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Abstract One of the most criticized features of Bayesian
statistics is the fact that credible intervals, especially when
open likelihoods are involved, may strongly depend on the
prior shape and range. Many analyses involving open like-
lihoods are affected by the eternal dilemma of choosing
between linear and logarithmic prior, and in particular in the
latter case the situation is worsened by the dependence on
the prior range under consideration. In this letter, we revive
a simple method to obtain constraints that depend neither
on the prior shape nor range and, using the tools of Bayesian
model comparison, extend it to overcome the possible depen-
dence of the bounds on the choice of free parameters in the
numerical analysis. An application to the case of cosmolog-
ical bounds on the sum of the neutrino masses is discussed
as an example.

1 Introduction

In several cases, physics experiments try to measure unknown
quantities: the mass of some particle, a new coupling con-
stant, the scale of new physics. Most of the times, the absolute
scale of such new quantities is completely unknown, and the
analyses of experimental data require to scan a very wide
range of values for the parameter under consideration, to
finally end up with a lower or upper bound when data are
compatible with the null hypothesis.

In the context of Bayesian analysis, performing this kind
of analysis implies a profound discussion on the choice of
the considered priors, which may be logarithmic when many
orders of magnitude are involved. A robust analysis usually
shows what happens when more than one type of prior is
considered, but the calculation of credible intervals always
require also a precise definition of the prior range. Especially
in the case of logarithmic priors, a choice of the range can
be difficult even when physical boundaries (e.g. a mass or
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coupling must be positive) exist, with the consequence that
the selected allowed range for the parameter can influence
the available prior volume and as a consequence the bound
itself.

Let us consider for example the case of neutrino masses
and their cosmological constraints. Current data are sensi-
tive basically only on the sum of the neutrino masses and
not on the single mass eigenstates (see e.g. [1,2]). There are
therefore good reasons to describe the physics by means of
Σmν and to consider a linear prior on it, as the parameter
range is limited from below by oscillation experiments [3–5]
and from above by KATRIN [6]. Even given these consider-
ations, however, one can decide to perform the analysis con-
sidering a lower limit Σmν > 0 [7], instead of enforcing the
oscillation-driven one, Σmν � 60 (100) meV (respectively
for normal and inverted ordering of the neutrino masses, see
e.g. [8,9]): the obtained upper bounds will differ in the var-
ious cases.

In order to overcome these problems, in this letter we
revisit a simple way [10–12] to use Bayesian model com-
parison techniques to obtain prior-independent constraints,
which can be useful for an easier comparison of the con-
straining power of various experimental results, not only in
the context of cosmology, but in all Bayesian analyses in
general. Furthermore, we extend the already known method
to address the problems related to the possible existence of
degeneracies with multiple free parameters and the choice
of the considered parameterizations when performing the
numerical analyses.

2 Prior-free Bayesian constraints

The foundation of Bayesian statistics is represented by the
Bayes theorem:

p(θ |d,Mi ) = π(θ |Mi )LMi (θ)

Zi
, (1)
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where π(θ |Mi ) and p(θ |d,Mi ) are the prior and posterior
probabilities for the parameters θ given a modelMi ,LMi (θ)

is the likelihood function, depending on the parameters θ ,
given the data d and the model Mi , and

Zi =
∫

Ωθ

dθ π(θ |Mi )LMi (θ) (2)

is the Bayesian evidence of Mi [13], the integral of prior
times likelihood over the entire parameter space Ωθ .

While the Bayes theorem indicates how to obtain the pos-
terior probability as a function of all the model parame-
ters θ , when presenting results we are typically interested
in the marginalized posterior probability as a function of one
parameter (or two), which we can generally indicate with x .
The marginalization is performed over the remaining param-
eters, which we can indicate with ψ :

p(x |d,Mi ) =
∫

Ωψ

dψ p(x, ψ |Mi , d). (3)

Let us now assume that the prior is separable and we can write
π(θ |Mi ) = π(x |Mi ) · π(ψ |Mi ). Under such hypothesis,
Eq. (3) can be written as:

p(x |d,Mi ) = π(x |Mi )

Zi

∫
Ωψ

dψ π(ψ |Mi )LMi (x, ψ).

(4)

Let us consider the marginalized posterior as written in
Eq. (4). The prior dependence is only present explicitly
outside the integral, and therefore we can obtain a prior-
independent quantity1 just dividing the posterior by the prior.
The right-hand side of Eq. (4), however, has an explicit
dependence on the value of x through the likelihood that
appears in the integral. We can note that such integral resem-
bles the definition of the Bayesian evidence in Eq. (2), not
anymore for model Mi , but for a sub-case of Mi which con-
tains x as a fixed parameter. Let us label this model with Mx

i
and define its Bayesian evidence:

Zx
i ≡

∫
Ωψ

dψ π(ψ |Mi )LMi (x, ψ), (5)

which is independent of the prior π(x), but still depends on
the parameter value x , now fixed. Note that Eq. (4) can be
rewritten in the following form:

Zi = π(x |Mi )

p(x |d,Mi )
Zx
i . (6)

1 This is not exactly true, in the sense that the prior also enters the
calculation of the Bayesian evidence, see Eq. (2). The shape of the
posterior, in any case, is not affected by such contribution, that only
enters as a normalization constant.

Now, let us consider two models Mx1
i and Mx2

i . Since Zi

is independent of x , we can use Eq. (6) to obtain

π(x1|Mi )

p(x1|d,Mi )
Zx1
i = π(x2|Mi )

p(x2|d,Mi )
Zx2
i , (7)

which can be rewritten as

Zx1
i

Z x2
i

= p(x1|d,Mi )/π(x1|Mi )

p(x2|d,Mi )/π(x2|Mi )
. (8)

The left hand side of this equation is a ratio of the Bayesian
evidences of the models Mx1

i and Mx2
i , therefore it is a

Bayes factor. For reasons that will be clear later, let us rename
x1 → x and x2 → x0 and define this ratio as R(x, x0|d),
which was named “relative belief updating ratio” or “shape
distortion function” in the past [10–12]:

R(x, x0|d) ≡ Zx
i

Z x0
i

= p(x |d,Mi )/π(x,Mi )

p(x0|d,Mi )/π(x0,Mi )
. (9)

Although this function has been already employed in the
past, see e.g. [14–17], its use has been somewhat faded into
obscurity. Here, we will revise its properties and discuss them
in details.

Let us recall that Zx
i is independent of π(x), see Eq. (5):

this means that R(x, x0|d) is also independent of π(x).
This quantity therefore represents a prior-independent way to
compare some results concerning two values of some param-
eter x . At the practical level, R is particularly useful when
dealing with open likelihoods, i.e. when data only constrain
the value of some parameter from above or from below. In
such case, the likelihood becomes insensitive to the param-
eter variations below (or above) a certain threshold. Let us
consider for example the absolute scale of neutrino masses,
on which data (either cosmological or at laboratory exper-
iments) only put an upper limit: the data are insensitive to
the value of x when x goes towards 0, so we can consider
x0 = 0 as a reference value. Regardless of the prior, when
x is sufficiently close to x0 the likelihoods in x and x0 are
essentially the same in all the points of the parameter space
Ωψ , so Zx

i � Zx0
i and R(x, x0) → 1. In the same way,

when x is sufficiently far from x0, the data penalize its value
(Zx

i � Zx0
i ) and we have R(x, x0) → 0. In the middle,

the function R indicates how much x is favored/disfavored
with respect to x0 in each point, in the same way a Bayes
factor indicates how much a model is preferred with respect
to another one.

While R can define the general behavior of the posterior
as a function of x , any probabilistic limit one can compute
will always depend on the prior shape and range, which is
an unavoidable ingredient of Bayesian statistic. The descrip-
tion of the results through the R function, however, allows
to use the data to define a region above which the parameter
values are disfavored, regardless of the prior assumptions,
and also to guarantee an easier comparison of two experi-
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mental results. A good standard could be to provide a (non-
probabilistic) “sensitivity bound”, defined as the value of x
at which R drops below some level, for example | lnR| = 1,
3 or 5 in accordance to the Jeffreys’ scale (see e.g. [2,13]).
Let us consider x0 = 0 as above: we could say, for example,
that we consider as “moderately (strongly) disfavored” the
region x > xs for which lnR < s, with s = − 3 (or −5), and
then use the different values xs to compare the strengths of
different data combinations d in constraining the parameter
x . This will not represent an upper bound at some given con-
fidence level, since it is not a probabilistic bound, but rather
a hedge “which separates the region in which we are, and
where we see nothing, from the the region we cannot see”
[11].

From the computational point of view, it is not neces-
sary to perform the integrals in the definition of Zx

i in order
to compute R. One can directly use the right hand side of
Eq. (9), i.e. numerically compute p(x |d,Mi ) with a specific
prior assumption, then divide by π(x,Mi ) and normalize
appropriately. Notice also that, once R is known, anyone
can obtain credible intervals with any prior of choice: the
posterior p(x |d,Mi ) can easily be computed using Eq. (9)
and normalizing to a total probability of 1 within the prior.

Few final comments: in most of the cases, obtaining limits
with the R function is nearly equivalent to using a likelihood
ratio test. The difference is that, while the likelihood ratio test
only takes into account the likelihood values in the best-fit at
fixed x0 and x , the R method weighs the information of the
entire posterior distribution and takes into account the mean
likelihood over the prior Ωψ . This means that in cases with
multiple posterior peaks or complex posterior distributions,
the limits obtained using the R function can be more conser-
vative than those obtained with the likelihood ratio test. As
an example, we provide in the lower panel of Fig. 1 a com-
parison of the likelihood ratio and of the −2 lnR functions
when the following likelihood is considered:

L(x, θ) ∝ exp(−(x + 0.6θ)2/(2 · 12))

×
[
exp(−θ2/(2 · 32)

+ 0.5 exp(−(x − 6)2/(2 · 0.52)
]
. (10)

The dependence of the likelihood on x and θ is shown in
the upper panel of Fig. 1. In such case, the R function takes
into account the existence of a second peak in the posterior.
The choice of the function and the coefficients in Eq. (10) is
appropriate to show that, while cutting at 1 (corresponding
to the 1σ limit, in a frequentist sense, for the likelihood ratio
test) the likelihood ratio and the R methods give the same
results, the cut at 4 (corresponding to a 2σ significance for
the likelihood ratio test) leads to different results, because the
likelihood ratio takes into account only the likelihood values
at the best-fit, while the R method is also affected by the

Fig. 1 Upper panel: Dependence of the likelihood in Eq. (10) on the
parameters x and θ . Lower panel: Comparison of the results obtained
with the likelihood ratio and the R methods when the likelihood in
Eq. (10) is considered. The horizontal lines show the levels 0, 1, 4,
respectively

second peak of the posterior. For the same reason, the local
minimum of −2 lnR at x = 6 appears.

Another advantage is computational. In cosmological
analyses, it is typically difficult to study the maximum of
the likelihood, because of the number of dimensions, the
numerical noise and the computational cost of the likeli-
hood. An example showing the technical difficulties in such
kind of analyses can be found in [18]. Similar difficulties
can emerge in different analyses. Even if the best-fit point is
not known with sufficient precision, however, the R function
allows to obtain a prior-independent bound with a Markov
Chain Monte Carlo or similar method.

3 A simple example with Planck 2018 chains

To demonstrate a simple example with recent cosmological
data, we provide in Fig. 2 the functionR(Σmν, 0) computed
in few cases, obtained from the publicly available Planck
2018 (P18) chains 2 with four different data sets and consid-

2 The chains are available through the Planck Legacy Archive, http://
pla.esac.esa.int/pla/. Note that a simple post-processing of the available
chains is sufficient to produce Fig. 2.
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Fig. 2 The R(Σmν , 0) function in Eq. (9) obtained from the Planck
2018 chains [7] for different data combinations, considering the
ΛCDM+Σmν model. The horizontal lines show the levels ln R = 0,
− 1, − 3, − 5, respectively

ering the ΛCDM+Σmν model. The datasets include the full
CMB temperature and polarization data [19] plus the lensing
measurements [20] by Planck 2018, and BAO information
from the SDSS BOSS DR12 [21–24] the 6DF [25] and the
SDSS DR7 MGS [26] surveys.

The calculation of R is easy in this case. The Planck col-
laboration considered a flat prior on Σmν ,3 so we simply
have to obtain the posterior p(Σmν |d,ΛCDM + Σmν) by
standard means and use it to computeR according to Eq. (9).4

Since the lower limit adopted by Planck is Σmν = 0, we can
compute R for any positive value of Σmν , as far as we do
not exceed the upper bound of the prior. To better show the
results, we consider a logarithmic scale and an appropriate
parameter range for the plot in Fig. 2.

From the figure, we can notice that the data are com-
pletely insensitive to the value of Σmν when it falls below
� 0.01 eV: in this region, there will be no change between

3 Note that, although the considered prior is linear, the calculations
through the CAMB code enforce a non-trivial distortion of the prior,
which comes from the numerical requirements of the code. These come
from the fact that some combinations of parameter values may cre-
ate numerical instabilities, divergences or simply unphysical values for
some cosmological quantities. These problematic points are therefore
excluded by the cosmological calculation “a priori”, in the sense that the
even if they are formally included in the prior, their likelihood cannot
be computed at the practical level. In the region below 1 eV, however,
the prior on Σmν is substantially unchanged by this fact.
4 Note that this is practically what is already shown by most authors in
cosmology, since the results for 1-dimensional marginalized posteriors
are often presented in plots where pπ (x |d)/pmax

π is shown, being π(x)
a linear prior on the quantity x , therefore not affecting the conversion
between posterior and R according to Eq. (9). Apart for the normal-
ization constant, pπ (x |d)/pmax

π may be intended as an unnormalized
posterior probability, which can be employed for bounds calculations as
if a linear prior on x was considered, or as a shape distortion function,
therefore not suitable to compute limits unless some prior is assumed
first.

prior and posterior distributions, and R → 1 as expected.
On the other hand, Σmν � 0.4 eV will be disfavored by
data, for all the data combinations shown here, as R → 0.
As is also expected, the exact shape of R between 0.01 and
0.4 eV depends on the inclusion of the BAO constraints and
only slightly on the lensing dataset. Regardless of consider-
ing a cut at R = e−3 or R = e−5, indeed, the value of the
sensitivity bound only depends on the inclusion of the BAO
data. A comparison of the CMB dataset without (P18) or with
(P18+BAO) the BAO constraints, therefore, can be summa-
rized by two numbers, considering for example s = −5:

Σmν ,−5 = 0.4 eV (P18), (11)

Σmν ,−5 = 0.2 eV (P18+BAO). (12)

4 The case of multiple models

In the previous sections we discussed the case when dealing
with only one model, which was already known in the litera-
ture. The situation is slightly different when more models are
considered, for example if one wants to study and take into
account several extensions of the same minimal scenario, as
in Ref. [27]. It is not difficult to rewrite the definition of R to
deal with multiple models, if we assume that the prior for the
parameter x under consideration is the same in all of them,
i.e. that π(x) ≡ π(x |Mi ) does not depend on Mi .

Let us now recall the method proposed in [27]. The model-
marginalized posterior distribution of the parameter x is
obtained as

p(x |d) =
∑
i

p(x |Mi , d) p(Mi |d), (13)

where p(Mi |d) is the posterior probability of the modelMi ,
which can be computed using [28]

p(Mi |d) = Ziπ(Mi )∑
j Z jπ(M j )

. (14)

In both cases the sum runs over all the studied models. Com-
ing back to Eq. (13) and using Eqs. (4)5 and (14), we obtain
the fully (prior- and model-) marginalized posterior proba-
bility of x :

p(x |d) =
∑

i π(x |Mi )Zx
i π(Mi )∑

j Z jπ(M j )
. (15)

Remembering that we assumed π(x) ≡ π(x |Mi ) to be inde-
pendent of Mi , the ratio between prior and marginalized

5 The marginalization over the parameters ψ is not necessarily the same
in all the models. As we are not assuming anything on ψ , they can be not
the shared ones among the various models and can vary in number. In any
case, the marginalization works inside each model independently, using
for each Mi the appropriate parameter space and priors: the differences
remain hidden in the definition of Zx

i .
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Fig. 3 The R(Σmν , 0) function in Eq. (9) obtained considering dif-
ferent models (dashed) together with the model-marginalized one from
Eq. (17) (solid), using the full dataset adopted in Ref. [27] (see text for
details). The horizontal lines show the levels ln R = 0, − 1, − 3, − 5,
respectively

posterior probabilities for the parameter x is:

p(x |d)

π(x)
=

∑
i Z

x
i π(Mi )∑

j Z jπ(M j )
. (16)

If we use this result to define R again as in Eq. (9), we have:

R(x, x0|d) ≡
∑

i Z
x
i π(Mi )∑

j Z
x0
j π(M j )

= p(x |d)/π(x)

p(x0|d)/π(x0)
, (17)

which has exactly the same meaning as before, apart for the
fact that in this case R has been marginalized over several
models.

From the computational point of view, in the model-
marginalized case obtaining R is as simple as when only
one model is considered. One just has to select a prior π(x)
and a sufficiently broad range, obtain the marginalized pos-
terior probability as in [27], then divide it by the considered
prior and normalize appropriately.

As an example, we provide in Fig. 3 the R function
obtained from the vary same posteriors studied in Ref. [27].
Such cases are computed considering the full Planck 2015
(P15) CMB data [29,30], together with the lensing likelihood
[31] and the BAO observations by from the SDSS BOSS
DR11 [32], the 6DF [25] and the SDSS DR7 MGS [26] sur-
veys. The considered models are the same extensions of the
ΛCDM+Σmν case adopted by the Planck collaboration for
the 2015 public release, but with a prior Σmν > 60 meV.
Also in this case we can see how the R function is very
close to one below 0.1 eV and always goes to zero above
∼ 0.7 eV. In the middle, the various models (dashed lines)
have different constraining powers, whose weighted average
is represented by the solid line. The model-marginalized,
prior-independent result corresponds to

Σmν ,−5 = 0.6 eV (P15+lensing+BAO). (18)

5 Discussion and conclusions

In this letter we discussed a possible way to show prior-
independent results in the context of Bayesian analysis, gen-
eralising a previously known method [10–12] to deal with
multiple models, extending also the work presented in Ref.
[27]. The method uses Bayesian model comparison tech-
niques to compare the constraining power of the data at dif-
ferent values of the considered parameter, and is particularly
useful when open likelihoods are involved in the analysis.
While the method can be similar to a likelihood ratio test,
it does not only take into account the information contained
in the best-fit point, i.e. the maximum of the likelihood, but
also the information of the full posterior, so that in case of
multivariate posterior distributions, more conservative lim-
its are obtained. Furthermore, the discussed method can be
much less expensive than the likelihood ratio test from the
computational point of view.

We applied the simple formulas to the case of neutrino
mass constraints from cosmology, discussing the case of sev-
eral datasets analyzed with one single cosmological model,
and the case where we have only one dataset but multi-
ple models. In the latter case, Bayesian model comparison
also allows to take into account the constraints from the
different models to obtain a prior-independent and model-
marginalized bound. An extended application of this method
is left for a separate work.
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