetic Effect (CME).

The Chiral Magnetic Effect [6,35,36] is a mechanism by which an anomaly mediated
chiral excess in presence of a magnetic field produces an electromagnetic current parallel
to the magnetic field.

J i = σCMEB
i . (3.28)

The concrete theoretical value for the Chiral Magnetic Conductivity (σCME) has been
computed in several different ways both at weak and strong (AdS/CFT) coupling. Let us
sketch the weak coupling computation based on the Kubo formula for σCME :

σCME = lim
ω→0

lim
k→0

i

ki
〈JjJk〉 . (3.29)

For some time there was the puzzle regarding the order of the limits. Calculations at
weak coupling were order dependent while strong coupling results were not. It was argued
in [37] that the order of the limits should be unimportant and that the non-commutativity
of some computations was an artifact of the free theory: adding interactions solves the
puzzle 3. The diagram for the current current two point function is

The well known final result is

σCME =
e2µA
4π2

. (3.30)

Where µA is the chemical potential associated to the axial charge. In figure 3.5
a pictorial representation of the effect is shown. In presence of equal lefthanded and
righthanded carriers the current cancels. However, if we managed to have more d.o.f. of
one chirality the current could be observed. This is a key piece of the CME: in order
for the current to appear there must be an imbalance of axial charge i.e. more right/left
movers. This is in principle a great inconvenience for the experiment since axial symmetry
is not a true symmetry in any sector of the Standard Model.

3This is yet another example of the potentially problematic assumption of free charges when computing
conductivities: The usual electric conductivity diverges if free charge carriers propagators are considered.
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Figure 3.4: Diagram for the retarded current-current correlator for Weyl fermions in
the Kubo formula for the CME. Radiative corrections are not needed for the frequency
independent conductivity [37]

Figure 3.5: Pictorial representation of the effect. Red and blue stand for the chirality of
the field. Each field includes the information of particles (+) and antiparticles (-). The
helicity is determined by the relative orientation of spin and momentum. An excess of
right chirality (more quantity of the first two particles) implies a total non-zero current.

In [6] it was argued that Heavy Ion Collisions and the QGP might be the correct
ground to test this effect. At high temperatures chiral symmetry is restored. In addition,
event by event there might be an effective generation of axial imbalance. An heuristic
explanation goes as follow: non-trivial topological gluon configurations are produced with
a probability suppressed with the inverse of temperature (tunneling process). Nevertheless,
at high temperatures these states may be effectively produced via a different mechanism:
sphalerons. The topological term (winding number) associated to these configurations

nW = −
g2Nf

16π2

∫
d3xFµνa F̃ aµν , (3.31)

has the same expression as the spatial integration of the chiral anomaly:

∂µJ
µ
5 = −

g2Nf

16π2
Fµνa F̃ aµν , (3.32)

so the production of net topological charge would render net chirality in the system:

d(NR −NL)

dt
α nW . (3.33)
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When producing these nontrivial states one expects the mean net topological charge
to vanish. This however is what we expect for many collisions, for just one event one may
produce net charge and therefore net chirality. This situation would tend to dissipate in
thermal equilibrium, so still stands the question of whether this dissipation rate is slow
enough compared with the typical time of HIC to let us measure the effect. Since NR is the
number of particles minus antiparticles related to a righthanded field (here righthanded
stands for the chirality), having positive net chirality would imply that the sum of particles
from a righthanded field and antiparticles from a lefthanded field is bigger than the sum
of particles in a lefthanded filed and antiparticles in a righthanded field. Finally, the
presence of the generated current at any stage of the QGP could in principle be measured
as a charge asymmetry in final states [38]. This imbalance has been found already at
RHIC [39–41]. Although it is difficult to make quantitative predictions, this points in the
direction of the CME happening in HIC [42,43].

On the other hand there is an increasing interest in the study of anomalous transport
in condensed matter systems: Dirac and Weyl Semimetals. These have a very particular
band structure that allows to describe the charge carrier d.o.f. as relativistic chiral fermions
in vacuum. Therefore they should be sensible to the axial anomaly and may give a more
controlable system to study anomalous transport. Indirect measurements, based of the
magnetoresponse of Dirac semimetals, have been already performed with positive results
[44]. As a last remark let us comment on the importance of the definition of the currents
introduced in the previous chapter. One can compute the current generated paralel to a
magnetic field using either the consistent or the covariant definitions of the current. If one
introduces the chemical potential as the value of the temporal component of the gauge
field 4 then

J icons = 0 J icov =
Nc

2π
Bi , (3.34)

which clearly shows how important it can be to correctly identify the current to compute.

Another important concept regarding anomalous transport is the Chiral Magnetic
Wave (CMW) [46]. The CMW is a gapless mode that arises in presence of a magnetic
field and triangle anomalies. It describes a (both axial and vector) charge density wave
with velocity

vχ =
NceB

4π2

(
∂µR/L

∂ρR/L

)
. (3.35)

Where
∂µR/L
∂ρR/L

are the susceptibilities for right/left handed fermions. The CMW can be

thought of as a combination of the CME and the CSE: oscillations in electric/axial charge
generate axial/electric currents. This coupling gives rise to the massless mode. Remark-
ably the existence of this mode does not rely on any net chemical potential; it appears in
neutral (electric and axial) systems as long as both charges are free to oscillate. From the
phenomenological point of view the CMW has interesting consequences. First, the fact
that it does not require a finite axial chemical potential is a great advantage for both HIC
and condensed matter experiments. It was argued in [47] that the CMW should induce an
electric quadrupole moment in the QGP. This moment affects the elliptic flow of the late
time QGP and could be observable in the experiment. We will come back to this mode in
section 9.3.3.

4See [45] a more complete discussion of this.
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4.1 Hydrodynamics

Hydrodynamics is an effective description of a many body, locally thermalized system in
the long wavelength limit. More concretely, the spatial variations of the relevant quantities
in hydrodynamics must be smaller than the mean free path of the underlying microscopic
constituents of the system. The ingredients for this description are the thermodynamic
variables temperature (T), pressure (p), chemical potential (µ)... and the (conserved) cur-
rents of the system. In the hydrodynamic approximation these currents are expressed as
functions of the thermodynamic variables. It is concretely in these expressions where the
approximation of hydrodynamics enters. Currents are functions of the thermodynamic
variables and we have assumed that these must have a rate of change that is small com-
pared to some length. Therefore we perform a gradient expansion in the explicit expression
for the currents. These are called constitutive relations and the possible terms appearing
in them can be constrained by symmetry considerations.
The equations of hydrodynamics are the conservation laws for the different currents ex-
pressed by means of their constitutive relations and the thermodynamic equation of state
that describes the equilibrium of the system. As an example let us consider non-relativistic
ideal hydrodynamics of a neutral system. In this context “ideal” means to zeroth order in
the gradient expansion. The conserved quantities in this setup are the mass, the momen-
tum and the energy. Their conservation laws are given by the following equations

∂tρ+ ∂i(ρvi) = 0 , (4.1)

∂t(ρvi) + ∂jΠij = 0 , (4.2)

∂t

(
ε+

ρv2

2

)
+ ∂ij

ε
i = 0 . (4.3)

Where Πij is the stress tensor and jεi is the energy current. To leading order in the gradient
expansion the constitutive relations are

Πij = pδij + ρvivj , (4.4)

jεi =

(
ε+ p+

ρv2

2

)
vi . (4.5)

The five conservation equations together with the the equation of state render a definite
system for the six unknown variables ρ, vi, ε, p. The next logical step is to consider hydro-
dynamic fluctuations. Linearizing the hydrodynamic equations for perturbations on top
of equilibrium one can study the dynamics of these modes. Hydrodynamic modes are in
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general gapless 1. In order to have a consistent approximation, the amplitude of these
modes must be small enough, such that the hypothesis of local equilibrium is not violated.
One of the best known examples of hydrodynamic modes is the sound mode ω ∼ vsk.
Let’s see how it can be obtained.

Consider the reference frame in which the velocity of the fluid is zero. Then we have
vi = δvi, ρ = ρ̄+ δρ, ε = ε̄+ δε. The linearized equations read

∂tδρ+ ρ̄∂iδvi = 0 , (4.6)

ρ∂tδvi + ∂iδp = 0 , (4.7)

∂tδε+ (ε+ p)∂iδvi = 0 . (4.8)

We can take all variables to be proportional to eik·x since we are in an infinite
homogeneous background. If we consider that the process is adiabatic we can write ∂iδp =(
∂p
∂ρ

)
ε
∂iδρ. Choosing k = kz and taking derivatives of the equations (4.6, 4.7)

∂2
t δp+ k2

(
∂p

∂ρ

)
ε

δp = 0 . (4.9)

This is a wave equation for pressure: it is a longitudinal 2 propagating mode, sound,

with velocity v2
s ≡

(
∂p
∂ρ

)
ε
. As one can easily check the frequency of sound is real ω = ±vsk.

This implies that sound propagates infinitely in our system. Moreover one can check that
there are no other non-trivial modes. This is a very unusual situation. On the one hand
we expect propagating modes to be damped and decay with time. In addition, we miss
a diffusive mode ω ∼ −iΓk2. We can think of the situation where a perturbation of the
density is introduced from the outside; in addition to the appearance of sound waves we
would expect the system to diffuse the extra mass included. However our system does
not react like that. The reason for this unusual behavior is that to zeroth order in the
gradient expansion the concept of dissipation doesn’t appear. Actually, in ideal hydro the
equation of energy conservation can be expressed as an entropy conservation law. This is
the reason why it is called ideal hydro: there is no dissipation.

So the next step is to add the first order corrections to the constitutive relations. As
mentioned before, in principle one should add any term compatible with the symmetries
of the system. The final result is

Πij = pδij + ρvivj − η
(
∂ivj + ∂ivj −

2

3
δij∂kvk

)
− ζδij∂kvk , (4.10)

jεi =

(
ε+ p+

ρv2

2

)
vi − η

(
∂ivj + ∂ivj −

2

3
δij∂kvk

)
− ζδij∂kvk − κ∂iT . (4.11)

The transport coefficients η (shear viscosity), ζ (bulk viscosity) and κ (thermal conduc-
tivity) are unknown coefficients that cannot be determined by hydrodynamics. These
quantities arise from integratiing out the microscopic degrees of freedom and they can
only be computed from the underlying theory. Of course in many cases these coefficients
are fixed by phenomenological assumptions. Once these have been added two diffusive

1Massive modes have been integrated out in the procedure of obtaining hydrodynamics from a micro-
scopic theory.

2It is possible to obtain the same equation for the longitudinal component of δvit
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modes appear in the spectrum (Thermal and mass diffusion) and the previously found
sound mode is modified

ω = ±vsk − iΓk2 . (4.12)

with Γ being a function of both the shear and the bulk viscosities.

The next logical step is to modify our hydrodynamic and constitutive relations to
make them compatible with special relativity: relativistic hydrodynamics. For several
reasons, however, this is not of central importance in the holographic models that we will
analyze along the thesis, so we refer the reader to any of the above mentioned reviews on
this subject.

We wish to know how hydrodynamic quantities as conductivities, viscosities, diffu-
sion constants, etc... can be obtained from the underlying theory. As explained in the
introdution there are some relations that allow us to compute such quantities from cor-
relators in the linear response (small perturbations) regime. We will now explore these
ideas

4.2 Linear response and Kubo formulae

Linear response theory is the formalism designed to study the response of a system to
small departures from equilibrium. The basic hypothesis is that small enough external
perturbations give rise to a small response on the system. Linear response can be natu-
rally adapted to hydrodynamics if one restricts the perturbations to have small enough
momentum. In this chapter we review the basic concepts of linear response. In addition
we explore the connection with hydrodynamics and the concept of Kubo formulae, that
will appear unceasingly along this thesis.

The objective of linear response theory is to compute the expectation value of any
observable in presence of a small perturbation of the system. The great advantage of linear
response is that for small enough perturbations it allows us to compute expectation values
with the equilibrium ensemble.

Let the Hamiltonian of the system be decomposed as

Ĥ ′(t) = Ĥ + Ĥext(t) , (4.13)

where H is the time independent Hamiltonian that describes the dynamics of the system in
absence of external perturbations and Hext(t) the part of the Hamiltonian that describes
the coupling of the system to external perturbations and is only non-zero from an initial
time t0 on. The expectation value in a certain state |i〉 of the time evolution of an Ô(t, x)
in the Heisenberg picture is

∂〈i|Ô|i〉
∂t

= i〈i|[Ĥ ′(t), Ô(t, x)]|i〉 . (4.14)

Let |i〉 be an eigenstate of Ĥ, then

∂〈i|Ô |i〉
∂t

= i〈i|[Ĥext(t), Ô(t, x)]|i〉 . (4.15)
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Under the assumption that the response is small this can be written as

δ〈i|Ô|i〉 =

∫ t

t0

i〈i|[Ĥext(t
′), Ô(t, x)]|i〉dt′ . (4.16)

Note that the operator inside the integral depends on t instead of t′ due to the small
response approximation. If we now consider the expectation value of the operator in the
grand canonical ensemble

〈Ô〉 =

∑
i e
−β〈i|K̂|i〉〈i|Ô|i〉∑
i e
−β〈i|K̂|i〉

, (4.17)

with K = Ĥ − N̂µ. We arrive to

δ〈Ô〉 = i

∫ t

t0

dt′ tr
{
ρ̂[Ĥext(t

′), Ô(t, x)]
}
. (4.18)

With tr ρ̂ = 1.Here we see explicitly how in the linear response approximation the average
is computed in the unperturbed ensemble. To make connection with future considerations
let us consider the typical example

Ĥext =

∫
d3xJ(t,x)Ô(t,x) , (4.19)

substituting in the previous formulas we obtain

δ〈Ô(t,x)〉 = −i
∫ t

t0

dt′
∫
d3x′J(t′,x′) tr

{
ρ̂
[
Ô(t,x), Ô(t′,x′)

]}
. (4.20)

With the definition of retarded propagator

iGR(x,x′, t, t′) ≡ tr
{
ρ̂
[
Ô(t,x), Ô(t′,x′)

]}
θ(t− t′) , (4.21)

we can rewrite the the change of the expectation value of the operator as

δ〈Ô(t,x)〉 =

∫ ∞
−∞

dt′
∫
d3x′J(t′,x′)GR(x,x′, t, t′) . (4.22)

After fourier transformation of GR, φ̂ and J and provided that in equilibrium G can only
depend on space and time differences we get

δ〈Ô(ω,k)〉 = J(ω,k)GR(ω,k) . (4.23)

In this formula we see explicitly why the retarded propagator is the key quantity in linear
response theory. Let us now see an example of the application of this formalism

4.2.1 Correlators in hydrodynamics and Kubo formulae

Following [8], we shall derive the Kubo formula for the diffusion constant of a certain
conserved quantity, e.g. particle number. Consider the diffusion equation

∂tρ(t,x) = D∇2ρ(t,x) , (4.24)
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where D is the diffusion constant that we wish to compute. As explained before this
constant only appears if first order corrections in the derivative expansion are considered.
It is related to the viscosities and its concrete value can only be determined from the
underlying theory. The solution to this equation in spatial Fourier space is

ρ(t,k) = e−Dk
2tρ0(k) . (4.25)

We can now Laplace transform this in time

ρ(ω,k) =

∫ ∞
0

eiωtρ(t,k) =
ρ0(k)

Dk2 − iω
. (4.26)

To make the connection to the linear response formalism we would like to consider this
quantity as a small deviation from the equilibrium value, induced by an external source.
Therefore we write ρ0(k) = χµ(k), where χ is the homogeneous susceptibility and µ is the
source.

ρ(ω,k) =

∫ ∞
0

eiωtρ(t,k) =
χµ(k)

Dk2 − iω
. (4.27)

We can now promote ρ to an (particle number) operator, then, we can follow (4.13-4.23)
and write

〈ρ(t,k)〉 =

∫ 0

−∞
dt′eεt

′
µ(k)GRρρ(t− t′,k) . (4.28)

where we have chosen the source µ(t,x) = eεtµ(x)θ(−t) such that it is turned on adiabat-
ically from −∞ and switched off at t = 0. Using the Fourier transform of the retarded
correlator we get

〈ρ(t,k)〉 = −µ(k)

∫
dω

2π

e−iωt

iω + ε
GRρρ(ω,k) . (4.29)

Apply Laplace transform in time

〈ρ(α,k)〉 = −µ(k)

∫
dω

2π

GRρρ(ω,k)

(iω + ε)(i(ω − α) + ε)
. (4.30)

This can be integrated using Cauchy’s theorem choosing the upper contour

〈ρ(ω,k)〉 = −µ(k)
GRρρ(ω,k)−GRρρ(0,k)

iω
. (4.31)

Looking at (4.27) we find

GRρρ(ω,k)−GRρρ(0,k) =
iωχ

iω −Dk2
. (4.32)

One can easily prove that GRρρ(0,k) = −χ in the linear response regime and therefore

GRρρ(ω,k) =
Dχk2

iω −Dk2
. (4.33)

This equality allows us to compute the diffusion constant from the retarded correlator of
two particle number operators. The concrete Kubo-Green formula is

D =
1

χ
lim
ω→0

lim
k→0

ω

k2
GRρρ(ω,k) . (4.34)
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Where clearly the limits don’t commute. This non-commutativity of these limits is linked
to the existence of a hydrodynamic mode, the “diffusive” ω = −iDk2 mode that appears as
a pole in the correlator. As we will see, the retarded correlators related to some conductiv-
ities do not necessarily have a massless pole and therefore the limits in their Kubo-Green
formulae can be taken in any order [37] .
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4.3 Landau: Symmemtry breaking & Phase transitions

Along the different chapters of this thesis we will explore how different symmetry break-
ing patterns are realized in holography and how these affect the dynamical (transport)
properties of te dual system. Therefore we would like to write a foreword on the relation
of transport and symmetries. Undoubtedly, the first name that appears in our minds
when thinking of this is Landau. Landau’s mean field theory for phase transitions was the
best tool for the qualitative characterization of different phases of matter until the 60’s.
Moreover it is a natural starting point to understand the idea of universality. Let us first
explore the idea of phase transitions in this context.

Many phase transitions can be understood as a transition from a (high temperature)
disordered phase to a (low temperature) ordered phase. It is precisely to this kind of
phase transitions that Landau’s theory applies. From the symmetry point of view, the
disordered phase is a highly symmetric phase, in which all possible states with equal energy
are randomly occupied connected by local fluctuations. Symmetries of the dynamics of the
system commute with the Hamiltonian and therefore they connect certain subsets of those
states. So one can think of the disordered phase as a fully symmetric phase. This phase
exists as long as the population of each excitation is identical to that of its symmetry-
equivalent modes. When the phase transition occurs, this is no longer the case and some
mode is frozen. In this phase different states connected by a symmetry transformation
cannot be connected by local fluctuations. It is in this sense that the symmetry is broken:
the state does not present the symmetry of the action. The ordered (broken) phase can
be characterized by the deviation that the system shows from the high-symmetry phase.
Such deviation is measured by the order parameter. As an example we can think of the
order parameter as the mean position squared of spins in a surface

ψ =

(∑N
i=0 S

z
i

N

)2

. (4.35)

Clearly ψ = 0 in the disordered phase.

The theoretical tool proposed by Landau to study phase transitions is the Landau
Free Energy F . This Free Energy, that can be thought of as an extension of the Gibbs
Free Energy, depends on thermodynamic quantities, on external parameters: electric field,
stress... and on all order parameters of the system. In this approach the microscopic
details of the system are unimportant; the order parameters contain coarse grained in-
formation about relevant scales in the system. One can think of F as a coarse grained
version of the hamiltonian, that depends only on the physics of large enough scales, and
that depends on rather general features: dimensionality, number of relevant components
of the order parameter, etc.... From this perspective the idea of universality arises quite
naturally. Two microscopically different systems may share same general features at a
certain scale. In Wilsoinian language this would correspond to the situation where two
different trajectories in the Hamiltonian space converge to the same fixed point.

Let us briefly explore the main ideas in the simplest version of Landau-Ginzburg
theory regarding the nature of phase transitions. Close to the phase transition, the or-
der parameter3 is expected to be very small, since it vanishes in the disordered phase.

3We assume that there is only one
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Therefore we can decompose it

F(T, ψ) = F0(T ) +Hψ + a(T )ψ2 + b(T )ψ3 + c(T )ψ4 + ... . (4.36)

Since F must be invariant under the full symmetry group for any value of the order
parameter, the linear term can only be there if H is an external parameter that transforms
appropriately. Like this, many other terms are restricted due to symmetry and stability
considerations. In order to find the stable state given a certain T one has to find the
minimum of F . For the moment let us consider b(T ) = 0 and no external parameter.
Then we find

∂F
∂ψ

= 0 = 2a(T )ψ + 4c(T )ψ3 −→ ψ =


0

(
−a(T )
2c(T )

)1/2
. (4.37)

So we expect the phase transition at the critical temperature where a(T ) changes sign.
The simplest example we can think of is

a(T ) = a0
T − Tc
Tc

c(T ) = c0 . (4.38)

Phase transitions can be classified depending on the class of the function F . Ours is
a second order phase transitions, also known as continuos transition, for one has to take
two derivatives of the Free Energy w.r.t. the temperature to find a discontinuity.

∂2F
∂T 2

=


F ′′0 T > Tc

F ′′0 −
a2

0
2c0T 2

c
T < Tc

. (4.39)

This implies that the entropy of the system S ∼ ∂F
∂T is continuous trough the phase

transition. Other quantities as the specific heat (4.39) are however discontinuous.

An example of first order phase transition can be easily obtained by adding the
cubic term in the expansion. If we now consider b(T ) = b0 a metastable phase appears.
This metastable phase is energetically not favorable and therefore it decays to the sta-
ble phase. However, the entropy changes drastically when this transition happens. This
abrupt change in the entropy of the system is related to the familiar concept of latent heat.

Once we have the notions about the character of a phase transition and its relation
to the breakdown of symmetries, the question we would like to answer is: What happens
with the transport phenomena of a system that undergoes a phase transition? The close
relation between phase transitions and the breakdown of symmetries allows us to pose
a closely related question in the case of continuous symmetries: What happens with the
Nambu-Goldstone modes? These are massless and therefore should become very important
in the hydrodynamics of the system. In the next section we comment on the hydrodynamic
model for superfluidity and its salient features. The role of the NG mode is commented
in section 7.1 of chapter 7.
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Figure 4.1: Potential with cubic coupling included. Two local minima appear although
only one minimizes the energy. The life time of metastable configurations depends on
thermodynamic variables and the height of the barrier between vacua.

4.4 Superfluid hydrodynamics: The phenomenological model

The first hydrodynamic model for superfluids was proposed by Tisza and developed by
Landau was motivated by the somewhat contradictory experimental observations. The
puzzle consisted in the observation that despite of the fact that the superfluid Helium was
able to flow dissipationless trough very thin tubes, a pendulum inside the superfluid was
found to lose energy. The solution proposed by Landau was to consider the superfluid
as a composite of a normal fluid and a superfluid. Within this picture the idea was that
the pendulum was loosing energy due to the friction with the normal fluid component.
In the capillarities experiment, however, it was only the superfluid component that was
being transported. Let us now explore the implications that the two fluid component has
in hydrodynamics. In the presence of two different components we are first of all forced
to choose a reference frame. So far we have always chosen the rest fluid reference frame,
now we have to choose which fluid we want to see at rest, since in principle the superfluid
velocity vs and the normal fluid velocity vn are independent (think of the capillaries
experiment). Let us choose the superfluid rest frame in which only the normal component
has non-zero velocity. In this frame we can write the stress tensor, energy and energy
current 4 as

Πij = ρn(vni − vsi)(vnj − vsj) + δij(pn + ps) , (4.40)

ε = −pn − ps + µ(ρn + ρs) + T s+
ρn(vn − vs)2

2
, (4.41)

jεi = (vn i − vs i)
(
εn + pn +

ρn(vn − vs)2

2

)
. (4.42)

With these one could write down the conservation relations. For the sake of concreteness
we directly jump to the computation of hydrodynamic modes. If we add perturbations on

4This is ideal two fluid hydro, so the constitutive relations are expressed to zeroth order in the gradient
expansion
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top of the equilibrium background (with vn = 0 for simplicity) and linearize the equations
we get

∂tδ(ρs + ρn) + ρ̄n∂iδvn i + ρ̄s∂iδvs i = 0 , (4.43)

∂t(ρn + ρs)S + (ρn + ρs)S∂iδvn i = 0 , (4.44)

ρn∂tδvn i + ρs∂tδvs i + ∂i(pn + ps) = 0 . (4.45)

Analogously to what we did in 4.1 we can now look for the modes that appear from
these equations. Since we are again dealing with idealized hydro we don’t expect any
dissipation to appear. Moreover, since we have imposed that both fluid components stay
at rest, we should find sound modes for both components ∂2

t (pn + ps) = k2v2
s(pn + ps).

Obtaining this is straightforward from what we learned in section (4.1). However, the
existence of a second component of the fluid brings a further surprise. Hidden in the
equations there is another propagating mode whose equation reads

∂2
t S = −S2 ρs

ρn
k2T . (4.46)

This mode is termed second sound, for it shares the wave structure of sound. However
this mode doesn’t transport pressure but temperature. Just by construction it should
be clear that the appearance of this new mode is an effect of the existence two different
components of the same fluid. By looking at the formula we see that this is indeed the
case since at zero fluid density the mode becomes time independent.

So now we have a concrete prediction of the phenomenological two component model
for superfluids: they should be able to transport temperature gradients in a very effective
way (wave, not diffusion) compared to normal fluids. Of course real systems are not prop-
erly described by ideal hydro and superfluids are not an exception; however the inclusion
of dissipative effects should just shorten the (so far infinite) range of second sound. Indeed
this phenomenon has been measured in the lab.

There is an additional mode that can appear termed as fourth sound. Fourth sound
appears when the normal component of the fluid is forced to remain at rest. In this case
one finds a propagating mode that only involves density fluctuations of the superlfluid
component. For certain systems such mode interpolates between first and second sound
with increasing temperature: it can be identified with second sound near the pahse tran-
sition and with first sound when the density of normal component is small enough. As
we will see in chapter 6 this mode appears naturally in certain holographic models of
superfluidity.
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Holography

The gauge/gravity duality was born in 1997 when Maldacena presented his conjecture
in [48]. In that paper it was proposed that the large N limit of certain conformaly invari-
ant theories in d dimensions can be described by string theory on AdS space in d+ 1. The
most famous example of this is the duality between N = 4 super Yang-Mills in d=4 with
gauge group SU(N) and Type IIB superstring theory on AdS5 × S5. Since then there
have been many checks (all positive) of this idea, although no proof has been found yet.
The Maldacena conjecture is a realization of a much older idea called holography. This
idea was first proposed by t’Hooft [49]. It suggests that theories of quantum gravity (as
string theory) should admit a lower dimensional description in terms of non-gravitational
theories. These concepts where strongly motivated by the work of Bekenstein and Hawk-
ing on the entropy of black holes [50, 51]. In short, the fact that the entropy of a black
hole scales with its area, while the entropy of a (non-gravitational) system scales with its
volume gives rise to a conflict. Consider the following situation. Take a vast amount of
matter and compress it to a sphere with a radius slightly above its Schwarzschild radius.
Generically the entropy of such state is ∼ V . If we now add an extra amount of matter
and make the system collapse. Bekenstein formula states that the entropy of the system
is now ∼ A. then, for big enough systems the total entropy has been reduced, in conflict
with laws of thermodynamics. The way out given by holography is that such gravitational
system is actually describable as a one dimension lower theory without gravity, such that
the entropy is actually scaling with the volume of the state in the lower dimension space.

Since 1997, the ideas of the original AdS/CFT conjecture and holography have
become a broad area of research in theoretical physics. The initial version of the duality has
evolved to the point that nowadays we consider the possibility that any gravity theory has
a dual description. For example, the duality has been extended to non asymptotically AdS
spaces (Lifshitz holography [52]). This evolution has enlarged the aims that holography
may have, with special emphasis in possible applications to condensed matter theory.
This has been named AdS/CMT. The work exposed in this thesis mainly belongs to this
category.

Along the forthcoming chapters we will take a bottom-up approach to the gauge-
gravity duality. This means that we will consider a certain field content in the gravity side
motivated by “phenomenological” reasons from the dual theory. Even though one can hope
that such models can be obtained from certain consistent truncation of a supergravity, most
likely the models considered in bottom-up approaches just don’t have a UV completion.
This is by no means an inconsistency, but just a restriction on the dual theories considered.
In these kind of models one can only explore the large N limit of the dual theory. This
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approach to holography has its obvious limitations but serves perfectly for the purpose
of understanding certain universal behaviors in the strong coupling and large N limit.
Moreover, it opens the door to a new paradigm of the concept of how to define a theory,
since many of the dual theories in this approach can only be defined via holography. A
key concept in this direction is the holographic renormalization. We will comment on this
in subsection 5.2.

It is convenient to clarify some concepts about the terminology. From now on we
will refer as the “dual theory” /“boundary theory”/ “CFT” to the d − 1 theory dual to
the gravitational description. The gravitational side will usually be called the “bulk”. In
addition, when talking about IR or UV we will implicitly mean the IR or UV regions of
the dual theory. This means close to the horizon (IR) and at asymptotic infinity (UV)
in the bulk by the holographic dictionary. Let us mention that the canonical holographic
dictionary states that gauge symmetries in the bulk are mapped to global symmetries in the
dual theory. We will always specify which side we refer to when talking about symmetries.
Finally, the concept of holographic renormalization refers to the idea of renormalizing the
dual theory, by adding certain boundary terms to the bulk theory.

Let us now explore how holography works from a computational point of view. In
this sense a central concept in holography is the GKPW formula [53,54]

Z[J ] ≡ 〈e
∫
L〉CFT = e−S

bulk
OnShell

∣∣∣
boundary

. (5.1)

From this formula, that relates the On-Shell action in the bulk with the generating
functional of the dual theory, it is not difficult to obtain a prescription to obtain n-point
functions of the dual theory

〈Ô1Ô2....Ôn〉 =
δn

δJO1δJO2 ...δJOn
logZ[J ] = − δn

δJO1δJO2 ...δJOn
SbulkOnShell . (5.2)

Where J are the sources of the dual theory. So if we are able to identify the gravity
duals to the sources of the boundary theory we are almost 1 ready to make explicit calcu-
lations from the bulk.
The dual sources are closely related to certain solutions of the equations of motion of the
fields in AdS space: the non-normalizable modes. The equations of motion of the fields
are second order differential equations and therefore one needs two boundary conditions
to find a unique solution. Generically the solutions given by these boundary conditions
are said to be either normalizable or non-normalizable. A way to define this is to com-
pute the energy flux of the modes through the boundary of AdS. By imposing the energy
to be conserved (flux=0) and the energy2 to be real, one selects only the normalizable
modes (see [13]). Whether none, one or both modes given by the equations of motion are
normalizable is in general determined by the mass and the spin of the field. In the case
of scalar fields this lower limit is known as Breitenlohner-Friedman (BF) bound. Below
this limiting mass both modes become non-normalizable and the theory is unstable. The
stable fields with negative mass are sometimes called AdS allowed tachyons, in reference
to the flat space case where a negative mass gives rise to a instability. In AdS however this
is just a name, since at least one stable solution exists for masses above the BF bound.
The reason why this is possible is that the curvature of AdS in a certain way acts as an

1We still lack the holographic renormalization.
2We refer to energy as the T 0

0 component of the energy-momentum tensor
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effective potential preventing the field to become unstable. We will be more precise about
this is section 6.1.

Once we know about the existence of normalizable and non-normalizable modes we
ask our selves about the role that these play in holography. The canonical prescription is
that non-normalizable modes play the role of sources in the dual theory. Since the dual
generating functional lives on the boundary, which is the same as saying that the On-Shell
action of the gravity side reduces to a boundary term, it is the non-normalizable mode
at the boundary what we identify as the source of the dual theory. In the case that both
modes are normalizable one has the freedom to choose which to use as the source of the
dual operator.
It is tempting to think that the normalizable mode should play the role of the dual op-
erator. Actually in most cases this is the situation. However, as we will see (specially in
chapter 8) this is not always true. Let us see the how the simplest example works.

5.1 Massive Scalar Field in AdS4

Consider the action of a single (real) scalar field in AdS space

S =

∫ √
−gd4x

(
1

2
∂µφ∂

µφ+
m2

2
φ2

)
, (5.3)

where gµν is the metric of AdS4. We work in the probe limit, in which we consider that
the scalar field does not backreact onto the metric. The equations of motion reads(

−�+m2
)
φ = 0 . (5.4)

Where the d’Alembertian operator is defined with the AdS metric. Upon substitution
of the equations of motion into the action we arise to the On-Shell action, which by
the GKPW formula is to be interpreted as the generating functional of the dual theory.
Therefore in order to obtain the 1-point function of the dual scalar operator we should
differentiate this w.r.t. the coefficient at the boundary of the non-normalizable mode.
Then we need to identify such coefficient. For simplicity we impose homogeneity in the
transverse directions and look for static solutions. We can solve the equations of motion
asymptotically with the ansatz

φ =
∞∑
i=0

rα−iφi . (5.5)

Substituting this in the equations of motion and taking the asymptotic limit r → ∞ one
can determine the two allowed values for α

m2 − α±(α± − 3) = 0 . (5.6)

So we have found the two independent coefficients φA(0), φB(0)

φr→∞ = φA(0)r
α+ + φA(1)r

α+−1...+ φB(0)r
α− + φB(1)r

α−−1 + ... . (5.7)

Where other coefficients as φA(1) are determined from the independent ones. We identify
the leading term as the non-normalizable mode and compute the 1-point function from
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the generating functional

〈Oφ〉 = lim
r→∞

1√
−γ

δ

δφA(0)
SO.S. = φB(0) + (divergent terms) , (5.8)

where we have substituted Ψ at the boundary by its asymptotic behavior (5.5) and γ is
the induced boundary metric. We haven’t talked about the need for renormalization so
far. Our formula gave rise to a divergent limit plus certain finite values. In the spirit of
the early days of holography we just drop out the divergences and keep the finite terms. In
section 5.2 we explore the ideas of holographic renormalization in more detail. By dropping
the divergences we were left to the leading coefficient of the normalizable mode at the
boundary. A very important consideration is in order now. So far we have talked about
the normalizable and non-normalizable coefficients related to the independent boundary
conditions needed to solve the equations of motion. However if we can just impose any
value to the normalizable mode then we have done nothing; we have just defined a theory
in which n-point functions can have any value that we desire and we didn’t even need to
solve any equation. Clearly we lack something. More concretely we lack the entire bulk
dynamics. In other words, we have just looked at the UV region; what happens in the
IR?. The answer is enlightening: upon solving the equations of motion one finds that
most of the possible boundary choices give rise to some irregular behavior in the interior
of the bulk. We have not realized this before because we did not solve the equations of
motion. The divergence is a very unnatural situation in the gravity side. To avoid it
we impose regularity in the interior of the bulk 3. This condition, together with fixing
the non-normalizable mode, fixes the field configuration and therefore the normalizable
mode. Moreover, to obtain the value of the 1-point function now we need to solve the bulk
equations of motion since one of the conditions is imposed at the interior of AdS space.

5.2 Holographic Renormalization

The goal of the holographic renormalization is to remove the divergent terms of the On-
Shell action in the bulk. Since the On-Shell action is the generating functional of the dual
theory this procedure ensures that the correlators obtained from it render finite answers.
Let us first comment on how one would naively attack the problem. First of all, assume
that we can write the On-Shell action as just a boundary term:

SOS =

∫
∂

√
−γλ . (5.9)

This equality is not correct in general but holds for the divergent terms of the O.S action.
In principle one can find the explicit expression of λ as a functional of the bulk fields. In
order to do so one just needs to substitute the equations of motion in the action, integrate
by parts, and look at the boundary term that survives4.

So what we are after are the divergent terms of (5.9). In order to determine them we
could just make an asymptotic expansion of

√
−γλ (say we are in some coordinates such

that the boundary is at r → ∞) and look for the divergent terms. For example imagine
we have the explicit expression of λ as a functional of the fields of the theory (We just

3Generically this happens at the origin of Poincaré patch or at the horizon of a black hole
4This is not always the case in the probe limit. Consider φ3 theory for example
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consider a scalar field) and, moreover, we know how these fields behave at infinity (which
is given by the equations of motion). For concreteness consider a massless scalar field.
Then we can write

√
−γλ ∼

√
−γφ2(r) ∼ ar2 + br + c+ dr−1 + ... . (5.10)

Apparently we are almost done. We just need to subtract ar2 +br at the boundary. There
is however a problem in this construction: the terms we want to subtract are not covariant.
They arise form the asymptotic expansion of the covariant expression φ2(r). So now, we
need an extra step: we have to invert the asymptotic series in order to write the counter
terms in a covariant fashion. And this is the problematic point, since such an inversion
turns out to be extremely complicated in generic cases.

Clearly if the asymptotic expansion had been covariant there would be no problem.
Is it possible to do the expansion in a covariant way such that it still allows us to detect
the divergent terms? The answer is yes: the strategy is to expand in eigenfunctions of
the dilatation operator δD. The natural question now is: Why the dilatation operator?
The naive asymptotic expansion that we did before can be viewed as an expansion in
eigenfucntions of an operator. Let ∂̂ ≡ r∂r. As we will see later, the dilatation operator
coincides with the radial derivative asymptotically and its eigenfunctions are covariant.
Let us emphasize again that we need some notion of degree of divergence of these eigen-
fucntions. In the case of the operator ∂̂ this was given by the weights: terms with an
eigenvalue > 0 diverge and others do not. Since ∂r → δD the same happens with the
dilatation operator. The dilatation operator just reorganizes the asymptotic expansion
in covariant terms. It is possible to check that the covariant counterterms given by the
dilatation operator procedure coincide with those obtained with the naive strategy after
inversion of the series.

Before we go into details, let’s sketch the procedure of Holographic Renormalization
in the Hamiltonian formalism:

1. Obtain the dilatation operator δD

2. Expand
√
−γλ in eigenfunctions of δD

3. Determine which weights imply divergence (recall in the naive ∂̂ procedure we were
looking for those eigenvalues > 0). From now on we call them “dangerous terms”.

4. The Counter Terms are just the dangerous terms with a - sign in front of them so
that the divergences are canceled.

In what follows we consider an example and show how each step is done
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Holographic Renormalization: How to

The following presentation is rather computational. We consider a gauge field and
a (m2 = −3) scalar in background AdS space. We stay in the probe limit for simplicity.
We will point the parts of the procedure where this limit has an effect.

1. Go to the coordinates where AdS is ds2 = dr2 + e2rdx2

2. In this coordinates solve the equations of motion asymptotically, we just need the
first term

Ai ∼ e∆r φ ∼ e−r γij ∼ e2r . (5.11)

3. Write the radial derivative as an integrated functional derivative using all the fields
on your theory :

∂r =

∫
dx′
(
φ̇(x′)

δ

δφ(x′)
+ Ȧi(x

′)
δ

δAi(x′)
+ γ̇ij(x

′)
δ

δγij(x′)

)
. (5.12)

4. With the asymptotic behavior of the fields obtained in step 2. expand the derivative
to leading order; this is the dilatation operator:

∂r ∼
∫
dx′
(
−φ(x′)

δ

δφ(x′)
+ ∆Ai(x

′)
δ

δAi(x′)
+ 2γij(x

′)
δ

δγij(x′)

)
≡ δD . (5.13)

5. Rewrite the equations of motion substituting the radial derivatives of the fields by
another letter, that we will call (although strictly speaking it is not) momentum.
Example:

Ȧi ≡ Ei φ̇ ≡ Π γ̇ij ≡ Kij . (5.14)

6. Rewrite the radial derivative using the momenta

∂r =

∫
dx′
(

Π(x′)
δ

δφ(x′)
+ Ei(x

′)
δ

δAi(x′)
Kij(x

′)
δ

δγij(x′)

)
. (5.15)

7. Now we have to determine the expansions for the momenta and the radial derivative.

8. A very natural question now is: How do we determine which the possible weights in
the expansions are? Although there is no need to know this a priori since it is deter-
mined by the equations of motion it is actually very useful to have an preliminary
idea. The way to obtain this is the following:

(a) First determine the possible weights of λ. In order to do so just imagine all
possible terms appearing in the On-Shell action that respect the symmetries of
the system (Lorentz, Gauge, Global...). Now apply the dilatation operator on
these terms and see which the eigenvalues are. Stop at eigenvalue -d (4 in our
concrete case).

(b) As said before the derivative of the fields is not exactly the momenta but it is
a part of it (if there is a kinetic term). Since the true momenta are obtained
differentiating the On-Shell action w.r.t. the different fields, take the terms that
you imagined in the On-Shell action and differentiate them w.r.t. the desired
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filed. Determine the weights of the terms obtained in this way and that will
give you the weights of the momenta. Example

λ ∼ AiAi + ∂iφA
i + φ2 (5.16)

→ Ei ≡
δλ

δAi
∼ Ai + ∂iφ→ Ei = Ei(−∆) + Ei(1) . (5.17)

9. Now that we know the possible weights for the momenta, we can write down how
the expansion of the radial operator will look like. Take the expression in step 6
and introduce the expansions for the momenta. Collect them in groups with same
weight and label this groups by this weight (Concrete values are just examples):

∂r =

∫
dx′
(

(Π(x′)(1) + Π(x′)(2−∆) + Π(x′)(2) + ...)
δ

δφ(x′)
+

(Ei(−∆)(x
′) + Ei(1)(x

′) + Ei(1−∆)(x
′) + ...)

δ

δAi(x′)
+Kij(2)(x

′)
δ

δγij(x′)

)
=∫

dx′
(

(Π(x′)(1))
δ

δφ(x′)
+ (Ei(−∆)(x

′))
δ

δAi(x′)
+Kij(2)(x

′)
δ

δγij(x′)

)
≡ δD+∫

dx′
(

Π(x′)(2−∆)
δ

δφ(x′)

)
≡ δ(1−∆)+∫

dx′
(

Π(x′)(2) + ...)
δ

δφ(x′)
+ Ei(1−∆)(x

′)
δ

δAi(x′)

)
≡ δ(1)+∫

dx′
(
Ei(1)(x

′)
δ

δAi(x′)

)
≡ δ(1+∆) + ... . (5.18)

Note that the momentum associated to the metric has no expansion. This is a
consequence of the probe limit.

10. This step now is probably the most confusing one so let us be more detailed. What we
need now is to determine the explicit expansions (in eigenfunctions of the dilatation
operator) for the momenta AND the radial derivative. What makes this part of
the procedure so confusing is the fact that these expansions have to be done at the
same time; this means that one cannot simply first obtain the expansion for Ei and
afterwards the expansion for the radial derivative. Everything is mixed and one has
to proceed with caution.

(a) Using the equations of motion one can determine the FIRST term (highest
weight) in the expansions of the momenta. At this point the radial derivative
can just be identified with the dilatation operator.

Π̇ + 2Π + ∂iA
i + φ = 0 , (5.19)

(δD + 2)Π(1) + φ = 0→ Π(1) = −φ . (5.20)

In the backreacted case one should use Einstein equations.

(b) In the example the ∂iA
i was not taken into account for its weight was lower

∆− 2.

(c) Now one can determine the second term. In order to do so one has to use the
expansions for the momenta, as well as the expansion for the radial derivative!
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The expansions have to be combined in such a way that all terms have the same
total weight:(

Π̇ + 2Π + ∂iAi + φ
)

2−∆
= 0 , (5.21)

δDΠ(2−∆) + δ(1−∆)Π(1) + 2Π + ∂iA
i = 0→ Π(2−∆) = ... . (5.22)

(d) Here one can see why it was not necessary to expand the radial derivative in step
10(a) . There was no combination of operator (except for δD) and momentum
with the appropriated weight.

(e) Continue with this procedure until the weight that coincides with the normal-
izable mode (for contravariant momenta this is d− highestweight).

11. Now that we have the expansions for the momenta and the radial derivative, solve
the equation for λ order by order, as done for the momenta, up to weight -4.

12. The covariant counterterms will be given by all the terms in the expansion of λ with
weight bigger than -4.

13. It is important to take into account that the expansions w.r.t. δ look

λ = λ(0) + ....+ λ(d) + λ̃(d) log e2r . (5.23)

Therefore (
δDX

)∣∣
(d)

= −dX(d) + 2X̃(d) . (5.24)

The coefficient with the tilde gives rise to logarithmic divergences and it must be
removed too. It can be obtained in the same manner as the other coefficients.

5.3 Black Holes in holography

Black holes play a crucial role in holography: they allow us to set the dual theory at finite
temperature and thus break supersymmetry and conformal invariance. There are several
heuristic ways to understand why black hole have this effect. Consider a black hole of a
certain radius rh in the center of AdS space. From the (classical) bulk point of view we
can forget about the interior of the black hole and just consider it as a one way door (the
horizon); what crosses it never comes back. Then, from the holographic point of view, the
horizon is an IR cutoff since we only have to integrate along the part of bulk outside of
it. This picture is already appealing: in QFT at finite temperature one imposes certain
periodicity to imaginary time 0 < τ < β with β = 1/KT , so the temperature serves as
a cutoff for long times i.e. low energies. This relation becomes more explicit when one
considers the analytic extension of a black hole metric to imaginary time. The complex
time metric is diffeomorphic (and conformally equivalent) to the metric of a cone. Only by
imposing the appropriated periodicity in the angular (∼ τ) direction can one remove the
conical defect. As it is well known this is the correct recipe to compute the temperature
of the black hole. So in holography the thermal circle is naturally implemented in the
generating functional by the presence of a black hole in the bulk. In contrast, in standard
finite temperature QFT the thermal circle is imposed after comparison of the path integral
and the Boltzman distribution in statistical quantum mechanics.
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Let us be more specific and study in more detail some characteristics of black holes
in AdS space. The idea of considering black holes in AdS space arise much earlier than
the AdS/CFT conjecture. The motivation for this was the development of black hole
thermodynamics and the striking discovery that black holes in flat space are unstable
from the thermodynamic point of view. Consider the metric of a Schwarzschild black hole
in Minkowski

ds2 = −
(

1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2 . (5.25)

To compute the temperature associated to it we can use the imaginary time (Gibbons-
Hawking) prescription. Taking t→ iτ and defining ρ ≡ r − 2GM we obtain

ds2 =
ρ

r
dτ2 +

r

ρ
dρ2 + r2dΩ2 . (5.26)

With another coordinate change ρ = Θ2

ds2 =
Θ2

r
dτ2 + 4rdΘ2 + r2dΩ2 = 4r

(
Θ2

4r2
dt2 + dΘ2

)
+ r2dΩ2 . (5.27)

This change is important since now the prefactor of dτ2 goes to zero when r → rH .
Inside the brackets we recognize the metric of a plane in polar coordinates. However, this
plane is actually a cone if the angular direction τ doesn’t have the appropriate periodicity
conditions τ

2r = τ
2r+2π. By comparison with the closed Euclidean time formalism τ = τ+ 1

β

T =
1

4πrH
. (5.28)

With rH = 2GM . From this we can easily derive the specific heat ∂T/∂M < 0. This
implies that the hotter the black hole the smaller it becomes, thus radiating more and
eventually disappearing. Or the other way around, with the picture of a black hole in-
creasing forever as it swallows the outside radiation. Of course all these considerations
arise from the application of thermodynamics to black holes. Specially, the idea of a black
hole radiating as a black body is not compatible with GR and only by introducing quantum
effects this process becomes possible, by means of the Hawking radiation. The instability
of black hole is however not universal and depends not only on the near black hole metric
but on the asymptotics of the space-time too. Consider the Schwarzschild-AdS metric

ds2 = −
(

1− 2GM

r
+
r2

L2

)
dt2 +

(
1− 2GM

r
+
r2

L2

)−1

dr2 + r2dΩ2 . (5.29)

Where L is the AdS radius. We can proceed analogously to the previous example and find

T =
L2 + 3r2

H

4πL2rH
, (5.30)

where the horizon radius is a complicated function of M and L. In figure 5.1 we show the
behavior of T against L for a fixed value of L. One can see that for a given temperature
above T0 there are two different black hole solutions, usually referred as small and big
black hole for obvious reasons. The specific heat of small black hole is negative as it was
in Minkowski space. However big black hole have positive specific heat and therefore are
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M

T

T0

Figure 5.1: Temperature of the Schwarzschild black hole in AdS against its mass for a
fixed value of L. Black hole solutions only exist above a critical temperature T0

stable against small temperature perturbations.

A concept that will appear repeatedly in the principal chapters of this thesis is that
of thermodynamically favored phases. Given several possible states of a same system, with
equal thermodynamic variables, the one with lowest Gibbs Free Energy (FE) is the stable
one. Other possible configurations may be long lived if the transition amplitude to the
lowest energy state is strongly suppressed. From the comparison of the path integral and
the partition function of statistical physics one can easily obtain the formula for the FE
as a functional of the action

F = −T logZ = TI . (5.31)

Where I is the action evaluated in a certain minimum. The configuration that minimizes
the FE dominates the partition function. Using this concept Hawking and Page studied
the stability of big black hole in AdS, comparing their associated FE to that of empty5

AdS. By doing so they found that although stable, big black hole where not the preferred
metric for low enough temperatures. At a certain critical temperature THP the AdS metric
is energetically more economic than the black hole. This is the Hawking-Page transition.
Its holographic interpretation was given by Witten who showed that in the holographic
picture this was the gravitational description of a deconfinement (black hole) - confine-
ment (AdS) phase transition in the dual theory. This idea supposed a great boost for the
search of a AdS/QCD duality.

Let us now jump to a related topic regarding the relation between black holes and
finite temperature QFTs: the Quasi Normal Modes. In a system at finite temperature we
expect the modes produced by small perturbations to have a finite life time. This is the
same as saying that we expect to have a finite damping rate, given by an imaginary part
in the dispersion relations. These are called quasi normal modes (QNMs). As we saw in
section 4.2, linear response is the suited formalism to study these phenomena. Therefore,
in order to study the QNMs of a system we want to compute retarded correlators. More

5One may think of the energy concentrated in the black hole as a dilute graviton gas in the case of
empty AdS
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concretely, dispersion relations appear as the poles of these correlators. Previously we saw
that the GKPW formula provides us with a prescription for computing n-point functions
in holography. Now we want to go beyond that and compute retarded correlators. To this
aim will comment on some important aspects shown in [55,56].
A suggestive issue appears when one tries to compute real time correlators in holography.
When one studies perturbations on top of the gravitational background in real time, one
finds that several boundary conditions are possible at the horizon. In contrast, if one
does the analysis in euclidean time, there is only one “reasonable” choice: regularity. This
ambiguity is related to the different possible propagators thatone can define (advanced,
retarded...). Interestingly, in order to compute retarded correlators one has to choose
“infalling” boundary conditions. This means that only perturbations that go into (instead
of come out) the horizon are considered. Let us give a naive sketch with the prescription
for computing retarded 2-point funtions

• Solve the linearized equations for the perturbations with finite momentum and fre-
quency on top of the background.

• Impose infalling boundary conditions at the horizon.

• Differenciate the On-Shell action with respect to the appropiated sources.

• The previous step gives rise to a combination of derivatives of the perturbations
evaluated at the horizon.

• Using the Fefferman-Graham expansion one can see that the previous step gener-
cially gives rise to the cocient of the normalizable mode coefficient over the non-
normalizable mode coefficient.

• Obtain the poles of this quantity as a function of frequency and momentum.

This sketch is correct although in general unsolvable analytically and therefore re-
quires numericall techniques. In addition, another interesting phenomenon may arise:
mixing. At the beginning of this chapter we showed that the non-normalizable modes
where to be understood as the sources of the dual theory. We saw too how the normaliz-
able modes are to be identified as (or at least closely related to) the expectation values of
the dual operators. Now one has to pay attention to the fact that in presence of several
fields in the bulk the modes mix. In other words, the non-normalizable mode of a field is
possibly sourcing not just the operator associated to its field but other operators too. This
ultimately implies that the bulk to boundary propagator is matix valued. This situation
implies that the QNMs can be computed from the study of the zeros of the determinant of
the inverse correlator [57]. We will use this technique in the following chapters to compute
QNMs of several theories in holography.

43



6
Spontaneous Symmetry Breaking I

In this chapter we explore the implementation of spontaneous symmetry breaking in the
dual theory. In order to do so we generalize the results of the so-called Holographic Su-
perconductor [58, 59]. The Holographic Superconductor is one of the most celebrated
achievements within the duality and the first example of the implementation of sponta-
neous symmetry breaking in holography. In order to explore its main features and to
better understand the phenomenon of spontaneous symmetry breaking and its relation
to transport in holography we extend the Holographic Superconductor by inducing the
spontaneous breakdown of a U(2) symmetry. This allows us to study how the transport
phenomena of the Holographic Superconductor generalize to the non-abelian case and to
check how the QNM spectrum is modified according to what we expect from QFT. In
addition, the model that we are going to explore is expected to feature exotic Nambu-
Goldstone modes. Although the existence and behavior of such modes is well stablished
in QFT, there is almost no appearance of these in holography. To our knowledge ours is
the first careful study of non-standard NG-Bosons in this context.

Due to the link between local symmetries and global symmetries via the holographic
dictionary, it is usually overlooked that global symmetries in the bulk do have an impact in
the dual theory. Therefore we do not only extend the usual Holographic Superconductor
in the sense of adding a richer and more complicated gauge group. In addition, we perform
a thorough study of the implications of the spontaneous symmetry breaking of a global
symmetry living in the bulk. We present two models, one featuring an ungauged version
of the symmetry in the bulk and another that contains a full gauge symmetry group.
In the former, we just add a second scalar field of the same mass as the one in the usual
Holographic Superconductor. This promotes the U(1)gauge to a U(1)gauge × SU(2)global.
In the second model we include gauge fields for the whole U(2) symmetry. The difference
between the two models is as follows. In the ungauged model only the U(1) symmetry
is local in the bulk. It has however a global SU(2) symmetry1 under which the scalar
fields transform as a doublet. According to the holographic dictionary this model contains
only one conserved current, corresponding to the single gauge field in the bulk. The dual
field theory inherits of course the global SU(2) symmetry of the bulk but this symmetry
is not generated by operators in the dual conformal field theory. This is similar to the
decoupling limit in which we are working and in which the fluctuations of the metric are

1Although global symmetries are not expected in a consistent theory of quantum gravity they can be
obtained in certain decompactification limits of string theory: e.g. by wrapping branes on cycles and then
taking the volume of the cycle to infinity so that the effective gauge coupling on the branes goes to zero
leaving only a global symmetry on them.
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suppressed. The dual field theory has then strictly speaking no energy momentum tensor.
In usual four dimensional Lagrangian field theories, Noether’s theorem guarantees that we
can always construct a conserved charge generating a given symmetry of the Lagrangian.
In holographically defined field theories the existence of a four dimensional Lagrangian is
a priori not guaranteed and therefore Noether’s theorem does not straightforwardly apply.
This is the case here. Although the dual field theory has the SU(2) symmetry it does
not contain operators generating these symmetries. We can speak of these symmetries
as an outer automorphism of the operator algebra of the dual field theory. Physically
the difference between the two models is that the ungauged one is a one-component fluid
(there is only one notion of charge) whereas the gauged one is a two component fluid. In
the latter case the charges are the expectation values of the zero-component of the currents
in the Cartan subalgebra of the U(2) symmetry.

Although the ungauged model does not contain conserved currents for the SU(2)
symmetry and therefore many of the standard proofs about existence of Goldstone bosons
do not strictly apply we find a new ungapped mode in the QNM spectrum of the scalars.
This mode is however not a standard Goldstone boson with linear dispersion relation but
a type II Goldstone mode whose energy depends quadratically on momentum.

The second model we consider has a scalar field doublet coupled to the full set of
U(2) gauge fields. We switch on a chemical potential only for the overall U(1) symmetry.
Therefore the high temperature phase has the full U(2) symmetry. At low temperatures
this symmetry is broken to U(1). In this model the dual field theory contains currents for
all the U(2) symmetries. We can therefore also study the conductivities associated to the
different “colors”.

In the context of condensed matter physics it has been pointed out long ago in
[60] that such multicomponent superfluids have unusual Goldstone modes with quadratic
dispersion relation. In the high energy context such models have been considered as
models for Kaon condensation in the color-flavor locked phase of QCD in [31, 61] again
emphasizing the existence of the quadratic Goldstone mode. Our gauged holographic
model is a straightforward holographic analogue of the model in [31, 61] and indeed we
also find the presence of a Goldstone mode with quadratic dispersion relation. Let us
also note that in the holographic context a type II Goldstone boson was found before in
magnetized D3/D5 defect theory [62].

We shall then consider the symmetry breaking pattern of the boundary theory dual
to the gauged holographic model. We will see that trough the theorems in section 2.2 the
presence of a type II Goldstone boson in the spectrum is guaranteed.

This chapter is organized as follows. In section 6.1 we review the main features of
the spontaneous symmetry breaking mechanism in holography and the usual Holographic
Superconductor. In section 6.2 we review a simple field theoretical model featuring type II
NG-Bosons. This model has been introduced in the context of Kaon condensation in color-
flavor locked QCD. It served us as inspiration for constructing the holographic models.
Section 6.3 is devoted to the analysis of the ungauged model. Since the well-known s-wave
superconductor is a subsector of both the ungauged and the gauged model we also briefly
review first the findings of [63]. Then we show that even with this drastic simplification,
i.e. not gauging the global SU(2) symmetry in the bulk, the model presents Goldstone
modes with quadratic dispersion relation. Hence, within this model a type II NG boson
is found as a consequence of having broken just one charge generator (the one associated
to the U(1) symmetry).
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In section 6.4 we study the fully gauged U(2) model. Then we analyze the fluctuation
equations to linear order. They decompose into three decoupled sectors. One being the
already encountered U(1) s-wave superfluid, the other describing the non-Abelian sector
in which the type II Goldstone mode resides and a third one with the unbroken U(1)
symmetry. We proceed to study the conductivities which now arrange naturally into a
two by two matrix. We show that the diagonal conductivities have delta-functions at zero
frequency and are in this sense superconducting. Furthermore we find indications that for
temperatures below T = 0.4Tc another instability arises in the gauge field sector leading
to an additional p-wave condensate. Then we study the low lying quasinormal modes
and analyze the results. We find the type II Goldstone mode and also study the fate of
the diffusion modes in the broken phase. Since now four symmetry generators participate
there are 4 diffusion modes that in the broken phase pair up and can move away from
the imaginary axis. We find that this is precisely what happens. Therefore the response
in this sector does not show the purely exponential decay induced by the gapped pseudo
diffusion mode of the U(1) sector.
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6.1 Spontaneous symmetry breaking in holography

In this section we review the main features of spontaneous symmetry breaking of global
symmetries in the gauge/gravity duality. We will focus in the original holographic super-
conductor and its hydrodynamic properties. Let us remark that this review is based on
the work of other authors [58].

The questions that we would like to answer along this chapter are: How does one
implement spontaneous symmetry breaking in dual theory from the bulk point of view?
What is its effect in the transport phenomena? What happens to the spectrum?

Let’s try to give an heuristic answer to these. A key to the first question relies
in the holographic dictionary. Since gauge symmetries in the bulk are mapped to global
symmetries in the conformal field theory, the most natural guess is that we must spon-
taneously break the gauge symmetry in order to induce spontaneous symmetry breaking
in the boundary. However, Eliztur’s theorem shows that spontaneously breaking a gauge
symmetry leads to inconsistencies (negative norm states) in the theory. Since we expect
unitarity to be respected in the bulk in order to preserve it at the boundary, we should look
for the “closest” version to spontaneous symmetry breaking in gauge theories. This is, of
course, the Higgs mechanism. The Higgs mechanism does not break the local symmetry,
but the global remanent that appears after gauge fixing. In this sense it is not surprising
at all that such a mechanism is translated into a breakdown of the global symmetry in the
dual theory. Moreover, this picture pushes us to the following question: If we just had to
break the global part of the symmetry, why do we need a gauge symmetry at all? Since
analogous questions will arise many times along this chapter, we would like to summarize
our concerns in three question: What difference does it make to have a global or a gauge
symmetry in the bulk? Can this shed some light on our understanding of the effect of
symmetries in QFT? We will explore these issues in the following sections.
Let us now focus on the Higgs mechanism in the bulk. It turns out that this mechanism
is slightly different from what we know in flat space. The first important concept to un-
derstand this is the Breitenlohner-Friedman bound. This bound fixes the minimum value
for the mass squared of a scalar field. As it is widely known, this minimum is negative.
So we can say that, as long as the mass squared is not too negative, the system is stable.
Why is that so? Our intuition from flat space tells us that if there is no potential to
compensate for this, the field will just “roll down” over the hill of a mount-like effective
potential given by the mass. Such an intuition relies however on the assumption that the
field can be considered constant along the space directions. However such assumption is
wrong in AdS. For not too negative masses, the normalizable mode of the scalar field is
still forced to decay close to the boundary. Therefore, the field cannot just grow infinitely
with time; since it must vanish at the boundary the growth in the bulk induces a gradient
which costs energy (the Hamiltonian is proportional to (∇φ)2). So what we should expect
from the Higgs mechanism is an instability, i.e. a too negative effective mass, that occurs
only in a certain regime of space. Let us briefly review how this works (see section 6.3 for a
more thorough study) in the first and simplest example of the literature: the Holographic
Superconductor. Consider the following action

L =

(
−1

4
FµνFµν −m2Ψ∗Ψ− (DµΨ)∗DµΨ

)
. (6.1)
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Where Dµ contains both the gravitational and gauge connections. As we will see, the
gauge field allows us to tune the effective mass of the scalar field. The background metric
is taken to be the Schwarzschild-AdS black brane

ds2 = −f(r)dt2 +
dr2

f(r)
+
r2

L2
(dx2 + dy2) ,

f(r) =
r2

L2
− M

r
. (6.2)

The need of a BH to implement the spontaneous symmetry breaking mechanism can be
understood from two different points of view. From the gravity side, the BH induces
an effective curvature close to the horizon that differs from the asymptotic region. This
allows to generate different space regions. In the close horizon region the effective mass
will violate the BF bound and condensation will happen. Close to the boundary however
the effective mass will be above this bound and the field will not condense. From the
conformal field thoery point of view it is may be easier to understand this. In order to
induce the spontaneous symmetry breaking we need te comparison of two dimensionfull
parameters. The chemical potential induced by the non-normalizable mode of the gauge
field needs some other reference quantity such that their ration is meaningful. Both
pictures connect nicely within the duality: the notions of IR and UV are needed in order
to have spontaneous symmetry breaking in a theory.

With the ansatz Ψ = ψ(r), A0 = φ(r) and all other components set to zero, the
e.o.m. are

ψ′′ +

(
f ′

f
+

2

r

)
ψ′ +

φ2

f2
ψ −m2ψ = 0 , (6.3)

φ′′ +
2

r
φ′ − 2ψ2

f
φ = 0. (6.4)

In (6.3) one can clearly see how the gauge field plays the role of an effective mass for
the scalar field. We have two second order coupled ordinary differential equations, which
means that there are four boundary conditions to be fixed. Imposing regularity at the
horizon gives two constraints. In addition we want to impose the source for the scalar
field to vanish, since otherwise we would explicitly induce a non-zero vev. Therefore we
are left with one parameter. We choose it to be the non-normalizable mode of the gauge
field, that is interpreted as the chemical potential µ of the dual theory. One now solves
numerically the above equations for different values of µ. For small enough values of µ
there is only one solution that can be found analytically

ψ = 0 φ = µ

(
1− 1

r

)
. (6.5)

It corresponds to the unbroken phase, in which the vev of the scalar operator vanishes.
On the other hand, a second possible solution appears for big enough values of µ. In these
solutions the scalar field doesn’t vanish and therefore the expectation value of the dual
operator is non-zero. The plot in figure 6.1 shows how this quantity grows with µ ∼ 1/T
In order to determine which the energetically favored solution is one has to compute and
compare the Free Energy (FE) of the system. The FE of the boundary theory can be
computed from the On-Shell action of the bulk. In our concrete case it reads

F = −TSren = −T
(

1

2
µn−

∫ ∞
rH

dr
r2ψ2χ2

f

)
. (6.6)

49



Chapter 6. Spontaneous Symmetry Breaking I

0.4 0.5 0.6 0.7 0.8 0.9 1.0

T

Tc

-40

-30

-20

-10

0

F

Tc

0.0 0.2 0.4 0.6 0.8 1.0

T

Tc

0

500

1000

1500

2000

2500

3000

3500

< O2 >
2

Tc
4

Figure 6.1: (Left) The free energy of the trivial (blue) and condensate (red) background
solutions at low temperatures, T < Tc. (Right) Value of the condensate in the grand
canonical ensemble as a function of T/Tc.

We show the result in Figure 6.3.

Indeed the global symmetry of the dual theory has been spontaneously broken by
the implementation of the Higgs mechanism in the bulk. This original version of the
Holographic Superconductor is contained in the extended models that we study in the
following sections. Since the goal of this section was to give an introduction to the spon-
taneous symmetry breaking phenomenon in holography, we refer the reader to section 6.3
to see how the conductivities and the spectrum are computed as well as the interpretation
for the results.

6.2 A field theoretical model with type II Goldstone boson

Motivated by the physics of Kaon condensation in the color-flavor locked phase of QCD
the authors of [31, 61] studied QCD at a nonzero chemical potential for strangeness. It
was shown that at a critical value of the chemical potential equal to the Kaon mass, Kaon
condensation occurs through a continuous phase transition. Moreover, a Goldstone boson
with the non-relativistic dispersion relation ω ∼ p2 appears in the Kaon condensed phase.
To illustrate this fact, they considered the following (Euclidean) toy model:

L = (∂0 + µ)φ†(∂0 − µ)φ+ ∂iφ
†∂iφ+M2φ†φ+ λ(φ†φ)2 , (6.7)

where φ is a complex scalar doublet,

φ =

(
φ1

φ2

)
. (6.8)

As long as µ < M the masses of the four excitations in the model are the positive
roots in ω of

(ω ± µ)2 = M2 . (6.9)

All are doubly degenerate. It is straightforward to check that at µ = M the global U(2)
symmetry gets broken and the new vacuum can be chosen to be:

φ =
1√
2

(
0
v

)
, with v2 =

µ2 −M2

λ
. (6.10)
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Studying the fluctuations of the doublet φ around this background one finds two
massless and two massive modes with the following dispersion relations:

ω2
1 =

µ2 −M2

3µ2 −M2
p2 +O(p4) , (6.11)

ω2
2 = 6µ2 − 2M2 +O(p2) , (6.12)

ω2
3 = p2 − 2µω3 , (6.13)

ω2
4 = p2 + 2µω4 . (6.14)

If we concentrate on the positive roots we see that ω1 is a normal, linear Goldstone mode.
The positive root of equation (6.13) is

ω3 =
p2

2µ
+O(p4) . (6.15)

This is the type II Goldstone mode. It has formally a non-relativistic dispersion relation.
Since the underlying theory has however Lorentz invariance there is of course also a nega-
tive energy mode with quadratic dispersion. This arises as the negative root of ω4. Finally
ω2 and ω4 are gapped modes with

ω4 = 2µ+O(p2) . (6.16)

Since the symmetry breaking pattern is U(2)→ U(1) there are three broken generators but
only two massless Goldstone modes in the spectrum. This model fulfills all the counting
theorems noted in the introduction. In particular the Chadha-Nielsen rule in section 2.2
is exactly saturated. The role of ω4 is special. It is the mode that pairs up with the
type II Goldstone mode in the dispersion relations (6.13) and (6.14). It has been argued
that this mode is a universal feature and that its energy at zero momentum is exact
and protected against quantum corrections [29, 64, 65]. The spectrum obtained from this
model is summed up in Figure 6.2. In our holographic models we will look for this special
gapped partner mode of the type II Goldstone mode. It will turn out that the gauged and
ungauged models differ significantly here: only the mode in the gauged model shows the
characteristic linear dependence on the chemical potential.

This simple Lagrangian model serves as our motivation and guideline to construct a
holographic model featuring type II Goldstone modes. In fact we can use the same kind of
matter Lagrangian in a holographic setup. According to the usual holographic dictionary
a local bulk symmetry corresponds to a global symmetry in the boundary conformal field
theory. We would therefore most naturally be led to a model in which we gauge the global
U(2) symmetry of (6.7) and put it into an AdS Schwarzschild background. In order to
trigger spontaneous symmetry breaking we introduce a chemical potential via a boundary
value for the temporal component of the overall, Abelian U(1) gauge field. This is then
our gauged model.

Alternatively we might ask what are the minimal ingredients necessary to trigger
spontaneous symmetry breaking. The chemical potential resides entirely in the overall
U(1) factor. The other three SU(2) gauge fields are not needed to achieve symmetry
breaking. Therefore we can choose as a sort of minimal setup a model in which the SU(2)
symmetry stays global in the bulk of AdS. As already mentioned in the introduction this
is a somewhat unusual realization of the symmetry from the boundary conformal field
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Figure 6.2: The spectrum of the field theoretical model. Below the critical value µ = M
there are four massive modes. The masses are M − µ and M + µ, the numbers indicate
that they are doubly degenerate. In the broken phase µ > M there are two Goldstone
modes with exactly zero mass and two gapped modes. The special gapped mode has mass
2µ.

theory point of view. There are no conserved currents associated to this SU(2) symmetry,
nevertheless all states and operators fall naturally into representations of this symmetry
group since it is a global symmetry of the bulk and it is also not broken by any of the
boundary conditions. This setup constitutes our ungauged model and we will study it in
detail in the next section.

Let us note here one more technical detail: the field theoretic model of this section
is most naturally viewed as living in four space time dimensions. In the following our
holographic models will be dual to field theories living in three space time dimensions in
order to stay as close as possible to the well-studied holographic U(1) s-wave superfluid
of [59,63]. This is however of no relevance to the essential features of the models, i.e. the
existence and the nature of the hydrodynamic and Goldstone modes.
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6.3 SSB in Holography with TypeII NG-Bosons: The un-
gauged model

We will now study the holographic model where the condensation of a charged scalar breaks
a global SU(2) symmetry in the bulk. We shall look at the spectrum of quasinormal modes
on both sides of the phase transition and study their dispersion relations. Since the simple
U(1) s-wave holographic superfluid constitutes a subsector of this as well as of the gauged
model we will also use the opportunity to briefly review the most salient features of its
QNM spectrum.

The minimal holographic model containing a type II Goldstone boson consists of a
scalar doublet of SU(2) charged under a U(1) gauge field. The Lagrangian is given by

L =

(
−1

4
FµνFµν −m2Ψ†Ψ− (DµΨ)†DµΨ

)
, (6.17)

where

Ψ =

(
λ
ψ

)
, Dµ = ∂µ − iAµ , (6.18)

and Aµ is the Abelian gauge field. The mass of the scalar field is chosen to be m2 = −2/L2.
This is basically the same as the model in [59] except that we have added a second scalar
field λ with the same mass. Because of the degeneracy in the mass the model possesses
in addition to the bulk-local U(1) symmetry a bulk-global SU(2) symmetry. Note that
the global SU(2) symmetry is a priori not enough to set the field λ(r) = 0. But we
are interested in un-sourced static solutions for the scalar fields, i.e. we assume that
the leading non-normalizable mode is not switched on. The solution space is then a two
dimensional complex vector space spanned by the vevs of the operators dual to the scalar
fields. On this parameter space we can act with the global SU(2) symmetry to set the
operator corresponding to the field λ equal to zero. Since now the non-normalizable and
the normalizable mode of λ are set to zero it follows that λ(r) = 0.

We will be working in the probe limit, in which the coupling of the gauge field is
very large and the backreaction of the matter fields onto the metric can be neglected. The
background metric is then taken to be the Schwarzschild-AdS black brane

ds2 = −f(r)dt2 +
dr2

f(r)
+
r2

L2
(dx2 + dy2) ,

f(r) =
r2

L2
− M

r
. (6.19)

The horizon of the black hole is located at rH = M1/3L2/3 and its Hawking temperature
is T = 3rH

4πL2 . In the following we use dimensionless coordinates

(r, t, x, y) →
(
rH ρ,

L2

rH
t̄,
L2

rH
x̄,

L2

rH
ȳ

)
. (6.20)

These rescalings allow us to set M = rH = 1 in the dimensionless system. In order to
switch on a finite chemical potential in the boundary theory, the bulk Maxwell field

A = χ(ρ)dt̄ , (6.21)
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must take a non-zero value at the boundary.

The equations of motion for the background fields are

χ′′ +
2

ρ
χ′ − 2ψ2

f
χ = 0 , (6.22)

ψ′′ +

(
f ′

f
+

2

ρ

)
ψ′ +

χ2

f2
ψ − m2

f
ψ = 0 . (6.23)

Notice that the system above is precisely the original U(1) holographic superconductor
first studied in [59]. To ensure finiteness of the norm of the current at the horizon, we have
to demand the scalar field to be regular whereas the gauge field has to vanish χ(ρ = 1) = 0.
With these boundary conditions, the asymptotic behavior of the fields at the conformal
boundary is

χ = µ̄− n̄

ρ
+O

(
1

ρ2

)
, (6.24)

ψ =
ψ1

ρ
+
ψ2

ρ2
+O

(
1

ρ3

)
. (6.25)

For the chosen value of the scalar mass, both terms in the scalar asymptotics correspond
to normalizable modes [66]. Considering one or the other as the vacuum expectation
value of a dual boundary operator leads to two different theories. In what follows we will
consider only the case in which ψ1 is interpreted as the coupling and ψ2 as the vev of a
mass dimension two operator.

The dimensionless parameters are related with the physical quantities by

µ̄ =
3

4πT
µ , (6.26)

n̄ =
9

16π2T 2L2
n , (6.27)

ψ1 =
3

4πTL2
JO , (6.28)

ψ2 =
9

16π2T 2L4
〈O〉 , (6.29)

where µ, n and JO, 〈O〉 are the chemical potential, charge density and source and expec-
tation value of an operator O of dimension 2, respectively. From now on we set L = 1.
In the following we will work in the grand canonical ensemble. In practice we vary the
dimensionless parameter µ̄. Because of the underlying conformal symmetry this can then
be thought of as either fixing the chemical potential µ and varying the temperature T or
fixing the temperature and varying the chemical potential. We define the temperature by
T/Tc = µ̄c/µ̄ and fix µ = 1.

Spontaneous symmetry breaking is driven by low temperature or high chemical
potential. It triggers a non trivial expectation value for the scalar field without switching
on any source JO. For small µ̄ the scalar field is trivial and the gauge equation is solved
by χ = µ̄(1 − 1/ρ) and ψ = 0. The system is then in the symmetric phase. However,
by decreasing the temperature the system becomes unstable towards condensation of the
scalar [58, 59]. In [63] it was shown that at the critical temperature indeed the lowest
quasinormal mode of the scalar field becomes unstable, i. e. it crosses over to the upper
half plane.
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The free energy density of the system is given by the on-shell renormalized action,

F = −TSren = −T
(

1

2
µn−

∫ ∞
rH

dr
r2ψ2χ2

f

)
. (6.30)

The second term vanishes in the absence of a condensate and it works against the phase
transition if it is present. In Figure 6.3 the free energies for the symmetric and broken
phase are compared. It is clear that for T < Tc the condensate solution is always preferred
and therefore the system undergoes a second order phase transition to the superconducting
phase. Note that the presence of the second scalar plays no role for the phase structure.
It simply vanishes in the broken and unbroken phase λ = 0.
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Figure 6.3: (Left) The free energy of the trivial (blue) and condensate (red) background
solutions at low temperatures, T < Tc. (Right) Value of the condensate in the grand
canonical ensemble as a function of T/Tc.

In order to extract the quasinormal mode spectrum, we switch on fluctuations of
the background fields

ΨT = (η(ρ, t, x), ψ(ρ) + σ(ρ, t, x)) , (6.31)

A = (χ(ρ) + at(ρ, t, x)) dt+ ax(ρ, t, x)dx . (6.32)

We do not include transverse fluctuations because they decouple from the interesting
physical features of the model at hand.

In the normal phase, i.e. expanding around ψ(ρ) = 0, the system reduces to the
U(1) holographic superconductor studied in [63] with two copies of the scalar fluctuations,

fs′′ + s′
(
f ′ +

2f

ρ

)
+

(
(χ+ ω)2

f
− k2

ρ2
−m2

)
s =0 , (6.33)

fa′′t +
2f

ρ
a′t −

k2

ρ2
at −

ωk

ρ2
ax =0 , (6.34)

fa′′x + f ′a′x +
ω2

f
ax +

ωk

f
at =0 , (6.35)

iω

f
a′t +

ik

ρ2
a′x =0 , (6.36)

where s stands for both η and σ fluctuations. The equation for the complex conjugate
scalar s̄ can be obtained by changing the sign of the potential χ in (6.33). The frequency
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and momentum are related to the physical ones by

ω =
3

4πT
ωph , (6.37)

k =
3

4πT
kph . (6.38)

The scalar and gauge fluctuations completely decouple in the symmetric phase. This is
a consequence of working in the probe limit. The quasinormal mode spectrum of the
U(1) field in the normal phase is just that of an electromagnetic field on an AdS-Sch
background. The longitudinal fluctuations contain one hydrodynamic mode, ω = −iDk2,
reflecting the diffusive behavior of normal fluids. In physical units D = 3/(4πT ). Due to
the lack of an energy-momentum tensor for the dual field theory in the probe limit, the
diffusion pole is the only hydrodynamic mode in the unbroken phase.

There are two copies of the scalar fluctuations. The quasinormal modes of η and
σ move towards the origin when decreasing the temperature, whereas the modes of η̄
and σ̄ have larger masses and widths the smaller the temperature. As we approach the
critical temperature T = Tc, the lowest quasinormal modes of η and of σ become massless,
triggering the phase transition: the scalar field acquires a non trivial vev in order to avoid
its fluctuations to become tachyonic. By symmetry we can choose the condensate to reside
completely in the ψ field. The fluctuations σ couple then to the gauge field fluctuations
just as in [63]. Therefore the QNM spectrum in this sector contains a Goldstone mode with
linear dispersion relation ω = ±vsk + O(k2). This is the usual type I Goldstone boson
associated with the breaking of the gauge U(1) symmetry. As shown in [63] it can be
interpreted as the sound mode of the dual superfluid in the broken phase. What happens
then to the QNMs in the fluctuations of the second scalar η? At the critical temperature
there is also an ungapped mode present since its QNM spectrum is simply another copy of
the scalar sector. Since there are no operators generating the SU(2) symmetry in the dual
field theory standard arguments about the appearance of Goldstone modes do a priori not
apply. Three logical possibilities arise then: the mode could become unstable for T < Tc,
it could become gapped again or it stays ungapped, playing the role of an unexpected
Goldstone boson for the broken bulk-global SU(2) symmetry. Shortly we will see that the
last possibility is realized and that the massless mode of η will indeed correspond to a
type II Goldstone boson with quadratic dispersion relation, ω ∝ k2.

In the broken phase, the equations of motion read

0 = fη′′ + η′
(
f ′ +

2f

ρ

)
+

(
(χ+ ω)2

f
− k2

ρ2
−m2

)
η , (6.39)

0 = fδ′′ + δ′
(
f ′ +

2f

ρ

)
+

(
χ2

f
+
ω2

f
− k2

ρ2
−m2

)
δ − 2iωχ

f
ζ − iψ

(
ω

f
at +

k

ρ2
ax

)
,

(6.40)

0 = fζ ′′ + ζ ′
(
f ′ +

2f

r

)
+

(
χ2

f
+
ω2

f
− k2L2

r2
−m2

)
ζ +

2iωχ

f
δ +

2χψ

f
at , (6.41)

0 = fa′′t +
2f

ρ
a′t −

(
k2

ρ2
+ 2ψ2

)
at −

ωk

ρ2
ax − 2iωψδ − 4χψζ , (6.42)

0 = fa′′x + f ′a′x +

(
ω2

f
− 2ψ

)
ax +

ωk

f
at + 2ikψδ , (6.43)

0 =
iω

f
a′t +

ik

ρ2
a′x + 2ψ′δ − 2ψδ′ , (6.44)

56



Chapter 6. Spontaneous Symmetry Breaking I

where we have divided σ = ζ+iδ into real and imaginary part. The system (6.40)-(6.44) is
again the one studied in [63]. This sector, that also appears in the gauged model that will
be presented afterwards, decouples from the additional scalar fluctuation η. Notice that
even if (6.39) is formally the same as in the normal phase, the background χ is different
leading to non trivial features in the η sector such as the presence of a massless excitation.

0.5 1.0 1.5
Μ � Μ c

0

2

4

6

8

ReHΩL

0.5 1.0 1.5
Μ � Μ c

-10

-8

-6

- 4

-2

0

ImHΩL

Figure 6.4: Real (left) and imaginary (right) parts of the lowest scalar QNMs as a function
of the chemical potential. Solid lines correspond to the unbroken phase. For the broken
phase dashed lines stand for modes of the additional scalar while dotdashed lines represent
the modes common to the U(1) holographic superconductor.

Figure 6.4 shows the spectrum of quasinormal excitations of the scalar doublet. In
the normal phase we have two degenerate copies of the spectrum that partially split after
the phase transition. It is clear that the two lowest excitations become massless at the
critical chemical potential and then remain massless in the superconducting phase. They
can be identified with the two Goldstone bosons at the phase transition. The rest of the
excitations remain gapped in the broken phase. Notice that the first η̄ excitation (dashed
black line in figure 6.4) does not follow the expected universal behavior in the broken
phase, i.e. it is not linear in µ. This mode is the equivalent of the special gapped mode
ω4 in the field theoretical model of section 6.2. However, it has already been mentioned
that the ungauged model does not satisfy all the theorems about symmetry breaking and
therefore deviations from the universal behavior should not be surprising. The behavior
of the gapped modes is actually similar to that of the U(1) model modes. In the unbroken
phase we can distinguish the modes that come from the s-type of fluctuations from the
ones that come from the complex conjugate s̄ fluctuations. The former become lighter
whereas the latter become heavier2. In the broken phase it is more useful to use real and
imaginary parts, at least for the scalar that mixes with the gauge fields fluctuations, i.e.
the lower component of the scalar in our conventions. So we can not a priori talk of s and s̄
type fluctuations. We still can study to which modes the s and s̄ type modes connect to in
the broken phase. Here we see an interesting pattern: the s type modes split in the broken
phase whereas the s̄ type modes stay almost degenerate close to the phase transition (at
least at zero momentum). This is surprising given the fact that the fluctuations correspond
to two completely different systems, one coming from a single differential equation whereas
the others come from a complicated system of coupled equations. However, for small
temperatures they split and actually the real part of the lowest one for the U(1) sector
goes to zero at a finite temperature. For temperatures below T ≈ 0.63Tc it becomes a

2This behavior is reversed if we had taken the chemical potential to be negative.
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purely imaginary mode.

Sound mode: There are two massless modes in the broken phase. The first one is the
type I Goldstone boson appearing because of the spontaneous breaking of the U(1) gauge
symmetry. In [63], it was shown that this mode corresponds to the sound mode of the
dual superfluid and that in the hydrodynamic limit it has a linear dispersion relation

ωI = ±
(
vs k + b̄ k2

)
− iΓs k2 , (6.45)

where vs is the speed of sound and Γs is its attenuation. It turns out that the quadratic
part of the dispersion relation also has a real component. This component is very small
and subleading compared to the linear term that determines the speed of sound. In [63]
this real quadratic part has not been studied.
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Figure 6.5: Speed of sound and damping for the sound mode. The speed of sound goes
to zero at the critical temperature. The damping constant first rises quickly and then
falls off again. Precisely at the critical temperature its value is such that the sound modes
connect continuously to the scalar modes that become massless there. The peak in the
damping constant sits close to the critical temperature and was not resolved in [63].

For very small temperatures the velocity approaches its conformal value v2
s = 1/2

while the width goes to zero, see figure 6.5. Close to the phase transition, the speed of
sound has a mean field behavior as a function of temperature

v2
s ≈ 2.8

(
1− T

Tc

)
. (6.46)

As expected, at T = Tc the speed of sound vanishes. This can be traced back to the
fact that at the phase transition the total mass m2

∗ = M2 − µ2 fulfills m2
∗ = v2 = 0, as

expected, and hence the complex scalar field, charged under a U(1) symmetry, becomes
massless.

Indeed, one can write down the effective action, analogous to (6.7), for a complex
scalar field with mass M , in the presence of a chemical potential for a U(1) symmetry that
is spontaneously broken. The excitations on top of the U(1)-breaking background have a
dispersion relation equal to (6.11)-(6.12), being (6.11) the type I Goldstone boson. It is a
general feature of these linear sigma models that the coefficient in front of the linear term
in the momentum depends on m2

∗, as can be explicitly checked for the case at hand (see
(6.11)). Therefore, at the phase transition the leading term in the dispersion relation is of
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O(k2); this effect can be seen very clearly with numerical methods, as shown in Figure 6.6.
Since the quasinormal mode spectrum has to vary continuously through the second order
phase transition the real and complex coefficients of the k2 term have to coincide at T = Tc
with the ones obtained from the massless scalars in the unbroken phase. Numerically we
find b̄(Tc) = 0.22 and Γs(Tc) = 0.071.
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Figure 6.6: Dispersion relations of Reω (left) and Imω (right) at T = Tc for the type I
Goldstone boson in the system studied by [63]. The behavior Reω ∼ k becomes quadratic
right at this temperature: Reω = b̄k2. The coefficient is b̄ = 0.22, which in turn matches
the value that one finds if approaches Tc from above (i.e. from the unbroken phase).

Pseudo diffusion mode: In the unbroken phase our model has only one hydrodynamic
mode, the diffusion mode ω = −iDk2 + O(k4) with D = 3/(4πT ) in physical units. The
shear and normal sound modes have their origin in the metric fluctuations and therefore are
absent in the decoupling limit we are studying. The phase transition to the broken phase
is second order. For the spectrum of quasinormal modes this implies that the modes of the
broken and unbroken phase must connect continuously through the phase transition. In
the case of the diffusion mode there must therefore exist a quasinormal mode with purely
imaginary frequency. Hydrodynamics implies however that the only ungapped modes are
the sound modes corresponding to the type I Goldstone mode. Not too far from the phase
transition, i.e. for T . Tc the diffusion mode of the broken phase must develop into a
mode with dispersion relation

ω = −iγ(T )− iD(T )k2 +O(k4) , (6.47)

as shown in Figure 6.7.

We might say that the diffusion mode develops a gap in the broken phase and
becomes what has been called a pseudo diffusion mode in [63]. Precisely at zero momentum
k = 0 this gapped pseudo diffusion mode explains the observation made in [67] on the
late time response of holographic superconductors. For temperatures T . Tc the pseudo
diffusion mode is the mode that lies closest to the real axis and therefore it dominates the
long time response to any perturbation, such as the quenches studied in [67]. It follows that
the order parameter shows a purely exponential decay since this mode does not have a real
frequency. The existence of that mode can ultimately be traced back to the universality
of the diffusion mode in the unbroken phase. We expect therefore the pseudo diffusion
mode to be a universal feature of a wide class of superfluids (not necessarily holographic
ones).
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Figure 6.7: (Left) Dispersion relation of the gapped pseudo diffusion mode in the broken
phase for three different temperatures. The gap widens as the temperature is lowered.
(Right) Gap γ as a function of the reduced temperature T/Tc. As one approaches the
critical temperature from below the gap vanishes linearly.

The gap γ grows as the temperature decreases. On the other hand there are quasi-
normal modes (connecting to the QNMs in the scalar sector of the unbroken phase) whose
imaginary part is only weakly dependent on the temperature. At a certain crossover tem-
perature T∗ the gap of the pseudo diffusion mode is bigger than the imaginary part of
these modes, as shown in Figure 6.8. Then the response pattern changes from a purely
exponential decay to an exponentially damped oscillation. Numerically we find that the
crossover temperature is T∗ = 0.69Tc.

3 Such crossover changes in the long term response
appear frequently in the details of the quasinormal mode spectrum of holographic field
theories, [57, 68, 69]. In fact this purely exponential decay applies not only to the order
parameter but to all operators that correspond to the fields participating in the fluctuation
system (6.40)-(6.44), e.g. charge density or x-component of the current.
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Figure 6.8: (Left) Continuation of the second and third scalar QNM into the broken
phase. The real part grows as the temperature is lowered whereas the imaginary part
shows very little dependence on T . (Right) The gap γ (blue line) and the imaginary part
of the lowest (scalar) mode fluctuation (red line) in the broken phase are shown as function
of T/Tc. At T∗ ≈ 0.69Tc the imaginary parts cross. For lower temperatures the late time
response is not dominated anymore by the pseudo diffusion mode and consequently is in
form of a exponentially decaying oscillation.

3This is lower than in the model of [67]. The difference is presumably due to the fact that we work in
the decoupling limit.
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For finite momentum the response pattern is expected to be different however. Now
one also has to take into account the sound mode. While precisely at zero momentum
the sound mode, i.e. the Goldstone mode, degenerates to a constant phase change of the
condensate at small but non-zero momentum the long time response should be dominated
by the complex frequencies (6.45). If one looks however only to the response in the gauge
invariant order parameter |O| the Goldstone modes, being local phase rotations of the
order parameter, are projected out.

Type II Goldstone mode: The second massless mode is the Goldstone boson associ-
ated with the breaking of the bulk-global SU(2) symmetry. It can be fit to a quadratic
dispersion relation of the form

ωII = ±b k2 − ic k2 +O(k4) , (6.48)

in the long wavelength limit. Therefore it has the characteristic of a type II Goldstone
mode. In Figure 6.9 the dispersion relation for the η massless mode is shown for various
temperatures as well as its fit to the hydrodynamic form. It is clear that there is a good
agreement in the regime of validity of the low energy limit.
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Figure 6.9: Real (left) and imaginary (right) parts of the type II Goldstone mode as a
function of the momentum for T/Tc = 0.9998 (blue) and T/Tc = 0.704 (red) . The solid
lines correspond to the numerical result while the dashed lines are the quadratic fit to a
dispersion relation ωII = b k2 − ic k2.

The coefficients in the hydrodynamic dispersion relation (6.48) as a function of the
temperature are shown in Figure 6.10. Close to the phase transition they have a linear
dependence in the reduced temperature

b(T ) = 0.22 + 0.049

(
1− T

Tc

)
, (6.49)

c(T ) = 0.071− 0.0014

(
1− T

Tc

)
near Tc .

Notice that at the phase transition the sound mode and the type II Goldstone must behave
in the same way due to continuity of the modes through the phase transition and the fact
that they are degenerate in the normal phase. In fact, at the transition b = b̄ = 0.22
and c = Γs = 0.071, values that of course coincide with those of the lowest scalar mode
in the normal phase. On the other hand, it is interesting to notice that in the broken
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phase the behavior of the coefficients of the type II Goldstone is completely different from
that of the coefficients of the sound of the superfluid. Unlike the sound velocity, that
vanishes at the phase transition, the coefficient b of the type II Goldstone mode takes a
finite value at the critical temperature. This result of course persists for the gauged model.
The attenuation on the other hand, as it happens for the U(1) sector, has a finite value
at the phase transition and then decreases with temperature, reflecting the fact that the
fluid is more ideal the lower the temperature.
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Figure 6.10: Coefficients of the type II Goldstone mode dispersion relation ωII = b k2 −
ic k2, as a function of the temperature. Dependence with temperature is very mild.
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6.4 SSB in Holography with TypeII NG-Bosons: The gauged
model

Let us now discuss the fully gauged model. Consider the following Lagrangian for a
complex scalar field living in the fundamental representation of a U(2) gauge symmetry
of the bulk,

S =

∫ √
−gL =

∫
d4x
√
−g
(
−1

4
FµνcF cµν −m2Ψ†Ψ− (DµΨ)†DµΨ

)
, (6.50)

where

Ψ =

(
λ
ψ

)
, Aµ = AcµTc , Dµ = ∂µ − iAµ , (6.51)

and c = 0, 1, 2, 3 is the color index. The field Ψ plays the role of the condensate. The
expectation value of its dual operator thus triggers the spontaneous breaking of the U(2)
global symmetry of the boundary theory. For simplicity, we set λ = 0 in the background.
Tc are the generators of U(2):

T0 =
1

2
I , Ti =

1

2
σi ,

{Ti, Tj} =
1

2
δijI , {T0, Ti} =

1

2
σi . (6.52)

Notice that we are again working in the probe limit, so the background metric is
taken to be the Schwarzschild-AdS black brane of (6.19). On the other hand, the gauge
field is now

A
(0)
0 ≡ Φ(r) , A

(3)
0 ≡ Θ(r) . (6.53)

The rest of the components of the gauge field being zero. As in the previous section, we
will use dimensionless coordinates defined by the rescaling given in (6.20).

The equations of motion for our ansatz are

ψ′′ +

(
f ′

f
+

2

ρ

)
ψ′ +

(Φ−Θ)2

4f2
ψ − m2

f
ψ = 0 , (6.54)

Φ′′ +
2

ρ
Φ′ − ψ2

2f
(Φ−Θ) = 0 , (6.55)

Θ′′ +
2

ρ
Θ′ +

ψ2

2f
(Φ−Θ) = 0 . (6.56)

Notice that from (8.4) it follows that we can not simply switch on Φ without also allowing
for a non-trivial Θ. We are of course only interested in switching on a chemical potential
in the overall U(1), and therefore we will impose Θ(ρ → ∞) = 0 and allow for a finite
boundary value of Φ.

The coupled system of equations above can be simplified by defining χ ≡ 1
2 (Φ−Θ)

and ξ ≡ 1
2 (Φ + Θ). Using (8.3) and (8.4), we see that the resulting equations for these
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fields are4

Ψ′′ +

(
f ′

f
+

2

ρ

)
Ψ′ +

χ2

f2
Ψ− m2

f
Ψ = 0 , (6.57)

χ′′ +
2

ρ
χ′ − 2Ψ2

f
χ = 0 , (6.58)

ξ′′ +
2

ρ
ξ′ = 0 , (6.59)

where we have redefined ψ →
√

2Ψ. As usual we choose the boundary conditions χ(ρ =
1) = 0, ξ(ρ = 1) = 0 along with regularity of Ψ. Having a dual field theory with only one
finite chemical potential switched on, implies that χ and ξ must take the same non trivial
value at the boundary in order to ensure that Θ vanishes asymptotically. Notice that ξ
decouples completely. The remaining system (6.57)-(8.5) is again the background found for
the widely studied s-wave U(1) holographic superconductor. Therefore, the background
of the U(2) gauge model contains the Abelian superconductor plus a decoupled conserved
U(1) sector.

The field χ lies in the direction of one of the broken generators, which is the linear
combination 1

2(T3 − T0), whereas ξ lies in the direction of the preserved U(1) given by
1
2(T3 + T0).

The asymptotic expansion of the fields near the conformal boundary reads

χ = µ̄χ −
n̄χ
ρ

+O

(
1

ρ2

)
, (6.60)

ξ = µ̄ξ −
n̄ξ
ρ

+O

(
1

ρ2

)
, (6.61)

Ψ =
ψ1

ρ
+
ψ2

ρ2
+O

(
1

ρ3

)
. (6.62)

The map of the various coefficients in the previous equations to the boundary conditions is
µ̄χ = µ̄ξ = µ̄. We will again focus in the O2 theory exclusively, henceforth we will demand
ψ1 = 0.

Equations (6.57)-(8.5) allow for solutions with a non-vanishing condensate, and
therefore 1

2(T3 − T0) will be spontaneously broken. This solution must be found nu-
merically, since the system is non-linear. However, (6.59) does have an analytic solution

ξ = µ̄

(
1− 1

ρ

)
(6.63)

and thus n̄ξ = µ̄.

When the symmetry is not broken, Ψ = 0, the equation for χ has of course

χ = µ̄

(
1− 1

ρ

)
(6.64)

4These equations of motion correspond to the probe limit of the system studied in [70] as a dual of
superconductors with chemical potential imbalance. Notice however that in [70] the gauge symmetry was
U(1)× U(1) instead of U(2) as in the present setup.
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as a solution as well. Therefore, in the unbroken phase

Θ = 0 , (6.65)

Φ = 2µ̄

(
1− 1

ρ

)
. (6.66)

This behavior reflects the fact that T3 is completely independent from T0 in the unbroken
phase. However, once we switch on the condensate, the interplay between T3 and T0 (recall
that the remaining symmetry is a combination of the two) makes it impossible to set only
one of the fields to zero.

Finally, let us mention that in order to relate the dimensionless parameters with the
physical ones, we need to apply the same dictionary (6.26)-(6.29) used for the ungauged
model.

6.4.1 Charge Density in the broken phase

According to [26,31] we can expect the presence of type II Goldstone modes if the broken
symmetry generators fulfill

〈[Qa, Qb]〉 = Bab (6.67)

with at least one Bab 6= 0. In our case we have [Q1, Q2] = iQ3. Therefore in the broken
phase we are interested in a non-vanishing expectation value for the charge density operator
〈Q3〉 = nΘ. As we argued previously, in the unbroken phase we necessarily have Θ(r) = 0.
This happened since both χ and ξ obey the same differential equation and the integration
constants had to be set equal in order to do not switch on a source for Θ. Now we would
like to find out whether or not an expectation value for Θ will be spontaneously generated
in the broken phase.

Independently of the phase the field associated to the unbroken combination of
generators is given by (6.63). Since Θ = ξ − χ, then

n̄Θ = µ̄− n̄χ . (6.68)

Hence, what we want to check is the difference between the leading and the subleading
coefficients of χ as a function of the temperature. The numerical result is shown in Figure
6.11.

So we conclude that precisely at T ≤ Tc this difference is switched on and an expec-
tation value for 〈Q3〉 appears. This can be taken as a clear indication for the appearance
of type II Goldstone bosons in the spectrum.

6.4.2 Fluctuations of the gauged model

In order to study the quasinormal spectrum and the conductivities of the system, we
switch on longitudinal perturbations on top of the background, so that

Ψ̂T = (η(t, ρ, x),Ψ(ρ) + σ(t, ρ, x)) , (6.69)

A(0) = (Φ(ρ) + a
(0)
t (t, ρ, x))dt+ a(0)

x (t, ρ, x)dx , (6.70)

A(1) = a
(1)
t (t, ρ, x)dt+ a(1)

x (t, ρ, x)dx , (6.71)

A(2) = a
(2)
t (t, ρ, x)dt+ a(2)

x (t, ρ, x)dx , (6.72)

A(3) = (Θ(ρ) + a
(3)
t (t, ρ, x))dt+ a(3)

x (t, ρ, x)dx . (6.73)
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Figure 6.11: Charge density of Θ, n̄Θ, as a function of the temperature T/Tc.

Perturbations in the Unbroken Phase

In the normal phase, the background value of the condensate vanishes. Moreover, we have
Θ(ρ) = 0. The equations of motion for the perturbations read

s′′ + s′
(
f ′

f
+

2

ρ

)
+

(
(Φ

2 + ω)2

f2
− k2

fρ2
− m2

f

)
s = 0 , (6.74)

a
′′(c)
t +

2

ρ
a
′(c)
t − ωk

fρ2
a(c)
x −

k2

fρ2
a

(c)
t = 0 , (6.75)

a′′(c)x +
f ′

f
a′(c)x +

ω2

f2
a(c)
x +

ωk

f2
a

(c)
t = 0 , (6.76)

ω

f
a
′(c)
t +

k

ρ2
a′(c)x = 0 , (6.77)

where s ∈ {η, σ}. Since the color indices do not see each other the system is the same one
as (6.33)-(6.36) except that there are four copies of the gauge field fluctuations. Due to
the chosen normalization of the U(2) generators the gauge field background Φ enters with
an additional factor 1

2 compared to (6.33). The quasinormal mode spectrum is the same
as the one of the holographic s-wave superconductor [63] except that the scalar modes are
doubly degenerate and the gauge field modes are fourfold degenerate. In particular there
are four copies of the hydrodynamic diffusion mode ω = −iDk2.

Perturbations in the Broken Phase

The equations of motion in the broken phase decouple in two sets: one mixing the (0)−(3)
colors of the gauge field and σ fluctuations and the other mixing the (1)− (2) colors and
the η fluctuations.

Writing σ = ζ + iδ, the equations of the (0)− (3) sector are
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0 = fζ ′′ +

(
f ′ +

2f

ρ

)
ζ ′ +

(
ω2

f
+
χ2

f
− k2

ρ2
−m2

)
ζ +

2iωχ

f
δ + (a

(0)
t − a

(3)
t )Ψ

χ

f
,(6.78)

0 = fδ′′ +

(
f ′ +

2f

ρ

)
δ′ +

(
ω2

f
+
χ2

f
− k2

ρ2
−m2

)
δ − 2iωχ

f
ζ + iΨω

a
(3)
t − a

(0)
t

2f
+

+iΨk
a

(3)
x − a(0)

x

2ρ2
, (6.79)

0 = fa
′′(0)
t +

2f

ρ
a
′(0)
t −

(
Ψ2 +

k2

ρ2

)
a

(0)
t −

ωk

ρ2
a(0)
x + Ψ2a

(3)
t − 4ζΨχ− 2iωΨδ , (6.80)

0 = fa′′(0)
x + f ′a′(0)

x +

(
ω2

f
−Ψ2

)
a(0)
x +

ωk

f
a

(0)
t + Ψ2a(3)

x + 2ikδΨ , (6.81)

0 = fa
′′(3)
t +

2f

ρ
a
′(3)
t −

(
Ψ2 +

k2

ρ2

)
a

(3)
t −

ωk

ρ2
a(3)
x + Ψ2a

(0)
t + 4ζΨχ+ 2iωΨδ , (6.82)

0 = fa′′(3)
x + f ′a′(3)

x +

(
ω2

f
−Ψ2

)
a(3)
x +

ωk

f
a

(3)
t + Ψ2a(0)

x − 2ikδΨ , (6.83)

0 =
ik

ρ2
a′(0)
x +

iω

f
a
′(0)
t + 2Ψ′δ − 2Ψδ′ , (6.84)

0 =
ik

ρ2
a′(3)
x +

iω

f
a
′(3)
t − 2Ψ′δ + 2Ψδ′ . (6.85)

It is trivial to show that by defining new fields a
(±)
t ≡ 1

2(a
(0)
t ±a

(3)
t ) and a

(±)
x ≡ 1

2(a
(0)
x ±a(3)

x )

the system further decouples into a coupled system for the scalar fluctuations and a
(−)
µ

and a background independent set of equations for the U(1) gauge field a
(+)
µ . The first

subsystem reproduces the eoms (6.40)-(6.44) and therefore corresponds to the s-wave U(1)

superconductor contained in the U(2) model. On the other hand, the field a
(+)
µ corresponds

to the preserved gauge symmetry surviving the U(2) → U(1) spontaneous symmetry
breaking. The quasinormal mode spectrum in this sector is therefore the same one as
in [63] plus the QNMs that are stem from a U(1) gauge field in AdS4. In particular the
hydrodynamic modes in this sector are the sound mode and the diffusion mode of the
unbroken U(1).

From now on we will concentrate on the remaining fields. We will call this remaining,
inherently non-Abelian sector the (1)− (2) sector and will show that the expected type II
Goldstone boson resides there. Writing η = α+ iβ, we find the following equations in the
(1)− (2) sector:
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0 = fα′′ +

(
f ′ +

2f

ρ

)
α′ +

(
ω2

f
+

(Φ + Θ)2

4f
− k2

ρ2
−m2

)
α+

iω(Φ + Θ)

f
β −

−iΨ
(
k

2ρ2
a(2)
x +

ω

2f
a

(2)
t

)
+

ΨΦ

2f
a

(1)
t , (6.86)

0 = fβ′′ +

(
f ′ +

2f

ρ

)
β′ +

(
ω2

f
+

(Φ + Θ)2

4f
− k2

ρ2
−m2

)
β − iω(Φ + Θ)

f
α−

−iΨ
(
k

2ρ2
a(1)
x +

ω

2f
a

(1)
t

)
− ΦΨ

2f
a

(2)
t , (6.87)

0 = fa
′′(1)
t +

2f

ρ
a
′(1)
t −

(
Ψ2 +

k2

ρ2

)
a

(1)
t −

ωk

ρ2
a(1)
x + iΘ

k

ρ2
a(2)
x − 2ΦΨα− 2iωΨβ ,(6.88)

0 = fa′′(1)
x + f ′a′(1)

x +

(
ω2

f
−Ψ2 +

Θ2

f

)
a(1)
x − 2i

Θω

f
a(2)
x − iΘ

k

f
a

(2)
t +

ωk

f
a

(1)
t β +

+2ikΨβ , (6.89)

0 = fa
′′(2)
t +

2f

ρ
a
′(2)
t −

(
Ψ2 +

k2

ρ2

)
a

(2)
t −

ωk

ρ2
a(2)
x − iΘ

k

ρ2
a(1)
x + 2ΦΨβ − 2iωΨα ,(6.90)

0 = fa′′(2)
x + f ′a′(2)

x +

(
ω2

f
−Ψ2 +

Θ2

f

)
a(2)
x + 2i

Θω

f
a(1)
x + iΘ

k

f
a

(1)
t +

ωk

f
a

(2)
t +

+2ikΨα , (6.91)

0 =
ik

ρ2
a′(1)
x +

iω

f
a
′(1)
t +

1

f

(
a
′(2)
t Θ− a(2)

t Θ′
)

+ 2Ψ′β − 2β′Ψ , (6.92)
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f
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′(2)
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f

(
a
′(1)
t Θ− a(1)

t Θ′
)

+ 2Ψ′α− 2α′Ψ . (6.93)

A comment is in order here. This system of equations could be written in a more

compact form by using complex field variables η and a
(1)
t,x ± ia

(2)
t,x . One has to keep in mind

then that the field equations one needs to solve for the QNM spectrum for the complex
conjugate fields are not the complex conjugate equations since one has to demand infalling
boundary conditions on the fields and on the complex conjugate fields simultaneously. This
aspect is somewhat clearer if one works with the (formally) real field variables on paying
the price of writing a somewhat lengthy system of equations.

Up to linear order in perturbations, there are three decoupled sectors in the system.
Two of them belong to the ‘(0)− (3) sector’ and they are a copy of the U(1) holographic
superconductor, already extensively studied, and the preserved U(1) gauge symmetry.
The main features of the spectrum of this sector have already been presented in section
6.3 since it is also a subsector of the ungauged model. On the other hand, the so called
‘(1)− (2) sector’ has not been studied before. The physics in this sector is quite different
from the holographic superconductors studied up to now and we will concentrate on it in
the rest of this chapter.

Before studying the quasinormal modes we will focus on a simpler problem, namely
the conductivities.
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6.4.3 Conductivities

In order to study the conductivities via Kubo formulae, it is enough to solve the linearized
equations in the limit k = 0. The retarded correlators that we are interested in have the

form GR ∼
〈
Jx(c), J

x
(c′)

〉
R

, with c, c′ color indices.

We will be applying the prescription of [57] for computing Green functions in the
presence of holographic operator mixing. If one has a set of fields ΦI , the two-point
correlation functions will be

GIJ = lim
Λ→∞

(
AIMFMk J(Λ)′ + BIJ

)
, (6.94)

where the matrix Fk(r) is nothing but the bulk-to-boundary propagator for the fields,
normalized to be the unit matrix at the boundary. The matrices A and B can be read off
from the on-shell renormalized action. The corresponding DC conductivities are given by
the following Kubo formula

σIJ = lim
ω→0

(
i

ω
GIJ(ω, 0)

)
. (6.95)

At vanishing momentum the longitudinal components of the gauge field perturba-
tions decouple from the scalar perturbations, as well as from the temporal components
of the gauge fields. Moreover, the constraints (eqs. (6.84-6.85) and(6.92-6.93)) become
trivial. Since we know that the system splits into the (0) − (3) and the (1) − (2) sectors

we can rearrange the a
(c)
x fields in two vectors

ΦT
k (0−3)(ρ) = (a(0)

x (ρ), a(3)
x (ρ)) and ΦT

k (1−2)(ρ) = (a(1)
x (ρ), a(2)

x (ρ)) . (6.96)

One can check that in our case the A,B matrices take the simple form

A = −f(r)

2
I , B = 0 , (6.97)

for both sectors. A priori we would have a 4 × 4 matrix of conductivities. We know
however that the fluctuations in the (0)− (3) and the (1)− (2) sector decouple from each
other. Therefore we can restrict ourselves to study two independent 2 × 2 matrices of
conductivities.

6.4.4 Conductivities in the (0)− (3) sector

The k = 0 equations of motion for a
(0)
x and a

(3)
x can be simplified by using the already

defined a
(−)
x and a

(+)
x fields. This results in

0 = fa′′(+)
x + f ′a′(+)

x +
ω2

f
a(+)
x , (6.98)

0 = fa′′(−)
x + f ′a′(−)

x +

(
ω2

f
− 2Ψ2

)
a(−)
x . (6.99)

We see that the resulting system of equations is now completely decoupled. We only have
two diagonal conductivities σ++ and σ−−, corresponding to the unbroken U(1) diffusive
sector and a mode which is associated to the broken U(1) coupling to the condensate. The
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former is the same as in the unbroken phase and of no further interest for us. The latter
is again the well-studied U(1) s-wave superconductor. Its conductivity has been already
calculated in [71]. To check our numerics we have re-calculated it and in Figure 6.12 we
show its behavior. It coincides completely with [71]. The real part shows the ω = 0 delta
function characteristic of superconductivity5. Numerically this can be seen through the
1/ω behavior in the imaginary part. The Kramers-Kronig relation (see (A.13) in appendix
A.1) implies then infinite DC conductivity. The real part of the AC conductivity also
exhibits a temperature dependent gap.
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Figure 6.12: Real part (left) and imaginary part (right) of the conductivity as a function
of frequency. The plots correspond to temperatures in the range T/Tc ≈ 0.91− 0.41, from
red to purple. As expected, the plots reproduce the ones of [71].

6.4.5 Conductivities in the (1)− (2) sector

The relevant equations for the (1)− (2) sector read

0 = fa′′(1)
x + f ′a′(1)

x +

(
ω2

f
−Ψ2 +

Θ2

f

)
a(1)
x − 2i

Θω

f
a(2)
x , (6.100)

0 = fa′′(2)
x + f ′a′(2)

x +

(
ω2

f
−Ψ2 +

Θ2

f

)
a(2)
x + 2i

Θω

f
a(1)
x . (6.101)

These equations obey the symmetry

(a(1)
x → a(2)

x , a(2)
x → −a(1)

x ) . (6.102)

One can see that the fact that Θ(1) = 0 implies that a
(1)
x (1) is independent of a

(2)
x (1),

so, after imposing infalling boundary conditions at the horizon, the parameter space of
boundary conditions is two-dimensional, as expected.

In the unbroken phase the system completely decouples

0 = fa′′(c)x + f ′a′(c)x +
ω2

f
a(c)
x . (6.103)

5In general, this behavior is also typical of translation invariant charged media, in which accelerated
charges cannot relax. However, working in the probe limit we effectively break translation invariance and
therefore the infinite DC conductivity is a genuine sign of superconductivity.
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Diagonal Conductivities σ11 & σ22

The diagonal components of the conductivity, σ11 and σ22 have the same behavior, as
could be anticipated from the equations (6.100),(6.101). Henceforth, we will only refer to
σ11, but all the conclusions also apply to σ22.

Figure 6.13 shows the conductivity for several values of the temperature. We find
that these conductivities also show delta-function singularities at ω = 0.
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Figure 6.13: Real (left) and imaginary (right) parts of σ11 versus ω for five different
temperatures chosen in a range T/Tc ≈ 0.91 − 0.41, from red to purple. Im(σ11) clearly
blows up as ω → 0.

The strength of the delta function can also be computed. It is given by the residue
of the imaginary part of the conductivity at ω = 0,

lim
ω→0

ω Im(σ11) ∼ ns . (6.104)

The residue is plotted in Figure 6.14 as a function of T/Tc. As expected, it starts
growing from a zero value. At T/Tc ≈ 0.65, ns reaches a maximum and starts decreasing
fast, changing sign at T/Tc = 0.49. To study ns down to very low temperature we would
need to go beyond the probe limit. However, as we will comment below, this behavior of
ns can be understood in light of the QNM spectra.

Let us look in detail at the behavior of the real part of the conductivity (left plot
in figure 6.13). For high enough temperatures the optical conductivity is almost constant,
Re(σ11) = 1, which is expected since in that regime the dynamics is described essentially
by (6.103). As soon as we decrease the temperature, the onset of the DC conductivity also
decreases and only approaches the constant value asymptotically, when ω becomes large
enough and thus the term ω2

f dominates, turning equations (6.100),(6.101) approximately
into (6.103). According to the Ferrell-Glover sum rule, the area missing as we lower the
temperature is proportional to ns.

Interestingly, at low temperatures the real part of σ11 starts developing a bump at
small values of ω (0 < ω . 2). The bump leaves less area for the delta function to cover,
which explains why ns starts decreasing approximately at this temperature. Moreover,
the appearance of these bumps can be traced back to the fact that for a subleading gauge
QNM with small | Im(ω)|, Reω(T ) >> Imω(T ) holds. Hence, the conductivities affected
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Figure 6.14: Residue at ω = 0 as a function of T/Tc.

by this mode start developing the reminiscence of a resonance at a particular frequency.
We have studied the spectrum of low lying QNM for the gauge sector and found that

this mode corresponds in the normal phase to the lowest excitation of a
(1,2)
µ , ω = −1.5i.

But it is at lower temperatures where one finds a remarkable fact: at T/Tc ≈ 0.395 the
mode becomes unstable, and indeed, as we will see, several physical quantities modify
their behavior at that temperature.

Therefore, we expect a new phase transition around T/Tc ≈ 0.395, due entirely to
the (1)− (2) sector. Since this phase transition seems to be triggered by an unstable mode
in the vector sector it most likely leads to the formation of a p-wave condensate. We will
study this possibility in section 8.

Off-diagonal conductivities σ12 & σ21

The off-diagonal elements of the conductivity matrix are also related via the symmetry
(6.102) and therefore obey σ12 = −σ21. Therefore, it is enough to comment on σ12,
although the conclusions are valid for both components.

The form of σ12 is plotted in Figure 6.15 for various different temperatures as a func-
tion of frequency. At T/Tc = 1 the system is practically decoupled, so for all temperatures
the off-diagonal conductivity goes to zero as ω increases.

Observe that σ12(ω) behaves as a normal conductivity. Its real part vanishes as
ω → 0, whereas the imaginary part tends to a constant value.

6.4.6 Quasinormal Modes

Let us finally study the QNM spectrum in the (1) − (2) sector. This sector contains the
fluctuations η, aiµ with i = 1, 2, therefore in the unbroken phase the spectrum will contain
two diffusive modes associated with the two gauge fields. The fluctuations of the scalar
field in the normal phase were already discussed in section 6.3. Analyzing the quasinormal
mode spectrum in the broken phase amounts to solving the system of equations (6.86)-
(6.93). Details of the computation can be found in appendix A.2.
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Figure 6.15: Real (left) and imaginary (right) part of σ12 as a function of ω for T/Tc ≈
0.91− 0.41, from red to purple.

Type II Goldstone mode

As expected within the (1) − (2) sector we find a type II Goldstone mode. As in the
ungauged model for small enough momentum its dispersion relation can be fitted to

ω = ±Bk2 − iCk2 . (6.105)

Figure 6.16 shows the dispersion relation for various values of the temperature in the
hydrodynamic regime. The quadratic behavior with momentum is apparent.
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Figure 6.16: Plots of Re(ω) (left) and Im(ω) (right) as a function of the momentum. Thick
lines correspond to data and thin lines to quadratic fit. At T = 0.995Tc the real quadratic
parameter B(T ) shows a maximum, see Figure 6.17. Relation (6.105) is fulfilled with high
accuracy.

The temperature dependence of B and C is plotted in Figure 6.17. The value at
T = Tc is given by the same value as in the ungauged model (6.49) and in fact can also
be cross checked by calculating the scalar mode dispersion relation in the unbroken phase
at T = Tc since the QNMs must be continuous through the phase transition. We find a
rather surprising dependence of B with the temperature. It starts at a finite value at the
transition and then it rises rather sharply and falls off slower. It reaches a minimum at
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T ≈ 0.49Tc, temperature at which we found the change of sign in the residue of current-
current correlators. We also find another peak around T ≈ 0.4Tc. We expect that it is
again related with the instability found in the gauge sector around that temperature. It
would also be interesting to calculate B(T ) using an alternative method e.g. as the sound
velocity can be calculated from thermodynamic considerations alone. In order to do this
one would need to formulate the hydrodynamics of type II Goldstone modes. We are
however not aware of such a hydrodynamic formulation and leave this for future research.
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Figure 6.17: B (left) and C (right) as a function of T/Tc. The zoom-in shows the peak
of C close to the transition. Furthermore at T ' 0.4Tc a sharp peak shows up in both
coefficients. We relate this feature also to the instability arising in the vector sector.

The attenuation C(T ) decreases rapidly with temperature. For temperatures T/Tc <
0.9 it is negligible and the width of the type II Goldstone scales with k4 in the hydro-
dynamic limit. This fast decreasing with temperature reflects that this mode propagates
almost ideally in the fluid at low temperature. No further ungapped modes can be found
in this sector.

Higher quasinormal modes

Higher quasinormal modes correspond to gapped modes in the QNM spectrum and thus
represent subleading contributions to the low energy Green’s functions. We will focus here
only on two of them: the continuation of the two diffusive modes of the unbroken phase
and the special gapped mode that appears as the partner mode of the type II Goldstone
mode in the field theoretical model.

Analyzing the first one is interesting in order to understand if also a qualitative
change in the response pattern, such as that characterized by T∗ in the U(1) supercon-
ductor sector, exists in the (1) − (2) sector. Since in this sector there exist however two
diffusive modes in the unbroken phase it is also possible that the diffusive modes do not
simply develop a gap but that they pair up and move off the imaginary axis in the broken
phase. Indeed as we will see this is what happens.

The special gapped mode corresponds to a mode that is associated to the complex
conjugate of the scalar perturbation in the unbroken phase. At k = 0 and µ = 0 the scalar
mode and its complex conjugate are degenerated. As we lower the temperature they split
into two different modes. When we reach T = Tc, the lowest scalar mode becomes the
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type II Goldstone mode whereas the mode of the complex conjugate scalar field turns into
the special gapped mode. The gap of this mode is expected to be given by the tree level
result (6.16) [65].

Fate of diffusive modes: As already mentioned, in the (1) − (2) sector we have two
degenerate diffusive modes in the unbroken phase. When going through the phase tran-
sition these modes can therefore pair up and move off the imaginary axes such that their
quasinormal frequencies develop real parts and lie symmetrically around the imaginary
axis. We expect therefore that in the low energy limit the dispersion relation takes the
form

ω = Γ(T ) +M(T )k2 , (6.106)

where both coefficients are complex functions and the second mode is located at ω′ = −ω∗.
Besides, we expect the QNMs to be continuous through the phase transition, which in
particular means that for T = Tc, our pseudo-diffusive modes should match the unbroken
phase values, i.e. Γ(Tc) = 0 and M(Tc) = −i.

The modes at zero momentum are plotted in Figure 6.18. We see that indeed the
gap vanishes as T → Tc, whereas the modes split and develop a real part as we decrease
the temperature. This last feature is exclusive of the non-Abelian system and thus does
not take place in the usual U(1) holographic superconductor, where the gap is purely
imaginary (see [63] and comments above). Close to the phase transition, they present a
linear behavior in temperature,

Γ(T ) = (4.1− 0.8 i)

(
1− T

Tc

)
near Tc . (6.107)
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Figure 6.18: Imω versus Reω at k = 0 as a function of the temperature. The shape of the
figure is compatible with T symmetry, since there are two pseudo-diffusive modes. Having
Reω(k = 0) 6= 0 is characteristic of the non-Abelian case.

The temperature dependence of the coefficient of the momentum in (6.106),M(T ),
is shown in Figure 6.19. The real part rises very steeply just below the phase transition.
The imaginary part approaches the unbroken phase value at the critical temperature, i.e.
M(Tc) = −i, as is expected for the pseudo-diffusion modes to continuously connect to the
normal diffusion modes through the phase transition. Notice ImM(T ) decreases when
lowering the temperature.
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Figure 6.19: Real (left) and imaginary (right) part ofM(T ) as a function of T/Tc. As the
temperature approaches Tc, the value of M(T ) reaches the one prescribed by continuity
through the phase transition.

Another check of the fact that the pseudo diffusion modes come from the pairing
up of the diffusion modes of the normal phase is that their dispersion relation at the
phase transition matches. Therefore the two diffusive modes are continuous through the
transition, as expected for second order phase transitions, however instead of simply de-
veloping an imaginary gap to drop out of the hydrodynamic spectrum as for the usual
U(1) superconductor, they pair up in two modes that on top of this gap also develop a
real part.

The fact that Re(ω) does not vanish for these modes implies that sufficiently close
to Tc and in the limit k = 0, the late-time response of the perturbed state will present an
oscillatory decay of the perturbations, meaning that, contrary to the U(1) case, there will
not be a temperature at which the late-time behavior changes qualitatively.

Special Gapped mode: Seeking for this mode is computationally much more involved.
Its behavior is characterized by a gap that is proportional to µ. In particular, in [65] it
was argued that a type II Goldstone mode is accompanied by a gapped mode obeying
ω(0) = qµ with q being the charge of the corresponding field. In our conventions here we
have q = 1. So we have to look for a mode with ω(k = 0) = µ. Furthermore we expect
that it connects to the lowest mode of the complex conjugate scalar in the unbroken phase.

In Figure 6.20 we depict such mode at zero momentum with respect to the chemical
potential µ̄ in numerical units. Notice that the mode is continuous at the phase transition,
as expected. We observe the linear behavior with the chemical potential that is predicted
theoretically, at least near µ̄c. It is very difficult to do the analysis when µ̄ > 6 due to
the high computational power demanded to carry out the computation. The mode shows
of course also a non-vanishing imaginary part which is due to the dissipation at finite
temperature. We find that the real part above the phase transition can be approximated
by

Reω = 1.10 µ̄ near µ̄c . (6.108)

This result shows a deviation from the conjectured behavior. On the one hand this could
be due to uncertainties in the numerics. Let us emphasize here that the numerics involved
in tracking this mode through the phase transition were rather challenging. However, on
the other, it was recently found that the symmetry that this quantity is protected by a
larger (O(4)) symmetry present in absence of chemical potential ??. Since our model does
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not contain the generators of this enlarged symmetry the results don’t necessarily agree
with those findings.
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Figure 6.20: Real (left) and imaginary (right) part of the special gapped mode versus the
chemical potential. We encounter the expected linear behavior with µ. The plot covers
both the unbroken (dashed line) and the broken (solid line) phases.
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6.5 Discussion

The aim of this chapter was to study certain extensions of the spontaneous symmetry
breaking mechanism in holography. Among others, we were able to stablish the existence
of type II Goldstone modes in the quasinormal mode spectrum of a holographic theory
dual to a strongly coupled superfluid with U(2) symmetry.

We studied two models, one in which only the overall U(1) symmetry is gauged in
the AdS bulk and another in which all the U(2) symmetry is gauged. The most impor-
tant finding is that indeed there exist ungapped excitations represented by quasinormal
modes in the AdS bulk that show the expected but somewhat unusual quadratic dispersion
relation of type II Goldstone bosons.

For the ungauged model this does constitute a surprising result. After all, the
field theory dual to this model does not contain the necessary conserved currents that
would correspond to the generators of the global SU(2) symmetry. Standard proofs of the
Goldstone theorem take the existence of such conserved currents for granted. On the other
hand it is basically guaranteed that one can construct an effective field theory, a simple
Landau-Ginzburg type model, that captures the essential dynamics of the light modes, i.e.
the lowest lying quasinormal modes. Such a model would be essentially given by the field
theoretical model of section 6.2 and this guarantees the existence of the type II Goldstone
modes. However one can expect that such an effective field theory approach can capture
only the physics of the low lying QNMs but not the higher modes. This is indeed what
happens: the partner mode of the type II Goldstone mode in the ungauged model does
not behave in the supposed universal way ω = qµ. In contrast the corresponding mode in
the gauged model does obey this relation approximately.

One rather interesting perspective on the ungauged model opens up if we vary the
masses of the scalar fields in the AdS bulk. If the masses are slightly different, then at
the critical temperature only one of the two scalars will feature an ungapped QNM (the
one with smaller mass). The lowest scalar mode of the second one will still be gapped at
that temperature. As one goes through the phase transition we do not expect this mode
to become massless at lower temperatures. Rather it should become a pseudo-Goldstone
mode with a gap that is proportional to the mass splitting. The appearance of the type II
Goldstone mode can then be interpreted as the effect of a symmetry enhancement at the
point in parameter space where the masses of the scalars become degenerate. Since this
symmetry is not represented by bulk-gauge fields we might call it an accidental symmetry.
At this point it is difficult to resist the temptation to draw a parallel to the conjectured
symmetry enhancement of high Tc superconductors. In [72] it was suggested that the
phase diagram of high Tc superconductors can be captured by a unified model with and
enhancement of the SO(3)×U(1) symmetry of rotations and electromagnetism to a larger
SO(5) symmetry. Since high Tc superconductors are d-wave rather than s-wave it remains
to be seen how our symmetry enhancement mechanism and the resulting type II Goldstone
mode can be combined with holographic models of d-wave superfluids such as [73,74] 6.

The second model we studied has bulk gauge fields for all of the U(2) symmetry.
There are several important differences compared to the ungauged model. The most
eye-jumping one is that now we can also define and study the full set of conductivities
corresponding to the U(2) symmetry. Nothing special occurs of course in the unbroken

6The appearance of unexpected massless modes related to symmetry enhancement in the context of
Bose condensates was as well found in [75]
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phase, there are simply four diagonal conductivities for all the four bulk gauge fields. In
the broken phase there are however interesting new phenomena. In particular there are
now off-diagonal conductivities that do not simply vanish. In addition we have found that
also the diagonal conductivities in the (1) − (2) sector, the one containing the type II
Goldstone mode, have delta-function poles at zero frequency. In this sense this sector is
still superconducting. Moreover, going to a decoupling basis for this sector leads to a very
suggestive result: the conductivity develops a Drude-like peak characteristic of metals on
top of the infinite DC conductivity. On the other hand Landau’s criterion for superfluidity
does not hold in this sector. Recall that this says that superfluidity takes place for flow
velocities v that are smaller than the critical velocity vc where vc = miniωi(k)/k for all
excitation branches i and over all momenta k [76,77]. For a type II NG mode the critical
flow velocity is expected to be zero; we explore this in the next subsection.

A second difference concerns the fate of the diffusive modes. In the unbroken phase
there are simply four diffusive modes, one for each gauge field in the AdS bulk. In the
broken phase there is one purely imaginary gapped ‘pseudo-diffusive’ mode in the (0)−(3)
sector, i.e. in the sector isomorphic to the U(1) s-wave superfluid. Since there is still one
unbroken U(1) symmetry there is also a normal diffusive mode for the preserved U(1)
symmetry. In the (1) − (2) sector we have however two diffusive modes in the unbroken
phase. Going through the phase transition these two modes can pair up and move off
the imaginary axis, becoming a pair of usual gapped quasinormal modes with real and
imaginary parts in their frequencies. Generically the imaginary part of this gap is smaller
(i.e. it lies closer to the real axis) then the gap of the purely imaginary mode in the
(0)− (3) sector. A large, generic perturbation will in its late time response pattern excite
both the (0)− (3) and the (1)− (2) sector. The late time response of the U(2) invariant
order parameter

√
|O1|2 + |O2|2 will therefore be dominated by these paired modes and

show an oscillatory behavior in contrast to the response pattern of the order parameter in
the U(1) case [67].

Another remarkable QNM is the special gapped mode, i.e. the partner mode of the
type II NG boson. At very high temperatures this mode and the one which at T = Tc
leads to the sound mode are degenerate. As we lower the temperature the gap of these
modes becomes different and, for T < Tc, it is expected that Re(ω(k = 0)) for the Special
Gapped mode is proportional to qµ [29, 65]. In particular we find ω ∼ 1.1µ even if q = 1
in our conventions. The deviation we found is possibly related to the absence of certain
generators in our model ??. Numerical uncertainties cannot, however, be discarded. It
would be interesting to test this by considering an enlarged symmetry model in the bulk.

79



7
Spontaneous Symmetry Breaking II

In this section we continue our study of the SSB in holography. More concretely, we answer
an opened question that arose in our model: Is the Landau criterion still valid?. Which
are the implications of applying such criterion on the usual HS and on the non-abelian
extension that we have presented?.

In order to answer these questions we investigate the stability of the different phases
in presence of superflow via a QNM analysis of the U(2) model. This automatically will
give new and valuable information about the usual U(1) holographic superfluid since a
subsector of the linear fluctuations in the U(2) model is isomorphic to it.

The chapter is organized as follows: In section 7.1 we first review the concept of
the Landau criterion. After this, in section 7.2 we explain how to introduce superfluid
velocity in holography following [78,79]. Making the comparison of the free energy of the
superflow with the normal phase we are able to reproduce the usual phase diagram. Then,
in section 7.3, we study the QNM spectrum with the superflow. In particular we calculate
the direction dependent speed of sound. We indeed find that as the superfluid velocity
is increased the speed of sound in opposite direction to the superflow is diminished and
eventually vanishes at a critical velocity vc. Increasing the superfluid velocity even further
this sound velocity becomes negative. This is to be interpreted as the appearance of a
negative energy state in the spectrum. In principle that would be enough to argue for
instability but at basically no price the QNM analysis can give us an even clearer sign
of instability. It is well-known that the imaginary part of the QNMs have to lie all in
the lower half plane. If they fail to do so an exponentially growing mode with amplitude
φ ∝ exp(Γt) appears in the spectrum. It is not necessary for this mode to have zero
momentum. In fact we see that if we increase the superfluid velocity beyond the critical
value the imaginary part of the sound mode quasinormal frequency moves into the upper
half plane. And it does so attaining a maximum for non-zero momentum. We see that
this behavior is necessary to connect the phase diagram continuously to the normal phase.
Then moving slightly aside we study the conductivities with superflow. This has been done
before but only in the transverse sector and here we present results for the longitudinal
sector.

Finally, in section 7.4 we briefly investigate the fate of the type II Goldstone mode in
the U(2) model. We study both the gauged and the ungauged model of previous chapter.
Landau’s criterion suggests that these setups do not sustain any finite superflow since
min ε(p)

p = 0 for quadratic dispersion relations. Again we can not only look at the real
part but also at the imaginary part. We indeed find poles in the upper half plane for
non-zero momenta for all temperatures and superfluid velocities for the gauged and the
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ungauged model 1.

Let us also mention some shortcomings of our analysis. We always work in the
so-called decoupling limit in which the metric fluctuations are suppressed. Therefore we
do not see the pattern of first and second (and fourth) sound typical for superfluids. In
the decoupling limit only the fourth sound, the fluctuations of the condensate, survive.
Another shortcoming is that we can apply the Landau criterion only to the QNMs. As in
superfluid Helium there exist most likely other excitations, such as vortices, that might
modify the value of the critical velocity. The question of if and how solitons of holographic
superfluids determine the critical superfluid velocity has been investigated in [83].

1Models with one U(1) gauge field and two complex scalars similar to our ungauged model were studied
before in [80] and recently in [81] (see also [82]). There the two scalars had however different masses and
this should prevent the appearance of the ungapped type II Goldstone mode.
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7.1 The Landau criterion

The characteristic property of a superfluid is its ability to flow totally frictionless through
thin capillaries. It is useful to think of a superfluid as a two component liquid. One
component is the ground state with a macroscopic occupation number and the other is the
normal component, subject to friction and viscosity. At very low temperatures the normal
component can be described as the gas of elementary quasi particle excitations above the
macroscopically occupied ground state. A famous argument due to Landau [76,84,85] sets
a limit to the flow velocity that the condensate can obtain. The essence of the argument is
as follows. At zero temperature the energy of a quasiparticle excitation of momentum ~p is
ε(~p) in the rest frame of the condensate. If we imagine a situation in which the condensate
moves with constant velocity ~v the energy cost in creating a quasiparticle is

ε′(~p) = ε(~p) + ~v · ~p . (7.1)

In particular if ~p is anti-parallel to the flow velocity ~v this energy is diminished and
eventually goes to zero. If ε′ < 0 it is energetically favorable for the system to create
elementary excitations and populate states with this effective negative energy. Since the
superfluid velocity ~v is kept constant this means that eventually the condensate gets
completely depleted and the superflow stops. It follows that there is a critical flow velocity
above which the superfluid ceases to exist. The famous Landau criterion for the existence
of superflow is therefore

vmax = min
ε(p)

p
, (7.2)

where the minimum over all elementary excitation branches has to be taken. It is known
for example for superfluid helium that the low temperature normal component can be well
described as a gas of phonons and rotons and that the critical velocity is not determined
by the minimum of the phonon and roton dispersion relation but rather by the excitation
of vortices, resulting in a much lower critical velocity.

At higher temperatures there is always a normal component present and therefore the
energy of an excitation of a superfluid with superflow can not be obtained by a (Galilean)
boost as in equation (7.1). It is however still true that the energy will depend on the
superfluid velocity and that it can become negative if the superfluid velocity is too large.
At finite temperature the criterion is therefore that the superflow is stable as long as the
energy of all quasiparticle excitations is positive. If in a superfluid the only low energy
excitations are the phonons that criterion is basically the statement that the superflow
dependent sound velocity is positive for all directions.

In [78, 79] an s-wave superfluid in 2+1 dimensions with superflow was constructed
and it was pointed out that there is indeed a critical velocity above which the superfluid
state ceases to exist. The phase diagram obtained in these works was based on comparing
the free energy of the superflow with the free energy of the normal phase. It turned out
that the phase transition from the superfluid phase to the normal phase was either first
or second order depending on the temperature. Remarkably enough, in 3+1 dimensions
there is some range of masses of the condensate for which the phase transition is always
of second order type [86]. Another way of establishing the phase diagram has been used
in [87]. There the supercurrent was fixed and it was argued that the phase transition is
always first order.
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The physical significance of the comparison of the free energies of the state with
superflow and the normal state is not totally clear, since for all temperatures below the
critical temperature the normal state is unstable towards condensation to the superfluid
state without superflow. Indeed the superflow by itself is a metastable state only [85] as
emphasized already in [78]. We propose a different method of characterizing the phase
diagram more directly related to the stability criterion (7.2).
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7.2 The U(2) superfluid with superflow

We consider the gauged model introduced in the previous chapter (see 6.4). In order to
find background solutions corresponding to a condensate with non-vanishing superfluid
velocity we proceed as follows. First note that the scalar field λ(r) can be set to zero by a
U(2) gauge transformation. For the scalar Ψ we demand then that the non-normalizable
mode vanishes. By a residual U(1) gauge transformation we can also take Ψ to be real.

Now we need to define what we mean by the superflow. Let us discuss this for
a moment from a field theory perspective. In a multi-component superfluid with U(2)
symmetry we can in principle construct the four (super) currents

Jµa = Φ†Ta∇µΦ− (∇µΦ)† TaΦ , (7.3)

where ∇µ = ∂µ− iAµaTa is the covariant derivative and Φ is the condensate wave function
which transforms as a doublet under U(2). If the condensate is such that one of the spatial
currents does not vanish we can speak of a state with non-vanishing superflow. By a gauge
transformation we can always assume the condensate to take some standard form, e.g.
Φ = (0, φ)T and represent the non-vanishing superflow in terms of constant gauge fields.
Since we are interested in the case where we break the U(2) symmetry spontaneously
to U(1) we only allow a non-zero gauge field in the overall U(1) corresponding to the
generator T0. Furthermore by an SO(2) rotation we can take the gauge field to point
into the x direction. From (7.3) it is easy to see that such a superflow has non-vanishing

currents J
(0)
x and J

(3)
x . In order to find solutions with non-trivial charge we also need to

introduce a chemical potential. Again in order to preserve the full U(2) symmetry we also
allow a chemical potential only for the overall U(1) charge.

Returning now to Holography these considerations determine the ansatz for the
gauge fields to be of the form

A(0) = A
(0)
t (r)dt+A(0)

x (r)dx , A(3) = A
(3)
t (r)dt+A(3)

x (r)dx . (7.4)

While we introduce sources only for A(0) the fact that also the current J
(3)
µ is non-

vanishing demands that A(3) 6= 0. The physical interpretation for this fact is that the
system forces the appearance of a charge density ρ(3) 6= 0 (as noticed already in previous

chapter) and a current J
(3)
x in the vacuum with superflow. This is in turn closely related

to the presence of type II Goldstone bosons in the spectrum [26].

amounts

At this point it is important to note that the above identification is only valid in the
superfluid phase, that is, whenever Ψ 6= 0. A constant background value of the gauge field
Ax in the normal phase is not physically meaningful since there is no notion of superflow.

For the reasons outlined above we choose the asymptotic boundary conditions for
the gauge fields to be

A
(0)
t (r →∞) = 2µ̄ , A

(3)
t (r →∞) = 0 ,

A(0)
x (r →∞) = 2S̄x , A(3)

x (r →∞) = 0 , (7.5)

where µ̄ is to be identified with the chemical potential of the dual theory and S̄x is related
to the superflow velocity. We have included a factor of two in the definitions of µ̄ and
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S̄x for the following reason. The background field equations can be recast in the form of
those derived from the U(1) model in [78,79] by using the field redefinitions

A0 =
1

2
(A

(0)
t −A

(3)
t ) , ξ =

1

2
(A

(0)
t +A

(3)
t ) ,

Ax =
1

2
(A(0)

x −A(3)
x ) , ς =

1

2
(A(0)

x +A(3)
x ) , (7.6)

for which the background equations now read

Ψ′′ +

(
f ′

f
+

2

r

)
Ψ′ +

(
A2

0

f2
− A2

x

r2f
− m2

f

)
Ψ = 0 , (7.7)

A′′0 +
2

r
A′0 −

2Ψ2

f
A0 = 0 , (7.8)

A′′x +
f ′

f
A′x −Ax

2Ψ2

f
= 0 , (7.9)

ξ′′ +
2

r
ξ′ = 0 , (7.10)

ς ′′ +
f ′

f
ς ′ = 0 . (7.11)

It can be checked that we recover the usual U(1) system describing the U(1) holographic
superconductor in the presence of superfluid velocity (see for instance [86]). The chemical
potential µ̄ is therefore the chemical potential for the field A0 which plays the role of
the temporal component of the (single) gauge field, and Ax plays the role of the spatial
component of the single gauge field of [78,79,86]. This explicitly shows that the background
of the U(2) model is identical to that of the U(1) superconductor, even for a nonzero
superfluid velocity.

An immediate consequence of the fact that the background equations are those of
the U(1) holographic superfluid is that, at first sight, the U(2) system seems to be able to
accommodate a superflow. However, as already argued, this is in direct contradiction with
the Landau criterion of superfluidity [85] due to the presence of a type II Goldstone in the
spectrum. Of course, having found solutions to the equations of motion does not yet say
anything about the stability. In fact as we will explicitly see the type II Goldstone will
turn into an unstable mode and therefore make the whole U(2) solution with superflow
unstable.

Equations (7.7)-(7.9) are non-linear and have to be solved using numerical methods.
Notice that (7.10) and (7.11) are decoupled. They correspond to the preserved U(1)
symmetry after having broken spontaneously U(2) → U(1). The asymptotic behavior of
the fields close to the conformal boundary is

A0 = µ̄− ρ̄

r
+ . . . ,

Ax = S̄x −
J̄x
r

+ . . . , (7.12)

Ψ =
ψ1

r
+
ψ2

r2
+ . . . .
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The asymptotic quantities are related to the physical ones by

µ̄ =
3

4πT
µ , ρ̄ =

9

16π2T 2
ρ ,

S̄x =
3

4πT
Sx , J̄x =

9

16π2T 2
Jx , (7.13)

ψ1 =
3

4πT
〈O1〉 , ψ2 =

9

16π2T 2
〈O2〉 .

We are working in the grand canonical ensemble, then we fix the chemical potential
µ. The temperature is defined by T/µ ∝ 1/µ̄. For studying the evolution of the condensate
as a function of the superfluid velocity, the natural way to proceed is to work with Sx/µ
as our free parameter together with temperature. Notice that both asymptotic modes of
the scalar field are actually normalizable [66]. From now on we stick to the O2 theory, for
which ψ1 = 0 and 〈O2〉 is the vev of a scalar operator of mass dimension two in the dual
field theory. Notice that the fields ξ and ζ corresponding to the unbroken U(1) are given
by

ξ = µ̄− ρ̄/r ,
ζ = S̄x , (7.14)

even with non-vanishing condensate.

The values of the condensate as a function of temperature and superfluid velocity
shown in Figure 7.1 reproduce the previous results of [78, 79]. In the plot and in the rest
of this chapter the temperature is measured with respect to the critical temperature of
the phase transition with no superfluid velocity, i.e. Tc ≈ 0.0587µ.
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Figure 7.1: The condensate for different values of the superfluid velocity, ranging from
Sx
µ = 0.005 (right) to Sx

µ = 0.530 (left).

7.2.1 Free Energy

In this section we compute the free energy of the condensed phase and compare it to the
free energy of the unbroken phase as done in [78, 79]. After appropriate renormalization
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of the Euclidean on-shell action and using the boundary conditions (7.12), the free energy
density reads

F = −TSren = −µ̄ρ̄+ S̄xJ̄x +

∫ ∞
1

dr

(
2r2A2

0

f
− 2A2

x

)
Ψ2 . (7.15)

In the normal phase Ψ = 0, regularity at the horizon forces the Ax gauge field to have
a trivial profile along the radial direction in the bulk and therefore not to contribute to
the free energy, i.e. J̄x = 0. This is in accordance with the fact that in absence of a
scalar condensate it is not possible to switch on a superfluid velocity anymore. Switching
on the spatial component of the gauge field in the normal phase describes a pure gauge
transformation that does not affect the free energy of the system. In the broken phase
instead, different superfluid velocities are physically distinguishable. It is important to
emphasize that one is actually comparing the normal phase at vanishing superfluid velocity
with the superconducting phase at different values of the superfluid velocity, and that
the normal phase is unstable towards condensation without superflow for any T < Tc.
Therefore, the physical relevance of this comparison is not completely clear. We will see
later on that actually the Landau criterion establishes a different transition temperature
for the superfluid phase. Nevertheless the free energy gives a natural first approach to
characterize the phase diagram of the system. We would like to remark that the superflow
phase is just a metastable phase, since the true background is the static condensed phase
which always has lower free energy [85], [78].
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Figure 7.2: Free energy of the condensed (solid line) and normal (dashed line) phases
for Sx

µ = 0.5 (left) and Sx
µ = 0.05 (right). The small plots show the behavior of the

condensate. The open circle corresponds to the critical temperature T̃ whereas the filled
circle corresponds to the spinodal point (max. overheating).

In Figure 7.2 the free energy of both the normal and condensate phase is plotted for
different values of Sx

µ . The different behavior for large and small values of the superfluid
velocity is apparent. For large superfluid velocity the transition is first order as can be
seen from the left panel in Figure 7.2, indicated by the open circle. Coming from low
temperatures the system can still be overheated into a metastable state until the point
of spinodal decomposition where the order parameter susceptibility ∂〈O〉/∂µ diverges,
indicated by the filled circle.
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For low superfluid velocities the normal phase free energy and the condensate free
energy match smoothly at a second order phase transition. The resulting phase space is
contained in Figure 7.6 and reproduces the previous analysis in [78,79].

The phase transition found from considerations of the free energy is however only
apparent. We call the temperature at which the free energies of the condensate phase
with superflow and the free energy of the normal phase coincide T̃ from now on. The
temperature at which the (second order) phase transition occurs without superflow we
will denote by Tc. As we will show now the superflow becomes unstable at temperatures
below T̃ as implied by the Landau criterion applied to the sound mode. This temperature
we denote by T ∗.
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7.3 Landau criterion for the U(1) sector

In this section we analyze the QNM spectrum of the (0) − (3) sector, which is identical
to the original U(1) holographic superconductor in the presence of superfluid velocity
[78, 79]. We focus on the behavior of the lowest QNM, the type I Goldstone boson, with
special emphasis on the velocity and the attenuation constant and their dependence on
the superfluid velocity and on the angle of propagation with respect to the flow.

To study the QNM spectrum we consider linearized perturbations around the back-
ground of the fields of the form δφI = δφI(r) exp[−i(ω t−|k|x cos(γ)−|k| y sin(γ)]. Specif-
ically we consider the fluctuations

δΨ̂T = (η(r), σ(r)) ,

δA(0) = a
(0)
t (r)dt+ a(0)

x (r)dx+ a(0)
y (r)dy , (7.16)

δA(3) = a
(3)
t (r)dt+ a(3)

x (r)dx+ a(3)
y (r)dy ,

where in the case of the gauge fluctuations we work with the linear combinations already

defined by (7.6), i.e. a
(−)
µ ≡ 1

2(a
(0)
µ −a(3)

µ ) and a
(+)
µ ≡ 1

2(a
(0)
µ +a

(3)
µ ). The linearized equations

are rather complicated and we list them in appendix A.3. The numerical techniques used
to obtain the hydrodynamic modes in coupled systems are well known. We don’t elaborate
on them here, referring the interested reader to [63] and [57].
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Figure 7.3: Sound velocity and damping for T = 0.7Tc and several superfluid velocities
from Sx/µ = 0 (blue) to Sx/µ = 0.325 (green). The radius represents the absolute value
of the sound velocity (left) and attenuation constant (right) as a function of the angle γ
between the momentum and the superfluid velocity.

In Figures 7.3 and 7.4 we represent the velocity and the attenuation of the type I
Goldstone mode. Its dispersion relation is given by ω(k) = vs(γ)k + (b− iΓ(γ))k2 at low
momentum 2. Figure 7.3 shows the angle dependent variation of the sound velocity and
damping constant for a fixed temperature and varying values of the superfluid velocity.
Figure 7.4 shows the same at fixed superfluid velocity but with varying temperature. As
one would expect for small Sx/µ and low enough temperature the velocity and damping

2The small real constant b does not play a role here since for small enough momentum the linear part
proportional to vs dominates.
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Figure 7.4: Sound velocity (left) and attenuation constant (right) for Sx/µ = 0.2 as
a function of the angle γ and for a range of temperatures from T = 0.85Tc (red) to
T = 0.57Tc (blue).

constant are almost isotropic. As the superfluid velocity is increased or the temperature
is increased the plot becomes more and more asymmetric. The anisotropy of the system
is such that we see an enhancement of the sound velocity and a reduction of the damping
in the direction of the superflow.
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Figure 7.5: Real (left) and imaginary (right) parts of the frequency of the lowest hydro-
dynamic mode (type I Goldstone mode) versus momentum at Sx/µ = 0.1 and γ = π for
different temperatures from T = T̃ = 0.970Tc (red) to T = 0.905Tc (blue). The instability
appears at T ∗ = 0.935Tc.

The most interesting feature of the system is found however in the opposite direction
to the superfluid velocity. As one can see in both plots, at γ = π the reduction in the
sound velocity is strongest and eventually both the attenuation constant and the sound
velocity vanish simultaneously. It is important to stress that this happens below the
temperature T̃ . If one continues increasing the temperature (or equivalently increasing
the superfluid velocity at fixed temperature) one finds that the real part of the frequency
becomes negative and that its imaginary part crosses to the upper half plane, as depicted in
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Figure 7.6: (Left) Phase diagram after the study of the QNMs . The grey dashed line
corresponds to T̃ , the apparent transition temperature found by direct analysis of the
free energy. At a certain point (disk) the transition in free energy changes from 2nd
order (dotted) to 1st order (dash-dotted). The black solid line corresponds to the critical
temperature in absence of superfluid velocity. The black dashed line signals the physical
phase transition at T ∗, the temperature at which the local instability appears. Points
1, 2 and 3 indicate the values of temperature and velocity used in the plot on the right.
(Right) Imaginary part of the lowest QNM for different temperatures at fixed Sx/µ = 0.2
and γ = π. Dashed lines were obtained in the normal phase whereas solid lines were
calculated in the superfluid phase.

Figure 7.5. This signals the appearance of a tachyonic mode. T ∗ is the temperature where
both the instability appears and the speed of sound becomes negative. This temperature
actually signals the end of the superfluid phase according to the Landau criterion, and
therefore we interpret it as the physical phase transition temperature.

In Figure 7.6 (left) we present the phase diagram resulting from the QNM analysis.
To illustrate the situation, on the right plot we show the behavior of the relevant QNM3

at three different points of the phase diagram4 (points labelled 1, 2, 3 on the left plot).
At T̃ < T < Tc in the unbroken phase (line 3N ), the mode that was responsible for the
transition to the homogeneous superfluid phase without superfluid velocity is shifted and
becomes unstable at finite momentum. This behavior reflects the fact that the system is
unstable for T ≤ Tc, the mode being shifted in momentum due to the constant nonzero
value of Ax. At T = T̃ (lines 2N,S) the lowest mode becomes unstable at k = 0. It is
at this point that the free energy of the homogeneous superfluid phase equals that of the
normal phase. Hence, the free energy analysis, which only captures the k = 0 dynamics,
predicts a phase transition at this temperature. For the particular superfluid velocity in
the plot the phase transition is second order. Finally, the fate of the QNM for T ∗ < T < T̃
is shown in lines 1N (for the normal phase) and 1S (for the homogeneous superflow phase).

3In the unbroken phase this is just the lowest scalar QNM, while in the broken phase it is the sound
mode at fixed Sx/µ.

4An analogous discussion and phase space was found at weak coupling in [88] after the appearance of
the first version of the paper in which this chapter is based.
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One can see that the Goldstone mode in the superfluid phase is unstable for a finite range
in momentum. Only at T ∗ this mode becomes stable again as shown in Figure 7.5. It is
at this temperature that the homogeneous superflow phase becomes stable according to
the Landau criterion since the sound velocity becomes positive (moreover the imaginary
part of the QNM dispersion relation lies entirely in the lower half plane).

Therefore the QNM results indicate that a phase transition occurs at a lower tem-
perature T ∗ < T̃ . Similarly, if we imagine the system at fixed temperature and start rising
the superfluid velocity, both vs and Γ will vanish at some value of Sx/µ, which we claim
is indeed the critical velocity vc of the superfluid, in the sense of the Landau criterion.

As a very interesting fact, notice that the imaginary part of the mode exhibiting
the instability has a maximum at finite momentum as well. The fact that the instability
appears at finite momentum suggests that there might exist a new (meta)stable intermedi-
ate phase above T ∗ with a spatially modulated condensate. Examples of such instabilities
towards spatial modulation have been discussed before in [89–91].

It is important to remark that, as shown in Figure 7.6 (right), for temperatures T ∗ <
T < T̃ the mode responsible for the transition to the (shifted) homogeneous stationary
phase (line 1N ) and the new unstable mode (line 1S) show maxima at different momenta.
We take this as an indication for existence of a new metastable in- homogeneous phase.
The wave number of the modulation in this phase should be determined by the maximum
of the line 1S .

Recall that the Landau criterion is formulated uniquely in terms of Re(ω). At a
given temperature the critical velocity corresponds to the superfluid velocity at which
vs = 0, or equivalently to the value of Sx/µ where Re(ω) becomes negative (see Figure
7.5). That the criterion is a statement about Re(ω) reflects the fact that it holds also at
zero temperature. At finite temperature the dispersion relation of the gapless mode gets
itself altered due to both the superfluid velocity and the temperature [85, 92], implying
that generically the critical value of Sx/µ at fixed temperature does not correspond to the
velocity of sound at the same temperature and vanishing superfluid velocity.

An extra comment is in order here regarding the phase of the system for Tc > T > T̃ .
The fact that in the unbroken phase the lowest QNM is unstable in this regime (see line
3N in Figure 7.6) of course indicates that the normal phase is unstable. Let us comment
on this. Since the condensate vanishes in the normal phase, there exists no physical notion
of superfluid velocity in this phase; different choices of Ax are just different frame choices.
In particular, a constant Ax simply acts as a shift in momentum in the unbroken phase, as
can be seen from the fact that the maximum of the QNM is centered at a momentum equal
to the value of the gauge field at the conformal boundary. Therefore the normal phase is
unstable for any temperature lower than the critical temperature Tc towards the formation
of a superfluid without superflow. On the other hand, we know that the homogeneous
condensate solution with finite velocity does not exist in this region, and moreover it is
unstable for T > T ∗. We see two possibilities for the completion of the phase diagram in
this region. First, the system could simply fall down to the true ground state, which is the
condensate with no superflow. At finite Sx/µ this is still a solution which minimizes the
energy albeit with a condensate that is not real anymore but rather has a space dependent
phase such that ~∇Φ = 0. This is simply the gauge transformed homogeneous ground state
without superflow. On the other hand, the fact that we found an instability at finite
momentum in the temperature range T ∗ < T < T̃ could indicate that there is a spatially
modulated (metastable) phase even in the range T ∗ < T < Tc, namely a striped superfluid.
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Due to the smooth appearance of the unstable mode we expect the transition at T ∗ to
that phase to be 2nd order, although this should be studied in detail by constructing the
correct inhomogeneous background. The explicit construction of this phase goes however
substantially beyond the purpose of this chapter.

7.3.1 Longitudinal conductivities in the U(1) sector

In this section we compute the conductivities in the (0) − (3) sector in the presence of
superfluid velocity. As far as we are aware, only the transverse conductivities have been
computed so far (see for instance [86, 87]). In contrast, here we focus on the longitudinal
conductivities. These are calculated, via the Kubo formula

σ =
i

ω
〈JxJx〉 , (7.17)

from the two point function

GIJ = lim
Λ→∞

(
AIMFMkJ (Λ)′

)
, (7.18)

where the matrix A can be read off from the on-shell action. F is the matrix valued
bulk-to-boundary propagator normalized to the unit matrix at the boundary. Since we
are only interested in the entry of the matrix corresponding to 〈JxJx〉 and the matrix

A is diagonal, we just need one element, i.e. Axx = −f(r)
2 . In order to construct the

bulk-to-boundary propagator one needs a complete set of linearly independent solutions
for the perturbations of the scalar and gauge fields. This implies solving the system of
equations given in appendix A.3 at zero momentum. The method follows closely the one
detailed in [57]. Notice that there is a surviving coupling between the gauge fields and the
scalar perturbations mediated by Ax. This makes the computation of the conductivities
more involved than in the case without superflow.
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Figure 7.7: Plots of the Real (left) and Imaginary (right) parts of the conductivity for fixed
Sx/µ = 0.05. Different lines correspond to different temperatures from T = 0.99Tc(red)
to T = 0.38Tc (blue).

Our results show little deviation from what was found at zero superflow. The most
interesting new feature is a low frequency peak which appears due to the coupling between
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Figure 7.8: Real (left) and imaginary (right) parts of the conductivity for fixed Sx/µ = 0.4.
Different lines correspond to different temperatures in the range T = 0.35Tc (blue) - 0.65Tc
(red).

the gauge and the scalar sectors induced by the superfluid velocity. In Figures 7.7 and
7.8 we present the results for different values of Sx/µ. As expected the behavior for
small superfluid velocity far from the critical temperature is the same as the one obtained
in [59]. Close to T ∗ a bump is generated in the real part of the conductivity at ω ≈ 0. This
indicates the existence of a mode with very small imaginary gap. The mode responsible
for this behavior is the pseudo-diffusive mode described in [63]. Due to the conserved
U(1) symmetry of the unbroken phase, there exists a diffusive (gapless) mode in the QNM
spectrum of the theory. Once the symmetry is spontaneously broken, this mode develops
a purely imaginary gap that increases as we lower the temperature. Therefore, for high
enough temperatures below the phase transition, the gap of the pseudo-diffusive mode
at k = 0 is very small and this implies the appearance of a peak at small frequencies
in the conductivity as we can see in the figures. If we lower the temperature, the bump
starts disappearing simply because the gap of the pseudo-diffusive mode becomes larger.
Although this mode was already present in the analysis of the conductivities without
superflow, it is only in our present case that it affects the conductivity, due to the coupling
at zero momentum between the gauge and scalar sectors mediated by the field Ax. The
size of the peak is proportional to the size of that coupling, i.e. it grows with Sx/µ.

95



Chapter 7. Spontaneous Symmetry Breaking II

7.4 Landau criterion for holographic Type II Goldstone bosons

In the previous section we studied the lowest lying QNM contained in the (0) − (3) or
U(1) sector of the theory for various values of the superfluid velocity and arbitrary angle
between the momentum and the direction of the superflow. In this section we extend the
analysis to the (1)− (2) sector, which is particular of the U(2) model and contains a type
II Goldstone boson in the spectrum.

The equations describing the system can be found in appendix A.4. In this case we
choose the momentum to lie always in the direction opposite to the superflow because, as
we will see, this mode is always unstable. Along with the scalar perturbations prescribed
by (7.16) we have to consider the following gauge perturbations in the (1)− (2) sector

A(1) = a
(1)
t (t, r, x)dt+ a(1)

x (t, r, x)dx ,

A(2) = a
(2)
t (t, r, x)dt+ a(2)

x (t, r, x)dx . (7.19)

Again we use the determinant method of [57] to find the QNMs in this sector.
Our results are summarized in Figure 7.9, where the dispersion relation for the lowest
QNM mode is shown at a particular superfluid velocity. We checked that the result is
qualitatively the same for arbitrary Sx/µ.

The type II Goldstone mode becomes unstable for arbitrarily small superfluid veloc-
ities and temperatures below T̃ . However, an important difference arises with respect to
the U(1) sector. The tachyonic mode does not become stable at any temperature below
T̃ , contrary to the situation in the (0) − (3) sector, there is no analogous of T ∗ in this
sector. This behavior can be easily interpreted as a reflection of the Landau criterion of
superfluidity in our holographic setup: according to (7.2), the critical velocity is zero in
any system featuring type II Goldstone bosons, hence for any T < T̃ the superfluid phase
is not stable at any finite superfluid velocity. In addition notice that the maximum in the
imaginary part occurs at higher values of the momentum as we lower the temperature.
In fact as we can see from the figure, lowering the temperature below T̃ the maximum in
Im(ω) first increases but then starts to decrease again as the temperature is lowered. At
the same time it moves out to ever larger values of the momentum.

Note that plots analogous to Figures 7.3 and 7.4 do not make any sense in the U(2)
model, since the (1) − (2) sector is unstable at any temperature we have been able to
check.

7.4.1 Ungauged model

As it happened before, the background solution is again that of the U(1) superfluid, hence
the superflow solution can be accommodated also in the ungauged model. The difference
now is that the type II Goldstone mode appears now in the fluctuations of the upper
component of the scalar field η, whose equation of motion reads

fη′′ +

(
f ′ +

2f

r

)
η′ +

(
(ω +A0)2

f
− (k −Ax)2

r2
−m2

)
η = 0 , (7.20)

and is completely decoupled of all other field fluctuations. As noticed in chapter 6 the
change of the background due to the condensate is enough to trigger the appearance of
the type II Goldstone.
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Figure 7.9: Real (left) and imaginary (right) parts of the dispersion relation of the lowest
QNM of the (1) − (2) sector in the gauged model for fixed Sx/µ = 0.15 and a range of
temperatures from T = T̃ = 0.95Tc (red) to T = 0.45Tc (blue) and momentum anti-parallel
to the superfluid velocity.
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Figure 7.10: Real (left) and imaginary (right) parts of the dispersion relation of the lowest
QNM in the (1)− (2) sector of the ungauged model for fixed Sx/µ = 0.25 and a range of
temperatures from T = T̃ = 0.853Tc (red) to T = 0.306Tc (blue). Momentum is taken
anti-parallel to the superfluid velocity.
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It is remarkable that in the ungauged model the type II Goldstone mode is still
unstable at any temperature below T̃ for any value of the superfluid velocity. Notice that
not including conserved currents for the SU(2) symmetry, the model does not satisfy all
theorems on existence of Goldstone bosons. However, the Landau criterion of stability is
still valid.

The ungauged model presents a qualitative difference with respect to the gauged
model. The value of the momentum at the maximum now decreases as we lower the
temperature. This is shown in Figure 7.10, where the dispersion relation of the type II
Goldstone at fixed superfluid velocity and for a long range of temperatures is plotted. For
arbitrary values of the superfluid velocity we obtained analogous results. increasing the
value of the maximum momentum.
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7.5 Discussion

We have analyzed the holographic realization of the Landau criterion of superfluidity. The
study was motivated by the appearance of type II Goldstone bosons in the model presented
in the previous chapter. The quadratic nature of the dispersion relation of the type II
Goldstone mode should be responsible for driving the system out of the superfluid phase
for arbitrarily small superfluid velocity.

Taking advantage of the fact that the usual U(1) holographic s-wave superconductor
is contained in the model, we have revisited the Landau criterion for holographic type I
Goldstone modes. When addressing the question of the stability of the condensate at
finite superfluid velocity the analysis of the free energy does not give the correct answer.
The QNM spectrum contains a tachyonic mode at finite momentum for temperatures
T ∗ < T < T̃ . As defined T̃ is the temperature at which free energies of the normal
and condensate phase coincide. In contrast, T ∗ is the temperature where the tachyonic
instability arises. Hence, the homogeneous superfluid is stable only for T < T ∗, see
Figure 7.6. The results for the sound velocity as a function of the angle γ between the
propagation direction and the superfluid velocity, depicted in Figures 7.3 and 7.4, are
perfectly consistent with this statement: at T = T ∗ and γ = π the velocity of sound
vanishes. This condition can be seen to be equivalent to the Landau criterion and signals
the existence of a critical velocity above which the superfluid is not stable anymore.

Since the maximum of the imaginary part of the unstable mode has non-vanishing
wave number it is natural to suggest that there might be another, spatially modulated
phase for T > T ∗. The nature or this inhomogeneous phase is however unknown and we
leave its explicit construction of even the question of its very existence for future research.

We have also computed the longitudinal conductivities for various superfluid veloci-
ties. We see a peak at ω = 0, due to the coupling with the spatial component of the gauge
field Ax. The peak decreases as we lower the temperature until it gets completely sup-
pressed (Figure 7.7). We believe that this enhancement of the DC conductivity is caused
by the gap of the pseudo-diffusive mode [63] which in the presence of superfluid velocity
is formed due to the coupling between the gauge and scalar sectors that takes place even
at k = 0.

Moving to the (1) − (2) sector, we worked out the impact of the superflow on the
type II Goldstone mode. We found that the Landau criterion is effective for arbitrarily
small superfluid velocity as depicted in Figure 7.9. The tachyon persists for the whole
range of temperatures and (finite) superfluid velocities we have been able to analyze.
Hence, we conclude that the critical superfluid velocity for this sector vanishes, in complete
accordance with the Landau criterion applied to modes with dispersion relation ω ∝ k2.
An analogous result holds for the type II Goldstone mode in the ungauged model.
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In this chapter we further explore the SSB mechanism and its consequences in holography.
To this end we make a deeper exploration of the phase space of the U(2) model introduced
in chapter 6. More concretely we focus on the instability that appeared at low temperatures
(see figure 6.14). In that model we found that the s-wave superfluid phase is unstable at
low temperatures and argued that this instability signaled the appearance of a non-trivial
p-wave order parameter. Therefore we would like to construct the true vacuum in that
regime. Doing so will lead us to the ideas of competition of phases and of mixed (with
both scalar and vector condensates) phases. Therefore not only internal symmetries but
spacetime symmetries will break down too. In addition, in this context the possibility of
studying the implementation of unbalanced mixtures will naturally appear. As we will
see, this implies the explicit breaking of some generators in addition to the spontaneously
broken ones.

Let us remark that this is not only interesting from the holographic point of view.
An interesting problem in the arena of unconventional superfluids and superconductors is
that of the competition and coexistence of different order parameters [93]. A paradigmatic
example in the realm of superfluids is that of 3He. At low temperature 3He presents two
distinct superfluid phases, denoted as A and B phases [94]. 3He-B is the low temperature
(and low pressure) phase and it corresponds to a p-wave superfluid, where the order
parameter transforms as a vector under spatial rotations. 3He-A is the higher temperature
(and pressure) superfluid phase. It is a chiral p-wave superfluid whose order parameter is a
complex vector, and time-reversal and parity symmetry are spontaneously broken. In the
domain of unconventional superconductors it has been shown in [95] that for doped three
dimensional narrow gap semiconductors such as CuxBi2Se3 and Sn1−xInxTe there is a
competition between s and p-wave superconducting states. Dialing the coupling constants
of the two different channels (corresponding to the s and p pairings) leads to a phase
diagram where both a p and an s-wave phase exist. Moreover, at the interface of both
phases a new p+is state appears. The order parameter for this phase is the combination of
a vector and a pseudoscalar, and breaks both time-reversal and parity symmetry, making
this state an interesting example of a topological superconductor1.

In this chapter, building upon the U(2) model of the previous sections, we develop
a holographic dual of a superconductor with both s-wave and p-wave condensates. Subse-

1This is actually an example of an axionic state of matter. This p+is phase belongs to the class D
in the classification [96] of 3D topological superconductors. It possesses gapped Majorana fermions as
edge states which give rise to an anomalous surface thermal Hall effect. It would be very interesting to
realize holographically this axionic superconducting state (see [97] for a holographic time-reversal symmetry
breaking p+ip superconductor).
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quently we study the phase diagram of unbalanced mixtures (where two chemical potentials
are turned on) finding a competition of s, p, and s+p-wave superconducting phases.

The chapter is organized as follows. In section 8.1 we construct the solutions in the
low temperature regime of the U(2) model. For this temperature we find the condensation
of a vector mode that breaks the remaining U(1) and gives rise to a new phase with two
condensates: the s+p-wave holographic superconductor. The study of these new solutions
allows us to determine the phase diagram of the two-component superfluid. The final
picture is the following: for small chemical potential µ (high temperature) the system is
in the normal phase where no condensate is present. For µ larger than a critical value µs
the scalar field acquires an expectation value and the system enters the s-wave superfluid
phase. Going to even larger chemical potential a new phase transition happens: at µsp > µs
a vector condensate appears and for µ > µsp the system is in an s+p-wave phase with
both scalar and vector non-vanishing order parameters.

Finally, in section 8.2 we shall study new configurations of the system where the
two chemical potentials corresponding to the two U(1)s ⊂ U(2) are switched on. This
setup, where the U(2) is explicitly broken to U(1)×U(1), realizes an unbalanced mixture,
characterized by the presence of two species of charges with different chemical potentials.
Examples of such systems are unbalanced Fermi mixtures [98], and QCD at finite baryon
and isospin chemical potential [99]. Moreover, unbalanced superconductors are interesting
systems where anisotropic and inhomogeneous phases are expected to appear. Holographic
realizations of unbalanced systems where only one kind of order parameter can be realized
have been constructed in [70, 100]. Here we construct new solutions of the system in
chapter 6 corresponding to unbalanced mixtures that allow for competition of different
order parameters. We determine its phase diagram as a function of the two chemical
potentials and find that s-wave, p-wave and s+p-wave phases exist.
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8.1 The s+p-wave holographic superconductor

Let us consider again the holographic model of a multi-component superfluid consisting of a
scalar doublet charged under a U(2) gauge field living in a 3+1 dimensional Schwarzschild-
AdS black brane geometry constructed in 6. We would like now to consider the following
(consistent) ansatz for the fields in our setup

A
(0)
0 = Φ(r) , A

(3)
0 = Θ(r) , A

(1)
1 = w(r) , ψ = ψ(r) , (8.1)

with all functions being real-valued. All other fields are set to zero, in particular we set
λ = 0 (see 6.18) without loss of generality. The resulting equations of motion read

ψ′′ +

(
f ′

f
+

2

r

)
ψ′ +

(
(Φ−Θ)2

4f2
− m2

f
− w2

4r2f

)
ψ = 0 ,

(8.2)

Φ′′ +
2

r
Φ′ − ψ2

f
(Φ−Θ) = 0 , (8.3)

Θ′′ +
2

r
Θ′ +

ψ2

f
(Φ−Θ)− w2

r2f
Θ = 0 , (8.4)

w′′ +
f ′

f
w′ +

Θ2

f2
w − ψ2

f
w = 0 . (8.5)

In what follows we choose the scalar to have m2 = −2 and the corresponding dual operator
to have mass dimension 2.

The UV asymptotic behavior of the fields, corresponding to the solution of equations
(8.2 - 8.5) in the limit r →∞, is given by

Φ = µ− ρ/r +O(r−2) , (8.6)

Θ = µ3 − ρ3/r +O(r−2) , (8.7)

w = w(0) + w(1)/r +O(r−2) , (8.8)

ψ = ψ(1)/r + ψ(2)/r2 +O(r−3) , (8.9)

where, on the dual side, µ and ρ are respectively the chemical potential and charge density
corresponding to the overall U(1) ⊂ U(2) generated by T0, whereas µ3 and ρ3 are the
chemical potential and charge density corresponding to the U(1) ⊂ SU(2) generated by
T3. ψ(1) is the source of a scalar operator of dimension 2, while ψ(2) is its expectation

value. Finally w(0) and w(1) are the source and vev of the current operator J
(1)
x (recall

that A
(1)
µ is dual to the current J

(1)
µ ). Notice that in a background where w(r) condenses

the SU(2) ⊂ U(2) is spontaneously broken, and moreover spatial rotational symmetry is
spontaneously broken too.

We are looking for solutions of the equations (8.2 - 8.5) where ψ, w, or both acquire
non-trivial profiles. We want them to realize spontaneous symmetry breaking so we impose
that their leading UV contributions (dual to the sources of the corresponding operators)
vanish. We switch on a chemical potential µ along the overall U(1), while requiring that
the other chemical potential µ3 remains null. Therefore our UV boundary conditions are

ψ(1) = 0 , w(0) = 0 , µ3 = 0 . (8.10)
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In the IR regularity requires At to vanish at the BH horizon.

Notice that after using the scaling symmetries of the system to fix the black hole
parameters in the metric, the only scale in the problem is given by the chemical potential
µ. In the grand canonical ensemble, in which the physical chemical potential is held fixed,
the temperature is proportional to the rescaled chemical potential as T ∝ 1/µ. Therefore,
varying µ is equivalent to changing the temperature of the system. For that reason the
results are sometimes presented in terms of µ instead of T .
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Figure 8.1: Condensates ψ(2) (solid) and w(1) (dashed) as a function of 1/µ in the
s-wave (blue) and s+p-wave (red) phases. The p condensate appears at µsp such that
µs/µsp = 0.395 as found in chapter 6. The inset zooms in on the plot of ψ(2) to show the
difference in the scalar condensate between the s (blue) and the s+p (red) solutions.

We have looked for numerical solutions with non-zero ψ and w, shooting from the
IR towards the UV where we impose the boundary conditions (8.10). We have found the
following solutions:
Normal phase: for all values of µ there exists an analytic solution where ψ = w = Θ = 0
and Φ = µ(1− 1/r). This solution describes the normal state of the system.
s-wave phase: for µ ≥ µs ≈ 8.127 we find solutions with non-zero ψ. For these solutions
the equations decouple into two sectors: one corresponding to the Abelian holographic
superconductor [59] and the other to the unbroken U(1) symmetry. Although µ3 is zero as
required in (8.10), both charge densities ρ and ρ3 are non-vanishing and therefore a two-
component s-wave superfluid is realized. Indeed as one can see in eq. (8.4) a non-trivial
scalar ψ acts a a source for the field Θ(r), and therefore the only pure s-wave solutions
satisfying the boundary conditions (8.10) are those with ρ3 6= 0. Hence two different
charge densities (ρ and ρ3) corresponding to the two different U(1)s ⊂ U(2) are turned
on for these solutions and it is in this sense that this phase was denoted a two-component
holographic superfluid earlier.2

s+p-wave phase: for µ ≥ µsp ≈ 20.56 there are solutions satisfying (8.10) with non-zero

2From eqs. (8.2 - 8.4), one can see that the scalar condensate is only charged under a linear combination
of Φ and Θ, whereas in the absence of a vector condensate, the orthogonal combination completely decouples
corresponding to the unbroken U(1) gauge field.
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ψ and w. In these solutions the U(2) symmetry is completely broken, and moreover since

w(1) ∼ 〈J (1)
x 〉 spatial rotational symmetry is broken too. Again µ3 = 0 while ρ and ρ3 are

non-vanishing, thus realizing an s+p-wave phase of a two-component superfluid.

Usually p-wave superconductivity is triggered by a µ3 chemical potential [101]. Here
instead the p component of the s+p superfluid is supported by the spontaneously induced
charge density ρ3. For that reason no solutions with only p condensate are present in this
system.3

In figure 8.1 we plot the condensates 〈O2〉 ∼ ψ(2) and 〈J (1)
x 〉 ∼ w(1) as a function of

the chemical potential. Notice that the solution where both condensates coexist extends
down to as low 1/µ (or equivalently low temperatures) as where we can trust the decoupling
limit and thus neglect backreaction.
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Figure 8.2: Free energy of the different solutions versus 1/µ: normal phase in black,
s-wave phase in blue, and s+p-wave phase in red.

To determine the phase diagram of our system we compute the free energy of the
different solutions and establish which is preferred when more than one exist. The free
energy density is given by the on-shell action, and for our ansatz it reads

F = −T
V
SE = −1

2
(µρ+ µ3 ρ3) + (8.11)

+

∫
dr

2f
(−f w2 ψ2 + r2 (Φ−Θ)2 ψ2 +

f

r2
w2 Θ2 ) .

The free energy for the different solutions is shown in figure 8.2. At small chemical
potential only the normal phase solution exists. At µ = µs ≈ 8.127 there is a second order
phase transition to the s-wave solution. If one keeps increasing µ, at µsp ≈ 20.56 there is a
second order phase transition from the s-wave phase to the s+p-wave phase. The system
stays in the s+p-wave phase for µ > µsp.

3It is clear from eq. (8.5) that the p-wave condensate only couples directly to the U(1) ⊂ SU(2), i.e
to Θ(r). Actually, this equation reduces to that of the standard p-wave holographic superconductor [101]
when the scalar is switched off. As in [101], only a non-zero Θ in the bulk can source the vector condensate
since the coupling to the scalar ψ increases the effective mass of w and therefore hinders condensation.
In contrast to the standard p-wave scenario we are fixing µ3 = 0, but solutions with non-zero Θ are still
possible in presence of the s-wave condensate (realized by a non-zero ψ) as explained above.
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8.2 Unbalanced Superconductors

In this section we relax the condition µ3 = 0 and study the phase diagram of the system
as a function of µ and µ3/µ. Notice that turning on a second chemical potential means to
explicitly break U(2)→ U(1)×U(1). The system can now be interpreted as a holographic
dual to an unbalanced mixture [70,100].

Now that the U(2) is explicitly broken, we can not generically impose that λ = 0
by using gauge transformations. Therefore, in principle both components of the scalar
doublet may condense. In [102] it was studied which option is thermodynamically favored.
Following their analysis, choosing the condensate to be on the lower component forces us
to set µ3/µ < 0 for the solutions to be stable.

The UV boundary conditions now read

ψ(1) = 0 , w(0) = 0 . (8.12)

As before we use numerical integration to solve the system (8.2 - 8.5). We are presented
with a scenario where four different solutions exist:
Normal phase: an analytic solution where ψ = w = 0, Φ = µ(1 − 1/r) and Θ =
µ3(1 − 1/r) exists for any value of µ and µ3, and it describes the normal state of the
system.
s-wave phase: for µ− µ3 ≥ 8.127 we find solutions with non-zero ψ resembling those in
the balanced case.
p-wave phase: for |µ3|/µ ≥ 3.65/µ solutions with ψ = 0, but w 6= 0 satisfying (8.12) exist.

The scalar condensate 〈O2〉 is null while 〈J (1)
x 〉 6= 0. These solutions break the U(1)×U(1)

down to U(1) and also break the SO(2) corresponding to spatial rotations. Notice that
w(r) is not charged under the overall U(1) and therefore this solution is insensitive to the
value of µ. This would change if the backreaction of the matter fields on the geometry
was taken into account as in [70,100].
s+p-wave phase: for small values of µ3/µ we find the extension of the s+p-wave solution
found in the previous section for µ3 = 0. However, the larger |µ3|/µ the larger the µ
at which the phase appears. We have also found solutions with two condensates in an
intermediate region in which µ3 is large and µ is close to the critical value µs. But they
are always energetically not favored with respect to the pure s-wave solutions (see Figure
8.3).

By computing the free energy (8.11) of the different solutions we determine the
phase diagram of the system as a function of 1/µ and µ3/µ which we plotted in figure 8.3.
For small values of µ3/µ the situation is very similar to what we found in the previous
section for µ3 = 0. As already mentioned, as |µ3|/µ gets larger, the transition to the
s+p-wave phase happens at a higher value of µ. It might be the case that the phase
eventually disappears at a finite value of that ratio, but this would happen beyond the
region of applicability of the decoupling limit, and thus backreaction should be taken into
account4. For |µ3|/µ large enough, the p-wave phase is preferred at intermediate values of
µ. Therefore, as µ is increased above a critical value µp the system goes from the normal
to the p-wave phase through a second order phase transition. If µ is increased even further

4Notice that if the s+p-wave phase survived down to 1/µ = 0 for µ3/µ lower than a critical value (as
the phase diagram 8.3 seems to imply) we would be in the presence of a quantum critical point at which
the system goes from the s+p to the s-wave phase. This resembles what happens in [95] for the p+is
superconductor.
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Normal phase
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Figure 8.3: Phase diagram of the unbalanced system as a function of 1/µ and µ3/µ.
Second order phase transitions are denoted by blue lines, whereas the red line corresponds
to a first order phase transition.

a first order phase transition takes the system from the p-wave to the s-wave phase. This
p- to s-wave first order phase transition is illustrated by figure 8.4 where we plot the free
energy of both phases (and that of the normal phase) as a function of µ at a fixed value
of µ3/µ = −1. The tricritical point where the normal, s-wave and p-wave phases meet
happens at 1/µ ≈ 0.223 and |µ3|/µ ≈ 0.815. The p-wave solution is never energetically
preferred for |µ3|/µ < 0.815.
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Figure 8.4: Free energy as a function of 1/µ for µ3/µ = −1. Black corresponds to the
normal phase, blue to the s-wave phase, and green to the p-wave phase.

A cautionary comment about the phase diagram of figure 8.3 is in order. In the
regions of the parameter space where |µ3|/µ � 1 or 1/µ � 1 the probe limit is not valid
anymore, and therefore the phase diagram might be modified once backreaction is taken
into account 5. Indeed, the nature of the different phase transitions, as well as the critical

5Remember that the decoupling limit corresponds to taking the gauge coupling (and charge of the scalar
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values of the chemical potentials could be altered in those regions [103,104]. However, in
2+1-dimensions both the s-wave and p-wave superconducting phase transitions separately
are known to remain second order even lor large backreaction [70, 100]. Therefore, we
expect the main features of the phase diagram like the existence of distinct s and p-
wave phases meeting at a tricritical point will not be very sensitive to backreaction. The
order of the phase transition between the s and p-wave phases could still be modified by
backreaction.

8.3 Discussion

In this chapter we have constructed a holographic s+p-wave superconducting state. This
phase, where both an s-wave and p-wave condensates exist, is the preferred state at low
temperatures of our holographic two-component superfluid. Our main results are sum-
marized by figures 8.1 and 8.3. Figure 8.1 shows that an s+p-wave state appears at low
temperatures. A free energy analysis determined that the system enters this state through
a second order phase transition, and stays in it for as low temperature as we can go. On
the other hand, figure 8.3 presents the phase diagram for the unbalanced system: chemical
potentials for the two U(1)s ⊂ U(2) are turned on, and hence U(2) is explicitly broken to
U(1) × U(1). In this phase diagram three different superconducting phases are present.
These are the standard s-wave phase where a scalar condensate breaks the U(1) × U(1)

down to U(1); a p-wave phase where 〈J (1)
x 〉 6= 0 , U(1) × U(1) is broken to (a different)

U(1), and also spatial rotational symmetry is broken; and an s+p-wave phase where the
U(1) × U(1) is completely broken by the s and p-wave condensates, and again spatial
rotational symmetry is broken. Remarkably, while the system goes from the normal phase
to the s-wave and p-wave phases through second order phase transitions, the phase tran-
sition between the s and p-wave phases is always a first order one. The existence of this
first order phase transition between superconducting phases in the unbalanced system is
an interesting prediction of our holographic model. These conclusions could be sensitive
to the inclusion of backreaction since, as already mentioned, in principle the order of the
phase transitions could change when the parameters are large and the decoupling limit
breaks down. Yet in the proximity of the tricritical point, where the p- and s-wave phases
meet, the matter fields and its derivatives are small enough for the probe limit to be
trusted. Hence the existence of this point and the first order phase transition between
the p- and s-wave phases in its proximity will survive once backreaction is considered, at
least for large enough gauge coupling. Let as remark that, as we have seen in the previous
chapter, in order to ensure the stability of the different phases it is important to study
the quasinormal mode spectrum of the model. We leave this for future investigation.

field) gYM to be very large, so the effect of the matter fields on the metric is negligible. Hence it is valid
as far as µi � gYM and the condensates are small.
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9
Anomalies

As emphasized in chapter 3, anomalies in the quantum theories of chiral fermions belong
to the most emblematic properties of relativistic quantum field theory. As exposed there,
there is a clear distinction between anomalies in presence of external/dynamical gauge
fields. We would like to answer the following questions: How can we implement anoma-
lies in presence of external/dynamical gauge fields within holography? How is transport
affected by these? We will answer these questions, with special emphasis in the imple-
mentation and study of anomalies in presence of dynamical gauge fields.
The chapter is organized as follows. In section 9.1 we review the implementation of anoma-
lies for U(1) symmetries in the presence of external gauge fields in holography. We explain
how the anomaly is implemented and summarize the main findings of the last years regard-
ing anomalous transport in holography. After this, in section 9.2, we explore the possibility
of introducing the effect of the dynamical gauge fields in a model with just one abelian
internal symmetry. In order to do so we define a simple model with one massive vector
field in the bulk. We calculate the (holographically) normalized non-conserved current
and compare to the massless case. Then we study the generalization of the chiral mag-
netic conductivity defined via Kubo formulae. We find that the chiral conductivity still
exists and in terms of an appropriately defined dimensionless number gets even enhanced
compared to the massless case. In the limit of vanishing mass we recover the value of the
chiral magnetic conductivity in the consistent current. As is well-known this is 2/3 of
the standard value most commonly cited (which corresponds to the covariant definition of
the current).
We remind the reader of the fact that the chiral magnetic effect in the consistent current
for the U(1)3 anomaly of a single Weyl fermion takes the form

~J =

(
µ

4π2
− A0

12π2

)
~B , (9.1)

whereas for the AV V anomaly of a single Dirac fermion with a vector current preserving
regularization it is

~JV =

(
µ5

2π2
− A5

0

2π2

)
~B , (9.2)

with µ, µ5 the (axial) chemical potentials and A0 and A5
0 the background values of the

(axial) gauge fields that do not necessarily coincide with the chemical potentials. The
customary gauge choice A0 = µ and A5

0 = µ5 leads to the factor 2/3 in the U(1)3 case and
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to a vanishing CME in the AV V case1. In contrast the chiral separation effect

~J5 =
µV
2π2

~B (9.3)

shows no explicit dependence on the temporal gauge field. This is a consequence of the
fact that the vector-like symmetry is non-anomalous, i.e. µV is the chemical potential
conjugate to a truly conserved charge.

If one expresses the CME however in terms of the covariant currents the terms
depending on the gauge fields are absent. Finally we note that the relation between co-
variant and consistent currents are Jµcov = Jµcons + 1

24π2 ε
µνρλAνFρλ for the AV V anomaly

and Jµcov,V = Jµcons,V + 1
12π2 ε

µνρλA5
νFρλ.

Finally, in section 9.3 we explore a richer model with a U(1)×U(1) symmetry, which
allows us to mimic the situation of massless QED. Our motivation is that the proper chi-
ral magnetic effect stems from an interplay of vector- and axial symmetries. The vector
symmetry can be taken as the usual electromagnetic U(1). While the electromagnetic
gauge fields are still quantum operators we can assume in the quark gluon plasma context
that electromagnetic interactions are weak and to first approximation we might model
the vector U(1) as a non-dynamical gauge field. Furthermore the vector current of elec-
tromagnetic interactions has to be exactly conserved. We compute the chiral magnetic
conductivity and the conductivity related to the chiral separation effect. We find that the
chiral separation effect is fully realized whereas the chiral magnetic conductivity vanishes.
Again we point out that these are the same results that hold for the consistent currents in
the case when also the axial current is modeled by a massless vector field. Then we study
the chiral magnetic wave [46] and compare our findings to a simple hydrodynamic model
in which we include a decay width for the axial charge by hand. We find basically a perfect
match between the modes of the phenomenological model and the low lying quasinormal
modes of the holographic model. For small momenta we find absence of a propagating
wave, whereas for large enough momentum there is indeed a propagating (damped) wave
which is the generalization of the chiral magnetic wave. Finally we also study the negative
magneto resistivity induced by the anomaly in a constant magnetic field background. We
find by numerical analysis that the negative magneto resistivity depends quadratically
on the magnetic field. The optical conductivity has a Drude peak form whose height is
determined by the inverse of the bulk mass. For large magnetic field a gap opens up in
the optical conductivity and we also check that the spectral weight gets shifted from the
gap region into the peak region such that a sum rule of the form d

(∫
dωσ(ω)

)
/dB = 0

holds.

1If an axion background is present there is also a term proportional to ∂tθ ~B. We also emphasize that
the anomaly makes the (axial) “gauge” field an observable precisely via the terms in (9.1), (9.2). See e.g.
the discussion in [7].
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9.1 Chiral anomalies with external gauge fields in hologra-
phy

The first studies regarding anomalies in holography were [53, 105]. In those pioneering
works it was found that the non-conservation of the dual current was related to the exis-
tence of boundary-noninvariant terms in the bulk theory. Later [106], it was found that
massive gauge fields in the bulk can give rise to the effect of anomalies in the dual theory
too. As we will see later in this chapter, the difference between both mechanisms is pre-
cisely related to whether the effect of dynamical gauge fields is taken into account or not. In
this section we briefly review how the addition of certain terms (not gauge invariant at the
boundary) in the bulk Lagrangian affects the (non)conservation of the dual currents and
how this affects transport phenomena2. This review will be mainly based on the work [45].

Consider the Maxwell-Chern Simons Lagrangian in AdS4+1

S =

∫
d5x
√
−g
(
−1

4
FµνF

µν +
κ

3
εµαβγδAµFαβFγδ

)
, (9.4)

The CS term of this theory is a bulk term, i.e. it appears in the e.o.m.. Nev-
ertheless it has an interesting property from the symmetry point of view. Upon gauge
transformation

δλS =

∫
d4x
√
−γ κ

3
λ(x)F ∧ F. (9.5)

This not a problem from the bulk perspective, since only transformations that vanish at
infinity are important in order for the theory to be consistent. Let us emphasize that,
although (9.5) is a boundary term, the effect of the CS cannot be cancelled by a local
counterterm at the boundary. A comment is in order here regarding the dimensions of
space-time. As we know chiral anomalies can only happen in even space-time dimensions.
From the holographic point of view the difference in the CS term in even/odd dimensions
is then quite appealing. For even space-time dimensions, the CS term is of the form
F ∧F ∧F.... Such a term can be written as a pure boundary term and, therefore, entirely
cancelled with local counterterms. The odd case is however different, as one can see in
our example, since A ∧ F ∧ F... cannot be written in a pure boundary form.

If we compute the dual current, using the usual prescription we get

Jµcons = lim
r→∞

√
−gFµr +

4

3
κεµαβρAαFβρ (9.6)

∂µJ
µ
cons = −κ

3
εµαβρFµαFβρ. (9.7)

This current, obtained form the variation of the generating functional is called the
consistent current. Note that (9.6) is not covariant. In addition, the consistent current
is not unique, since it may be changed by adding finite boundary terms in the action.
Moreover, these terms can bo chosen such that the divergence is zero. In massless QED

2In the literature the study of anomalies in the context of holography is focused on the Weyl anomaly
and on Chiral anomalies. We focus in the latter
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such a transformation corresponds to the shift that one can make to “locate” the anomaly
in any linear combination of the vector and axial currents. On the other hand, there is one
precise choice of the contact term in the dual theory that renders a covariant expression
for the current

Jµcov = lim
r→∞

√
−gFµr (9.8)

∂µJ
µ
cov = −κεµαβρFµαFβρ. (9.9)

Let us remark that the covariant version of the (anomalous) current is always non-
conserved. From the holographic point of view, the only way to obtain this current is
by direct subtraction of the non-covariant terms in the expression of the consistent cur-
rent.

9.1.1 Anomalous transport in holography

As we have seen along this thesis, one possible way to obtain transport coefficients is via
Kubo formulae. This is specially suited in holography since it relates the desired coefficient
to an n-point function of the dual operators. It will be useful to have the results for the
anomalous transport obtained from the Maxwell-Chern-Simons holographic theory that
we are considering.
The concrete Kubo formula for the chiral magnetic effect is

σ = lim
k→0

i

kz
〈JxJy〉

∣∣∣∣
ω=0

(9.10)

Note that we have not specified which definition of the current is to be used in this formula.
Let us jump directly to the results (see [45] for details). With the straightforward definition
of the current i.e. using the consistent version of the current in (9.6) the result is

〈Jx(cons)Jy(cons)〉 = −4ikzκ(3µ5 − α) (9.11)

where µ5 and α arise from the definition of chemical potential in holography and the
asymptotic behavior of the gauge field

µ5 =

∫ ∞
rh

∂rA0 A0r→∞ ∼ α−
β

r
. (9.12)

For some time people made the mistake of considering that both were the same
thing. A way to avoid such problems is to calculate a different correlator

〈Jx(cov)Jy(cons)〉 = −12ikzκµ5, (9.13)

which is directly free from the presence of sources. Clearly, in the absence of sources both
quantities are the same.

Despite of these important technicalities, the result is in agreement with those from
QFT and is a nice example of how anomalous transport phenomena can be studied in
holography.
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9.2 Holographic Stückelberg mechanism with a U(1) Gauge
Field

As discussed in 3.2, chiral conductivities do get renormalized however in the case when the
gauge fields appearing in the anomalous divergence of the current are dynamical [107,108].
An example is the singlet U(1)A current in QCD. Its anomaly is of the form

∂µJ
µ
A = εαβγδ

(
Nc
∑

f q
2
f

32π2
FαβFγδ +

Nf

16π2
tr(GαβGγδ) +

NcNf

96π2
F 5
αβF

5
γδ

)
(9.14)

Here F is the electromagnetic field strength, G the gluon field strength and F 5 the field
strength of an axial gauge field A5

µ whose only purpose is to sum up insertions of the axial
current in correlation functions, i.e. there is no associated kinetic term. Nc and Nf are
the numbers of colors and flavors respectively. In this case it has been shown in [107,108]
that the vortical conductivity receives two loop corrections whereas later on is has been
argued in an effective field theory approach that all chiral conductivities receive higher
loop corrections once dynamical gauge fields enter the anomaly equation [109].

It has been argued long ago by ’t Hooft that in such a situation one should not
think of the classically present U(1)A symmetry as a symmetry at all on the quantum
level [110]. In asymptotically free theories such as QCD there might survive only a dis-
crete subgroup because of instanton contributions. This discrete subgroup can be further
broken spontaneously via chiral symmetry breaking but since it was not a symmetry to
begin with there is also no associated Goldstone boson, which explains the high mass of
the η′ meson in QCD. A related fact is that the corresponding triangle diagram receives
higher loop corrections via photon-photon or gluon-gluon re-scattering. These higher or-
der diagrams lead to a non-vanishing anomalous dimension for the axial current operator
JµA. See [111,112] for recent reviews.

These considerations motivate us to study the anomalous magneto response of mas-
sive vector fields in holography. Our philosophy is as follows. In quantum field theory we
would have to study the path integral

Z =

∫
DΨDΨ̄DAq exp

[
i

∫
d4x

(
−1

2
tr(G.G) + Ψ̄ /DΨ + θOA + J.A

)]
, (9.15)

where Aq stands collectively for the dynamical gauge fields, G is their field strength tensor
and OA is the (operator valued) anomaly

OA = εαβγδ
(
Nf

16π2
tr(GαβGγδ) +

NcNf

96π2
FαβFγδ

)
. (9.16)

Since the anomaly is a quantum operator we need to define a path integral that allows
to calculate correlations functions of this anomaly operator. This means that we need
to introduce the source field θ(x) coupling to OA. For the same reason we also have to
include a source for the anomalous current Jµ. This source is the non-dynamical gauge
field which from now on we denote by Aµ. The covariant derivative in (9.15) contains only
the dynamical gauge fields. The non-dynamical gauge fields are coupled with the last term
in (9.15). If we define the effective action exp(iWeff [A, θ]) = Z it is basically guaranteed
by construction that this effective action enjoys the gauge symmetry

δAµ = ∂µλ , δθ = −λ , δWeff = 0 . (9.17)
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We now replace the (strongly coupled) dynamics of the gluon (and fermion) fields, i.e. the
path integral over Aq, Ψ and Ψ̄ by the dynamics of classical fields propagating in Anti-de
Sitter space. The gravity dual should allow to construct Weff [A, θ] as the on-shell action
of a field theory in Anti-de Sitter space containing a vector field Aµ and a scalar θ obeying
the gauge symmetry (9.17). In addition, as we have argued before, the vector field should
source a non-conserved current. Since Anti-de Sitter space implies the dual theory to have
an additional conformal symmetry the four-dimensional current is non-conserved if and
only if its dimension is different from three. This in turn means that the bulk vector field
in our AdS theory has to be a massive vector and it is precisely the gauge symmetry (9.17)
that allows the inclusion of a gauge invariant Stückelberg mass in the bulk AdS theory.
The anomaly also includes the global part proportional to the field strengths of the non-
dynamical gauge field therefore we also need to include a five dimensional Chern-Simons
term in our AdS dual. The relation of the Stückelberg field in holography to the anomaly
has been first pointed out in [106] and the necessity to include it in holographic studies of
the anomalous transport has very recently also been emphasized in [113].
Moreover, since we have application to the physics of the strongly coupled quark gluon
plasma in back of our head, we are lead to study a massive Stückelberg theory with Chern-
Simons term at high temperature, i.e. in the background of an AdS black brane. We make
one more simplifying assumption. We do not study any correlations functions including
the energy momentum tensor. Therefore we can resort to the so called probe limit in
which we ignore the back reaction for the gauge field theory onto the geometry. In our
concrete model we consider Maxwell-Chern-Simons theory in the bulk and give a mass to
the gauge field via Stückelberg mechanism

S =

∫
d5x
√
−g
(
−1

4
FµνF

µν − m2

2
(Aµ − ∂µθ)(Aµ − ∂µθ) +

κ

3
εµαβγδ(Aµ − ∂µθ)FαβFγδ

)
,

(9.18)

The above model provides a mass for the gauge field in a consistent gauge-invariant way.
Stückelberg terms indeed arise as the holographic realization of dynamical anomalies, as
pointed out for the first time in [106] (see also [114] for similar conclusions in the context
of AdS/QCD). This has been also emphasized by the authors of [113] for a class of non-
conformal holographic models.
As it is well-known, in holography we do not have access to the strongly coupled gauge field
directly 3. This implies that the dynamical contribution to the divergence of the current
enters as a mass-term for the gauge field thereby inducing an explicit non-conservation.
In contrast the global anomaly is implemented by an explicit Chern-Simons term. This
fits the general expectation that the dynamical anomaly cannot be switched off because
it is not simply a given by a functional of external fields.
Let us also comment on a crucial difference between model (9.18) and models of holo-
graphic superconductors. Holographic superconductors [71] also give a bulk mass term to
the gauge field and they might be written in Stückelberg form as well [117]. The differ-
ence is that the Higgs mechanism in the bulk uses a massive scalar field that decays at
the boundary and does therefore not change the asymptotic behavior of the gauge field.
In our case the mass is constant in the bulk and does therefore change the asymptotic
behavior of the vector field as one approaches the boundary of AdS.

3Note however that dynamical gauge fields emerge in the “alternative” quantization scheme in AdS4

[115]. They can also be introduced via inclusion of boundary kinetic terms [116].
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We work in the probe limit with Schwarzschild-AdS5 as background metric

ds2 = −f(r)dt2 +
dr2

f(r)
+
r2

L2

(
dx2 + dy2 + dz2

)
, f(r) =

r2

L2
−
r4
H

r2
. (9.19)

As usual we make use of rescaling invariance of the theory to set rH = 1 and L = 1, and
therefore πT = 1.
The equations of motion are

∇νF νµ −m2(Aµ − ∂µθ) + κεµαβγρFαβFγρ = 0 , (9.20)

∇µ (Aµ − ∂µθ) = 0 . (9.21)

The asymptotic analysis shows that the non-normalizable and the normalizable modes of
the gauge field behave as

Ai(N.N.) ∼ Ai(0)r
∆ , Ai(N.) ∼ Ãi(0)r

−2−∆ , ∆ = −1 +
√

1 +m2 . (9.22)

Since the mass has to be positive (for the massless case saturates the unitarity bound),
there is no possible alternative quantization and the leading term is always to be identified
with the non-normalizable (N.N.) mode. Moreover, there is an upper bound to the value
of the mass prescribed by ∆ = 1. As we will show via holographic renormalization, the
operator dual to the coefficient of the non-normalizable mode is essentially given by the
normalizable mode. Its dimension can be found via the following argument. The AdS
metric is invariant under the scaling r → λr, (t, ~x) → λ−1(t, ~x). Since a gauge field is a
one form we have to study the behavior of Aµ(r, x)dxµ under these scalings one finds then
that the normalizable mode has a scaling dimension of

dim(Ãi(0)) = [Ji] = 3 + ∆ . (9.23)

This implies that if ∆ > 1 the dual operator is irrelevant (in the IR) and thus destroys
the AdS asymptotics. In the holographic renormalization in appendix A.5 we find that
accordingly the number of counterterms diverges for ∆ > 14.
It is clear that the number of counterterms depends on the value of the mass. From now
on we work in the range of masses that minimizes it, namely

∆ <
1

3
←→ m2 <

7

9
. (9.24)

Henceforth we refer to ∆ as the anomalous dimension of the dual current.
The procedure of renormalization for this theory is explained and discussed in detail in
the appendix A.5. The boundary action with the counter-terms such that SRen = S+SCT
reads

SCT =

∫
∂
d4x
√
−γ
(

∆

2
BiB

i − 1

4(∆ + 2)
∂iB

i∂jB
j +

1

8∆
FijF

ij

)
, (9.25)

with Bi ≡ Ai − ∂iθ.

Remarkably, the coupling of the Stückelberg field to the Chern-Simons term in (9.18)
is not optional once the mass is turned on; if one does not add it to the action it appears
as a counterterm when holographic renormalization is carried out. More precisely the
coefficient in front of dθ ∧ F ∧ F in (9.18) is not arbitrary once the mass is turned on. It
is fixed to be the negative of the coefficient in front of the Chern-Simons term A∧F ∧F ,
which renders a completely gauge invariant action. If we had not added this term directly
from the start it would thus have appeared as a counterterm.

4We thank Ioannis Papadimitriou for pointing this out.
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9.2.1 The one-point function

From the renormalized action we compute correlators of the dual operators in the bound-
ary theory by means of the usual prescription. In this section we show our results, sticking
only to the strictly necessary technical details for the discussion. A detailed discussion of
the calculations can be found in appendix A.6.1.

Due to the anomalous dimension of the operator the analysis of the 1-point function
becomes more subtle than in the massless case. In previous works, at zero mass, the leading
terms of the expressions where finite. Therefore it made sense to look at expression for the
current VEV as a functional of the covariant fields before taking the limit r → ∞. This
is however not the case when m 6= 0, since now all terms are divergent to leading order.
Nevertheless, to make comparison with the results at zero mass, we want to look at the
result before explicitly taking the limit. In order to do so, we split the unrenormalized
1-pt. function into a term lacking a (sub leading) finite contribution (called X below) and
terms which do lead to a finite contribution after renormalization

〈J i〉 = lim
r→∞

√
−gr∆

(
F ir + r∆Ai

)
+Xi . (9.26)

We see that the contribution arising from the Chern-Simons term in (9.18) is contained in
Xi, which means that it does not contribute explicitly to the current. The renormalized
one-point function reads

〈J i〉ren. = 2(1 + ∆)Ãi(0) , (9.27)

where Ã(0)m is the coefficient of the normalizable mode. Let us compare this with the
expression for the consistent current that one obtains in absence of mass5

〈J i〉 = lim
r→∞

√
−g
(
F ir +

4κ

3
εijklAjFkl

)
+Xi ,

Ren.
= 2Ãi(0) +

8κ

3
εijklAj(0)∂kAl(0) (9.28)

Here we see that in the massless case (∆ = 0) the Chern Simons term indeed gives a finite
contribution to the current which is explicitly proportional to the sources. It is precisely
this term what makes the difference between the covariant and the consistent definition
of the current. We remind the reader that in the case of global anomalies one can define
a covariant current by demanding that it transforms covariantly under the anomalous
gauge transformation. In the AdS/CFT dictionary this covariant current is given by the
normalizable mode of the vector field. In contrast the consistent current is defined as
the functional derivation of the effective action with respect to the gauge field and in the
AdS/CFT correspondence includes the Chern-Simons term in (9.28).

Equations (9.26) and (9.27) establish that we are no longer able to make such a dis-
tinction if m 6= 0, for there is no explicit finite local contribution of the Chern Simons term
to the current operator. Quite remarkably, all of our results show that (9.27) corresponds

5Notice that in the zero mass limit θ becomes a non-dynamical field defined at the boundary. The
divergence of this field also contributes to the current [7]. In order to keep the discussion simple we chose
to take this non-dynamical field to vanish since this is the natural value that arises from our background
in the the zero mass limit.
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to the consistent current in the zero mass limit. This ultimately implies that in the limit
m→ 0 the highly non-local expression Ã(0)i gives rise to the two terms in the last line of
(9.28), which include a local term in the external sources. Hence, along the chapter we
will only refer to consistent or covariant currents when analyzing the massless limit.

Another remarkable difference with the massless model is the Ward identity of the
current operator. Using the equations of motion we can write the divergence of the current
on-shell

〈∂iJ i〉 = lim
r→∞

√
−gr∆

(
m2∂rθ + r∆∂iA

i − κ

3
εijklFijFkl + X̃

)
,

Ren.
= 2(1 + ∆)∂iÃ

i
(0) , (9.29)

where we have extracted the (infinite) Chern Simons term from (9.26)6 because it is
convenient for the following discussion. As mentioned before, the fact that the terms
in these expressions diverge obscures the interpretation if one does not take the limit
r →∞. Once we take it we find that the ward identity (9.29) becomes a tautology since
the only term on the right hand side that give a finite contribution is determined in the
large r expansion directly by the divergence of the normalizable mode of the vector field.
Therefore the divergence of the current on-shell is unconstrained.
If we now look at what happens when we take the limit m→ 0 before we take r →∞ we
see that we recover the expression for the divergence of the consistent current

〈∂iJ i〉 = lim
r→∞

√
−g
(κ

3
εijklFijFkl + X̃

)
Ren.
=
√
−gκ

3
εijklFijFkl . (9.30)

contained in the (non-local) normalizable mode of the filed. As we will see now the
behavior of the conductivity points in the same direction.

9.2.2 Two-point functions & anomalous conductivity

Our main interest is to study the effect that the anomalous dimension has on the response
of the system in presence of a magnetic field. As a first step in this direction we compute
the anomalous conductivity Ji = σ55Bi that is related to a correlator of current operators
via the Kubo formula

σ55 = lim
k→0

i

kz
〈JxJy〉

∣∣∣∣
ω=0

. (9.31)

We emphasize however, that Bi does not have the simple interpretation of a magnetic field
since its dimension is 2−∆. We want to study the anomalous conductivity in an analogous
fashion to [45] and find the dependence of the chiral anomalous conductivity on the source
for Jµ. In order to generalize the concept of chemical potential to the situation at hand
we we switch on a temporal component of the gauge field in the background A = Φ(r) dt.
We choose the axial gauge Ar = 0. The equation of motion is

Φ′′ +
3

r
Φ′ − m2

f
Φ = 0 . (9.32)

6In other words, ∂iX
i = −κ

3
εijklFijFkl + X̃.
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We solve the equation (9.32) numerically7, with the following boundary conditions

φ(rH) = 0 , φ(r →∞) ∼ µ5r
∆ , (9.33)

with µ5 being the source. Notice that µ5 does not correspond to a thermodynamic parame-
ter in our massive model. Rather it should be interpreted as a coupling in the Hamiltonian.
Different values of µ5 correspond therefore to different theories. Different values of a chem-
ical potential correspond only to different filling levels of the low lying fermionic states
in the same theory. In the case of an anomalous symmetry one has to distinguish this
filling level from the presence of a background constant temporal component of the gauge
field [45].

The near horizon analysis shows that we are forced to impose Φ(rH) = 0. In absence
of the mass term the gauge filed is not divergent at the horizon, independently of the finite
value it takes at the boundary. This reflects the remnant (recall we work in the axial gauge)
gauge freedom that one has in this case: the value of the source can be shifted by a gauge
transformation8. However the mass term in the e.o.m. is divergent at the horizon and
forces the field to vanish there. Remarkably, this and the asymptotic behavior of the
field illustrate the fact that speaking of a chemical potential does no longer make sense.
Computing the chemical potential as the integrated radial electric flux in the bulk one
obtains

µ = lim
r→∞

∫ r

rH

∂rAtdr →∞. (9.34)

This can be understood heuristically from the non-conservation of the charge: the energy
to introduce and maintain a quantum of charge that is not conserved is infinite.
Since our background is homogeneous in the transverse directions it is easy to see that
〈∂iJ i〉 = 0. In particular, the fact that a stationary solution exists implies that it is
possible to choose a homogeneous configuration of µ5 such that it compensates for the
decay of the charge that is naturally caused due to the mass term. Namely,

dρ

dt
= 0 , (9.35)

with ρ the charge density of the system. We will see that the source necessary to ensure
(9.35) equals the axial chemical potential in the massless limit (recall that only when
m = 0 we can identify µ5 with a chemical potential).

Once we have built the background we can proceed to switch on perturbations on
top of it in order to compute the 2-point function (9.31). To linear order in the external
source Ãi(0) ≈ Ã

i
(0) + δãi(0). From (9.27) we have

〈JnJm〉 = 2(1 + ∆)ηml
δã(0)l

δa(0)n
. (9.36)

Here ã(0)m is the coefficient of the normalizable mode of the perturbation. We compute

7The analytic solution can be worked out in terms of hypergeometric functions. Since we need to resort
to numerical methods later on, when studying fluctuations around the background, we found it more
convenient to apply purely numerical methods also for the background.

8Gauge transformations that are non-zero at the horizon are not true gauge transformations but global
transformations!
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Figure 9.1: Left: Plot of the conductivity versus the source for: m2 = 1/2 (Blue), m2 = 1/4
(Green), m2 = 0.01 (Red). Right: Plot of the conductivity coefficient as a function of the
anomalous dimension; the circle stands for the asymptotic value in the limit ∆→ 0.

the above expression numerically. Again we leave technical details for appendix (A.6.2)
because the analysis is tedious and it is based on standard techniques. We show the result
in figure 9.1. A comment is in order here regarding the temperature dependence on the
plots. Dimensional analysis of the correlator [〈JJ〉] = 6+2∆ implies that the conductivity
has now dimension [σ] = 1 + 2∆. This in turn causes the physical conductivity to have a
temperature dependence σ ∼ T 3∆. As usual, from numerics we can only plot dimensionless
quantities σ/(πT )3∆ and µ5/(πT )1−∆.

The plot on the left panel of figure 9.1 shows the dependence of the conductivity
with the source for different values of the mass. Despite the fact that the slope changes
the behavior is always linear in the dimensionless source parameter. The plot on the right
panel shows the conductivity coefficient vs. the anomalous dimension of the current ∆.
Remarkably the conductivity gets enhanced by the presence of the mass term in the bulk.
In addition to this enhancement the plot shows another feature that deserves a comment.
In the limit ∆(m) → 0 the conductivity goes to the numerical value 5.333 ∼ 16

3 . Let us
now look at the analytic solution for zero mass shown in (2.25) of [45]9

〈J i5J
j
5〉 = −4iκ̃k(3µ5 − α)εij , (9.37)

where µ5 here is the thermodynamic chemical potential, α is the source, i.e. the boundary
value of the temporal component of the gauge field and κ̃ = 2κ

3 in our convention. If one
chooses the gauge α = µ5 then one obtains

〈J i5J
j
5〉 = −8iκ̃kµ5εij , (9.38)

In our numerical results we have absorbed the Chern Simons coupling in the definition of
the external B-field (or equivalently set it to one in the fluctuation equations). Taking into
account the difference in the normalizations of the Chern Simons couplings in [45] we can

9This model contained two massless vector fields in the bulk. One modeling the conserved vector and
the other the anomalous axial symmetry. It is clear that the result obtained in our model with one massive
vector should be compared in the zero mass limit to the axial vector sector of the model in [45].
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Figure 9.2: The gap Γ versus m2. Black line corresponds to a linear fit.

extract from (9.37) the numerical value σ55 = 16/3 which coincides with the m→ 0 limit
in our case! We conclude that our result matches the analytic formula only if we identify
α = µ5, as mentioned right after equation (9.35). This is also consistent with what we
found in the expression for the current.

The fact that we found a time-independent background solution obscures the non-
conservation of the charge. The best way to shed light onto the explicit decay of charge is
by considering a trivial background (in particular, all the sources vanish) and look at the
spectrum of quasinormal modes. In the massless case the lowest QNM shows a diffusion-
type behavior, namely ω = −iDk2. This diffusive mode has to develop a gap when m 6= 0
due to the non-conservation of the charge. Technical details on how to compute QNM can
be found in [57]. Indeed we find that the lowest QNM is no longer massless. The gap Γ
depends on the value of the bulk mass as depicted in figure 9.2.

This indicates that the charge is no longer conserved. Furthermore a simple phe-
nomenological model including only the dynamics of the lowest quasinormal mode suggests
that the non-conservation can be modeled by writing ∂µJ

µ = − 1
τ J

0, where τ is the in-
verse of the gap Γ of the lowest quasinormal mode. Indeed, such a phenomenological
decay law together with Fick’s law ~J = −D~∇J0 suggests a gapped pseudo diffusive mode
ω + i/τ + iDk2 = 0 which indeed is what we find from the QNM spectrum (see next
section).

9.3 The Stückelberg U(1)xU(1) model

In this section we introduce an extra unbroken abelian symmetry in the bulk. This allows
us to switch on an “honest” external magnetic field in the dual theory and therefore
study not only the axial conductivity but the chiral magnetic conductivity and the chiral
separation conductivity as well. In addition we are able to study the effect of the mass on
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the chiral magnetic wave and on the electric conductivity. The Lagrangian reads

L =

(
−1

4
F 2 − 1

4
H2 − m2

2
(Aµ − ∂µθ)(Aµ − ∂µθ) +

κ

2
εµαβγδ(Aµ − ∂µθ) (FαβFγδ + 3HαβHγδ)

)
,

(9.39)

where F = dA and H = dV . The new dynamical U(1) in the bulk is massless and couples
to the Chern-Simons term in the usual way. As in the previous section we work in the
probe limit with Schwarzschild-AdS5 as background metric. The scalar field transforms
non-trivially only under the massive U(1). From now on we refer to the massless U(1)
as “vector” Vµ and to the massive U(1) as “axial” Aµ. The equations of motion for the
gauge fields are

∇µFµν −m2(Aν − ∂νθ) +
3κ

2
εναβγρ(FαβFγρ +HαβHγρ) = 0 , (9.40)

∇νHνµ + 3κεµαβγρFαβHγρ = 0 . (9.41)

The equation of motion of the scalar remains unchanged (see equation (9.21)). Non-
normalizable and normalizable modes of the axial gauge field have the same asymptotics
for large r as the gauge field in the U(1) model. The vector field shows the same behavior
at infinity as usual

Vi(N.N.) ∼ Vi(0)r
0 , Vi(N.) ∼ Ṽi(0)r

−2 . (9.42)

The holographic renormalization of this model is discussed in appendix A.5.2. The result
is the following boundary term

SCT =

∫
∂
d4x
√
−γ
(

∆

2
BiB

i − 1

4(∆ + 2)
∂iB

i∂jB
j +

1

8∆
FijF

ij +
1

8
HijH

ij log r2

)
,

(9.43)
with Bi = Ai − ∂iθ. There are two differences from the result in the previous model. On
the one hand, the appearance of the usual ∼ log term for the vector gauge field. On the
other, the role of the coupling of the Stückelberg field to the C.S term in (9.39) is different
because now we have two independent couplings dθ ∧ F ∧ F and dθ ∧H ∧H. The former
is mandatory, as in the the U(1) model. The latter however is optional since it is a finite
boundary term10. We have chosen to include it. As we will see, this will not affect the
results in our concrete background, but it is potentially useful for other models since it
cancels possible finite contributions to the vector current stemming from the Stückelberg
field.

9.3.1 One-point functions

First we compute the 1-point functions of the gauge fields. The technical details of the
calculations can be found in appendix A.7.1. As in (9.26) we hide all terms that do not
contain any finite contribution in vectors Xi and Y i, obtaining

〈J iV 〉 = lim
r→∞

√
−g
(
H ir + 6κεijkl (Aj − ∂jθ)Hkl

)
+Xi , (9.44)

〈J iA〉 = lim
r→∞

√
−gr∆

(
F ir + r∆Ai

)
+ Y i . (9.45)

10At zero mass this coupling corresponds to the axion term discussed in [118].
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The axial current behaves as in the previous model. Recall that the leading term in the
asymptotic expansion of the axial gauge field diverges and so does the Chern Simons term
in (9.44). Nevertheless, contrary to the axial current, this term has a subleading finite part
(which is the reason why we do not include it in Xi). Looking at the complete expansion
for the axial gauge field (A.79), we see that this finite contribution is proportional to the
source of θ instead of the source of the gauge field. This is of course different from what
one finds in the massless case. In addition, it is here where we see the effect that the
coupling dθ∧H ∧H has. It cancels this finite contribution proportional to the source dual
to the Stückelberg field. As mentioned before, this cancellation comes from the choice we
made in the action and can be removed at will.
We can now look at the Ward identities. Substituting the e.o.m. in the divergence of the
current we find

〈∂iJ iV 〉Ren. = 0 , 〈∂iJ iA〉Ren. = (2 + 2∆)∂iÃi(0) . (9.46)

The vector current is conserved as in the massless case. The result for the axial current is
the same as in the previous model: its divergence is unconstrained reflecting the fact that
it is a non-conserved current.

9.3.2 Two-point functions & anomalous conductivities

The presence of an extra U(1) allows us to obtain the following anomalous conductivities
from Kubo formulae [45,119]

σCME = lim
k→0

iεij
2k

〈
J iJ j

〉
(ω = 0, k) , (9.47)

σCSE = lim
k→0

iεij
2k

〈
J i5J

j
〉

(ω = 0, k) , (9.48)

σ55 = lim
k→0

iεij
2k

〈
J i5J

j
5

〉
(ω = 0, k) . (9.49)

In order to study these we have to switch on a source for both axial and vector charges.
Since the vector charge is conserved at the boundary it is possible to define a non-divergent
chemical potential for it. In fact, since the vector charge is conserved we do not need to
source it by a constant V0 at the boundary. Formally V0 is just a pure gauge and therefore
does not enter any physical observables. It is however a convenient and standard choice
to reflect the presence of the chemical potential in the vector sector by choosing V0 = µ
at the boundary and V0 = 0 at the horizon. In this case the difference of potentials at the
boundary and the Horizon is the energy needed to introduce one unit of charge into the
ensemble. This is a finite quantity and by definition the chemical potential µ.

We want to see how the dependence of the conductivities on the source and/or
chemical potential is affected by the mass. Our background consists of the non-trivial
temporal components of both gauge fields. It is static and homogeneous in the dual
theory so the bulk fields only depend on the radial coordinate (again we work in the axial
gauge Ar = 0, Vr = 0)

θ(r) = 0 , A = φ(r)dt , V = χ(r)dt . (9.50)
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Figure 9.3: Left: Plot of the CSC versus the chemical potential µ for: m2 = 1/2
(Red), m2 = 1/3 (Green), m2 = 0 (Blue). This conductivity is independent of the axial
source µ5. Right: Plot of the CSC coefficient as a function of the anomalous dimension
∆ =
√
m2 + 1− 1.

The equations to solve are

φ′′ +
3

r
φ′ − m2

f
φ = 0 , (9.51)

χ′′ +
3

r
χ′ = 0 . (9.52)

The boundary conditions for the gauge fields at infinity φ(r →∞) = µAr
∆; χ(r →∞) =

µV determine the value of the sources. As usual, (9.52) has the analytic solution

χ(r) = µV −
µV
r2

. (9.53)

Expanding the action to second order in the perturbations and differentiating w.r.t. the
sources we obtain the concrete expressions for the renormalized correlators

〈JVi JVj 〉Ren. = 2ηmj
δṽi(0)

δvm(0)
, (9.54)

〈JAi JAj 〉Ren. = (2 + 2∆)ηmj
δãi(0)

δam(0)
, (9.55)

〈JAi JVj 〉Ren. = 2ηmj
δṽi(0)

δam(0)
= (2 + 2∆)ηmj

δãi(0)

δvm(0)
. (9.56)

We compute the above correlators numerically. For a detailed explanation see appendix
A.7.2. In the following we comment on the outcome.

Axial Conductivity: the conductivity σ55 related to the correlator of two axial currents
behaves identically to section 9.2.2. Hence, we refer the reader to figure 9.1 and the
corresponding discussion.
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Chiral Separation Conductivity: we show the result in figure 9.3. In the plot on the
l.h.s. we show the behavior of the conductivity with the vector chemical potential µ. We
find that there is no dependence on the source µ5 for any value of the mass/anomalous
dimension. As in the axial conductivity we observe an enhancement with increasing mass.
In addition, in the massless limit the conductivity approaches the value σCSE ≈ 12 in
numerical units. Again this is in agreement with the analytic solution for m = 0 [45].
Notice that for this conductivity even in m = 0 there is no dependence on the value of the
vector field at the horizon (the source).

Chiral Magnetic Conductivity: the CME vanishes in our background. This is in
perfect agreement with all the findings so far. As it happened with the rest of anomalous
conductivities, in the massless limit the CMC approaches the value that one obtains for
the consistent currents. We believe that the fact that it vanishes even in the massive case
is a consequence of the the presence of the source µ5. The necessary source to achieve a
stationary solution for any value of m is such that it forces the anomalous response of J iV
to Bi

V to vanish, very much as it occurs at zero mass. This does however not imply that
the Chiral Magnetic effect does not exist in this model. As we will see in what follows,
if we allow the axial charge to fluctuate freely (as opposed to fixing its value via a source
term) the chiral magnetic effect is realized. In particular it gives rise to a (generalization
of the) chiral magnetic wave and to a negative magneto resistivity. Both of which can be
understood as a manifestation of the chiral magnetic effect.

9.3.3 The Chiral Magnetic Wave

We start be reviewing the essential features in the case when also the axial current is
a canonical dimension three current. The chiral magnetic wave (CMW) is a collective
massless excitation that arises form the coupling of vector and axial density waves in
presence of a magnetic field [46]. In addition, this mode can only appear in the spectrum
if there is an underlying axial anomaly. The dispersion relation for this mode corresponds
to a damped sound wave

ω(k) = ±vχk − iDk2 , (9.57)

although it is related to transport of electric and axial charge. This mode can be thought
of as a combination of the CME and the CSE. The vector charge and the axial charge
oscillate one into the other giving rise to a propagating wave. This wave mode is present
even in the absence of net axial or vector charge. The CMW is expected to play an
important role in the experimental confirmations of anomaly induced transport effects. It
has been argued in the case of heavy ion collisions that the CMW induces a quadrupole
moment in the electric charge distribution of the final state hadrons [47,120].

Let us analyze how this propagating mode is affected by the Stückelberg mechanism
in the bulk. Before we proceed to study holographic numerical results we can perform a
purely hydrodynamic computation as follows. As we have already shown in the previous
section, the presence of the mass term for the axial vector field leads to a non-vanishing,
purely imaginary gap for the lowest quasinormal mode. We include this gap as a decay
constant for axial charge. Consider thus a model with axial and vector symmetries. Under
the assumption of the existence of a AV V anomaly in the system, the constitutive relations
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Figure 9.4: (Color online) Real and Imaginary parts of the frequency of the lowest QNM
as a function of k. Solid lines correspond to numerical data with κB = 0.05 and two
different values of the mass: m2 = 0 (orange) and m2 = 0.15 (∆ = 0.08) (blue, green).
The Massive case is given two different colors to highlight the regimes k < kc (green) and
k > kc (blue). Dashed lines correspond to the analytic formula (9.62). The massless case
shows the behavior of the CMW. With a non-vanishing mass such a behavior s recovered
for k > kc.

for the current in the presence of a background magnetic field B read

jxV =
κρAB

χA
−D∂xρV , jxA =

κρVB

χV
−D∂xρA . (9.58)

with D the Diffusion constant and κ the anomaly coefficient. We assume CME and CSE
to be present. They are expressed in terms of charge densities and the susceptibilities χA,
χV [46]. On the other hand we have the (non-)conservation equations

∂µj
µ
V = 0 , ∂µj

µ
A = −ΓρA . (9.59)

Where Γ(m) is the charge dissipation induced by the coupling to the underlying gauge
anomaly11. From here we get the coupled equations

ωρV +
kκρAB

χA
+ ik2DρV = 0 , (9.60)

(ω + iΓ)ρA +
kκρVB

χV
+ ik2DρA = 0 . (9.61)

Assuming now that the equations are linearly dependent we get

ω± = − iΓ
2
− iDk2 ±

√
B2k2κ2

χAχV
− Γ2

4
. (9.62)

The mode associated to ω+ is massless and expected to arise due to the fact that the
vector symmetry is conserved. It basically represents the Diffusion law for the conserved
vector charge. The ω− mode is gapped, i.e. ω−(k = 0) = −iΓ. Both combine at a
critical value for the momentum kC(Γ, B, χ(V,A)) that makes the term inside the square
root vanish.

11We also assume vanishing external electric field and therefore there is no ~E. ~B term present in the
equation for the axial current.
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• If 4B2κ2k2 > χAχV Γ2 the square root is real and we obtain a contribution linear in k
(which boils down to the well-known linear dispersion relation of the chiral magnetic
wave in the limit Γ = 0).

• If 4B2κ2k2 < χAχV Γ2 the square root contribution is completely contained in the
imaginary part of the frequency.

In summary, we see that

kC =
χAχV Γ2

4B2κ2
. (9.63)

For k > kC we get a propagating mode whose dispersion relation approximates the one
of the CMW12. On the contrary, if k < kC , there is no real part of the frequency (i.e. no
chiral magnetic wave); one of the modes remains massless and the other develops a gap Γ.

With this phenomenological model in mind we look for these modes in our holo-
graphic model. In order to find the CMW we look at the QNM spectrum in presence of a
constant magnetic field B in the z-direction. Since the CMW is present at zero axial and
vector charge densities, we do not switch on any chemical potential in the background.
The only non-zero field in our ansatz for the background is Ax = By. It is easy to check
that such an ansatz satisfies the equations of motion trivially. Subsequently we study the
perturbations, with momentum k aligned with the magnetic field. Applying the determi-

Figure 9.5: (Color online) The gap Γ versus m2 for different values of the magnetic field
κB = 0.01 (blue) and κB = 0.5 (red) . Black lines correspond to linear fits.

nant method of [57] we are able to obtain the dispersion relation of the CMW as depicted
in figure 9.4; we show the dispersion relation of the lowest QNMs for both m = 0 (orange)
and m > 0 (green, blue) in presence of B. On top of this we plot (dashed lines) the
predictions of the phenomenological model (9.62).
The numerical results are in perfect agreement with the analytic analysis. We observe the
appearance of a critical momentum kC , induced by the mass term. Below this momentum

12Observe that for k >> kc the slope Re(ω)/k is the same as in the case Γ = 0.
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Figure 9.6: Real part of the conductivity in the longitudinal sector for ∆ = 0 (Left)
and ∆ = 0.1 (Right). Different colors correspond to different values of the magnetic field
B, from κB = 0(blue) to κB = 0.5 (yellow). The behavior of the conductivity at high
frequencies is qualitatively the same for both values of ∆. The DC conductivity however
shows a Drude peak as soon as the mass (∆) is switched on whereas it is a delta function
peak centered at ω = 0.

the chiral magnetic wave is not really wave-like (i.e. Re[ω(k)] = 0 for k < kC); the two
modes decouple, giving rise to a diffusive mode and gapped purely imaginary mode. Such
a spectrum is what one would expect to find in the model if there was no CMW, that is,
the unbroken vector charge exhibits diffusive behavior, with a massless mode protected by
the symmetry, whereas the analogous mode for broken axial U(1) symmetry develops a
gap Γ. This gap is proportional to the mass and gets diminished the stronger the magnetic
field. Above the critical momentum the two modes fuse again, giving rise to the expected
behavior of the CMW. Since the CMW is a propagating oscillation between axial and
vector charge we see that for small momentum the decay of the axial charge dominates,
i.e. the axial charge decays before it can oscillate back into vector charge. The strength of
the mixing of the charges is proportional to the momentum. This mixing becomes large
enough and the oscillation fast enough to allow the build up of a propagating (damped)
wave at large enough momentum.

We show the behavior of the gap Γ with the mass for different values of the magnetic
field in figure 9.5. We find that the gap goes as ∼ m2 and that it is inversely proportional
to the strength of the magnetic field.

9.3.4 Negative Magneto Resistivity

As a last step we study how the electric conductivity is affected by the mass. In the
absence of mass the CMW induces perfect (i.e. infinite) DC conductivities for both the
electric and the axial conductivities along the magnetic field. However, from the QNM
analysis of the previous section we know that this cannot hold anymore. We expect a
finite conductivity but with a strong Drude like peak at zero frequency. As we will see
this is indeed what is happening.
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Figure 9.7: Imaginary part of the conductivity in the longitudinal sector for ∆ = 0 (Left)
and ∆ = 0.1 (Right). Different colors correspond to different values of the magnetic field
B, from κB = 0(blue) to κB = 0.5 (yellow). In agreement with the real part in figure
9.6 the zero frequency behavior shows a pole only when the mass is absent, signaling the
presence of a delta function in the real part. As soon as the mass is switched on Im[σ]
vanishes at the origin.

In order to analyze the longitudinal conductivity along the magnetic field we switch
on perturbations on top of the background that we used to study the CMW, namely, an
external magnetic field pointing in the z-direction. The electric conductivity along the
magnetic field can be extracted from the correlator

σ|| = lim
ω→0

i

2ω
〈JzJz〉 (ω, k = 0) , (9.64)

Since this conductivity is obtained at zero momentum we can assume spatial homogeneity
for the perturbations. The coupled equations of motion can be found in appendix A.8.
The analysis of the two-point function reveals that for this configuration of the background
the correlator we want to compute has the usual expression

〈JzJz〉Ren. = lim
r→∞

r3∂rH + ω2 log(r) . (9.65)

We solve the equations numerically with infalling boundary conditions and build the bulk-
to boundary propagator (BBP from now on). Our results are shown in figures 9.6,9.7,9.8.

The well-known Kramers-Kronig relations imply that a pole in the imaginary part
of the conductivity at zero frequency signals the presence of a delta function peak in
the real part, i.e. and infinite DC conductivity. As soon as we turn the mass on, we
observe that the DC conductivity is not a delta function anymore (see figures 9.6 and 9.7).
This fact has important consequences in the Ohm’s law for an anomalous system with
an explicit breaking term. It has been first pointed out that the axial anomaly induced
a large DC conductivity in a magnetic field (or a negative magneto resistivity) in [121].
More recent studies of this phenomenon are [122, 123]. In these studies Weyl fermions of
opposite chirality appear as the effective electronic excitations at low energies in a crystal

128



Chapter 9. Anomalies

20 40 60 80 100 120 140
1

m2
0

1

2

3

4

5
D

0.1 0.2 0.3 0.4ΚB0

2

4

6

8

10

12
Dm2

Figure 9.8: Left: We show the value of the highest point of the Drude peak (D) against
1
m2 for several values of κB from κB = 0.005 (Blue) to κB = 0.25 (Red) . Dashed lines
corresponds to linear fits. Right: Dependence of the slopes in the l.h.s. plot as a function
of κB. Dashed line corresponds to a quadratic fit; we find the coefficient to be ≈ 72.

(Weyl semi-metal). The associated axial symmetry is however only an approximate one
since the electronic quasiparticles can be scattered from one Weyl cone into another. The
associated scattering rate is called the inter-valley scattering rate τi. It turns out that the
conductivity in these Weyl semi-metals is indeed proportional to the inter-valley scattering
rate. Our findings are in complete analogy, the inverse of the gap in figure 9.5 plays the
role of the inter-valley scattering time leading to a finite but strongly peaked DC magneto
conductivity.
By numerical analysis we find the dependence of the DC conductivity on m,κ and B.
Results are shown in figure 9.8. We can approximate it by

D ≈ 72
κ2B2

m2
. (9.66)

Since in figure 9.5 we found that the gap is proportional to m2 we indeed see that the
DC conductivity scales linearly with the inverse of the gap as expected. We also find that
it depends quadratically on the magnetic field. Again this is the expected result at least
for small magnetic fields. For larger magnetic fields the weak coupling analysis shows
however a linear dependence on the magnetic field that can be traced back to the fact
that all fermionic quasiparticles are in the lowest landau level.

We found that our results show a kind of instability for too large magnetic field such
that we were not able to see this cross over to linear behavior. This might be an artifact
of the probe limit or a genuine instability of the theory at high magnetic fields (similar to
the Chern-Simons term induced instabilities in an electric field found in [89]). We leave
this issue for further investigation.

Finally we note that we have checked that the sum rule is fulfilled for several values
of the mass and the magnetic field. This sum rule takes the form d

dB

∫
Re(σ(ω))dω = 0.

The sum rule implies that the peak is built up by shifting spectral weight from higher
frequencies towards ω = 0. In fact this is precisely what can be seen in figure 9.6 where
it is evident that the region of intermediate frequencies gets depleted and correspondingly
a gap in the magneto-optical conductivity opens up as the magnetic field strength is
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increased. Note that this gap is present still in the region where we found quadratic
scaling (9.66).

9.4 Discussion

In this chapter we have explored the implementation of chiral anomalies in holography.
Concretely, we have studied anomaly related transport phenomena in a bottom-up holo-
graphic model with massive vector fields and Stückelberg axion. One of our motivations
was that the dynamical part of the axial anomaly, i.e. the gluonic contribution, is dual
to the dynamics of axions in holography. Its precisely this axion that can be used in the
bulk Stückelberg mechanism to give mass to the bulk gauge field. The operator dual to
this massive gauge field is a non-conserved current and this non-conservation is manifest
in the fact that we did not find a constraint on the divergence of the current. Throughout
the chapter, we have restricted ourselves to the probe approximation.

Equipped with the above model for an anomalous massive U(1) gauge field, in section
9.2 we have studied carefully the form of the current one-point function, showing that the
well-known Bardeen-Zumino polynomial does not exist if the mass m 6= 0. The resulting
form of the (holographically renormalized) current tends to the consistent definition in
the massless limit. Moreover, as described by (9.29) the divergence of such a current is
not constrained. Moving to the two-point functions, the anomalous conductivity σ55 has
been computed using its definition via a Kubo formula. We find that its value corresponds
to the one associated to to the consistent current in the zero mass limit. We also showed
that the QNM spectrum has a gap in contrast to the massless case in which there exists
a hydrodynamic diffusion mode. We stress that the non-conserved current J i is not a
hydrodynamic degree of freedom because of this gap. Furthermore the parameter µ5 is
not a chemical potential but a coupling constant. Nevertheless we think it would be an
interesting exercise to work out constitutive relations of for the non-conserved current
extending the well-established methods of the fluid/gravity correspondence [124] to this
case.

In section 9.3 we implemented the interplay between non-conserved axial and con-
served vector currents. We also studied a wider set of anomalous conductivities using Kubo
formulae (9.47), (9.48) and (9.49) We found that (as expected) the axial conductivity is
identical to the case with only one axial gauge field. The chiral separation conductivity
is independent of the source µ5, behaves linearly with µ and increases with the mass, as
depicted in figure 9.3. Finally, the chiral magnetic conductivity vanishes for all the values
of m that we have studied; we interpret this fact as an effect of the source that ensures that
the background is time-independent. As m→ 0, all the conductivities approach the value
corresponding to consistent definition of the currents. Subsection 9.3.3 is devoted to the
study of the chiral magnetic wave (CMW) [46] in the presence of mass. First, we perform
an analytic analysis of the modes in a phenomenological model that implements the axial
non-conservation via a relaxation term (see equation (9.59)). This model predicts that a
propagating wave like mode can build up only for large enough momentum. Indeed we
find from our quasinormal mode analysis that the model can be fitted very well to the
QNM spectrum and that indeed a propagating chiral magnetic wave is absent for small
momenta.
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Finally we have also studied the negative magneto resistivity and showed that a
sum rule holds for the magneto-optical conductivity. The strength of the DC conductivity
is proportional to the square of the magnetic field and inverse proportional to the gap.
This is in agreement with weak coupling considerations for small magnetic fields and an
inter-valley scattering relaxation time for axial charge. Unfortunately we were not able to
see the expected cross-over to linear behavior in the magnetic field because our numerics
indicated a possible instability at large B-field. If this is an artifact of the probe limit
(which assumes negligible backreaction of the gauge field on the geometry) or a genuine
instability we leave to further investigation.
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Spontaneous Symmetry Breaking & Anomalies

It could be stated that the study of the interplay between anomalous transport and su-
perfluids started a decade ago; the first approaches to chiral transport (concretely, the
Chiral Separation Effect) where analyzed for high-density QCD, assuming for instance
that baryon symmetry is spontaneously broken, see [125, 126]. However, a systematic
study of Chiral Superfluids has only been undertaken recently, using different techniques
to obtain the hydrodynamic expansion, with particular emphasis on the anomalous re-
sponse [127–131].
The results indicate that the effect of the background condensate is two-fold. On the
one hand, unlike the case of ordinary fluids, anomalous conductivities are not fully deter-
mined by anomaly coefficients anymore. On the other, in addition to the Chiral Vortical
and Chiral Magnetic effects, there exist new types of transport phenomena driven by the
anomalies. However, until now, we lack clear predictions for the anomalous response pa-
rameters in superfluids. Moreover it has been recently pointed out that, for a certain class
of holographic models of chiral superfluids [132] the zero-temperature behaviour of the
CMC and CVC is universal and given by [22]

σbrok.
55 (T → 0) =

σunbrok.
55

3
, (10.1)

σbrok.
CV C(T → 0) = 0 , (10.2)

where ”brok.” and ”unbrok.” refer to broken and unbroken phases, respectively.

Motivated by this, we would like to address the question of how the interplay be-
tween anomalies and spontaneously broken symmetries affect transport phenomena in
holography. In order to calculate possible corrections of the anomalous transport coeffi-
cients due to the presence of condensates, we perform an explicit computation of them.
For simplicity we stick to s-wave condensates, adding a Chern-Simons term to the gauge
fields in the bulk.
Contrary to the usual approaches to transport in Chiral Superfluids, here we rely on linear
response theory to analyze the possible corrections. Kubo formulae provide us with the re-
sponse driven by a small external perturbation. These are powerful because they account
automatically for all the corrections to the coefficients and sometimes prove the existence
of new transport phenomena which is difficult to analyze by means of hydrodynamic ex-
pansions. Hence, we assume that it is possible to define the anomalous conductivities in
terms of correlators in the broken phase, which is to say, that there exists a current due
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to an external magnetic field in both the unbroken and broken phases1

J i = σ{CME,CSE,55}B
i , (10.3)

J i = σCEEε
ijEj . (10.4)

Where J , B,E correspond to a generic U(1) covariant current, magnetic and electric
field, respectively, whereas σ denotes generic conductivities2. Equation (10.4) represents
the Chiral Electric Effect (CEE), an anomalous transport phenomenon which is present
only for Chiral Superfluids at finite superfluid velocity [130]. We propose a Kubo formula
for the Chiral Electric Conductivity (CEC) and compute its value in our models.
In addition, we emphasize the existence of a type of transport phenomena in Chiral Su-
perfluids that to our knowledge has been overlooked so far. We call it Chiral Charge
Generation Effect (CCGE). It establishes the presence of a charge density whenever the
supervelocity is aligned with an external magnetic field

ρ = σ̂ ~ξ · ~B (10.5)

here ~ξ is the superfluid velocity and σ̂ the corresponding conductivity (CCGC). We provide
a Kubo formula for it in Section 10.0.2 and compute its value, showing that it is gener-
ically different from zero. The response prescribed by (10.5) is not formally new, even
though we believe its physical importance has not been stressed before. It has appeared
in the literature and for instance it can be mapped to the term S1 of equation (2.31)
of [131] 3. Such a term establishes the presence of a charge density whenever a transverse
London-type-current S1 = εijkζi∂jζk is acting on the system. Since ζk = −∂kφ + Ak
(see [131]) we propose that there is an effective response of the form (10.5) arising from
S1 = εijkζ0

i ∂jAk + .... We believe that such a transport phenomenon leads to interesting
phenomenological implications.

Notice that, for the above formulae to make sense, it is important in general that
the background we are considering is stable in the presence of a (perturbatively small)
magnetic field, i.e. that there exists a perturbative expansion in the amplitude of a exter-
nal magnetic field. Given such a perturbative expansion, at zeroth order the holographic
superfluid corresponds to the background considered here. This is consistent with the us-
age of Kubo Formulae to compute the transport coefficients. However, for finite external
magnetic fields, the holographic superfluid gets affected and, in particular, it generates
London-type currents [71]. Therefore, one could argue against the validity of our results
beyond perturbatively small external sources. In order to avoid that potential issue, in
Section 10.2 we study a U(1)× U(1) model, in which only one of the U(1)’s undergoes a
phase transition and thus we can study how the (unscreened) magnetic field associated to
the unbroken symmetry enters the chiral transport properties.
In what follows we restrict ourselves to external gauge fields, which allows for configura-
tions that do not excite the anomaly. This is a pertinent remark, since as we saw in the
previous chapter, having a dynamical photon would imply the existence of general loop
corrections to the anomalous transport coefficients [109] which are important even in the
hydrodynamic approximation. Despite the fact that there is no photon here, in the broken

1For a detailed analysis of some of the Kubo formulae applied to Chiral Superfluids, see [133]
2CSE stands for Chiral Separation Effect.
3We thank Carlos Hoyos for pointing this out. See also [134]
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phase the Goldstone boson could in general give important corrections at strong coupling.
However, we expect our calculation not to capture all these contributions, for they are
subleading in the classical gravity approximation.
A source of the corrections that we should be able to capture within holography is the
one associated to the background scalar field. For instance, in [135] the Chiral Separation
Conductivity (CSC) was indeed found to present corrections in the case of a linear sigma
model (the background scalar field gives an effective mass to the fermions through the
Yukawa coupling and contributes to the CSC).

Entropic arguments were used in [130] to extract the Hydrodynamics of Chiral Su-
perfluids in the presence of external unbroken gauge fields. The Chiral Electric Effect was
predicted and some possible generic corrections to the CMC and CVC were found. More-
over, in [22] it was argued that such corrections do not vanish but become universal (model
independent) at low temperatures and the CMC and the CVC were computed at T = 0,
indeed finding a universal result. Our models are restricted to the probe limit and hence
we are not able to reach T → 0; furthermore, we cannot induce metric perturbations and
hence the CVC cannot be calculated. However, we observe that the chiral conductivities
stabilize fast enough to be able to observe their T = 0 behaviour even at temperatures
close enough to Tc, where our computations are reliable.
In what follows we consider two models, one in which a U(1) anomalous symmetry un-
dergoes a phase transition and one in which we have two U(1) symmetries and only one
of them develops a condensate. In the absence of supervelocity the former case reduces
to a truncation of the model of [22] and indeed we observe that σ55 approaches the value
prescribed by equation (10.1). In the latter model (not considered so far in the literature)
we can define three non-vanishing anomalous conductivities at zero supervelocity [45]; our
results suggest that all of them approach universal values at low temperatures. Remark-
ably enough, the universal ratio is always different from 1/3 and, in particular, the CMC
vanishes as we increase the chemical potential.

10.0.1 Remarks on the definition of the current

At this point it is important to point out several remarks related to the definition of the
currents. In the presence of a condensate, regularity imposes that the gauge field must be
zero at the horizon. Hence, it is better to work from the start with the covariant definition
of the current, as in [136]. Notice that this amounts to neglecting the contribution to
the current operator coming from the holographic Chern-Simons term. With this ma-
nipulation there is no trace of the sources in the correlators and one can perfectly work
with a boundary condition such that the background gauge field vanishes at the horizon.
The resulting correlators are the ones of [45] with α = β = 0. Physically, we thus will
be working with the covariant current4, and our computed retarded two-point functions
contain therefore one covariant and one consistent current, namely

GR ∼ 〈J covJ cons〉 . (10.6)

4The covariant current is a gauge-invariant object and thus the source that couples to it is a good
chemical potential. Therefore, by working from the beginning with the covariant current we avoid the
necessity of taking into account the difference between the source for the consistent current, A0, and the
actual (gauge-invariant) chemical potential, µ (see [45] for a detailed discussion on this issue).
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Notice that this in particular implies that, no matter the model under consideration, none
of our (covariant) currents is conserved in general. However, this is not a problem at all
since our background gauge field configurations are such that the anomaly is not excited.

10.0.2 Remarks on the Kubo Formulae

Let us point out some remarks on the Kubo formulae we are going to use. We lack formal
derivation of the one corresponding to the CEC. However, assuming a constitutive relation
of the form (10.4), we can derive a suitable Kubo formula for it. We point out that we do
not intend to make contact with the hydrodynamic construction of [130] (for example, our
Kubo relations are associated to the laboratory frame, not the Landau frame). Instead,
we propose suitable Kubo formulae for the conductivities we aim to study, based on the
fact that we know which the gauge-invariant sources are, as well as the type of response
that we expect. Our Kubo formulae read

σ{55,CSE,CME} = lim
k→0

i

2k
〈JyJz〉R (ω = 0, k) , (10.7)

σCEC = lim
ω→0

i

2ω
〈JyJz〉R (ω, k = 0) , (10.8)

σCCGE = lim
k→0

i

2k⊥

〈
J0Jy

〉
R (ω = 0, k) . (10.9)

Where k⊥ means that the momentum points in a direction transverse to the superveloc-
ity. All the conductivities in (10.7) are associated to similar correlators. The distinction
between them comes from the nature of the currents inside the two point functions and
it only makes sense in the presence of more than one U(1). This will be made explicit in
Section 10.2. We believe the above provide suitable expressions due to the following

• All the above conductivities vanish in the absence of anomaly.

• For σ{55;CSE;CME} we rely on the fact that they are related to the response to an
external magnetic field by definition. Moreover, as we will see, (10.7) is continuous
through the phase transition, matching the value that σ{55,CSE,CME} shows in the
unbroken phase. In addition to this, our formula coincides with the one of [133].

• In the case of σCEC , we take into account that it corresponds to the effect of an
external electric field, as in [130]. With this in mind, we choose a kinematic limit
such that it can be drastically distinguished from the other anomalous transport
coefficients. Moreover, we observe that σCEC ∼ ξ at low temperatures.

• The formula (10.9) can be derived from the discussion of [133] (our notation is also
taken from that reference). We start with the term J0 = −T0e

σg1,νS1
5 and take

the variation

δS1

δAl
= 2ikjε

ijkζeq.i

δζeq.k

δAl
|sources=0 (10.10)

5g1,ν is the derivative of the thermal coefficient g1 with respect to ν ≡ µ/T [131]
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where the 2 comes from the fact that we have twice the same contribution εijkζeq.i ∂j
δζeq.k
δAl

.
For transverse momentum, we use equation (3.29) of [133], yielding

δζeq.i

δAl
=δli −

kik
l

k2
− 2iT0c3kiζ

l
0 , (10.11)

δS1

δAl
=2ikjε

ijkζ0
i

(
δlk −

kkk
l

k2
− 2iT0c3kkζ

l
0

)
. (10.12)

Now, kkkjε
kj = 0 and hence, to first order in k we have〈

J0J l
〉

= −2iTg1,νkjε
ijlζi +O(k2) (10.13)

where all the equilibrium super/subscripts ”0” have been omitted. From here,

εlmnG0l
R = −2iTg1,νkjζi

(
δimδ

j
n − δjmδin

)
(10.14)

where G0l
R ≡

〈
J0J l

〉
. The formula (10.5) can be recovered by assuming m = z, n = x.

In our notation ζi ≡ ξi and we get6

σCCGE ≡ Tξzg1,ν = lim
kx→0

i

2kx
G0y
R (ω = 0) (10.15)

To avoid any possible confusion let us point out that, taking advantage of the fact that
we work with a fixed component of the supervelocity, throughout this work we usually
absorb the supervelocity factors into the conductivities, as prescribed by equations (10.8)
and (10.9). This can be seen explicitly in (10.15). Of course, in general one has to take
into account that the CEE and CCGE are linear in the supervelocity (a vector) and write
expressions like (10.5) instead.
In Section 10.1 we present a simple model in which we only have one U(1) anomalous
symmetry that gets broken spontaneously. We reproduce the outcomes of [22] and we also
include finite supervelocity and analyze the results; in particular, we compute the CEC
and the CCGC via Kubo formulae, showing that they do not vanish in general. Then
we move to Section 10.2, where a more realistic model is considered: we work with a
U(1)×U(1) symmetry, which can be interpreted as having both axial and vector currents
(for a different interpretation, see the main text), with the condensate coupled to the
vector sector. The richer set of chiral conductivities is analyzed (both at zero and finite
supervelocity) with special emphasis on the T → 0 behaviour suggested by data. Section
10.3 includes interpretations, conclusions and future directions of the present work.

10.1 Broken Anomalous symmetry

We want to analyze, from the holographic point of view, how anomalous conductivities are
altered due to the presence of an s-wave condensate. To this end we consider a holographic
superconductor plus a Chern-Simons term that induces a U(1)3 anomaly in the dual field
theory.

6Notice in passing that the coefficient g1, as defined in [131], is associated to a gauge-invariant term and
hence cannot be fixed by anomaly matching. This makes the relation between chiral transport coefficients
and underlying anomalies more subtle than in the case of ordinary fluids (see however Section 10.3.1).
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From the point of view of the dual field theory we have a spontaneously broken U(1)
anomalous global symmetry. The action of the bottom-up model reads

S =

∫
d5x
√
−g
(
−1

4
FMNF

MN +
κ

3
εMABCDAMFABFCD −DMΨDMΨ−m2Ψ̄Ψ

)
(10.16)

This is the model of [22] with Vψ = 1, V = m2Ψ̄Ψ and κ = c/8. In what follows we work
with the covariant definition of the current, meaning that we are neglecting the Chern-
Simons contribution to the definition of Jµ.
We take the Schwarzschild AdS Black Brane in 5 dimensions as our background metric in
the bulk

ds2 = −f(r)dt2 +
dr2

f(r)
+
r2

L2
(dx2 + dy2 + dz2) (10.17)

being f(r) = r2

L2 −
r2
H
r2 . From now on we work in adimensional units, rescaling all the L2

factors to one. Our ansatz for the background fields consists of a non-vanishing temporal
and spatial component of the gauge field and the real component of the scalar field. All
of them with just radial dependence

A = φ(r)dt+ V (r)dx; Ψ(r) = ψ(r) (10.18)

With this ansatz the background equations of motion reduce to

φ′′ +
3

r
φ′ − 2ψ2

f
φ = 0 (10.19)

ψ′′ +

(
f ′

f
+

3

r

)
ψ′ +

φ2

f2
ψ − V 2

r2f
ψ − m2

f
ψ = 0 (10.20)

V ′′ +

(
f ′

f
+

1

r

)
V ′ − 2ψ2

f
V = 0 (10.21)

The equations boil down to the ones which govern the usual s-wave holographic super-
conductor in the presence of supervelocity (see 7.2). This could have been anticipated by
noticing that the ansatz does not excite the Chern-Simons contribution κεMABCDFABFCD
to the gauge field equation. Hence, the anomaly is absent at the level of the background.
However, it has important implications for the perturbations.
In our convention we choose to fix the temperature and interpret the adimensional quan-

tities

µ̄ =
µ

T
; ~̄ξ =

~ξ

T
(10.22)

as the chemical potential and the supervelocity of the system (along this work we make
some abuse of language and refer to the µ̄ → ∞ regime as the T → 0 limit), which are
determined by the boundary conditions of the fields to be imposed at spatial infinity:

φ(r)r→∞ ∼ µ5 V (r)r→∞ ∼ ξ{x,z} (10.23)

By ξ{x,z} we mean that the supervelocity will be taken to be pointing either in the x or the
z-direction. In addition, we choose the standard quantization, by imposing the boundary
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Figure 10.1: Axial conductivity divided by the chemical potential and the anomaly coeffi-
cient versus chemical potential. µ∗5c is the critical chemical potential at zero supervelocity
. (Left) Each line corresponds to same mass value m2 = −7/2 and different superfluid
velocity, from ξx/T = 0.1 (blue) to ξx/T = 2.1 (orange). The dashed horizontal line cor-
responds to the unbroken phase, where σ55 ∼ µ5. In the broken phase this conductivity
approaches 1/3 of the unbroken phase value for large enough chemical potential. This is
compatible with the results of [22]. (Right) Each line corresponds to a different mass (red
m2 = −7/2, blue m2 = −3, green m2 = −5/2) of the scalar field in the bulk. As one
can see the 1/3 factor is unaltered by the dimension of the operator that condenses. The
conductivity depends linearly with κ.

conditions to the leading term in the asymptotic expansion of the scalar field

ψ(r)r→∞ ∼
ψ1

r∆−
+

ψ2

r∆+
+ ...

ψ1 = 0 ψ2 = 〈O〉 (10.24)

We solve equations (10.19)-(10.21) with this boundary conditions numerically.

Before we proceed to discuss our results for the conductivities a comment is in order
regarding the background we have constructed. In our study of the Landau criterion
for holographic superfluids in chapter 7 we showed that the system presents instabilities
at finite momentum close to the phase transition for a large range of supervelocities.
Although this analysis was made in AdS3+1 we expect it to apply in AdS4+1 as well. We
do not discard those issues to have some influence, even though, as we will see later on,
all of our results seem to be perfectly consistent for every value of the chemical potential.
In any case, let us emphasize that our forthcoming main observations have to do with the
behaviour of the conductivities far from the transition point, where the above potential
issues are not expected to play any role.
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Figure 10.2: (Left) Chiral electric conductivity versus chemical potential. Each line corre-
sponds to a different superfluid velocity, ξx/T = 0.1− 2.1. We observe that σCEE/κT = 0
at µ5c and it approaches a constant value at low temperatures/ large chemical potential.
(Right) Dots correspond to σCEE/κT versus ξ̄x in the large µ5 region in which σCEE/κT
is independent of µ5. The solid line corresponds to a linear fit; the slope is 2.667. The
conductivity depends linearly with κ.

10.1.1 The Chiral conductivities in the broken phase: Axial conductiv-
ity and CEC

In order to compute the chiral conductivities from the Kubo formulae (10.3)-(10.5) we
study perturbations on top of the background we have built. We first want to explore
the axial conductivity7 and the CEC, therefore we switch on the perturbations with non-
vanishing frequency and momentum pointing in the direction parallel to the supervelocity
(that we choose to be the x-direction). The sector we are interested in decouples from the
rest of the field perturbations in this kinematic setup, leaving us with just the perturbations
of the transverse gauge fields

δAy = ay(r, t, x); δAz = az(r, t, x) (10.25)

In momentum space the equations read

a′′y +

(
f ′

f
+

1

r

)
a′y +

1

f

(
ω2

f
− k2L2

r2
− 2ψ2

)
ay + 16ik

κL

rf
φ′az + 16iω

κL

rf
V ′az = 0

(10.26)

a′′z +

(
f ′

f
+

1

r

)
a′z +

1

f

(
ω2

f
− k2L2

r2
− 2ψ2

)
az − 16ik

κL

rf
φ′ay − 16iω

κL

rf
V ′ay = 0

(10.27)

7In the literature this conductivity has often been directly associated to the CMC, for the qualitative
dependence of the three conductivities of (10.3) on the axial/vector chemical potentials is the same in the
absence of condensate. However, there are significant differences when a condensate distinguishing between
axial and vector currents is present, as we will see. Thus, we stick to the notation of [45] and denote as
CMC the conductivity related to a vector-vector correlator when a AVV anomaly is switched on.
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Figure 10.3: (Left) Chiral charge generation conductivity versus chemical potential,
different lines correspond to different values of the supervelocity, ξx/T = 0.1−2.1. (Right)
Dots correspond to σCCGE versus supervelocity for large values of the chemical potential.
The solid line corresponds to a linear fit; the slope is 2.667. The conductivity depends
linearly with κ.

In the unbroken phase it is possible to find an analytic solution to the above system of
equations in the kinematic limit ω = 0 and to first order in momentum kx ≡ k. Recall
that this is all that we need in order to obtain σ55, making use of Kubo formulae [119].
However, in the case at hand the background has been computed numerically and there-
fore we look directly for numerical solutions to the system (10.26)-(10.27).
We are now ready to calculate the Kubo formulae shown in (10.3)-(10.5). The prob-
lem reduces to numerically computing the two retarded 2-point functions with the usual
holographic prescription [57] (see the appendix for details on the computation).

A comment that applies to all figures is in order here. The critical value of the
chemical potential depends on the value of the supervelocity and the mass of the scalar
field. In our convention, µ∗c is the critical value at zero supervelocity and m2 = −7/2.

Our results for σ55 are depicted in Figure 10.1. We observe that σ55 is proportional
to the (axial) chemical potential even in the broken phase. However, the coefficient of
proportionality decreases from 1 to 1/3 in units of e2Nc/4π

2. Numerically, in terms of κ
we get8

σ55

(
µ̄5

µ̄5c
>> 1

)
κµ5

= 2.668 ≈ 8

3
. (10.28)

This reduction has been predicted to be universal. In our model, we can check that this is
independent from the mass of the bulk scalar field (right plot of Figure 10.1). Remarkably,
finite supervelocity does not alter these conclusions, as depicted in Figure 10.1 (left); the
correction to the transport coefficient is independent of the supervelocity. As a final

8In order to make contact with the computation in the unbroken phase of [119], notice that we have
set 16πG ≡ 1 in (10.16). Hence, their result σunbrok.

B = 8κµ5/(16πG) corresponds to σunbrok.
55 = 8µ5κ with

our conventions.
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remark, we find that the dependence of the axial conductivity with κ is unaffected by the
presence of the condensate and the supervelocity, namely σ55 ∼ κ.
Moving to the CEC, we observe that it starts increasing but rapidly approaches a constant
value, independent of µ5/T . On the contrary, it linearly increases with the superfluid
velocity for large chemical potential, see Figure 10.2. Or results thus strongly suggest
that, at low temperatures,

σCEE

(
µ̄5

µ̄5c
>> 1

)
κT

= 2.667
ξx
T
≈ 8

3

ξx
T
. (10.29)

Notice that this value is essentially the same as the observed for σ55 at large axial chemical
potential. Again the dependence with κ is linear.

10.1.2 The Chiral Charge Generation Effect

Let us now induce a supervelocity in the z-direction, by turning on Az(r) instead of Ax(r)
in the bulk. This, as anticipated, influences the quasinormal modes, even though the
background equations remain the same as in the previous subsection (due to the fact that,
without superflow, the background is isotropic), with the replacement Ax ↔ Az. On top
of this we switch on perturbations with non-vanishing frequency and momentum pointing
in the x-direction (transverse to the supervelocity). The equations for the perturbations
in the transverse sector are more involved now for they couple to all other perturbations.
They can be found in appendix A.10.1 .
As mentioned in the introduction, the CCGE corresponds to a ”generation” of charge
proportional to the scalar product of the supervelocity and the magnetic field

ρ = σ̂ ~ξ · ~B . (10.30)

As aforementioned, for convenience we absorb the supervelocity component into the con-
ductivity, i.e. σCCGE = σ̂ξz. Note that the charge vanishes if the supervelocity is parallel
to the external momentum. In order to observe such an effect, we use (10.9).
We proceed as before and present our result in Figure 10.3 . We observe that indeed this
phenomenon is not negligible in the presence of supervelocity. Moreover, it stabilizes at
large enough chemical potential; in the region in which σCCGE does not depend on µ̄5, it
presents a clear linear dependence on the superfluid velocity (right plot of Figure 10.3).
We can perform a numerical quadratic fit, obtaining

σCCGE

(
µ̄5

µ̄5c
>> 1

)
κT

= 2.667
ξz
T
≈ 8

3

ξz
T

(10.31)

to a good approximation. Again, the slope has the same value as for the CEC. Let us
emphasize that the behaviour of this transport coefficient at the phase transition is strange
at first sight. Naively, we would have expected σCCGE(µ̄c) = 0 instead of the observed
value. We comment on this issue in Section 10.3.

10.2 Model with axial and vector currents

In this section we study the more realistic model, in which we consider two U(1) bulk
gauge fields, being only one of them spontaneously broken. There are two different inter-
pretations of this model:
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Figure 10.4: (Left) Axial conductivity versus vector chemical potential at µ̄5 = 1 and
ξx/T = 0.1 − 2.1. We find that σ55 is independent of both the vector chemical potential
and the superfluid velocity. (Right) σ55 versus axial chemical potential. The dependence
with µ5 is linear, as expected. The conductivity depends linearly with κ.

• We have axial and vector currents U(1)V × U(1)A and the condensate is coupled
only to the vector part, whereas the axial symmetry is unbroken. This realizes the
interplay between anomalous axial and vector currents, first considered in [45].
The fact that the axial current is not coupled to the scalar field means that the axial
charge of the condensate is zero, so the axial chemical potential can be made constant
through the phase transition and is not affected by the condensation whatsoever.

• The unbroken U(1) is a generic field and the two U(1)’s are intertwined in a par-
ticular way by the anomaly. With this second interpretation, crossed anomalous
correlators can be related to the response of the (broken) current to an external
unscreened magnetic field, associated to the unbroken symmetry. This avoids any
possible problem with the physical realization external magnetic fields contained in
the bulk of the system.

Despite of the two possible interpretations, we use a notation adapted to the first one.
The action of the model contains a complex scalar field coupled to the vector sector

L = −1

4
FMNF

MN − 1

4
GMNG

MN +
κ

2
εMABCDAM (3FABFCD +GABGCD)−DMΨDMΨ−m2Ψ̄Ψ .

(10.32)

Here F is the field strength for the vector gauge field V and G is the analogue for the axial
gauge field A. Moreover DMΨ = ∂MΨ− iVMΨ. We consider AAA and AVV anomalies.
The equations of motion for the background are the same as (10.19)-(10.21), with an
additional equation for the background axial gauge field A(r) = K(r)dt

K ′′ +
3

r
K ′ = 0 (10.33)

which has a trivial analytic solution K(r) = K0 − K1/r
2. The boundary conditions for

the gauge fields are:

φ(r)r→∞ ∼ µ V (r)r→∞ ∼ ξ{x,z} K(r)r→∞ ∼ µ5 (10.34)
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Figure 10.5: (Left) Chiral separation conductivity divided by vector chemical potential
versus vector chemical potential, µ̄5 = 1 and ξx/T = 0.1 − 2.1. The conductivity now
approaches 1/2 of the value at µ̄c, independently of ξx/T . (Right) The plot shows this
conductivity against the axial chemical potential for generic values of µ. σCSE is inde-
pendent of the axial chemical potential in both the broken and unbroken phases. The
conductivity depends linearly with κ.

We impose again standard quantization for the scalar field. First we choose the super-
velocity to point in the x-direction. On top of this we switch on the perturbations with
non-vanishing frequency and momentum parallel to the supervelocity. The equations for
the perturbations in the transverse sector can be found in appendix A.10.2. There is a
wider set of correlators that we can study in this set up

σ55 = lim
k→0

i

2k

〈
JyAJ

z
A

〉
R (ω = 0, k) (10.35)

σCSE = lim
k→0

i

2k

〈
JyV J

z
A

〉
R (ω = 0, k) (10.36)

σCME = lim
k→0

i

2k

〈
JyV J

z
V

〉
R (ω = 0, k) (10.37)

In the superfluid phase, after assuming that the supervelocity is transverse to the momen-
tum, we can also consider the Kubo formulae related to the Chiral Electric Effect and the
Chiral Charge Generation Effect

σACCGE = lim
k→0

i

2k⊥

〈
J0
AJ

y
V

〉
R (ω = 0, k) ; σVCCGE = lim

k→0

i

2k⊥

〈
J0
V J

y
A

〉
R (ω = 0, k)

(10.38)

σACEE = lim
k→0

i

2ω

〈
JyAJ

z
V

〉
R (ω, k = 0) ; σVCEE = lim

k→0

i

2ω

〈
JyV J

z
A

〉
R (ω, k = 0)

(10.39)

We expect them to receive different corrections due to the fact that the condensate distin-
guishes between the vector and the axial symmetry. Notice that our notation establishes
that, for example, ρA = σACCGEB

V
z and ρV = σVCCGEB

A
z .
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Figure 10.6: (Left) Chiral magnetic conductivity versus vector chemical potential with
µ̄5 = 1. Different lines correspond to different values of the superfluid velocity, with
ξx/T = 0.1 − 2.1. The best fit shows that for large enough values of µ̄ it decreases
as σ ∼ 1/µ̄2. (Right) σCME/κT vs. axial chemical potential with µ/T = 2.5. The
linear dependence with µ5, characteristic of the unbroken phase, remains unaltered. The
conductivity depends linearly with κ.

Our results are as follows. On the one hand, the correlator 〈Jy5Jz5 〉 does not get
altered due to the condensate, and is linear in µ5, as depicted in Figure 10.4. The behavior
could have been anticipated, since the on-shell action is diagonal in vector/axial sectors
and it is clear that in the dynamical equations (A.137)-(A.138) the mixing between ay and
az is independent of the condensate. This is ultimately due to the fact that the condensate
only couples to the vector sector and that the correlator 〈Jy5Jz5 〉 is only sensitive to the
AAA anomaly9.

On the other hand, the results concerning σCSE are summarized in Figure 10.5. This
conductivity acts similarly to that encountered in the first section. This was expected by
the form of the equations of motion: in this model, the correlator mixing between ay and
vz is mediated by the same background fields as in the model with only axial symmetry.
Remarkably, unlike the case with a U(1)3 anomaly, at large values of µ̄ we obtain10

σCSE

(
µ̄
µ̄c
>> 1

)
κµ

= 2.998 ≈ σCSE(µ̄c)

2κµ
, (10.40)

independently of the superfluid velocity. This result indicates that the T → 0 behaviour
is strongly dependent on the structure of the broken symmetries and the interplay of the
anomalies. Moreover, the conductivity does not depend on the axial chemical potential
(right plot).

Finally, let us comment on the σCME . The results are displayed in Figure 10.6. We
find a linear dependence on µ̄5, as expected. However, in the presence of the condensate
we observe a new dependence on the vector chemical potential, which is absent in the

9The independence of the condensate can be spoiled by altering the model. For instance, by inducing
an axial component for the condensate.

10The numerical value σCSE(Tc)/(κµ) ≈ 6 depends on the strength of the κ-term in the equations of
motion and is not of fundamental importance, for it can be easily rescaled (compare to Section 10.1).
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Figure 10.7: (Left) Chiral electric conductivity versus vector chemical potential at µ̄5 = 1
and ξx/T = 0.1−2.1 (bottom to top). Both σVCEE/T and σACEE/T show the same behaviour
. (Right) Chiral electric conductivities versus supervelocity at µ̄5 = 1 in the region where
they don’t depend on µ. The conductivity depends linearly with κ.

unbroken phase. The chemical potential diminishes the value of the CMC strongly and it
tends to zero for large values of µ̄ as

σCME

(
µ̄
µ̄c
>> 1

)
κT

≈ g 1

µ̄2
(10.41)

with a numerical value for g ≈ 2.15. We elaborate on this in Section 10.3.

For the chiral transport coefficients associated to the CEE, we observe that corre-
lators of the form 〈JAJA〉 (k = 0) and 〈JV JV 〉 (k = 0) vanish identically. Concerning the

ones mixing axial and vector currents, we observe that σVCEE = σACEE ≡ σ
(V,A)
CEE . The result

is depicted in Figure 10.7. Fitting the right plot to a parabola, we get

σ
(V,A)
CEE

(
µ̄
µ̄c
>> 1

)
κT

= 3.003
ξx
T
. (10.42)

with remarkable precision.

10.2.1 U(1)× U(1) model with transverse supervelocity

As we did in the previous model, in order to study the CCGE we switch on perturbations
with non-zero frequency and momentum pointing in the x-direction, transverse to the su-
perfluid velocity (z-direction). The system of equations with transverse supervelocity can
be found in appendix A.10.3. We report the results on the CCGC in Figure 10.8.
As shown in there are now two different conductivities related to the CCGE, which we

denote σ
(V )
CCGE and σ

(A)
CCGE They exhibit a very different behavior close to µ̄c; the conduc-

tivity σ
(V )
CCGE is similar to the one found in Section 10.1.2, whereas σ

(A)
CCGE looks like the

CEC, with a good continuous behavior at the phase transition. We comment on those

differences in Section 10.3. At low temperatures, however, both σ
(A)
CCGE and σ

(V )
CCGE tend
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to the same value and the dependence with the supervelocity is linear (Figure 10.9). A
quadratic fit yields

σ
(V,A)
CCGE

(
µ̄
µ̄c
>> 1

)
κT

= 3.003
ξz
T
. (10.43)

Figure 10.8: σ
(A)
CCGE/κT (Left) and σ

(V )
CCGE/κT (Right) versus vector chemical potential

at µ̄5 = 1 and ξx/T = 0.1− 2.1 (bottom to top). For large enough values of the chemical
potential both conductivities show the same behaviour. Both depend linearly with κ

Remarkably enough, we point out that the conductivity

σ
(V V )
CCGE = lim

k→0

i

2k⊥

〈
J0
V J

y
V

〉
R (ω = 0, k) , (10.44)

depicted in Figure 10.10, is not negligible. In principle we could have anticipated it to
vanish because of the structure of the anomalies included in the Lagrangian (10.32). As
shown in the plot, this only occurs far enough form the phase transition. This effect points
towards an ”effective VVV anomaly” (see also the results concerning the CMC) that is
present close to the phase transition.

10.3 Discussion

We have analyzed the explicit form of the chiral conductivities in two holographic models
with U(1) and U(1) × U(1) symmetries, in presence of a scalar condensate, at finite
superfluid velocity. We have presented an explicit calculation of CEE by using a suitable
Kubo formula, which allowed us to prove in a robust way that the CEC is in general not
vanishing in superfluids.
Moreover, by means of the Kubo formulae we have found an effect whose existence, as
far as we are aware, had not been emphasized before in the literature. This induces the
presence of axial charge in the presence of supervelocity and a magnetic field

ρA ∝ ~ξ · ~B (10.45)
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Figure 10.9: Both conductivities σ
(A,V )
CCGE show the same dependence on the vector chemical

potential µ and the supervelocity ξz for large enough values of µ. The slope coincides
with the slope for the CEC, despite the radically different behaviour close to the phase
transition.

Such a term has interesting consequences. For instance, the Chiral Magnetic Effect would
be dynamically produced in a superfluid in the presence of an external magnetic field
aligned with the supervelocity. We believe this term deserves more investigation in the
future, in order to fully understand the mechanism by which charge is ”generated”, as well
as to analyze the implications that it could lead to.
In addition, we have found generic corrections, due to the background condensate, to all of
the anomalous conductivities. Such corrections seem to take a constant value as T → 0 in
all of the cases. We observe that such value is model-dependent, but seems to be strongly
constrained by the number of broken symmetries and the interplay between the anomalies.

Section 10.1 is devoted to the study of the chiral transport of a broken anomalous
U(1) symmetry. At ξ = 0, we found the result previously pointed out, namely, the value
of the conductivity is 1/3 of that in the unbroken phase, i.e,

σ55(T → 0) ≈ 8κ

3
µ5 =

σ55(Tc)

3
. (10.46)

This fact turns out not to be affected when a supervelocity parallel to the momentum is
considered. Moreover, as soon as supervelocity is considered, we have two new anomalous
effects present: The Chiral Electric Effect and the Chiral Charge Generation Effect. We
proposed suitable Kubo formulae for both the CEE and CCGE and computed their value,
finding that both become independent from the chemical potential at sufficiently low
temperatures. Moreover, their dependence with the superfluid velocity is linear, i.e.,

σCEE(T → 0) ≈ σCCGE(T → 0) ≈ 8κ

3
ξx , (10.47)

Section 10.2 deals with two U(1) global symmetries, giving rise to a more rich set
of anomalous conductivities with different behaviors once one of the U(1) symmetries
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Figure 10.10: Plot of the σ
(V V )
CCGE conductivity (defined in the text) versus vector chemical

potential for several values of the supervelocity.

gets spontaneously broken. The transport coefficient σ55 remains the same as in the
unbroken phase, but the CMC now acquires a dependence of the vector chemical potential
that makes it vanish as we lower the temperature. This result suggests that the charged
particles stored in the condensate (forming ”cooper pairs”) do not contribute to the CMC,
which hence vanishes at sufficiently low temperatures. The decrease of the CMC seems
to be following a law of the form σCME/T ∼ g/µ̄2, with g ≈ 2.15. The scaling of σCME

with the axial chemical potential is the usual one, namely σCME ∼ µA. Finally, the CSE
decreases up to 1/2 the value that it presents in the unbroken phase, yielding

σCSE(T → 0) ≈ 6κ

2
µ =

σCSE(Tc)

2
. (10.48)

These results do not get altered when inducing supervelocity. Furthermore, we
observe σVCEE = σACEE , both presenting a qualitative behavior that is similar to the one
of Section 10.1; however the scaling with supervelocity is now

σ
(V,A)
CEE (T → 0) ≈ 3κξx (10.49)

Finally, σVCCGE 6= σACCGE close to the phase transition. At low temperatures both
tend to the same value and the same dependence on supervelocity, namely

σ
(V,A)
CCGE(T → 0) ≈ 3κξz (10.50)

10.3.1 On the Low temperature behaviour of the Chiral Conductivities

A simple argument by which the CCGE is expected to arise in superfluids is the following.
Imagine that we have free Chiral fermions coupled to an electromagnetic field Aµ.

L = ψ̄(Vµ −Aµ)γµψ (10.51)
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We also couple them to an external field Vµ associated to a U(1) symmetry that gets
spontaneously broken. The axial current jµaxial = ψ̄γµγ5ψ is anomalous. Hence, in general

∂µj
µ
axial = a F ∧ F + b G ∧ F + c G ∧G (10.52)

where a, b and c are coefficients; F and G are the stress-tensors associated to Aµ
and Vµ respectively. There is no external axial field. Let us concentrate on the term
proportional to b; due to the Bianchi identities, it can be rewritten as b ∂µ(εµνρλVνFρλ)11.
At this point, we substitute the actual value of Vµ, which, assuming that µ = 0, corresponds
to Vµ = (0, ξx, 0, 0)12. Assuming that jµaxial does not depend on the position, we find, in
momentum space

ωjµaxial = ωbεµxρλξxFρλ + ... (10.53)

leading to both the Chiral Electric Effect and the Chiral Charge Generation Effect, i.e,

jyaxial ∼ bε
yxtzξxEz (10.54)

jtaxial ∼ bεtxyzξxBx (10.55)

The above argument ”with the hands” leads us to some notion of covariantization of those
effects13. This would imply that for the U(1)3 anomaly, the anomalous contribution to
the current can be recast in a covariant form

Jµanom(T → 0) = ΣASCEε
µνρλuSνFρλ + ... (10.56)

where uSµ = −µuµ + ζνP
νµ is the (non-normalized) superfluid velocity and the ”...”

indicate possible corrections due to vorticity. This covariant form of the response can
be analyzed numerically by establishing the numerical universality (up to the form of the
interplay between the anomalyA and the broken symmetries) of the coefficient ΣASCE . Our
results suggest that the superfluid component (the only one present at zero temperature)
gives a contribution of the form (10.56) with

ΣAAA
SCE =

C

3
(10.57)

being C a number that is fully determined by the anomaly coefficient.
For the U(1)×U(1) model the at zero temperatures there exists a subset of non-vanishing
chiral conductivities for which (10.56) applies, with

ΣAV V
SCE =

C

2
. (10.58)

11 Notice that, since the symmetry is spontaneously broken, in principle we have to substitute Vµ →
Vµ − ∂µφ, where φ is the Goldstone mode. However, for simplicity we stick to a gauge in which φ = 0.
This will not influence our conclusions.

12One can consider ξ → ξe−iωt instead, to bring down the frequency in 10.53 consistently. At the end
of the calculation all the ω factors will cancel.

13A cautionary remark is in order here. It is not clear to us whether an argument such as the one
presented here gives the complete answer, i.e. whether one can associate the parameter b in (10.55) to the
actual σCCGE . Most likely one cannot. The reason for our concerns is that, for instance, the reasoning
does not distinguish between covariant/consistent currents and overlooks the subtleties associated to the
introduction of chemical potential/supervelocity in the presence of anomalous symmetries. However, we
believe that it serves to illustrate the kind of transport phenomena that we expect, for it works at the
formal level.
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Equations (10.57) and (10.58) are very suggestive. The nature of the number in the de-
nominator of ΣASCE appears to be determined by the spontaneously broken symmetries
that are contained in the anomaly responsible for the chiral conductivity under consider-
ation.
Furthermore, one could ask whether the conclusions presented here are universal, i.e.
valid for all holographic s-wave superfluids or even beyond the holographic approach. If
(10.57) and (10.58) held in general, it would imply that at zero temperature the anomalous
conductivities have a robust value, entirely determined by anomaly coefficients plus the
interplay between the broken symmetries and the anomalies.
We would also like to emphasize that formula (10.15) allows us to extract the coefficient
termed g1(T, µ/T, ξ2/T 2) in [131]. At low temperatures, our numerical results for the
CCGC and σ55 for the U(1)3 anomaly are perfectly compatible with

g1(µ̄ >> 1) = −C
3

µ

T
(10.59)
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Figure 10.11: σ
(A)
CEE/T (Left) and σ

(V )
CEE/T (Right) versus vector chemical potential at

µ̄5 = 1 and ξx/T = 0.1 − 2.1 (bottom to top) computed in the two different kinematic
limits allowed by gauge invariance. For large enough values of the chemical potential the
lines overlap. Notice that one of the limits corresponds to the CCGC.

In the case of the AVV anomaly, the compatibility seems to be not that straightfor-
ward.
In the notation of [133], σ55 ∼ (2Tg1 + µC). The coefficient g1 is continuous at the phase
transition but its derivative is not (see Figure 10.1) and hence σCCGE ∼ g1,ν is not con-
tinuous at µ̄c. This fact explains why we do not observe that the CCGC vanishes at the
phase transition.
Finally, let us mention that the electric field Ex = ∂[tAx] is a gauge invariant source in
our setup, so assuming that jy ∼ σCEEEx only, we would have expected

i

ξz
lim
ω→0

∂ωGyxra (ω, k)|ky=kx=0 =
i

ξz
lim
kx→0

∂kxGytra(ω, k)|ky=kx=0 (10.60)

to hold by gauge invariance. Here Gµνra are retarded correlators and the subindex ”ra”
represents the correct combination of time and anti-time ordered sources with respect to
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which we vary the generating functional.
Notice that the right hand side of equation (10.60) is also the Kubo formula for σCCGE ,
and therefore σCCGE = σCEE should be enforced by gauge invariance of the external
sources. This is not what we observe, compare Figures 10.2 and 10.3. The reason is that
the constitutive relation of the current receives contributions from terms other than the
one associated to the CEE and therefore the limits taken in (10.60) capture the influence
of gauge-invariant sources that are not the electric field. Remarkably, the effect of those
other sources seems to vanish at low temperatures, as shown in Figure 10.11, for, at T → 0,
we recover (10.60). This supports the validity of the relation (10.56).
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11
Conclusiones

En esta tesis hemos investigado al relacion entre la ruptura de simetŕıa y fenómenos de
transporte en holograf́ıa. con este fin hemos profundizado en los conceptos de simetŕıa
y su ruptura en holograf́ıa. Los puntos más importantes de nuestro análisis han sido los
siguientes

En los caṕıtulos 6, 7, 8 se ha considerado la ruptura espontánea de simetŕıa en
holograf́ıa. Desde el punto de vista gravitatorio esto se consigue mediante un mecanismo
de Higgs localizado en el bulk. Concretamente se ha estudiado la ruptura espontánea de
una simetŕıa U(2). En este modelo se pudo estudiar la aprición y el comportamiento de
bosones de Nambu-Goldstone exóticos en holograf́ıa. Se pudo comproba como este modelo
no solo respeta los teoremas modernos de contaje, si no que puede servir para extender
estos, puesto que provee un ejemplo concreto en el que se evitan las restricciones habituales
(existencia de operadores locales que implementen la simetŕıa). Para implmentar esto se
considera la ruptura de una simetŕıa global en el bulk. En esta situacion la simetŕıa existe
en la teoŕıa dual pero no se puede construir ningún operador local relacionado con esta.
De esta manera se puede ver como holograf́ıa provee un método único de implementar
simetŕıas en teoŕıas fuertemente acopladas.
La relación de dispersión cuadrática de los modos NG tipo II dio lugar a preguntarse sobre
la estabilidad de este tipo de superfluidos. Utilizando el criterio de Landau se encontró
que en efecto los superfluidos con modos NG tipo II son inestables cuando se induce una
velocidad relativa entre la componente normal y la superfluida. Esto motivó una revisión
del análisis de estabilidad del superconductor holográfico habitual (abeliano). Mediante
un análisis de los modos quasinormales del sistema se encontró una modificación en el
espacio de fases del superconductor holográfico: la región que separa la fase rota y la
fase desordenada en presencia de una velocidad de la componente superfluida es inestable.
Además dicha inestabilidad ocurre a momento finito. Esto sugiere que una fase modulada
podŕıa ser la configuración estable que interpola entre ambas regiones. Para comprobar
esto seŕıa necesario construir explicitamente la fase y rehacer el análisis de estabilidad
desde el punto de vista de la enerǵıa libre y del criterio de Landau.

El modelo de superconductor no abeliano tiene una estructura especialmente rica.
Durante el estudio de la configuración estática se encontró una inestabilidad a bajas tem-
peraturas. Esta inestabilidad da lugar a una nueva fase en la que se genera un condensado
de tipo p. Sorprendentemente, existe una zona en el espacio de fases en la que ambos
condensados coexisten. Esta fue el primer modelo holográfico exihibiendo este compor-
tamiento. En este modelo se exploró la posibilidad de introducir un potencial qúımico en
las direcciones no abelianas. Dicha posibilidad corresponde a la ruptura expĺıcita de la
simetŕıa.
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En el caṕıtulo 9 se estudió la anomaĺıa axial desde el punto de vista holográfico. En
este contexto se encontró una interesante conexión entre anomaĺıas y ruptura espontánea
de simetŕıa: el mecanismo de Higgs y el de Stueckelberg en el bulk, intimamente rela-
cionados dessde el punto de vista de espacio plano, dan lugar a dos efectos muy diferentes
en la teoŕıa dual.

Utilizando el mecanismo de Stueckelbeg se ha investigado el efecto de incluir fenómenos
de rescatterging en cantidades relacionadas con la anomaĺıa en la teoŕıa dual. Se pudo
comparar los resultados obtenidos con aquellos en ausencia de dichos fenómenos encon-
trando interesantes conexiones entre ambdas via renormalización holográfica. Es impor-
tante mencionar que la conexión entre términos de Chern-Simons y fotones masivos no
es desconocida: en 2+1 dimensiones es sabido que“integrating out” los fermiones masivos
da lugar a una teoŕıa efectiva de Chern-Simons que da lugar a una masa efectiva para el
campo gauge. Podŕıa ser posible generalizar dicha conexión a dimensiones superiores y
profundizar en esta desde el punto de vista holográfico. Una cuestión queda abierta: en el
modelo expuesto no fue posible encontrar ua versión covariante de la corriente; seŕıa intere-
sante estudiar cómo generalizar el concepto de corriente covariante a modelos holográficos
con fotones masivos en el bulk.

Finalmente, en el capt́ıulo 10 se consideró la interacción entre ambos mecanismos de
ruptura de simetŕıa. Haciendo énfasis en los fenómenos de transporte, se ha considerado
como la aparicion de un condensado escalar efecta afecta los coeficientes de transporte.
Sorprendentemente fue posible identificar un efecto que hab́ıa sido pasado por alto: el
efecto de generación de carga quiral predice la aparición de carga quiral cuando un campo
magnético se alinea a la velocidad del superfluido.
A lo largo de los dos últimos caṕıtulos surgieron ciertas sutilezas en el concepto de poten-
cial qúımico. Esto dio lugar a una interesante observación sobre las distintas maneras de
introducir el mismo desde el punto de vista holográfico: cuando el campo gauge en el bulk
se ve forzado a desaparecer en el horizonte deja de ser posible diferenciar entre potencial
qúımico y fuente en la teoŕıa dual. Esto ocurre precisamente cuando la carga dual no está
conservada.

En esta tesis, como el t́ıtulo promet́ıa, se han estudiado fenómenos de transporte
relacionados con ruptura de simetŕıas en holgraf́ıa. Se ha podido comprobar como holo-
graf́ıa nos provee nuevas maneras de estudiar estos conceptos. Junto a esto se ha podido
ver como efectos conocidos desde el punto de vista de teoŕıas de campos tienen sorpren-
dentes efectos en la teoŕıa gravitatoria dual.

Aún quedan muchas preguntas por responder en el ámbito del transporte holográfico.
¿ Es posible entender el mecanismo que rige los superconductores de alta temperatura con
holograf́ıa? ¿ Es posible obtener predicciones cualitativas del comportamiento del plasma
de quarks y gluones? ¿ Cómo de lejos se puede llegar al calcular correcciones 1/N? ¿ Se
puede encontrar alguna relación más profunda entre anomaĺıas y ruptura espontánea de
simetŕıa? ¿ Hasta qué punto es posible ahondar en la filosof́ıa de la holograf́ıa? ¿ Tiene
un dual cualquier teoŕıa de gravedad?

Abrazar la dualidad gauge/gravedad hasta sus últimas consecuencias promete ser
un viaje iluminador.
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Appendices

A.1 Matrix valued Kramers-Kronig relation

The generically matrix-valued spectral function is defined as

ρij(x) = 〈[Oi(x),Oj(0)]〉 , (A.1)

where Oi are Hermitian operators. Its behavior under Hermitian conjugation is

ρ(x)† = ρ(−x) = −ρ(x)t . (A.2)

Correspondingly, the Fourier transform ρ̃(k) =
∫
d4x e−ikxρ(x) also satisfies a set of iden-

tities

ρ̃(k)† = ρ̃(k) = −ρ̃(−k)t . (A.3)

In particular this means that the diagonal components are real and antisymmetric under
k → −k. One may also be interested in the behavior under ω → −ω. We take now
k = (ω,q). For theories with rotational invariance the spectral function can depend only
on q2. Consequently the diagonal components will also be real and odd in ω

ρii(ω,q
2) = ρii(ω,q

2)∗ = −ρii(−ω,q2) . (A.4)

For the off-diagonal components however, only if one also imposes time reversal or parity
symmetry can one prove that the off-diagonal entries must be either even or odd functions
of the frequency. In the present case time reversal symmetry is broken by the presence of
the chemical potential. Further constraints can however by obtained by supposing that
the theory is invariant under x→ −x. For an odd number of spatial dimensions we could
use the parity operators P to take x → −x. In the two spatial dimensions we study in
this paper we can take P to by a rotation by π (for an arbitrary even number of spatial
dimensions D = 2n we could take the angle π for all the rotations in the i, i+ 1-th plane
for all i ≤ n). This P-operator acts as POi(t,x)P−1 = σiOi(t,−x) with σi = ±1. In odd
spatial dimensions σi is the parity of the operator. In even spatial dimension σi = −1 if
Oi is the component of a spatial vector. Hence

P [ρij(t,x)] = σiσjρij(t,−x) . (A.5)

P-invariance implies ρij(t,x) = σiσjρij(t,−x), which for the Fourier transform implies
that

ρ̃ij(ω,q) = −σiσj ρ̃ij(−ω,q)∗ . (A.6)
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So the off-diagonal entries are either odd or even functions of ω depending on the signs
σi. In the case where the fields transform in the same way under the parity operator
this means that the real (imaginary) part of the off-diagonal components is an odd (even)
function of the frequency.

From the spectral function, as defined in (A.1) we can define two causal propagators,
namely the retarded and advanced Green’s functions

GR(x) =− iΘ(t)ρ(x) , (A.7)

GA(x) = iΘ(−t)ρ(x) , (A.8)

where x = (t,x). Using (A.3), one can prove the following relation among the Fourier
transforms of these

G̃R(k) = G̃R(−k)∗ = G̃A(k)† . (A.9)

From here, we see that the real (imaginary) part, Re(GR) (Im(GR)), is even (odd) under
k → −k. We can compute the Fourier transform of the retarded Green’s function, which
is given by the convolution of the Fourier transform of the Heaviside step function Θ̃(ω)
with the Fourier transform of the spectral function ρ̃(k),

G̃R(ω,q) = −i
∫ ∞
−∞

Θ̃(ω − µ)ρ̃(µ,q)
dµ

2π
. (A.10)

Using the Fourier transform of the step function

Θ̃(ω) =
i

ω + iε
,

and the Sokhatsky-Weierstrass theorem we get

G̃R(ω,q) = P
∫ ∞
−∞

ρ̃(ω′,q)

ω − ω′
dω′

2π
− i

2
ρ̃(ω,q) , (A.11)

where P denotes the principle value. From the Hermiticity of ρ̃(k) we see that we can
regard (A.11) as a split of G̃R(k) into its Hermitian and anti-Hermitian parts, and find
that the spectral function can be computed from the anti-Hermitian part of the Fourier
transform of the retarded Green’s function

ρ̃(k) = i[G̃R(k)− G̃R(k)†] ≡ 2iG̃
(A)
R (k) , (A.12)

where the (A) stands for anti-Hermitian1. Plugging this back into (A.11) and taking the
Hermitian part (H) on both sides we arrive at

G̃
(H)
R (ω) =

i

π
P
∫ ∞
−∞

G
(A)
R (ω′)

ω − ω′
dω′ , (A.13)

which is nothing but the Kramers-Krönig relation for the matrix Green’s function. It is
complemented by the conjugate relation interchanging the Hermitian and anti-Hermitian
parts. Imposing P-invariance and using (A.6) and (A.11) if follows that the Green’s
function satisfies

G̃Rij(ω,q) = σiσjG̃
R
ij(−ω,q)∗ . (A.14)

1Using (A.9) we can always work with retarded Green’s functions GR.
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This constrains the QNM spectrum. Taking for example a diagonal Green’s function with
i = j and writing it as a sum over quasinormal frequencies [68, 137] one seems that the
quasinormal frequencies have to come either in pairs obeying ωn and ω̃n = −ω∗n or are
confined to lie on the imaginary axis. The residues of the pairs are related by complex
conjugation and the purely imaginary ones have to have also purely imaginary residue.

A.2 Solving the fluctuation equations

The (1)−(2) sector of the gauged model in the broken phase consists of a system of coupled
equations (6.86)-(6.93). In order to extract the spectrum of quasinormal modes we made
use of the techniques detailed in [57, 63], where a method to compute the poles of the
Green functions in terms of non-gauge invariant fields was developed. The quasinormal
frequencies are given by the zeroes of the determinant of the field matrix spanned by a
maximal set of linearly independent solutions satisfying infalling boundary conditions on
the horizon evaluated at the boundary.

Imposing infalling boundary conditions, the near horizon behavior of the fields solv-
ing the mentioned equations reads

α = (ρ− 1)κ
(
α(0) + α(1)(ρ− 1) + . . .

)
, (A.15)

β = (ρ− 1)κ
(
β(0) + β(1)(ρ− 1) + . . .

)
, (A.16)

a
(i)
t = (ρ− 1)κ+1

(
a

(i)
t (0) + a

(i)
t (1)(ρ− 1) + . . .

)
, (A.17)

a(i)
x = (ρ− 1)κ

(
a

(i)
x (0) + a

(i)
x (1)(ρ− 1) + . . .

)
, (A.18)

where κ = −iω/3 and i = 1, 2. Since the system is subject to two constraints, we can
only choose four of the six parameters at the horizon. Without loss of generality, solutions

can be parametrized by {α(0), β(0), a
(i)
x (0)}. In this way it is possible to construct four

independent solutions to the field equations. We can label them as I, II, III, IV .

Two additional solutions, V, V I, can be obtained by performing gauge transforma-
tions of the trivial solution,

α→ 0, β → i
λ1Ψ

2
, a(1)

x → −kλ1, a
(2)
x → 0, a

(1)
t → ωλ1, a

(2)
t → iΘλ1 , (A.19)

α→ i
λ2Ψ

2
, β → 0, a(1)

x → 0, a(2)
x → −kλ2, a

(1)
t → −iΘλ2, a

(2)
t → ωλ2 , (A.20)

where λi are arbitrary constants. Notice that these pure gauge solutions are not algebraic
since they have a nontrivial dependence on the bulk coordinate ρ.

The most general solution for each field ϕi = {α̃, β̃, a(i)
t , a

(i)
x } is given by a linear

combination of the above solutions, including the pure gauge modes,

ϕi = cIϕ
I
i + cIIϕ

II
i + cIIIϕ

III
i + cIV ϕ

IV
i + cV ϕ

V
i + cV Iϕ

V I
i , (A.21)

where we have defined {α̃(ρ), β̃(ρ)} = {ρα(ρ), ρβ(ρ)}. This convenient choice allows us
to identify the asymptotic boundary values ϕi with the sources of the gauge invariant
operators of the dual field theory.

As shown in [63], the poles of the retarded Green functions will be given by the
values of the frequency for which the determinant of the matrix spanned by ϕNi vanishes
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asymptotically. Expanding the determinant and evaluating it at a cutoff ρ = Λ, it reads

0 =
1

λ1λ2
det



ϕα
I ϕα

II ϕα
III ϕα

IV ϕα
V ϕα

V I

ϕβ
I ϕβ

II ϕβ
III ϕβ

IV ϕβ
V ϕβ

V I

ϕt(1)
I ϕt(1)

II ϕt(1)
III ϕt(1)

IV ϕt(1)
V ϕt(1)

V I

ϕt(2)
I ϕt(2)

II ϕt(2)
III ϕt(2)

IV ϕt(2)
V ϕt(2)

V I

ϕx(1)
I ϕx(1)

II ϕx(1)
III ϕx(1)

IV ϕx(1)
V ϕx(1)

V I

ϕx(2)
I ϕx(2)

II ϕx(2)
III ϕx(2)

IV ϕx(2)
V ϕx(2)

V I

 (A.22)

= ω2 det


ϕIα ϕIIα ϕIIIα ϕIVα
ϕIβ ϕIIβ ϕIIIβ ϕIVβ
ϕIx(1) ϕIIx(1) ϕIIIx(1) ϕIVx(1)

ϕIx(2) ϕIIx(2) ϕIIIx(2) ϕIVx(2)

+ ωk det


ϕIα ϕIIα ϕIIIα ϕIVα
ϕIβ ϕIIβ ϕIIIβ ϕIVβ
ϕIt(1) ϕIIt(1) ϕIIIt(1) ϕIVt(1)

ϕIx(2) ϕIIx(2) ϕIIIx(2) ϕIVx(2)



−ωk det


ϕIα ϕIIα ϕIIIα ϕIVα
ϕIβ ϕIIβ ϕIIIβ ϕIVβ
ϕIt(2) ϕIIt(2) ϕIIIt(2) ϕIVt(2)

ϕIx(1) ϕIIx(1) ϕIIIx(1) ϕIVx(1)

+ k2 det


ϕIα ϕIIα ϕIIIα ϕIVα
ϕIβ ϕIIβ ϕIIIβ ϕIVβ
ϕIt(1) ϕIIt(1) ϕIIIt(1) ϕIVt(1)

ϕIt(2) ϕIIt(2) ϕIIIt(2) ϕIVt(2)

 ,

where the background boundary conditions Θ(Λ) = 0 and ΛΨ = 0 have been already
imposed. This absence of background sources for the corresponding operators makes
the point (ω, k) = (0, 0) a trivial solution to the vanishing determinant condition, which
ensures the existence of a hydrodynamic mode. Notice also that the point (ω, k) = (0, 0)
is a double solution to the previous determinant equation.

Solutions to the equations of motion and to the determinant condition (A.22) have
been computed numerically. It has been checked that the election of solution basis, i.e. of
initial values of the free parameters, does not affect the result.

A.3 Fluctuation equations in the (0)− (3) sector

The fluctuations in the U(1) theory or the (0) − (3) sector contain the zeroth and third
color sectors of the gauge field and the lower component of the scalar field σ = ρ+ iδ. The
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equations of motion for an arbitrary direction of the momentum then read

0 =fρ′′ +

(
f ′ +

2f

r

)
ρ′ +

(
ω2

f
+
A2

0

f
− A2

x

r2
− |k|

2

r2
−m2

)
ρ+

2iωA0

f
δ + 2a

(−)
t Ψ

A0

f

− 2
a

(−)
x

r2
ΨAx + |k| cos(γ)

2i

r2
Axδ , (A.23)

0 =fδ′′ +

(
f ′ +

2f

r

)
δ′ +

(
ω2

f
+
A2

0

f
− A2

x

r2
− |k|

2

r2
−m2

)
δ − 2iωA0

f
ρ− iΨωa

(−)
t

f

− |k| cos(γ)
2i

r2
Axρ− |k| cos(γ)

i

r2
Ψa(−)

x − |k| sin(γ)
i

r2
Ψa(−)

y , (A.24)

0 =fa
′′(−)
t +

2f

r
a
′(−)
t −

(
|k|2

r2
+ 2Ψ2

)
a

(−)
t − ω|k|

r2
cos(γ)a(−)

x − ω|k|
r2

sin(γ)a(−)
y

− 4ΨA0ρ− 2iωΨδ , (A.25)

0 =fa′′(−)
x + f ′a′(−)

x +

(
ω2

f
− 2Ψ2

)
a(−)
x +

ω|k|
f

cos(γ)a
(−)
t + 2i|k| cos(γ)Ψδ

− 4ΨρAx −
|k|2 sin2(γ)

r2
a(−)
x +

|k|2 cos(γ) sin(γ)

r2
a(−)
y , (A.26)

0 =fa′′(−)
y + f ′a′(−)

y +

(
ω2

f
− 2Ψ2

)
a(−)
y +

ω|k|
f

sin(γ)a
(−)
t + 2i|k| sin(γ)Ψδ

− |k|
2 cos2(γ)

r2
a(−)
y +

|k|2 cos(γ) sin(γ)

r2
a(−)
x , (A.27)

and the constraint

0 =
iω

f
a
′(−)
t +

i|k|
r2

cos(γ)a′(−)
x +

i|k|
r2

sin(γ)a′(−)
y + 2Ψ′δ − 2Ψδ′ , (A.28)

where we have used kx = |k| cos(γ), ky = |k| sin(γ) . The general pure gauge solution in
this sector is

δ = iλΨ; ρ = 0; a
(−)
t = λω; a(−)

x = −λ|k| cos(γ); a(−)
y = −λ|k| sin(γ) , (A.29)

where λ is an arbitrary constant.

A.4 Fluctuation equations in the (1)− (2) sector

The perturbations in the (1)− (2) sector of the U(2) theory include the fluctuations of the
upper component of the scalar field, η = α+ iβ, along with that sector of the gauge field.
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For momentum in the opposite direction of the superflow, the equations of motion read

0 = fa′′(1)
x + f ′a′(1)

x +

ω2

f
−Ψ2 +

(
A

(3)
t

)2

f

 a(1)
x − 2i

A
(3)
t ω

f
a(2)
x + iω

A
(3)
x

f
a

(2)
t

− A
(3)
t A

(3)
x

f
a

(1)
t − 2A(0)

x Ψα+ 2ikΨβ − ikA
(3)
t

f
a

(2)
t +

ωk

f
a

(1)
t , (A.30)

0 = fa′′(2)
x + f ′a′(2)

x +

ω2

f
−Ψ2 +

(
A

(3)
t

)2

f

 a(2)
x + 2i

A
(3)
t ω

f
a(1)
x − iω

A
(3)
x

f
a

(1)
t

− A
(3)
t A

(3)
x

f
a

(2)
t + 2ΨA(0)

x β + 2ikΨα+
ikA

(3)
t

f
a

(1)
t +

ωk

f
a

(2)
t , (A.31)

0 = fa
′′(1)
t +

2f

r
a
′(1)
t −


(
A
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0 = fβ′′ +
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subject to the constraints

0 = 2f
(
Ψβ′ −Ψ′β

)
+ a

(2)
t A

′(3)
t − a′(2)

t A
(3)
t +

f

r2

(
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x a′(2)
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x A′(3)

x
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− iωa′(1)

t − ikf

r2
a′(1)
x ,

(A.36)

0 = 2f
(
Ψα′ −Ψ′α

)
+ a
′(1)
t A

(3)
t − a

(1)
t A

′(3)
t +

f

r2

(
a(1)
x A′(3)

x −A(3)
x a′(1)

x

)
− iωa′(2)

t − ikf

r2
a′(2)
x ,

(A.37)

There are two pure gauge solutions in this sector,

α = 0 , β = iλ1Ψ/2 , a
(1)
t = λ1ω , a

(2)
t = iλ1A

(3)
t , a(1)

x = −λ1k , a(2)
x = iλ1A

(3)
x ,

(A.38)

α = iλ2Ψ/2 , β = 0 , a
(1)
t = −iλ2A

(3)
t , a

(2)
t = λ2ω , a(1)

x = −iλ2A
(3)
x , a(2)

x = −λ2k ,
(A.39)

where λ1 and λ2 are arbitrary constants.

A.5 Holographic Renormalization

A.5.1 U(1) Model

In order to renormalize the theory shown in (9.18) we follow the procedure in [15]. Within
this approach the renormalization procedure consists of an expansion of the canonical
momenta and the On-Shell action λ in eigenfunctions of the dilatation operator. This
operator can be obtained taking the asymptotic leading term of the radial derivative

∂r =

∫
ddx

(
γ̇ij

δ

δγij
+ Ȧi

δ

δAi
+ θ̇

δ

δθ

)
∼
∫
ddx

(
2γij

δ

δγij
+ ∆Ai

δ

δAi
+O(e−r)

)
,

(A.40)

δD =

∫
ddx

(
2γij

δ

δγij
+ ∆Ai

δ

δAi

)
. (A.41)

Notice that this operator is not gauge invariant. Nevertheless SC.T. must be gauge invariant
since the bulk Lagrangian is invariant too. Therefore SC.T. must be expressible as a
functional of Bi ≡ Ai−∂iθ. We will see that this is indeed the case even though we expand
the on-shell action in eigenfunctions of the (non gauge invariant) dilatation operator δD.
We choose the axial gauge Ar = 0. Recall that

∆(∆ + 2) = m2. (A.42)

Our notation for the eigenfunctions of the dilatation operator reads

δDX(a) = −aX(a) , δDX(4) = −4X(4) − 2X̃(4) . (A.43)

All our results were obtained in the probe limit and therefore, for simplicity, we adapt
the renormalization procedure to this limit. This implies that we will use the e.o.m. for
the fields, instead of the Hamiltonian constraint in Einstein equations, to determine the
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eigenfunctions of the dilatation operator the canonical momenta are expanded in. In
addition we set the extrinsic curvature Kij ≡ γ̇ij = 2γij , which in our setup is enough for
the boundary analysis. The matter e.o.m., written in terms of Ei ≡ Ȧi and Π ≡ θ̇ are:

Ėi + 2Ei −m2 (Ai − ∂iθ) + ∂jFji + 2κεirjklEjFkl = 0 , (A.44)

Π̇ + 4Π− ∂i (Ai − ∂iθ) = 0 , (A.45)

Π =
1

m2

(
∂iEi − κεrijklFijFkl

)
. (A.46)

With (A.41) and the e.o.m. we can determine the explicit form of the different terms
in the expansions

Ei = Ei(−∆) + Ei(0) + Ei(2−2∆) + Ei(2−∆) + Ei(2) + ... , (A.47)

Π = Πi(2−∆) + Πi(2) + ... , (A.48)

Ei(−∆) = ∆Ai , (A.49)

Ei(0) = −∆∂iθ , (A.50)

Π(2−∆) =
1

(∆ + 2)
∂iA

i , (A.51)

Π(2) =
−1

(∆ + 2)
�θ . (A.52)

Other terms like Ei(2−2∆) are non-zero but as we will see they not contribute to the
counterterms. We can determine the expressions for the higher order operators needed to
expand the radial derivative:

∂r = δD + δ(∆) + δ(2−2∆) + δ(2−∆) + δ(2) + δ(2+∆) + ... , (A.53)

δ(∆) =

∫
ddx′Ei(0)(x

′)
δ

δAi(x′)
, (A.54)

δ(2−∆) =

∫
ddx′

(
Ei(2−2∆)(x

′)
δ

δAi(x′)
+ Π(2−∆)(x

′)
δ

δθ(x′)

)
, (A.55)

δ(2) =

∫
ddx′

(
Ei(2−∆)(x

′)
δ

δAi(x′)
+ Π(2)(x

′)
δ

δθ(x′)

)
, (A.56)

δ(2+∆) =

∫
ddx′Ei(2)(x

′)
δ

δAi(x′)
. (A.57)

Once we have these we just need the equation for the On-Shell action

λ̇+ λ− Lm = 0 , (A.58)

λ̇+ 4λ+
1

2
EiE

i +
m2

2
Π2 +

m2

2
(AiA

i − 2Ai∂
iθ + ∂iθ∂

iθ)+

1

4
FijF

ij +
4κ

3
(Ai − ∂iθ)EjFklεirjkl −

κ

3
ΠFijFklε

irjkl = 0 . (A.59)
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To determine the terms of the eigenfunction expansion of the On-Shell action

λ =λ(0) + λ(2−2∆) + λ(2−∆) + λ(2) + λ(4−4∆)+

λ(4−3∆) + λ(4−2∆) + λ(4−∆) + λ(4) + λ̃(4) log e2r + ... . (A.60)

It is important to remark that depending on the value of 0 ≤ ∆ ≤ 1 new terms
may appear in this expansion. For example, the next possible term in this expansion is
λ(6−6∆). Therefore, as in the rest of the paper, we restrict our analysis to

6− 6∆ > 4→ ∆ <
1

3
. (A.61)

Furthermore, for a large enough mass (∆ = 1) the number of possible counterterms be-
comes infinite. This is to be expected since for such a value of the mass the operator dual
to the gauge field becomes marginal.

We are now ready to proceed solving (A.59) order by order in dilatation weight

λ(0) = 0 , (A.62)

λ(2−2∆) =
−∆

2
AiA

i , (A.63)

λ(2−∆) = ∆∂iθA
i , (A.64)

λ(2) =
−∆

2
∂iθ∂

iθ . (A.65)

At this point one can see that these first terms of the O.S. action expansion can be
rearranged in terms of the Bi field:

λ(2−2∆) + λ(2−∆) + λ(2) = −∆

2
BiB

i . (A.66)

It is a nice check to find all the terms explicitly and then rearrange them like this
although, as mentioned before, this is to be expected. Moreover we can use this in our
advantage: once one obtains a counterterm which is only proportional to Ai the following
terms can be determined by just imposing that λ has to be gauge invariant.

λ(4−4∆) = 0 , λ(4−3∆) = 0 . (A.67)

Let us analyze the following term with some detail

λ̇
∣∣∣
(4−2∆)

+ 4λ(4−2∆) + Ei(−∆)E
i
(2−∆) +

m2

2
Π2

(2−∆) +
1

4
FijF

ij+

4κ

3
εrijklFjk

(
Ei(0)Al − Ei(−∆)∂lθ

)
= 0 ,

(A.68)

(δD + 4)λ(4−2∆) + δ(2−∆)λ(2−∆) + δ(2)λ(2−2∆) + Ei(−∆)E
i
(2−∆) +

m2

2
Π2

(2−∆) +
1

4
FijF

ij = 0 ,

(A.69)

λ(4−2∆) =
1

4(∆ + 2)
∂iA

i∂jAj −
1

8∆
FijF

ij . (A.70)
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It is remarkable that the term proportional to κ vanishes due to the contraction
of a symmetric

(
Ei(0)Al − Ei(−∆)∂lθ

)
and an antisymmetric εrijkl tensor. Here we see

the importance of the coupling of the Stückelberg filed to the Chern-Simons term. If we
had not added it, at this point we would have found an extra counter term of the form
−θ∧F ∧F . In this expression we have neglected total derivatives. From this last equation
we can infer the following two orders by imposing gauge invariance. So, in terms of the
gauge invariant field Bi the counterterm reads:

λ4−2∆ + λ4−∆ + λ∗4 =
1

4(∆ + 2)
∂iB

i∂jB
j − 1

8∆
FijF

ij . (A.71)

Note that we cannot determine λ(4) with just the boundary analysis. λ∗4 is just a part of
λ4 which is imposed by gauge invariance and that can be obtained from the asymptotics.

We only lack the ∼ log term, that is obtained by evaluating the equation to 4th
order

λ̃(4) = 0 . (A.72)

Thus, the SCT reads:

SCT =

∫
∂
ddx
√
−γ
(

∆

2
BiB

i − 1

4(∆ + 2)
∂iB

i∂jB
j +

1

8∆
FijF

ij

)
. (A.73)

A.5.2 U(1)xU(1) model

Few things change if we introduce a second gauge field (non-massive, non-anomalous in
the boundary). The asymptotic behavior remains unchanged. Specially, the vector gauge
field behaves as it usually does and thus it does not contribute to the dilatation operator.

δD =

∫
ddx

(
2γij

δ

δγij
+ ∆Ai

δ

δAi
+O(e−r)

)
. (A.74)

The equation of the O.S. action has to be modified:

λ̇+ 4λ+
1

2
EiE

i +
1

2
ΣiΣ

i +
m2

2
Π2 +

m2

2
(AiA

i − 2Ai∂
iθ + ∂iθ∂

iθ)+

1

4
FijF

ij +
1

4
HijH

ij + 2κ(Ai − ∂iθ) (EjFkl + 3ΣjHkl) ε
irjkl−

κ

2
Π (FijFkl + 3HijHkl) ε

irjkl = 0 . (A.75)

Where Σ and Hij are the the momentum2 and the field strength of the vector gauge
field. It is not difficult to realize that the only term proportional to Vi that will contribute
to the divergent part of λ is the kinetic term HijH

ij . Since this is of order 4, it will only
contribute to the logarithmic term and therefore:

SCT =

∫
∂
ddx
√
−γ
(

∆

2
BiB

i − 1

4(∆ + 2)
∂iB

i∂jB
j +

1

8∆
FijF

ij +
1

8
HijH

ij log e2r

)
.

(A.76)

2as we did with the axial field we define Σi ≡ V̇i.
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A.6 Correlators in the U(1) model

A.6.1 1-point function

In order to derive the 1-point function of the (non-conserved) vector operator dual to the
gauge field we write fields as background plus perturbations

Aµ = Aµ + aµ , θ = θ + φ , (A.77)

we expand the renormalized action to first order in the perturbations

S
(1)
R =

∫
dr d4x

√
−g
[
aµ

(
∇νF νµ −m2(Aµ − ∂µθ) + κεµαβγρFαβFγρ

)
− φ∇µ (Aµ − ∂µθ)

]
+∫

∂
d4x
√
−g
[
ai

(
F ir +

4

3
κ(Aj − ∂jθ)Fklεrijkl

)
− φ(FijFklε

rijkl +m2(Ar − ∂rθ))
]

+∫
∂
d4x
√
−γ ai

(
∆(Ai − ∂iθ) +

1

2(∆ + 2)
∂i(∂jA

j −�θ)− 1

2∆
∂jF

ji

)
+∫

∂
d4x
√
−γ φ

(
∆(∂jA

j −�θ) +
1

2(∆ + 2)
�(∂jA

j −�θ)
)
. (A.78)

The bulk integral contains the e.o.m. for the background fields. The second line shows
the boundary term that arises from the unrenormalized action S whereas the third and
fourth lines contain the expansion of the counter term actionSCT . By inspection of the
equations of motion one finds that the most general asymptotic expansion of the fields
reads

Aµ ∼
∞∑
i=0

Aµ(i)r
∆−i +

∞∑
i=0

Ãµ(i)r
−2−∆−i +

∞∑
i=0

θ̃µ(i)r
−i+

∞∑
n>1,i≥2(n−1)

ωµ(n,i)r
n∆−i +

∞∑
n>1,i≥3n

ω̃µ(n,i)r
−n∆−i +

∑
i≥4

AL(i)r
(−i) log(r) , (A.79)

θ ∼
∑
i

θ(i)r
(−i) +

∑
n≥1,i≥2n

Ψ̃(n,i)r
(n∆−i) +

∑
n≥1,i≥3n+2

Ψ̃(−n,i)r
(−n∆−i)+

∑
i≥4

θL(i)r
(−i) log(r) . (A.80)

With ∆ =
√

1 +m − 1 that is bounded to be ∆ < 1. The coefficient of the leading
(non-normalizable mode) term A(0)x is to be identified with the source of the dual op-

erator. Ã(0)x is the coefficient of the normalizable mode. ω(n,i), ω̃(n,i) arise due to the
non-linearities of the e.o.m. and can be expressed as functionals of the sources of the
“other” components of the gauge field A(0)y 6=x. Finally, the θ̃ and AL terms arise from the
coupling to the Stückelberg field and are functionals of the source of θ; the logarithmic
terms are sub leading w.r.t. the normalizable mode, contrary to what happens in the
massless case. In the expansion for θ we find the θ(i) coefficients that contain both the

non-normalizable i = 0 and the normalizable i = 4 mode. The Ψ, Ψ̃ terms appear due to
the coupling to the gauge field.
From the boundary term of the O.S. action one can obtain the 1-point function of the
dual operator J i.
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As usual, it is convenient to group all the fields in a vector of the appropriately nor-
malized fields3 ψ = (r−∆ai, φ) and express them as the (matrix valued) bulk to boundary
propagator (BBP) times a vector ψ(0) made of the value of the sources

ψI(r) = FIJ(r)ψJ(0) , F (Λ) = I . (A.81)

Moreover, it will be useful to separate the BBP matrix in a rectangular matrix F
and a vector G such that

F =

(
F
G

)
, aI = r∆FIJψJ(0) , φ = GJψJ(0) . (A.82)

In terms of these the expectation value of the current reads

〈Jm〉 = lim
r→∞

√
−g
(
r∆Fim

(
F ir +

4κ

3
εijkl (Aj − ∂jθ)Fkl

)
−Gm(FijFklε

rijkl +m2(Ar − ∂rθ)
)

+

lim
r→∞

√
−γ r∆Fim

(
∆(Ai − ∂iθ) +

1

2(∆ + 2)
∂i(∂jA

j −�θ)− 1

2∆
∂jF

ji

)
+

lim
r→∞

√
−γ Gm

(
∆(∂jA

j −�θ) +
1

2(∆ + 2)
�(∂jA

j −�θ)
)
. (A.83)

The above expression is quite messy and needs some inspection. In the massless
case [45] all terms proportional to Fi 6=m,Gm vanish in the r →∞ limit and therefore are
not explicitly written in the literature. When the mass is present, however, all terms in
the expression are divergent. This is easy to check given the expansions (A.79). To have a
better understanding of the properties of the current it is convenient to collect the terms
that do not contain finite contributions as shown in the main text (9.26).

A.6.2 2-point functions

Equation (9.36) is the correct expression for the correlator 〈JyJz〉. However, one usu-
ally does not have an analytic solution for the e.o.m. and therefore one has to construct
the BBP numerically. This implies that we are interested in (9.36) expressed as a linear
combination of the BBP and its derivatives. In principle one can derive this combination
directly from the O.S. action to second order in perturbations but this might be rather
tedious. A simpler strategy is to look at the asymptotic expansions for the perturbations
and then invert the series to find the expression of the normalizable mode as a combination
of F, Ḟ. The anomalous conductivity (9.31) is a good opportunity to perform an explicit
example.

First we switch on perturbations for all fields with momentum k aligned to the x
direction and frequency ω: δθ = σ(r)e−iωt+ikx and δAµ = aµ(r)e−iωt+ikx. The linearized

3Since the gauge field diverges at the boundary precisely as ∼ r∆, this choice for the normalization
allows us to have a finite BBP and to collect the sources of the dual theory in ψ(0).
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e.o.m. for these perturbations naturally separate in decoupled sectors, since we are inter-
ested in the correlator 〈JyJz〉 we just look at

fa′′y +

(
f ′ +

f

r

)
a′y +

(
−m2 +

ω2

f
− k2

r2

)
ay −

8ikκφ′az
r

= 0 (A.84)

fa′′z +

(
f ′ +

f

r

)
a′z +

(
−m2 +

ω2

f
− k2

r2

)
az +

8ikκφ′ay
r

= 0 , (A.85)

that decouple from the other equations.

The asymptotic analysis of equations (A.84,A.85) reveals that close to the boundary
the perturbations behave as

ai(r →∞) ∼ a(0)i

(
r∆ − k2

4∆
r∆−2

)
+ a(0)jεij

8µkκi

3(∆− 2)
r2∆−2 +

ãi
r2+∆

. (A.86)

Where ãi is the normalizable mode of the perturbation. In principle it has a com-
plicated dependence on the sources but in the linear response regime we can write

ãi = ρai(0) + ρ̃aj(0) −→
δãi
δa(0)j

= ρ̃ . (A.87)

that allows us to write (A.86) as

ai(r →∞) ∼ a(0)i

(
r∆ − k2

4∆
r∆−2 +

ρ

r∆+2

)
+ a(0)jεij

(
8µkκi

3(∆− 2)
r2∆−2 +

ρ̃

r2+∆

)
.

(A.88)
Which is more useful to make the connection to the BBP matrix

F =

(
b(r) c+(r)
c−(r) d(r)

)
, (A.89)

with 4

b(r) = d(r) ∼ 1− k2

4∆r2
+

ρ

r2+2∆
, c± ∼ ±

(
8µkκi

3(∆− 2)
r∆−2 +

ρ̃

r2+2∆

)
. (A.90)

At this point we can invert the series to the order of the normalizable mode. In our
concrete case we have

ρ̃ = lim
r→∞

r2+2∆ (2−∆)c(r) + rc′(r)

−3∆
. (A.91)

So the last thing to do is to numerically construct the BBP imposing infalling bound-
ary conditions at the horizon and compute the latter formula. For a detailed explanation
on how to numerically construct the BBP we refer the reader to [57]. Due to how we nu-
merically construct F, one may find some issues when computing limr→∞ c(r) so we rather
use an alternative expression involving only derivatives of c(r). One can easily derive

ρ̃ = lim
r→∞

r3+2∆ (3−∆)c′(r) + rc′′(r)

6∆(∆ + 1)
. (A.92)

This expression combined with equations (9.36,9.31) leads finally to a expression for the
conductivity

σ55 = lim
k→0

i

kx
lim
r→∞

r3+2∆ (3−∆)c′(r) + rc′′(r)

6∆

∣∣∣∣
ω=0

. (A.93)

4Here we make some abuse of language when we refer the block in F that affects ax, ay as F. The true
F is actually a 4× 5 matrix as explained in (A.82).
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A.7 Correlators in the U(1)xU(1) model

A.7.1 1-point functions

First of all we expand the action to first order in perturbations

S
(1)
R =

∫
dr d4x

√
−g
[
aµ

(
∇νF νµ −m2(Aµ − ∂µθ) +

3κ

2
εµαβγρ(FαβFγρ +HαβHγρ)

)]
+∫

dr d4x
√
−g
[
vµ

(
∇νHνµ + 3κεµαβγρFαβHγρ

)
− φ∇µ (Aµ − ∂µθ)

]
+∫

∂
d4x
√
−g
[
ai

(
F ir + 2κ(Aj − ∂jθ)Fklεrijkl

)]
+∫

∂
d4x
√
−g
[
vi

(
H ir + 6κ(Aj − ∂jθ)Hklε

rijkl
)
− φ(FijFklε

rijkl +m2(Ar − ∂rθ))
]

+∫
∂
d4x
√
−γ ai

(
∆(Ai − ∂iθ) +

1

2(∆ + 2)
∂i(∂jA

j −�θ)− 1

2∆
∂jF

ji

)
+∫

∂
d4x
√
−γ vi

(
−1

2
∂jH

ji log(r)

)
∫
∂
d4x
√
−γ φ

(
∆(∂jA

j −�θ) +
1

2(∆ + 2)
�(∂jA

j −�θ)
)
. (A.94)

From the e.o.m. we find that the expansions for the scalar and the massive gauge
field remain qualitatively unchanged up to the normalizable mode w.r.t. what we found
in the U(1) model. The expansion for the vector field is

Vµ =
∑
i

Vµ(i)r
−i +

∑
i≥2

Ṽµ(i)r
−i log(r) +

∑
n,i≥n+1

Λµ(n,i)r
n∆−i . (A.95)

Where the ∼ Λ terms appear due to the mixing with the axial gauge field via
Chern Simons. As in the previous case it is convenient to define the BBP with the fields
normalized (r−∆ai, vi, φ) so that we can impose

ψI(0) ≡


at(0)

...
vt(0)

...
φ(0)

 , F (Λ) = I. (A.96)

I is useful to divide the BBP in two rectangular matrices F,H and a vector G

F =


F

H

G

 , aI = r∆FIJψJ(0) , vI = HIJψJ(0) , φ = GJψJ(0) .

(A.97)

From this one can derive the renormalized 1-point functions. The expressions can
be found in the main text in (9.44).
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A.7.2 2-point functions

In order to obtain the 2-point functions in (9.47,9.48,9.49) we switch on perturbations
with momentum aligned to the z direction δθ = σ(r)e−iωt+ikz, δAµ = aµ(r)e−iωt+ikz and
δVµ = vµ(r)e−iωt+ikz on top of our background (9.50). The equations decouple and in the
sector we are interested in we are left to four coupled equations for ax, ay, vx, vy.

a′′y +

(
f ′

f
+

1

r

)
a′y +

(
ω2

f2
− k2

r2f
− m2

f

)
ay −

12ikκφ′

fr
az −

12ikκχ′

fr
vz = 0 , (A.98)

a′′z +

(
f ′

f
+

1

r

)
a′z +

(
ω2

f2
− k2

r2f
− m2

f

)
az +

12ikκφ′

fr
ay +

12ikκχ′

fr
vy = 0 , (A.99)

v′′y +

(
f ′

f
+

1

r

)
v′y +

(
ω2

f2
− k2

r2f

)
vy −

12ikκχ′

fr
az −

12ikκφ′

fr
vz = 0 , (A.100)

v′′z +

(
f ′

f
+

1

r

)
v′z +

(
ω2

f2
− k2

r2f

)
vz +

12ikκχ′

fr
ay +

12ikκφ′

fr
vy = 0 . (A.101)

The asymptotic analysis of these equations allows to write the near boundary ex-
pansion

ai(r →∞) ∼ a(0)i(r
∆ +Mr∆−2) + a(0)jεijM̃r2∆−2 +

ãi
r∆+2

, (A.102)

vi(r →∞) ∼ v(0)i(1) + v(0)jεij(M̃r∆−2) +
ṽi
r2
. (A.103)

Where M and M̃ are functions of k, κ,A′t, V
′
t . In the linear response limit the normaliz-

able modes ãi ṽi can only depend linearly on the sources, therefore we may rewrite the
expansions

ai(r →∞) ∼ a(0)i(r
∆ +Mr∆−2 +

ρ

r2+∆
) + a(0)jεij(M̃r2∆−2 +

ρ̃

r2+∆
) + v(0)i

˜̃ρ

r2+∆
+ v(0)jεij

˜̃̃ρ

r2+∆
,

(A.104)

vi(r →∞) ∼ v(0)i(1 +
η

r2
) + v(0)jεij(M̃r∆−2 +

η̃

r2
) + a(0)i

˜̃η

r2
+ a(0)jεij

˜̃̃η

r2
. (A.105)

This allows us to write

〈JVi JVj 〉 = 2
δṽi
δvj(0)

= 2η̃i , (A.106)

〈JAi JAj 〉 = (2 + 2∆)
δãi
δaj(0)

= (2 + 2∆)ρ̃i , (A.107)

〈JAi JVj 〉 = 2
δṽi
δaj(0)

= 2˜̃̃ηi . (A.108)

Now we perform the same analysis as in (A.6.2), seeking the correct expression of
these correlators as a linear combination of the BBP and its derivatives in order to compute
the conductivities numerically. We find

2η̃i = lim
r→∞

−r3p′(r) , (A.109)

(2 + 2∆)ρ̃i = lim
r→∞

r3+2∆ (3−∆)b′(r) + rb′′(r)

3∆
, (A.110)

2˜̃̃ηi = lim
r→∞

−r3+2∆ v′(r)

∆ + 1
. (A.111)
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where p(r), b(r) and v(r) are the functions that appear in the matrix valued BBP
r−∆ay(r)
r−∆az(r)
vy(r)
vz(r)

 =


a(r) b(r) c(r) d(r)
i(r) j(r) k(r) l(r)
m(r) n(r) o(r) p(r)
u(r) v(r) w(r) y(r)



ay(0)

az(0)

vy(0)

vz(0)

 . (A.112)

A.8 U(1)xU(1) Model: perturbations for the CMW

In order to compute the QNM spectrum and the electric conductivities with a constant
and homogeneous background magnetic field we switch on perturbations with momentum
k aligned to the magnetic field and frequency ω. The decoupled sector of equations we are
interested in reads

a′′t +
3

r
at′ −

(
k2

fr2
+
m2

f

)
at −

ωk

fr2
az +

12κB

r3
v′z +

iωm2

f
η = 0 , (A.113)

v′′t +
3

r
vt′ − k2

fr2
vt −

ωk

fr2
vz +

12κB

r3
a′z = 0 (A.114)

a′′z +

(
f ′

f
+

1

r

)
a′z +

(
ω2

f2
− m2

f

)
az +

ωk

f2
at +

12κB

fr
v′t −

ikm2

f
η = 0 , (A.115)

v′′z +

(
f ′

f
+

1

r

)
v′z +

ω2

f2
vz +

ωk

f2
vt +

12κB

fr
a′t = 0 , (A.116)

η′′ +

(
3

r
+
f ′

f

)
η′ +

(
ω2

f2
− k2

f

)
η +

iω

f2
at +

ik

fr
az = 0 . (A.117)

With a, v, η being the perturbations for the axial, vector and Stückelberg fields
respectively and f the blackening factor of the metric. There are as well two constraints:

ωa′t +
kf

r2
a′z +

12κB

r3
(ωvz + kvt)− im2fη′ = 0 , (A.118)

ωv′t +
kf

r2
v′z +

12κB

r3
(ωaz + kat) = 0 . (A.119)

The equations for the electric conductivity can be obtained turning off the momen-
tum.

A.9 Computing the Conductivities

To compute the conductivities we have followed the method developed in [57].

We rearrange the perturbations in a vector Φ(r, xµ) and work with the Fourier
transformed quantity

Φ(r, xµ) =

∫
ddk

(2π)d
ΦI
k(r)e

−iωt+i~k~x (A.120)
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with Φk(r) being

Φ>k (u) = (At(r), Ax(r), Az(r), ...) (A.121)

(the specific structure depends on the case at hand, the number of coupled fields,
etc.). The general form of the boundary action is [57]

δS(2) =

∫
ddk

(2π)d
[
ΦI
−kAIJΦ′Jk + ΦI

−kBIJΦJ
k

]
(A.122)

where the prime stands for d/dr. To calculate the retarded correlators we solve the
equations for the perturbations with infalling boundary conditions, on the one hand, and
boundary conditions ΦI

k(r → ∞) = φIk on the other. This procedure should give us the
desired Green’s functions, after taking the variation of (A.122) with respect to the fields
at large values of r. Moreover, if

ΦI
k(r) = F IJ (k, r)φJk (A.123)

then F IJ (k, r → ∞) = 1 is the bulk-to-boundary propagator. The retarded two-
point functions, from which we are able to read directly the transport coefficients, are
then computed as

GRIJ(k, r →∞) = −2 lim
r→∞

(
AIM

(
FMJ (k, r)

)′
+ BIJ

)
(A.124)

The AIJ and BIJ matrices depend only on the background and also upon the model
under consideration. We provide their values below

A.9.1 U(1) model: AIJ and BIJ matrices

The matrices turn out to be independent of the supervelocity and its direction, once we
neglect the contribution of the Chern-Simons term to define the covariant currents. We
get

A = −1

2
rf(r)Diag(1, 1)

B = 0

BCT =
ln r

4

(
k2
√
f(r)

r
− ω2r√

f(r)

)
Diag(1, 1) (A.125)

Notice that the counterterms do not contribute to the anomalous transport coeffi-
cients, for BCT only has diagonal entries, which furthermore are of second order in ω and
k.
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A.9.2 U(1)× U(1) model: AIJ and BIJ matrices

In this case we get the same results as before, independently for the axial and vector fields,
namely

Aaxial = −1

2
rf(r)Diag(1, 1)

Baxial = 0

Baxial
CT =

ln r

4

(
k2
√
f(r)

r
− ω2r√

f(r)

)
Diag(1, 1) (A.126)

and

Avector = −1

2
rf(r)Diag(1, 1)

Bvector = 0

Bvector
CT =

ln r

4

(
k2
√
f(r)

r
− ω2r√

f(r)

)
Diag(1, 1) (A.127)

A.10 Equations of Motion

A.10.1 Momentum transverse to the supervelocity for the U(1) model

0 = fρ′′ +

(
f ′ +

3f

r

)
ρ′ +

(
ω2

f
+
φ2

f
− V 2

r2
− k2

r2
−m2

)
ρ+

2iωφ

f
δ + 2atΨ

φ

f
− 2

az
r2

ΨV

(A.128)

0 = fδ′′ +

(
f ′ +

3f

r

)
δ′ +

(
ω2

f
+
φ2

f
− V 2

r2
− k2

r2
−m2

)
δ − 2iωφ

f
ρ− iΨωat

f
− k i

r2
Ψax

(A.129)

0 = fa′′t +
3f

r
a′t −

(
k2

r2
+ 2Ψ2

)
at −

ωk

r2
ax − 4Ψφρ− 2iωΨδ − 16ikκ

f

r3
V ′ay

(A.130)

0 = fa′′x +

(
f ′ +

f

r

)
a′x +

(
ω2

f
− 2Ψ2

)
ax +

ωk

f
at + 2ikΨδ +

16iκ

r
ωV ′ay

(A.131)

fa′′y +

(
f ′ +

f

r

)
a′y +

(
ω2

f
− k2

r2
− 2ψ2

)
ay + 16ik

κ

r
φ′az −

16iκ

r
V ′ (ωax + kat) = 0

(A.132)

fa′′z +

(
f ′ +

f

r

)
a′z +

(
ω2

f
− k2

r2
− 2ψ2

)
az − 16ik

κ

r
φ′ay − 4VΨρ = 0

(A.133)

and the constraint

0 =
iω

f
a′t +

ik

r2
a′x + 2Ψ′δ − 2Ψδ′ (A.134)
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Where ai are the perturbations of the axial gauge field. ρ and δ are the real and
imaginary parts of the perturbations of the scalar field, respectively. Momentum points
in the x-direction, transverse to the superfluid velocity that points in the z-direction. We
observe that now the equations become more complicated, with the perturbations of the
scalar coupled to all the fields, including the transverse sector. This can imply that the
Quasinormal Modes now get affected by the anomaly.

A.10.2 Momentum parallel to the supervelocity for the U(1) model

The equations for the relevant sector with momentum aligned to the supervelocity read

v′′y +

(
f ′

f
+

1

r

)
v′y +

1

f

(
ω2

f
− k2L2

r2
− 2ψ2

)
vy + 12ik

κL

rf
φ′az + 12ik

κL

rf
K ′vz

+12iω
κL

rf
V ′az = 0

(A.135)

v′′z +

(
f ′

f
+

1

r

)
v′z +

1

f

(
ω2

f
− k2L2

r2
− 2ψ2

)
vz − 12ik

κL

rf
φ′ay − 12ik

κL

rf
K ′vy

−12iω
κL

rf
V ′ay = 0

(A.136)

a′′y +

(
f ′

f
+

1

r

)
a′y +

1

f

(
ω2

f
− k2L2

r2

)
ay + 12ik

κL

rf
φ′vz + 12ik

κL

rf
K ′az + 12iω

κL

rf
V ′vz = 0

(A.137)

a′′z +

(
f ′

f
+

1

r

)
a′z +

1

f

(
ω2

f
− k2L2

r2

)
az − 12ik

κL

rf
φ′vy − 12ik

κL

rf
K ′ay − 12iω

κL

rf
V ′vy = 0

(A.138)

where v{y,z} and a{y,z} are the vector and axial perturbations respectively. Momentum
points in the x-direction, parallel to the supervelocity. Note that only the vector compo-
nent couples to the condensate, as could have been anticipated. This equations decouple
from the equations for the rest of perturbations.
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A.10.3 Momentum transverse to the supervelocity for the U(1) × U(1)
model

The equations read

fρ′′ +

(
f ′ +

3f

r

)
ρ+

(
ω2 + φ2

f
− k2 + V 2

r2
−m2

)
ρ− 2

r2
ψV vz +

2φ

f
(ψvt + iωδ) = 0

(A.139)

fδ′′ +

(
f ′ +

3f

r

)
δ +

(
ω2 + φ2

f
− k2 + V 2

r2
−m2

)
δ − i

r2
ψkvx −

iω

f
(ψvt + 2φρ) = 0

(A.140)

fv′′t +
3f

r
v′t −

(
k2

r2
+ 2ψ2

)
vt −

ωk

r2
vx − 2iωψδ − 4φψρ− 12ik

κf

r3
V ′ay = 0

(A.141)

fv′′x +

(
f ′ +

f

r

)
v′x +

(
ω2

f
− 2ψ2

)
vx +

ωk

f
vt + 2ikψδ + 12iω

κ

r
V ′ay = 0

(A.142)

fv′′y +

(
f ′ +

f

r

)
v′y +

(
ω2

f
− k2

r2
− 2ψ2

)
vy + 12ik

κ

r
φ′az + 12ik

κ

r
K ′vz−

12iω
κ

r
V ′ax − 24ik

κ

r
V ′at = 0

(A.143)

fv′′z +

(
f ′ +

f

r

)
v′z +

(
ω2

f
− k2

r2
− 2ψ2

)
vz − 4V ψρ− 12ik

κ

r
φ′ay − 12ik

κ

r
K ′vy = 0

(A.144)

fa′′t +
3f

r
a′t −

k2

r2
at −

ωk

r2
ax − 12ik

κf

r3
V ′vy = 0

(A.145)

fa′′x +

(
f ′ +

f

r

)
a′x +

ω2

f
ax +

ωk

f
at + 12iω

κ

r
V ′vy = 0

(A.146)

fa′′y +

(
f ′ +

f

r

)
a′y +

(
ω2

f
− k2

r2

)
ay + 12ik

κ

r
φ′vz + 12ik

κ

r
K ′az−

12iω
κ

r
V ′vx − 12ik

κ

r
V ′vt = 0

(A.147)

fa′′z +

(
f ′ +

f

r

)
a′z +

(
ω2

f
− k2

r2

)
az − 12ik

κ

r
φ′vy = 0

(A.148)

And the constraints

iω

f
a′t +

ik

r2
a′x = 0 (A.149)

iω

f
v′t +

ik

r2
v′x + 2ψ′δ − 2ψδ′ = 0 (A.150)
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Where ai and vi are the perturbations of the axial and vector gauge fields respectively. ρ
and δ are the real and imaginary parts of the perturbations of the scalar field, respectively.
Momentum points in the x-direction, whereas the superfluid velocity points in the z-
direction.
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