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1 Introduction

Finite volume effects are one of the major sources of systematic uncertainties in modern
lattice QCD computations. A primary task in lattice QCD is to evaluate the so-called finite
volume corrections (FVC). Especially when Monte Carlo simulations are performed with
pion mass close to its physical value, the size of FVC becomes large. Therefore, proper
treatment of finite-size effects has been of crucial importance in the precise extraction
of physical results from Monte Carlo data. Even though lattice data for a quantity of
interest are not available for the time being, it is still important to estimate the size of
FVC so as to choose an appropriate lattice, in which the unwanted finite volume artifacts
are suppressed. Finite volume effects are also significant in their own right and imply a
few interesting physical origins. As pointed out by Lüscher in ref. [1], for a stable particle,
finite-size effects may result in a mass shift, which can be physically interpreted as the
existence of a cloud of virtual light particles around it.

In practice, a systematical and popular tool to evaluate FVC is the chiral perturbation
theory (ChPT) [2–4] at finite volume. It was proposed, by Gasser and Leutwyler in refs. [5,
6], that it is feasible to do FVC calculations in the so-called p-regime by using the chiral
effective Lagrangians constructed in the infinite volume. For a brief review, see e.g. refs. [7,
8]. The merit is that the obtained FVC results depend both on the finite spatial extent
L and on the pion mass Mπ, and hence can be utilized to perform chiral extrapolation
(mu/d → mphys.

u/d ) and also themodynamical extrapolation (L → ∞) of lattice data. Based
on ChPT, there accumulate a multitude of works concerning finite volume calculations,
e.g., masses [9–12], decay constants [13, 14], nucleon electric dipole moments [15], scalar
form factor in K`3 semi-leptonic decay [16], etc. Very recently, FVC to forward Compton
scattering off the nucleon has been derived in the framework of manifestly covariant baryon
ChPT [17]. In particular, two-loop sunset integrals in the finite volume are computed for
pion mass and decay constants in refs. [18–20]. A package for numerical computation of
the one-loop tadpole and two-loop sunset integrals is realized in ref. [21].

On the other hand, the Lüscher formula [1] provides an alternative approach to cal-
culate FVC to masses. Its application to the study of the FVC to the masses of pion,
nucleon and heavy mesons can be found in refs. [22–24]. In this method, the FVC of the
masses are related to the forward scattering amplitudes which, in the low-energy region,
are obtainable from ChPT. The advantage of the Lüscher formula lies in that the leading
exponential term exp(−MπL) in the finite-volume dependence can be easily estimated [1].
It was shown in ref. [23] that an input of a tree-level ChPT scattering amplitude can re-
produce the one-loop FVC result evaluated in ChPT at finite volume. Nevertheless, the
Lüscher approach fails in generating exponential terms beyond leading order. A resummed
version of the Lüscher formula was advocated in ref. [23] to restore the subleading expo-
nential corrections. Besides, a Lüscher-formula-like asymptotic expression was derived for
the study of decay constant [25]. In a word, the feasibility of the Lüscher formula approach
is rather limited. Hence, in many cases, one is often suggested to prefer the method of
ChPT at finite volume, as introduced in the preceding paragraph.
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However, the calculations of FVC within the framework of ChPT at finite volume are
tedious. Complexity has already taken place in the one-loop analyses, see e.g. refs. [9–
11, 13–17]. As far as we know, automation of the one-loop calculations of FVC is still
unavailable. Even worse, expressions of the results for a given quantity might be different
in form. Namely, a shift of the integration momentum in the integral or an inversion
of the direction of the momentum in the loop graph would lead to different forms of
analytical results, although the corresponding numerical result keeps the same. It should be
mentioned that the analytical outcomes are usually expressed in terms of Bessel functions.
In principle, one is able to translate them into a unique form by employing the recurrence
relations of the Bessel functions, but the procedure is often intricate. The above-mentioned
issues actually are due to the lack of a unified description of the one-loop tensor integrals
in a finite volume. In this work, we intend to fill this gap.

In the infinite volume, it has been standard to express one-loop tensor integrals in
terms of Lorentz-covariant structures multiplied by Lorentz tensors Lµ1···µP of rank P ,
which are composed of metric tensors and external momenta; see e.g. refs. [26–29] for
details. Unfortunately, the decomposition does not hold true for the integrals in a finite
volume any longer. The main difficulty is owing to the un-welcome occurrence of an
extra vector lµ = (0,nL) ≡ nµL with n ∈ Z3, in addition to the external momenta and
metric tensor. This vector is introduced by the boundary conditions of the finite volume
V = L3 and, hereafter, nµ is called the unit space-like four vector for clarity. Thus, on
top of terms proportional to the Lorentz tensors Lµ1···µP in the infinite case, the results
of FVC contain pieces related to nµ as well. To address this issue, we generalize the
Lorentz tensor, by incorporating the unit space-like four vector nµ, to L̃µ1···µP as shown
in eq. (2.9). With the help of the new rank-P tensor, any one-loop tensor integrals for
FVC can be decomposed uniquely. More importantly, we find that a compact formula can
be achieved for the tensor coefficients after a direct calculation using Poisson summation
formula and Feynman parameterization techniques. In fact, this formula in turn justifies
the validity of the decomposition method we have proposed here.

The reduction of tensor integrals has a long history [26, 30], but still continues to in-
trigue quite a few studies nowadays [31–33]. Generally speaking, the symmetry of Lorentz
invariance in the infinite volume allows one to reduce all tensor coefficients to the basic
scalar integrals [34]. Various algorithms have been invented to either make the process of
reduction faster or to tackle special cases concerning singularities, see e.g. ref. [32] and the
references therein. Here, it would be also interesting to investigate the reduction of the ten-
sor integrals at finite volume. Unlike the infinite case, problem arises because the Lorentz
invariance is explicitly broken in a finite volume. Such a problem can be avoided in the
frame defined by the conditions n ·pi = 0, where pi are external momenta and n is the unit
space-like four vector. For definiteness, this frame is referred to as “center-of-mass” (CM)
frame throughout this work.1 In the CM frame, two findings can be achieved. One is that

1Note that, since nµ = (0, n) is arbitrary, the constraint n · pi = 0 leads to pi = 0 for i = 1, · · · , N − 1,
where N is the number of denominator factors defined in eq. (2.1). Although the validity of the obtained
results in section 3 is unaffected, the realistic application of, e.g., reduction of the FVC tensor coefficients,
is actually rather limited, especially for N ≥ 3.
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the tensor coefficients can be indeed reduced recursively and two universal reduction formu-
lae are obtained. The other is that, in addition to the scalar integrals, the tensor coefficients
proportional to the metric tensor should be incorporated into the basis. This is a new fea-
ture of the one-loop tensor integrals for FVC, compared to the ones in the infinite volume.

Our unified formulation of one-loop tensor integrals for FVC can be easily implemented
in, e.g. FeynCalc [35–37], in future, so as to realize the automation of the calculations of
FVC to any interesting quantities at one-loop level. As a first application, our formulation
is used to compute FVC to the nucleon mass. The obtained results are concise. The
relevant result in previous literature can be reproduced. We also check that the results
with and without the Passarino-Veltman (PV) reduction are exactly the same, indicating
the correctness of PV reduction numerically.

The layout of this manuscript is described as follows. In section 2, the decomposition
of loop integrals for FVC is discussed in detail, and a general formula for numerical com-
putation of FVC tensor coefficients is derived. Section 3 comprises the PV reduction of
the tensor coefficients in the CM frame. An example is shown in section 4 to illustrate
the application of our unified formulation. Section 5 contains summary and outlook. In
appendix A, some useful formulae we used are listed. The properties of the auxiliary ten-
sor hµν are briefly presented in appendix B. A detailed mathematical proof of eq. (3.2)
is provided in appendix C. For the sake of easy reference, some results of one-loop tensor
integrals with the number of internal propagators less than and equal to four are collected
in appendix D. Correspondingly, explicit expressions regarding the decomposition of tensor
integrals in the CM frame are shown in appendix E. Finally, appendix F comprises explicit
expressions of the one-loop self-energies of the nucleon.

2 Decomposition of one-loop tensor integrals

As already mentioned in the Introduction, ChPT allows one to perform systematic evalua-
tions of physical quantities of interest both in the infinite space and at finite volume. In the
infinite volume, high-order chiral calculations have already became standard and efficient,
benefiting greatly from the well-prepared loop integrals defined in literature [26, 29, 34]
and in some relevant packages [35–38]. On the contrary, studies done in a finite volume al-
ways suffer from tedious computations of loop integrals from the very beginning. To tackle
this issue, in this section, we are going to provide a general description of one-loop tensor
integrals at finite volume. Note that this can be achieved, equivalently, by studying the
finite-volume shifts of the loop integrals. In what follows, one-loop tensor integrals are de-
fined for FVC, and pertinent tensor decomposition of those integrals is detailed. And then,
we will derive a uniform formula for the tensor coefficients appearing in the decomposition.

2.1 Definition of loop integrals for FVC

The general form of one-loop N -point rank-P tensor integrals can be written as

TN,µ1,··· ,µP = 1
i

∫ ddk
(2π)d

kµ1 · · · kµP
D1D2 · · ·DN

, (2.1)
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where the denominator factors are defined by

Dj = [(k + pj−1)2 −m2
j + i0+] , j = 1, · · · , N , (2.2)

with p0 = 0 and i0+ being an infinitesimal imaginary part. Note that the notation of
ref. [34] is adopted to denote the individual N -point integrals: T 1 = A, T 2 = B, T 3 = C,
T 4 = D, T 5 = E, · · · . Furthermore, the case of P = 0 corresponds to the scalar integral,
which is conventionally denoted by TN0 , e.g., T 1

0 = A0, T 2
0 = B0, etc. For brevity, the

arguments of TN,µ1,··· ,µP are suppressed. In a cubic box of volume V = L3, the integration
over the internal momentum k should be replaced by a sum over all allowed discrete
momenta. Specifically, for an arbitrary function F (k), one has∫ dk

(2π)3F (k) −→ 1
L3

∑
n
F (kn) , (2.3)

where kn = 2πn/L and n ≡ (n1, n2, n3) with ni ∈ Z (i = 1, 2, 3).2 Therefore, the tensor
integrals in eq. (2.1) at finite volume are given by

TN,µ1,··· ,µP
V = 1

i

(
1
L3

∑
n

∫ dk0

2π

)
kµ1 · · · kµP
D1D2 · · ·DN

≡ 1
i

∫
V

ddk
(2π)d

kµ1 · · · kµP
D1D2 · · ·DN

. (2.4)

Here the time extent is left infinite, due to the assumption that it is much larger than
the spatial length L of the cubic box. Actually, that is the usual situation encountered in
lattice QCD simulations. The finite-volume sums in the above equation can be done by
making use of Poisson summation formula [40], i.e.

1
L3

∑
n
F (kn) =

∑
n

∫ dk
(2π)3 e

ilk·kF (kn) . (2.5)

Then, the finite-volume tensor integrals are transformed into

TN,µ1,··· ,µP
V =

∑
n

1
i

∫ ddk
(2π)d e

−ilk·k kµ1 · · · kµP
D1D2 · · ·DN

, (2.6)

where a four vector lµk ≡ (0,nL) has been introduced. One can notice that the term with
lk = 0, i.e. n = 0, in the sum represents the infinite-volume contribution, since it coincides
with eq. (2.1).

The difference between TN,µ1,··· ,µP
V and TN,µ1,··· ,µP defines the so-called FVC, i.e.

T̃N,µ1,··· ,µP ≡ TN,µ1,··· ,µP
V − TN,µ1,··· ,µP . (2.7)

Hereafter, we use the notation T̃ to represent the tensor integrals defined for the calculation
of FVC. Inserting eq. (2.1) and eq. (2.6) to the above equation, the tensor integrals for
FVC are given by

T̃N,µ1,··· ,µP =
∑
n 6=0

1
i

∫ ddk
(2π)d e

−ilk·k kµ1 · · · kµP
D1D2 · · ·DN

. (2.8)

2Here the discretized momenta arise from the periodic boundary conditions. For discussions on the
momenta constrained by twisted boundary conditions, see e.g. ref. [39].
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Note that FVC are ultraviolet (UV) convergent and one can set d = 4. Nevertheless, the
symbol d is retained explicitly throughout this paper. It can be inferred that, due to the
emergence of the exponential piece e−ilk·k, the results after integration over k shall depend
on the four vector lk in addition to the external four momenta pj (j = 1, · · · , N − 1).
Consequently, the Lorentz indices µ1, · · · , µP are distributed over the pj ’s, lk and the
metric tensor, which will be discussed in the next subsection.

2.2 Decomposition of the FVC tensor integrals

In the infinite volume, the tensor integrals can be decomposed into Lorentz-covariant struc-
tures, as illustrated, e.g., in refs. [28, 29]. Similar procedure of tensor decomposition can
be applied to the FVC tensor integrals.

To that end, a typical rank-P tensor is introduced,

L̃µ1···µP = {g · · · g︸ ︷︷ ︸
s

p · · · p n · · ·n︸ ︷︷ ︸
r

}µ1···µP
i2s+1···iP−2s−r

, (2.9)

where nµ = (0,n) is the unit space-like four vector , which is related to lk via lµk = nµL.
The rank-P tensor comprises s metric tensors, r unit space-like vectors and P − 2s − r
momenta pi2s+1 , · · · , piP−2s−r , with i2s+1, · · · , iP−2s−r ∈ {1, · · · , N − 1}. Furthermore,
the curly braces denote that the Lorentz indices are assigned as follows. First, 2s out
of P Lorentz indices are distributed over the metric tensors and any pair of them are
symmetrical. Second, the n-vectors occupy r Lorentz indices from the remaining ones.
Third, the rest Lorentz indices are assigned to the momenta pµ2s+1

i2s+1
· · · pµP−2s−r

iP−2s−r
. Only one

representative out of the P − 2s− r permutations of the indices ij is kept. As a result, the
number of terms appearing in eq. (2.9) is

C2
PC

2
P−2 · · ·C2

P−2s+2
s! × CrP−2s = P !

2s s! r! (P − 2s− r)! . (2.10)

Some instructive examples are given below:

{pp · · · p}µ1µ2···µP
i1i2···iP = pµ1

i1
pµ2
i2
· · · pµPiP , (2.11)

{pn}µ1µ2
i1

= pµ1
i1
nµ2 + nµ1pµ2

i1
, (2.12)

{ppn}µ1µ2µ3
i1i2

= pµ1
i1
pµ2
i2
nµ3 + pµ1

i1
nµ2pµ3

i2
+ nµ1pµ2

i1
pµ3
i2
, (2.13)

{pnn}µ1µ2µ3
i1

= pµ1
i1
nµ2nµ3 + nµ1pµ2

i1
nµ3 + nµ1nµ2pµ3

i1
, (2.14)

{gn}µ1µ2µ3 = gµ1µ2nµ3 + gµ1µ3nµ2 + gµ2µ3nµ1 , (2.15)
{gpn}µ1µ2µ3µ4

i1
= gµ1µ2(pµ3

i1
nµ4 + nµ3pµ4

i1
) + gµ1µ3(pµ2

i1
nµ4 + nµ2pµ4

i1
)

+ gµ1µ4(pµ2
i1
nµ3 + nµ2pµ3

i1
) + gµ2µ3(pµ1

i1
nµ4 + nµ1pµ4

i1
)

+ gµ2µ4(pµ1
i1
nµ3 + nµ1pµ3

i1
) + gµ3µ4(pµ1

i1
nµ2 + nµ1pµ2

i1
) , (2.16)

{gg}µ1µ2µ3µ4 = gµ1µ2gµ3µ4 + gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3 . (2.17)

With the help of the rank-P tensor, one can decompose the one-loop tensor integrals
into the form as

T̃N,µ1µ2···µP =
∑
n 6=0

T̂N,µ1µ2···µP , (2.18)

– 6 –
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with

T̂N,µ1µ2···µP =
[P/2]∑
s=0

P−2s∑
r=0

N−1∑
i2s+1=1,
···

iP−2s−r=1

{
g · · ·g︸ ︷︷ ︸
s

p · · ·pn · · ·n︸ ︷︷ ︸
r

}µ1···µP
i2s+1···iP−2s−r

T̂N0···0︸︷︷︸
2s

i2s+1···iP−2s−rN ···N︸ ︷︷ ︸
r

.

(2.19)
Here [P/2] is the floor function, which maps a real number to the largest integer less than
or equal to P/2. The hat over T̂ indicates the dependence on the vector n. It should be
mentioned that the tensor coefficient T̂N0···0i2s+1···iP−2s−rN ···N is invariant with respect to per-
mutation of the subscripts ij ’s. Thus, in practice it is usual to choose a representative with
the ij indices arranged in ascending order. For instance, Ĉ001233 = Ĉ002133 and we choose
to use Ĉ001233 as the representative. It is worth pointing out that there are no counterparts
in the infinite volume for those tensor coefficients with subscripts “N” in eq. (2.19).

For future reference, decomposition of the FVC tensor integrals up to rank 5 are
explicitly listed below.

T̂N,µ =
N−1∑
i=1

pµi T̂
N
i + nµT̂NN , (2.20)

T̂N,µν = gµν T̂N00 +
N−1∑
i,j=1

pµi p
ν
j T̂

N
ij +

N−1∑
i=1
{pn}µνi T̂NiN + nµnν T̂NNN , (2.21)

T̂N,µνρ =
N−1∑
i=1
{gp}µνρi T̂N00i + {gn}µνρT̂N00N +

N−1∑
i,j,k=1

pµi p
ν
j p
ρ
kT̂

N
ijk (2.22)

+
N−1∑
i,j=1
{ppn}µνρij T̂NijN +

N−1∑
i=1
{pnn}µνρi T̂NiNN + nµnνnρT̂NNNN ,

T̂N,µνρσ = {gg}µνρσT̂N0000 +
N−1∑
i,j=1
{gpp}µνρσij T̂N00ij +

N−1∑
i=1
{gpn}µνρσi T̂N00iN (2.23)

+ {gnn}µνρσT̂N00NN +
N−1∑

i,j,k,l=1
pµi p

ν
j p
ρ
kp
σ
l T̂

N
ijkl +

N−1∑
i,j,k=1

{pppn}µνρσijk T̂NijkN

+
N−1∑
i,j=1
{ppnn}µνρσij T̂NijNN +

N−1∑
i=1
{pnnn}µνρσi T̂NiNNN + nµnνnρnσT̂NNNNN ,

T̂N,µνρσα =
N−1∑
i=1
{ggp}µνρσαi T̂N0000i + {ggn}µνρσαT̂N0000N +

N−1∑
i,j,k=1

{gppp}µνρσαijk T̂N00ijk (2.24)

+
N−1∑
i,j=1
{gppn}µνρσαij T̂N00ijN +

N−1∑
i=1
{gpnn}µνρσαi T̂N00iNN + {gnnn}µνρσαT̂N00NNN

+
N−1∑

i,j,k,l,r=1
pµi p

ν
j p
ρ
kp
σ
l p

α
r T̂

N
ijklr +

N−1∑
i,j,k,l=1

{ppppn}µνρσαijkl T̂NijklN +
N−1∑
i,j,k=1

{pppnn}µνρσαijk T̂NijkNN

+
N−1∑
i,j=1
{ppnnn}µνρσαij T̂NijNNN +

N−1∑
i=1
{pnnnn}µνρσαi T̂NiNNNN + nµnνnρnσnαT̂NNNNNN .
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Obviously, once the coefficients T̂N0···0i2s+1···iP−2s−rN ···N are known, all the FVC tensor
integrals are determined. In the next subsection, we will derive a compact formula suitable
for the numerical computation of the tensor coefficients.

2.3 Evaluation of the coefficients

By the application of Feynman parameterization, the right hand side of eq. (2.8) can be
rewritten as

T̃N,µ1,··· ,µP =
∑
n 6=0

∫ 1

0
dXN

{
1
i

∫ ddk
(2π)d e

−ilk·k kµ1 · · · kµP[
(k + PN )2 −M2

N + i0+]N
}
, (2.25)

where the abbreviation
∫ 1

0 dXN ≡ Γ(N)
∫ 1

0 dx1 · · ·
∫ 1

0 dxN−1x2 · · ·xN−2
N−1 has been used, and

xi (i = 1, · · · , N − 1) are the Feynman parameters. The PN andM2
N in the denominator

can be obtained by using the following recursive relations

Pj+1 = xjPj + (1− xj)pj , P1 = p0 , (2.26)
Q2
j+1 = xjQ2

j + (1− xj)(m2
j+1 − p2

j ) , Q2
1 = m2

1 − p2
0 , (2.27)

M2
j+1 = Q2

j+1 + P2
j+1 , (2.28)

with p0 = 0 and j = 1, · · · , N − 1.
The remaining task is to perform the momentum integration. In general, it is much

easier to do the integration in Euclidean space than in Minkowski space, due to the fact
that d-dimensional spherical coordinates can be imposed. The integral in the curly braces
of eq. (2.25) is then changed to that in Euclidean space by making use of Wick rotation,
which gives {

· · ·
}
E

= (−1)N
∫ ddkE

(2π)d e
ilk·kE kµ1

E · · · k
µP
E[

(kE + PEN )2 +ME,2
N

]N . (2.29)

Here, we define kµE ≡ (k0,~k) with k0 = ik0
E and ~k = ~kE , same for all the other involved

momenta. One should keep in mind that now the corresponding metric tensor of Euclidean
tensor is δµν = diag(1, 1, 1, 1), rather than gµν with signature (1,−1,−1,−1).

To proceed, the Gaussian parameterization eq. (A.1) is used to rewrite the denominator
factors into an exponential form as{
· · ·
}
E

= (−1)N
Γ(N)

∫ ddkE
(2π)d

∫ ∞
0

dλλN−1 {kµ1
E · · · k

µP
E } e

−λ[(kE+PEN )2+ME,2
N ]+ilk·kE . (2.30)

Next, we complete the square for kE in the exponential factor and shift it to k̄E = kE +
PEN −

ilk
2λ , which yields{
· · ·
}
E

= (−1)N
Γ(N) e

−ilk·PEN
∫ ∞

0
dλλN−1e−λM

E,2
N −

l2
k

4λ

×
{∫ ddk̄E

(2π)d
[
k̄E + ilk

2λ − P
E
N

]µ1

· · ·
[
k̄E + ilk

2λ − P
E
N

]µP
e−λk̄

2
E

}
. (2.31)
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One notices that the domain of the momentum integral is symmetric about zero, therefore
the terms with odd numbers of k̄E ’s vanish. Namely, only the terms with even numbers of
k̄E ’s survive. They can be reformulated by utilizing the following identity

k̄µ1
E · · · k̄

µ2s
E = 1

2s(d/2)s
{δ · · · δ}µ1···µ2s

(
k̄2
E

)s
,

where (d/2)s = Γ(d2 + s)/Γ(d2) is the Pochhammer symbol, cf. eq. (A.5), and the small
curly braces are the same as the ones used in eq. (2.9). Consequently, the integrand is a
function of the magnitude of k̄E and the momentum integral can be performed by employing
eq. (A.4). One obtains

{
· · ·
}
E

=
[P/2]∑
s=0

(−1)Ne−ilk·PEN
2s(4π)d/2Γ(N)

∫ ∞
0

dλ
{
δ · · · δ︸ ︷︷ ︸

s

P ′EN · · · P ′EN
}µ1···µP λN−s−

d
2−1e−λM

E,2
N −

l2
k

4λ ,

with P ′EN ≡
ilk
2λ − P

E
N = inL

2λ − P
E
N . The above equation can be rewritten as

{
· · ·
}
E

=
[P/2]∑
s=0

P−2s∑
r=0

(−1)Ne−ilk·PEN
2s(4π)d/2Γ(N)

{
δ · · · δ︸ ︷︷ ︸

s

PEN · · · PEN n · · ·n︸ ︷︷ ︸
r

}µ1···µP

×
(
iL

2

)r
(−1)P−2s−r

∫ ∞
0

dλλN−s−r−
d
2−1e−λM

E,2
N −

l2
k

4λ , (2.32)

where the rank-P tensor has now been moved out of the λ integral. In view of eq. (A.2),
the λ integral can be readily expressed in terms of the modified Bessel functions. Further,
we change the above equation to the Minkowski space and substitute it back to eq. (2.25).
The result is

T̃N,µ1,··· ,µP =
∑
n 6=0

[P/2]∑
s=0

P−2s∑
r=0

(−1)N+P−s−r

2s(4π)d/2Γ(N)

(
iL

2

)r ∫ 1

0
dXN

{
g · · · g︸ ︷︷ ︸

s

PN · · · PN n · · ·n︸ ︷︷ ︸
r

}µ1···µP

× eilk·PNKN−s−r− d2 ( |n|
2L2

4 ,M2
N ) , (2.33)

where Kz is the modified Bessel function. The expression of PN can be explicitly written as

PN =
N−1∑
j=1

Xj
Npj , Xj

N =

 xN−1 · · ·xj+1(1− xj) for N − 1 ≥ j + 1
1− xj otherwise

, (2.34)

which is obtained through eq. (2.26). One can rearrange eq. (2.33) by inserting eq. (2.34)
and get

T̃N,µ1,··· ,µP =
∑
n 6=0

[P/2]∑
s=0

P−2s∑
r=0

N−1∑
i2s+1=1
···

iP−2s−r=1

{g · · ·g︸ ︷︷ ︸
s

p · · ·pn · · ·n︸ ︷︷ ︸
r

}µ1µ2···µP
i2s+1,··· ,iP−2s−r

(−1)N+P−s−r

(4π)d/22s
(
iL

2

)r

×
∫ 1

0
dXNX

i2s+1
N · · ·XiP−2s−r

N eilk·PNKN−s−r− d2 ( |n|
2L2

4 ,M2
N ) , (2.35)

with
∫

dXN ≡ 1
Γ(N)

∫ 1
0 dXN =

∫ 1
0 dx1 · · ·

∫ 1
0 dxN−1x2 · · ·xN−2

N−1.
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Eventually, by comparing with eq. (2.18) and eq. (2.19), we obtain a general expression
for the coefficients, which reads

T̂0···0︸︷︷︸
2s

i2s+1···iP−2s−r N ···N︸ ︷︷ ︸
r

= 2
(4π)d/2

(−1)N+P−s−r

2s
(
iL

2

)r ∫ 1

0
dXNX

i2s+1
N · · ·XiP−2s−r

N eiLn·PN

×
( |n|2L2

4M2
N

)N−s−r−d/2
2

K|N−s−r− d2 |
(|n|LMN ) , (2.36)

whereMN ≡
√
M2

N . Here Kz(Y ) is the modified Bessel function of the second kind (A.2),
which possesses the property of Kz(Y ) = K−z(Y ). It can be seen that the Lorentz in-
variance is broken by n · PN in the exponent. One can consult appendix D for the tensor
decompositions of 1-, 2-, 3- and 4-point tensor integrals up to rank 4 or 5. Explicit expres-
sions of the tensor coefficients showing up in those decompositions are shown as well.

3 Reduction of tensor coefficients

In this section, it will be shown that, e.g., in the CM frame, the tensor decomposition of
eq. (2.19) can be further simplified into a more compact form. This is achieved by promoting
the rank-P tensor to a form irrelevant to the unit space-like vector. Consequently, the finite-
volume sum over n can be done prior to the others, resulting in the n-independent tensor
coefficients. Then, we find that it is feasible to apply the procedure of PV reduction to the
n-independent tensor coefficients. General recurrence relations are obtained.

3.1 CM frame

In practice, it is usually convenient to compute FVC in the rest frame of a decaying particle
or in the CM frame of a scattering system. In these frames, the net three momentum is
zero. Here, we consider a more restricted case that

lk · pi = 0⇐⇒ n · pi = 0 , i = 1, · · · , N − 1 . (3.1)

Following ref. [19], the frame with the above constraint is also referred to as CM frame.
This condition can be satisfied by, e.g., elastic two-body forward scattering at threshold,
mass renormalization in the rest frame, etc.

In the CM frame, the L̃µ1···µP tensors with the odd numbers of n-vectors vanish. On
the contrary, terms with the even numbers of n-vectors may survive. See appendix C for a
detailed proof. Consequently, for the rank-P tensor, its dependence on n can be relieved.
This can be easily accomplished by employing eq. (C.18), i.e.∑

n 6=0
nµ1 · · ·nµ2tF (n2) = 1

2t(ds/2)t
{h · · ·h}µ1···µ2t

∑
n 6=0

(n2)tF (n2) , (3.2)

where ds ≡ d − 1, (ds/2)t is the Pochhammer symbol and F (n2) is an arbitrary function
with respect to the module of n. Furthermore, the auxiliary tensor hµν is defined,

hµν ≡ gµν − h̄µh̄ν = diag(0,−1,−1,−1) , h̄µ = (1, 0, 0, 0) . (3.3)
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ns 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ϑ(ns) 6 12 8 6 24 24 0 12 30 24 24 8 24 48 0 6 48 36 24 24
ns 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

ϑ(ns) 48 24 0 24 30 72 32 0 72 48 0 12 48 48 48 30 24 72 0 24

Table 1. The values of multiplicity up to ns = 40.

The effect of contracting a four vector with the h-tensor is to eliminate the zero-th com-
ponent of the vector. For more information on the properties of the h-tensor, we refer the
readers to appendix B. Due to the introduction of the h metric tensor, the rank-P tensor
is now irrelevant of n, enabling us to perform the sum over n in advance. Consequently,
the tensor decomposition of the FVC integrals becomes

T̃N,µ1µ2···µP =
[P2 ]∑
s=0

[P−2s
2 ]∑
t=0

N−1∑
i2s+1=1
···

iP−2s−2t=1

{
g · · ·g︸ ︷︷ ︸
s

p · · ·ph · · ·h︸ ︷︷ ︸
t

}µ1···µP
i2s+1···iP−2s−2t

T̃N0···0︸︷︷︸
2s

i2s+1···iP−2s−2tN ···N︸ ︷︷ ︸
2t

,

(3.4)
where the n-independent coefficients are given by

T̃N0···0︸︷︷︸
2s

i2s+1···iP−2s−2tN ···N︸ ︷︷ ︸
2t

= 1
2t(ds/2)t

∑
n 6=0

[
(n2)t T̂N0···0︸︷︷︸

2s

i2s+1···iP−2s−2tN ···N︸ ︷︷ ︸
2t

]
. (3.5)

Some explicit examples are relegated to appendix E. Because the series in the sum rely
merely on n2, the triple sum can be replaced by a single sum over ns ≡ n2

1 + n2
2 + n2

3.
Nonetheless, the multiplicity of n for a given ns, denoted by ϑ(ns), should be taken into
account. Therefore, one has

T̃N0···0︸︷︷︸
2s

i2s+1···iP−2s−2tN ···N︸ ︷︷ ︸
2t

= (−1)t
2t(ds/2)t

∑
ns>0

[
ϑ(ns)nts T̂N0···0︸︷︷︸

2s

i2s+1···iP−2s−2tN ···N︸ ︷︷ ︸
2t

]
. (3.6)

For easy reference, the values of multiplicity ϑ(ns) for ns ≤ 40 are compiled in table 1.
It is worth noting that, in some regularization schemes other than dimensional reg-

ularization, momentum integration is performed with a regulator in order to avoid UV
divergences in the infinite volume. Correspondingly, at finite volume there usually exists
an upper limit for ns, see e.g. [41] for more discussions. Specifically, if a cut-off Λ is adopted
to restrict the momentum in the integration, the upper limit nmax of the summation in
eq. (3.6) is given by nmax

s = Ceiling[Λ2L2

4π2 ] .
More generally, for large argument the Bessel functions in the sum of eq. (3.6) decay

exponentially as

K|N−s−2t− d2 |
(x) ∼

√
π

2xe
−x , x = √nsLMN . (3.7)

Given that LMN � 1, the sum converges rapidly. Therefore, the sum can be truncated
at a certain value of ns, provided that a good approximation is generated for the complete
sum [22]. In another word, there is no need to sum ns to infinity in most cases.
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3.2 Passarino-Veltman reduction

As discussed above, in the CM frame only even numbers of n-vectors are left, of which every
two are replaced by an auxiliary tensor hµν . Under this circumstance, the PV reduction is
still valid [26], although the Lorentz invariance is absent. The essence of PV reduction is
to establish algebraic relations between the tensor coefficients, by means of contracting the
tensor integrals, i.e. eq. (2.1), with external momenta piµ and the metric tensor gµν . For
more details, the readers are referred to refs. [26, 28, 29]. The relations at finite volume
are more complicated.

Let us start with the simplest situation. That is to deal with the one-point tensor
integrals. It is obvious, as can be seen from eq. (2.1), that they are irrelevant to external
momenta. Therefore, they can only be contracted by the metric tensor, leading to reduction
of tensor rank and cancellation of denominators. After the decomposition equations (3.4)
are imposed, the recurrence relations can be read off by comparing coefficients,

[
(d− 1) + 2(t− 1)

]
Ã0···0︸︷︷︸

2s

1···1︸︷︷︸
2t

+
[
d+ 2s+ 4(t− 1)

]
Ã0···0︸︷︷︸

2s+2

1···1︸︷︷︸
2t−2

= m2
1Ã0···0︸︷︷︸

2s

1···1︸︷︷︸
2t−2

. (3.8)

Specifically, the relations up to rank 6 are given below.

dÃ00 + (d− 1)Ã11 = m2
1Ã0 , (3.9)

(d+ 2)Ã0000 + (d− 1)Ã0011 = m2
1Ã00 , (3.10)

(d+ 4)Ã0011 + (d+ 1)Ã1111 = m2
1Ã11 , (3.11)

(d+ 4)Ã000000 + (d− 1)Ã000011 = m2
1Ã0000 , (3.12)

(d+ 6)Ã000011 + (d+ 1)Ã001111 = m2
1Ã0011 , (3.13)

(d+ 8)Ã001111 + (d+ 3)Ã111111 = m2
1Ã1111 . (3.14)

All the above relations can either be checked numerically by inserting eq. (2.36) and
eq. (3.5), or be verified by the recurrence relations of the modified Bessel functions Kz(Y ),
eq. (A.3).

In the infinite volume, one-point tensor integrals can be uniformly expressed in terms
of the scalar integral A0, see e.g. eq. (3.4) of ref. [29]. It is also interesting to discuss the
analogue for the case of FVC. To that end, it can be found from figure 1 that all the one-
loop FVC integrals can be reduced to a linear combination of Ã0···0︸︷︷︸

2s

with s = 0, 1, 2, · · · .

Thus, the Ã0, Ã00, Ã0000, etc., can be adopted as the tensor basis. More specifically, the
tensor coefficients of one-point integrals can be expressed by

Ã0···0︸︷︷︸
2s

1···1︸︷︷︸
2t

=
t∑
i=0

{ [m2
1]t−i∏t

j=1 a(j)

1∑
i1=0
···
it=0

[
δ
i,
∑t

j=1 ij

t∏
j=1

[b(j)]ij
]
Ã 0···0︸︷︷︸

2(s+i)

}
, (3.15)

where a(j) = (d− 1) + 2(j − 1), b(j) = −[d+ 2s+ 4(j − 1)], and δ is the Kronecker delta.
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Ã0

Ã00 Ã11

Ã0000 Ã0011 Ã1111

Ã000000 Ã000011 Ã001111 Ã111111

⋮ ⋮ ⋮ ⋮ ⋱

Figure 1. Schematic roadmap for PV reduction of one-point FVC tensor integrals. The dashed
lines with arrows represent simplification operations by the recursive use of eq. (3.8). The coefficients
on the left, enclosed in the boxes, are regarded as tensor basis.

As for two-point integrals, the contraction of the external momentum p1µ makes us
obtain the equation as

2p2
1B̃0···0︸︷︷︸

2s

1···1︸︷︷︸
`+1

2···2︸︷︷︸
2t

+ 2`B̃0···0︸︷︷︸
2s+2

1···1︸︷︷︸
`−1

2···2︸︷︷︸
2t

= δ`0Ã0···0︸︷︷︸
2s

1···1︸︷︷︸
2t

(2)− (−1)`Ã0···0︸︷︷︸
2s

1···1︸︷︷︸
2t

(1)− f2B̃0···0︸︷︷︸
2s

1···1︸︷︷︸
`

2···2︸︷︷︸
2t

, (3.16)

with f2 = p2
1−m2

2 +m2
1. Here Ã(k) means that it is obtained by omitting the k-th denom-

inator in eq. (2.1). On the other hand, an extra relation can be deduced by contracting
the metric tensor, which reads

[d+ 2s+ 2`+ 4t]B̃0···0︸︷︷︸
2s+2

1···1︸︷︷︸
`

2···2︸︷︷︸
2t

+ [(d− 1) + 2t]B̃0···0︸︷︷︸
2s

1···1︸︷︷︸
`

2···2︸︷︷︸
2t+2

+ p2
1B̃0···0︸︷︷︸

2s

1···1︸︷︷︸
`+2

2···2︸︷︷︸
2t

= (−1)P−2−2(t+s)Ã0···0︸︷︷︸
2s

1···1︸︷︷︸
2t

(1) +m2
1B̃0···0︸︷︷︸

2s

1···1︸︷︷︸
`

2···2︸︷︷︸
2t

. (3.17)

Explicit relations for arbitrary rank are obtainable by just setting s, ` and t to the values
as needed. For the sake of easy reference, here we show the relations for the two-point
integrals up to rank 4.

p2
1B̃1 + 1

2(p2
1 +m2

1−m2
2)B̃0 = 1

2Ã0(m2
1)− 1

2Ã0(m2
2) . (3.18)

p2
1B̃11 +dB̃00 +(d−1)B̃22 = Ã0(m2

2)+m2
1B̃0 , (3.19)

p2
1B̃11 +B̃00 + 1

2(p2
1 +m2

1−m2
2)B̃1 = 1

2Ã0(m2
2) . (3.20)

p2
1B̃111 +(d+2)B̃001 +(d−1)B̃122 =m2

1B̃1−Ã0(m2
2) , (3.21)

p2
1B̃111 +2B̃001 + 1

2(p2
1 +m2

1−m2
2)B̃11 =−1

2Ã0(m2
2) , (3.22)

p2
1B̃001 + 1

2(p2
1 +m2

1−m2
2)B̃00 = 1

2
[
Ã00(m2

1)−Ã00(m2
2)
]
, (3.23)
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B̃0

B̃1

B̃00 B̃11 B̃22

B̃0000 B̃0011 B̃1111 B̃0022 B̃2222B̃1122

B̃00001 B̃00111 B̃11111 B̃00122B̃11122 B̃12222

B̃001 B̃111 B̃122

⋮ ⋮ ⋮ ⋮⋮⋮ ⋱⋱

Figure 2. Schematic roadmap for PV reduction of two-point FVC tensor coefficients. The solid
and dashed lines stand for the recursive applications of eq. (3.16) and eq. (3.17), respectively. The
boxed tensor coefficients are taken as the basis.

p2
1B̃122 + 1

2(p2
1 +m2

1−m2
2)B̃22 = 1

2
[
Ã11(m2

1)−Ã11(m2
2)
]
. (3.24)

p2
1B̃1111 +(d+4)B̃0011 +(d−1)B̃1122 = Ã0(m2

2)+m2
1B̃11 , (3.25)

p2
1B̃0011 +(d+2)B̃0000 +(d−1)B̃0022 = Ã00(m2

2)+m2
1B̃00 , (3.26)

p2
1B̃1122 +(d+4)B̃0022 +(d+1)B̃2222 = Ã11(m2

2)+m2
1B̃22 , (3.27)

p2
1B̃1111 +3B̃0011 + 1

2(p2
1 +m2

1−m2
2)B̃111 = 1

2Ã0(m2
2) , (3.28)

p2
1B̃0011 +B̃0000 + 1

2(p2
1 +m2

1−m2
2)B̃001 = 1

2Ã00(m2
2) , (3.29)

p2
1B̃1122 +B̃0022 + 1

2(p2
1 +m2

1−m2
2)B̃122 = 1

2Ã11(m2
2) . (3.30)

It should be noted that some of the above relations have been given in ref. [20], though dif-
ferent notations are adopted therein. It can be found that, by solving the above equations,
the tensor coefficients of two-point integrals can be reduced to the ones with lower rank
and one-point tensor coefficients. A typical reduction procedure is graphically illustrated
in figure 2. The number of subscripts “2” is reduced by recursively utilizing eq. (3.17),
which is represented by the dashed lines in figure 2. Meanwhile, the indices “1” can be
eliminated by making use of eq. (3.16), and the corresponding procedure is indicated by
the solid lines in figure 2. In the end, only those tensor coefficients with even numbers of
“0” survive, just like the case for one-point integrals.

Likewise, the reduction of the coefficients of N -point (N > 3) tensor integrals can be
achieved recursively as well. The reduction procedure of two-point tensor coefficients can
be straightforwardly extended to the N -point cases.
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For a given N -point rank-P tensor integral, the contraction of momentum pµ1
j yields

the following relationship of the coefficients

2
P−1−2s−2t∑
r=2s+1

δjir T̃
N
0···0︸︷︷︸

2(s+1)

i2s+1···/ir···iP−1−2s−2tN ···N︸ ︷︷ ︸
2t

+
N−1∑
m=1

Z
(N−1)
jm T̃N0···0︸︷︷︸

2s

mi2s+1···iP−1−2s−2tN ···N︸ ︷︷ ︸
2t

= δ̄ji2s+1 · · · δ̄jiP−1−2s−2t T̃
N−1
0···0︸︷︷︸

2s

(i2s+1)j ···(iP−1−2s−2t)j N−1···N−1︸ ︷︷ ︸
2t

(j + 1)

− T̃ ′N−1
0···0︸︷︷︸

2s

i2s+1···iP−1−2s−2tN ···N︸ ︷︷ ︸
2t

(1)− fj+1T̃
N
0···0︸︷︷︸

2s

i2s+1 ···iP−1−2s−2tN ···N︸ ︷︷ ︸
2t

, (3.31)

where δ̄ij ≡ 1− δij , fj ≡ p2
j−1 −m2

j +m2
1 and ir ∈ {1, · · · , N − 1}. In the first term of the

above equation, a slashed index is to indicate that the index is omitted. Here, (ir)j = ir
if j > ir, and (ir)j = ir − 1 if j < ir. It is worth noting that the above relation for FVC
is in the same form as the one in the infinite volume, given in e.g. ref. [29]. This is due
to the fact that no extra terms are generated in our case of FVC, thanks to the identity
pµ1
j hµ1µ2 = 0. The Gram matrix is defined by

Z(N−1) =


2p1 · p1 · · · 2p1 · pN−1

... . . . ...
2pN−1 · p1 · · · 2pN−1 · pN−1

 . (3.32)

Besides, the contraction of gµ1µ2 leads to the equation

[d+ 2s+ 2`+ 4t]T̃N0···0︸︷︷︸
2(s+1)

i2s+1···iP−2−2s−2tN ···N︸ ︷︷ ︸
2t

+ [(d− 1) + 2t]T̃N0···0︸︷︷︸
2s

i2s+1···iP−2−2s−2tN ···N︸ ︷︷ ︸
2(t+1)

+ 1
2

N−1∑
n,m=1

Z(N−1)
nm T̃N0···0︸︷︷︸

2s

nmi2s+1···iP−2−2s−2tN ···N︸ ︷︷ ︸
2t

= T̃ ′, N−1
0···0︸︷︷︸

2s

i2s+1···iP−2−2s−2tN ···N︸ ︷︷ ︸
2t

(1) +m2
1 T̃

N
0···0︸︷︷︸

2s

i2s+1···iP−2−2s−2tN ···N︸ ︷︷ ︸
2t

, (3.33)

with ` = P − 2− 2s− 2t.
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T̃N
0

T̃N
i1

T̃N
00 T̃N

i1i2 T̃N
NN

T̃N
0000 T̃N

00i1i2 T̃N
i1i2i3i4 T̃N

00NN T̃N
NNNNT̃N

i1i2NN

T̃N
0000i1 T̃N

00i1i2i3 T̃N
i1i2i3i4i5 T̃N

00i1NNT̃N
i1i2i3NN T̃N

i1NNNN

T̃N
00i1

T̃N
i1i2i3 T̃N

i1NN

⋮ ⋮ ⋮ ⋮⋮⋮ ⋱⋱

Figure 3. Schematic roadmap for PV reduction of N -point FVC tensor coefficients. The solid
and dashed lines stand for the recursive applications of eq. (3.31) and eq. (3.33), respectively. The
boxed tensor coefficients are taken as the basis.

In eq. (3.31) and eq. (3.33), the coefficients of the non-standard tensor integral, labelled
by a prime, can be re-expressed in terms of the ones of the standard tensor integral, i.e.,

T̃ ′N−1
0···0︸︷︷︸

2s

1···1︸︷︷︸
n

i2s+n+1···iP−2s−2t−nN ···N︸ ︷︷ ︸
2t

(1)

= (−1)n
n∑

m=0
Cmn

N−2∑
i1=1,
···

im=1

T̃N−1
0···0︸︷︷︸

2s

i1···imi2s+n+1−1···iP−2s−2t−n−1N−1···N−1︸ ︷︷ ︸
2t

(1) . (3.34)

The non-standard tensor integral is defined by omitting the first denominator factor D1 in
eq. (2.1).

Schematic illustration of PV reduction of N -point FVC tensor coefficients is displayed
in figure 3. The solid and dashed lines denote the utilizing of eq. (3.31) and eq. (3.33),
respectively.

It should be pointed out that we only aim at finding out the feasibility of PV reduction
and the existence of a tensor basis for the one-loop integrals at finite volume. It is a first
attempt and has its own limitations. For instance, the Gram matrix eq. (3.32) may appear
in the denominator during the reduction procedure. Numerical instabilities could be caused
when it is small. In some special cases, the Gram matrix can even be identical to zero, and
alternative reduction approaches should be employed. See e.g. ref. [29] and the references
therein. Anyway, one can always use eq. (3.5) or eq. (3.6) for a practical calculation when
the above-mentioned drawbacks are encountered.
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(a) (b)

Figure 4. Leading one-loop Feynman diagrams contributing the nucleon mass in baryon ChPT
with pions, nucleons and deltas as explicit degrees of freedom. The solid, dashed and double lines
represent nucleons, pions and deltas, in order. The black dots denote vertices of O(p1).

4 A pedagogic example of application

The calculation of the nucleon mass up to next-to-leading order in the chiral perturbation
theory can be found elsewhere [10, 42–44]. For the sake of easy comparison, the explicit
expressions of the one-loop self-energies, given by ref. [10], are compiled in appendix F.
Here, we are going to recalculate the FVC to the nucleon mass using the formulation of the
one-loop integrals proposed in this work. The effects of FVC stem only from loop diagrams.
Relevant Feynman diagrams contributing to the nucleon mass at leading one-loop order are
shown in figure 4. The chiral effective Lagrangians can be found, e.g., in ref. [44], and the
corresponding Feynman rules are given in ref. [45]. Our explicit expressions of the one-loop
self-energies are relegated to appendix F.

It can be seen from eq. (F.6) and eq. (F.7) that it is convenient to decompose the
self-energy of the nucleon into the form as

Σ(/p, /n) = A+ /pB +
∑
n 6=0

/nC , (4.1)

where A, B and C are functions with respect to scalar products of the external momentum
pµ and the unit space-like vector nµ. The occurrence of the third term is due to the
introduction of spatial boundary conditions of the finite volume.

For diagram (a), in view of eq. (F.6), one obtains

Aa = 3g2
AmN

4F 2
π

∑
n 6=0

{
sB̂0 + 2sB̂1 + dB̂00 + sB̂11 + n2B̂22 − 2n · p

[
B̂2 + B̂12

]}
,

Ba = 3g2
A

4F 2
π

∑
n 6=0

{
sB̂1 + 2sB̂11 + 2dB̂00 + (d+ 2)B̂001 + sB̂111

+ n2
[
2B̂22 + B̂122

]
− 2n · p

[
B̂2 + 2B̂12 + B̂112

]}
,

Ca = 3g2
A

4F 2
π

{
sB̂2 − (d+ 2)B̂002 − sB̂112 − n2B̂222 + 2n · pB̂122

}
, (4.2)

with s ≡ p2. The explicit expressions of the tensor coefficients B̂ can be found in ap-
pendix D. Here gA is the axial coupling constant, Fπ is the pion decay constant, and mN

denotes the nucleon mass in the chiral limit. The arguments of the loop functions are omit-
ted for brevity. In the CM frame, i.e. the rest frame of the nucleon, one has ū(p)/nu(p) = 0,
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hence the term C is switched off. In the meantime, A and B can be simplified to

Aa = 3g2
AmN

4F 2
π

{
sB̃0 + 2sB̃1 + dB̃00 + sB̃11 + (d− 1)B̃22

}
,

Ba = 3g2
A

4F 2
π

{
sB̃1 + 2sB̃11 + 2dB̃00 + (d+ 2)B̃001 + sB̃111 + (d− 1)

[
2B̃22 + B̃122

]}
. (4.3)

It can be seen that the tensor coefficients with odd numbers of indices “2” disappear. They
can be further simplified by making use of PV reduction,

Aa(L) = 3g2
AmN

4F 2
π

{
Ã0(m2

N ;L) +M2
πB̃0(m2

N ,m
2
N ,M

2
π ;L)

}
,

Ba(L) = 1
mN
Aa(L) , (4.4)

where the arguments of the loop functions are now explicitly shown. Here Mπ is the pion
mass and L is the size of the spatial cubic box.

The same procedure can be conducted on diagram (b), which yields

Ab(L)=− h2
A

3F 2
πm∆

{
(m2

∆−m2
N+3M2

π)Ã0(M2
π ;L)−(m2

∆+m2
N−M2

π)Ã0(m2
∆;L)

+λ(m2
∆,m

2
N ,M

2
π)B̃0(m2

N ,m
2
∆,M

2
π ;L)

}
,

Bb(L)= h2
A

6F 2
πm

2
∆m

2
N

{
λ(m2

∆,m
2
N ,M

2
π)Ã0(m2

∆;L)−[(m2
∆−M2

π)2−m4
N+4m2

NM
2
π ]Ã0(M2

π ;L)

+4m2
N [Ã00(m2

∆;L)−Ã00(M2
π ;L)]

+λ(m2
∆,m

2
N ,M

2
π)(m2

∆+m2
N−M2

π)B̃0(m2
N ,m

2
∆,M

2
π ;L)

}
, (4.5)

with λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc being the Källén function. The coupling
constant of the πN∆ interaction is denoted by hA, and m∆ is mass of the delta resonance
in the chiral limit. As expected, only scalar integrals and tensor coefficients, with even
numbers of indices “0”, show up in the PV reduced results.

Eventually, the expression of the FVC on the nucleon mass reads

mFVC
N (L) =

[
A(L) +mNB(L)

]
, (4.6)

with

A(L) = Aa(L) +Ab(L) , B(L) = Ba(L) + Bb(L) . (4.7)

The FVC result of the nucleon mass is unique in form after PV reduction, and hence it is
portable and convenient to be used elsewhere.

In our numerical computation, the values of the involved parameters are set to be:
gA = 1.27, hA = 1.35, Fπ = 92.2MeV and Mπ = 134MeV. For the masses in the chiral
limit, we take mN = 890MeV and m∆ = 1170MeV from ref. [10]. Our results are plotted
in figure 5. The red dashed, black dotted and blue solid lines represent the contributions
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only N [Alvarez-Ruso et al, 2013]
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Figure 5. Left panel: FVC to the nucleon mass. Right panel: the L-dependence of the nucleon
mass with various values of the pion mass.

from diagrams (a), (b) and their sum, in order. The olive open squares stand for the
total contribution that is calculated by using the expressions without PV reduction. The
validity of the PV reduction for the FVC tensor coefficients is explicitly verified, due to
the fact that the numerical results with and without PV reduction are exactly the same,
as can be seen from the left panel of figure 5. We have also checked that our result of
diagram (a) is identical to the one calculated by employing eq. (F.3) (i.e., eq. (B27) in
ref. [10]). From figure 5, one could find that the contributions of the nucleon and delta
loops are comparable with each other, which implies the importance of the ∆ resonance in
the estimation of FVC to the nucleon mass.

In the right panel of figure 5, the L dependence of the FVCs with various values of
the pion mass are presented. It can be found that, for a given finite size L, the larger the
pion mass is, the smaller the FVC become. Figure 5 also indicates that the effect of FVC
on the nucleon mass becomes negligible when MπL & 3.

5 Summary and outlook

A systematical formulation has been advocated to handle the one-loop tensor integrals
at finite volume in a universal way. Unlike the infinite case, an extra unit-like space
vector arises from the periodical boundary conditions in cubic volume, which makes the
decomposition of the tensor integrals cumbersome. We have addressed this problem by
incorporating the unit-like space vector in the rank-P tensor, so that a novel decomposition
form of the tensor integrals can be established for the calculation of FVC to any physical
quantities of interest. As for the tensor coefficients in the decomposition, we have derived
a compact formula for them, which is suitable for numerical computations.

In the CM frame, the tensor coefficients can be simplified to a concise form by means
of PV reduction. Two general reduction relations are obtained. When the two formulae
are applied recursively, it is found that only the scalar integrals and tensor coefficients
proportional to the metric tensors are left to the very end, which can thus be chosen as
the tensor basis.
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Lastly, an example is given to illustrate the application of our formulation, where the
calculation of the FVC to the nucleon mass is shown step by step. We have also numerically
checked that the results with and without PV reduction are exactly the same, indicating
the correctness of PV reduction at finite volume.

In summary, our formulation is useful for the calculation of FVC at one-loop level
within the framework of perturbation theory, e.g., ChPT. On the other hand, the automa-
tion of calculations of FVC often turns out to be challenging due to the necessity of working
with quantities that lack Lorentz invariance. The formulation, we have obtained in this
work, pave a path for efficient computations of FVC, as it can be easily implemented in
high-energy physics packages such as FeynCalc [35–37] in future.
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A Some useful formulae

The Gaussian parameterization is given in the form as

1
DN

= 1
Γ(N)

∫ ∞
0

dλλN−1e−λD , (A.1)

with the Gamma function Γ. The formula for the integration of the λ parameter in eq. (A.1)
is represented by the modified Bessel functions of the second kind Kz(Y ) [46],

Kz(X,Y ) =
∫ ∞

0
dλλz−1e−Y λ−X/λ = 2

(
X

Y

) z
2
Kz(2

√
XY ) . (A.2)

The recurrence relation for the Bessel functions is [46]

Kz+1(Y )−Kz−1(Y ) = 2z
Y
Kz(Y ) . (A.3)

In the Euclidean space, the following kind of momentum integration over k̄E is needed,

∫
ddk̄E
(2π)d (k̄2

E)se−k̄2
E = 1

(4π) d2
Γ(d2 + s)

Γ(d2)
= 1

(4π) d2

(
d

2

)
s
, (A.4)

where (a)n is the Pochhammer symbol with n being non-negative integers. The definition
of the Pochhammer symbol is given by (e.g. see ref. [46])

(a)0 = 1 , (a)1 = a , (a)n+1 = a(a+ 1) · · · (a+ n) = Γ(a+ n+ 1)
Γ(a) (n ≥ 1) . (A.5)
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B Properties of the h-tensor

For completeness, the properties of the auxiliary tensor hµν in the Minkowski space are
collected in this appendix. The h-tensor is symmetrical with respect to its Lorentz in-
dices, i.e., hµν = hνµ. In four-dimensional space-time, it reads hµν = diag(0,−1,−1,−1).
Contractions of the Lorentz indices of the h-tensor lead to the following identities:

• hµµ = d− 1;

• hµνh
µν = d− 1;

• gµνh
µν = d− 1;

• gµνh
µρhνσ = hρσ;

• hµνp
µ = (0,−p) .

C Proof of eq. (3.2)

In a finite box, the rotational symmetry is broken down to the octahedral group O. Cor-
respondingly, vectors n with integer components transform under the group O as

n′i = [OT1(g)] ji nj , g ∈ O , (C.1)

where OT1(g) is the irreducible representation matrix in a three dimensional space. The ma-
trix OT1(g) is orthogonal and the transformation keeps the length of the vectors invariant,

ns ≡ n2
1 + n2

2 + n2
3 = n′21 + n′22 + n′23 ≡ n′s . (C.2)

In consequence, any scalar functions of ns are invariant. It is also evident that the sum
of all the vectors in the whole space remains unchanged, since the effect of transformation
under the symmetry group O is merely rotate one vector to another in the same space.
Therefore, the following identity holds∑

n 6=0
ni1 · · ·niuF (−ns) =

∑
n′ 6=0

n′i1 · · ·n
′
iuF (−n′s) . (C.3)

With the aid of eq. (C.1) and eq. (C.2), one obtains∑
n 6=0

ni1 · · ·niuF (−ns) =
∑
n 6=0

(
[OT1(g)] j1i1 nj1

)
· · ·
(
[OT1(g)] juiu nju

)
F (−ns)

= [OT1(g)] j1i1 · · · [O
T1(g)] juiu

∑
n 6=0

nj1 · · ·njuF (−ns) . (C.4)

For convenience, one may introduce a tensor of rank u,

Ti1···iu ≡
∑
n 6=0

ni1 · · ·niuF (−ns) , (C.5)
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Rank u Isotropic Cartesian tensors Total number N(u)
1 − −
2 δij 1
3 εijk 1
4 δijδkl , δikδjl , δilδjk 3
5 εijkδlm , εijlδkm , εijmδkl , εiklδjm , εikmδjl , εilmδjk 6
6 δijδklδmn , δijδkmδln , δijδknδlm , δikδjlδmn , δikδjmδln , 15

δikδjnδlm , δilδjkδmn , δilδjmδkn , δilδjnδkm , δimδjkδln ,
δimδjlδkn , δimδjnδkl , δinδjkδlm , δinδjlδkm , δinδjmδkl

Table 2. Distinct and independent isotropic Cartesian tensors up to rank 6. The total number is
calculated by using eq. (C.8).

and eq. (C.4) is simplified to

Ti1i2···iu = [OT1(g)] j1i1 [OT1(g)] j2i2 · · · [O
T1(g)] juiu Tj1j2···ju , ∀g ∈ O . (C.6)

The above equation indicates that the rank-u tensor Ti1i2···iu is an invariant tensor under
rotations of group O, which is also called isotropic Cartesian tensor [47]. Distinct and
linearly independent isotropic Cartesian tensors up to rank 6 are shown in table 2, and the
ones of ranks 7 and 8 can be found, e.g., in refs. [47–49].

In general, as proved in ref. [50], every isotropic Cartesian tensor of even rank can
be expressed as a linear combination of products of Kronecker deltas, and every isotropic
Cartesian tensor of odd rank is given by a linear combination of products of Kronecker
deltas and an alternating tensor. To be specific, the rank-u tensor Ti1i2···iu is written as

Ti1i2···iu =



N(u)∑
q=1

κq
[
εik1 ik2 ik3

δik4 ik5
· · · δik2t ik2t+1

]
q
, u = 2t+ 1 ,

N(u)∑
p=1

λp
[
δik1 ik2

· · · δik2t−1 ik2t

]
p
, u = 2t ,

(C.7)

where t = 1, 2, · · · and the k’s take values in {1, · · · , u}. Furthermore, N(u) is the total
number of independent tensors, which can be calculated by the following formulas [48],

N(u) =



u!

3!
(
u− 3

2

)
!2(n−3)/2

, u = 2t+ 1 ,

u!(
u

2

)
!2u/2

, u = 2t .
(C.8)

Here κq and λp are unknown coefficients, whose values will be determined below.
For the case of odd u, it can be seen from eq. (C.7) that, due to the presence of ε, there

must exist three i’s which are anti-symmetric. However, in view of eq. (C.5), the tensor T
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is totally symmetric with respect to its subscripts. Therefore, one may deduce that all the
coefficients κq should be equal to zero. Hence,

Ti1i2···i2t+1 =
∑
n 6=0

ni1 · · ·ni2t+1F (−ns) = 0 . (C.9)

It is worth mentioning that the above equation is also true for u = 1, due to the fact that
there is no isotropic Cartesian tensor of rank one, as can be seen from table 2.

For the case of even u, thanks to the above mentioned symmetry regarding the indices
of the tensor T , the coeffecients λp are identical. Namely,

λ1 = λ2 = · · · = λN(2t) ≡ λ(t) , (C.10)

which enables one to rewrite the second line of eq. (C.7) as

Ti1i2···i2t = λ(t) {δ · · · δ}i1i2···i2t , (C.11)

or equivalently ∑
n 6=0

ni1 · · ·ni2tF (−ns) = λ(t) {δ · · · δ}i1i2···i2t . (C.12)

Note that the notation {· · · } introduced in eq. (2.9) has been used. For instance,

{δ}i1i2 = δi1i2 , (C.13)
{δδ}i1i2i3i4 = δi1i2δi3i4 + δi1i3δi2i4 + δi1i4δi2i3 , (C.14)

· · · (C.15)

By contracting δi1i2δi3i4 · · · δi2t−1i2t on both sides of eq. (C.12), the coefficient λ(t) can be
obtained:

λ(t)
p = 1

(2t+ 1)!!
∑
n 6=0

(ns)tF (−ns) . (C.16)

Substituting it into eq. (C.12), one gets
∑
n 6=0

ni1 · · ·ni2tF (−ns) = 1
(2t+ 1)!! {δ · · · δ}i1i2···i2t

∑
n 6=0

(ns)tF (−ns) . (C.17)

In terms of the space vectors nµ = (0,n) and the auxiliary tensor hµν (hij = −δij and
hµν = 0 otherwise), one can recast eq. (C.9) and eq. (C.17) into forms as

∑
n 6=0

nµ1 ···nµ2t−1F (n2)=0, for odd number of nµ ,

∑
n 6=0

nµ1 ···nµ2tF (n2)= 1
2t(ds/2)t

{h···h}µ1µ2···µ2t ∑
n 6=0

(n2)tF (n2), for even number of nµ ,

(C.18)
with ds = 3 and (ds/2)t being the Pochhammer symbol (A.5).
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D Collection of tensor integrals in arbitrary frame

In this appendix, explicit expressions for the decomposition of 1-point, 2-point, 3-point and
4-point tensor integrals up to rank 4 or 5 are listed for easy reference.

D.1 One-point integrals

The case of P = 0 corresponds to the scalar integral Ã0, which is given by

Ã0 =
∑
n 6=0

Â0(m2
1;L,n) , (D.1)

with

Â0(m2
1;L,n) = − 1

4π2
M1
|n|LK1(|n|LM1) , M1 = m1 . (D.2)

The tensor integrals of odd ranks are equal to zero. For rank 2, the decomposition of the
tensor integral Ãµν takes the form

Ãµν =
∑
n 6=0

[
gµνÂ00 + nµnνÂ11

]
, (D.3)

with the coefficients

Â00(m2
1;L,n) = 1

4π2
(M1)2

|n|2L2K2(|n|LM1) , (D.4)

Â11(m2
1;L,n) = 1

4π2
(M1)3

|n|3L K3(|n|LM1) . (D.5)

The one-loop tensor integrals of rank 4, i.e., Ãµνρσ, can be written as

Ãµνρσ =
∑
n 6=0

[
{gg}µνρσÂ0000 + {gnn}µνρσÂ0011 + nµnνnρnσÂ1111

]
, (D.6)

with

Â0000(m2
1;L,n) = − 1

4π2
(M1)3

|n|3L3K3(|n|LM1) , (D.7)

Â0011(m2
1;L,n) = − 1

4π2
(M1)4

|n|4L2K4(|n|LM1) , (D.8)

Â1111(m2
1;L,n) = − 1

4π2
(M1)5

|n|5L K5(|n|LM1) . (D.9)

D.2 Two-point integrals

The expressions of the two-point tensor integrals up to rank 4 are explicitly given in the
following. The two-point scalar integral B̃0 reads

B̃0 =
∑
n 6=0

B̂0(p2
1,m

2
1,m

2
2;L,n) , (D.10)
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where

B̂0(p2
1,m

2
1,m

2
2;L,n) = 1

8π2

∫ 1

0
dX2e

in·P2LK0(|n|LM2) , (D.11)

and
∫

dX2 =
∫ 1

0 dx1. With the help of the recurrence formulae eq. (2.26) and eq. (2.28),
P2 andM2

2 can be obtained, which read

P2 = (1− x1)p1 ≡ X1
2p1 , (D.12)

Q2
2 = x1m

2
1 + (1− x1)(m2

2 − p2
1) , (D.13)

M2
2 = Q2

2 + P2
2 . (D.14)

For tensor integral of rank 1,

B̃µ =
∑
n 6=0

[
pµ1 B̂1 + nµB̂2

]
, (D.15)

with the coefficients

B̂1(p2
1,m

2
1,m

2
2;L,n) = − 1

8π2

∫ 1

0
dX2X

1
2e
in·P2LK0(|n|LM2) , (D.16)

B̂2(p2
1,m

2
1,m

2
2;L,n) = i

8π2

∫ 1

0
dX2e

in·P2LM2
|n| K1(|n|LM2) . (D.17)

Here X1
2 is the coefficient of p1 in P2. It can also be calculated by using the general formula

of eq. (2.34).
For the case of rank 2,

B̃µν =
∑
n 6=0

[
gµνB̂00 + pµ1p

ν
1B̂11 + {p1n}µνB̂12 + nµnνB̂22

]
, (D.18)

with the corresponding coefficients

B̂00(p2
1,m

2
1,m

2
2;L,n) = − 1

8π2

∫ 1

0
dX2e

in·P2LM2
|n|LK1(|n|LM2) , (D.19)

B̂11(p2
1,m

2
1,m

2
2;L,n) = 1

8π2

∫ 1

0
dX2(X1

2 )2ein·P2LK0(|n|LM2) , (D.20)

B̂12(p2
1,m

2
1,m

2
2;L,n) = − i

8π2

∫ 1

0
dX2X

1
2e
in·P2LM2

|n| K1(|n|LM2) , (D.21)

B̂22(p2
1,m

2
1,m

2
2;L,n) = − 1

8π2

∫ 1

0
dX2e

in·P2L (M2)2

|n|2 K2(|n|LM2) . (D.22)

For rank 3, one has

B̃µνρ =
∑
n 6=0

[
{gp1}µνρB̂001 + {gn}µνρB̂002 + pµ1p

ν
1p
ρ
1B̂111

+ {p1p1n}µνρB̂112 + {p1nn}µνρB̂122 + nµnνnρB̂222

]
, (D.23)
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with the coefficients

B̂001(p2
1,m

2
1,m

2
2;L,n) = 1

8π2

∫ 1

0
dX2X

1
2e
in·P2LM2

|n|L
K1(|n|LM2) , (D.24)

B̂002(p2
1,m

2
1,m

2
2;L,n) = − i

8π2

∫ 1

0
dX2e

in·P2L (M2)2

|n|2L K2(|n|LM2) , (D.25)

B̂111(p2
1,m

2
1,m

2
2;L,n) = − 1

8π2

∫ 1

0
dX2(X1

2 )3ein·P2LK0(|n|LM2) , (D.26)

B̂112(p2
1,m

2
1,m

2
2;L,n) = i

8π2

∫ 1

0
dX2(X1

2 )2ein·P2LM2
|n| K1(|n|LM2) , (D.27)

B̂122(p2
1,m

2
1,m

2
2;L,n) = 1

8π2

∫ 1

0
dX2X

1
2e
in·P2L (M2)2

|n|2 K2(|n|LM2) , (D.28)

B̂222(p2
1,m

2
1,m

2
2;L,n) = − i

8π2

∫ 1

0
dX2e

in·P2L (M2)3

|n|3 K3(|n|LM2) . (D.29)

For the tensor integral of rank 4, we have

B̃µνρσ =
∑
n 6=0

[
{gg}µνρσB̂0000 +{gp1p1}µνρσB̂0011 +{gp1n}µνρσB̂0012 +{gnn}µνρσB̂0022

+pµ1p
ν
1p
ρ
1p
σ
1 B̂1111 +{p1p1p1n}µνρσB̂1112 +{p1p1nn}µνρσB̂1122 +{p1nnn}µνρσB̂1222

+nµnνnρnσB̂2222

]
, (D.30)

with the coefficients

B̂0000(p2
1,m

2
1,m

2
2;L,n) = 1

8π2

∫ 1

0
dX2e

in·P2L (M2)2

|n|2L2K2(|n|LM2) , (D.31)

B̂0011(p2
1,m

2
1,m

2
2;L,n) = − 1

8π2

∫ 1

0
dX2(X1

2 )2ein·P2LM2
|n|LK1(|n|LM2) , (D.32)

B̂0012(p2
1,m

2
1,m

2
2;L,n) = i

8π2

∫ 1

0
dX2X

1
2e
in·P2L (M2)2

|n|2L
K2(|n|LM2) , (D.33)

B̂0022(p2
1,m

2
1,m

2
2;L,n) = 1

8π2

∫ 1

0
dX2e

in·P2L (M2)3

|n|3L K3(|n|LM2) , (D.34)

B̂1111(p2
1,m

2
1,m

2
2;L,n) = 1

8π2

∫ 1

0
dX2(X1

2 )4ein·P2LK0(|n|LM2) , (D.35)

B̂1112(p2
1,m

2
1,m

2
2;L,n) = − i

8π2

∫ 1

0
dX2(X1

2 )3ein·P2LM2
|n| K1(|n|LM2) , (D.36)

B̂1122(p2
1,m

2
1,m

2
2;L,n) = − 1

8π2

∫ 1

0
dX2(X1

2 )2ein·P2L (M2)2

|n|2 K2(|n|LM2) , (D.37)

B̂1222(p2
1,m

2
1,m

2
2;L,n) = i

8π2

∫ 1

0
dX2X

1
2e
in·P2L (M2)3

|n|3 K3(|n|LM2) , (D.38)

B̂2222(p2
1,m

2
1,m

2
2;L,n) = 1

8π2

∫ 1

0
dX2e

in·P2L (M2)4

|n|4 K4(|n|LM2) . (D.39)
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D.3 Three-point integrals

The decomposition of the three-point integrals up to rank 4 and the involved coefficients
are given in the following. The three-point scalar integral C̃0 reads

C̃0 =
∑
n 6=0

Ĉ0(p2
1, (p2 − p1)2, p2

2,m
2
1,m

2
2,m

2
3;L,n) , (D.40)

with

Ĉ0(p2
1, (p2 − p1)2, p2

2,m
2
1,m

2
2,m

2
3;L,n) = − 1

16π2

∫ 1

0
dX3e

in·P3L |n|L
M3

K1(|n|LM3) , (D.41)

and
∫

dX3 =
∫ 1

0 dx1
∫ 1

0 dx2x2. Hereafter, the arguments of the Ĉ functions will be sup-
pressed for brevity. The P3 andM2

3 can be obtained by the recurrence formulae eq. (2.26)
and eq. (2.28), which read

P3 = x2(1− x1)p1 + (1− x2)p2 ≡
2∑
i=1

Xi
3pi , (D.42)

Q2
3 = x2Q2

2 + (1− x2)(m2
3 − p2

2) , (D.43)
M2

3 = Q2
3 + P2

3 . (D.44)

For the tensor integral of rank 1, the decomposition is

C̃µ =
∑
n 6=0

[ 2∑
i=1

pµi Ĉi + nµĈ3

]
, (D.45)

where the coefficients are

Ĉi = 1
16π2

∫ 1

0
dX3X

i
3e
in·P3L |n|L

M3
K1(|n|LM3) , (D.46)

Ĉ3 = − iL

16π2

∫ 1

0
dX3e

in·P3LK0(|n|LM3) . (D.47)

Here, X1
3 and X2

3 are the coefficients of p1 and p2 in P3 (D.42), respectively.
For rank 2, one has

C̃µν =
∑
n 6=0

[
gµνĈ00 +

2∑
i,j=1

pµi p
ν
j Ĉij +

2∑
i=1
{pn}µνi Ĉi3 + nµnνĈ33

]
, (D.48)

with the coefficients

Ĉ00 = 1
16π2

∫ 1

0
dX3e

in·P3LK0(|n|LM3) , (D.49)

Ĉij = − 1
16π2

∫ 1

0
dX3 X

i
3X

j
3e
in·P3L |n|L

M3
K1(|n|LM3) , (D.50)

Ĉi3 = iL

16π2

∫ 1

0
dX3 X

i
3e
in·P3LK0(|n|LM3) , (D.51)

Ĉ33 = 1
16π2

∫ 1

0
dX3e

in·P3LM3L

|n| K1(|n|LM3) . (D.52)
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For the case of rank 3,

C̃µνρ =
∑
n 6=0

[ 2∑
i=1
{gp}µνρi Ĉ00i + {gn}µνρĈ003 +

2∑
i,j,k=1

pµi p
ν
j p
ρ
kĈijk +

2∑
i,j=1
{ppn}µνρij Ĉij3

+
2∑
i=1
{pnn}µνρi Ĉi33 + {nnn}µνρĈ333

]
, (D.53)

with

Ĉ00i = − 1
16π2

∫ 1

0
dX3X

i
3e
in·P3LK0(|n|LM3) , (D.54)

Ĉ003 = i

16π2

∫ 1

0
dX3e

in·P3LM3
|n| K1(|n|LM3) , (D.55)

Ĉijk = 1
16π2

∫ 1

0
dX3X

i
3X

j
3X

k
3 e
in·P3L |n|L

M3
K1(|n|LM3) , (D.56)

Ĉij3 = − iL

16π2

∫ 1

0
dX3X

i
3X

j
3e
in·P3LK0(|n|LM3) , (D.57)

Ĉi33 = − 1
16π2

∫ 1

0
dX3X

i
3e
in·P3LM3L

|n| K1(|n|LM3) , (D.58)

Ĉ333 = i

16π2

∫ 1

0
dX3e

in·P3L (M3)2L

|n|2 K2(|n|LM3) . (D.59)

For the case of rank 4,

C̃µνρσ =
∑
n 6=0

[
{gg}µνρσĈ0000 +

2∑
i,j=1
{gpp}µνρσij Ĉ00ij +

2∑
i=1
{gpn}µνρσi Ĉ00i3

+ {gnn}µνρσĈ0033 +
2∑

i,j,k,l=1
pµi p

ν
j p
ρ
kp
σ
l Ĉijkl +

2∑
i,j,k=1

{pppn}µνρσijk Ĉijk3

+
2∑

i,j=1
{ppnn}µνρσij Ĉij33 +

2∑
i=1
{pnnn}µνρσi Ĉi333 + nµnνnρnσĈ3333

]
, (D.60)

with

Ĉ0000 = − 1
16π2

∫ 1

0
dX3e

in·P3LM3
|n|LK1(|n|LM3) , (D.61)

Ĉ00ij = 1
16π2

∫ 1

0
dX3X

i
3X

j
3e
in·P3LK0(|n|LM3) , (D.62)

Ĉ00i3 = − i

16π2

∫ 1

0
dX3X

i
3e
in·P3LM3

|n| K1(|n|LM3) , (D.63)

Ĉ0033 = − 1
16π2

∫ 1

0
dX3e

in·P3L (M3)2

|n|2 K2(|n|LM3) , (D.64)

Ĉijkl = − 1
16π2

∫ 1

0
dX3X

i
3X

j
3X

k
3X

l
3e
in·P3L |n|L

M3
K1(|n|LM3) , (D.65)

Ĉijk3 = iL

16π2

∫ 1

0
dX3X

i
3X

j
3X

k
3 e
in·P3LK0(|n|LM3) , (D.66)
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Ĉij33 = 1
16π2

∫ 1

0
dX3X

i
3X

j
3e
in·P3LM3L

|n| K1(|n|LM3) , (D.67)

Ĉi333 = − i

16π2

∫ 1

0
dX3X

i
3e
in·P3L (M3)2L

|n|2 K2(|n|LM3) , (D.68)

Ĉ3333 = − 1
16π2

∫ 1

0
dX3e

in·P3L (M3)3L

|n|3 K3(|n|LM3) . (D.69)

D.4 Four-point integrals

The decomposition of the four-point integrals up to rank 5 and the involved coefficients
are given in the following. The four-point scalar integral D̃0 reads

D̃0 =
∑
n 6=0

D̂0(p2
1, (p2 − p1)2, (p3 − p2)2, p2

3, p
2
2, (p3 − p1)2,m2

1,m
2
2,m

2
3,m

2
4;L,n) , (D.70)

with

D̂0 = 1
32π2

∫ 1

0
dX4e

in·P4L |n|
2L2

(M4)2K2(|n|LM4) , (D.71)

and
∫

dX4 =
∫ 1

0 dx1
∫ 1

0 dx2
∫ 1

0 dx3x2x
2
3. Hereafter, the arguments of the D̂ functions will

be suppressed for brevity. The P4 and M2
4 can be obtained by the recurrence formulae

eq. (2.26) and eq. (2.28), which read

P4 = x3x2(1− x1)p1 + x3(1− x2)p2 + (1− x3)p3 ≡
3∑
i=1

Xi
4pi , (D.72)

Q2
4 = x3Q2

3 + (1− x3)(m2
4 − p2

3) , (D.73)
M2

4 = Q2
4 + P2

4 . (D.74)

For the tensor integral of rank 1, the decomposition is

D̃µ =
∑
n 6=0

[ 3∑
i=1

pµi D̂i + nµD̂4

]
, (D.75)

where the coefficients are

D̂i = − 1
32π2

∫ 1

0
dX4X

i
4e
in·P4L |n|

2L2

(M4)2K2(|n|LM4) , (D.76)

D̂4 = i

32π2

∫ 1

0
dX4e

in·P4L |n|L
2

M4
K1(|n|LM4) . (D.77)

Here, X1
4 , X2

4 and X3
4 are the coefficients of p1, p2 and p3 in P4 (D.72), in order.

For rank 2, one obtains

D̃µν =
∑
n 6=0

[
gµνD̂00 +

3∑
i,j=1

pµi p
ν
j D̂ij +

3∑
i=1
{pn}µνi D̂i4 + nµnνD̂44

]
, (D.78)
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with the coefficients

D̂00 = − 1
32π2

∫ 1

0
dX4e

in·P4L |n|L
M4

K1(|n|LM4) , (D.79)

D̂ij = 1
32π2

∫ 1

0
dX4X

i
4X

j
4e
in·P4L |n|

2L2

(M4)2K2(|n|LM4) , (D.80)

D̂i4 = − i

32π2

∫ 1

0
dX4X

i
4e
in·P4L |n|L

2

M4
K1(|n|LM4) , (D.81)

D̂44 = − L2

32π2

∫ 1

0
dX4e

in·P4LK0(|n|LM4) . (D.82)

For rank 3, one has

D̃µνρ =
∑
n 6=0

[ 3∑
i=1
{gp}µνρi D̂00i + {gn}µνρD̂004 +

3∑
i,j,k=1

pµi p
ν
j p
ρ
kD̂ijk +

3∑
i,j=1
{ppn}µνρij D̂ij4

+
3∑
i=1
{pnn}µνρi D̂i44 + nµnνnρD̂444

]
, (D.83)

with

D̂00i = 1
32π2

∫ 1

0
dX4X

i
4e
in·P4L |n|L

M4
K1(|n|LM4) , (D.84)

D̂004 = − iL

32π2

∫ 1

0
dX4e

in·P4LK0(|n|LM4) , (D.85)

D̂ijk = − 1
32π2

∫ 1

0
dX4X

i
4X

j
4X

k
4 e
in·P4L |n|

2L2

(M4)2K2(|n|LM4) , (D.86)

D̂ij4 = i

32π2

∫ 1

0
dX4X

i
4X

j
4e
in·P4L |n|L

2

M4
K1(|n|LM4) , (D.87)

D̂i44 = L2

32π2

∫ 1

0
dX4X

i
4e
in·P4LK0(|n|LM4) , (D.88)

D̂444 = − i

32π2

∫ 1

0
dX4e

in·P4LL
2M4
|n| K1(|n|LM4) . (D.89)

For rank 4, we have

D̃µνρσ =
∑
n 6=0

[
{gg}µνρσD̂0000 +

3∑
i,j=1
{gpp}µνρσij D̂00ij +

3∑
i=1
{gpn}µνρσD̂00i4

+ {gnn}µνρσD̂0044 +
3∑

i,j,k,l=1
pµi p

ν
j p
ρ
kp
σ
l D̂ijkl +

3∑
i,j,k=1

{pppn}µνρσijk D̂ijk4

+
3∑

i,j=1
{ppnn}µνρσij D̂ij44 +

3∑
i=1
{pnnn}µνρσi D̂i444 + nµnνnρnσD̂4444

]
, (D.90)
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with the coefficients

D̂0000 = 1
32π2

∫ 1

0
dX4e

in·P4LK0(|n|LM4) , (D.91)

D̂00ij = − 1
32π2

∫ 1

0
dX4X

i
4X

j
4e
in·P4L |n|L

M4
K1(|n|LM4) , (D.92)

D̂00i4 = iL

32π2

∫ 1

0
dX4X

i
4e
in·P4LK0(|n|LM4) , (D.93)

D̂0044 = 1
32π2

∫ 1

0
dX4e

in·P4LM4L

|n| K1(|n|LM4) , (D.94)

D̂ijkl = 1
32π2

∫ 1

0
dX4X

i
4X

j
4X

k
4X

l
4e
in·P4L |n|

2L2

(M4)2K2(|n|LM4) , (D.95)

D̂ijk4 = − i

32π2

∫ 1

0
dX4X

i
4X

j
4X

k
4 e
in·P4L |n|L

2

M4
K1(|n|LM4) , (D.96)

D̂ij44 = − L2

32π2

∫ 1

0
dX4X

i
4X

j
4e
in·P4LK0(|n|LM4) , (D.97)

D̂i444 = i

32π2

∫ 1

0
dX4X

i
4e
in·P4LL

2M4
|n| K1(|n|LM4) , (D.98)

D̂4444 = 1
32π2

∫ 1

0
dX4e

in·P4LL
2(M4)2

|n|2 K2(|n|LM4) . (D.99)

For the case of rank 5, the decomposition is given by

D̃µνρσα =
∑
n 6=0

[ 3∑
i=1
{ggp}µνρσαi D̂0000i + {ggn}µνρσαD̂00004 +

3∑
i,j,k=1

{gppp}µνρσαijk D̂00ijk

+
3∑

i,j=1
{gppn}µνρσαij D̂00ij4 +

3∑
i=1
{gpnn}µνρσαi D̂00i44 + {gnnn}µνρσαD̂00444

+
3∑

i,j,k,l,r=1
pµi p

ν
j p
ρ
kp
σ
l p

α
r D̂ijklr +

3∑
i,j,k,l=1

{ppppn}µνρσαijkl D̂ijkl4 +
3∑

i,j,k=1
{pppnn}µνρσαijk D̂ijk44

+
3∑

i,j=1
{ppnnn}µνρσαij D̂ij444 +

3∑
i=1
{pnnnn}µνρσαi D̂i4444 + nµnνnρnσnαD̂44444

]
, (D.100)

with the coefficients

D̂0000i = − 1
32π2

∫ 1

0
dX4X

i
4e
in·P4LK0(|n|LM4) , (D.101)

D̂00004 = i

32π2

∫ 1

0
dX4e

in·P4LM4
|n| K1(|n|LM4) , (D.102)

D̂00ijk = 1
32π2

∫ 1

0
dX4X

i
4X

j
4X

k
4 e
in·P4L |n|L

M4
K1(|n|LM4) , (D.103)

D̂00ij4 = − iL

32π2

∫ 1

0
dX4X

i
4X

j
4e
in·P4LK0(|n|LM4) , (D.104)

D̂00i44 = − 1
32π2

∫ 1

0
dX4X

i
4e
in·P4LM4L

|n| K1(|n|LM4) , (D.105)
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D̂00444 = i

32π2

∫ 1

0
dX4e

in·P4L (M4)2L

|n|2
K2(|n|LM4) , (D.106)

D̂ijklr = − 1
32π2

∫ 1

0
dX4X

i
4X

j
4X

k
4X

l
4X

r
4e
in·P4L |n|

2L2

(M4)2K2(|n|LM4) , (D.107)

D̂ijkl4 = i

32π2

∫ 1

0
dX4X

i
4X

j
4X

k
4X

l
4e
in·P4L |n|L

2

M4
K1(|n|LM4) , (D.108)

D̂ijk44 = L2

32π2

∫ 1

0
dX4X

i
4X

j
4X

k
4 e
in·P4LK0(|n|LM4) , (D.109)

D̂ij444 = − i

32π2

∫ 1

0
dX4X

i
4X

j
4e
in·P4LM4L

2

|n| K1(|n|LM4) , (D.110)

D̂i4444 = − 1
32π2

∫ 1

0
dX4X

i
4e
in·P4L (M4)2L2

|n|2
K2(|n|LM4) , (D.111)

D̂44444 = i

32π2

∫ 1

0
dX4e

in·P4L (M4)3L2

|n|3 K3(|n|LM4) . (D.112)

It is straightforward to derive the relevant expressions for the N -point tensor integrals
of higher ranks by making use of eq. (2.36).

E Collection of tensor integrals in the CM frame

In the CM frame, the tensor decomposition of the N -point integrals can be explicitly
written down, in view of eq. (3.4) and eq. (3.5). In what follows, results shown in the
preceding appendix will be reformulated accordingly.

E.1 One-point integrals

The one-point tensor integrals up to rank 4 take the form of

Ãµν = gµνÃ00 + hµνÃ11 , (E.1)
Ãµνρσ = {gg}µνρσÃ0000 + {gh}µνρσÃ0011 + {hh}µνρσÃ1111 , (E.2)

with the coefficients

Ã00 =
∑
n 6=0

Â00 , Ã11 = 1
ds

∑
n 6=0

n2Â11 , Ã0000 =
∑
n 6=0

Â0000 ,

Ã0011 = 1
ds

∑
n 6=0

n2Â0011 , Ã1111 = 1
(ds + 2)ds

∑
n 6=0

n4Â1111 , (E.3)

where explicit expressions of the Â functions are shown in the previous appendix.
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E.2 Two-point integrals

The two-point tensor integrals up to rank 4 have the following form

B̃µ = pµ1 B̃1 , (E.4)
B̃µν = gµνB̃00 + pµ1p

ν
1B̃11 + hµνB̃22 , (E.5)

B̃µνρ = {gp1}µνρB̃001 + pµ1p
ν
1p
ρ
1B̃111 + {p1h}µνρB̃122 , (E.6)

B̃µνρσ = {gg}µνρσB̃0000 + {gp1p1}µνρσB̃0011 + {gh}µνρσB̃0022 + pµ1p
ν
1p
ρ
1p
σ
1 B̃1111

+ {p1p1h}µνρσB̃1122 + {hh}µνρσB̃2222 , (E.7)

with the coefficients

B̃1 =
∑
n 6=0

B̂1 , B̃00 =
∑
n 6=0

B̂00 , B̃11 =
∑
n 6=0

B̂11 , B̃22 = 1
ds

∑
n 6=0

n2B̂22 ,

B̃001 =
∑
n 6=0

B̂001 , B̃111 =
∑
n 6=0

B̂111 , B̃122 = 1
ds

∑
n 6=0

n2B̂122 , B̃0000 =
∑
n 6=0

B̂0000 ,

B̃0011 =
∑
n 6=0

B̂0011 , B̃0022 = 1
ds

∑
n 6=0

n2B̂0022 , B̃1111 =
∑
n 6=0

B̂1111 , B̃1122 = 1
ds

∑
n 6=0

n2B̂1122 ,

B̃2222 = 1
(ds+2)ds

∑
n 6=0

n4B̂2222 , (E.8)

where explicit expressions of the B̂ functions are shown in the previous appendix.

E.3 Three-point integrals

The three-point tensor integrals are written down up to rank 4, which are

C̃µ =
2∑
i=1

pµi C̃i , (E.9)

C̃µν = gµνC̃00 +
2∑

i,j=1
pµi p

ν
j C̃ij + hµνC̃33 , (E.10)

C̃µνρ =
2∑
i=1
{gp}µνρi C̃00i +

2∑
i,j,k=1

pµi p
ν
j p
ρ
kC̃ijk +

2∑
i=1
{ph}µνρi C̃i33 , (E.11)

C̃µνρσ = {gg}µνρσC̃0000 +
2∑

i,j=1
{gpp}µνρσij C̃00ij + {gh}µνρσC̃0033 +

2∑
i,j,k,l=1

pµi p
ν
j p
ρ
kp
σ
l C̃ijkl

+
2∑

i,j=1
{pph}µνρσij C̃ij33 + {hh}µνρσC̃3333 , (E.12)
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with the coefficients

C̃i =
∑
n 6=0

Ĉi , C̃00 =
∑
n 6=0

Ĉ00 , C̃ij =
∑
n 6=0

Ĉij , C̃33 = 1
ds

∑
n 6=0

n2Ĉ33 ,

C̃00i =
∑
n 6=0

Ĉ00i , C̃ijk =
∑
n 6=0

Ĉijk , C̃i33 = 1
ds

∑
n 6=0

n2Ĉi33 ,

C̃0000 =
∑
n 6=0

Ĉ0000 , C̃00ij =
∑
n 6=0

Ĉ00ij , C̃0033 = 1
ds

∑
n 6=0

n2Ĉ0033 ,

C̃ijkl =
∑
n 6=0

Ĉijkl , C̃ij33 = 1
ds

∑
n 6=0

n2Ĉij33 , C̃3333 = 1
(ds + 2)ds

∑
n 6=0

n4Ĉ3333 , (E.13)

where explicit expressions of the Ĉ functions are shown in the previous appendix.

E.4 Four-point integrals

The four-point tensor integrals up to rank 5 are given by

D̃µ =
3∑
i=1

pµi D̃i , (E.14)

D̃µν = gµνD̃00 +
3∑

i,j=1
pµi p

ν
j D̃ij + hµνD̃44 , (E.15)

D̃µνρ =
3∑
i=1
{gp}µνρi D̃00i +

3∑
i,j,k=1

pµi p
ν
j p
ρ
kD̃ijk +

3∑
i=1
{ph}µνρi D̃i44 , (E.16)

D̃µνρσ = {gg}µνρσD̃0000 +
3∑

i,j=1
{gpp}µνρσij D̃00ij + {gh}µνρσD̃0044 +

3∑
i,j,k,l=1

pµi p
ν
j p
ρ
kp
σ
l D̃ijkl

+
3∑

i,j=1
{pph}µνρσij D̃ij44 + {hh}µνρσD̃4444 , (E.17)

D̃µνρσα =
3∑
i=1
{ggp}µνρσαi D̃0000i +

3∑
i,j,k=1

{gppp}µνρσαijk D̃00ijk +
3∑
i=1
{gph}µνρσαi D̃00i44 (E.18)

+
3∑

i,j,k,l,r=1
pµi p

ν
j p
ρ
kp
σ
l p

α
r D̃ijklr +

3∑
i,j,k=1

{ppph}µνρσαijk D̃ijk44 +
3∑
i=1
{phh}µνρσαi D̃i4444 ,

with the coefficients

D̃i =
∑
n 6=0

D̂i , D̃00 =
∑
n 6=0

D̂00 , D̃ij =
∑
n 6=0

D̂ij , D̃44 = 1
ds

∑
n 6=0

n2D̂44 ,

D̃00i =
∑
n 6=0

D̂00i , D̃ijk =
∑
n 6=0

D̂ijk , D̃i44 = 1
ds

∑
n 6=0

n2D̂i44 ,

D̃0000 =
∑
n 6=0

D̂0000 , D̃00ij =
∑
n 6=0

D̂00ij , D̃0044 = 1
ds

∑
n 6=0

n2D̂0044 ,

D̃ijkl =
∑
n 6=0

D̂ijkl , D̃ij44 = 1
ds

∑
n 6=0

n2D̂ij44 , D̃4444 = 1
(ds+2)ds

∑
n 6=0

n4D̂4444 ,
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D̃0000i =
∑
n 6=0

D̂0000i , D̃00ijk =
∑
n 6=0

D̂00ijk , D̃00i44 = 1
ds

∑
n 6=0

n2D̂00i44 ,

D̃ijklr =
∑
n 6=0

D̂ijklr , D̃ijk44 = 1
ds

∑
n 6=0

n2D̂ijk44 , D̃i4444 = 1
(ds+2)ds

∑
n 6=0

n4D̂i4444 , (E.19)

where explicit expressions of the D̂ functions are shown in the previous appendix.

F One-loop self-energies of the nucleon

The dressed propagator of the nucleon is given by

iSN (p) = i

/p−m− Σ(/p)
, (F.1)

where Σ(/p) and m are the nucleon self-energy and bare mass, respectively. The physical
nucleon mass mN is defined as the pole of the dressed propagator,

mN = m+ Σ(mN ) . (F.2)

Feynman diagrams displayed in figure 4 contribute to the self-energies at one-loop level.
At finite volume, the corresponding FVC effects have been calculated in, e.g., ref. [10].

Here we list the explicit expressions for the sake of easy comparison. For diagram (a), the
self-energy reads

ΣN3(M2
π , L) = 3

[
gA

8Fππ

]2 ∑
n 6=0

∫ 1

0
dz2mN

[
((1− z)3m2

N + (3− z)M2
N )K0(|n|L

√
M2

N )

+ (4z − 6)

√
M2

N

L|n|
K1(|n|L

√
M2

N )
]
, (F.3)

withM2
N = zM2

π − z(1− z)p2 + (1− z)m2
N . Here gA and Fπ are the nucleon axial coupling

and the pion decay constants, respectively. For diagram (b), the self-energy is

ΣN∆3(M2
π , L) = 4

3

[
hA

8Fππm∆

]2 ∑
n 6=0

∫ 1

0
dz(zmN +m∆)2m2

N

[
−

√
M2

∆

L|n| K1(|n|L
√
M2

∆)

+M2
∆K0(|n|L

√
M2

∆)
]
, (F.4)

with M2
∆ = zM2

π − z(1 − z)p2 + (1 − z)m2
∆ and hA being the axial coupling constant of

the N -∆ transition. Mention that the above expressions are obtained in the rest frame of
the nucleon.
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In our case, diagram (a) and diagram (b) yield

Σa(/p, /n) = g2
A

4F 2
π

∑
n 6=0

1
i

∫ ddk
(2π)d e

−ilk·k
/k[(/k + /p)−mN ]/k

[(k + p)2 −m2
N ][k2 −M2

π ] ,

Σb(/p, /n) = h2
A

F 2
π

∑
n 6=0

1
i

∫ ddk
(2π)d e

−ilk·k (/k + /p) +m∆

[(k + p)2 −m2
∆][k2 −M2

π ]

×
{

k2

d− 1 + (d− 2)(k · (k + p))2

(d− 1)m2
∆

− k2
}
. (F.5)

By making use of the FVC tensor integrals defined in section 2.2, the above expressions of
self-energies become

Σa(/p, /n) = 3g2
AmN

4F 2
π

∑
n 6=0

{
sB̂0 + 2sB̂1 + dB̂00 + sB̂11 + n2B̂22 − 2n · p

[
B̂2 + B̂12

]}
,

+ 3g2
A

4F 2
π

∑
n 6=0

{
sB̂1 + 2sB̂11 + 2dB̂00 + (d+ 2)B̂001 + sB̂111

+ n2
[
2B̂22 + B̂122

]
− 2n · p

[
B̂2 + 2B̂12 + B̂112

]}
/p ,

+ 3g2
A

4F 2
π

∑
n 6=0

{
sB̂2 − (d+ 2)B̂002 − sB̂112 − n2B̂222 + 2n · pB̂122

}
/n , (F.6)

and

Σb(/p,/n)= 2(d−2)h2
A

(d−1)F 2
πm∆

∑
n 6=0

{
m2

∆sB̂0+2m2
∆sB̂1+(dm2

∆−s)B̂00+s(m2
∆−s)B̂11

−2s(2+d)B̂001−2s2B̂111−d(2+d)B̂0000−2s(2+d)B̂0011−s2B̂1111

+n2
[
m2

∆B̂22−2sB̂122−2(2+d)B̂0022−2sB̂1122−n2B̂2222

]
−2n·p

[
m2

∆B̂2−(s−m2
∆)B̂12−(2+d)(B̂002+2B̂0012)−s(3B̂112+2B̂1112)

−n2(B̂222+2B̂1222)
]
−(n·p)2

[
B̂22+4B̂122+4B̂1122

]}
+ 2(d−2)h2

A

(d−1)F 2
πm

2
∆

∑
n 6=0

{
−m2

∆sB̂1−2m2
∆B̂00−2m2

∆sB̂11−(m2
∆(2+d)−3s)B̂001

−s(m2
∆−s)B̂111+2(2+d)B̂0000+2s(5+d)B̂0011+2s2B̂1111+(d+2)(d+4)B̂00001

+2s(4+d)B̂00111+s2B̂11111−n2
[
m2

∆B̂122−2B̂0022−2sB̂1122−2(4+d)B̂00122

−2sB̂11122−n2B̂12222

]
+2n·p

[
m2

∆B̂12−B̂002−(s−m2
∆)B̂112−(6+d)B̂0012

−2(4+d)B̂00112−s(3B̂1112+2B̂11112)−n2(B̂1222+2B̂11222)
]

+(n·p)2
[
B̂122+4B̂1122+4B̂11122

]}
/p
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+ 2(d−2)h2
A

(d−1)F 2
πm

2
∆

∑
n 6=0

{
m2

∆sB̂2+2m2
∆sB̂12+(m2

∆(2+d)−s)B̂002+s(m2
∆−s)B̂112

−2s(4+d)B̂0012−2s2B̂1112−(d+2)(d+4)B̂00002−2s(d+4)B̂00112−s2B̂11112

+n2
[
m2

∆B̂222−2sB̂1222−2(d+4)B̂00222−2sB̂11222−n2B̂22222

]
−2n·p

[
m2

∆B̂22−(s−m2
∆)B̂122−(4+d)(B̂0022+2B̂00122)−s(3B̂1122+2B̂11122)

−n2(B̂2222+2B̂12222)
]
−(n·p)2

[
B̂222+4B̂1222+4B̂11222

]}
/n. (F.7)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories. 1.
Stable particle states, Commun. Math. Phys. 104 (1986) 177 [INSPIRE].

[2] S. Weinberg, Phenomenological lagrangians, Physica A 96 (1979) 327 [INSPIRE].

[3] J. Gasser and H. Leutwyler, Chiral perturbation theory to one loop, Annals Phys. 158 (1984)
142 [INSPIRE].

[4] J. Gasser and H. Leutwyler, Chiral perturbation theory: expansions in the mass of the
strange quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].

[5] J. Gasser and H. Leutwyler, Light quarks at low temperatures, Phys. Lett. B 184 (1987) 83
[INSPIRE].

[6] J. Gasser and H. Leutwyler, Spontaneously broken symmetries: effective lagrangians at finite
volume, Nucl. Phys. B 307 (1988) 763 [INSPIRE].

[7] U.-G. Meißner, Recent developments in chiral perturbation theory, Rept. Prog. Phys. 56
(1993) 903 [hep-ph/9302247] [INSPIRE].

[8] G. Colangelo, Finite volume effects in chiral perturbation theory, Nucl. Phys. B Proc. Suppl.
140 (2005) 120 [hep-lat/0409111] [INSPIRE].

[9] S.R. Beane, Nucleon masses and magnetic moments in a finite volume, Phys. Rev. D 70
(2004) 034507 [hep-lat/0403015] [INSPIRE].

[10] L. Alvarez-Ruso, T. Ledwig, J. Martin Camalich and M.J. Vicente-Vacas, Nucleon mass and
pion-nucleon sigma term from a chiral analysis of lattice QCD data, Phys. Rev. D 88 (2013)
054507 [arXiv:1304.0483] [INSPIRE].

[11] D.-L. Yao, Masses and sigma terms of doubly charmed baryons up to O(p4) in manifestly
Lorentz-invariant baryon chiral perturbation theory, Phys. Rev. D 97 (2018) 034012
[arXiv:1801.09462] [INSPIRE].

[12] D. Severt and U.-G. Meißner, The Roper resonance in a finite volume, Commun. Theor.
Phys. 72 (2020) 075201 [arXiv:2003.05745] [INSPIRE].

– 37 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/BF01211589
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C104%2C177%22
https://doi.org/10.1016/0378-4371(79)90223-1
https://inspirehep.net/search?p=find+J%20%22Physica%2CA96%2C327%22
https://doi.org/10.1016/0003-4916(84)90242-2
https://doi.org/10.1016/0003-4916(84)90242-2
https://inspirehep.net/search?p=find+J%20%22Annals%20Phys.%2C158%2C142%22
https://doi.org/10.1016/0550-3213(85)90492-4
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB250%2C465%22
https://doi.org/10.1016/0370-2693(87)90492-8
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB184%2C83%22
https://doi.org/10.1016/0550-3213(88)90107-1
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB307%2C763%22
https://doi.org/10.1088/0034-4885/56/8/001
https://doi.org/10.1088/0034-4885/56/8/001
https://arxiv.org/abs/hep-ph/9302247
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9302247
https://doi.org/10.1016/j.nuclphysBPS.2004.11.195
https://doi.org/10.1016/j.nuclphysBPS.2004.11.195
https://arxiv.org/abs/hep-lat/0409111
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F0409111
https://doi.org/10.1103/PhysRevD.70.034507
https://doi.org/10.1103/PhysRevD.70.034507
https://arxiv.org/abs/hep-lat/0403015
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F0403015
https://doi.org/10.1103/PhysRevD.88.054507
https://doi.org/10.1103/PhysRevD.88.054507
https://arxiv.org/abs/1304.0483
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1304.0483
https://doi.org/10.1103/PhysRevD.97.034012
https://arxiv.org/abs/1801.09462
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.09462
https://doi.org/10.1088/1572-9494/ab8a24
https://doi.org/10.1088/1572-9494/ab8a24
https://arxiv.org/abs/2003.05745
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.05745


J
H
E
P
1
2
(
2
0
2
2
)
0
2
9

[13] D. Becirevic and G. Villadoro, Impact of the finite volume effects on the chiral behavior of
f(K) and BK , Phys. Rev. D 69 (2004) 054010 [hep-lat/0311028] [INSPIRE].

[14] L.-S. Geng, K.-W. Li and J. Martin Camalich, Chiral extrapolation and finite-volume
dependence of the hyperon vector couplings, Phys. Rev. D 89 (2014) 113007
[arXiv:1402.7133] [INSPIRE].

[15] T. Akan, F.-K. Guo and U.-G. Meißner, Finite-volume corrections to the CP-odd nucleon
matrix elements of the electromagnetic current from the QCD vacuum angle, Phys. Lett. B
736 (2014) 163 [arXiv:1406.2882] [INSPIRE].

[16] K. Ghorbani, M.M. Yazdanpanah and A. Mirjalili, Pion mass dependence of the Kl3
semileptonic scalar form factor within finite volume, Eur. Phys. J. C 71 (2011) 1671
[arXiv:1012.2733] [INSPIRE].

[17] J.L. de la Parra, A. Agadjanov, J. Gegelia, U.-G. Meißner and A. Rusetsky, Finite volume
corrections to forward Compton scattering off the nucleon, Phys. Rev. D 103 (2021) 034507
[arXiv:2010.10917] [INSPIRE].

[18] G. Colangelo and C. Haefeli, Finite volume effects for the pion mass at two loops, Nucl.
Phys. B 744 (2006) 14 [hep-lat/0602017] [INSPIRE].

[19] J. Bijnens, E. Boström and T.A. Lähde, Two-loop sunset integrals at finite volume, JHEP 01
(2014) 019 [arXiv:1311.3531] [INSPIRE].

[20] J. Bijnens and T. Rössler, Finite volume at two-loops in chiral perturbation theory, JHEP 01
(2015) 034 [arXiv:1411.6384] [INSPIRE].

[21] J. Bijnens, CHIRON: a package for ChPT numerical results at two loops, Eur. Phys. J. C 75
(2015) 27 [arXiv:1412.0887] [INSPIRE].

[22] G. Colangelo and S. Dürr, The pion mass in finite volume, Eur. Phys. J. C 33 (2004) 543
[hep-lat/0311023] [INSPIRE].

[23] G. Colangelo, S. Dürr and C. Haefeli, Finite volume effects for meson masses and decay
constants, Nucl. Phys. B 721 (2005) 136 [hep-lat/0503014] [INSPIRE].

[24] G. Colangelo, A. Fuhrer and S. Lanz, Finite volume effects for nucleon and heavy meson
masses, Phys. Rev. D 82 (2010) 034506 [arXiv:1005.1485] [INSPIRE].

[25] G. Colangelo and C. Haefeli, An asymptotic formula for the pion decay constant in a large
volume, Phys. Lett. B 590 (2004) 258 [hep-lat/0403025] [INSPIRE].

[26] G. Passarino and M.J.G. Veltman, One loop corrections for e+e− annihilation into µ+µ− in
the Weinberg model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].

[27] A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop
level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [arXiv:0709.1075]
[INSPIRE].

[28] A. Denner and S. Dittmaier, Reduction of one loop tensor five point integrals, Nucl. Phys. B
658 (2003) 175 [hep-ph/0212259] [INSPIRE].

[29] A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B
734 (2006) 62 [hep-ph/0509141] [INSPIRE].

[30] W.L. van Neerven and J.A.M. Vermaseren, Large loop integrals, Phys. Lett. B 137 (1984)
241 [INSPIRE].

[31] T. Diakonidis, J. Fleischer, T. Riemann and J.B. Tausk, A recursive reduction of tensor
Feynman integrals, Phys. Lett. B 683 (2010) 69 [arXiv:0907.2115] [INSPIRE].

– 38 –

https://doi.org/10.1103/PhysRevD.69.054010
https://arxiv.org/abs/hep-lat/0311028
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F0311028
https://doi.org/10.1103/PhysRevD.89.113007
https://arxiv.org/abs/1402.7133
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1402.7133
https://doi.org/10.1016/j.physletb.2014.07.022
https://doi.org/10.1016/j.physletb.2014.07.022
https://arxiv.org/abs/1406.2882
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1406.2882
https://doi.org/10.1140/epjc/s10052-011-1671-9
https://arxiv.org/abs/1012.2733
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1012.2733
https://doi.org/10.22323/1.396.0307
https://arxiv.org/abs/2010.10917
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.10917
https://doi.org/10.1016/j.nuclphysb.2006.03.010
https://doi.org/10.1016/j.nuclphysb.2006.03.010
https://arxiv.org/abs/hep-lat/0602017
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F0602017
https://doi.org/10.1007/JHEP01(2014)019
https://doi.org/10.1007/JHEP01(2014)019
https://arxiv.org/abs/1311.3531
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1311.3531
https://doi.org/10.1007/JHEP01(2015)034
https://doi.org/10.1007/JHEP01(2015)034
https://arxiv.org/abs/1411.6384
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1411.6384
https://doi.org/10.1140/epjc/s10052-014-3249-9
https://doi.org/10.1140/epjc/s10052-014-3249-9
https://arxiv.org/abs/1412.0887
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.0887
https://doi.org/10.1140/epjc/s2004-01593-y
https://arxiv.org/abs/hep-lat/0311023
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F0311023
https://doi.org/10.1016/j.nuclphysb.2005.05.015
https://arxiv.org/abs/hep-lat/0503014
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F0503014
https://doi.org/10.1103/PhysRevD.82.034506
https://arxiv.org/abs/1005.1485
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1005.1485
https://doi.org/10.1016/j.physletb.2004.03.080
https://arxiv.org/abs/hep-lat/0403025
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F0403025
https://doi.org/10.1016/0550-3213(79)90234-7
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB160%2C151%22
https://doi.org/10.1002/prop.2190410402
https://arxiv.org/abs/0709.1075
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0709.1075
https://doi.org/10.1016/S0550-3213(03)00184-6
https://doi.org/10.1016/S0550-3213(03)00184-6
https://arxiv.org/abs/hep-ph/0212259
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0212259
https://doi.org/10.1016/j.nuclphysb.2005.11.007
https://doi.org/10.1016/j.nuclphysb.2005.11.007
https://arxiv.org/abs/hep-ph/0509141
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0509141
https://doi.org/10.1016/0370-2693(84)90237-5
https://doi.org/10.1016/0370-2693(84)90237-5
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB137%2C241%22
https://doi.org/10.1016/j.physletb.2009.11.049
https://arxiv.org/abs/0907.2115
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0907.2115


J
H
E
P
1
2
(
2
0
2
2
)
0
2
9

[32] V.E. Lyubovitskij, F. Wunder and A.S. Zhevlakov, New ideas for handling of loop and
angular integrals in D-dimensions in QCD, JHEP 06 (2021) 066 [arXiv:2102.08943]
[INSPIRE].

[33] B. Feng, T. Li, H. Wang and Y. Zhang, Reduction of general one-loop integrals using
auxiliary vector, JHEP 05 (2022) 065 [arXiv:2203.14449] [INSPIRE].

[34] G. ’t Hooft and M.J.G. Veltman, Scalar one loop integrals, Nucl. Phys. B 153 (1979) 365
[INSPIRE].

[35] R. Mertig, M. Böhm and A. Denner, FeynCalc: computer algebraic calculation of Feynman
amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].

[36] V. Shtabovenko, R. Mertig and F. Orellana, New developments in FeynCalc 9.0, Comput.
Phys. Commun. 207 (2016) 432 [arXiv:1601.01167] [INSPIRE].

[37] V. Shtabovenko, R. Mertig and F. Orellana, FeynCalc 9.3: new features and improvements,
Comput. Phys. Commun. 256 (2020) 107478 [arXiv:2001.04407] [INSPIRE].

[38] T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and
D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

[39] G. Colangelo and A. Vaghi, Pseudoscalar mesons in a finite cubic volume with twisted
boundary conditions, JHEP 07 (2016) 134 [arXiv:1607.00916] [INSPIRE].

[40] E.M. Stein and R. Shakarchi, Fourier analysis: an introduction, volume 1, Princeton
University Press (2011).

[41] M. Döring, U.-G. Meißner, E. Oset and A. Rusetsky, Unitarized chiral perturbation theory in
a finite volume: scalar meson sector, Eur. Phys. J. A 47 (2011) 139 [arXiv:1107.3988]
[INSPIRE].

[42] QCDSF-UKQCD collaboration, The nucleon mass in Nf = 2 lattice QCD: finite size effects
from chiral perturbation theory, Nucl. Phys. B 689 (2004) 175 [hep-lat/0312030] [INSPIRE].

[43] Y.-H. Chen, D.-L. Yao and H.Q. Zheng, Analyses of pion-nucleon elastic scattering
amplitudes up to O(p4) in extended-on-mass-shell subtraction scheme, Phys. Rev. D 87
(2013) 054019 [arXiv:1212.1893] [INSPIRE].

[44] D.-L. Yao et al., Pion-nucleon scattering in covariant baryon chiral perturbation theory with
explicit Delta resonances, JHEP 05 (2016) 038 [arXiv:1603.03638] [INSPIRE].

[45] D.-L. Yao, Pion-nucleon scattering with explicit Delta resonance, PoS CD2018 (2019) 047
[INSPIRE].

[46] I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series, and products, Academic Press
(2014).

[47] H. Jeffreys, On isotropic tensors, Math. Proc. Camb. Phil. Soc. 73 (1973) 173.

[48] E.A. Kearsley and J.T. Fong, Linearly independent sets of isotropic cartesian tensors of
ranks up to eight, J. Res. Nat. Bureau Standards B 79 (1975) 49.

[49] D.L. Andrews and W.A. Ghoul, Eighth rank isotropic tensors and rotational averages, J.
Phys. A 14 (1981) 1281.

[50] H. Weyl, The classical groups: their invariants and representations, Princeton University
Press (1946).

– 39 –

https://doi.org/10.1007/JHEP06(2021)066
https://arxiv.org/abs/2102.08943
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.08943
https://doi.org/10.1007/JHEP05(2022)065
https://arxiv.org/abs/2203.14449
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2203.14449
https://doi.org/10.1016/0550-3213(79)90605-9
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB153%2C365%22
https://doi.org/10.1016/0010-4655(91)90130-D
https://inspirehep.net/search?p=find+J%20%22Comput.Phys.Commun.%2C64%2C345%22
https://doi.org/10.1016/j.cpc.2016.06.008
https://doi.org/10.1016/j.cpc.2016.06.008
https://arxiv.org/abs/1601.01167
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1601.01167
https://doi.org/10.1016/j.cpc.2020.107478
https://arxiv.org/abs/2001.04407
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.04407
https://doi.org/10.1016/S0010-4655(98)00173-8
https://arxiv.org/abs/hep-ph/9807565
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9807565
https://doi.org/10.1007/JHEP07(2016)134
https://arxiv.org/abs/1607.00916
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.00916
https://doi.org/10.1140/epja/i2011-11139-7
https://arxiv.org/abs/1107.3988
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1107.3988
https://doi.org/10.1016/j.nuclphysb.2004.04.018
https://arxiv.org/abs/hep-lat/0312030
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F0312030
https://doi.org/10.1103/PhysRevD.87.054019
https://doi.org/10.1103/PhysRevD.87.054019
https://arxiv.org/abs/1212.1893
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1212.1893
https://doi.org/10.1007/JHEP05(2016)038
https://arxiv.org/abs/1603.03638
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1603.03638
https://doi.org/10.22323/1.317.0047
https://inspirehep.net/search?p=find+J%20%22PoS%2CCD2018%2C047%22
https://doi.org/10.1017/s0305004100047587
https://doi.org/10.6028/jres.079b.005
https://doi.org/10.1088/0305-4470/14/6/008
https://doi.org/10.1088/0305-4470/14/6/008

	Introduction
	Decomposition of one-loop tensor integrals
	Definition of loop integrals for FVC
	Decomposition of the FVC tensor integrals
	Evaluation of the coefficients

	Reduction of tensor coefficients
	CM frame
	Passarino-Veltman reduction

	A pedagogic example of application
	Summary and outlook
	Some useful formulae
	Properties of the h-tensor
	Proof of eq. (3.2)
	Collection of tensor integrals in arbitrary frame
	One-point integrals
	Two-point integrals
	Three-point integrals
	Four-point integrals

	Collection of tensor integrals in the CM frame
	One-point integrals
	Two-point integrals
	Three-point integrals
	Four-point integrals

	One-loop self-energies of the nucleon 

