
CROSS-PLATFORM AND CLOUD-BASED ACCESS TO MULTIPLE
PARTICLE ACCELERATOR CODES VIA APPLICATION CONTAINERS*

D.L. Bruhwiler#, R. Nagler, S.D. Webb, RadiaSoft, Boulder, CO 80304, USA
G. Andonian, M.A. Harrison, S. Seung, RadiaBeam Technologies, Santa Monica, CA 90404, USA

T. Shaftan, BNL, Upton, NY 11973, USA
P. Moeller, Bivio Software, Boulder, CO 80303, USA

Abstract
Particle accelerator and radiation modeling codes focus

on specific problems, rely on complicated command-line
interfaces, are sometimes limited to a small number of
computing platforms, and can be difficult to install. There
is also a growing need to use two or more codes together
for end-to-end design or for complicated sub-systems.
RadTrack [1,2] is a lightweight cross-platform GUI for
such codes, based on the Qt framework [3] and PyQt [4]
bindings for Python. RadTrack is designed to support
multiple codes, placing no burden on the corresponding
development teams. Elegant [5] and the Synchrotron
Radiation Workshop (SRW) [6-9] are supported now in a
pre-beta stage, and support for GENESIS 1.3 [10,11] is
under development. These codes are being containerized
via the open source Docker platform [12] for use in the
cloud. The open source Vagrant [13] and Virtual Box [14]
are used for MacOS and Windows. We discuss RadTrack
and our vision for cloud computing.

RADTRACK USER TESTING
In preparation for an upcoming beta test program, user

testing of RadTrack was conducted at the IPAC
conference in Richmond, VA on May 4 and 5, 2015. In
order to ensure the entire team has access to user
feedback, we are using Screenflick [15] on the Mac and
BB Flashback [16] on Windows to record user actions,
audio and video. These videos have been invaluable in
discovering basic user interaction (UX) issues. We are
now improving the workflow to be more intuitive for end-
users.

Figure 1: RadTrack Qt widget for Elegant simulations.

The use case presented to test subjects was to build a
FODO accelerator lattice from scratch, beginning with a
65 MeV electron beam, and to simulate the problem with
Elegant. Figure 1 shows the widget for Elegant modeling.
This Tab manages the selection of an accelerator lattice
and a beam description, shows runtime output, then
provides easy access to the resulting output files for
visualization.

Figure 2: RadTrack Qt widget for drag-and-drop
construction and visualization of particle accelerator
lattices.

Figure 2 shows the bunch transport tab, which parses
Elegant lattice files to present a graphical representation
of the beamline. Drag-and-drop features enable
interactive modification of existing lattices or rapid
creation of new beamlines. The Elegant tab can use the
bunch transport tab directly, or parse a specified lattice
file. The user can create multiple bunch transport tabs.

Figure 3: RadTrack Qt widget for interactive
specification and visualization of particle beams.

 __

*Work funded by DOE Basic Energy Sciences grant DE-SC0006284.
bruhwiler@radiasoft.net

MOPMN009 Proceedings of IPAC2015, Richmond, VA, USA

ISBN 978-3-95450-168-7
720Co

py
rig

ht
©

20
15

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

5: Beam Dynamics and EM Fields
D11 - Code Developments and Simulation Techniques

Figure 3 shows the bunch tab, which parses Elegant
SDDS [17] particle files, enabling interactive
visualization and rapid creation of new bunch
descriptions. The Elegant tab can use the bunch tab
directly, or parse a specified particle data file. The user
can create multiple bunch tabs.

BEAMS AND RADIATION
An important goal of RadTrack is to simplify

workflows involving both electron beams and radiation.
For example, a free electron laser (FEL) design tab is
provided, as seen in Figure 4. This tab provides estimates
of performance, for specified electron beam and undulator
parameters. The calculation is based on the universal
scaling function of Xie [18], which is a polynomial with
19 fitting parameters.

Figure 4: RadTrack Qt widget to explore FEL
parameters.

The tab for GENESIS simulations, which is now under
development, will use these parameters to model the FEL.
We will also enable communication between the bunch
tab and the FEL tab, so that the output from Elegant or
other tracking codes can be immediately used for FEL
design and simulation.

Figure 5: RadTrack Qt widget for synchrotron radiation
simulations using SRW.

The SRW tab, seen in Figure 5, is ready for user
testing. It enables rapid modeling of fully coherent
radiation (‘thin’ or ‘single-particle’ mode), as well as the
time-consuming treatment of partially coherent radiation
(‘thick’ or ‘many-particle’ mode). Analogous to the FEL

tab, analytic and semi-analytic calculations are presented
in the panel on the right, so users can better understand
the numerical results.

Although not shown here, RadTrack also includes a tab
for laser beams, assuming a Gauss-Hermite expansion
[19,20] that satisfies the paraxial approximation [21,22].
There is also a tab for optical transport, closely analogous
to the bunch transport tab seen in Figure 2, which will in
the future be used to directly support the SRW tab. We
also have an optical transport tab to support the GENESIS
tab, which can simulate multiple undulator segments and
overlaid quadrupoles, as is necessary for X-ray FELs. In
the next two years, we will add support for Synergia [23],
WARP [24-27], SHADOW [28,29] and other codes.

SCIENTIFIC CLOUD COMPUTING
Our vision is to bring scientific cloud computing to the

accelerator technology and radiation source communities.
We believe scientific software must be open source, so
RadTrack [2] and all of our cloud computing
infrastructure will be available on Github and will be
developed openly via the Github issues feature [30]. Our
vision has three primary components: a) containerized
computing – put your simulation in a box; b) the browser
is the UI – never install software again; and c) seamless
legacy – you won’t realize you’re in the cloud.

Containerized Computing
Some scientific software development teams have

expended significant effort to achieve cross-platform
execution on Linux, MacOS and Windows. Examples
include SRW, Elegant and GENESIS. However, this is
time consuming, expensive, and still requires
sophistication on the part of the user to correctly install
and use such codes. Dependencies often include a specific
version of Python, of Qt, of Python-Qt wrappers and other
libraries, which significantly complicate installation and
can sometimes clash on any OS with previously installed
software.

Because most scientific codes are primarily developed
and used under Linux, Windows is obviously the greatest
challenge for cross-platform success. However, the
MacOS is sufficiently different that it cannot be supported
without significant effort on the part of the development
team, which often has limited funding and scientific
priorities. Even different flavors of Linux can cause
serious pain for users trying to install a scientific code,
especially when using a cluster where many of the
required dependencies are not installed, or the system
installation is the wrong release.

Using Docker [12] on Linux, it is possible to create a
file that contains a scientific code or codes, plus all
required tools and dependencies, which can then be
copied to any Linux server or cluster and rapidly
activated. A user can ssh into the container, if necessary,
or the software can be accessed remotely through a web-
based UI. This removes the pain of software installation
on Linux, and it enables cloud-based scientific computing
by making such codes available on demand, whether it is

Proceedings of IPAC2015, Richmond, VA, USA MOPMN009

5: Beam Dynamics and EM Fields
D11 - Code Developments and Simulation Techniques

ISBN 978-3-95450-168-7
721 Co

py
rig

ht
©

20
15

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

on the local cluster, a supercomputer or a commercial
cloud service.

There is no runtime overhead associated with the use of
Dockerized software on Linux. On Windows and MacOS,
the containerized software must run inside a Linux virtual
machine. The open source Vagrant [13] and VirtualBox
[14] make this possible with a minimum of runtime
overhead, because the robust, cross-platform VM runs in
‘headless’ mode. We are developing open source single-
click installers for RadTrack, to hide these complications
from the user.

Figure 6: The concept of containerized computing.

The schematic in Figure 6 attempts to convey the spirit
of containerized computing, which enables a number of
other compelling possibilities. For example, scientists will
be able to archive their entire simulation environment in
the cloud, then return to their work weeks or months later.
More importantly, such an archive could be published
together with a refereed journal article, so that readers are
able to interactively explore and reproduce the published
simulation results, using the same version(s) of the code
and its dependencies, already compiled in exactly the
same way. Collaborators will also benefit from this ability
to share a complete simulation environment “in a box”.
Commercial companies [31,32] are beginning to offer
services along these lines to other communities.

The Browser is the UI
Our vision is that the web browser will become the

ubiquitous user interface (UI) for scientific computing.
This ambitious goal has become viable very recently, due
to the emergence of powerful, standardized technologies,
including HTML5 [33], CSS [34], JavaScript [35-37] and
scalable vector graphics (SVG) [38]. There are numerous
technologies for scientific visualization, which build on
these standards.

In the near term, we will use JavaScript emulation of
the X-windowing protocols to support scientific codes
running on Linux in the cloud. Of platforms which can
run X-based UIs in the browser, GTK+ [39] has the most
sophisticated system, called Broadway [40]. For example,
the open source QTHTML project [41] uses Broadway to
enable Qt widgets in the browser. In the long-term, we
will use web technologies to develop custom UIs for
scientific codes.

Seamless Legacy
We respect the existing workflows of computational

scientists, so our vision includes support for both
command line and web based UIs. Also, any code we
provide via the cloud will also be available for use on
desktop and laptop computers.

APPLICATION CONTAINERS
We briefly explain application containers and how they

differ from virtual machines. A hypervisor fakes the
messages and addresses that a computing kernel expects
to see from a physical computer. When the kernel is
loaded into memory, the hypervisor runs it like any other
process. There are two kinds of hypervisors: hosted and
native. When you rent a virtual machine from Amazon
Web Services, your virtual machine is running on a native
hypervisor. This means the hypervisor is the “kernel” for
the computer.

Virtual machines (VM) running on your laptop are
running on a hosted hypervisor (e.g. VirtualBox [14],
Parallels [42], VMWare [43], etc.). VMs do a lot of work
to maintain a complete abstraction of a physical machine.
This is inefficient and, it is unnecessary for most
processes.

Containers are a complete abstraction of all the relevant
resources used by the vast majority of programs. Instead
of emulating the computer, LXC (LinuX Container) [44]
isolates kernel resources for a collection of processes
(container). Essentially, LXC is a lightweight, hosted
hypervisor without need for emulation. Vagrant [13] is a
program for configuring headless VMs and containers.
Like Vagrant, Docker [12] is a productivity enhancer for
LXC. It assumes you are running on Linux, which means
you will need Vagrant to boot a Linux VM on your laptop
before you can run a container with Docker.

We have chosen to use Vagrant as the deployment
framework for RadTrack VMs. This greatly simplified the
work we had to do managing VirtualBox VMs. Once
Vagrant is installed, an end-user need only type three
commands to start RadTrack:

$ vagrant init radiasoft/radtrack
$ vagrant up
$ vagrant ssh -- -Y vagrant-radtrack

The first command prepares a configuration file in the
current directory. The second command downloads the
VM ‘box’ to the user's computer, unpacks it, and boots a
unique instance of the VM. The third command connects
the user's terminal window to the ‘headless’ VM using
ssh. The vagrant command knows how to find the
appropriate port, which includes automatic collision
correction. This is very convenient for developers who
will certainly have multiple VMs running, possibly for
different projects.

ACKNOWLEDGMENT
This work is supported by the US DOE Office of

Science, Office of Basic Energy Sciences through Grant
No. DE-SC0006284.

MOPMN009 Proceedings of IPAC2015, Richmond, VA, USA

ISBN 978-3-95450-168-7
722Co

py
rig

ht
©

20
15

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

5: Beam Dynamics and EM Fields
D11 - Code Developments and Simulation Techniques

REFERENCES
[1] S. Seung, G. Andonian, M.A. Harrison, S. Wu, T.

Shaftan, D.L. Bruhwiler, “A user-friendly, modular
simulation tool for laser-electron beam interactions,”
NA Part. Accel. Conf., MOPBA17 (2013).

[2] RadTrack; https://github.com/radiasoft/radtrack
[3] Qt; http://www.qt.io
[4] PyQt; http://riverbankcomputing.com/software/pyqt
[5] M. Borland, “Elegant: A flexible SDDS-compliant

code for accelerator simulations,” APS Technical
Report, LS-287 (2000).

[6] O. Chubar and P. Elleaume, “Accurate and Efficient
Computation of Synchrotron Radiation in the Near
Field Region,” Proc. European Part. Accel. Conf.,
1177 (1998).

[7] O. Chubar, P. Elleaume, S. Kuznetsov, A. Snigirev,
“Physical Optics Computer Code Optimized for
Synchrotron Radiation,” Proc. SPIE 4769, 145
(2002).

[8] O. Chubar, A. Fluerasu, L. Berman, K. Kaznatcheev
and L. Wiegart, “Wavefront propagation simulations
for beamlines and experiments with SRW,” J. Phys.:
Conf. Ser. 425, 162001 (2013).

[9] SRW; https://github.com/ochubar/SRW
[10] S. Reiche, “GENESIS 1.3: a fully 3D time-

dependent FEL simulation code,” Nuclear
Instruments and Methods A429, 243 (1999).

[11] GENESIS 1.3; http://genesis.web.psi.ch
[12] Docker; https://www.docker.com
[13] Vagrant; https://www.vagrantup.com
[14] VirtualBox; https://www.virtualbox.org
[15] Screenflick; http://www.araelium.com/screenflick
[16] BB FlashBack; http://www.bbsoftware.co.uk/BBFlas

hBack_FreePlayer.aspx
[17] M. Borland, “Getting started with SDDS”;

http://www
 .aps.anl.gov/Accelerator_Systems_Division/Accelera

tor_Operations_Physics/manuals/GettingStartedWith
SDDS/GettingStartedWithSDDS.pdf

[18] M. Xie, “Design Optimization for an X-Ray Free
Electron Laser Driven by SLAC Linac,” Proc. Part.
Accel. Conf., 183 (1996).

[19] J. Alda, “Laser and Gaussian Beam Propagation and
Transformation,” Encyclopaedia of Optical Eng.
(Marcel Dekker, New York, 2002).

[20] F. Pampaloni and J. Enderlein, “Gaussian, Hermite-
Gaussian, and Laguerre-Gaussian beams: a primer”
(2004); http://arxiv.org/abs/physics/0410021

[21] A.E. Siegman, Lasers (Univ. Science Books, 1986).
[22] Wikipedia page on paraxial laser modes;
 https://en.wikipedia.org/wiki/Gaussian_beam
[23] Synergia 2.1; https://web.fnal.gov/sites/Synergia/Site
 Pages/Synergia%20Home.aspx
[24] D.P. Grote, A. Friedman, J.-­‐L. Vay, I. Haber, “The

WARP Code: Modeling High Intensity Ion Beams,”
AIP Conf. Proc. 749, 55 (2005).

[25] J.-L. Vay, D.P. Grote, R.H. Cohen and A. Friedman,
“Novel methods in the Particle-In-Cell accelerator
Code-Framework Warp,” Comput. Sci. & Disc. 5,
014019 (2012).

[26] WARP; http://warp.lbl.gov
[27] WARP source;

https://bitbucket.org/berkeleylab/warp
[28] M. Sanchez del Rio, N. Canestrari, F. Jiang and F.

Cerrinac, “SHADOW3: a new version of the
synchrotron X-ray optics modelling package,” J.
Synchrotron Radiation 18, 708 (2011).

[29] SHADOW3;
https://github.com/ncanestrari/shadow3

[30] Open source RadTrack development on Github;
 https://github.com/radiasoft/radtrack/issues
[31] Terminal; https://www.terminal.com
[32] rescale; http://www.rescale.com
[33] HTML 5.1; http://www.w3.org/TR/html51
[34] CSS; http://www.w3.org/Style/CSS
[35] JavaScript; http://en.wikipedia.org/wiki/JavaScript
[36] JavaScript – MDN; https://developer.mozilla.org/en-

US/docs/Web/JavaScript
[37] ECMAScript; http://www.ecma-international.org/me
 mento/TC39.htm
[38] SVG 1.1; http://www.w3.org/TR/SVG
[39] GTK+; http://www.gtk.org
[40] Demo of the GTK Broadway backend;
 https://www.youtube.com/watch?v=fr8eo4RlPw4
[41] QTHTML; https://github.com/Etrnls/qthtml
[42] Parallels, https://www.parallels.com
[43] VMware, http://www.vmware.com
[44] LXC, https://linuxcontainers.org

Proceedings of IPAC2015, Richmond, VA, USA MOPMN009

5: Beam Dynamics and EM Fields
D11 - Code Developments and Simulation Techniques

ISBN 978-3-95450-168-7
723 Co

py
rig

ht
©

20
15

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

