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Abstract: We apply the Lagrangian method to study the post-Newtonian evolution of a compact

binary system with environmental effects, including a dark matter spike, and obtain the resulting

gravitational wave emission. This formalism allows one to incorporate post-Newtonian effects up

to any desired known order, as well as any other environmental effect around the binary, as long

as their dissipation power or force formulae are known. In particular, in this work, we employ this

method to study a black hole–black hole binary system of mass ratio 105 by including post-Newtonian

effects of order 1PN and 2.5PN, as well as the effect of relativistic dynamical friction. We obtain the

modified orbits and the corresponding modified gravitational waveform. Finally, we contrast these

modifications against the LISA sensitivity curve in frequency space and show that this observatory

can detect the associated signals.

Keywords: dark matter; spike; gravitational waves; compact binaries; post-Newtonian approximation

1. Introduction

The first direct detection of gravitational waves (GWs) by the LIGO/Virgo collabo-
ration has opened up a new window into the universe [1]. Mergers of compact binary
objects, such as black holes and neutron stars, provide unprecedented precision tests of
general relativity and matter at its highest densities. There are also plans for space-based
GW observatories such as The Laser Interferometer Space Observatory (LISA) [2], Taiji [3],
and TianQuin [4]. These will be able to observe GWs at lower frequencies and, thus, to
observe mergers of massive binary black holes and intermediate and extreme mass ratio
inspirals (EMRIs/IMRIs). These systems are considered to be a rich source of signatures
associated with various new and fundamental physics phenomena [5–11] and, in particular,
dark matter (DM). The standard cosmological ΛCDM model predicts the existence of such
dark matter: a cold, collisionless massive particle that has so far eluded our direct detection
efforts [12]. Utilizing this new window into the universe, GW probes of dark matter have
been gaining traction in recent years [13].

When intermediate mass black holes (IMBHs) undergo adiabatic growth within DM
halos, overdensities of DM, so-called DM spikes, can form [14,15]. We can find extensive
work performed on modeling the spacetime of these structures, as well as their analytical
forms given certain physical conditions, in Refs. [16–19]. The presence of these DM spikes
can affect an inspiraling object as part of an IMRI. This was first explored in [20,21], where
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the DM spike interacts with the compact object through dynamical friction. This results in a
faster inspiral compared to an inspiral in a vacuum and would be observable as a dephasing
of the GW signal, possibly detectable by LISA [22,23].

Additional effects of these DM spikes have been explored in consecutive works,
such as the effects of accretion of the DM spike [24,25], eccentric orbits inside these DM
spikes [26–29], periastron precession [30], the halo feedback mechanism [23,31], relativistic
corrections to dynamical friction and spike distribution [16,32], and DM spikes around
primordial black holes [33]. These works all explore different effects that need to be
combined in the end, as precise waveforms are needed to find them in the LISA data [34].

In this work, we present a general Lagrangian framework that can easily incorporate
post-Newtonian (PN) corrections, dark matter dynamical friction, accretion, and any other
orbital or environmental effect in a compact binary system with environment, as long as the
mathematical formula of the aforementioned effects and corrections are known in the form
of a dissipative power or a force. These effects are then formulated as generalized forces,
and the Euler–Lagrange equations of motion yield the modified orbits, from which the
waveform of the gravitational waves emitted by the binary system can be derived. Thus,
this framework is different from other approaches that assume the quasi-adiabatic inspiral
in their computations.

The structure of this paper is as follows. In Section 2, we present the system we are
considering applying our Lagrangian formulation to and describe the model used for the
DM spike profile. In Section 3, we present the main proposal of the paper, namely, the
introduction of a Lagrangian formulation that can incorporate all the PN corrections up to
any order, as well as other effects such as dynamical friction due to DM and mass accretion
by the binary system. Section 4 is dedicated to studying the system detailed in Section 2,
using the Lagrangian formalism of Section 4. There, we compute the orbits from which we
derive the waveform of the GWs emitted by the compact binary system surrounded by a
spike. We also compare the results with no-DM and no-PN cases and, by an analysis in
the frequency space, show that these modifications to the GWs can be observed by LISA.
Finally, in Section 5, we summarize our work and make some concluding remarks about
the potential further applications of the Lagrangian framework we present in this paper.

2. Dark Matter Halo

2.1. Spike Profile

We consider a Schwarzschild black hole (BH) with mass m1 that grows adiabatically
and forms a surrounding DM spike ρDM(r) that concentrates DM from an initial Navarro–
Frenk–White (NFW) profile [35]. A second smaller compact object of mass m2 ≪ m1 is on
an approximately Keplerian orbit around the BH and experiences dissipative forces from
gravitational wave emission and dynamical friction from the DM halo, which cause an
inspiral due to the loss of orbital energy.

During the adiabatic growth of the central BH, a DM halo can contract and form a
spike, resulting in large DM densities close to the BH horizon. The DM density profile
describing such a spike was derived first in a semi-relativistic Newtonian manner [14]
and later in a fully relativistic manner [15]. The fully relativistic model predicts that the
DM density vanishes at 2Rs compared to 4Rs predicted by the semi-relativistic treatment,
where Rs is the Schwarzschild radius of the BH. Furthermore, the central densities of the
relativistic DM spike can be significantly higher compared with the semi-relativistic case.
Higher DM densities can have a significant impact on the rate of inspiral and, hence, the
gravitational wave signal; therefore, we elect to use the fully relativistic model for our
DM spike.

To model a relativistic DM density spike we follow the effective scaling function,
Equation (7) in [32], given as

ρDM(r) = ρ̄10δ

(

ρ0

0.3 GeV/cm3

)α( m1

106M⊙

)β( a

20 kpc

)γ

, (1)
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with

ρ̄ = A

(

1 − 4

x̃

)w(4.17 × 1011

x̃

)q

, (2)

where α, β, γ, δ are the relativistic NFW parameters generated by comparison with numeri-
cally generated curves; A, w, and q are fit parameters found by fitting to a reference curve
with the scale parameters (ρ0, MBH , a) = (0.3GeV/cm3, 106M⊙, 20 kpc); and x̃ = r/m1 (see
Table 1 in Ref. [32])1.

For the inspiral process, the DM halo is assumed to be static. This assumption ignores
the effects of dynamical friction on the DM halo itself, also referred to as halo feedback,
which can be significant for binary systems with mass ratios less than 105, as shown in
Ref. [31]. Nevertheless, in this work, we first would like to check the consistency of applying
the Lagrangian formulation to explore the effects of the post-Newtonian correction terms
in the environment of a dark matter spike.

In the presence of a DM spike, the additional dissipative forces will speed up the
inspiral, which is potentially observable in the GW signal. Therefore, it should, in principle,
be possible to map the spike density. The application of match-filtering analyses such as the
one in [33] are powerful tools for GW detections and parameter inference. It is, however,
necessary to utilize suitable GW templates that, by taking into account a broader class of
physical effects such as a relativistic DM spike or orbital evolution beyond the Newtonian
regime, could improve the possibilities of potential detection. We consider the evolution of
the binary system slightly before GW emission enters the lower end of the detector’s band.
For our binary mass considerations, this coincides with regions of high density from the
DM spike at a distance from the central BH of about a hundred times the innermost stable
circular orbit, rISCO, defined as

rISCO = 3Rs . (3)

2.2. System Parameters

In this work, we employ the static halo approximation, for which, following in the
spirit of [31,32], we focus our study on a central mass of 106M⊙2 with a 10M⊙ companion.
This produces a mass ratio of 105, which is high enough such that a static halo model
can be used as halo feedback, which becomes important at lower mass ratios, as well
as ranging to the higher IMRI regime where most EMRIs are expected to have shed
their dark matter halos [31]. To emphasize the sensitivity of the inspiral due to the DM
density, we present three DM spikes in Section 4 with varying scale densities, ρ0, i.e.,
ρ0 = (0.1, 0.3, 0.5) GeV/cm33. For simplicity, we match the scale radius to the reference
value, i.e., a = 20 kpc. Moreover, we assume a distance of 1 Mpc from the Earth to the
binary and a total inspiral distance for the companion to be from 100 rISCO to 3 rISCO, which
is sufficient to show the effects of PN corrections, DM friction, while also being inside
the range of LISA’s sensitivity band. Note that for these mass ranges (i.e., central black
hole standing at ∼106M⊙), one may start to consider a self-force approach to model the
waveform. However, we are considering the case where the evolution takes place at a
relatively large distance of ∼100rISCO − 3rISCO. With these conditions, the companion is
situated far enough away from the strong field regimes and never exceeds v/c ∼ 0.3, where
PN correction terms are known to converge slowly [36]. An illustration of the dark matter
density profile and the stages of the evolution for our system can be found on Figure 1.
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Figure 1. Figure of the DM profile used under the relativistic corrections in [32] for

ρ0 = (0.1, 0.3, 0.5) GeV/cm3. The dashed red lines represent the stages of the evolution. The right

line is situated at the start of the evolution at 100rISCO, and the left line is where we terminate the

inspiral at 3rSICO. These ranges correspond to observable GW frequency bands for LISA, as well as

the range of validity of PN corrections and final stages of the inspiral.

3. Lagrangian Formulation and Equations of Motion

To incorporate post-Newtonian (PN) corrections and DM effects in our model to be
able to compute the orbits with these corrections taken into account, we use the Lagrangian
formulation and encapsulate PN and DM effects as generalized forces in this method. To
see this more clearly, consider a system that is under both b Newtonian forces F̃(b) and l
non-Newtonian forces F(l). The Lagrangian of the system can still be written as

L = T − V (4)

where T is the kinetic energy of the system, and V is the potential energy associated to the
Newtonian forces F̃(b). However, using the d’Alembert principle, the Euler–Lagrange (E-L)
equations of motion can be written as4

d

dt

(

∂L

∂q̇i

)

− ∂L

∂qi
= ∑

l

Q
(l)
i (5)

where Q
(l)
i represents generalized forces corresponding to non-Newtonian forces F(l), i.e.,

Q
(l)
j = F(l) · ∂r

∂qj
= F

(l)
i

∂xi

∂qj
. (6)

Here, r is the Cartesian position vector of the object (or subsystem), and qj is its generalized
coordinates, where in 3D, j = 1, 2, 3. We can adopt qj to spherical coordinates such that
q1 = r, q2 = θ, q3 = φ, and thus,

r =
(

x1, x2, x3
)

= (x, y, z) = (r cos(φ) sin(θ), r sin(φ) sin(θ), r cos(θ)). (7)

If the motion is restricted to a 2D plane, for example, in the case of a Keplerian orbit of a
planet with θ = π

2 , then we can effectively work with just two coordinates q1 = r, q2 = φ,
and thus,

r =
(

x1, x2
)

= (x, y) = (r cos(φ), r sin(φ)). (8)
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For such a 2D system with l non-Newtonian forces, Equation (5) becomes

d

dt

(

∂L

∂ṙ

)

− ∂L

∂r
=∑

l

Q
(l)
r , (9)

d

dt

(

∂L

∂φ̇

)

− ∂L

∂φ
=∑

l

Q
(l)
φ . (10)

As mentioned above, in our model, we deal with both the PN corrections and the so-called
dynamical friction effects. The latter stem from the interaction of the orbiting object (with
lower mass) with its local DM environment and have nothing to do with friction in an
electromagnetic sense.

In what follows, we add the conservative 1PN term and both dissipative 2.5PN and
the dynamical friction terms, which are velocity-dependent, to the E-L equations of motion
as generalized forces. Among the aforementioned PN terms, we first consider the leading
terms that give corrections to the orbit and the energy dissipation through gravitational
waves. The first orbit correction term is a conservative term related to the orbital precession,
coming in at first order or 1PN [37,38]. The next leading term related to gravitational wave
energy dissipation is a non-conservative one and is precisely equivalent to the so-called
order 2.5PN correction term [37].

3.1. Newtonian Part of the Euler–Lagrange Equations

As mentioned above, in our two-body system that is surrounded by a DM spike, in
the center of mass (CM) frame, we can write the Lagrangian as

L =
1

2
µṙ2 − V(r) (11)

where r = r1 − r2 is the relative position of the objects in which indices 1, 2 refer to the
central and the rotating objects, respectively, and ṙ2 = v = ṙ2 + r2φ̇2. We denote the mass
of the central more massive object by m1 and the lighter orbiting object by m2. Furthermore,
the total mass of the two-body system is denoted by m = m1 + m2 and its reduced mass
by µ = m1m2/m. The potential used in the Lagrangian is the Newtonian gravitational
potential energy between the two bodies,

V(r) = −G
µm

r
. (12)

Both masses can potentially be time-dependent if one also considers the accretion effect, by
which they absorb DM from the DM spike around the central object.

3.2. Generalized Forces

Once we have the Lagrangian, we can write down the left-hand side of the E-L
Equations (9) and (10). To write the right-hand side of these equations, we need to find
the generalized forces. To carry that out, we assume that the corresponding usual forces
themselves have two components: One component is (anti)parallel to the relative velocity
of the objects v = v1 − v2, and the second component is (anti)parallel to r = r1 − r2, along
the line connecting the two bodies. Such a force can be written in the form

F(l) = F
(l)
r r̂ + F

(l)
v v̂. (13)

The corresponding generalized force is

Q
(l)
j = F(l) · ∂r

∂qj
=

F
(l)
r

r

(

x
∂x

∂qj
+ y

∂y

∂qj

)

+
F
(l)
v

v

(

ẋ
∂ẋ

∂q̇j
+ ẏ

∂ẏ

∂q̇j

)

, (14)



Universe 2024, 10, 427 6 of 16

where we have used ∂r
∂qj =

∂ṙ
∂q̇j . Considering (8) and the fact that the index j in the above

equation takes values j = r, φ, the radial and angular parts of the generalized force Q
(l)
j

above become (with v =
√

ṙ2 + r2φ̇2)

Q
(l)
r = F

(l)
r +

F
(l)
v ṙ

(ṙ2 + r2φ̇2)
1
2

, (15)

and

Q
(l)
φ =

F
(l)
v r2φ̇

(ṙ2 + r2φ̇2)
1
2

. (16)

On the other hand, if we do not know the force itself but know the corresponding dissipative
power P(l), we can write, using (13),

P(l) =
dE(l)

dt
= F(l) · v = F

(l)
r ṙ + F

(l)
v

(

ṙ2 + r2φ̇2
)

1
2
. (17)

where we have used the polar coordinates expressions v = ṙr̂ + rφ̇φ̂ and r = rr̂. In cases

where the force is (anti)parallel to v, i.e., when F
(l)
r = 0, we obtain

F
(l)
v =

P(l)

(ṙ2 + r2φ̇2)
1
2

, (18)

and (15) and (16) reduce to

Q
(l)
r =

P(l) ṙ

ṙ2 + r2φ̇2
, (19)

Q
(l)
φ =

P(l)r2φ̇

ṙ2 + r2φ̇2
. (20)

3.3. Specific Form of Generalized Forces

As mentioned before, the generalized forces we consider in the model correspond to

dynamical friction, Q
(DF)
j , and two leading PN corrections, namely, the conservative 1PN

correction to the orbit and the leading gravitational wave emission term, which is the 2.5PN

correction Q
(GW)
j = Q

(2.5PN)
j .

3.3.1. Post-Newtonian Corrections

Following [37], we write the PN corrections to the relative acceleration of the two
bodies perturbatively as

dv

dt
=

Gm

r2

{

1

c2
A1PN +

1

c4
A2PN +

1

c5
A2.5PN +

1

c6
A3PN +

1

c7
A3.5PN + . . .

}

, (21)

with c being the speed of light in vacuum.
The 1PN term contribution above is of the form [37]

A1PN =

{

(4 + 2η)
Gm

r
− (1 + 3η)v2 +

3

2
ηṙ2

}

r̂ + (4 − 2η)ṙvv̂, (22)
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where η = µ/m. Assuming the masses are time-independent, the corresponding 1PN
force becomes

F(1PN) =µ
dv

dt

∣

∣

∣

∣

1PN

=
Gmµ

r2c2

[

(4 + 2η)
Gm

r
− (1 + 3η)v2 +

3

2
ηṙ2

]

r̂ +
Gmµ

r2c2
(4 − 2η)ṙvv̂. (23)

To find its corresponding generalized force, we replace (23) in (15) to obtain

Q
(1PN)
r =

Gmµ

r2c2

[

(4 + 2η)
Gm

r
− (3η + 1)r2φ̇2 + ṙ2

(

−7

2
η + 3

)]

. (24)

Likewise, from (23) and (16), we obtain

Q
(1PN)
φ = (4 − 2η)

Gmµ

c2
ṙφ̇. (25)

As stated before, the leading radiation term [38] is given by the 2.5PN correction, A2.5PN.
Again, assuming the masses are time-independent, the gravitational radiation term takes
the form [37]

A2.5PN = − 8

15
η

Gm

r

{(

9v2 + 17
Gm

r

)

ṙr̂ −
(

3v3 + 9
Gm

r
v

)

v̂

}

, (26)

which results in

F(2.5PN) =µ
dv

dt

∣

∣

∣

∣

2.5PN

=− 8

15
η

G2mµ

r3c5

[(

9v2 + 17
Gm

r

)

ṙr̂ −
(

3v3 + 9
Gm

r
v

)

v̂

]

. (27)

Using the above in (15) yields the radial part of the corresponding generalized force as

Q
(2.5PN)
r = − 8

15
η

G2m2µ

r3c5
ṙ

[

6
(

ṙ2 + r2φ̇2
)

+ 8
Gm

r

]

. (28)

In the same way, using (16), the angular part of this generalized force becomes

Q
(2.5PN)
φ =

8

15
η

G2m2µ

rc5
φ̇

(

3
(

ṙ2 + r2φ̇2
)

+ 9
Gm

r

)

. (29)

3.3.2. Dissipation Due to Dynamical Friction

The gravitational interaction between m2 and its local dark matter surrounding creates
an effect known as dynamical friction (DF), similar in result to the electromagnetic friction,
and slows down the rotating object, even though no electromagnetic or other forces in
addition to gravity are assumed. This induces a dissipation of energy from the system,
whose instantaneous power loss can be modeled as [21]

P(DF) =
dE(DF)

dt
= −4πG2 m2

2ρDM(r)

v
ξ(v) ln(Λ). (30)

Here, ρDM(r) is the dark matter density profile, v is the relative speed of the objects in
polar coordinates, and ξ(v) = γ2(1 + v2/c2)2 is a relativistic correction to the DF in which
γ =

√
1 − v2/c2 is the familiar special relativistic factor. The term (1 + v2/c2)2 accounts

for an increase in the deflection angle of the DM when considered as a collisional fluid due
to the orbiting compact object, and γ2 accounts for the relativistic momentum as seen by
the compact object [39]. Furthermore, Λ is called the Coulomb logarithm and is defined as



Universe 2024, 10, 427 8 of 16

Λ = bmaxv2
typ/Gµ, where bmax is the maximum impact parameter, and v2

typ is the typical
speed (squared) of the rotating object (or the relative speed squared in the CM frame). We
take Λ = 3 [21].

Since this force is assumed to act only parallel to v, we can use the above formula in
(19) and (20) to obtain5

Q
(DF)
r =

P(DF) ṙ

ṙ2 + r2φ̇2
= −4πG2m2

2ξ(v)ρDM(r)
ṙ

(ṙ2 + r2φ̇2)
3
2

ln(Λ), (31)

Q
(DF)
φ =

P(DF)r2φ̇

ṙ2 + r2φ̇2
= −4πG2m2

2ξ(v)ρDM(r)
r2φ̇

(ṙ2 + r2φ̇2)
3
2

ln(Λ). (32)

3.4. Lagrangian Equations of Motion

We now have all the information to write down the Lagrangian equations of motion (9)
and (10), which will take the form (with Newtonian parts on the left and non-Newtonian
ones on the right)

d

dt

(

∂L

∂ṙ

)

− ∂L

∂r
=Q

(1PN)
r + Q

(2.5PN)
r + Q

(DF)
r , (33)

d

dt

(

∂L

∂φ̇

)

− ∂L

∂φ
=Q

(1PN)
φ + Q

(2.5PN)
φ + Q

(DF)
φ . (34)

Replacing (11), (12), (24), (25), (28), (29), (31), and (32) in the above yields

r̈ − rφ̇2 +
Gm

r2
=− Gm

c2r2

[

16Gµṙ

5c3r
+ 3η + 1

]

(

ṙ2 + r2φ̇2
)

− Gṙ

c2r2

(

64G2µm2

15c3r2
− 4mṙ +

µṙ

2

)

+
2G2m

c2r3
(2m + µ)

− 4πG2m2
2ξρDM ln(Λ)ṙ

µ(ṙ2 + r2φ̇2)
3/2

, (35)

and

r2φ̈ + 2rṙφ̇ =+
8G2µmφ̇

5c5r

(

ṙ2 + r2φ̇2
)

+
2Gṙφ̇

c2
(2m − µ)

+
24G3µm2φ̇

5c5r2
− 4πG2m2

2ξρDM ln(Λ)r2φ̇

µ(ṙ2 + r2φ̇2)
3/2

(36)

These coupled differential equations can be solved together numerically to yield the orbits.

4. Orbits and Gravitational Waves

4.1. Orbital Evolution

For our given parameters, to illustrate the effect of these PN corrections and DM
friction, the semi-major axis a(t) was computed with the numerical solutions to (35) and
(36) as an evolution measure for all the effects introduced into the Lagrangian. These can
be found in Figure 2.

As expected, DM friction accelerates the inspiral by several orders of magnitude. Note,
however, that the addition of the 1PN term into the Lagrangian introduces a different
orbital evolution, and in the presence of DM, it accelerates the orbital decay due to the
effects of dynamical friction. This is particularly important during the later stages of the
inspiral, where it differs from the regular GW radiative term. Note that the oscillations
in the semi-major axis due to orbital precession from the 1PN term are still present at the
later stages of the evolution; it is simply the scaling in plotting it alongside its no-1PN-
corrections counterpart that makes the oscillations appear to vanish. Even though the
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1PN term is a conservative term and would normally only introduce orbital precession,
the presence of dark matter has affected the orbital evolution, which caused the orbit to
lose energy faster than it would have with the normally used 2.5PN radiative term in the
literature. One should expect that inclusion of higher order terms will also contribute to
the inspiral’s evolution.

100 102 104 106 108

t (years)

101

102
a(

t)
/r

IS
CO

Without DM Halo
With DM Halo ( 0 = 0.5GeV /cm3)
With DM Halo ( 0 = 0.5GeV /cm3)
(no 1PN corrections)

290,000 300,000 310,000

Figure 2. Semi-major axis of the orbit as a function of time, where in all cases, evolution ranges from

100 rISCO to 3 rISCO. The dynamical friction term expedites energy dissipation and modifies the radial

evolution of the binary. The no 1PN corrections curve refers to setting the L1PN terms to zero, which

has a noticeable effect, especially at the latter stages of the inspiral. All the curves above include the

GW dissipative term.

4.2. Gravitational Wave Analysis

Gravitational wave observatories measure the strain of the waves, which is the Fourier
mode hσ of the perturbations hij, where σ = +, × are the polarization of the waves. Having
found the orbits by solving the equations of motions (35) and (36), we replace the resulting
r(t) and φ(t) in

x(t) =r(t) cos[φ(t)], (37)

y(t) =r(t) sin[φ(t)], (38)

and use the Cartesian Dirac deltas to express the matter density of the system as

ρ(x, t) = ρDM(r) + µδ(x − x(t))δ(y − y(t))δ(z). (39)

Using these, we can find the quadrupole moment tensor

Mij =
∫

xixjρ(t, x) d3x, (40)

where i, j = 1, 2, 3 correspond to the x, y, z coordinates, respectively. Finally, we can use
Mij to compute the plus and cross polarizations of the gravitational wave strains using

h+(t; θ̄, φ̄) =
1

R

G

c4

[

M̈11

(

cos2(φ̄)− sin2(φ̄) cos2
(

θ̄
)

)

+ M̈22

(

sin2(φ̄)− cos2(φ̄) cos2
(

θ̄
)

)

− M̈33 sin2
(

θ̄
)

− M̈12 sin(2φ̄)
(

1 + cos2
(

θ̄
)

)

+M̈13 sin(φ̄) sin
(

2θ̄
)

+ M̈23 cos(φ̄) sin
(

2θ̄
)]

(41)



Universe 2024, 10, 427 10 of 16

and

h×(t; θ̄, φ̄) =
1

R

G

c4

[(

M̈11 − M̈22

)

sin(2φ̄) cos
(

θ̄
)

+ 2M̈12 cos(2φ̄) cos
(

θ̄
)

− 2M̈13 cos(2φ̄) sin
(

θ̄
)

+2M̈23 sin(2φ̄) sin
(

θ̄
)]

, (42)

where R is the distance of the observatory to the CM of the binary system, and θ̄, φ̄
are related to the relative orientation of the frames of reference of the source and the
observer [40]. Note that these are different from θ and φ(t), which denote the angular
position coordinates of the binary in the CM frame. A benefit to this approach is that by
directly solving the Lagrangian equations of motion, one can freely compute the explicit
waveforms as a function of time, where we can observe the rapid effect from DM friction
through the dephasing of the waveforms. For our purposes, we have considered a source
at {R, θ̄, φ̄} = {1Mpc, 0, 0}. Note that with this choice of angles, h(t) = h+(t). The result
is plotted in Figure 3.

3.990 3.995 4.000 4.005 4.010
t (years)

4

2

0

2

4

h +
(t)

×10 21

9.985 9.990 9.995 10.000 10.005 10.010 10.015
t (years)

4

2

0

2

4

h +
(t)

×10 21

With DM Halo
Without DM Halo

Figure 3. Example of the time-domain “plus” polarization waveform, h+(t), following the evolution

of the ρ0 = 0.5 GeV/cm3 DM halo vs. vacuum with all PN corrections. Assuming the system enters

in-band at the early stages of the inspiral (70 rISCO at t = 0) and at a point where the DM mini-spike

is not at its densest, the timescale of this dephasing is set to start at about the four-year mark, which

is within LISA’s lifetime.

To fully encapsulate this GW dephasing effect, we analyze the number of cycles,
Ncycle , that the system can be in-band as a function of the gravitational wave frequency,
fGW . Note that for this, we may use the relations that come directly from solving the
Lagrangian equations of motion of the phase φ(t), which is related to the GW phase with
φGW(t) = 2φ(t), and the number of cycles would simply be

Ncycle (t) ≡
φNo DM(t)− φDM(t)

π
. (43)
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Accompanied by the following relation,

φ̇(t) = 2π fGW(t) , (44)

one may obtain Ncycle ( fGW) with the help of the solutions to (35) and (36). We can see the
result in Figure 4.

5.0 4.5 4.0 3.5
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e(
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W
)

×1011

With DM Halo ( 0 = 0.5GeV/cm3)
With DM Halo ( 0 = 0.3GeV/cm3)
With DM Halo ( 0 = 0.1GeV/cm3)

10 8 6 4 2 0
×10 5 5

9.6800
9.6825
9.6850
9.6875
9.6900
9.6925
9.6950
9.6975
9.7000 ×1010

10 8 6 4 2 0
×10 5 4

4.135

4.140

4.145

4.150

4.155

4.160 ×109

Figure 4. Number of cycles comparison for different DM densities and vacuum as a function of

GW frequency. Inset plots represent zoomed-in sections of the main plot at 10−5 Hz (left inset) and

10−4 Hz (right inset).

The number of cycles in the presence of a DM halo will be lower than in a vacuum,
which is expected as the DM friction would translate a faster inspiral into fewer orbits,
being in-band for GW emission. What is important for the detection of a DM spike
from DM friction would be the particular shape of the waveform in frequency space,
as interferometers set out to find signals from match-filtering techniques in the spectral
domain. Hence, it is more illustrative to work in the frequency domain. In particular,
we are interested in the detectability of these results with the LISA sensitivity curve, as
well as the different signatures obtained from changing DM parameters. To adequately
compare this to the detector’s sensitivity to estimate signal-to-noise ratios, we compute the
characteristic strain hc( fGW), given by

hc( fGW) = 2 fGW |h̃( fGW)| (45)

with h̃( fGW) being the Fourier transform of the GW time signal. The numerical computation
of the frequency domain in the case of the system we chose compared to the LISA sensitivity
curve can be seen in Figure 5 (see also Appendix A). We can see there is a clear distinction
between the cases with DM halo and the case without DM halo in lower frequencies, which
will be observable by LISA.

To further accentuate these effects, looking at the ratio between the characteristic strain
without any DM, or hno DM( fGW), and the characteristic strain with dark matter, hDM( fGW),
we can see the large deviations mostly occur at the early stages of the inspiral, as shown
in Figure 6. In particular, we are referring to the inspiral stages between ∼ 4 · 10−6 Hz to
10−4 Hz, or 100rISCO to ∼ 12rISCO. This should be expected, as energy dissipation through
GWs increases as the orbit shrinks. Eventually, GW emission dominates the energy loss
from dynamical friction, and all profiles converge to the strain without dark matter. This,
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of course, means that the range of detectability of these DM environmental effects solely
depend on the stage of the binary, where the signal would be maximal at lower frequencies,
where clearly they will differ by at least an order of magnitude, as seen in Figure 6.

10 6 10 5 10 4 10 3 10 2 10 1

fGW (Hz)
10 22

10 20

10 18

10 16

10 14

ch
ar

ac
te

ris
tic

 st
ra

in
  h

c(f
G
W

)

100 rISCO 3 rISCO

With DM Halo ( 0 = 0.5GeV/cm3)
With DM Halo ( 0 = 0.3GeV/cm3)
With DM Halo ( 0 = 0.1GeV/cm3)
Without DM Halo
LISA noise curve

Figure 5. The strain and detectability for LISA’s sensitivity curve given for various DM densities

parametrized by ρ0. GW energy dissipation is dominant over DM friction during the later stages of

the inspiral, which can be seen by the agreement of all strains at higher frequencies. Thus, searches for

this DM friction would be the most sensitive during earlier parts of the inspiral but not earlier than

the strain curves crossing LISA’s sensitivity. For our choice of parameters, this occurs near 10−5 Hz.

10 5 10 4

fGW (Hz)

100

101

Ra
tio

 o
f s

tra
in

  h
no

D
M
(f G

W
)/
h D

M
(f G

W
)

100 rISCO 3 rISCO

DM Halo ( 0 = 0.5GeV/cm3)
DM Halo ( 0 = 0.3GeV/cm3)
DM Halo ( 0 = 0.1GeV/cm3)

Figure 6. Ratio between the characteristic strains between the case without dark matter, and the

different values of ρ0. As expected, the largest deviations occur during the early stages of the inspiral.

Eventually, dissipation through gravitational wave radiation dominates dark matter friction and

leads all waveforms to converge on the same frequency evolution. This stage, although the brightest

on the LISA band, has the smallest contributions from dark matter signatures.
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5. Discussion and Conclusions

Compact binary systems with an environment around them, particularly a DM spike,
are a valuable experimental arena for the potential detection of effects associated with
new physics, particularly the detection of the effects of DM on the emitted gravitational
waves from such systems. Therefore, it is important to have a robust theoretical framework
that can incorporate as many physical effects as possible, particularly general relativistic
and DM effects. In this paper, we have employed a Lagrangian method that allows
for the energetically consistent incorporation of conservative and dissipative effects, in
particular, post-Newtonian corrections to the orbit up to any desired known order, as well
as a relativistic dynamical friction term with DM. This allows us to expand the range of
validity of the orbital evolution throughout the later stages of the inspiral. In particular, we
applied this method to the case of a binary with a dark matter spike, where in addition to
a relativistic form of dynamical friction, we have considered the leading PN corrections
to the gravitational waveform, i.e., 1PN and 2.5PN terms, corresponding to the orbital
precession and gravitational wave dissipation, respectively. After obtaining the analytical
Lagrangian equations of motion, they were solved numerically to yield the orbits. These
solutions were then used to compare the orbits in cases with and without DM halo and PN
corrections. We have shown that the conservative 1PN term, while by itself will not lead to
any orbital energy loss, in the presence of a DM spike, it will modify the evolution of the
orbit, where in a wealth of literature, the dominant terms included are the GW dissipation
term (equivalent to the 2.5PN term). Hence, any future realistic analysis should require
corrections in order to improve the detectability of these effects. Furthermore, using the
orbit equations, the modified GW waveform emitted from the binary in the presence of
a DM spike was derived, which shows a dephasing effect compared to the no-DM case.
Moreover, we have computed the frequency space strain of the GWs for three different DM
densities and compared them against the LISA frequency sensitivity curve. Our calculations
show that the modification effects resulting from the presence of a DM spike are observable
by LISA.

In this method, the addition of further physical effects can be carried out in an en-
ergetically consistent manner through the Lagrangian and generalized forces. We have
included a relativistic dynamical friction term and spike profile, as well as shown how to
account for the addition of post-Newtonian corrections up to any known order and, in par-
ticular, corrections to both the orbital motion and GW emission up to the recently derived
higher order terms [41]. Therefore, utilizing this framework could be quite beneficial in the
search for DM effects, since following a potential inspiral beyond the Newtonian regime
of the evolution will provide better GW templates for match filtering methods with the
LISA detector or other observatories such as Cosmic Explorer. Moreover, this provides
an alternative modeling tool to compare the current or future work in GWs sourced by
DM [32,42]. One may also imagine modifying the Lagrangian to add other effects, such as
the accretion of DM or baryonic matter by the binary, which can be incorporated into our
framework quite easily by adding a time dependence on the masses. Lastly, this framework
also provides the liberty to modify the environment density ρ(r) to include dynamical and
companion interaction effects ρ(r) → ρ(t, r, φ).
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Abbreviations

The following abbreviations are used in this manuscript:

GW Gravitational waves

BH Black hole

DM Dark matter

CDM Cold dark matter

EMRI Extreme mass ratio inspirals

IMRI Intermediate mass ratio inspirals

LISA Laser Interferometer Space Observatory

LIGO Laser Interferometer Gravitational-Wave Observatory

IMBH Intermediate mass black holes

PN post-Newtonian

NFW Navarro–Frenk–White

E-L Euler–Lagrange

DF Dynamical friction

CM Center of mass

ISCO Innermost stable circular orbit

Appendix A. Analytical Approximation of the Characteristic Strain

We may attempt to compute the strain hc( f ) directly using the stationary phase
approximation (SPA):

h̃+,×( f ) =
∫

h+,×(t) e2πi f t dt ≈ 1

2
A+,×( f ) eiΨ+,×( f ), (A1)

where

A+( f ) = A0( f )
(1 + cos2 (θ̄)

2

)

, A×( f ) = A0( f )
(

cos (θ̄)
)

, (A2)

and

A0( f ) =
4 (GM)5/3 (π f )2/3

R c4

( 2π

φ̈( f )

)1/2
, (A3)

and

Ψ+( f ) = 2π f tc − φc −
π

4
+ φ( f ), Ψ×( f ) = Ψ+( f ) +

π

2
. (A4)

Here, tc and φc are time and phase at coalescence, respectively. We should note that solving
(35) and (36) in time provide us with φ(t) to insert in both (A2) and (A4). This can be related
to the frequency domain with the time, frequency, and orbital phase relation

φ̇(t) = 2π f (t). (A5)

This approach, however, is not immediately useful as φ̈( f ) will be an oscillatory function
of f , which can take negative values due to the introduction of precession from the 1PN
term. Hence, the complete Fourier transform has to be computed numerically.
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Notes

1 Note that ρDM(r) is a valid fit when r ≪ a and 0.01 kpc ≤ a.
2 Which matches with the scale MBH in Equation (1)
3 Corresponding to the three DM scale densities tested in Ref. [32].
4 We use Einstein’s summation notation and the indices are raised and lowered with the flat Euclidean metric δij = dig(1, 1, 1).

5 Note that when m2 ≪ m1, µ ≈ m2.
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