In medium static quark anti-quark
potential from lattice QCD

by

Gaurang Parkar

Thesis submitted in fulfilment of
the requirements for the degree of
PHILOSOPHIAE DOCTOR
(PhD)

u

University
of Stavanger

Faculty of Science and Technology
Department of Mathematics and Physics
2024



University of Stavanger
NO-4036 Stavanger
NORWAY

WWW.Uis.no
©2024 Gaurang Parkar

ISBN: 978-82-8439-253-0
ISSN: 1890-1387
PhD: Thesis UiS No. 775



Preface

This thesis is submitted in partial fulfilment of the requirements for
the degree of Philosophie Doctor (PhD) at the University of Stavanger,
Faculty of Science and Technology, Norway. The research has been
carried out at the University of Stavanger from August 2019 to the date
of submission of this thesis.

First of all I would like to thank the University of Stavanger and the
Norwegian research foundation for providing me with the resources and
the funding to pursue my PhD. I am grateful to the HISQ and HotQCD
collaboration for providing me with data and computing resources and
for fruitful discussions during our weekly meetings. I would also like to
thank Bjgrn Auestad for being a very kind and helpful institute leader.
I would like to thank my office mates Abhijit, Oleg, Jonas, Gerhard,
Magdalena, Divya, Paolo, Vegard for wonderful discussions on very
obscure and random topics and sometimes wasting precious time from
a workday. It was crucial for providing mental support during stressful
times. I would like to thank my group members Alexander (Lehmann),
Rasmus and Daniel for having long and fruitful discussions which were
very valuable in providing with new ideas which I had not considered
before. Lastly, I would like to thank for supervisor Alexander Rothkopf
for conceptualizing ideas for my project and providing guidance over
the course of the last four years.

Gaurang Parkar
Stavanger, February 2024

iii



v



Abstract

In this thesis we present recent progress in the quest to study the
properties of the quark gluon plasma in relativistic heavy ion collisions
through a better understanding of the binding of heavy quark and anti-
quark pairs (quarkonium). We present two studies investigating the
complex binding potential between heavy quarks using non-perturbative
lattice QCD simulations and modern data analysis techniques that were
contributed to and performed as a part of this PhD project. The first
study utilizes state of the art simulations with 2+1 flavours of dynamical
light HISQ quarks. This study revealed a complex potential with an
unscreened real part. Its results were in stark contrast to previous studies
on quenched and full QCD lattices which had all shown a complex
potential with a screened real part. This unusual result motivated a
second study, where we re-investigated the potential on high resolution
quenched lattices to confirm their robustness using the same methods
deployed in the full QCD study. We found that the analysis techniques
applied to the raw correlators confirms previous results, i.e. resulting
in a complex potential with a screened real part. Applying the same
analysis after performing a recently proposed subtraction procedure
leads instead to an unscreened potential akin to the first study on HISQ
lattices.
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Introduction

1 Introduction
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Figure 1.1: A schematic representation of the QCD phase diagram
taken from [1]].

Quantum Chromodynamics (QCD) is the theory of the strong force
which describes interactions between quarks and gluons. It predicts
that nuclear matter undergoes a phase transition at temperatures present
shortly after the BigBang and thus plays a central role in cosmological
models [2] of the early universe. Cosmological models of the early
universe predict that several phase transitions have taken place, the
QCD confinement-deconfinement phase transition which occurs at 7' =
155MeV is of particular interest to this thesis. As the universe cools
near this transition temperature, the quarks and gluons transition from
a deconfined quark-gluon plasma (QGP) phase to a confined phase
consisting of hadrons. The study of the QCD phase diagram which
includes the confinement-deconfinement phase transition has been of
great theoretical interest over the past three decades. Figure [I.1] shows
a schematic representation of the QCD phase diagram as a function
of temperature 7 and chemical potential u. It was postulated that
this phase transition can also be studied experimentally in relativistic
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heavy-ion collisions at RHIC at Brookhaven National Lab (gold-gold
collisions) and LHC (ALICE, CMS and ATLAS) at CERN (lead-lead
collisions). In addition to heavy-ion collisions and early universe, the
deconfined quarks and gluons are also predicted to exist in the interior
of neutron stars [3]. The focus of this thesis is, however, to study the
properties of quark gluon plasma in heavy-ion collisions.

Due to advancement in computing power in recent years, lattice QCD
simulations have contributed substantially in understanding the QCD
phase diagram (see [4] for a recent review on the current state of
progress). The following are some of the key findings: It was es-
tablished that the transition was a crossover phase transition with a
transition temperature of 7, = 156.5MeV at zero chemical potential.
Furthermore, the equation of state was calculated [3] and used as an
input in the hydrodynamical models of the QGP [6].

1.1 Phenomenology of Heavy-ion collisions

e \ - D & {
—/. Qo S DD
& / £ o S o
t~1fmlc t~5-10 fm/c T.=155MeV :

CGC/ class. Yang Mills [kinetic theory | rel. hydrodynamics
open heavy

B A |

Figure 1.2: A schematic picture of different stages of heavy ion col-
lisions showing a life cycle of heavy quarkonium (bottom) and the
relevant effective field theory (grey) at each stage. The figure has been
taken from [7] courtesy A. Rothkopf.
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A lot of work has gone into understanding different stages of heavy
ion collisions sketched in fig. [I.2] In heavy ion collisions gold (Au)
or lead (Pb) nuclei are accelerated to ultra relativistic energies and
collided to create matter which is high in energy density but low in
baryon density. The model of colour glass condensate [8] (CGC) has
been used to describe these heavy ion collisions. In this model, at the
instant of collision the partons (sea of quarks and gluons) are able to
interact with each other, generating strong colour electric and magnetic
field called glasma. These strong fields then break down into light
quarks and gluons. After a short pre-thermalization phase (around 1
fm) equilibriate into the quark gluon plasma (QGP) through energy
and momentum exchanges. The evolution of the quark gluon plasma
can be described hydrodynamically [9]. It expands and cools over the
crossover transition of 7, = 156.5MeV|[10] below which it enters the
hadronic phase consisting of mesons and baryons in what is called
chemical freeze out. These continue to interact until the kinetic freeze
out is reached.

This dynamical picture of heavy-ion collisions is described not through
a direct computation of QCD but, instead through effective field the-
ory (EFT), which have been developed to capture physics at different
stages of heavy-ion collisions as there exist clear separation of scales
in the system. The grey boxes in fig. [I.2] describe these EFT’s. Clas-
sical Yang-Mills can explain the behaviour at the earliest stage and
the evolution continues into kinetic theory and finally into relativistic
hydrodynamics.

We now introduce the concept of hard-probes to study the quark-gluon
matter in heavy ion collisions. The terms hard and soft refers to
different well separated scales. These probes can be produced in the
collision and serve as indicators of the properties of the medium like
temperature, viscocity, energy density and transport coefficients [11].
Hard probes measured by the CMS and ATLAS experiments at the
LHC are jets, quarkonium, and electroweak gauge bosons .

This thesis focuses on heavy quarkonium, the bound state of quark

3
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and anti-quark pair. For charm constituent quarks they are referred to
as charmonium, for bottom constituents as bottomonium states. Here
the hard scale refers to the mass of heavy quarks (m, = 1.3GeV and
myp = 4.6GeV). The goal of studying quarkonium production is its use
as gauge of temperature in the coloured medium created in heavy-ion
collisions.

In experiment, the deviations in measured yields between say a p +
p collision to that of any other type of collision p + A or A+A is
expressed via the nuclear modification factor R4 given by

1 deA/de
(Neon Y ANy, /dpr’

Rea (pr) = (1.1)

where pr is the transverse momentum and the prefactor < N,,;; > is the
total number of binary collisions necessary for correct normalization.
If the system simply reflects a scaled up version of p-p collisions this
ratio would be unity.

A quarkonium bound state may be formed during the pre-thermalization
phase of the collision, and then interacts with the hot medium during
the QGP phase. Being in the presence of the hot medium will reduce
its interaction strength and the state can either survive the medium or
it could melt (the gq pair gets decorrelated) depending on the energy
and time-scales. If enough pairs are present then quarkonium pairs
can also be regenerated at hadronization. If the medium has long
enough lifetime then the heavy quarks could also equilibriate with the
surroundings. After leaving the QGP phase some of the quarkonium
states decay into a lowest lying (vacuum) state and make its way to
the detector. Due to presence of separation of scales that we will dis-
cuss later, the quarkonium in vacuum can be treated non-relativistically
and its states can be classified using the schemes as atomic physics
using spin, angular momentum and total spin 25*!L;. The commonly
studied states are S-wave ground states called Y (bottomonium) and
J /¥ (charmonium). In addition excited S-wave states and P-wave states
3py, Xc1 and ypp are also relevant. Dilepton-yields in PbPb-collisions

4
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at v/Syn = 5.02 TeV have been studied in [12] and are shown in fig.
with the nuclear modification factor shown in fig. [I.4] The different
peaks denote the ground state Y (1S) and the following excited states
Y (2S) and Y(3S). The peak positions in the figure represent the masses
of the bound states. The suppression of these excited states in Pb-Pb
collisions as opposed to p-p collisions can be explained by the presence
of the QGP, which arises due to the partial melting bound state with
the hot environment.

10° PbPb 1.61 nb” (5.02 TeV)
L | T 17T I L ‘ L j L | T 17T
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Figure 1.3: Dimuon yields of and PbPb collisions as measured in
[12]]. The solid curves show the result of the fit, whereas the orange
dashed and blue dash-dotted curves represent the three Y states and the
background, respectively.

The binding energies of quarkonium states are Egn 4 ~ 1.1 GeV and
Elfi/n ‘{’1 ~ (.64 GeV which are obtained by subtracting ground state ener-
gies from the open heavy flavour threshold. This high binding energy

of the quarkonium bound state compared to the medium can be repro-
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Figure 1.4: Nuclear modification factors for Y(1S) Y(2S) and Y(35)
meson production in PbPb collisions, as a function of centrality, dis-
played as the average number of participating nucleons as measured in
[12].

duced by a simple potential model called the Cornell potential. The
Cornell potential contains a Coulombic part at small distances followed
by linearly rising one at larger distances, terminating in a constant part
after string-breaking. These states provide us with a direct connection
between experiment on one side and a microscopic description of QCD
on the other.

The seminal work by Matsui and Satz [13] presented inightful ideas
about the production of heavy quarkonium. It presented two key
ideas:

* The presence of the deconfined medium in heavy ion collisions
will interfere with the binding of the heavy quarks through color
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screening and thus prevent formation of a bound state.

* The absence of a bound state will lead to a supression of quarko-
nium yields.

Their paper however, does not make a prediction about quarkonium
yields after hadronisation. In addition, the authors of [14] made model
calculations which predicted the mass shift from below the phase tran-
sition.

The quarkonium states that we want to study in the QGP can only be
measured in experiment after hadronisation. A first principles computa-
tion of hadronisation from QCD has not been achieved, however several
models inspired by QCD are used in phenomenology. Thus, in practice,
the yield of J/¢ in heavy-ion collisions can instead be well described
by the statistical model of hadronisation [15; [16] and has been con-
firmed by observations at LHC [[17]. The statistical model argues that
at energy scales of LHC charmonium production is the smoking gun for
deconfinement [16] and even if no charmonium states survive the QGP
phase, hadronization at the phase boundary of the many tens of charm
quarks expected in a single central Pb-Pb collision could lead to an
enhanced, production probability when compared to nucleon-nucleon
reactions scaled by the number of hard collisions in the Pb-Pb system.
Thus, the study of the evolution of quarkonium bound states is the key
in establishing a theoretical description of the QGP.

1.2 Effective theories of heavy quarkonium

In the previous section we have seen examples of how evolution of the
quarkonium bound state can serve as a probe for QGP phase in heavy-
ion collisions. However, the study of the dynamical properties of these
bound states present two key challenges. The first one being that the
temperatures involved in the confinement-deconfinement transitions are
beyond the range where standard perturbative calculations work due to
strong coupling of QCD. This issue can be overcomed by using non
perturbative lattice QCD calculations. This, in turn brings us to the

7
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second challenge i.e. methods of calculating dynamical quantities di-
rectly on the lattice from real-time simulations has not yet been well
established due to the presence of the notorious sign problem. Signifi-
cant efforts are being made to reduce the severity of the sign problem
and there has been a lot of effort in recent years trying to overcome
the sign problem (see [18] for a recent review). However, these efforts
are still far away from being able to simulate QCD. Thus, we instead,
resort to effective field theory descriptions to extract information at
different relevant energy scales if they are well separated. The EFT
framework let’s us study the physics of quarkonia through a potential
which can be then obtained from QCD using a matching procedure.
The task of computing this potential is easier than that of simulating
the full theory.

To simplify our case we first start at zero temperature, where there is
a clear separation of scales present i.e. the mass of the heavy quark M
is much larger than its relative velocity v. In addition to this scale the
mass of the heavy quark is also greater than Apcp. Thus we can exploit
these separations now i.e M >> mv >> mv> and M >> Aocp. First
we integrate out the hard scale M, doing this makes the energies of the
quark and gluon fields less than what is required for the creation of a
heavy quark anti-quark pair. The absence of pair creation eventually
results in an effective theory that is non-relativistic called NRQCD
[19; 20]. NRQCD gives us a non-relativistic approximation to the
Dirac Lagrangian. The lagranginan is formulated by expansion in a
dimensionless parameter v which is the relative velocity of the heavy
quark. We start by removing the rest mass from the total energy by a
field redefinition

PY(x) = e MNP (1.2)

This modification still fullfills the Dirac equation. Then we can break
up the Dirac four spinors into two two-spinors

Y= [lﬁ] (1.3)
X
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Inserting into the dirac equation and since the theory is non-relativistic
we can ignore higher order terms of 1/c since c¢ is greater than any
velocity that appears in the theory we obtain

i -
= .Dy. 1.4
X=50e” v (1.4)

Here o is the pauli matrix. We can now insert back into the Dirac
lagrangian and obtain the lagrangian for the ¢ field given by

_ - B}
Ly/(x) = §(x)(iDo + 55 (iD?) + 2%&.3)(//@) (1.5)

Here B; = € F’ k is the chromomagnetic field. The total lagrangian
for NRQCD is therefore

_ Ck = CF . - c - - S o
Lnvoen =0 [iDo+ 54D+ 525+ (¢B) + 25(D - (3E) - (gE) - D)

2M 2M
. Cs o = = NN
+ZWO- (DX (gE) — (gE) % D)_ /s

T[-D B CE s By DB (B — (B D
+x"|iDo =53 50 (8 )+8M2( (§E) — (8E) - D)
. CS N - - - - ]
+18M2<T-(D><(gE)—(gE)><D)_X

+ L )4f + L6+ Lign +0 (M7) (1.6)

Here E; = Fy; is called the chromo-electric field. The term L, is
the lagrangian consisting of only gauge fields and L), comprises of
the light fields. These two terms remain unaffected by the NRQCD
approximation. The spectrum of the Y system was investigated using
the Lattice NRQCD approach to heavy quarks and ignoring light quark
vacuum polarization in [21].

We can further focus on the binding properties of the heavy quark
antiquark pair at the ultrasoft scale Mv? by integrating out the soft scale
myv, which is a theory of color singlet S and octet O wavefunctions,
called potential NRQCD or pNRQCD [22]]. In this theory we have

two cutoffs, M > AZFT > Mv for the spacial momentum and Mv >

9
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A% pp for the energy of the heavy quarks. Instead of writing fields in
terms of ¢ (x)and y(x) it is helpful to instead consider the Quarkonium

wavefunctions to establish a power counting scheme:

T(xl,x27t)ab ~ W(xl,t)u/\/ T (x27t)b (17)

This object can be further decomposed into singlet S and octet O
wavefunctions.

¥ (x1,Xp,1) = P(r,s,1) =

exp {ig /X2 Adz}” S(r,s, 1)
l X R
exp {ig/R Adz}] o(r,s, )P lexp {ig/ Adz}] (1.8)

This form makes the transformation of the S and O under colour ro-
tations by ultrasoft gluons explicit. The choice of quark mass to be
used in these equations is an area of active research. In addition to
this the gauge fields that remain explicit degrees of freedom appear in
pPNRQCD appear in the lagrangian as a multipole expansion. Thus,
the general pNRQCD lagrangian can be written in terms of singlet and
octet wavefunctions as

P

+P

(1)

. D’ 0, Vs
LPNRQCD :/d3rTr[ST[160—(m+VS( )+m—Q+)]S+
(1
D? |4
) (0) o ]
o' 0+2M+V0 + o +...)]O+

Vi (r)Tr[o“rgES + S*rgEo] +
1
vB(r)Tr[oT rgEO +0' OrgE] +O(r%, =)+

"

Llight quarks,gluons (19)
The quantity r describes the separation distance between the heavy-

quark and anti quark pair. The first two terms in the equation look like

10
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a Schrodinger-like equation in which the gluonic terms integrated out
appear as Wilson coefficients in the form of time-independent potential
terms Vg and Vp. For the purpose of our studies we will restrict
ourselves to the static potential which are just the first terms (VS(O) and

Véo)) in the expansion of powers of inverse mass. In addition to this,
in the third and fourth terms we have the gluonic contribution which
manifests itself in dipole-like interactions arising between the colour
singlet S and colour octet O governed by Wilson coefficients V4 and
Vp. These effects are considered to be non-potential effects. In the
situation when mv? < Agcp the non-potential terms can be absorbed
into the time-independent potential terms and it can be shown that the
potential is now just the static energy [22], which can be computed
from lattice correlation functions.

So far, all the considerations that we have made is at zero temperatures.
At finite temperature the problem gets more complicated as there are
additional energy scales involved. At asymptotically high temperature
(weak coupling) the hierarchy of T > mp ~ gT > gT? holds. These
thermal affects can affect the pNRQCD picture in a non-trivial way with
affecting both the potential and non-potential terms. Thus, it needs to
be established whether the potential holds for finite temperature, and if
it does, how must its form be modified.

At this point, it is worth noting that in addition to effective field theory
(EFT) descriptions there has been developments in understating the
evolution of heavy quarkonia using the open quantum systems approach
[23; 24; 255 265 [7; 27]. In this approach the degrees of freedom are
separated into an environment E and a small subsystem S. In this
case the thermal QCD medium represents the environment and the
small subsystem S represents the two body quarkonium system which
is described by a total hermitian hamiltonian. This hamiltonian can
be further decomposed into Hr which contains only the effects of the
environment £ and Hg which only contains the effects of S. The time
evolution of the system can now be studied through the evolution of the
density matrix. Since we are not interested in studying the evolution

11
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of the medium we can trace over the medium degrees of freedom and
obtain the reduced density matrix o for S. The equation of motion for
os is knows as the GKS or Lindblad equation. This approach has been
used to reveal the subtle interplay between screening and decoherence
in a hot QCD medium.

1.3 Wilson loop and the potential

We now describe how the potential can be related to observables com-
puted from the QCD lagrangian. We first need to connect the EFT
description of quarkonium to QCD by identifying correlation functions
with the same physics content in both pictures called matching. We
begin by defining the Wilson-loop in Minkowsiki time

Walt.r) = (explig / 2 A, Doco (1.10)

The integration is carried out over temporal distance ¢ and spacial
distance r. The fields A are the gauge fields in by the SU(3) algebra
described by the generators 7¢. It has been shown that in the static limit
mg — oo at zeroth order in the multipole expansion the Wilson loop is
the appropriate quantity which we can identify with the unequal time
correlation function of two color singlet fields in pNRQCD [22].

Wa(t,r)=(S(0,7)S™ (¢, 7))pNRQCD- (1.11)

This Wilson loop has been computed perturbatively [28] by selecting a
specific hierarchy of energy scales (involving the system temperature),
which is captured by the resummed perturbation theory called hard-
thermal loops (HTL). The authors showed that in the late real-time
limit, a weakly coupled Wilson loop at finite temperature evolves solely
according to a Schrodinger-like equation

llim ioWgq(t,r) = llim O(t, r)Wa(t,r) = Va(r)Wga(t,r) (1.12)

The quantity V(r) is the time independent potential which was shown
to be complex. The quantity ®(z,r) contains both potential and non-
potential effects. The static time-independent potential can thus be

12
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defined as

L i0,Wgu(t,r)
R e

(1.13)
The authors of [28] also showed that the complex potential in HTL has
a screened real part.

Note that the potential defined above is only for the singlet and it is
also possible to describe the octet potential. The potential described
by the limit in eq. (I.I3) has been calculated perturbatively, and it
is unclear whether or not such a limit would exist in a fully non-
perturbative setting since the potential is defined as a late time limit of
the Wilson loop in Minkowski time and it is not directly established
how this translates to in the euclidean time setting which we have access
to non perturbatively. In this thesis we will investigate the existence
of this limit and try to identify the real and imaginary parts of this
potential.

1.4 Lattice QCD

Lattice QCD has been the state of the art tool available to access the
evolution of quarks and gluons at both zero and finite temperatures
using numerical methods combined with high performance computing
to simulate the path integral non perturbatively. In this formalism
space-time is discretized into a four dimensional grid. In contrast to
the traditional way where one deals with the gauge fields A} which
lies in the SU(3) algebra, in this approach we instead consider the link
variables

Uy(x) = exp[-igAj(x +a/2)T*] (1.14)

which now live in the group. Since the gauge fields can be interpreted
as parallel transport of quarks, these link variables are placed on the
links of the spacetime grid and fermions are placed on the nodes of the
grid. The UV cutoff of the theory is now automatically introduced in

13
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terms of the finite lattice spacing and the IR cutoff is introduced from
the fact that now there is a finite box size which corresponds to the
number of lattice points in each direction.

The path integral is approximated stochastically from this formalism
using Monte Carlo simulations where gauge configurations are gen-
erated with probabilities proportional to the negative exponential of
the action. Due to the notorious sign problem, the simulations can-
not be carried out in minkowski time and thus one has to perform a
wick rotation into imaginary (euclidean) time. The lagrangian in eu-
clidean space-time can be obtained by modifying the QCD lagrangian
by Lg = -L(t — it, A — iA4) which has the form

Ny
- 1 -
Lo A) = 25 FEGFl + ) 00a((0ap(Das + ' Sagbar) Uy,
/=1

(1.15)

The index 1 runs from 1 to 4 with 4 being the imaginary time index. We
also need to introduce the Euclidean form of the Dirac matrices, y4 =
yé” and y; = —iylM where Y™ are the gamma matrices in minkowski
space. The Euclidean Dirac matrices follow the anti commutation
relations {vy;, ’)/j} = 0jj.

We are interested in the physics at finite temperature which we will
do by making the imaginary time axis periodic. The path integral
representation of the partition function above with inverse temperature
B (1/T) and volume V can be written as

Z(T,V) :/D[U]Dl//Dt/_/exp(—/OﬂdT/Vd3xLE)

= / D[U]DyDye SE (1.16)

Here the discretised bosonic fields obey periodic boundary conditions
in 7 while the fermionic fields obey anti-periodic boundary conditions.
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The finite extent of the spacial axes is a discretisation artifact while
the finite extent of the temporal axis represents the temperature of the
system. In practice all lattice simulations are at finite temperatures as
we can only have a finite box size. The T=0 simulations are done by
making the box size in the temporal direction large enough that the
effects are negligible. The D[U] is the Haar measure integrating over
link variables in SU(3) space. The term e™5E can be interpreted as
an unnormalised probability distribution and can be simulated using
monte carlo simulations. The expectation values of operators can thus
be easiely calculated;

1 A
O (11,12,...)) = zTr [e‘ﬁHO (11,712, .. .)]
1 - _
=5 [ oW1 [ Do Wdinn et

The lattice action contains two terms, i.e. the gauge part and the fermion
part. There are several discretisation schemes that have been developed
which all converge to the right action (lagrangian from eq. (I.I5)) in
the limit that lattice spacing goes to zero. The simplest choice for
gluonic fields is the Wilson plaquette action given by

ZZZ( RCTI' 1_Ulj(n)]+§OReTr[1_UOl(n)]

n =1 j<i

(1.18)

The above action is the general action for anisotropic lattices (spacial
lattices spacing is different from temporal lattices spacing) with bare
anisotropy parameter &. The quantity U, (n) is called the plaquette
which is defined as the product of link variables eq. (I.14) and can be
represented as

Uy (n) = Uy(mU, (x + DU (n + DU (). (1.19)

In recent years there have been some developments in the gauge action
that make numerical problems less severe when implementing chiral
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fermions [29]]. Also, it was found that using the improved gauge action
is numerically advantageous for the Dirac operator. The Luscher-Weisz
gauge action was developed with coefficients from tadpole improved
perturbation theory. In addition to the plaquette term of the Wilson
action, the Luscher-Weisz action includes a sum over all 2 x 1 rectangles
and a sum over all parallelograms, i.e. all possible closed loops of
length 6 along the edges of all 3-cubes.

S[U] = B Z %ReTr [1- U] +,BQZ %ReTr [1-U,] (1.20)
pl rt
+ﬁ32%ReTr[l—Upg] (1.21)
P8

where (3 is the principal parameter while 8, and B3 can be computed
from (; using one loop perturbation theory and tadpole improvement
[30]. We will use this improved gauge action for our study in chap-

ter Bl

The fermionic part of the action gauge invariant and is expressed in
terms of grassmann valued quark fields. Directly representing these
fields as matrices can prove quite costly so, instead we exploit the fact
that the fermionic part of the action only has bilinear terms and carry
out a gaussian integral over the fields. This results in the fermion
determinant. This determinant can be expressed as a path integral over
bosonic fields given by

z- [ o1 [ Do exp{— / dx&Kw}e-S’é

:/z)[U] det K[U]e Sk :/Z)[U]Wl_l[l]]e_si‘

:/ D[U] / D[ple S KIS, (1.22)

Naively placing fermionic fields on the lattice results in more fermionic
states than expected which is called the fermion doubling problem
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that is deeply connected to chiral symmetry breaking on the lattice
explained by the Nielsen-Ninomiya theorem [31; 32]. Various dis-
cretisation schemes have thus been proposed like introducing staggered
fermions and improved versions of it like the highly improved staggered
quark action (HISQ) [33] and Wilson fermions [34]]. Wilson fermions
are more advantageous since explicitly break chiral symmetry but is
generally not used due to the large computational costs associated. We
have used the HISQ action for our study of the potential in full QCD.
There are however some drawbacks of using the HISQ action are two
fold : they have a reminisce of chiral symmetry still remaining so they
don’t completely get rid of the doublers and the second one is that
it introduces non-monotonicitiy in the effective masses of the Wilson
line correlator which is a manifestation of positivity violation in the
spectral function. We will get back to this issue later on in the thesis
in chapter 3]

The path integral is now estimated stochastically via Monte Carlo sim-
ulations in which a computer is used to generate configurations with
a probability distribution which corresponds to the Euclidean Feynman
weight. For the purpose of efficiently choosing configurations hybrid
monte carlo schemes have been developed which the update is com-
bined with solving Hamiltonian’s equation of motion for fermions and
gluons. If the number of configurations is large enough, the central
limit theorem says that the the resulting probability distribution will
be gaussian. Thus, after initial thermalization one can compute the
ensemble average as the mean of observable O along the Markov chain
of length N.

1 N
(0) = N;O’” (1.23)

For the purposes of reducing computational costs, only the light quarks
u , d and s are considered dynamically. In the vocabulary of lattice
field theory literature the dynamical fermion content as Ny = 2 + 1
indicate the mass degenerate fermions u and d and the single massive s
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quark. Sometimes, to further reduce computational costs the fermions
are not treated dynamically and the fermion determinant is set to unity.
This is known as the quenched approximation. In this thesis we will
present studies on both quenched and 2 + 1 flavour QCD.

Once the observables are computed from a lattice simulation, the re-
sults need to be extrapolated to vanishing lattice spacing a, — 0 to
recover the continuous spacetime physical theory. In addition to this
the thermodynamic limit V — oo must also be taken. In practice,
the continuum limit is taken by running simulations for different val-
ues of a while keeping the volume constant and then extrapolating to
a — 0. The a dependence of the simulation can also be computed from
a scaling analysis and thus we can extrapolate to the infinite volume
limit.

1.5 Wilson Loop and Spectral structure

In section [I.3] we have defined the static potential via the Wilson loop
correlation function in real time.

tlim iOWgq(t,r) = llim O(t, r)Wa(t,r) = Va(r)Wga(t,r) (1.24)

However, in practice a lattice simulation is done in euclidean time or
imaginary time and thus generally do not have direct access to this
information except for the zero temperature case where one the limit
T — oo can be taken to get the limit of # — oo. For this purpose
the spectral decomposition has been established non-perturbatively by
taking the infinite mass limit of the point split heavy-meson correlation
function [335]]

Wa(t,r) = /00 dw po(w,r) e, (1.25)

(o)

It has been proposed that this decomposition[36] links the real time
Wilson loop correlator to the imaginary time correlator calculated on

18



Introduction

the lattice via the same positive definite spectral function given by

(o)

Wo(t,r) = / dw ps(w,r) e = Wa(r,r) = / dwp(w,r)e ",
(1.26)

Thus the potential can be extracted from the spectral function via

“ dw w e py(w,r)
V(r) = lim /‘“;o 7 : (1.27)
=00 f_oo dw e " po(w,r)

By definition, the Wilson loop (in both continuum and on the lattice)
exhibits a simple behavior under time reversal. As a complex quantity,
it turns into its complex conjugate which follows from the spectral

decomposition in eq. (1.26)
Wo(=t,r) = Wi(t,r) (1.28)

This relation arises from the fact that Wy is defined from an exponen-
tiation of Hermitian matrices multiplied with the imaginary unit and
thus is valid non-perturbatively.

We will now follow the footsteps of calculations proposed in [37]] and
derive a functional form for the spectral function and link the real
and imaginary parts of the potential to the position and width of the
dominant peak in the spectral function. If we assume that the limit
in eq. (I.13) is well defined we may then define a characteristic time
scale fr1ax beyond which the the function ®(¢,r) reduces to the time
independent V (r). Below we will confirm that 7..1,x indeed is connected
to the region in time over which non-potential effects remain relevant
for the evolution of the Wilson loop.

We may therefore without loss of generality write ®(t,r) = V(r)+¢(t,r)
with ¢(f > frerax, ) = (Y] Since, as an SU(3) group element, the Wilson

'If we instead had an arbitrary relation ®(¢,r) = F[V(r);t,r] with F[V(r);t >
teelax> ] = V(r) we may always define the function ¢(z,7) as ®(¢,r) = V(r) —
(F[V(r);t,r] =V (r)) =V(r) - ¢(t,r).
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loop can only take on finite values the imaginary part of of the potential
Im[V](r) < 0 must be negative.

Following this splitting up of the ®(z,r) into a time dependent (¢ <
trelax) and independent part (f > #,.;4,) and plugging it into the defini-
tion of the potential

i0Wg(t,r) = ®(t,r)Wa(t,r), (1.29)
we arrive at a general functional form

Wa(t,r) = exp[ - i(Re[V](r)t +Re[o] (1, r)) — Im[V](")|r + Im[o] (2, 7).
(1.30)

We have introduced the quantity o (¢,r) = /Ot ¢(t,r)dt making reference
to the function ¢(z,r) and which thus asymptotes to oo (r) = o (|t| >

trelax, ') = /600 o(t,r)de.

As the spectral decomposition amounts to a simple Fourier transform,
it can be readily inverted to yield

po(r, w) = % [o di exp[i(w - Re[V](r))t — iRe[o](r, |¢])sign(r)—

IIm[V](r)IItI+Im[ff](r,|t|)] (1.31)

Under the assumption that the function o (¢, ) asymptotes to a constant
for times ¢ > frlax, We may decompose the integral into two parts,
one over times smaller then |f| < f..x and one over the whole time
range

po(r,w) = (1.32)

%elm[%lm /_ _diexp [i(w - Re[V](r))t — [Im[V](F)||¢] - iRe[O'oo](r)sign(t)]

fo0 .
toe o dt exp[z (a) - Re[V](r))t - |Im[V](r)||t|]><

(e—iRe[O'](r,|t|)sign(l)+Im[0'](r,|t|) _ e—iRe[O'oo](r)sign(t)+Im[a'oo](r))
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This decomposition now reveals how the potential emerges in the spec-
tral structure. The integral involving integration over the whole time
regime can be carried out analytically and becomes a skewed Lorentzian
peak located at the position of the real-part of the potential, its width
being related to imaginary part. Around the maximum of that peak
(w = Re[V])trelax < 1 we can expand the remaining integral over the
finite time regime in a Taylor series leading to a background for the
potential peak

PR (r,w) =
1 o1 ImIVI(r)|cos[Re [0 ] ()] — (Re[V](r) — w)sin[Re[ow] ()]
n Im[V](r)? + (Re[V](r) — w)?

co(r) +c1(Nigg(Re[VI(r) = w) + e2(n)1, 5 (Re[VI(r) = w)? + -+
(1.33)

If one reinserts pgm into the relation eq. ll one finds that only the
pole in the skewed Lorentzian matters and indeed a time independent
complex potential V(r) = Re[V](r) — ilm[V] ensues.

In practice we attempt to extract a spectral function from lattice QCD
simulations, inspect it for a dominant low lying structure and wish to
understand, whether it leads to a well defined potential V(r). This
requires to reverse the above argumentative chain.

Let us start with shape of such a dominant spectral peak. The Lorentzian
derived in eq. contains extended tails in the high w region.
We can ask if the presence of tail structures have any relevance to
the time-independentness of the potential. Instead taking e.g. a
Gaussian pg(w,r) = A(r)exp[—(w — m(r))?/g*(r)] and inserting into
eq. one finds that it does not lead to a well defined poten-
tial, as a time dependent and even divergent imaginary part ensues
VG (r,t) = m(r) —ig(r)%t. This result shows that tail structures play an
important role in establishing a time independent potential.

Let us now consider the low w region of the spectral function. If we
naively insert the derived skewed Lorentzian in the Euclidean version
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of the spectral decomposition eq. (I.26), we find that the integral does
not converge due to the low w tails present the the Lorentzian. Thus,
in addition to the Lorentzian around the peak and at high w, we also
need a spectral function that is exponentially suppressed at very low w
to satisfy the spectral decomposition. Such a cut Lorentzian was used
as an ansatz for the spectral function in [38]. The Gaussian does not
suffer from this low w convergence problem, but, still cannot be naively
used as a model for spectral function due to reasons presented in the
paragraph above. We will later present a new approach which allows
us to consider a Gaussian spectral function.

In lattice simulations one extracts the potential using the temporal Wil-
son line correlator in coulomb gauge

W(r, o, T) = % <Tr (L(o, T)LT(r,T))>T (1.34)

where L(r,T) = exp (i fOT Ay (r,7) dT’) instead of the Wilson loop.
It has been shown that considering the Wilson line instead of the
Wilson loop does not change the static potential in hard thermal loop
perturbation theory (see below) and has also been argued for non-
perturbatively. Considering the Wilson line instead of the Wilson loop
has technical advantages over the Wilson loop in reconstructing the
spectral function that we discuss below. However, measuring the Wilson
line correlator on the lattice requires gauge fixing to Coulomb-gauge
which increases computational cost. For this purpose the SimulateQCD
code was developed which performs these calculations very fast and
efficiently on multiple GPU’s [39].

In order to get insight onto the tail structures, we can use the hard
thermal loop (HTL) spectral functions as a concrete and non-trivial
example. While the real-time evolution of the Wilson loop does not
place strict restrictions on the tail structure of the potential peak (i.e.
the integral Wg(t,r) = /_0; dw po(w,r) e’ is well defined for a
skewed Lorentzian), the Euclidean counterpart of the spectral decom-
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position

00
Wao(t,r) = / dw pg(w,r) e @7 (1.35)
—o0
requires the spectral function to be exponentially suppressed at negative
frequencies, incompatible with a naive Lorentzian peak. As shown in
fig. [2.2] the HTL Wilson loop spectral function computed from the
real-time correlator, indeed shows exactly this exponential suppression,
which cuts off the tails of the dominant skewed Lorentzian potential
peak. Note that this cut-off spectrum is compatible with our non-
perturbatively derived decomposition in eq. (I.32) and tells us that
it 1s the non-potential effects which affect the low frequency spectral
structure. It is important to note that this modification of the Lorentzian
peak at negative frequencies does not introduce an additional pole at
small frequencies that would interfere with the late time limit. L.e. in
HTL the Lorentzian potential peak is exponentially cut off but remains
the relevant structure for the asymptotically late-time evolution of the
charge-anticharge pair.

The example of the HTL spectral function is encouraging. It supports
the conclusion that if one finds a dominant lowest lying spectral peak
in a lattice spectral function, with a skewed Lorentzian behavior around
its maximum, this peak is likely to encode the asymptotic late real-time
behavior of the real-time correlator, even if the spectral function is
exponentially suppressed at negative frequencies.

Accurately determining the existence of a low lying, well defined spec-
tral peak and reconstructing its shape with high fidelity from simulated
Euclidean lattice data is therefore of importance to clarify the existence
of a time-independent potential.

1.6 Organisation and goal of this thesis

The goal of this thesis is thus to clarify the existence of a time-
independent static potential through determining the lowest lying peak
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of the spectral function. For this end, the thesis is organised as fol-
lows:

* In chapter [2] we discuss different methods that we will use to
extract the spectral function from Euclidean correlators obtained
from lattice simulations at finite temperatures. We then proceed to
benchmark these methods on analytically computed Wilson loop
and Coulomb-gauge Wilson line correlators from computed hard-
thermal loop (HTL) perturbation theory. These HTL Wilson loop
and Wilson line spectral function serve as a non-trivial testing
ground for the reliability and robustness of these methods. We
also briefly review the recently developed subtraction procedure.

* In chapter [3] we show the extracted peak position and width (real
imaginary part of the potential respectively) on state of the art,
2+1 flavours of dynamical light HISQ quark lattices using the
methods showcased in the previous chapter. The results obtained
were quite unusual. Unlike previous studies on quenched and full
QCD lattices, we found that the real part of the potential was
unscreened showing no temperature dependence.

* Following the unusual results of the study on HISQ lattices, mo-
tivated a second study showcased in chapter @] In this study we
re-investigated the potential on high resolution quenched lattices
using the same methods deployed in the full QCD study. We
found that the analysis techniques applied to the raw correlators
confirms previous results, i.e. resulting in a complex potential
with a screened real part. Applying the same analysis after per-
forming a recently proposed subtraction procedure leads instead
to an unscreened potential akin to the first study on HISQ lattices.

* Lastly in chapter [5] we will summarize our results and comment
on some of the questions that arise which would be an avenue for
future work.
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2 Extracting spectral functions and the the
static interquark potential from Lattice
QCD

[MAs discussed in the previous chapter the reconstruction of the lowest
lying peak of the spectral function from lattice QCD is the key challenge
in estimating the static quark potential. At zero temperature, we expect
the vacuum ground state is well separated from the excited states and
the underlying spectral function is just a sum of well separated delta
peaks. To this order we construct a function called the effective mass
of the euclidean correlator

2.1)

which will approach a plateau with the value of the ground state mass
My at some intermediate 7 (see fig. [2.1). This plateau can easily be
extracted by a constant fit to m, sy in the region where the plateau is
observed. The effects from excited states are observed in the curvature
present in the effective masses at small 7 where the plateau has not
yet been reached (see small 7 region in fig. [2.1). The static potential
is not affected by theses excited states so in our case we are not very
interested in recovering the information about the excited states.

At finite temperatures these delta peaks can cluster together to form a
broad peak with a finite width possibly with some skewedness. The
effective masses will do not plateau at intermediate 7 and instead con-
tinues to monotonically decrease. Some more sophisticated methods
thus need to be developed for spectral reconstructions, which would
amount to inverting the relation in eq. whose discretised form
can be written as

Most of the contents of this chapter have been taken from a preprint [40] where the
author has contributed substantially towards writing, generation of data, analysis of data
and with figure creation.
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Figure 2.1: A representative selection of effective masses, ob-
tained from the Coulomb-gauge Wilson line correlator computed on
anisotropic (8 =7,& = 4) quenched lattices.

Ny
Wi= " AwiKjip1, j € [1,Ne] (2.2)
=1

A lattice simulation provides N discrete values of the correlator W(r;) =
W; along the imaginary axis for each value of separation distance. Each
of these discrete data points for the correlator has a finite statistical er-
ror AW;. On the other hand we need to obtain a high enough resolution
to p(w) discretised to N,, points to be able to reliably identify the rele-
vant structures in the spectral function. Thus we require that N, > N;.
In a realistic lattice simulation one usually has N; = 10 — 100 while
N, ~ O(1000) is required. The task of inverting eq. in the
presence of a limited number of noisy data-points makes the problem
ill-posed since there are more parameters than the available data-points.
In addition to this, in QCD the kernel K;; function also contains an
exponential decay making the problem ill conditioned i.e. an infinite
number of solutions exists for the inversion.

In order to have any hope of reconstruction the right positive definite
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p(w) some additional prior information needs to be provided. This
information must be incorporated by using some arguments motivated
by physics and for this specific problem QCD. In this chapter, we
present and benchmark four different approaches that we will deploy
in the study of the in-medium static quark potential presented in this
thesis: Bayesian inference [41], Padé interpolation [42]], the HTL-
inspired fit [43; 44]] and generalized Gaussian fits on the subtracted
correlator [45]].

As non-trivial testing ground we deploy the analytically computed
Wilson loop and Coulomb-gauge Wilson line correlators from hard-
thermal-loop perturbation theory [46] at T = 2.337¢, whose spectral
functions are known. We evaluate the Euclidean data at the same num-
ber of discrete imaginary time steps accessible on the lattice and salt it
with Gaussian noise with constant relative errors similar (or larger) than
those encountered in actual simulations, providing us with a realistic
mock input data set.

In the top panel of fig. 2.2 we show four spectral functions pﬁTL(w, r)
of the Coulomb-gauge Wilson line correlator at different spatial distance
r € [0.065...0.46]fm. A dominant skew-Lorentzian peak encoding the
potential is located in a weak shoulder structure, which decays expo-
nentially at small and algebraically at large frequencies. In case of the
Wilson loop spectral function pH™(w, r) shown in the bottom panel,
we find peaks at the same position and with the same width as in pﬁITL
but with amplitudes significantly suppressed with increasing distance.
In addition the peak is embedded into a substantial background, which
extends far into the UV region at high frequencies at a significant frac-
tion of the peak amplitude [46]. I.e. the different correlators encode

the same potential but very different non-potential effects.

Their values from the HTL Wilson lines and Wilson loop at three spatial
distances are given in the top and bottom plot of fig. [2.3] respectively.
You can see that the dominant spectral peak in p| in the absence of a
strong UV contibution leads to an mcg that is almost linear around the
middle of the imaginary time interval 7 = 1/(27T) with some curvature
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Figure 2.2: Semi-analytically computed spectral function of the (top)
Coulomb-gauge Wilson line correlator and (bottom) Wilson loop in
HTL perturbation theory at T = 2.337¢. The four curves denote spectra
at different spatial separation distances. The figure shows the HTL
spectral functions for Wilson lines (top) and Wilson loop (bottom) for
four different separation distances.

at early and late 7. Contrast this to the Wilson loops, where the
substantial UV contribution leads to a strong curvature at small 7,
which overshadows the linear behavior at intermediate imaginary times,
before another region of strong curvature from the low frequency tail
of the spectrum induces a downward trend at 7 ~ 1/T.

28



Extracting spectral functions and the the static interquark potential from
Lattice QCD

®e
3.2 ‘0000 § i
AN A r=0.197 fm
‘00. ‘ r=0.328 fm
3.1 o
. ‘AAA ““‘
— A Ap ““’
= TN Aay Tree
8 3.0 AAAAAAAAAAAAAA ““’ °
8 AAAA ¢
A °
% 2.9 AAA‘AA“’
= +
2.8¢
’000000000
..........
2 7 ................
%00, °
05 0.1 0.2 >
T[fm]
| o
40 ® r=0.098 fm
. z r=0.197 fm
Ao =
201 a o
A @
— %o, a0
% .°o:3222nnn“ “““““
: | vv333§z32:°o.
E ‘Q:A .o
CU A
= 20 :A
A
°
-40
1 ' ‘ “
0.0 0.1 0.2 0.3
T[fm]

Figure 2.3: Effective masses from the (top) Coulomb-gauge Wilson line
correlator and (bottom) Wilson loop at T = 2.337¢ in HTL perturbation
theory.

In fig. 2.4 we show a direct comparison of the effective masses of the
Wilson loop and Coulomb-gauge Wilson lines at a single r = 0.131fm
to illustrate that their behavior resembles limiting cases for the behavior
of effective masses observed in actual lattice simulations.
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Figure 2.4: A comparison of HTL effective masses of the Wilson loop
(triangle) and Coulomb-gauge Wilson lines correlator at 7 = 2.337¢
evaluated at a separation distance of r = 0.131fm. Both encode the
same spectral peak position and width related to the common value of
the complex static quark potential. Their behaviors constitute limiting
test cases for the effective masses observed in actual lattice QCD sim-
ulations.

2.1 Bayesian spectral reconstruction
Bayesian inference of spectral functions builds upon Bayes theorem
P[p|D,I] < P[Dlp,I1P[p|I] = exp[-L + aS], (2.3)

to introduce prior domain knowledge on the spectral function to reg-
ularize the inverse problem. The posterior P[p|D, ] describes the
probability of a test function p to be the correct spectral function given
correlator data D; = W(t;,r) and prior information /. It is expressed
as product of the Gaussian likelihood P[D|p, I], which describes the
distribution of the sampled data and connects the estimated mean of
the correlator to the spectral function via eq. (1.35)

| &
L=3 i;(Di - WG (D, = Wip])). (2.4)
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where C;; denotes the covariance matrix of the data with respect to the
mean and in absence of autocorrelations given by

Nconf
1
Ik Neonf (Nconf - 1) ; J J ( k m)

and W[p]; = /_o; dwp(w,r) e @, It is the prior probability P[p|l] =
e that acts as the regulator. It is through this regulator that we
introduce domain knowledge about our system. The maximum of the
posterior %ﬁ')&l] = 0 provides the best estimate of p, which is known
as the Bayesian solution to the inverse problem.

Historically, the Maximum entropy method (MEM) has been used for
Bayesian spectral reconstruction on lattice QCD data. It is based on four
underling assumptions, locality, coordinate invariance, system indepen-
dence and scaling. For a more detailed discussion of these assumptions
and MEM in general see [47]. After taking these assumptions into
account, one can construct the Shannon-Jaynes entropy axiomatically
which is plays the role of prior information.

S = /0 ) [p(m ~ (@) - p(w) log(M)] do  (26)

m(w)

Here m(w) is known as the default model, which, is the correct spectral
function in the absence of data. The hyperparameter « is treated in the
Bayesian sense by first computing several different spectral functions
p? for different values of @ and then averaging out, weighted by the
evidence P[D | I] = P[D | a,m] giving us a best estimate of the
spectral function.

The MEM has several key issues which affect its reliability and appli-
cability on real-world lattice data: slow convergence of the underlying
optimization task, high computational cost for extended search spaces,
scale dependence in the prior functional and the Gaussian approxima-
tion required in the hyperparameter estimation.
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To address these issues a new Bayesian approach was proposed by
the authors of [41]. This approach is based on slightly different set
of assumptions namely, subset independence, scale invariance (these
two are the same as MEM), smoothness of reconstructed spectra and
maximum at the prior. After taking these into consideration one can
derive the BR prior, related to the gamma-distribution

SBR:/dw(l—MHog[M ), (2.7)

m(w) m(w)

This regulator is 'weaker’ than the Shannon-Jaynes entropy in MEM.
It therefore allows information encoded in the data to manifest easily
in the reconstructed p, but at the same time is more susceptible to
ringing artifacts?] compared to stronger regulators. The hyperparameter
a is integrated out from the joint probability distribution P[p, D, @, m].
I.e. we consider the influence of all possible prior distributions in the
resulting posterior probability P[p | D, m], on which we base the recon-
struction. Starting from the multiplication law for probabilities:

Plp,D,a,m| =P[D | p,a,m]|P[p | @,m]P|a, m]
=Pla | p,D,m|Plp | D,m|P[D,m], (2.8)

we integrate both r.h.s with respect to @. We set out to find an expres-
sion for the @ independent

P[D | p.1]

Plp|D,m] = PID | m]

/daP[p | @, m].

For large values of S, we approximate the integral over a through
a next-to leading order resummation of logarithms, while for small
S a numerical evaluation is possible. After integration all the alpha
dependence is removed, we evaluate the maximum of the posterior
using quasi-Newtonian LBFGS algorithm. This regulator does not
have any asymptotically flat directions allowing us to always locate the
extremum.

2See fig. for an explicit demonstration of these ringing artifacts.
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We have also explored a different approach in the handling of @ akin to
the Morozov criteria used in Tikhonov regularisation [48]. In this ap-
proach, we tune a such that the likelihood takes the value of L = N;/2.
The motivation for this approach is that we avoid using very large and
very small values of @ to contribute to the end result. We have noticed
that this approaches diminishes some of the ringing artifacts from the
BR method. However, we did not find any significant differences in the
extracted potential for different handling of @ where ringing artifacts
were not observed, i.e. the data on HISQ lattices [49] and Quenched
lattices.

The explicit dependence of the posterior on the data and prior assump-
tions allows to test the uncertainties in each of them by carrying out a
resampling (Jackknife) analysis and by repeating the analysis for differ-
ent choices of the default model m(w). For a more detailed discussion
of the BR method see [41]].

We carry out the Bayesian spectral function reconstruction on the an-
alytically computed raw correlator data discretized along N, = 24 dat-
apoints representative for the N, accessible on the lattice. We discard
the first and last point, as those are also discarded in lattice data due
to the presence of divergent contributions. We assign constant relative
errors AD/D = k with k = 1072 or x = 107> and will show in the next
section that k = 1073 is actually achieved in our lattice data.

The reconstruction with AD/D = 1072 from W) manages to locate
the peak position already excellently (see section [2.1)), since a single
peak dominates the spectrum. For W5 the position of the peak is less
accurately determined (see fig. [2.8)). Note that the true position of the
peak from the Bayesian reconstruction is found to be approached from
above. 1t is the structures that exists above the Lorentzian peak which
pull the reconstructed peak to higher frequencies. This is an important
finding, as it tells us that even in the presence of large non-potential
effects the true peak position is likely lying at or slightly below the
reconstructed value.
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Figure 2.5: Bayesian inference reconstructed (solid line) and semi-
analytical (dashed line) spectral functions of the (top) Coulomb-gauge
Wilson line correlator p) and (bottom) Wilson loop pg in HTL pertur-
bation based on 22 datapoints with AD/D = 1072, The three curves
each denote spectra at different spatial separation distances.

Interestingly the width of the potential peak is underestimated when
reconstructed from W) and overestimated when using Wg. Thus the
Wilson loop and line results bracket the correct imaginary part.

Let us take a look at the reconstruction results when the errors on the
input data is reduced to AD/D = 1073 in fig. The Wilson loop
reconstructions in the bottom panel show a significant improvement
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compared to the AD/D = 1072 case. In the top panel we can also
see an improvement in the reconstruction from W at small distances
r but find the occurrence of ringing at r = 0.327fm. The true single
peak structure is split up into two structures, one lying below, one
above the true peak. Reducing the errors on the input data without at
the same time increasing the number of datapoints thus may lead the
reconstruction method to favor such a multipeak structure. If we were to
take the position of the lowest structure as indicative of Re[V] it would
induce a significant jump between r = 0.13 fm and r = 0.327fm.

We learn from the mock analysis that for the Bayesian reconstruction
method when studying lattice data, we need to test for ringing artifacts.
To this end we will repeat the reconstructions at different levels of
AD /D and check whether at some point single peaks split into multiple
structures. Let us note at this point that these crosschecks show that
the lattice data analysis presented in the next chapters does not suffer
from ringing. One may ask how susceptible the reconstruction is to
adversarial attacks, such a by supplying false prior information in the
form of peak structures in the default model. In fig. we show
the robustness of the Bayesian reconstruction against a set of artificial
peaks located both above and below the true peak position. At AD/D =
103 and N, = 24 the presence of adversarial peak located above the
true position leaves the position of the reconstructed dominant peak
relatively unaffected, however when the adversarial peak is located
below the true position we see a shift in the reconstructed peak at a
slightly higher value.

After a qualitative inspection of spectral reconstructions, let us plot the
corresponding extracted values of Re[V] and Im[V] from fitting the
dominant peak with eq. (I.33) in fig. 2.8] It is reassuring that even
in the presence of very strong non-potential effects in p5 the Bayesian
reconstruction appears able to quantitatively accurately reproduce the
real part of the potential with the number of datapoints and errorlevels
accessible to us in our studies.
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Figure 2.6: Bayesian inference reconstructed (solid line) and semi-
analytical (dashed line) spectral functions of the (top) Coulomb-gauge
Wilson line correlator p) and (bottom) Wilson loop pg in HTL pertur-
bation based on 22 datapoints with AD/D = 1073, The three curves
each denote spectra at different spatial separation distances.

2.2 Spectral reconstruction using Padé

The Padé approach approximates the Matsubara correlators by a ra-
tional function interpolation. These rational function approximation
approaches have been known since the 1890s, but have traditionally
not been used for spectral reconstruction as they require very precise
data with low errors. It has only been possible to get enough statis-
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Figure 2.7: Bayesian inference reconstructed (solid line) and semi-
analytical (dashed line) spectral functions of the (top) Coulomb-gauge
Wilson line correlator p) in HTL perturbation theory based on 22
datapoints with AD/D = 1072 at a separation distance of 0.13 fm. The
reconstruction has been carried out with an artificial adversarial peak
inserted in the default model (blue).

tics in the recent years. The Bayesian approaches which have been
more standardly used for spectral reconstruction are only applicable
when the underlying spectral functions are positive definite. The Padé
approach can accommodate non-positive spectral functions. Since we
have reasonably high statistics for our studies, Padé approach is appli-

cable.
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Figure 2.8: Bayesian inference reconstructed (colored symbols) and
analytic (solid line) values for the real- and imaginary part of the com-
plex static quark potential from the (top) Coulomb-gauge Wilson line
correlator V||(r) and (bottom) Wilson loop V(r) in HTL perturbation
based on 22 datapoints with AD/D = 1072 and AD/D = 1073.

In this approach, we first start but Fourier transforming the euclidean
data to the Matsubara frequency space. We can now exploit the an-
alyticity of the Lehmann kernel to carry out the continuation to real-
time

W(r,o,,T) = / dw;_p,(a), T). (2.9)

w — iy,
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where, the Fourier transformed data is given by the following expres-
sion

No—1
W(r,@nT) = Z i (r, ja,T), @y =2an/aN,.  (2.10)
=0

We then project the data on a set of rational basis function according to
the Schlessinger prescription [42]]. This methods interpolates the data
into a rational function where the order of the polynomial is higher
in the denominator than the numerator by at least one. This ensures
the right asymptotic behaviour of the correlator large frequencies. An
added advantage of interpolation is that it amounts to solving a simple
linear equation and avoids costly minimization. One big disadvantage
is however, that since we do not add an explicit regulator as in Bayesian
approaches, it is prone to over-fitting.

The naive discreet Fourier transform as defined in equation eq. (2.10)
does not reproduce the Lehmann kernel eq. (2.9), but instead also
contains effects due to finite lattice spacing and finite volume. To com-
pensate for this issue, we used improved frequencies which correspond
to the eigenvalues of the momentum operator.

By — Wy = 2sin(%)/a (2.11)

T

Now that we have the required frequencies and the Fourier transformed
correlator we can represent the matsubara correlator as a rational func-
tion

o0, T
PN Gnd) N M (2.12)

WV‘,(;),TZ ~ b -
(r, @, T) am(r,@&,,T)

Here N + M + 1 is the total number of points used for interpolation
and
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pn(r,@p,T) = Z prwh (2.13)
k=1
M
au(r, @, T) =1+ ) qof. (2.14)
k=0

Now, the interpolation problem reduces to solving a system of N+M +1
linear equations as shown in equation eq. (2.12)). Instead of solving the
linear equations we use a continued fraction prescription Cy_ ( both
these approaches are equivalent) of the form used by Schlessinger

W(r,wo,T) ao(r,T)[w —wo] ai(r,T)[w — wi]
1+ 1+ 1+

N ClN-,——Z(r, T)l[:‘) - (UNT—Z] aNT—l(r7 T) [(1) _ (’-)NT—I]' (215)

CNT(F, ia), T) =

This formula can be better understood in the following way:

A B A
i I+1e

The complex coefficients of equation eq. (2.15) can be determined
recursively by imposing the condition that each data point passes exactly
through Cy_. The recursive formula is given by

an(r,T) (w1 — ) = ={ 1+ 2.17)

an—1(r, T) [Wne1 — Wp=1] an-2(r, T) [Wpe1 — Wp—2] .
1+ 1+
N ao(r,T)[wp41 — wo] }
1= [W(r, wo, T)/W(r,wns1,T)])

Following this interpolation method in fig. 2.9 we plot the real (top
panel) and imaginary part (bottom panel) of the HTL Coulomb gauge
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Figure 2.9: Matsubara frequency Wilson line correlators at two dif-
ferent separation distances for the N; = 24 (T = 3.117,) anisotropic
lattices. The top part shows the real part and the bottom part shows
the imaginary parts. The dots show the Fourier transformed lattice data
and the lines show the interpolated function.

Wilson line correlator along improved Matsubara frequecies (filled
symbols) compared to the rational interpolation via eq. (2.15) (solid
lines).

One can use eq. (2.15) to carry out an analytic continuation p,(w,T) =
—%Im[C N, (r,w,T)] and subsequently fit the lowest lying structure via
eq. (I.33). Alternatively one can inspect the poles of the rational func-
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tion eq. (2.15) directly and read off the dominant peak structure, as it
belongs to the pole that is located most closely to the real frequency
axis. If a well separated and pronounced pole emerges, its real- and
imaginary part correspond to the real- and imaginary part of the poten-
tial. Having checked that the results obtained from both options agree
within uncertainties, we choose to inspect poles, as it is computationally
cheap.

In contrast to Bayesian spectral reconstruction, the result of the Padé
method does not necessarily reproduce the Euclidean input data [50],
i.e. it is known to violate the spectral decomposition. On the other
hand, as we show below, it is able to reproduce relevant structures of the
HTL spectral functions, in particular the position of the dominant peak.
Since no regularization is present in the Padé interpolation formula, one
also interpolates the error on the input data, making the reconstruction
susceptible to statistical uncertainties. We therefore benchmark the
reconstruction here only with AD/D = 1073, which corresponds to the
uncertainty level present in our lattice data.

As shown in the top panel of fig. [2.10] the Padé approach when ap-
plied to discrete HTL Wilson line data is able to locate the dominant
peak structure and place the reconstructed peak accurately. However
the peaks are too sharp, indicating that the the true width is underesti-
mated. Note that the Padé reconstruction fails to describe the falloff of
the spectral function both at frequencies below and above the peak in
an accurate fashion. As expected, this entails that the resulting p, rein-
serted into the spectral decomposition does not reproduce the Euclidean
input data.

In case of the Wilson loop, the performance of the Padé is more limited.
With the available N, = 24 datapoints at AD/D = 1073, it manages
to identify the peak up to intermediate distances r < 0.327fm after
which no discernible structure (nor an individual pole close to the real
frequency) can be found.

Turning to a quantitative assessment, we plot in the top panel of fig. [2.11]
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Figure 2.10: One realisation of Padé interpolation reconstructed (solid
line) and semi-analytical (dashed line) spectral functions of the (top)
Coulomb-gauge Wilson line correlator pj; and (bottom) Wilson loop pg
in HTL perturbation based on N, = 24 datapoints with AD/D = 1073,
The three curves each denote spectra at different spatial separation
distances.

the real- and imaginary part of the static potential extracted from dis-
crete HTL W) along N, = 24 with AD/D = 1073. Even though the
reconstructed spectral function does not reproduce the input data, we
find that a robust estimation of the position of the dominant pole, i.e. of
Re[V] is possible with realistic data, up to large distances of r = 1fm.
As expected from visual inspection of the reconstructed p the imaginary
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Figure 2.11: One realisation of Padé reconstructed (colored symbols)
and analytic (solid line) values for the real- and imaginary part of the
complex static quark potential from the (top) Coulomb-gauge Wilson
line correlator V)|(r) and (bottom) Wilson loop V(r) in HTL pertur-
bation based on N, = 24 datapoints with AD/D = 1073,

part is systematically underestimated by around a factor of two.

In case of the more challenging Wilson loop data W, the Padé manages
to locate the dominant peak up to r ~ 0.225fm. Within this region,
its position is correctly reproduced within the statistical uncertainties,
which are larger than for W);. The imaginary part is overestimated but
suffers from strong variance even with the favorable AD/D = 1073,
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a testament for the missing regularization of such a direct projection
approach.

2.3 Extraction of potential using HTL inspired fits

In this approach (see [43] and [44] for more details), one constructs a
set of observables, which, by taking inspiration from HTL perturbation
theory, are designed to reveal more clearly the physics of the real- and
imaginary part of the potential, as is possible from effective masses
alone, which were designed for the study of a purely real potential at
T=0.

The basic idea is to consider an expansion of the correlator around 7 =
/2, instead of the T = 0 expansion underlying m.g. This is achieved
by combining the correlator into an antisymmetric and a symmetric

quantity
3 W(r,r)
Alr) = IOg[\/m] 219

P(7) = log[\/W(T, AW -1, r)]. (2.19)

In leading order HTL perturbation theory, the quantity AHTL(7) =
(B/2 — 7)Re[V] is directly related to the real-part of the potential,
while in case that the spectral peak is shaped as a Gaussian, one would
obtain ASassian(r) = (B/2 — 7)(Re[V] + Im?[V]), where both Re[V]
and Im[V] contribute to the value of A. In any case, a behavior
proportional to (8/2 — 1) is indicative of the presence of a dominant
peak structure. It is interesting to note that a exponentially cut-off
skewed Lorentzian and the Gaussian both lead to an exactly linear
behavior in this quantity.

The symmetric component P(7) in HTL perturbation theory can be
shown to encode both the physics of the imaginary part of the potential,
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Figure 2.12: Comparison of the quantity A from HTL Coulomb-gauge
Wilson lines (blue) and Wilson loops (red) for N; = 24 and AD/D =
1073 at a separation distance of 7 = 0.0329 fm. The HTL-inspired fit
with (8/2 — 1) is shown as solid line.

as well as non-potential effects. Its derivative to first order gives

d 1
= PN (7) = —Im[V](r)log| ——] + ... (2.20)
dr m B—-T

where the symbols ... indicates a series of terms that includes non-

potential effects.

One of the benefits of the way these observables are constructed is
that they appear to lessen the influence of the UV continuum and are
dominated by the low-lying peak structures. Let us plot the quantity
A for both the HTL Coulomb-gauge Wilson line (red) and Wilson
loops (green) in fig. 2.12] Note that while the effective masses for
the Wilson loop in fig. show a significantly different slope around
T = /2, which overshadows the contribution from the potential peak
visible in the Wilson line effective masses, here the quantity A shows
very similar slopes and only close to the fringes of the imaginary time
interval exhibits curvature.

Benchmarking the extraction of the imaginary part from the derivative
of P in HTL with realistic data turns out to be more difficult. Since
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Figure 2.13: Comparison of the quantity dP/dt from HTL Coulomb-
gauge Wilson lines (blue, top) and Wilson loops (red, bottom) for
N; =24 and AD/D = 1073 at a separation distance of = 0.329 fm.
The HTL-inspired fit with cot[z7/(8)] is shown as solid line.

in HTL the imaginary part is relatively small, the signal to noise for
AD/D = 1073 is bad. As shown in the next section, when we investigate
actual lattice data, we find a much larger curvature of dP/dt, so that
even with a AD/D = 1073 an estimate for the imaginary part can be
obtained. For demonstration purposes we thus show in fig. [2.13] the
values from HTL for AD/D = 1073, together with the lowest order
HTL-inspired fit around 7 = /2 proportional to log[7/(8 — 7)]. We
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can see that the fit Ansatz now is only compatible with the data around
T =6/2. As fig. suggests, we would need to consider higher order
non-potential terms to fit the data to a larger 7 range. To fit the data
over a considerably larger 7 range we instead use a fit form:

W(T I’) — e—Re[V] (r)(‘r—,B/Z)—/;’)Im[V](r) log sin %+GNP(T,r,,B)W(IB r) (2.21)

With the higher order terms representing non-potential effects be-
ing,

.
Gre(r.rp)=Yei [ Gilo) 222)
] B2
~ (2 T T
Gi(0) = (¢r+1,1- - @l B))
Here ¢ is the generalized zeta function {(s,x) = X7, ﬁ Instead of

fitting to the correlator we fit to effective masses (as suggested in [49])
which is done by taking the log of derivative on both sides.
W(r5 nT’ NT)
W(r,n: +1,N;)
Im[V](r,T)aN- sin(zn;/N¢)
log | =
sin(m(ny +1)/Nz)

meg(r, T)a = log (

=Re[V](r,T)a -

+ZClGl(T)

]
(2.23)

In our fits we found that the first two terms with parameters cjand c;
were sufficient to fit the data to a large 7 region (see section {.4) with
the exceptions being a few small 7 and a few points around 7 = S (1-3
depending on the separation distance). We will discuss the quality of
the fits on lattice data in section [4.2] Using the fit form as described
in eq. (2.23), we extract Re[V] and Im[V] from the mock data with

results given in fig. 2.14]

We find that for the Wilson line correlators we are able to recover both
the correct real and imaginary parts using data with errors AD/D =
103 up to a high separation distance of 1 fm. For the Wilson loop
data we were able to extract the correct real part, but however we were
only able to recover the correct imaginary part up to » ~ 0.15fm.
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Figure 2.14: HTL-inspired fit reconstructed (colored symbols) and ana-
lytic (solid line) values for the real- and imaginary part of the complex
static quark potential from the Coulomb-gauge Wilson line correlator
V||(r) and Wilson loop V(r) in HTL perturbation based on N, = 24
datapoints with AD/D = 1073.

2.4 Zero temperature subtraction and spectral function model
fits

In this section we consider a different approach which allows for differ-
ent ansatz for the spectral functions besides from the skewed lorentzian
that we derived in eq. (1.33); We observed that the high frequency tails
in the spectral function play an important role in establishing a time
independent potential. To isolate the high frequency tails of the spectral
functions, the authors of [S1; 45] proposed to split the spectral function
as

p(w,T) = p(w, 7)™ + p(w)"s", (2.24)

Here the p(w,T)"? contains only the spectral structures of interest
and the p(w)"’¢" describes the UV behaviour of the spectral functions
which is assumed to be temperature independent. At zero temperature
p(w,T)™4 is a single delta function describing the ground state of
static QQ pair for our choice of the static meson operator. If we now
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assume that the higher peaks are well separated from the ground state
we can isolate it and subtract it from Wg(r, 7, T = 0). This can give us
an estimate for the high frequency part of the spectral function. Once
evaluated at zero temperature it can be used to subtract off an estimate
for the high omega contribution at 7 > 0 at the same value of . The
absence of high w structures in the spectral functions would allow for
a different ansatz i.e Gaussian ansatz for the spectral function. We
also expect that the removal of the high frequency parts in the spectral
function would make it easier for model independent approaches of
BR and Padé interpolation in reconstructing the spectral function to be
more reliable as we are getting rid of information that is not relevant
to the position of the dominant peak and the width.

This approach relies on the assumptions that the high frequency part
of the spectral function is only a lattice artifact and is independent of
temperature. We cannot test this approach directly with HTL perturba-
tion theory, as no zero temperature subtraction can be carried out. In
subsequent chapters we will try to establish whether this assumption
is indeed satisfied by the lattice data and present some other model
(gaussian) ansatz for the spectral function which otherwise would not
be valid for a time independent potential.

2.5 Mock test summary and outlook

We find from extensive testing, based on non-trivial mock data that for
the realistic scenario of N; = 24 and AD/D = 1072 the approaches
based on Bayesian inference and Padé approximation are able to ex-
tract reliably the position of the dominant peak encoded in the HTL
spectrum. The width of the peak, when extracted from Coulomb-
gauge Wilson lines is systematically underestimated, while from Wil-
son loops tends to be overestimated. A reliable reconstruction of the
position of the peak thus would require that the uncertainties in our
data AD/D = 1072.

The HTL inspired method we find is able to distinguish between be-
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tween the HTL and single dominant Gaussian peak hypothesis. Under
the (in this case correct) assumption that the data encodes an HTL-like
spectral function we can reliably extract both Re[V] and Im[V] using
either Wilson lines or loops. We present the extraction of spectral
functions and potential using these methods in chapter [3| and chap-
ter

We would like to mention here that there are other methods for spectral
reconstruction that have been applied in the literature with varying
levels of success.

The first being extracting spectral functions from Gaussian process
regression (GPR). Gaussian processes are based on the fact that any
function can be interpolated using multivariate Gaussian distribution.
In recent years, this idea was shown to be applicable in solving inverse
problems [52]]. The idea was then applied in the QCD settings by the
authors of [S3] to reconstruct ghost and gluon spectral functions. This
method looks promising in extracting spectral functions of the Wilson
line but suffers from two major issues. The first being that one has
to find the right kernel function for the gaussian process using some
mock data. However, no such mock data is available in a fully non-
perturbative setting where both the data and the spectral function are
known. Nevertheless, one can still use the HTL mock data as a training
set to optimize for the right kernel. The second difficulty is that GPR
reconstructed spectral functions suffer from oscillatory artifacts at small
frequencies. The authors of [33] got around this problem by fixing the
low frequency behaviour of the spectral functions using results obtained
from analytically solving the momentum integrals of Dyson-Schwinger
equations. It is yet unclear about how to get around this issue for Wilson
line spectral functions, but one could possibly try to get some insights
from function renormalization group methods and Dyson-Schwinger
equations [354; 1555 156].

Another method that was recently developed which directly exploits the
analytic structure of Green’s functions known as Nevanlinna Analyt-
ical Continuation [57]. This method takes inspiration from the Padé
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interpolation and also attempts to interpolate the data in Matsubara
frequency space rather than fit it. It attempts to resolve some of the
issues associated with the Padé spectral functions i.e the Padé obtained
spectral functions do not recover the Euclidean correlator data and, they
also tend to violate positivity. Instead of a generic continued fraction
one instead considers a class of Nevalinna functions which, by con-
struction are always positive definite. This method has been used to
reconstruct spectral functions in condensed matter systems like Orbital-
resolved realistic band structure of SrVO3; where the spectral functions
are fermionic in nature. Applying this approach to reconstruct Wilson
line functions would require a re-derivation of the interpolation formula
for bosonic degrees of freedom and would be an interesting project for
future works.

In addition to these methods, like Tikhonov regularisation [48], neural
network reconstruction [58|] and Backus-Gilbert method [359; 160] have
also been used in the literature. However, these methods have not been
explored deeply during the course of the PhD and are thus orthogonal
to this thesis.
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3 Study on 2+1 Flavour HISQ lattices

[The static in-medium potential has been studied non-perturbatively
on the lattice via spectral function reconstruction and model spectral
function fits. Based on the Bayesian BR method [41] for spectral re-
construction the static potential has so far been investigated in quenched
QCD [36; 37] and in full QCD simulations based on the legacy asq-
tad action [61; 62]. Recently HTL motivated decomposition of APE
smeared Wilson loop in symmetric and anti-symmetric parts has also
been used to extract the thermal potential in the quenched approxima-
tion [43]]. These studies concluded that the real-part of the potential
eventually becomes screened in the deconfined phase and have iden-
tified hints for the existence of an imaginary part once one simulates
above the crossover temperature. Concurrently the potential has been
extracted by fitting modified HTL spectral functions to Euclidean cor-
relators in [63] and deploying a skewed or non-skewed Lorentzian fit
in [64]]. In both cases values for the real-part were obtained that are
significantly larger than those extracted via the direct spectral function
reconstruction lying closer to the T = 0 results.

In this study we set out to investigate the interactions of static quark-
antiquark pairs at 7 > 0 using realistic state-of-the-art lattice QCD
calculations. Wilson loops and correlators of Wilson lines in Coulomb
gauge at non-zero temperature in (2+1) flavor QCD with physical
strange quark mass using gauge configurations generated by HotQCD
and TUMQCD collaborations with Liischer-Weisz gauge action as de-
scribed by eq. (I.2I) and highly improved staggered quark action
[65; 665 67; 68; [5; 69; [70]. N2 x N, lattices with N, = 10, 12
and 16 lattices were used to compensate for lattice spacing effects and
Ns/N; =4 to make sure that the aspect ratio was large enough to make
sure that finite volume effects do not play a role. The light (# and d)

I'The contents of this chapter have been published in [49]]. The author of this thesis
has contributed towards the Bayesian and Padé extraction of the potential along with the
concluding plots which compare all the different methods.
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quark mass was set to m, /20, which in the continuum limit corresponds
to pion mass of 161 MeV. At high temperatures, 7 > 300 MeV we also
performed calculations with light quark mass equal to m;/5, as quark
mass effects are expected to be small in this region. The lattice spacing
has been fixed using the r| scale defined in terms of the static QQ
energy at zero temperature V(r)

dv
7"2—
dr r=ri

= 1. (3.1)

The values of ri/a as well as the zero temperature Wilson loops and
Wilson line correlators for (2+1)-flavor HISQ configurations have been
determined in Refs. [65; 167; 5]. Using the parametrization given in
Ref. [5] we obtain a/r; and the value r; = 0.3106 fm [71]. Thus
allows us to cover a large temperature range from 120 MeV to about 2
GeV. The parameters of the simulations are show in tables [3.1] to [3.4]

3.1 Cumulant analysis of the correlation function

To understand the main features of our lattice results and to what extent
these can constrain the spectral function of a static meson it is useful to
consider the n-th cumulants of the correlation functions defined as

miy(r,7,T) = -0 InW(r,r,T), (3.2)
my = Ormy_1(r,7,T),n > 1. (3.3)

The first cumulant is just the effective mass which for lattice spacing a
is given by
1 W(r,7,T)

my(r,v,T) = meg(r,7,T) = —1

_— 34
a nW(r,‘r+a,T) 34
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m; = my/20:
B a(fm) | N, N: ams my;L | #TUs | Ref.

6.740 | 0.109 48% 0.0476 | 4.2 | 1350 | [65]
6.800 | 0.103 324 0.0448 | 2.7 | 5650 | [63]
6.880 | 0.095 484 0.0412 | 3.7 | 1400 | [65]
6.950 | 0.089 324 0.0386 | 2.3 | 10830 | [63]
7.030 | 0.083 484 0.0356 | 3.2 | 1355 | [63]
7.150 | 0.074 | 643 x 48 | 0.0320 | 2.9 | 1458 | [63]
7.280 | 0.066 | 643 x 48 | 0.0284 | 2.5 | 1734 | [67]
7.373 | 0.060 | 643 x 48 | 0.0250 | 2.3 | 4623 | [67]
7.596 | 0.049 64* 0.0202 | 2.6 | 4757 | [67]
7.825 | 0.040 64* 0.0164 | 2.0 | 4768 | [67]

m; = my/5:

B a[fm] | N,,N; amy my;L | #TUs | Ref.
8.000 | 0.035 64* 0.01299 | 3.6 | 4616 | [5]
8.200 | 0.029 644 0.01071 | 3.1 | 4616 | [3]
8.400 | 0.025 64* 0.00887 | 2.6 | 4616 | [3]

Table 3.1:  Parameters of the calculations on zero temperature
lattices for m; = my/20 (upper part) and m; = mg/5 (lower part).
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Figure 3.1: The first cumulant calculated at r = 0.24fm for g = 7.825
and N; = 64, 16, 12 and 10, corresponding to 7 =~ 0, 306, 408 and
489 MeV, respectively. The filled symbols correspond to the subtracted
correlator, while the open symbols to unsubtracted correlator, see text.
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m; = my/20:

B amg T (MeV) | #TUs
7.825 | 0.00164 306 67960
8.570 | 0.008376 577 10400
8.710 | 0.007394 650 10190
8.850 | 0.006528 731 4480
9.060 | 0.004834 872 41870
9.230 | 0.004148 1005 3610
9.360 | 0.003691 1121 3530
9.490 | 0.003285 1250 6790
9.670 | 0.002798 1454 42060
m; = my/5:

B amg T (MeV) | #TUs
8.000 | 0.001299 356 11460
8.200 | 0.001071 422 10660
8.400 | 0.000887 500 64370

Table 3.2: Parameters of the 643 x 16 calculations for the two
different light quark masses. The lower part of the table corresponds
to m; = my/5, while the upper part corresponds to m; = mj/20.

In Fig. [3.1] we show the first cumulant from Wilson line correlators
at r = 0.24 fm for g = 7.825 and N, = 16,12 and 10 corresponding
to temperatures for 7 = 306, 408 and 7 = 489 MeV, respectively and
compared to the zero temperature first cumulant. At 7 = O the first
cumulant approaches a plateau for 7 > 0.2 fm. On the other hand the
non-zero temperature cumulant decreases monotonically. At small 7
the difference between the zero temperature and the unsubtracted finite
temperature first cumulant is very small and increases monotonically as
7 increases. The slope of the first cumulant increases with increasing
the temperature. This means that the in-medium modifications of the
spectral function are larger at larger temperature, as expected.

We also observe that the small 7 and in turn high w behaviour in
the spectral function of the unsubtracted correlator is largely tempera-
ture independent. Thus, we followed the footsteps outlined in section
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my = myg/20

B amsg T (MeV) | #TUs
6.515 | 0.0604 122 32500
6.608 | 0.0542 133 19990
6.664 | 0.0514 141 45120
6.700 | 0.0496 146 15900
6.740 | 0.0476 151 29410
6.770 | 0.0460 156 15530
6.800 | 0.0448 160 36060
6.840 | 0.0430 166 17370
6.880 | 0.0412 173 46350
6.950 | 0.0386 185 50550
7.030 | 0.0378 199 65940

7.100 | 0.0332 213 9640
7.150 | 0.0320 223 9600
7.200 | 0.0296 233 4010
7.280 | 0.0284 251 58210
7.373 | 0.0250 273 85120
7.596 | 0.0202 334 98010
7.650 | 0.0202 350 3230
7.825 | 0.0164 408 134600
8.000 | 0.0140 474 3110
8.200 | 0.01167 562 30090
8.400 | 0.00975 667 29190
8.570 | 0.008376 770 6320
8.710 | 0.007394 866 6490
8.850 | 0.006528 974 6340
9.060 | 0.004834 1162 7430
9.230 | 0.004148 1340 7280
9.360 | 0.003691 1495 7910
9.490 | 0.003285 1667 9780
9.670 | 0.002798 1938 7650
mp =mg/5
B amg T (MeV) | #TUs
8.000 | 0.01299 474 71670
8.200 | 0.01071 563 71390
8.400 | 0.00887 667 71170

Table 3.3: Parameters of the calculations on 483 x 12 lattices for
m; = my/20 (upper part) and m; = my/5 (lower part).
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my; = my /20

8 ams; | T (MeV) | #TUs
6.285 | 0.0790 116 9260
6.341 | 0.0740 123 39190
6.423 | 0.0670 133 10360
6.488 | 0.0620 142 102690
6.515 | 0.0604 146 107530
6.575 | 0.0564 155 106020
6.608 | 0.0542 160 112890
6.664 | 0.0514 169 155440
6.740 | 0.0476 181 200250
6.800 | 0.0448 192 279830
6.880 | 0.0412 208 341490
6.950 | 0.0386 222 243480
7.030 | 0.0378 239 137730
7.150 | 0.0320 267 145440
7.280 | 0.0284 301 105990
7.373 | 0.0250 328 50840
7.596 | 0.0202 400 51710
7.825 | 0.0164 489 54000
8.000 | 0.0140 569 6780
8.200 | 0.01167 675 27500
8.400 | 0.00975 800 7540
8.570 | 0.008376 924 3000
8.710 | 0.007394 1039 15320
8.850 | 0.006528 1169 7690
9.060 | 0.004834 1395 15490
9.230 | 0.004148 1608 7630
9.360 | 0.003691 1794 15800
9.490 | 0.003285 2000 7990
9.670 | 0.002798 2326 15760

m;=mg/5

B amg T MeV) | #TUs
8.000 | 0.01299 569 82770
8.200 | 0.01071 675 72180
8.400 | 0.00887 800 72770

Table 3.4: Parameters of the calculations on 403 x 10 lattices for
m; = my/20 (upper part) and m; = my/5 (lower part).
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section [2.4] and obtain an estimate for the subtracted correlator. We
calculated the first cumulant from the subtracted correlator and the re-
sults are also shown in Fig. At large 7 the subtraction has no
effect, however, at small 7 the subtracted first cumulant at 7 > 0 shows
a weaker 7-dependence. At the same time it shows visible temperature
dependence already for small 7’s. At these small 7 values we see an
approximately linear 7-dependence of m at non-zero temperature with
a slope similar to the 7 ~ 1/(2T) region. For the lowest temperature,
T =306 MeV the decrease in the first cumulants is approximately lin-
ear in 7 around 7 ~ 1/(2T), while for the higher temperatures this
linear trend is only seen for smaller 7, corresponding to the reduction
in 1/(27T).

In order to better understand our numerical results on the first cumulants
and see to what extent these can constrain the spectral function of a
static meson it is helpful to calculate higher cumulants of the correlator.
In the following we consider the cumulants of the subtracted correlator
as we are interested in exploring the 7-dependence caused by thermal
broadening of the dominant peak. To evaluate higher cumulants we
performed fits of the first cumulants of the subtracted correlator us-
ing fourth order polynomials, and estimated the higher cumulants by
taking the derivatives of the resulting polynomial. The results for the
second cumulants for three distances, *T = 1/4, 1/2 and 1 at several
temperatures are shown in Fig. [3.2] for N; = 12. The errors on the
cumulants have been estimated using the jackknife procedure. Since
the second cumulant is negative, and the square root of the negative
second cumulant may be related to the width, as discussed later, in the
figure we show +/—mj in temperature units. We see that the errors on
the second cumulants increase with decreasing temperatures. At short
distances, the second cumulant is approximately constant for small 7
and then starts to increase rapidly with increasing 7. For T = 1 the
almost constant behavior of m> is only seen for the highest two temper-
atures. The results for 7 < 251 MeV are not shown as these have much
larger errors. However, within these large errors the second cumulant
is compatible with a constant at these temperatures.
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Figure 3.2: The second cumulants m,, obtained from a fourth order
polynomial fit to the first culumant m, of the subtracted static meson
correlator on N, = 12 lattices for rT = 1/4 (left), rT = 1/2 (middle)
and rT = 1 (right) for several temperatures.
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Figure 3.3: The third cumulants ms3, obtained from a fourth order
polynomial fit to the first culumant m, of the subtracted static meson
correlator on N, = 12 lattices for rT = 1/4 (left), rT = 1/2 (middle)
and rT = 1 (right) for several temperatures. The different symbols
correspond to different temperatures given in MeV.
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In Fig. [3.3] we show the third cumulant of the Wilson line correlator,
obtained from a fourth order polynomial fit to the first culumant m,
as function of 77T in temperature units. The results are shown for three
representative distances, rT = 1/4, rT = 1/2 and rT = 1. We only
show our findings for the third cumulant for 7 > 334 MeV as at lower
temperatures the errors are too large to extract meaningful information
from them. Furthermore, for T = 1/4 the errors are already very large
for T = 334 MeV. The absolute value of the third cumulant increases
rapidly with increasing r7T and decreases with increasing temperature.
These features can be already deduced by looking at the result for the
second cumulant. For 77 > 0.35 the third cumulant is negative, while
for 7 < 0.3 it is positive but small given the errors. The small positive
third cumulant at small 7 is equivalent to having a nearly constant
second cumulant.

From Fig. [3.3]it is clear that estimating the fourth and higher order
cumulants from the present lattice results is very challenging. This will
be important when considering parametrization of the spectral function
of a static meson, as the data can only constrain such a limited amount
of parameters. Hence any such parametrization should not contain more
than three or four parameters.

3.2 Determination of the ground state peak from spectral func-
tion model fits

In order to constrain the spectral function p,(w,T) from limited data on
Euclidean time correlation functions we need to assume some functional
form for it. As for the analysis of the cumulants we assume that the
spectral function can be written p,(w,T) = p'“!(w,T) + p"¥(w,T) +
olish (), with p"8" (w) assumed to be temperature independent high
frequency part of the spectral function and p”*?(w,T) containing the
dominant peak structure. Based on general grounds and EFT arguments
it is natural to assume that p”"*?(w, T) has a Lorentzian form. However,
for a Lorentzian form the integral in Equation (I.35) will not converge

at the lower integration limit. In the case of HTL spectral function
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Figure 3.4: The peak position of the spectral function (left figure) and
the width (right figure) as function of the separation r obtained from
Gaussian fits of the N, = 12 data.
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we have seen that while around the peak the spectral function appears
to be Lorentzian, different structures dominate the spectral function far
away from the peak, in particular at very low frequency, see fig.
Thus in addition to the parametrization of the peak of the spectral
function, we also need to parametrize the behavior of the spectral
function at very low frequency, i.e. the low energy tail. This part of
the spectral function will affect the correlation function at large values
of 7. Unfortunately, we do not have a well motivated form for this
part of the spectral function. Furthermore, for calculations in finite
volume the spectral function is not a continuous function but a discrete
sum of delta functions with an envelope function of certain shape.
For small volumes as used in the present calculations there could be
significant distortion of the envelope function, since the number of low
lying energy levels and the corresponding number of 6 peaks is quite
limited. This is especially the case for the low w tail as it extends over
a large w-range below the dominant peak position, including negative
w values.

The information we have on the different structures in the spectral func-
tion is also quite limited. At small 7 values only the first two cumulants
can be determined with the third cumulant being zero within the esti-
mated errors. Therefore, at small 7 the lattice data are only sensitive
to the position and the effective width of the dominant peak, and a
Gaussian form provides a simple parametrization for this that avoids
convergence problem in eq. (I.35)). At larger 7 the correlation function
is sensitive to the low energy tail, i.e. the region w < Q(r,T). In the
previous section we have seen that in this region also the third cumulant
is non-zero, but cumulants beyond the third one cannot be constrained
by our lattice data. While it would be tempting to parametrize the low
w tail of the spectral function by a series of delta functions avoiding
any bias, in practice it is impossible to constrain all the corresponding
parameters. We need to approximate this part of the spectral function
by a single delta function

Thus a simple parametrization of the Wilson line correlator function
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consistent with the above observations is the following:

W(r,r,T) =Ap(r,T) exp(—Q(r, )t +Ig(r, T)272/2)+
Acut(r’ T) CXP(—U)CW(I”, T)T), (3.5)

with A, < Ap and w,; < Q The first cumulant corresponding to
this form will decrease linearly at small 7, while exhibiting a non-linear
behavior for large 7 as observed in our lattice results. We performed
correlated fits of our lattice data using eq. (3.5) and determined the
parameters Ap, Q, I'g, Acy and wey,. The fits describe the lattice
data very well, with possible exception of the data at the smallest 7
value. The details of these fits are shown in fig. [3.5

The peak position, Q(r,T) is shown in fig. as function of the dis-
tance r for different temperatures. It shows no temperature dependence
and agrees with the zero temperature static energy. The fact that Q
is close to the zero temperature static energy can be easily understood
from fig. 3.1l The subtracted first cumulant at smallest 7 is already
close to the zero temperature plateau and shows and linear behavior
at small 7. A linear extrapolation naturally gives the zero temperature
static energy. The width of the dominant peak depends on the specific
parametrization of the spectral function and the Gaussian form has no
physical motivation. A parametrization independent definition of the
effective width could be the width at the half maximum. For a Gaussian
form this means I' =T'¢V2In2. In fig. we also show the effective
width I' as function of the distance, r at different temperatures. We see
that " increases with increasing r. We also see that when plotted as
function of rT the effective width in temperature units shows very little
temperature dependence. This is expected at very high temperature,
but not in the temperature range studied by us. For the other two fit
parameters we find that w.,; < Q and A.,; < Ap in accordance with
our expectations. The same parametrization of the spectral function
has been used in the analysis of NRQCD bottomonium correlators at
non-zero temperature [45; 51]. It has been observed that different bot-
tomonium states have thermal width, but no significant mass shift has
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Figure 3.5: The difference between the Gaussian fit and the lattice data
on the first cumulant for N = 12 as function of 7 normalized by the
statistical errors for 7 = 1/4 , ¥rT = 1/2 and rT = 3/4. The open
symbols correspond to the data points not included in the fit.
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been observed. Furthermore, the thermal width turned out to be larger
for higher lying bottomonium states that have larger size [45} 51]. Thus
the thermal modification of static QQ states and bottomonium is quite
similar. Futhermore, the bottomonium Bethe-Salpeter amplitudes also
do not show large temperature modifications [72]. Using this result
a potential model analysis resulted in a potential that has a real part
which is identical to the zero temperature static energy [73]].

3.3 Determination of the ground state peak via the HTL-motivated
method

In this section we follow the steps outlined in section [2.3| to extract the
ground state peak. We focus on the narrow region around 7 = 1/(27T)
such that higher order terms in eq. (2.23) can be neglected and we can
fit the lattice results on the first cuamulant with the simple form

W(r’nTaNT) )

W(r,n +1,N;)
Im[V](r,T)aN- o [ sin(nn:/Ny)

meg(r, T)a = log (

=Re[V](r,T)a - (3.6)

sin(w(ny +1)/Nz)

We performed fits of our N, = 12 lattice data for m; for t/a = 5,6,7
using Eq. to determine Q(r,T) and I'(r, T). The details of these
fits can be found in fig. 3.6 A sample fit for both unsubtracted and
subtracted data has been shown in Fig. The ansatz also describes
some data points outside the fitting range. The smaller 7 and larger
7 behavior are not expected to be described by the above Ansatz,
as it only describes the dominant peak of the spectral function. In
Fig. we show Q(r,T) and I'(r,T) from these fits as function of r
at different temperatures. The peak position Q(r,T) and width T'(r,T)
for subtracted and unsubtracted correlators are very close to each other.
This is expected because we only consider 7 values around 1/(27),
where the contribution of the high w part of the spectral function
is small. The peak position, Q(r,T) shows significant temperature
dependence and differs from the zero temperature potential. The width
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of the peak, I'(r,T) increases with increasing r. Furthermore, I'(r,T)
does not scale with the temperature unlike in the case of Gaussian
fits in the temperature range explored by us. We also find that in
the temperature region studied by us I'(r,T) is larger than the HTL
result.

Another widely studied quantity at finite temperature is the singlet
free energy Fs(r,T), see e.g. [69]. As mentioned above in leading-
order HTL perturbation theory, the singlet free energy and the real part
of the static energy are the same. From Fig. we see that even
non-perturbatively the difference between Q(r,T) and Fgs(r,T) is very
small, while the difference between the zero temperature static energy
and Fs(r,T) is even smaller for rT < 0.4 [69]. This is very similar
to the findings of the calculations in quenched QCD, where smeared
Wilson loops have been used [43]].

It is straightforward to continue the parametrization of the Wilson line
correlator given to Minkowski time and then calculate the dominant
peak of the spectral function p"*?(w, T),

p"d(w, T) = / W (r,1,T) exp(iwt) d1, S

which has been plotted in Fig. [3.10

We would like to again mention that the spectral feature p”*?(w,T)
plotted in the figure is not the full spectral function p,(w, T), but rather
the dominant peak of p”¢‘(w,T) due to the thermal static energy.
p"(w,T) is quite different from the full spectral function p,(w,T)
for w far away from its peak at Q(r,7T). A similar situation arises also
while calculating the QQ potential in hadronic phase. In this case it is
well known that the dominant peak of the spectral function is the Dirac
delta function, and this describe only the plateau region of m;.

The integration in Eq.(3.7) can be performed exactly [74] and near the
peak, where p”*?(w,T) describes the spectral function reliably, it can
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Figure 3.8: The peak position (left) and the width (right) from the
HTL motivated method as function of r at different temperatures. The
open(closed) symbols corresponds to real and imaginary part from
unsubtracted(subtracted) correlator.
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Figure 3.9: The difference between the peak position Q(r,7T) and sin-
glet free energy F(r,T) at different temperatures.

be approximated by

med N 2 r'(r,T)
pre(@.T) ~ \ﬁ Q(nT)—w)? + T(rT)?
1Q(r,T) —w|, T'(r,T) <T.

(3.8)

3.4 Determination of the Peak using Padé interpolation

In this section we will determine the ground state peak position using
the Padé rational approximation as outlined in section 2.2l Even though
the Padé has it’s limitations and does not reproduce the lattice euclidean
data, our results on a non-trivial realistic test case are very promising,
thus we proceed to apply it to our HISQ lattice data. We first start
by showing a representative example is shown in fig. 3.11] where we
plot as discrete data points in the top panel the real and in the bottom
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Figure 3.10: Dominant peak of spectral function for T=408 MeV at
various distances from HTL-motivated method.

panel the imaginary part of the correlator at 7 = 408 MeV (B8 = 7.825
N = 12) at three spatial distances r = 0.0387 fm,r = 0.176 fm and
r = 0.296 fm (dark blue to light blue), and then compare them to the
interpolated function.

We then carried out the pole analysis for Pad “e interpolations based on
different number of input datapoints. On N, = 12 lattices the results
are unaffected by changing between seven to eleven input points and we
arbitrarily decide to show the results based on eight. The uncertainty
budget represented by the error bars includes the Jackknife errors, as
well as variation due to change in the ordering when composing the
continued fraction. For the N; = 12 lattices we investigated, the Padé
interpolation yields one dominant pole close to the real axis manifesting
itself as a well-defined skewed Lorentzian peak in the spectral function,

as shown in fig. [3.12]

Reading off the values of the real-part of the pole as estimate for Q we
obtain the values plotted in fig. [3.13] The corresponding values for the
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Figure 3.11: Discrete Fourier transform of the 7 > 0 Wilson line
correlators at 7 = 407MeV (B = 7.825, N, = 12) at three spatial
separation distances r = 0.03872 fm, » = 0.1758 fm and r = 0.2964 fm.
The top panel shows its real part, while the lower panel its imaginary
part as colored symbols. The solid lines denote the Padé approximation
based on eight data points, which is subsequently used in the analytic
continuation.

imaginary part as estimate of I" are shown in fig. [3.14]
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Figure 3.12: Representative spectral functions obtained from the Padé
interpolation at 7 = 407 MeV (8 = 7.825 N, = 12) for different
separation distances. A single well defined peak structure of skewed
Lorentzian form emerges from the analysis.

As we are cautioned about the quantitative reliability of the extraction
of I" from the mock data analysis, we here present its values simply for
completeness. We have carried out the analysis on both the subtracted
and unsubtracted correlators and found that the subtracted correlators
are computed to a statistical precision which unfortunately is not high
enough for the Padé to extract the value of I' with even statistical
reliability.

The values the Padé analysis yields for Q on the HISQ Wilson line
correlators are similar to the results obtained from the model spectral
function fits deployed in section [3.2] We find that the values do not
show any significant changes over a large temperature range.

In fig. [3.15] we pick out the results at 7 = 407 MeV for a closer inspec-
tion. We plot €, based on the subtracted and unsubtracted Euclidean
correlator Padé analysis at 7 > 0 (orange and dark blue data points),
along with the 7" = O static energy (light blue datapoints) and the colour
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Figure 3.13: Q as a function of separation distance for different temper-
atures obtained from a Padé pole analysis on N; = 12. The figure on
the top is obtained by using the unsubtracted correlator and the figure
on the bottom is obtained using the subtracted correlator.

singlet free energy. The results obtained are in stark contrast to those
of the method by Bala and Datta, in which at temperatures inside the
QGP phase one does observe a deviation from the linear rise present
in the hadronic phase. Our Pade results appear also in stark con-
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Figure 3.15: Comparison of extracted €2 using subtracted and unsub-
tracted correlators using Padé pole analysis with the T=0 effective mass
and colour singlet free energy at 7 = 408 MeV (5 = 7.825, N, = 12).
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trast to previous analyses of the spectral functions of Wilson lines from
both quenched [41;137]] and dynamical QCD [61562] based on Bayesian
methods. There a discernable change of €2 with temperature was found,
more similar to the results of HTL-motivated method in this study. A
previous Pade analysis of a subset of the HISQ data was discussed in
Ref. [75]. That analysis showed relatively large uncertainties, arising
from the fact that less statistics was available and that the improved
frequencies were not deployed. Within its sizable uncertainties, these
results were consistent with the Bayesian studies but within 20 would
also encompass the result obtained here.

3.5 Determining the ground state peak via Bayesian recon-
struction

We then proceeded with the next method of analysis the Bayesian spec-
tral reconstruction as outlined in section 2.1} The Bayesian analysis
relies on the presence of positive definite spectral functions in the eu-
clidean correlator data. In our analysis of effective masses, we observed
that at high temperatures the effective masses of euclidean correlators
show non-monotonic behaviour at small euclidean time, which, in the
language of spectral functions represents a non-positive definite spectral
function.

At low temperatures, e.g. at 7 = 151 MeV, the Euclidean correlators
do not yet show signs of positivity violation (i.e. we obtain effective
masses that are monotonic in Euclidean time) and the BR method
succeeds in reconstructing their spectral function. By construction, the
result reproduces the input Euclidean data points within their statistical
errors. A selection of these spectra for r = 0.32,0.64,0.96 and 1.28
fm is shown in fig. [3.16] (solid dark blue to lighter blue) compared to
the outcome of the Padé reconstruction (gray solid).

We find important differences between the two approaches. The BR
method reconstructions, as expected from the effective mass analysis,
shows a single well defined lowest lying peak. Towards the origin that
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Figure 3.16: Comparison of reconstructed spectra using Pade (grey)
and BR (blues) method at 7 = 151 MeV (8 = 6.740, N, = 12) at
different separation distances r = 0.32,0.64,0.96 and 1.28 fm.

peak rapidly decays in an exponential fashion, qualitatively similar to
the behavior observed in HTL spectral functions. In contrast the Padé
reconstruction assigns significant weight to the low frequency region.
This difference is among the reasons, why the spectral function of the
Padé reconstruction does not fulfill the spectral decomposition of the
original Euclidean data, a known drawback of the Padé reconstruction
method.

At larger frequencies than its maximum, the BR spectral function shows
a tail, which eventually behaves as o« 1/w per choice of the default
model. We have checked that changing the default model to different
powers a as m «< w® does not change the peak structure significantly.
The central peak obtained by the BR method agrees in position with
the Padé result at small separation distances but the Padé eventually
seems to smear out significantly with the center of the bump lying at a
higher frequency than the BR spectra peak.

The success of the BR reconstruction at 7 = 151 MeV tells us that the
data is compatible with a dominant skewed Breit-Wigner peak struc-
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ture in the spectral function. At higher temperatures the BR method
cannot be reliably applied to the extraction of spectral functions from
the raw correlators, due to the presence of non-positivity in the under-
lying spectral functions. At 7 = 407 MeV, for example, the effective
masses at small distances show explicitly non-monotonic behavior [69].
However, the spectral density may not be positive definite even if the ef-
fective masses decrease monotonically. We see that also at intermediate
distances, the BR method fails to converge successfully.

While in principle we could proceed by investigating the UV-subtracted
finite temperature correlators, we have found that the statistical uncer-
tainties introduced by the 7" = 0 subtraction dominate over those inher-
ent in the 7 > 0 data, thus preventing us from a precision analysis of
the spectral function at higher temperatures.

3.6 Conclusions

The main goal of this study was extracting the position € and width
I' of the dominant spectral peak structure encoded in the Wilson line
correlators. We deployed four different approaches: spectral function
model fits where the dominant peak is described by a Gaussian, the
HTL-inspired fit of Bala and Datta, the Pade approximation and, where
positivity allowed, the Bayesian BR method.

In essence each of the four methods introduces certain prior information
in order to regularize the ill-posed inversion problem to gain access to
the spectral function. It turns out that the Euclidean data scrutinized in
the first part of our study is amenable to different possible hypotheses,
which in turn lead to different outcomes for Q and I'.

The spectral function fits assume that the high energy part of the spectral
function has negligible temperature dependence, and that the observed
temperature dependence of the Wilson line correlators is determined
by the dominant peak structure. Since the correlator is found to have a
second cumulant much larger than its higher cumulants, a Gaussian for
the dominant peak, and a single delta function for the low energy tail
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are the simplest, permissible choices for parametrizing the data. The
Gaussian spectral function model shows a value of Q, which is virtually
independent of temperature and a width, which scales trivially with the
temperature.

In order to extract the values of Q via the HTL-inspired fit, one assumes
that the correlation functions are amenable to a certain non-standard
spectral decomposition, similar to the one encountered in leading-order
HTL perturbation theory. This spectral decomposition leads to a first
cumulant that is anti-symmetric around 7 = 1/(27). Because of small
N, the fits can be performed only in a small region around 7 = 1/(27).
This fit yields an Q, which shows clear temperature dependence and
signs of asymptotic flattening in the QGP phase. The width that the
method computes shows a non-trivial scaling with the temperature,
which is weaker than linear in the temperature.

The third method we deployed is the Padé rational approximation. The
only assumption it makes is that the correlation function represents an
analytic function. However it suffers from the drawback that its outcome
is known to violate the spectral decomposition of the input data. ILe.
the Padé spectrum, when reinserted into the Lehmann representation,
does not reproduce the original correlator. We have however tested the
Pade method under non-trivial settings in HTL perturbation theory and
found that for the temperature and spatial separation distances probed,
the position of the lowest lying peak structure was well reproduced.
Applied to genuine lattice data we obtained results that were robust
under changes in the number of input points and a reordering when
constructing the Pade approximation of the Matsubara domain input
data. The outcome of the extraction of Q based on the Pade method
yields values, which similarly to the Gaussian model fit, shows virtually
no temperature dependence. While the mock data tests tell us to take
the outcome of the width with a significant grain of salt, we find small
statistical errorbars and a behavior that qualitatively agrees with that
of the Bala-Datta method, i.e. I' scales weaker than linear with the
temperature.
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Last but not least we also deployed the Bayesian BR method, where
positivity allowed. The BR method has been extensively tested on HTL
mock data and has been shown to outperform other Bayesian methods,
such as the MEM in the accurate reconstruction of the lowest lying peak
from Wilson line correlators, a finding reproduced in this study. As the
BR method is designed to reproduce the Euclidean input data within
their uncertainty, its reconstructed spectra denote a valid hypothesis
for the actual underlying spectrum. The BR method possesses an
explicit default model dependence, which however can and is assessed
by repeating reconstructions for different functional forms of the default
model. And while the BR method is known to be susceptible to ringing
artifacts, as its regulator is weakest among the reconstruction methods
on the market, no signs of ringing have been observed in this study,
neither in the HTL mock test nor in the reconstruction of genuine lattice
data.

As a crucial limitation in the context of the current study, the BR
method is only applicable to positive definite spectral functions. If ef-
fective masses show non-monotonicity it indicates that the BR method
cannot be deployed. However even if the effective masses are monotonous,
positivity violation may persist, which explains that the BR method fails
to converge successfully for higher temperatures on the raw Euclidean
correlators. The outcome of the extraction of €, based on the BR
method at low temperatures such as 77 = 151 MeV yields a real-part
which agrees well with the static energy from (multi-state) exponential
fits, also applicable on those lattices. We find that the spectral functions
show well defined Breit-Wigner like peaks, which get exponentially cut
off close to the origin, similar to what is seen in HTL perturbation
theory at much higher temperatures. Comparing the BR result to the
Padé we find that the Padé incorrectly assigns too much weight to the
low frequency regime and at the same time produces a less and less
well-defined peak, which is consistently located at a higher position
than the BR peak. Agreement between the BR and the effective masses
and the tension with the Pade method starting around r = 0.5fm seem
to indicate that the Pade tends to overestimate the values of  when
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applied to our lattice data.

The comparison of different methods of the spectral reconstruction in
terms of the peak position, € of the dominant peak and its width, I" is
summarized in Fig. and Fig. [3.18] respectively for three temper-
atures, T = 151 MeV (just below the chiral crossover), T = 199 MeV
(the typical temperature most relevant for RHIC), and 7 = 408 MeV
deep in QGP. The present study sheds new light onto the extraction of
Q and I'. While different methods often lead to quantitatively different
results some general features are the same. The width I' is significant
compared to the temperature scale and increases with distance r for
all temperatures. In fact, for the lowest temperature all method give
consistent results for I'. For temperatures 150 MeV < T < 200 MeV,
the Gaussian fits and HTL fits lead to similar width for large r, while
at small » the HTL fit gives a smaller width. The Pade method always
gives a smaller I' than Gaussian and HTL fits at large r, but agrees
with the HTL result at small r, c.f. Fig. [3.18] The r dependence of
the peak position turns out to be similar for the Gaussian fits and the
Pade method, indicating an apparent absence of the screening effects.
Furthermore in the temperature range 150 MeV < T < 200 MeV and
at intermediate distances, all the explored methods give a peak posi-
tion that is slightly larger than the singlet free energy, see Fig.
For these temperatures, which are the most relevant ones for RHIC,
the spread of the results is not too large in order to have an impact
on the phenomenological studies. At higher temperatures, which are
of interest for quarkonium phenomenology in heavy ion collisions at
LHC our results are inconclusive at present, and lattice calculations
with larger N, and smaller statistical errors are needed. Increasing the
temporal extent of the lattice will be possible in the coming years. At
the same time accumulation of statistics at 7 = 0 will also enable a
high precision subtraction, which in turn will enable us to use the BR
method above the crossover temperature.

84



Study on 2+1 Flavour HISQ lattices

Q[GeV]

Q[GeV]

Q[GeV]

15

0.5

15

0.5

-0.5

T T T

T =151MeV

a®
.:'.Ft

T
!jﬁﬂ ~

Singlet Free Energy

T T T T

T = 0 Potential =+

Pade +¢—

Gaussian Fit =
HTL Inspired Fit }
i

02 04 06

0.8 1 1.4

r[fm]

1.2

T =199MeV

Singlet Free Energy

p2¢ i
)()(

AA

T = 0 Potential —+— |
Pade F»— |

Gaussian Fit
HTIr Inspir?d Fit ‘

0.6

0.8 1 12 1.4

r[fm]

- Singlet Free Energy .

T = 0 Potential +—+—
Pade +—

Gaussian Fit i .

HTL Inspired Eit :

0

01 02 03 04 05 06 0.7 08 09

r[fm]

Figure 3.17: Comparison of € as a function of separation distances
for three different temperatures 151,199 and 408 MeV obtained from
different methods discussed in the text. We have also shown the T=0
potential (dark grey) for all temperatures and the free energy (light
grey) for high temperature (408 MeV).
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different methods discussed in the text.
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4 Results from high resolution quenched
lattices

[The real part of the potential obtained from the study on 2+1 Flavour
QCD HISQ lattices showed no temperature dependence even when the
temperature was increased to more than 650 MeV. These results were
rather astonishing as they were completely different from the screened
potential picture that was observed in previous studies on Quenched
QCDI[36; 37] and in full QCD simulations based on the legacy asqtad
action [615 62]. The potential in these studies was extracted using the
Bayesian spectral reconstruction which was inapplicable for the study
on HISQ Ilattices due to positivity violation of the spectral function
which was manifested in non-monotonicity of the effective masses at
small 7. Thus, it was essential to compare the new methods to the
Bayesian reconstruction in the regime where all the approaches were
applicable. The Quenched lattices do not show this non-monotonous
behaviour in the effective masses. Thus it is a good testing ground for
comparison between the methods. This might also give us some more
insights into the differences between legacy studies and the recent study
on HISQ lattices.

4.1 Lattice setup

The Coulomb-gauge Wilson line correlators are computed on high-
resolution isotropic and anisotropic quenched lattices. Both sets of
ensembles are based on the naive Wilson action, the former utilizes a
parameter set (8 = 7.196), which has been used in the study of relativis-
tic bottomonium physics at finite temperature in [[/6] with a transition
temperature of 313 MeV and lattice spacing a = 0.0176 fm with total
volume of 96° x N, with N, = 16, 24,48, the latter (B=17,&=3)5)
in previous studies of quarkonium melting in [37] with transition tem-

I'The contents of this chapter have been taken from a preprint [40]] where the author
has contributed substantially towards writing, generation of data, analysis of data and
figure creation.
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H N; 16 24 48 H

T[MeV] 698 466 232
T/Tc 223 149 0.74
Npeas 8700 4500 1600

Table 4.1: A table of isotropic quenched lattice ensembles at g = 7.196,
lattice spacing a; = 0.0176 fm with Ny = 96.

H N- 24 32 40 56 96 H

T[MeV] 839 629 503 359 210
T/Tc 311 233 186 133 0.78
Numeas 2500 1014 735 708 172

Table 4.2: A table of quenched anisotropic lattice ensembles at g =7
and ¢ = 3.5, lattice spacing a; = 0.039 fm with a,; = a,/4 and N = 64.

perature 7, = 270 MeV, spacial lattice spacing a; = 0.039 fm and
temporal lattice spacing a, = as/4 with total volume of 643 x N, with
N = 24,32,40,56,96. The anisotropic lattices were generated using
the openQCD code by the fastsum collaboration which has been ex-
tended to anisotropic lattices [[77] by utilizing the Fram supercomputer
maintained by Sigma2 in Norway. The configurations were gauge-fixed
to Coloumb gauge with a tolerance of Agr = 107!2 and the Wilson
line correlators were measured using the SIMULATeQCD code [[78]]
on the MARCONI100 computing cluster in Italy. The isotropic lattices
were generated at the university of Bielefeld and some of the mea-
surements were also performed there. A summary of measurements at
various temperatures for isotropic lattices are shown in table 4.1] and
for anisotropic lattices are shown in table 4.2

4.2 Effective Masses

Following in the footsteps of the mock data test, we start by analysing
the effective masses of the Wilson line correlator on the quenched
lattices in fig. .1 The observation we have both for the isotropic
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Figure 4.1: A representative selection of effective masses, obtained
from the Coulomb-gauge Wilson line correlator computed on (top)
isotropic (8 = 7.196) and (bottom) anisotropic (8 = 7,& = 4) quenched
lattices.

and anisotropic lattices is that for 7 < T, the effective masses show a
tendency to plateau at intermediate 7. The small 7 behaviour in the
correlation function represents the large frequency contribution (UV) in
the spectral function. The presence of a plateau at intermediate 7 sug-
gests the spectral function comprises of a lowest lying delta peak plus
additional UV contribution that comes from the small 7 regime; this is
reminiscent of zero temperature behaviour where one expects there to
be a well defined lowest lying peak described by a delta function. Such
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behaviour is to be expected since in the absence of dynamical fermions
there exists a first order transition from the confined to the deconfined
phase.

At T > T, we see that the effective masses obtain a non-zero slope
at intermediate 7, which suggests the presence of a finite width in the
spectral function. The structure of the small 7 behaviour is rather inter-
esting. On the one hand, for the anisotropic lattices for 7 = 3.117; and
T = 2.33T, there are significant deviations at small 7 when comparing
the T > T, and T < T, case. These differences are diminished as the
temperatures are reduced to around 1.867, and below. On the other
hand, for the isotropic lattices we find agreement at small 7 for both
available temperatures (T = 2.237, and T = 1.497T,) as compared with
a recent study of (2+ 1)-flavour QCD [38]]. However, as all recent QCD
studies were based on the improved Liischer-Weisz gauge action, and
also on gradient flow smearing in the case of [38]], these two factors
might contribute to the different observations as well. Qualitatively
similar to the mock tests, we see a bending in the effective masses at
large 7. We understand this bending effect at 7 < 1/T as being due to
the interaction of a forward propagating static quark-antiquark pair and
backward propagating states of the medium [49].

The behaviour in quenched QCD is quantitatively different from the
behaviour of effective masses in the mock HTL Wilson line data. There
are significantly more UV contributions present in the lattice data which
is manifested in the upward bending at small 7. However, the magnitude
of UV contribution is less than that the case of Wilson loop HTL
mock data. The magnitude of the UV contributions in lattice data
lie in between those of the Wilson line and the Wilson loop mock
data. From the analysis of effective masses alone we cannot make a
statement about the structure of the high frequency behaviour of the
spectral function.

Despite different behaviour of M. on anisotropic quenched lattices at
small 7, we follow the steps as described in section [2.4] and section [3.2]
and show the subtracted correlator analysis. We also note the fact that
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we might be over-subtracting or under-subtracting the high-frequency
part. If we are indeed over-subtracting we might be doing something
non-trivial to the spectral function that is relevant for the potential
effects. An example of the high-frequency subtracted effective masses
are shown at T = 2.237, (isotropic) and 7 = 2.33T, (anisotropic) in
fig. We carry out the subtraction procedure for all temperatures
on the anisotropic lattices for 7 > T, at all but the highest temperature
as the small 7 behaviour is very far from being compatible with the
zero temperature behaviour for the 7 = 3.117, anisotropic lattices.
The details of these fits are shown in fig. 4.24] and fig. #.25] in the
appendix.

Thus, for each temperature we obtain two different correlators to per-
form spectral reconstructions on, i.e. the subtracted correlator and the
raw correlator. We expect the spectral functions of the raw correlator
to show structures at large frequencies owing to the high-frequency ef-
fects at small 7 and these effects will be suppressed on the subtracted
correlator. Since these high-frequency structures are related to be non-
potential effects there is little need in reconstructing them accurately.
Thus, the subtraction procedure attempts to get rid of irrelevant infor-
mation while at the same time keeps the number of points in the 7
direction fixed from the input data, in turn the information content on
the small frequency regime should increase thus improving the out-
come of spectral reconstruction. However, the subtraction procedure
could affect the analysis in other ways. The subtraction is done by
dividing the zero temperature raw correlator data into 16 jackknife bins
and then performing a weighted fit to a single exponential. Once the
fit parameters are obtained, the single exponential is subtracted from
each jackknife bin. The remaining part of the correlator is used for
subtraction from the finite temperature case. The subtraction will in-
troduce new errors (coming from a mismatch in statistics in zero and
finite temperature data) in the data and the spectral reconstruction will
be limited by the statistics of the zero temperature data. The statistics
on the zero temperature data for anisotropic lattices is limited in our
case (we have about 175 uncorrelated measurements). Nevertheless, we
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Figure 4.2: An example of subtracted effective masses for (top) r =
0.441 fm for the T = 2.23T, isotropic lattices and (bottom) r = 0.467
fm at T = 2.33T, for anisotropic lattices. Here the N, = 48(0.74T,) and
N; =96(T = 0.78T,) lattices are used as the zero temperature reference

expect that the gains made from reducing the severeness of ill-posed
problem will outweigh the losses coming from limited statistics in the
subtracted data.

Next we show the HTL-inspired fits as outlined in section [2.3] and use
the fit form as described in eq. (2.23) to obtain the value of the potential.
We were able to fit the data quite well upto a large 7 region with two
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higher order terms c; and c¢,. The fit on effective masses are shown in
fig. 4.3 We were able to get the fit within the margin of error for all
but the smallest and largest v data. We have shown the details of the
fits in fig. and fig. 4.26] in the appendix. We find that the fits are
somewhat worse than the Gaussian fits. For eg, considering the case
of T = 2.33T ¢ anisotropic lattices (N, = 32), at a separation distance
of r = 0.585fm with first 5 and last 3 points excluded we get an error
(x as usual in statistics) of 4.16 per degree of freedom (number of 7
points) as compared with the Gaussian fits where this number is 0.172
for the same. The HTL fits perform considerably better when the 7
range is restricted close to 7 = /2. The same quantity reduces to about
0.24 when the first 8 and the last 5 points are excluded in the HTL
fits. The somewhat counterintuitive observation that the HTL-inspired
fits work better at lower temperatures is understood from the fact that a
smaller fraction of the points are affected by discretization artifacts at
7~ 0 or 7 < 1/T that is not accounted for at all in the HTL inspired
Ansatz.

4.2.1 Spectral Reconstructions

In this section we use the Bayesian BR method and the Padé inter-
polation method to reconstruct the spectral function from the Wilson
line correlators. We use a large frequency range w € [—56, 112] GeV
for isotropic lattices and w € [—101,202] GeV for anisotropic lattices
with N, = 2000 in both cases, starting with the most uninformative
default model i.e. m(w) = const. The natural second step now is to
compute the spectral functions from UV continuum subtracted data.
This does present a challenge since the subtracted correlator will now
have statistical errors dominated by the zero temperature data, since
those are the ensembles where we have the lowest statistics (table {.1]
and table 4.2). The available statistics are thus reduced by a factor of
5-10 when the analysis will be carried out on the subtracted correlator.
Nonetheless, we still perform the subtraction procedure (see section [2.4]
and section [3.2) and proceed with running the BR reconstructions. We
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Figure 4.3: The figure shows HTL-inspired fits on effective mass data
on isotropic (top) and anisotropic (bottom) lattices at three different
separation distances.

proceed in the following way: the mean of the UV contribution is
subtracted from each measurement of the correlator. Then, we account
for the larger errors in this new subtracted data by multiplying the
covariance matrix with the appropriate factor which is determined by
comparing relative errors of the zero and finite temperature data. The
actual procedure for spectral reconstruction is the same as with the raw
correlators. We first show a comparison of the spectral functions at
different temperatures at a fixed separation distance of » = 0.53fm in
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Figure 4.4: Comparison of BR reconstructed spectral functions at dif-
ferent temperatures 7 € (2.23,1.49,0.74)T, at a separation distance of

r = 0.53fm. The figure on the top shows p(w) for raw correlators and
the figure on the bottom shows p(w) for subtracted correlator.

fig. .4 (isotropic) and r = 0.702fm in fig. 4.5] (anisotropic).

When compared to reconstructed spectral functions of HTL Wilson
Line correlators we see more structure in the spectral function. The
spectral functions from the raw data on isotropic lattices show some
shoulder structures at small positive frequencies below the main domi-
nant peak, whereas in the case of anisotropic lattices the shoulder struc-
tures appear at a negative frequency. In addition, we also find other
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Figure 4.5: Comparison of BR reconstructed spectral functions at dif-
ferent temperatures at a separation distance of r = 0.702 fm. The figure
on the top shows functions for raw correlators and the figure on the
bottom shows the functions for subtracted correlator.

structures at higher frequencies (around 8-10 GeV for isotropic and
5-6 GeV for anisotropic lattices) which correspond to UV continuum
artifacts affecting the small 7 behaviour in the correlator. Performing
the same analysis on the subtracted correlator still shows a dominant
peak and some shoulder structures at small frequencies remain, but the
frequencies at which these structures appear are slightly higher and the
amplitude is also lower. These changes might be due to 7-dependent
statistical fluctuations of the T = 0 correlators at large times, where
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one would otherwise naively expect just the stable ground state contri-
bution. Comparing the raw or subtracted effective masses at large 7
in full QCD [49; 38] suggests milder changes in the low-frequency re-
gion of the spectrum, which however, is known to be strongly operator
dependent and susceptible to lattice artifacts. The structures at higher
frequencies that we observe from the raw data do not appear anymore,
suggesting that the subtraction procedure has indeed removed the high
frequency parts of the spectral function as intended. In addition, the
position of the dominant peak in the spectral function also appears to
have shifted to slightly higher frequencies. In all cases the width of the
spectral peak increases with increasing temperatures, which suggests
the presence of an imaginary part which grows with temperature.

Next we compare the spectral functions at a fixed temperature for dif-
ferent separation distances to analyse the change in peak position and
width. Figure shows spectral reconstructions using the BR method
for raw correlators 7' = 2.237, (isotropic) and 7 = 2.337, (anisotropic)
at different separation distances and fig. shows the same for the sub-
tracted correlators. We observe that the position of the dominant peak
for raw correlators stabilises at a fixed position at around r = 0.45fm
(isotropic) and r = 0.39fm (anisotropic). This suggests the presence
of screening in the real part of potential. However, for the subtracted
correlators no stabilization of the peak position is seen, and hence,
no screening. We hence confirm results obtained in previous studies.
The width of the spectral peak also appears to broaden over increasing
separation distance suggesting the presence of an increasing imaginary
part with separation distance in the potential. We discuss the potential
extraction from spectral functions in section {.2.2] where we also dis-
cuss the systematic and statistical error-budget in our analysis where is
presented.

We proceed to do the same with the Padé interpolation reconstruction.
We will display here the spectral functions obtained from the Padé,
however, note that we compute the potential from the pole analysis in
the next section. As mentioned earlier, the Padé requires very high
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Figure 4.6: BR reconstructed spectral functions of the (top) isotropic
lattices at T = 2.23T, and (bottom) anisotropic lattices at T = 2.337,
using the raw correlator data. The three curves each denote spectra at
different spatial separation distances.

statistics, which makes it less reliable on the subtracted correlator. The
subtraction procedure is carried out in a slightly different way from
the BR reconstructions. We divide our data into 16 jackknife bins and
first obtain the high-frequency part of the 7" = 0 correlator for each
bin. This continuum part is then subtracted from the finite temperature
data for each jackknife bin. This was only possible for the isotropic
lattices where the statistics were high enough, the interpolation fails
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Figure 4.7: BR reconstructed spectral functions of the isotropic lattices
at T = 2.23T, and anisotropic lattices at T = 2.337, using the subtracted
correlator data. The three curves each denote spectra at different spatial
separation distances.

for the anisotropic case. Figure {.§] shows a comparison of the Padé
extracted spectral functions on isotropic lattices for the raw correlators
(top) and subtracted correlators (bottom) at a separation distance of
r = 0.53fm. Firstly, the spectral peak of the vacuum (7" = 0.747,) is now
somewhat broader than the peak obtained from the BR reconstruction
on the same lattice. The spectral functions for raw correlators at all
temperatures show a main dominant peak, followed by a second bump
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at high frequencies at about 7-12 GeV. These bumps correspond to
high frequency structures in the UV which dominate the correlator at
small 7. These bumps are not observed in the spectral functions of the
subtracted correlator. This is an additional indication that the structures
in the UV are indeed removed by the subtraction procedure. The
shoulder structures that are observed in the BR also seem to be absent
in the Padé reconstructions which could very well be because the Padé is
unable to capture them. Furthermore, the subtraction procedure changes
the peak position of the spectral function in a non-trivial way. The peak
has been shifted to a higher frequency for both the temperatures alike.
The reconstructed peak for the subtracted correlator now even sits at a
higher position than the vacuum peak obtained from the raw correlators.
This suggests that the presence of some non-trivial structures at high
frequency can affect the Padé and could lead it to underestimate the peak
position or that the subtraction affects the low lying part of the spectral
function itself. This is reminiscent of the changes to the low-frequency
shoulder structures seen in the BR reconstructed spectra.

Next, we compare the spectral functions at the same temperatures but
at different separation distances. fig. 4.9) shows spectral functions of
the raw correlator on isotropic (top) and anisotropic (bottom) lattices
and fig. 4.10| shows the same for the subtracted correlator but now only
for the isotropic lattices. We find that when using the raw correlator,
the position of the dominant peak approaches a constant at a separation
distance (around 0.4 fm) suggesting the presence of screening in the
real part of the potential. This changes drastically when using the
subtracted correlator as the peak position keeps increasing even up to
separation distances of 0.7 fm. This behaviour is not compatible with
a screened potential and could be interpreted as a vacuum-like rising
real part.

We have described and compared spectral functions of the raw and
subtracted correlators on both isotropic and anisotropic lattices in this
section. Visual analysis suggests that the subtraction procedure removes
high frequency structures. At the same time the subtraction affects the
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Figure 4.8: Comparison of Padé reconstructed spectral functions at
different temperatures at a separation distance of r = 0.53 fm. The
figure on the top shows functions for raw correlators and the figure on
the bottom shows the spectral functions for subtracted correlator. The

zero temperature reconstruction is performed on the raw correlator in
both the plots.

reconstructed peaks at small frequency. It also suggests that the raw
correlators show signs of screening confirming results from previous
studies. However, the subtracted correlators show behaviour compatible
with the vacuum. In the next section we will present the real part of the
potential extracted using all the methods discussed in this paper along
with providing statistical and systematic uncertainty budgets.
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Figure 4.9: Padé interpolation reconstructed spectral functions of the
(top) isotropic lattices at T = 2.237T, and (bottom) anisotropic lattices at
T = 3.11T, using the raw correlator data. The three curves each denote
spectra at different spatial separation distances.

4.2.2 Real part of the potential

We now discuss the real part of the potential from each of the methods
described in the previous sections. We extract the potential from spec-
tral functions by fitting to a functional form according to eq. (I.33)). In
HTL mock data tests we observed that the BR reconstructions can ap-
proach a failure mode resulting in ringing behaviour (see fig. [2.6) when
the errors on the data are reduced without increasing the number of data
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Figure 4.10: Padé interpolation reconstructed spectral functions of the
isotropic lattices at 7 = 2.237, using the subtracted correlator data. The
three curves each denote spectra at different spatial separation distances.

points. This could result in a sudden jump in the extracted potential
above at a certain separation distance (see fig. 2.8). To check whether
we observe such effects in the lattice data we artificially reduce the
statistics on our data to a factor of 2/3 and 1/3 of total measurements.
The top part of fig. d.T1] shows the real part of potential extracted us-
ing a constant default model for with varying statistics at 7 = 3.117,
(N; = 24) on anisotropic lattices. Seeing no jump in the extracted real
part suggests the reconstruction is unaffected by ringing artifacts.

We then proceed with estimating the systematics of the extracted poten-
tial. Generally, the least informative default model is used in Bayesian
reconstruction i.e. a constant default model. To test the default model
dependence we choose four different default models in addition to the
constant default model; m(w) = M@W where k = [1,2,-1,-2].
For the highest temperature (N, = 24 anisotropic lattices) we also
choose an additional value k = —3 since we expect the dependence
to be the highest at this temperature. The resulting values of the real
part for the anisotropic lattices of T = 3.117, (N, = 24) is shown in

the bottom panel of fig. .11 We estimate the systematic error in the
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extracted potential from the maximal variation among these data points.
We point out that the residual slope for some of the default models is
much weaker than the slope due to the effective string tension in the
confined phases, c.f. fig. 4.12] such that the default model dependence
does not hinder distinction between screening or no screening.
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Figure 4.11: Assessing the dependence of the Bayesian reconstruction
extracted values of Re[V] on (top) variation in the statistical error of
the input data (bottom) on changes in the default model (anisotropic
ensemble at 7' = 3.117,).

In our simulations, the temperature is changed by changing the num-
ber of lattice points while keeping the lattice spacing fixed. Thus, at
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higher temperatures we have fewer imaginary time steps and thereby
less information. Since it is known from precise data in full QCD [[79]]
that the low-lying excited states become negligible at 7 = 0 only after
7 2 0.4 fm, one might be concerned that the 7 > 0 analysis could
be affected by uncontrolled excited state contamination due to the re-
stricted time range. To investigate these effects, we carry out the BR
reconstruction on the low temperature (7 = 0.787,, N, = 96) data with
artificially truncated Euclidean time range to 7/a < 24 as shown in

fig.

We observe that truncating the data to N, = 24 introduces a small
upward shift in the potential in line with the expected excited state
contamination. This behaviour is similar to what was observed in a
previous study on lattice NRQCD S- and P-wave bottomonium states
[8Q]. This artifact only leads to over-estimation of Re[V] and does not
mimic artificial screening.
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Figure 4.12: Assessing the dependence of the Bayesian reconstruction
at T = 0.787¢ on the available extent in imaginary time. Each of these
was computed using the full statistics with the same constant default
model (isotropic ensemble at T = 0.78T,).

After combining the statistical and systematic errors the real part of
the potential extracted from the raw correlators is shown in fig. .13
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and from the subtracted correlator in fig. 4.14] The BR analysis on the
raw correlator suggests the presence of screening at 7 > T, for both
the isotropic lattices and anisotropic lattices. However, when applied
to the subtracted correlator, we see a substantially different behaviour,
the screening has diminished if not disappeared, and the real part is—
within the sizable uncertainty—compatible with the zero temperature
potential. For the isotropic lattices the real part shows almost no tem-
perature dependence within error bars. For the anisotropic lattices,
there is some inconclusive temperature dependenceincompatible with
the screened behaviour found from the raw correlators. This is an in-
triguing finding and further investigation is needed to find the sources
of the discrepancy of the real part of the potential between subtracted
and unsubtracted correlator.

Given that we see such different behaviour of the real part of the poten-
tial in the Bayesian reconstruction we proceed with the extraction of the
potential using the Padé¢ interpolation to confirm whether it, too, shows
similar results. We calculate the potential by inspecting the dominant
pole of the Padé interpolation function in eq. as described in sec-
tion[2.2] The error budget is estimated in two ways. The first one is the
statistical errors. These are obtained from a jackknife procedure with
16 jackknife bins. Since the Padé does not have any explicit regular-
ization we have to be conservative in estimating systematic errors. We
proceed in the following way. Let us choose the minimum number of
points at which a good interpolation?| with a smooth function is seen.
Then we add one and two more points from the negative frequency
side. This gives us three different realisations of the potential and thus
a range of uncertainty. In our tests we have observed that the systematic
uncertainty dominates the statistical uncertainty at higher temperatures
and gradually starts reducing when decreasing temperatures. This is
primarily due to the fact that more points in the 7 direction become
available, so adding additional points in the interpolation has less of an

2By good interpolation we mean an interpolation function which passes through all
the data points which are not used as in explicit input for the interpolation function along
with having no kinks or discontinuities.
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Figure 4.13: Real part of the potential at different temperatures using
the BR method from (top) isotropic and (bottom) anisotropic lattices.
The error bands denote systematic errors and the error bars refer to
statistical errors. The zero (7,) temperature potentials are calculated by
fitting the effective masses to a constant in the regime where a plateau
is observed.
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Figure 4.14: Real part of the potential at different temperatures using
the BR method from subtracted (top) isotropic and (bottom) anisotropic
lattices. The error bands denote systematic errors and the error bars
refer to statistical errors. To understand the effects of subtraction we
show (in light grey) the potential obtained from the raw correlator at
one temperature.

effect. The real part of the extracted potential using the Padé on raw
correlators is shown in fig. 4.15] and using the subtracted correlators is

shown in fig. B.16]

We observe that even though the systematic errors are large, the real
part of the Padé interpolated potential flattens off at large distances

108



Results from high resolution quenched lattices

Isotropic Lattices

7 -
36/
Q
=
=
T 5t
fod 5 @ T=2.23Tc
¢ T=1.49Tc
@ T=0.74Tc
[0 T=0.74Tc Meff
0.0 0.2 0.4 0.6 0.8
r(fm)
4.5
@ T=3.11Tc
¢ T=1.86Tc
4.0 é T=1.33Tc
— T=0.78Tc
>
(O]
9
=
=
(0]
o4

Figure 4.15: Real part of the potential at different temperatures using
the Padé method from (top) isotropic and (bottom) anisotropic lattices.
The error bands denote systematic errors and the error bars refer to

statistical errors.

for the raw correlators. The extracted potential on the raw correlators
for both isotropic and anisotropic lattices is in agreement with the
BR reconstructed real part, i.e. it is compatible with screening. The
subtracted correlator analysis can only be performed reliably on the
isotropic lattices due to the lack of statistics in the zero temperature
lattices in the anisotropic case. The real part extracted in this way
shows more of a temperature dependence when compared to the BR
reconstructions, but, still does not flatten out at large distances as one
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Figure 4.16: Real part of the potential at different temperatures using
the Padé method from isotropic lattices with the subtracted correlator.
The error bands denote systematic errors and the error bars refer to
statistical errors.

would expect from a screened potential. The Padé analysis confirms
the behaviour observed with the Bayesian reconstruction.

The next method we discuss is the potential extraction from the sub-
tracted correlator using the Gaussian fit Ansatz. In fig. .2 we observed
that after the zero temperature subtraction, the effective masses showed
linear behaviour at intermediate 7 followed by a downward bending.
The agreement with the linear model extends to small 7 values with
decreasing temperatures. The downward bend at large 7 can be param-
eterized in terms of a sum of delta functions at frequencies much lower
than the peak: as in QCD [45; 49; 38] we find a single delta func-
tion sufficient given the data. We thus parameterise the UV subtracted
correlator as:

1
Coup(r,t) ~ A exp(—QT + EFZTZ + 0(73)) + Acur €Xp(—wey; 7)) (4.1)

The spectral function can thus be represented as, suggested in [49]]

|w - Q(T)|?

p(w,T) =A(T) exp(— ST

) + A (TYS (w — W™ (T)) (4.2)
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The real part of the potential as obtained from the Gaussian fits is
shown in fig. The error bars represent statistical uncertainty and
are obtained by the jackknife procedure with 16 bins. We observe
that for the isotropic lattices the behaviour of Re[V] is compatible
with that at zero temperature without a clear trend of temperature
dependence. For the anisotropic lattices, there is more temperature
dependence present, but, without a clear trend the behaviour is still
compatible with an unscreened potential. We discuss the goodness of
these fits in section

The last method we present in our discussion is the HTL-inspired fits
described in section [2.3] In the previous study on (2+1)-flavour HISQ
lattices we had observed that the results of Re[V] from this method
were different from results obtained from Padé and the Gaussian fits.
Here, we wish to establish whether that is still the case. When two
higher order terms c¢; and ¢, in eq. (2.23) are included in the fits in
the data fits the functional form up to a significantly large 7 region
away from t = /2 (see fig. 4.3), and the potential is estimated from
the parameters of this fit. The goodness of these fits is shown in
section .4, We show the extracted potential using the HTL-inspired
fits in fig. [4.18] The error bars represent statistical errors obtained from
a jackknife analysis with 16 bins. The figure shows the real part as a
function of separation distance using the raw correlator data, but we
find that the results remain unchanged when using the subtracted data.
We observe a screened potential from all of these fits.

4.2.3 Imaginary part of the potential

The mock data analyses carried out in chapter [2] indicated that with the
currently available data quality of N, ~ 20 and AD/D = 1072, only a
robust reconstruction of the real-part is possible. Both the BR and the
Padé method applied to the HTL Wilson line data underestimated the
imaginary part by around a factor of 1/2. In light of these limitations
the goal of this section is quite modest: we investigate whether there
exists a non-zero imaginary part of the in-medium static potential. A
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Figure 4.17: The figure shows the real part of the potential using
Gaussian Fits on isotropic (top) and anisotropic (bottom) lattices. The
potential below 7, is computed by fitting the effective mass with a
constant in the regime where a clear plateau is observed.

careful estimate of the total uncertainty budget will be provided.

Our analysis indicates that despite the sizable uncertainties, a non-
zero imaginary part is present for temperatures in the deconfined phase
T > T.. At the same time we confirm that in the confined phase
T < T, both methods show an imaginary part that is compatible with
zZero.
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Figure 4.18: Real part of the potential at different temperatures using

the HTL inspired method from (top) isotropic and (bottom) anisotropic
lattices. The error error bars refer to statistical errors.

We start first by revisiting the effective masses in fig. @.1 For both
isotropic and anisotropic lattices they exhibit a plateau at intermediate 7
values for T < T, which is compatible with a delta-function like spectral
function and thus a zero imaginary part. For the higher temperature lat-
tices (T' > T,) the plateau is absent and instead one finds a finite slope at
intermediate 7. As discussed before, this linear behaviour extends over
an even longer imaginary time duration in the subtracted correlator as
shown in fig. @.2] The presence of this slope may be interpreted as the
finite width of a Gaussian or cut-off Lorentzian spectral peak encoding

113



Results from high resolution quenched lattices

the imaginary part of the potential. The corresponding Gaussian model
fits were discussed in section 4.2.2] and we show the width parameter
as a proxy for width in fig. B.19] As the authors of Refs. [38] have
pointed out, while the width parameter is model dependent, while the
associated second cumulant is not.
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Figure 4.19: The figure shows the extracted Gaussian width parameter
I' (related to the imaginary part of the potential) on isotropic (top) and
anisotropic (bottom) lattices. The error bars refer to statistical errors
computed from the jackknife analysis.

Besides the Gaussian model Ansatz, the HTL-inspired Ansatz with
two extra terms, too, is able to fit the data within the errors except
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for the first and the last few points (number of points depend on the
temperature and separation distances) as shown in figs. .26 and {.27),
with the error per degree of freedom being slightly worse. The slope in
the effective masses is attributed to a finite imaginary part, the extracted

values of which are given in eq. (2.23) in fig. {.20]
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Figure 4.20: Imaginary part of the potential at different temperatures
using the HTL inspired method from (top) isotropic and (bottom)
anisotropic lattices. The error bars refer to statistical errors computed

from the jackknife analysis

In order to determine the presence or absence of an imaginary part
in a model independent fashion using the BR or Padé method, we
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need to obtain a reliable uncertainty estimate of the extracted spectral
widths.

One known artifact is related to the fact that the temperature is changed
by changing the physical length of the Euclidean time domain. Because
it is known that this change can affect the resolution of Bayesian re-
construction methods, we need to make sure that it does not artificially
introduces a finite width. To this end we carry out the BR reconstruc-
tion on the low temperature (T = 0.787., N = 96) correlator data,
after artificially truncating the Euclidean time to only 24 points, the
same extent as available at the highest temperature. We then compare
the outcome of this reconstruction with the results from reconstruction
on the fully available data-points in fig. #.21] In both cases we find
a statistically non-vanishing imaginary part for » > 0.4 fm even in the
confined phase, but more than one order of magnitude smaller than in
the deconfined phase. We observe that the mean of the extracted imag-
inary part from the truncated data has a tendency to sit slightly below
the one from the full data. However, when error bars are considered
the two are virtually indistinguishable.
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Figure 4.21: Assessing the dependence of the Bayesian reconstruction
at T = 0.787¢ on the available extent in imaginary time. Each of these
was computed using the full statistics with the same constant default
model.
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The BR extracted imaginary part is shown in fig. 4.22] using the raw
correlator. For the isotropic case, and the anisotropic case wewsee
that the high temperature lattices show a finite imaginary part for both,
while the low temperature lattices show a behaviour that is compatible
with zero up to r > 0.7 fm). The error-bars are computed in the same
way as in the real part (see section [4.2.2).

Isotropic Lattices
1.00

0.75¢

0.0 0.2 0.4 0.6 0.8
r(fm)
Anisotropic Lattices

— ===
TR

SrENW
(]
()]
A

A )
0.25 0.50 0.75 1.00
r(fm)

Figure 4.22: Imaginary part of the potential at different temperatures
using the BR method from subtracted (top) isotropic and raw (bottom)
anisotropic lattices. The error bands denote systematic errors and the
error bars refer to statistical errors. The imaginary part is consistent
with zero till around 0.6 fm.

Lastly, in fig. [4.23] we show the extracted imaginary part from the Padé
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Figure 4.23: Imaginary part of the potential at different temperatures
using the Padé method from (top) isotropic and (bottom) anisotropic lat-
tices. The error bands denote systematic errors and the error bars refer
to statistical errors. We observe that for both isotropic and anisotropic
the imaginary part is zero up to 0.7 fm after which we see a small
increase.

interpolation from the raw correlator. The imaginary part is nothing
but the imaginary part of the dominant pole of the Matsubara correlator
whose real part had been used to extract the real part of the potential.
The statistical and systematic errors have been computed using the same
procedure as for the real part. For the isotropic lattices we clearly see
that there is a non-zero imaginary part for 7 = 2.237,. even when the
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large uncertainties are considered. The uncertainties are too large for
the case with T = 1.497, to make such a claim, but nonetheless the
obtained mean is non-zero. For the low temperature case 7 = 0.747T,
the extracted imaginary part is compatible with zero up to at least
r > 0.6 fm. For the anisotropic lattices, we see that there is a positive
imaginary part for all 7 > 7,. Our attempt to extract real and imaginary
part of the dominant pole fails for the low temperature (7" = 0.787,
N; =96) case due to lack of statistics for those ensembles.

4.3 Summary and Conclusions

We have re-investigated the static quark-antiquark potential in a glu-
onic medium at finite temperature using high resolution isotropic and
anisotropic quenched QCD lattices. We deploy four different indepen-
dent methods, all of which have different underlying assumptions in an-
alyzing the spectral structure of Euclidean correlators. We first started
with analysing the correlation functions and their effective masses. The
small 7 behaviour of the latter showed non-trivial temperature depen-
dence (on anisotropic lattices) unlike what the authors of [49] reported.
Yet the case for zero temperature subtraction can still be made keeping
in mind the possibility of under-subtracting and over-subtracting which
could affect the reconstruction adversely.

After analysing the correlation functions themselves we investigated
the real part of the potential using each of the methods described in
the paper on both the subtracted and raw correlator. We find that the
results from the raw correlator using the BR, Padé and HTL-inspired
fits agreed with previous studies on quenched lattices and showed the
presence of screening in the real part of the potential for both isotropic
and anisotropic lattices. Since the Gaussian fit Ansatz is only applicable
to the subtracted correlator we do not deploy it on the raw correlator.
In contrast when the same analysis (except HTL-inspired fit, which is
hardly impacted by data outside of 3/4 < T < 383/4) is performed on the
subtracted correlators we observe that the real part of the potential no
longer shows screening. These different outcomes due to the subtraction
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are rather puzzling and further analysis is needed to identify the source
of these differences.

The intention behind the subtraction procedure is to remove structures
in the spectral function that are irrelevant for the potential physics by
allowing the lowest lying peak to dominate more of the available data it
attempts to reduce the severity of the ill-posed inverse problem. Since
the Bayesian reconstruction relies on properties such as smoothness in
the spectral function, presence of some non-smooth structures induced
e.g. by the lattice cutoff in the UV can distort the spectral reconstruc-
tion and one may speculate that they could cause it to systematically
underestimate the peak position. In such a hypothetical scenario it is
possible that the subtracted correlator does not suffer from these dis-
continuities and thus allows for a more accurate determination of the
actual spectral function. On the other hand, even though the motivation
for subtraction is well motivated in full QCD and on isotropic lattices
in quenched QCD, the agreement of effective masses at small 7 is not
as good on anisotropic lattices in quenched QCD.

The BR is able to reconstruct the Wilson loop peak in our mock data
analysis with a spectrum that is rising at its high-frequency end, see
fig. @ However, the raw Wilson line correlator on the lattice has
instead a second, bumpy structure at higher frequencies, see Figures [4.4]
or This is apparently much more difficult for Bayesian inference.
Such a second bump also shows up in the Padé analysis of the raw
Wilson line correlator on the lattice. Therefore, we suggest focusing
the attention on such high-frequency bumps.

Given the quality of data with N; ~ 24 and AD/D = 1072, our mock
data tests underestimated the imaginary part of the potential. For this
reason we decided to focus on merely determining the presence or
absence of an imaginary part of the potential at different temperatures.
We have shown that all our methods indicate the presence of a non-zero
imaginary part in the deconfined phase that increases with temperature
and separation distance.
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4.4 Appendix-Quality of fits

In this section we discuss the goodness of fits on the euclidean corre-
lator. Figure 4.24] and fig. 4.25] show the goodness of the gaussian fits
and anisotropic lattices respectively. See eq. (4.I) for the
fit form. The gaussian fits the subtracted correlator throughout the 7
range upto a relatively large separation distance except for the first few

on isotropic

points and the last couple of points in some cases.

Figure [4.26]

and figs. 4.27) and {.28] show the goodness of the HTL-
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inspired fits on isotropic and anisotropic lattices respectively. See
eq. (2.23) for the fit form. We observe that the form fits the data
quite well through a large 7 range outside of 7 = /2. The fitting range
is increased with decreasing temperature.
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5 Conclusion

In this thesis, we have studied the in-medium properties of the bound
state of the quark and anti-quark pair (quarkonium) through the static
potential. The central challenge that we address is to establish whether
such a potential model exists at finite temperature and if it does what
is the functional form of such a potential.

We have presented extraction methods of the static heavy quark po-
tential from lattice QCD. We started with defining the potential as a
Wilson coefficient of an effective theory of heavy quarkonium called
pNRQCD. The complex potential can be described through the Wilson
loop in Miknowski time. This Wilson loop correlator can be linked
with the Euclidean Wilson loop via the spectral function. The real
part of the potential is linked to the position of the dominant peak in
the spectral function and the imaginary part is linked to the width of
this dominant peak. Computation of the spectral function from finite
number of discrete and noisy Euclidean lattice data is an ill-posed in-
verse problem. In chapter 2] we discussed, and bench-marked different
four different independent methods i.e Bayesian BR method, Padé in-
terpolation, HTL inspired fits and Gaussian fits and zero temperature
subtraction for the extraction of spectral function from lattice data.
Later, as the main part of the thesis, we presented two recent studies
based on these four extraction methods, the first one on state of the art
2+1 flavour lattices based on the Luscher-Weisz gauge action and the
HISQ fermionic action and the other being on Quenched lattices with
the Wilson action.

The first study discussed in chapter 3] and published in [49] showed the
existence of a complex potential with an unscreened real-part and an
imaginary part that increases with temperature and separation distance.
These results were very different from those observed on previous stud-
ies on both quenched and full QCD with asqtad action. The BR method
was rendered inapplicable for this study due to the non-positivity of the
spectral function manifested in non-monotonicity of effective masses
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at high temperatures. This motivated us to re-investigate the poten-
tial on quenched lattices in chapter 4] and confirm the robustness of
our methods and compare them to the BR method as it was used it
those previous studies. This was possible due to the absence of non-
monotonicity in effective masses of the Wilson line correlator, which
made the BR method applicable in the quenched case. Our studies
using the BR, Padé, and HTL inspired method confirmed results from
previous studies showing the presence of a complex potential with a
screened real part. However, when we performed the analysis on the
subtracted correlator, the Padé, BR and the Gaussian fits all showed
the presence of a complex potential but now with an unscreened real
part.

Clearly, the subtraction procedure has a non-trivial effect on the spec-
tral function and thus affects the behaviour of the extracted potential
quite drastically. The subtraction procedure in the Quenched study
on anisotropic lattices is not as exact as with the HISQ study as the
effective masses at small 7 do not line up exactly, this disagreement
disappears in isotropic lattices. In our study, we observed that the sub-
traction procedure indeed removes structures at high frequencies, but
also affect the lowest lying peak. More work is needed to fully under-
stand the effect of the subtraction procedure on the reconstruction of
the spectral function.

Through both these studies with all our methods, we have also estab-
lished that the potential is indeed complex, with the imaginary part
growing with temperature and separation distance in both full QCD
and quenched QCD (in quenched only for 7 > 7;). This is manifested
by the presence of a finite width in the spectral function reconstruction
and through a non-zero slope in the effective masses. However, we
are still far away from determining the imaginary part of the spectral
function accurately with the current data quality. None of our methods
agree with each other on the imaginary part of the potential or width
of spectral function.

The results from 2+1 flavour QCD lattices [49] were used in [&81]]
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between the potential to experimental observables. Yeilds and nuclear
modification factors R4 of bottomonium in Pb-Pb collisions were
calculated at 4/syy = 5.02 TeV. Calculations showed a large suppression
of nuclear modification factors when compared to experiment. These
calculations where done with bottomonium formation time of 7y = 0.6
fm/c which is the start time of hydrodynamics. However, when a large
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Figure 5.1: The nuclear modification factors of bottomonium
Y(1s,2s,3s) as a function of the number of participants Np, in the
central rapidity of Pb-Pb collisions at /sy = 5.02TeV. The potential
is taken from Gaussian fits (left), HTL inspired method (middle) and
Padé fits (right) with 7y = 0.6 fm/c [81].

formation time of 7y = 3 fm/c the suppression of Rs4 is reduced
and the calculations with the Padé fit agree well with experimental
data. Phenomenological modelling of the unscreened potential with an

T TTT T T
1.2~ poPb, x/sNN 502TeV \y|<24 T~ PbPb, \/sNN 502TeV |y|<24 T~ PbPb, \/sNN 502TeV |y\<24

1.0 —— Y(1S) e Y(1S),CMS _T. HTL T Pade |
\ + — Y(2S) e Y(2S),CMS + +
Y(38)

Y(3S),CMS ]
Gaussian

LA S ) , e
100 200 300 4000 100 200 300 4000 100 200 300 400
Npar( Nparl Nparl

Figure 5.2: Same as fig. [5.1] but with 7y = 3 fm/c.

imaginary part currently does not agree with experimental data given a
realistic formation time.
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