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Abstract 
Particle accelerator and radiation modeling codes focus 

on specific problems, rely on complicated command-line 
interfaces, are sometimes limited to a small number of 
computing platforms, and can be difficult to install. There 
is also a growing need to use two or more codes together 
for end-to-end design or for complicated sub-systems. 
RadTrack [1,2] is a lightweight cross-platform GUI for 
such codes, based on the Qt framework [3] and PyQt [4] 
bindings for Python. RadTrack is designed to support 
multiple codes, placing no burden on the corresponding 
development teams. Elegant [5] and the Synchrotron 
Radiation Workshop (SRW) [6-9] are supported now in a 
pre-beta stage, and support for GENESIS 1.3 [10,11] is 
under development. These codes are being containerized 
via the open source Docker platform [12] for use in the 
cloud. The open source Vagrant [13] and Virtual Box [14] 
are used for MacOS and Windows. We discuss RadTrack 
and our vision for cloud computing. 

RADTRACK USER TESTING 
In preparation for an upcoming beta test program, user 

testing of RadTrack was conducted at the IPAC 
conference in Richmond, VA on May 4 and 5, 2015. In 
order to ensure the entire team has access to user 
feedback, we are using Screenflick [15] on the Mac and 
BB Flashback [16] on Windows to record user actions, 
audio and video. These videos have been invaluable in 
discovering basic user interaction (UX) issues. We are 
now improving the workflow to be more intuitive for end-
users. 

 
 

Figure 1: RadTrack Qt widget for Elegant simulations. 

 

The use case presented to test subjects was to build a 
FODO accelerator lattice from scratch, beginning with a 
65 MeV electron beam, and to simulate the problem with 
Elegant. Figure 1 shows the widget for Elegant modeling. 
This Tab manages the selection of an accelerator lattice 
and a beam description, shows runtime output, then 
provides easy access to the resulting output files for 
visualization. 

 

 

Figure 2: RadTrack Qt widget for drag-and-drop 
construction and visualization of particle accelerator 
lattices. 

Figure 2 shows the bunch transport tab, which parses 
Elegant lattice files to present a graphical representation 
of the beamline. Drag-and-drop features enable 
interactive modification of existing lattices or rapid 
creation of new beamlines. The Elegant tab can use the 
bunch transport tab directly, or parse a specified lattice 
file. The user can create multiple bunch transport tabs. 

 

 
Figure 3: RadTrack Qt widget for interactive 
specification and visualization of particle beams. 

 ____________________________________________  
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Figure 3 shows the bunch tab, which parses Elegant 
SDDS [17] particle files, enabling interactive 
visualization and rapid creation of new bunch 
descriptions. The Elegant tab can use the bunch tab 
directly, or parse a specified particle data file. The user 
can create multiple bunch tabs. 

BEAMS AND RADIATION 
An important goal of RadTrack is to simplify 

workflows involving both electron beams and radiation. 
For example, a free electron laser (FEL) design tab is 
provided, as seen in Figure 4. This tab provides estimates 
of performance, for specified electron beam and undulator 
parameters. The calculation is based on the universal 
scaling function of Xie [18], which is a polynomial with 
19 fitting parameters. 

 

Figure 4: RadTrack Qt widget to explore FEL 
parameters. 

 

The tab for GENESIS simulations, which is now under 
development, will use these parameters to model the FEL. 
We will also enable communication between the bunch 
tab and the FEL tab, so that the output from Elegant or 
other tracking codes can be immediately used for FEL 
design and simulation. 

 
Figure 5: RadTrack Qt widget for synchrotron radiation 
simulations using SRW. 

The SRW tab, seen in Figure 5, is ready for user 
testing. It enables rapid modeling of fully coherent 
radiation (‘thin’ or ‘single-particle’ mode), as well as the 
time-consuming treatment of partially coherent radiation 
(‘thick’ or ‘many-particle’ mode). Analogous to the FEL 

tab, analytic and semi-analytic calculations are presented 
in the panel on the right, so users can better understand 
the numerical results. 

Although not shown here, RadTrack also includes a tab 
for laser beams, assuming a Gauss-Hermite expansion   
[19,20] that satisfies the paraxial approximation [21,22]. 
There is also a tab for optical transport, closely analogous 
to the bunch transport tab seen in Figure 2, which will in 
the future be used to directly support the SRW tab. We 
also have an optical transport tab to support the GENESIS 
tab, which can simulate multiple undulator segments and 
overlaid quadrupoles, as is necessary for X-ray FELs. In 
the next two years, we will add support for Synergia  [23], 
WARP [24-27], SHADOW [28,29] and other codes. 

SCIENTIFIC CLOUD COMPUTING 
Our vision is to bring scientific cloud computing to the 

accelerator technology and radiation source communities. 
We believe scientific software must be open source, so 
RadTrack [2] and all of our cloud computing 
infrastructure will be available on Github and will be 
developed openly via the Github issues feature [30]. Our 
vision has three primary components: a) containerized 
computing – put your simulation in a box; b) the browser 
is the UI – never install software again; and c) seamless 
legacy – you won’t realize you’re in the cloud. 

Containerized Computing 
Some scientific software development teams have 

expended significant effort to achieve cross-platform 
execution on Linux, MacOS and Windows. Examples 
include SRW, Elegant and GENESIS. However, this is 
time consuming, expensive, and still requires 
sophistication on the part of the user to correctly install 
and use such codes. Dependencies often include a specific 
version of Python, of Qt, of Python-Qt wrappers and other 
libraries, which significantly complicate installation and 
can sometimes clash on any OS with previously installed 
software. 

Because most scientific codes are primarily developed 
and used under Linux, Windows is obviously the greatest 
challenge for cross-platform success. However, the 
MacOS is sufficiently different that it cannot be supported 
without significant effort on the part of the development 
team, which often has limited funding and scientific 
priorities. Even different flavors of Linux can cause 
serious pain for users trying to install a scientific code, 
especially when using a cluster where many of the 
required dependencies are not installed, or the system 
installation is the wrong release. 

Using Docker [12] on Linux, it is possible to create a 
file that contains a scientific code or codes, plus all 
required tools and dependencies, which can then be 
copied to any Linux server or cluster and rapidly 
activated. A user can ssh into the container, if necessary, 
or the software can be accessed remotely through a web-
based UI. This removes the pain of software installation 
on Linux, and it enables cloud-based scientific computing 
by making such codes available on demand, whether it is 
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on the local cluster, a supercomputer or a commercial 
cloud service. 

There is no runtime overhead associated with the use of 
Dockerized software on Linux. On Windows and MacOS, 
the containerized software must run inside a Linux virtual 
machine. The open source Vagrant [13] and VirtualBox 
[14] make this possible with a minimum of runtime 
overhead, because the robust, cross-platform VM runs in 
‘headless’ mode. We are developing open source single-
click installers for RadTrack, to hide these complications 
from the user. 

 

Figure 6: The concept of containerized computing. 

The schematic in Figure 6 attempts to convey the spirit 
of containerized computing, which enables a number of 
other compelling possibilities. For example, scientists will 
be able to archive their entire simulation environment in 
the cloud, then return to their work weeks or months later. 
More importantly, such an archive could be published 
together with a refereed journal article, so that readers are 
able to interactively explore and reproduce the published 
simulation results, using the same version(s) of the code 
and its dependencies, already compiled in exactly the 
same way. Collaborators will also benefit from this ability 
to share a complete simulation environment “in a box”. 
Commercial companies [31,32] are beginning to offer 
services along these lines to other communities. 

The Browser is the UI 
Our vision is that the web browser will become the 

ubiquitous user interface (UI) for scientific computing. 
This ambitious goal has become viable very recently, due 
to the emergence of powerful, standardized technologies, 
including HTML5 [33], CSS [34], JavaScript [35-37] and 
scalable vector graphics (SVG) [38]. There are numerous 
technologies for scientific visualization, which build on 
these standards. 

In the near term, we will use JavaScript emulation of 
the X-windowing protocols to support scientific codes 
running on Linux in the cloud. Of platforms which can 
run X-based UIs in the browser, GTK+ [39] has the most 
sophisticated system, called Broadway [40]. For example, 
the open source QTHTML project [41] uses Broadway to 
enable Qt widgets in the browser. In the long-term, we 
will use web technologies to develop custom UIs for 
scientific codes. 

Seamless Legacy 
We respect the existing workflows of computational 

scientists, so our vision includes support for both 
command line and web based UIs. Also, any code we 
provide via the cloud will also be available for use on 
desktop and laptop computers. 

APPLICATION CONTAINERS 
We briefly explain application containers and how they 

differ from virtual machines. A hypervisor fakes the 
messages and addresses that a computing kernel expects 
to see from a physical computer. When the kernel is 
loaded into memory, the hypervisor runs it like any other 
process. There are two kinds of hypervisors: hosted and 
native. When you rent a virtual machine from Amazon 
Web Services, your virtual machine is running on a native 
hypervisor. This means the hypervisor is the “kernel” for 
the computer. 

Virtual machines (VM) running on your laptop are 
running on a hosted hypervisor (e.g. VirtualBox [14], 
Parallels [42], VMWare [43], etc.). VMs do a lot of work 
to maintain a complete abstraction of a physical machine. 
This is inefficient and, it is unnecessary for most 
processes. 

Containers are a complete abstraction of all the relevant 
resources used by the vast majority of programs. Instead 
of emulating the computer, LXC (LinuX Container) [44] 
isolates kernel resources for a collection of processes 
(container). Essentially, LXC is a lightweight, hosted 
hypervisor without need for emulation. Vagrant [13] is a 
program for configuring headless VMs and containers. 
Like Vagrant, Docker [12] is a productivity enhancer for 
LXC. It assumes you are running on Linux, which means 
you will need Vagrant to boot a Linux VM on your laptop 
before you can run a container with Docker. 

We have chosen to use Vagrant as the deployment 
framework for RadTrack VMs. This greatly simplified the 
work we had to do managing VirtualBox VMs. Once 
Vagrant is installed, an end-user need only type three 
commands to start RadTrack: 

$ vagrant init radiasoft/radtrack 
$ vagrant up 
$ vagrant ssh -- -Y vagrant-radtrack 

The first command prepares a configuration file in the 
current directory. The second command downloads the 
VM ‘box’ to the user's computer, unpacks it, and boots a 
unique instance of the VM. The third command connects 
the user's terminal window to the ‘headless’ VM using 
ssh. The vagrant command knows how to find the 
appropriate port, which includes automatic collision 
correction. This is very convenient for developers who 
will certainly have multiple VMs running, possibly for 
different projects. 
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