
RESEARCH ARTICLE
www.advquantumtech.com

Mem-Transistor-Based Gaussian Error–Generating
Hardware for Post-Quantum Cryptography Applications

Moon-Seok Kim, Shania Rehman, Muhammad Farooq Khan, and Sungho Kim*

Quantum computing can potentially hack the information encrypted by
traditional cryptographic systems, leading to the development of
post-quantum cryptography (PQC) to counteract this threat. The key principle
behind PQC is the “learning with errors” problem, where intentional errors
make encrypted information unpredictable. Intentional errors refer to
Gaussian distributed data. However, implementing Gaussian distributed
errors is challenging owing to computational and memory overhead.
Therefore, this study proposes a Gaussian error sampler that employs the
intrinsic Gaussian properties of nanometer-scale semiconductor devices. The
proposed Gaussian error sampler significantly reduces computational and
memory overhead. This work comprehensively evaluates the effectiveness of
the proposed device by conducting statistical normality tests and generating
quantile–quantile plots. The optimal programming voltage is identified to be
−5.25 V, and the experimental results confirmed the Gaussian distribution of
error data generated by the proposed module, aligning closely with
software-generated Gaussian distributions and distinct from uniform random
distributions.
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1. Introduction

The advancement of quantum computing
technology poses a significant threat to tra-
ditional cryptographic systems, which rely
on mathematical problems for their se-
curity, such as Rivest Shamir Adleman
(RSA) and elliptic curve cryptography (ECC)
systems.[1,2,3] This is because quantum
computing technology can potentially hack
confidential information encrypted by the
traditional RSA and ECC cryptographic
systems.[4–6] Consequently, post-quantum
cryptography (PQC) has emerged as a
new cryptographic paradigm to counter-
act the threat posed by quantum comput-
ing technology.[7,8] PQC refers to crypto-
graphic systems that a quantum computer
cannot hack, thus protecting the confiden-
tiality of the information generated by these
systems.[9,7] In other words, a PQC system
is a solution to address the advancements of
quantum computing technology. To rapidly

address threats posed by quantum computers, the National In-
stitute of Standards and Technology has established interna-
tional standardization in terms of PQCmathematical systems.[10]

Lattice- and code-based mathematical problems are promising
candidates for PQC algorithms owing to their stability with
implementation and compatibility with the existing security
protocols.[11,12,13,14] The primary principle of these mathematical
algorithms is the “learning with errors” (LWE) problem, which
means that an injecting error prevents adversaries from decod-
ing confidential information, even in worst cases.[15,16] In other
words, intentional error injections make a ciphered message ap-
pear random and unpredictable to adversaries. From an imple-
mentation perspective, the most significant difference between
PQC and traditional cryptographic systems is the need for devices
that consistently generate errors. In the context of LWEproblems,
these errors are Gaussian distributed signals, also known as the
normal distribution.[17,18] Gaussian distribution is a type of prob-
ability distribution characterized by its mean and standard devi-
ation, which are derived from the exponential function.[19] How-
ever, calculating the exponential function is challenging for hard-
ware such as arithmetic logic units and field programmable gate
array devices.[20,21] Thus, various techniques have been devised
to generate Gaussian distributed errors, such as Box–Muller
transformation, rejection sampling, andZiggurat sampling.[20–22]

These techniques use primitives such as random number gen-
erators and precomputed cumulative distribution tables.[20–22]

A random number generator generates uniformly distributed
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random numbers, whereas a precomputed cumulative distribu-
tion table involves prestoring Gaussian distributed datasets in
the system’smemory. However, both randomnumber generators
and precomputed distribution tables entail significant overhead
from an implementation perspective.
In summary, it is crucial to devise an error sampler with a

Gaussian distribution for PQC system implementation. How-
ever, existing techniques experience significant memory and
computation time overhead. Therefore, it is essential to develop a
Gaussian error sampler that avoids these overhead factors. In this
study, we devised a Gaussian error sampler hardware that lever-
ages the intrinsic characteristics of nanometer-scale semiconduc-
tor devices. The proposed Gaussian error sampler exploits the
varying electrical resistance characteristics via resistive switching
of the semiconductor material. The proposed technology enables
PQC implementation without the overhead associated with large
computing and memory capacities. Figure S1, Supporting Infor-
mation illustrates a schematic of the variousmethods used to im-
plement a Gaussian sampler between the (a) existing and (b) pro-
posed Gaussian samplers. The proposed technique mitigates the
overhead against computing and memory capacities as Gaussian
generating transistor is adopted.

2. Results and Discussion

In this study, we adopted a mem-transistor (a memristor with
a transistor structure) to generate Gaussian distributed errors,
also referred to as a Gaussian generating transistor. The term
mem-transistor is a combination of “memristor” and “transis-
tor.” A memristor is a two-terminal electronic component with
variable resistance, whereas a transistor acts as an electrical
switch composed of three terminals. The memristor plays a piv-
otal role in generating Gaussian errors owing to its intrinsic
device physics and exhibits Gaussian distribution. A transition-
metal dichalcogenide material is employed as a channel of the
mem-transistor.[23,24] Bulk traps located in the tin disulfide (SnS2)
nanosheet provide highly reliable nonvolatile resistive switching
behavior.[25,26] Resistive switching is achievable through the elec-
trical pulse applied to a gate electrode. The intrinsic resistive
switching characteristics of the SnS2 mem-transistor lead to the
generation of Gaussian distributed errors by the proposed de-
vice. Figure 1 shows the schematic and microscopic images of
the fabricated SnS2 mem-transistor. Figure 1a illustrates the cir-
cuit diagram of the Gaussian generating mem-transistor, while
Figure 1b shows the schematic of the proposed Gaussian gener-
ating mem-transistor, displaying its gate, source, and drain ter-
minals. Figure 1c shows the optical microscopic image of the
fabricated SnS2 mem-transistor with its gate, source, and drain
terminals, while Figure 1d displays the cross-sectional transmis-
sion electron microscope image of the fabricated device. We
experimentally demonstrated that the proposed mem-transistor
functions as a Gaussian error sampler, which is vital for PQC
implementation. Gaussian error data were used for addictive op-
erations to generate ciphered data. Figure 2a shows a represen-
tative schematic illustration of the PQC encryption process us-
ing McEliece cryptography.[27,28] Error data were added to code-
word data obtained from the matrix multiplication of message
data and the generator matrix. The added ciphered data could
not be subjected to cryptanalysis owing to unpredictable error

Figure 1. a) Circuit diagram of the proposed Gaussian generating transis-
tor, exhibiting the characteristics of a mem-transistor. b) Schematic illus-
tration of a single Gaussian generating transistor with gate, source, and
drain terminals. c) Optical microscopic image showing the top view of the
fabricatedGaussian generating transistor. d) Transmission electronmicro-
scope images showing the cross-sectional view of the fabricated Gaussian
generating transistor.

data. This property ensures resistance to cryptanalysis, includ-
ing attacks by quantum computers with respect to mathematical
cryptography.[29,30] Figure S2, Supporting Information illustrates
the entire process of LWE-based PQC: (a) public key generation,
(b) encryption, and (c) decryption processes. Error data were em-
ployed during the public key generation process.
The Gaussian noise sampler is a fundamental primitive for

PQC applications. Figure 2b,c shows a comparison of cryptan-
alyzed images between the systems (b) without addictive Gaus-
sian errors and (c) with addictiveGaussian errors.Without errors,
the ciphered image was perfectly decrypted because quantum
computers can exactly compute the inverse matrix of the gener-
ator matrix.[17] By contrast, the added errors prevented quantum
computers from decrypting the images, as shown in Figure 2c.
Figure 2d shows the bit error rate (BER) according to the standard
deviation of addictive Gaussian errors. A low BER indicates that
quantum computers can successfully decrypt the data, whereas
a high BER indicates that quantum computers fail to decrypt the
data.
The Gaussian distribution was demonstrated as resistance

switched in a Gaussian generating transistor. The resistive
switching phenomenon was induced by the Gaussian generat-
ing procedures in the Gaussian generating transistor. Gaussian
generating procedures are categorized by programming and eras-
ing operations. The programming operation involved the appli-
cation of a negative voltage pulse (VP) to the gate terminal with
a magnitude of −5.25 V and a duration of 10 ms, whereas the
erasing operation involved the application of a positive voltage
pulse (VE) to the gate terminal with a magnitude of 2.5 V and a
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Figure 2. a) Representative schematic illustration of the McEliece cryptography encrypting process, a type of post-quantum cryptography (PQC). Crypt-
analyzed images between b) without Gaussian errors and c) with addictive Gaussian errors. Gaussian errors prevent quantum computing from decoding
original images. d) Bit error rate according to the standard deviation of Gaussian errors when quantum computing decodes ciphered images. Gaussian
errors with a high standard deviation make quantum computing decode images with high error rates.

duration of 10 ms. After completing Gaussian generating proce-
dures, reading operations were performed to characterize the re-
sistance of target devices. The reading operation involved apply-
ing a small voltage (VR) to the drain terminal for 10ms. Figure 3a
illustrates the Gaussian generating procedures and reading op-
erations, whose sequences are composed of programming, eras-
ing, and reading operations. Gaussian generating procedures re-
sulted in the resistive switching phenomenon. Thus, resistance
variations in the form of Gaussian distributions were attributed
to programming and erasing operations. Finally, a reading oper-
ation was conducted to characterize the resistance of Gaussian
generating transistors, which was extracted using the reading
current (IR) value according to Ohm’s law.
Figure 3b shows the energy band diagram of the fabri-

cated SnS2 mem-transistor (Gaussian generating transistor) in
the equilibrium state. The previously reported electron affin-
ity and energy bandgap of SnS2 are 4.22 and 2.11 eV, respec-
tively, whereas those of n+ polysilicon are 4.1 and 1.12 eV,
respectively.[25,26,31] Furthermore, the difference between the con-
duction band edge and the Fermi level (EC – EF) of the fabricated
SnS2 is 0.04 eV.

[25,26,31] Thus, the band alignment at the equilib-
rium state was described as shown in Figure 3b after establishing
contact among n+ polysilicon, Al2O3, and SnS2 materials.
Figure 3c shows the schematic illustrations of the resistive

switching process in the SnS2 mem-transistor (Gaussian gener-
ating transistor) during the Gaussian generating operation. The
resistive switching phenomenon was generated by the charge
trapping/de-trapping process, as shown in Figure 3c. First, the
high negative voltage pulse (VP = – 5.25 V) completely depleted

the number of traps in the SnS2 channel. In other words, dur-
ing the negative voltage pulse, the number of electrons with en-
ergy levels higher than the EF was depleted in both interface and
bulk traps. Next, the positive voltage pulse (VE = +2.5 V) facil-
itated electron trapping and diffusion processes. Electron trap-
ping refers to the rapid trapping of electrons from the inverted
channel in the interface traps, and the diffusion process involves
the diffusion of these trapped electrons toward the bulk trap in-
side the SnS2 layer over time. The resistive switching process
in the SnS2 mem-transistor possesses two main characteristics.
First, the trapped electrons at bulk traps are responsible for the
nonvolatile conductance at the SnS2 layer.

[25,26] Next, the resis-
tance modulation exhibits intrinsic stochastic properties, which
indicate that the resistance value varies as programming and
erasing voltage pulses are applied.[25,31] In summary, Gaussian
distribution is formed by the resistive switching phenomenon
of SnS2 mem-transistors (Gaussian generating transistors). In
other words, the resistance resulting from the resistive switching
of the SnS2 mem-transistor (Gaussian generating transistor) ex-
hibits nonvolatile characteristics that form Gaussian normal dis-
tribution. Although previous studies have revealed that restive
switching occurs owing to the charge trapping and detrapping
processes,[23,24] the present study experimentally demonstrated
that resistive statistical distribution is formed due to Gaussian
normal distribution.
Figure 3d depicts the transient curve tracking the resistance

of the Gaussian generating transistor as Gaussian generating
procedures and reading operations are repeated 200 times. To
visually confirm that this resistance distribution followed a
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Figure 3. a) Schematic illustration of the procedures comprising Gaussian generating and reading operations. b) Energy band diagram consisting of n+
poly Si, Al2O3, and SnS2 stacks at the equilibrium state. The conduction band (EC) between n+ Si and SnS2 is almost flat because the electron affinities
of n+ Si and SnS2 are 4.1 and 4.22 eV, respectively. c) Energy band diagrams showing the programming (VP = −5.25 V) and erasing voltage (VE = 2.5 V)
stages. The diagrams show the procedure to generate the resistive switching phenomenon. The SnS2 channel–depleted region is generated during the
programming voltage stage. Next, electrons undergo fast trapping to form interface traps during the erasing voltage stage. Finally, the trapped interface
electrons diffuse the bulk traps. d) Transient curve of resistance values when Gaussian generating and reading operations are repeated 200 times. e)
Histogram of resistance values when Gaussian generating and reading operations are repeated 10000 times.

Gaussian distribution, the Gaussian generating procedures of
a single Gaussian generating transistor were repeated 10 000
times. Figure 3e shows a histogram used to extract the resistance
probability distribution during 10 000 resistive switching opera-
tions, wherein the probability distributions are indicated by black
bars. The red line represents an ideal Gaussian normal distribu-
tion with a mean of 2.77 MΩ and a standard deviation of 2.55 kΩ.
Figure 3e shows the presence of a visual similarity between the
theoretical Gaussian and experimental resistance distributions of
the proposed Gaussian generating transistor.
We found that Gaussian distributed error data were gener-

ated by a Gaussian generating module. The Gaussian generat-
ing module was composed of Gaussian generating transistors
and peripheral components such as a microcontroller and a tran-
simpedance amplifier (TIA). With the aid of peripheral inte-
grated circuits (ICs), theGaussian generatingmodule systemwas
demonstrated using the Gaussian generating transistor. Conse-

quently, the Gaussian generating module was deemed suitable
for supplyingGaussian error data for PQC applications. Figure 4a
illustrates the procedure to sequentially generate Gaussian error
data from the Gaussian generating module. The generated error
data ranged from -(q-1)/2 to +(q-1)/2. Typically, the value of inte-
ger q is determined to be within the range of 128 to 256, whose
decisions are designed according to the mathematical crypto-
graphic security.[17,32,33] Figure 4b illustrates the generation of
Gaussian error data by the Gaussian generating module upon re-
quest. First, the PQC system issues a command to generate Gaus-
sian noise. The ATmega32U4 microcontroller acts as an inter-
mediary between the PQC system and the Gaussian generating
primitives. Next, the ATmega32U4 delivers voltage pulse signals
to the Gaussian generating transistor for performing the Gaus-
sian generating procedures and reading operations. The ICL7660
IC acts as a voltage converter to generate the negative voltage
pulse, VP (−5,.25 V). Subsequently, when reading operations are
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Figure 4. a) Procedure to generate Gaussian error data using the Gaussian noise–generating module. b) Procedure of generating Gaussian error data
using the Gaussian noise–generating module according to submodules, such as ATmega32U4, ICL7660, OPA381, and Gaussian generating transistor.
c) Square-typed image maps for sequentially generating Gaussian errors: 100 × 100 integers (black: + 127; white: −127). d) Histogram of digital data
obtained from Figure 3c for 10000 integer samples.

performed, the Gaussian generating transistor generates a cor-
responding current (IR) that flows toward the microcontroller
ATmega32U4. OPA381 IC serves as a TIA, converting the cur-
rent signal to a corresponding voltage signal. The resistance of
transistors is extracted as VR and is divided by IR according to
Ohm’s law. The extracted resistance is converted into integer er-
ror data with the aid of the analog-to-digital converter (ADC),
which is the internal component of ATmega32U4. The integer
error data ranges from -(q-1)/2 to +(q-1)/2. Finally, the generated
integer error data enable the PQC system to perform secure en-
cryption and decryption against quantum computing. Figure 4c
visually demonstrates the Gaussian error data generated by the
Gaussian noise–generating module. The procedure to generate
Gaussian error data is shown in Figure 4b. Parameter q was set
to 128 and was verified to provide mathematical cryptographic
security.[17,32,33] Figure 4d depicts the histogram used to statisti-
cally verify that the generated error data follow aGaussian normal
distribution from digital data shown in Figure 4c. We confirmed
that the experimental results of the Gaussian noise–generating
module visually resemble the theoretical Gaussian normal distri-
bution, similar to that shown in Figure 3e.
The proposed Gaussian generating module produced error

data that possessed a Gaussian normal distribution. Figure 5
shows the normality test conducted to quantitatively verify
whether the proposed Gaussian generating module can pro-
duce data with Gaussian distribution characteristics. For compar-
ison, three groups were established: experimental group (group
A), consisting of error data generated by the proposed Gaus-
sian error–generating module; control group B, consisting of
Gaussian error distributions generated using software; and con-

trol group C, comprising uniformly distributed random num-
bers generated using software. The comparison between groups
A and B was performed to quantitatively evaluate how closely
the hardware-based Gaussian error–generating module mimics
the ideal Gaussian normal distribution achieved by the existing
software-based Gaussian generating technology. Conversely, the
comparison results between groups A and C highlighted the dis-
tinct differences in quantitative normality metrics between the
implemented Gaussian normal distribution and uniform ran-
dom numbers. Figure 5a displays the histogram of noise data
distributions of groups A, B, and C. Although group A included
experimental data obtained from the proposed Gaussian noise–
generating module, groups B and C were the control groups,
designed via software, and were compared with group A in the
quantitative normality test.
Figure 5b shows the quantile–quantile (Q–Q) plots of all

groups. The Q–Q plot is a graphical tool used to compare sam-
ple datasets with a theoretical Gaussian normal distribution.[34,35]

The straight line marked on the Q–Q plot indicates that the sam-
ple datasets possess a perfect Gaussian normal distribution.[34,35]

As shown in Figure 5b, both groups A and B exhibited straight
lines, whereas groupC showed a scattered pattern. TheQ–Qplots
indicate that the proposed Gaussian noise–generating module
is suitable for PQC applications in terms of mathematical nor-
mality. Figure 5c,d,e shows the mathematical metrics adopted to
provide quantitative information in terms of mathematical nor-
mality. Figure 5c displays the Kullback–Leibler (KL) divergence
values of all groups. KL divergence is a metric used to quan-
tify the mathematical difference between one probability dis-
tribution and a reference probability distribution.[36,37] Thus, a
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Figure 5. Normality test results of Gaussian errors generated by the proposed Gaussian noise–generating module and control groups. a) Histograms of
groups A, B, and C. Group A indicates experimental data obtained from the proposed Gaussian noise–generating module and is called the experimental
group. Groups B and C are the control groups, designed using software. Group B simulates an ideal Gaussian normal distribution, whereas group C
simulates ideal uniform random numbers. b) Quantile–Quantile plot to compare the datasets of a theoretical Gaussian normal distribution between
groups A, B, and C. c) Kullback–Leibler divergence value used to quantifiably compare the mathematical difference between sample datasets and ideal
Gaussian normal distribution for groups A, B, and C. d) Shapiro–Wilk normality pass rate (%) to verify that sample datasets possess Gaussian normal
distribution for groups A, B, and C. e) Kolmogorov–Smirnov normality pass rate (%) to determine whether sample datasets possess Gaussian normal
distribution for groups A, B, and C.

KL divergence value of 0 indicates that the sample dataset per-
fectlymatches the theoretical Gaussian normal distribution. Both
groups A and B exhibited KL divergence values of less than 0.2,
indicating a close match with the Gaussian normal distribution.
However, group C showed a KL divergence value greater than 0.8,
indicating a lesser correlation with the Gaussian normal distri-
bution. Figure 5d,e shows the pass rate in terms of Shapiro–Wilk
(SW) normality and Kolmogorov–Smirnov (KS) tests for groups
A, B, and C. SW normality test is used to verify whether sample
datasets possess a normal distribution, and the KS test is used
to determine whether two samples are derived from the same
probability distribution.[38,39] Both test results are denoted by pass
or fail according to the significance level, which was set to 0.05.
Figure 5d,e demonstrates that both groups A and B possess pass
rates of more than 95% for normality.
Figure 6 shows the trends of means and standard deviation of

the Gaussian distribution when the programming voltage of the
proposed Gaussian generating transistor is adjusted. The pur-
pose of experiments controlling the programming voltage was
to experimentally verify optimal points in terms of the program-
ming voltage. Figure 6a illustrates the changes in VP during pro-
gramming operations. Figure 6b shows that both the statisti-
cal mean and standard deviation are adjusted as VP is adjusted.
Figure 6c,d,e displays the results of KL divergence, SW, and KS
tests, respectively. The results showed that a VP of −5.25 V is
the optimal point to generate Gaussian distributed error samples.
Furthermore, ambient temperature experiments were conducted

to verify the environmental properties. The ambient temperature
was set to−20, 20, 60, and 100 °C. Figure 7a,b,c shows the results
of KL divergence, SW, and KS tests, respectively. The findings in-
dicated that the proposed Gaussian error samplers consistently
passed the statistical normality test.

3. Conclusions

In this study, we developed a Gaussian noise–generating mod-
ule using mem-transistors (Gaussian generating transistors) to
generate Gaussian distributed errors. Gaussian distributed er-
rors are essential to ensure that encrypted information is un-
predictable against quantum computing technology. The intrin-
sic device physics of Gaussian generating transistors, which ex-
hibit Gaussian distribution, are crucial for generating Gaussian
errors. A transition-metal dichalcogenide material was employed
as the channel of Gaussian generating transistors, with bulk
traps in the SnS2 thin film demonstrating reliable nonvolatile
resistive switching behavior. Resistive switching was achieved
through electrical pulses applied to the gate electrode, enabling
the generation of Gaussian distributed errors. Experimental re-
sults demonstrated the effectiveness of the proposed Gaussian–
noise generating module as a Gaussian error sampler, which
is vital for PQC implementation. The generated Gaussian er-
ror data were used in additive operations to produce ciphered
data, providing resistance to cryptanalysis, including quantum
computing attacks. Statistical normality tests confirmed the
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Figure 6. Normality test results when the programming voltage (VP) is controlled to range from−5.75 to−4.75 V. a) Schematic illustration of procedures
when VP is adjusted. (b) Statistical mean and standard deviation values when VP ranged from −5.75 to −4.75 V. c) Kullback–Leibler divergence value
used to quantifiably compare the mathematical difference between experimental datasets and ideal Gaussian normal distribution at a VP of −5.75, −5.5,
−5.25, 5.0, and −4.75 V. d) Shapiro–Wilk normality pass rate (%) to verify that experimental datasets possess Gaussian normal distribution at a VP of
−5.75, −5.5, −5.25, 5.0, and −4.75 V. e) Kolmogorov–Smirnov normality pass rate (%) to determine whether experimental datasets possess Gaussian
normal distribution at a VP of −5.75, −5.5, −5.25, 5.0, and −4.75 V.

Figure 7. Normality test results against the temperature ranging from −20 to 100 °C. a) Kullback–Leibler divergence value between ideal Gaussian
normal distribution and experimental datasets at −20, 20, 60, and +100 °C. b) Shapiro–Wilk normality pass rate (%) to verify that experimental datasets
possess Gaussian normal distribution at −20, 20, 60, and +100 °C. c) Kolmogorov–Smirnov normality pass rate (%) to determine whether experimental
datasets possess Gaussian normal distribution at −20, 20, 60, and +100 °C.

Gaussian distribution of error data generated by the proposed
module, aligning closely with software-generated Gaussian dis-
tributions and distinct from uniform random distributions. The
study identified the optimal programming voltage (−5.25 V) and
verified the robustness of the Gaussian error sampler across var-
ious temperatures. In conclusion, the results confirmed that the
proposed Gaussian noise–generatingmodule is suitable for PQC
applications. Ultimately, the our goal is to develop a system that
integrates electronic components such as Gaussian generating
transistors and ADCs into an SoC. The system encompasses all
PQC functions, such as public key generation, encryption, and

decryption, while achieving low power consumption and cost-
effectiveness within a single chip.

4. Experimental Section
Fabrication of the Gaussian Error Sampler Device: To implement the

proposed Gaussian error–generating transistor, SnS2–channel mem-
transistor was fabricated.[25,26] Figure 1a illustrates the circuit diagram
of the proposed Gaussian generating transistor, while Figure 1b shows a
schematic of the fabricated Gaussian generating transistor, displaying its
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gate, source, and drain terminals. The Gaussian generating transistor is
the principle component in constructing a Gaussian generating module.
Notably, SnS2 channel exhibits resistive switching characteristics, which
attribute intrinsic stochastic fluctuation and an unpredictable Gaussian
distribution. A heavily n-type doped Si wafer (resistivity: <0.005 Ω∙cm)
was employed to fabricate the SnS2-channel mem-transistor. The heav-
ily doped Si wafer served as the back-gate electrode. First, a 40-nm-thick
Al2O3 film was deposited on the Si wafer through atomic layer deposition
(Nano-ALD2000, IPS) at 350 °C. The N2 carrier gas pressure was set to
1.0 Torr, and Al(CH3)3 and H2O were introduced into the N2 carrier flow.
The growth rate of the Al2O3 layer was ≈1 Å per cycle. Next, an SnS2 thin
film was synthesized, which acted as the current semiconductor channel.
The SnS2 thin film was prepared by exfoliating SnS2 nanosheets from the
bulk SnS2 (HQ Grpahene) using sticky scotch tape. A 25-nm-thick SnS2
thin film was then transferred onto the Si/Al2O3 substrate. Subsequently,
source and drain electrodes composed of Ti/Au (10 nm/50 nm) were fabri-
cated using thermal evaporation and electron-beam lithography. Following
this, hexagonal boron nitride (h-BN) and Ti/Au thin films were synthesized
to create the top gate. The h-BN thin film was employed as the gate dielec-
tric layer for the top gate, whereas the Ti/Au thin film acted as the metal
electrode for the top gate. While the heavily n-typed doped Si bottom gate
performs the Gaussian generating operation for all transistors, the Ti/Au
top gate is account for the Gaussian generating operation for an individ-
ual transistor. A 25-nm-thick h-BN thin film was transferred onto the SnS2
channel area, and the Ti/Au (10 nm/100 nm) thin filmwas deposited using
a thermal evaporator. These h-BN and Ti/Au thin films acted as top gate
electrodes patterned using electron-beam lithography. Figure 1c shows the
top view of the fabricated Gaussian generating transistor, and Figure 1d
displays the cross-sectional transmission electron microscope image of
the fabricated device.

Microcontroller and Peripheral Circuits: The ATmega32U4 microcon-
troller was integrated into the Gaussian noise–generating module. First,
the microcontroller converts analog resistance data into a digit output us-
ing the internal ADC. Next, the microcontroller transmits input and out-
put data from the PQC system. A TIA (OPA381, Texas Instruments) was
employed to measure the channel resistance (conductance) of the Gaus-
sian generating transistor (mem-transistor), converting the current signal
to a voltage signal. Finally, a voltage converter (ICL7660, Renesas) was
equipped to generate the negative polarity of the voltage pulse.
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