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Introduction

Les recherches entreprises pour comprendre le monde qui nous entoure ont fait que, a travers
les siecles, les limites du savoir humain ont été progressivement repoussées. En particulier,
des recherches ont souvent été faites dans le but de comprendre la matiere a des échelles de
plus en plus petites, ce qui a entrainé la découverte de I’atome, des noyaux atomiques ... A
I’opposé, d’autres ont préféré levé la téte vers les étoiles, et ont essayé de comprendre ces
objets, qui nous apparaissaient éternels il y a encore peu de temps, pour développer
progressivement la vision que nous avons de I’Univers, en incluant des objets de plus en plus
gros, comme les galaxies, les amas de galaxies, ...

Le plus déconcertant est que ces deux pistes de recherche, qui semblent pourtant aller dans
des directions opposées, semblent se rejoindre. En effet, pour décrire des étoiles comme les
naines blanches, les pulsars ..., la physique nucléaire, c'est-a-dire la physique de 1’infiniment
petit, est nécessaire [1, 2]. Les astrophysiciens et les physiciens des particules voient leurs
travaux devenir de plus en plus proches, sans toujours le réaliser. N’y a-t-il pas de meilleur
objet pour étudier la fusion nucléaire qu’'une étoile ? Et, c’est sans parler de 1’étude des
premiers moments de 1’Univers, avec le modele du Big Bang [3, 4]. Ce rapprochement de
I’infiniment petit et de ’infiniment grand est comparable a ’image bien connue du serpent
qui se mord la queue, employée pour donner I’image d’un cycle. Dans ce point de vue, la
vision d’un Univers similaire a une fractale semble guider 1’idée que nous en avons de lui, de
maniere plus ou moins consciente. Le modele planétaire de Rutherford utilis€ pour décrire
I’atome semble étre une bonne illustration de ce raisonnement, méme si probablement son
auteur d’avait pas cet objectif.

Un raisonnement hatif nous conduirait a conclure que nous sommes finalement arrivé a la fin
du chemin puisque, d’apres ce que nous avons vu, la boucle est bouclée. La Théorie du Tout,
I’achevement de la théorie scientifique ultime serait donc pour bientdt ... Cependant, ce
raisonnement est bien sir trop hatif, et méme faux. Il est incorrect parce que la physique est
un theme scientifique parmi d’autres, décrivant seulement une vision tres partielle du monde.
D’autre part, I’Histoire des Sciences nous apprend que c’est quand I’Homme pensait
parfaitement comprendre la Nature que celle-ci lui a prouvé le contraire. La naissance de la
mécanique quantique s’est accompagnée de la plus grande détresse chez ceux qui pensaient
pouvoir bientdt étre capables d’expliquer le monde avec la physique classique. Une vision
fractale de I’Univers est finalement une source d’intéressantes analogies pour essayer de
comprendre tel ou tel phénomene physique [5, 6]. Mais, un atome n’est pas une étoile avec
des planetes qui tournent autour de lui. Un modele, quel qu’il soit, reste un moyen
d’interpréter la réalité, sans étre la réalité.

La physique de I’infiniment petit, c'est-a-dire la physique des particules, réserve encore
quelques surprises. Cela correspond au monde des quarks [7]. Ces particules sont
actuellement assimilées a des particules élémentaires : elles sont considérées comme les
« briques » de la maticre. Grace a elles, les nucléons peuvent étre formés. A partir des
nucléons, les noyaux des atomes sont créés. Avec les atomes, les molécules sont formées, puis
la matiere macroscopique ... Méme s’il est probable que I’existence de particules encore plus
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petites puisse étre démontrée dans le futur, comme les préons [8], la physique des quarks est
actuellement un intense sujet de recherche, théoriquement et expérimentalement [9].

Tout d’abord, en physique expérimentale, avec d’importants projets comme le RHIC
Américain ou le LHC Européen, ou des collisions entre des noyaux via des énergies de plus
en plus grandes essayent de mettre en lumicre les mécanismes qui régissent la physique des
quarks. Dans la pratique, une difficulté vient du fait que les quarks ne peuvent pas étre
observés a 1’état libre. Dans des conditions normales, ils sont confinés dans la matiere
« classique », c'est-a-dire dans les nucléons. La finalit¢ des expériences liées a cette
thématique de recherche est d’essayer de former un nouvel état de la matiere ou les quarks
seraient déconfinés, durant un court laps de temps, avant de se recombiner. Cet état tres
particulier de la matiere est nommé le plasma de quarks et de gluons (QGP d’apres son
appellation anglaise) [9-11]. Il était probablement présent lors les premiers instants de
I’Univers. Puisque le QGP n’est pas observable directement, il est nécessaire pour les
expérimentateurs de prouver que cet état s’est réellement formé, via des preuves indirectes.

L’objectif actuel des recherches théoriques liées au plasma de quarks et de gluons est de
comprendre comment cette phase se refroidit, et comment les quarks et antiquarks se
combinent pour former des particules observables, c'est-a-dire de comprendre les mécanismes
de I’hadronisation des quarks/antiquarks. Dans la littérature, cette transformation est nommée
transition de phase entre le QGP et la matiere hadronique [12, 13], dans laquelle la phase
hadronique désigne la phase des particules observables : les baryons (y compris les nucléons)
et les mésons. En fait, la physique des quarks est correctement décrite par la
Chromodynamique Quantique (QCD) [9, 14]. Méme si les équations de QCD sont connues,
on ne sait cependant pas les résoudre dans les cas général. Cette remarque est particulierement
vraie dans le cadre des énergies mises en jeu dans la transition de phase QGP/maticre
hadronique. Notamment, le confinement des quarks n’est toujours pas maitrisé en physique
théorique.

Donc, pour étudier I’hadronisation d’un ensemble de quarks/antiquarks, des modeles effectifs
sont fréquemment utilisés. Parmi eux, nous pouvons citer le modele de Nambu et Jona-
Lasinio (NJL) [15, 16]. Méme si ce modele n’a pas été congu initialement pour cet usage, il a
été prouvé depuis longtemps sa fiabilité pour décrire la physique des quarks, notamment grace
a la formulation du modele faites dans les années 1980 et 1990 [17]. Ce modele a permis de
modéliser des particules comme les quarks et les mésons, d’étudier leur comportement a
températures et des densités finies. En outre, les sections efficaces associées a des réactions
entre ces particules ont été considérées, notamment pour étudier la formation de mésons a
partir de quarks et antiquarks [18]. Le modele NJL est a 1’origine de divers travaux. Par
exemple, nous pouvons citer [19-21], dans lesquels les études NJL dont nous venons de
parler ont été reprises, et il a été effectué des travaux complémentaires sur cette thématique. Il
a été proposé notamment une tentative de modélisation des baryons comme un état lié quark—
diquark [20]. Dans [21], une tentative d’une simulation NJL a aussi été exposée, décrivant le
refroidissement d’un plasma de quarks/antiquarks en mésons. Cependant, le modele NJL
présente certaines limitations. Notamment, le confinement est absent de ce modele. Ainsi, il a
récemment été proposé une nouvelle version du modele NJL, dans lequel une boucle de
Polyakov a été ajoutée afin de simuler un mécanisme de confinement. Cette version est
connue sous le nom de modele PNJL [22]. 1l a été reporté dans la littérature les divers
avantages de cette approche. Parmi les travaux déja effectués, citons par exemple la
modélisation des quarks et mésons avec le modele PNJL [23, 24].
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Mais, pour arriver a décrire le refroidissement d’un plasma de quarks/antiquarks en mésons et
baryons, les travaux mentionnés plus haut doivent étre complétés, dans le cadre des modeles
NJL et PNJL. Tout d’abord, la description des particules utiles pour notre étude, comme les
quarks, mésons et baryons, a été faite traditionnellement en fonction de la température, de la
densité baryonique (ou du potentiel chimique correspondant), mais plus rarement les deux a la
fois. Puisque la transition de phase QGP/matiere hadronique peut se faire selon la
température, la densité baryonique, ou les deux, il est intéressant de faire nos calculs dans le
plan T, pg. Aussi, la modélisation des baryons peut étre complétée dans le cadre du modele

NIJL, et ensuite les baryons devraient étre inclus dans une description PNJL. De la méme
maniere, si les réactions faisant intervenir des quarks et des mésons sont maintenait bien
maitrisées dans le cadre du modele NJL, les sections efficaces de réactions utilisant des
baryons devraient €tre étudiées [25]. Notamment, les réactions formant des baryons sont
particulierement intéressantes, parce qu’elles permettent de comprendre la dynamique de la
baryonisation du systeme. Aussi, dans le modele NJL, les sections efficaces ont été estimées
en fonction de la température, et plus rarement en fonction de la densité baryonique. Il serait
intéressant d’estimer les sections efficaces selon ces deux parametres, afin de pleinement
comprendre leur influence sur les résultats. Par ailleurs, les calculs de sections efficaces sont
rares dans le modele PNJL. Donc, les sections efficaces devraient étre estimées avec PNJL :
I’influence de la boucle de la boucle de Polyakov sur les sections efficaces n’est pas évidente.
Concernant les modeles dynamiques étudiant le refroidissement d’un plasma de quarks-
antiquarks, celui évoqué dans [21] n’inclut pas les baryons. Méme si 1’hadronisation du
systeme est certainement dominée par la mésonisation, décrire la formation des baryons dans
le modele est capital. Aussi, dans des conditions expérimentales, la matiere domine
I’antimatiere. Donc, une hadronisation complete dans de tels systemes ne peut pas étre faite
seulement via la formation de mésons : la baryonisation est clairement nécessaire. D’autre
part, le rdle joué par les diquarks devrait aussi €tre explicité : quelle est leur contribution dans
la dynamique du systéme ? Pour répondre a cette question, il apparait indispensable d’étudier
leur formation durant le refroidissement, et ensuite d’estimer s’ils sont assez nombreux pour
réellement intervenir. Aussi, dans une telle étude, il est particulierement intéressant de voir si
les modeles utilisés, NJL et PNJL, peuvent permettre une hadronisation complete du systeme.
Pour chacune des évolutions proposées dans ce paragraphe, une comparaison systématique
entre les résultats NJL et PNJL devrait étre effectuée, afin d’estimer concretement les
modifications induites par la boucle de Polyakov sur les résultats, a chaque étape du travail.

Dans le cadre de cette theése, nous allons considérer les points évoqués au paragraphe
précédent. Pour atteindre cet objectif, nous proposons la structure suivante: dans le
chapitre 1, nous procédons a un rapide apercu de quelques notions utiles dans le cadre de nos
travaux. Cela concerne particulierement deux thémes : la Chromodynamique Quantique, et la
théorie des groupes. A propos de la QCD, cela inclut une description des équations
correspondantes et une analyse des spécificités de ce modele, comme le confinement des
quarks. De plus, ce chapitre évoque des notions de théorie des groupes. En effet, un objectif
de cette partie est de voir comment cette théorie peut nous aider dans ce travail [26]. Dans le
chapitre 2, nous nous focalisons sur une description des modeles NJL et PNJL. Nous insistons
d’une part sur les approximations a effectuer pour obtenir les équations NJL. D’autre part,
nous présentons I’inclusion de la boucle de Polyakov dans le modele NJL. Nous expliquons
alors les modifications a effectuer au modele NJL pour obtenir PNJL. Une premiere
application de ces modeles est présentée dans ce chapitre. Elle concerne le calcul des masses
des quarks effectifs.
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Dans les chapitres 3 a 5, nous effectuons la modélisation des particules composites
intervenant dans notre travail. Dans le chapitre 3, les mésons sont considérés. Méme si de
telles particules ont déja été étudiées dans les modeles (P)NJL, nous retrouverons les résultats
de la littérature, et nous proposons d’étendre ces résultats selon plusieurs aspects. De plus, ce
chapitre constitue une occasion de présenter la méthode allouée a la modélisation de
particules composites, afin de simplement adapter les équations pour les autres particules
traitées. Celles-ci sont les diquarks et les baryons. En effet, puisque nous traiterons les
baryons comme un état lié quark—diquark, nous proposons d’étudier les diquarks dans le
chapitre 4. La, nous verrons la méthode utilisée, et ensuite nous 1’utiliserons pour traiter
différentes « familles » de diquarks. Une comparaison entre nos résultats et ceux obtenus par
d’autres approches est proposée. Apres, dans le chapitre 5, nous nous intéressons a la
modélisation des baryons. En utilisant certaines approximations, nous décrivons une méthode
générale pour construire les baryons. Ces derniers sont ensuite étudiés, comme les autres
particules mentionnées plus haut, en fonction de la température et de la densité baryonique.
Des études secondaires sont aussi effectuées dans ce chapitre, comme la modélisation
d’antibaryons, ou une étude de la stabilité des baryons dans le plan 7, pj .

Ensuite, dans le chapitre 6, nous estimons les sections efficaces associées aux réactions
utilisant ces particules citées. D’une part, nous considérons des réactions inélastiques.
Notamment, nous reprenons les réactions de mésonisation évoquées dans [18] pour retrouver
les résultats de ce papier, et ensuite étendre les résultats selon plusieurs aspects : calculs a
densités baryoniques non nulles, inclusion de la boucle de Polyakov ... Ensuite, diverses
réactions utilisant des diquarks et/ou des baryons sont considérées, afin de prévoir les
réactions dominantes. D’autre part, les réactions élastiques sont traitées, comme celles de [27]
et en y incluant de nouvelles. Finalement, dans le chapitre 7, nous nous focalisons sur I’étude
dynamique d’un systeme formé de quarks et d’antiquarks. Cette partie constitue un défi
intéressant, car tous les travaux effectués dans les chapitres précédents sont rassemblés dans
le code informatique effectuant la simulation. Plus précisément, cela concerne le calcul des
masses des particules évoquées (quarks, mésons, diquarks, baryons, et leurs antiparticules) et
I’estimation des sections efficaces de toutes les réactions €étudiées dans le chapitre précédent.
Dans le chapitre 7, apreés quelques explications a propos des algorithmes développés, des tests
sont effectués et commentés. Par exemple, les interactions entre particules sont étudiées, une
comparaison est effectuée entre les résultats NJL et PNJL ... Ensuite, des simulations
completes ont été faites. Grace a elles, I’évolution du systeme est analysée, et nous verrons a
cette occasion s’il est possible d’obtenir une hadronisation complete du systeme avec les
modeles (P)NJL ...

/ /
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Chapitre 1

Connaissances actuelles liées au QGP

1. Introduction

La physique des quarks [1, 2] est un domaine qui concerne des thématiques treés variées.
Concernant ses aspects théoriques, nous pensons d’emblée a la Chromodynamique Quantique
(QCD) [3, 4] utilisée afin de décrire I’interaction forte au sein des nucléons, c'est-a-dire en fait
les interactions entre quarks. Comparées aux interactions gravitationnelles et
électromagnétiques, qui sont bien connues, I’interaction forte présente certaines
caractéristiques, comme le confinement des quarks a I’intérieur des hadrons. La quéte d’un
état ou ces quarks pourraient €tre déconfinés (le plasma de quarks et de gluons QGP) est
actuellement I’objet d’intenses recherches. Cependant, a I'instant présent, on ne sait pas
résoudre les équations de QCD dans le cas général, mais seulement dans des cas particuliers
[5]. Cela nous incitera a proposer une alternative dans les prochains chapitres, via des
modeles effectifs. D’autre part, la physique des quarks fait aussi appel a des outils
mathématiques puissants, comme la théorie des groupes [6—11]. Cette théorie est en fait basée
sur I’étude des symétries d’un systeme physique. Cette méthode est applicable a divers
domaines physiques, comme la cristallographie, la physique atomiques, etc. [8]. Dans le cadre
de la physique des particules [1], I’étude des symétries permet de confirmer le nombre de
plusieurs types de particules, comme les baryons, les mésons,... observés expérimentalement.
En outre, I’existence d’une symétrie a des conséquences sur 1’écriture de 1’Hamiltonien d’un
systeme.

La finalité principale de ce premier chapitre est de rappeler quelques éléments pertinents dans
le cadre d’une étude concernant la physique des quarks. En décrivant les théories
correspondantes, un autre objectif est de mettre en évidence les difficultés que nous devrons
prendre en compte dans notre travail. Dans le partie 2, quelques notions de théorie des
groupes sont présentées, et quelques applications liées a notre travail. Un objectif de cette
partie est de se familiariser avec les notations et terminologies utilisées dans la suite du
travail. Une liste des quarks, mésons et baryons est ensuite établies, en nous servant de la
théorie des groupes. Le Lagrangien de la QCD est rappelé dans la partie 3. II y est alors
proposé une description de chaque terme qui le compose. La notion de symétrie chirale est
introduite, tout comme la brisure de cette symétrie et les conséquences qui y sont associées.
Ensuite, dans la partie 4, nous exposons les caractéristiques et difficultés rencontrées dans le
cadre de la QCD. Cela concerne le confinement des quarks, la non-solvabilité des équations
de la QCD, et le phénomene de liberté asymptotique. Cela nous conduit a présenter le quark
gluon plasma et ses propriétés. Plus précisément, nous y étudions les conditions selon
lesquelles le QGP est supposé se former, et o/quand il existe ou a existé. A cette occasion, un
diagramme de phases est proposé, selon la densité baryonique, la densité d’étrangeté et la
température. Il permet de présenter les divers objets ou phases qui existent ou sont supposés
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exister, en fonction des parametres évoqués. Cela permet de « planter le décor » dans lequel
nous allons évoluer tout au long de cette these. Dans la partie 5, nous nous focalisons sur
I’étude théorique du QGP, notamment via une description de la QCD sur réseau (lattice QCD
ou LQCD). Les limitations de cette approche sont expliquées. Dans la partie 6, nous
présentons quelques aspects liés a I’étude expérimentale du QGP. Des signatures possibles de
cette phase sont alors présentées. Des observables pertinentes, comme le flot elliptique, sont
aussi définies. Pour conclure, nous proposons un apercu des résultats expérimentaux récents.

2. Les symétries

N

L’étude des symétries est un outil treés puissant en physique. L’idée de départ consiste a
étudier les symétries que possede le systeme physique étudié. Grace a cette analyse, il devient
alors possible de voir qu’une ou plusieurs grandeurs physiques sont conservées. A partir de 1a,
on en déduit les conséquences sur I’Hamiltonien ou le Lagrangien décrivant notre systéme. En
effet, il peut étre affecté par les symétries. Plus précisément, les quantités conservées peuvent
intervenir dans 1’écriture de notre Hamiltonien/Lagrangien.

Pour illustrer cela de maniere concrete, un premier exemple consiste a imaginer une particule
isolée. Elle n’est soumise a aucune force. Par conséquent, sa vitesse est constante en fonction
du temps. Ainsi, cela implique une symétrie par translation dans le temps. Donc, il y a
conservation de sa quantité¢ de mouvement p selon le temps. En conclusion, son Hamiltonien

ou son Lagrangien n’ont pas de terme dépendant du temps dans leur écriture.

Il est possible d’aller plus loin. Dans le cadre de la théorie quantique des champs, le théoreme
de Noether [10] est une généralisation de cette approche. Celle-ci stipule qu’a toute symétrie

continue correspond un courant conservé. Celle-ci est notée J#, chaque u étant associé a une

coordonnée: O pour le temps, et 1,2,3 pour les cordonnées d’espace. Ce courant conservé
s’exprime mathématiquement par :

9,J"=0. (1)

Considérons maintenant un Lagrangien £ est un champ quantique y(x). Le lien entre la
symétrie (exprimée indirectement par le courant conservé) et le Lagrangien est donné par la
relation [10, 12] :
" u oL
JH =L+ ———- Sy . (2)
3(0,w)

En outre, le scalaire J*-J, peut étre un terme du Lagrangien. Il est alors nommé terme

d’interaction. Nous verrons plus loin dans notre travail que ce terme sera utile, en particulier
quand nous construirons notre Lagrangien effectif.
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2.1 Introduction a la théorie des groupes

Commencons avec un exemple simple. Considérons un objet macroscopique, non relativiste
et non quantique, et un repere Euclidien comportant trois dimensions d’espace. Considérons
un point M quelconque de notre objet. Ses coordonnées sont :
X
OM =|y|. 3)
z

Ensuite, appliquons une rotation de centre O a notre objet. Cette rotation est dite active, dans
le sens ou I’objet tourne réellement, alors que le repere reste immobile. Bien siir, dans le cas
d’une rotation passive, les axes du repere auraient subi la rotation et 1’objet n’aurait pas été
déplacé.... La rotation est décrite par (4), extraite de [10, 11]. Elle nous donne les nouvelles
coordonnées du point apres rotation :

x X
oM’ =|y =exp(—i§-j)~ y|. 4)
4 z

Dans cette formule, le vecteur 8 apparait. Il précise les angles des rotations selon chaque axe.
Aussi, J est un vecteur dont les composantes J,,J,,J, sont des matrices. Une définition

possible de celles-ci est :

00 0 0 0 i 0 - 0
J,=|0 0 —i|, J,=[0 0 0|, J,=[i 0 0. 5)
0 i O i 0 0 00 0

Si la rotation est exercée uniquement selon 1’axe des z, le terme exp(—ié-f ) de (4) se

simplifie alors, et se réécrit comme :
-1

exp(—iéj):exp -6, -J,—i6,-J,—i6, -J, |=exp| 6, |1
=0 -0

i 2 4 3 ] 6
1—%+%+... —0Z+%+... 0 ©

53 2 e cos(6,) —sin(6,) O

= 6, ——2+.. 1-=2—+=2-+... 0|=]|sin(E cos(@ 0

-2 s (6.) cos(0.)
0 0 1
0 0 1

Par de simples arguments de symétrie, il peut €tre vérifié que (6) correspond bien a une
rotation selon I’axe z et d’angle 6. .

Retournons maintenant a la théorie des groupes. Les matrices J,,J,,J_ sont les générateurs

des rotations dans un espace tridimensionnel. Les objets qui subissent les rotations engendrent
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la représentation du groupe de symétrie, qui est ici SO(3). En effet, SO(3) désigne I’ensemble

des matrices réelles carrées telles que R(€)=exp(—it§-j ), parce que chacune d’entre elles

vérifie la propriété S, O, 3, ou S (spécial) signifie que det(R)=1, O pour orthogonal ("R = R

ou T est la transposée) et 3 parce que les matrices R sont des matrices carrées 3x3. Ici, les

objets subissant les rotations sont des vecteurs, comme ceux utilisés dans 1’exemple. En
revanche, des objets tels que des points n’engendrent pas ce groupe. En effet, ils sont

insensibles a toute rotation sur eux-mémes, crées via exp(—ie J ) .

2.2 Quelques symétries utiles

Le monde macroscopique, décrit traditionnellement par la mécanique classique, est composé
d’objets matériels. Ces derniers peuvent €tre décrits par un ensemble de points et de vecteurs.
Comme vu plus haut, les points sont insensibles a toute rotation sur eux-mémes. Ce sont des
objets de spin 0, ou objets scalaires. Leur groupe de symétrie est U (1). Cela correspond a des

matrices 1x1 (c’est a dire des scalaires) du type exp(i@), ol ¢ est un angle, donc un nombre

réel. Pour un vecteur, il est nécessaire de lui faire faire un tour sur lui-méme pour lui redonner
son aspect initial, c'est-a-dire sa direction initiale. Les vecteurs sont des objets de spin 1, ou
des objets vectoriels.

Pour aller plus loin, un objet de spin %2 requiert un nombre de rotations pair, au moins deux,
afin de lui redonner son aspect initial. Certains de ces objets peuvent étre des particules
fréquemment désignées comme élémentaires. Cela concerne les électrons, les quarks, ou des
particules non élémentaires, comme des fermions composites si leur spin vaut 2. Ce sont des

objets spinoriels. Leur groupe de symétrie est SU(2), c’est a dire ’ensemble des matrices
complexes carrées, avec un déterminant égal a 1 (S) et unitaires (U), c’est a dire telles que
R"=R™'. Pour elles, I’équivalent de (2) est :

u'=exp(—éé'fj~u, (7)

ou u,u” sont des objets que nous pourrions nommer « vecteurs », dans le sens ou ils
engendrent la représentation SU(2). Clairement, en théorie des groupes, le concept de
vecteur excede largement la notion que nous pouvons en avoir en mécanique classique. En

fait, u,u” sont nommés spineurs. Dans (7), 7 contient, comme J , trois générateurs. Ce sont
les matrices de Pauli, explicitées dans 1’annexe B.

De plus, il existe aussi des particules qui nécessitent seulement la moitié d’un tour pour
retrouver leur position initiale. Les plus connues de ces particules sont les gravitons. Ce sont
les vecteurs de I'interaction gravitationnelle, de la méme maniere que les photons sont ceux
de l'interaction électromagnétique. Les gravitons sont des particules de spin 2. Ce sont
particules tensorielles.

Mis a part pour ces particules tensorielles, il est possible de prendre en compte un autre type
de symétrie. Nous pourrions le décrire comme une « pseudo-symétrie ». D’une maniere
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générale, ces symétries utilisent la matrice de Dirac ys. En fait, quatre symétries pertinentes

devraient étre mentionnées dans le cadre de notre travail ; deux d’entre elles concernent ce
nouveau type de symétrie. Les quatre sont rassemblées dans le tableau 1 [13, 14]. La premicre
de la liste, c'est-a-dire U, (1), a été évoquée précédemment : elle concerne les objets scalaires.

Si nous «ajoutons » simplement la matrice s, dans sa matrice de transformation, une
nouvelle symétrie est obtenue: U, (1), nommée symétrie pseudo scalaire. De la méme
maniere, ’inclusion de la matrice y; dans la matrice de transformation associée a la symétrie
vectorielle SU, (3) donne une autre symétrie : la symétrie axiale.

nom de la désignation matrice de courants
symétrie théorie des groupes transformation conservés
scalaire Uy (1) exp(—ig) Ju =0,y
pseudo-scalaire Uju(1) exp(—ip- 7s) Ju=Wr,rs¥
vectorielle SUy (3) CXP(—éG’a . /1“] Ii=wy, 2w
. l a a 77 a
axiale SU 4 (3) exp(—a 6, 1 ysj Ji =0y, s Ay

Tableau 1. Symétries et caractéristiques.

Dans le tableau 1, une colonne est associée aux courants conservés. Pour toutes les symétries
traitées, chacune d’elle agit sur un champ y . La colonne établit un lien entre la théorie des
champs, et en particulier avec le concept de courant conservé mentionné au début de ce
chapitre. A partir du tableau 1, il vient :

Ji=vy, Ty, (®)

ou y, indique la u ®Mme matrice de Dirac et T est associé au type de symétrie correspondante.

Pour des symétries scalaires ou pseudo scalaires, nous prenons respectivement 1 ou ys (un
courant par u, I’indice a est alors inutile). D’autre part, pour des symétries vectorielles et

ieme

axiales, nous avons respectivement A° ou y;A“. Le terme A“ fait référence au a
propagateur du groupe de symétrie, donc a courants pour x donné.

2.3 Application de la théorie des groupes a la physique des
particules

Les valeurs de la charge électrique ou de la masse des particules peuvent permettre de prédire
I’existence de symétrie entre les particules issues de la méme « famille » (quarks, mésons ...).
L’application du formalisme de la théorie des groupes permet de trouver certaines propriétés
des particules subatomiques de maniere théorique. D’ailleurs, les valeurs trouvées sont
souvent proches de ce qui est observé expérimentalement. De plus, il est possible d’anticiper
des résultats expérimentaux, et de déterminer le nombre de particules possibles d’un type
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donné. Nous proposons de voir ici les idées principales, et ensuite de présenter les particules
qui nous serons utiles dans notre travail.

Nous commencons notre description avec les quarks. Dans le cadre du modele standard, ils
sont considérés comme des particules élémentaires [1]. Dans cette these, les trois quarks de

saveur u,d,s et leurs antiparticules correspondantes i,d,5 sont considérées. En fait, chacun
des ces triplets engendre le méme groupe de symétrie. Celui-ci est SU(3) Iz I’indice f

correspondant a la saveur. Comparé au groupe SU(2) vu plus haut, la différence notable
concerne la différence de taille de la matrice. En effet, on a ici des matrices 3x3.

Un vecteur de SU(3), comporte chaque saveur de quarks en tant que composante, via sa

f
d) ou |s). Toute “rotation” de SU(3), est alors écrite comme :

f
') . )
) =exp[—§0a ﬂj |4} |, ©)
s) )

composante du « vecteur € ». Celui-ci comporte 8 composantes ; c’est

fonction d’onde |u),

ol 4, est la @™

ieme

I’équivalent de 6 vu équation (4). Aussi, A° est le @™ générateur de SU (3) ;- Nous avons 8

générateurs différents. Ce sont des matrices 3x3 et elles sont explicitées dans I’annexe B.

Chaque composante du vecteur apres rotation, partie gauche de (9), est une combinaison
linéaire des fonctions d’onde |u),|d),|s). Cependant, pour quelques rotations particulidres,
chaque composante apres rotation peut €tre associée a une saveur de quark distincte des
autres. En d’autres termes, il existe une rotation 6 pour laquelle on a, par exemple, u> =|d ),

|d’)=|s) et |s")=|u) ... Dans la pratique, I’application d’une telle rotation donne de bons

résultats pour ce qui est des charges électriques. Mais, ce n’est pas vraiment le cas en ce qui
concerne les masses, parce que le quark s est plus lourd que les quarks u et d. Dans ce cadre

la, SU(3) ; est connue comme une symétrie approchée.

Dans notre exemple utilisant SO(3), nous notons 1’existence d’une quantité scalaire invariante

quelle que soit la rotation appliquée : la norme du vecteur HO—M’ =“W” Avec SU(3) Iz des

quantités scalaires conservées existent également. Elles sont fréquemment notées Y et I,

[1, 15]. Le scalaire Y est I’hypercharge forte, et est définie comme :

ou Ny est le nombre baryonique. Ny =1/3 pour un quark et Ny =—1/3 pour un antiquark.

Aussi, S est le nombre d’étrangeté : —1 pour un quarks s, 1 pour un antiquark s, et O pour les
autres. Pour I5, il estlié a Y et a la charge électrique de la particule, note Q, Par la relation

de Gell-Mann et Nishijima :
Y
L=0-—.
3=0-7 11
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Grace a ces quantités, les quarks et les antiquarks peuvent €tre représentés dans un graphe
bidimensionnel, partie de gauche de la figure 1. Le triplet de quarks forme la
représentation 3 ; le triplet d’antiquarks forme la représentation 3. Les quarks sont les
«briques » de  particules composites, les hadrons. Par conséquent, avec plusieurs
combinaisons de quarks et/ou d’antiquarks, ces particules peuvent étre créées. Avec la théorie
des groupes, la méthode est simple : chaque quark ou antiquark est traité comme un vecteur
dans le plan I5,Y . Les mésons sont donc obtenus par sommation vectorielle d’un vecteur
quark et d’un vecteur antiquark, voir partie droite de la figure 1. Nous y avons représenté la
« famille » la plus utilisée des mésons, c'est-a-dire les mésons pseudo-scalaires. Par rapport
aux autres mésons, ils sont les plus stables, car ce sont les plus 1égers.

2/3
1/3f

Y

0
~1/3
-2/3

—1/2 0 1/2
I
3

Figure 1. Partie gauche : triplet de quarks u,d,s (représentation 3) et triplet d’antiquarks u,d,s

(représentation 3 ). Partie droite : mésons pseudo-scalaires, octet et singulet (7).

Voyons de plus pres I’exemple des mésons. Dans ce cas, 1’association d’un quark et d’un
antiquark est considérée. Cela implique un espace vectoriel correspondant au produit tensoriel
de I'espace du quark et de celui de I’antiquark. Cela donne alors 1’écriture formelle de la
fonction d’onde d’un méson :

|49)=[4)®|q). (12)

Dans le formalisme de la théorie de groupes, la représentation du groupe de symétrie des
mésons est écrite de la méme maniere. En effet, par analogie avec (12), elle est écrite comme
un produit tensoriel des représentations 3 et 3 . Donc, nous écrivons 3® 3 . Cette écriture peut
étre modifiée si on écrit la représentation comme une somme de représentations qui ne
peuvent pas étre simplifiées, connues sous le nom de représentations irréductibles.
Finalement, il vient [1, 16] :

3®3=1®8. (13)

Par conséquent, la représentation des mésons est composée par la représentation unité, connue
sous le nom de représentation triviale, et par la représentation 8, c'est-a-dire un octet. Cela
explique pourquoi nous avons 9 mésons, figure 1: 8 mésons octet et le méson singulet 77".
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D’autre part, dans le cadre de SU(3) ;o la théorie indique I’existence d’un octet

(représentation 8) et d’un décuplet (représentation 10) de baryons. Ces baryons sont
représentés figure 2, dans laquelle nous avons utilisé la méme méthode que celle décrite pour
les mésons. Maintenant, nous proposons de laisser provisoirement de cOté la théorie des
groupes pour nous focaliser sur la théorie de base qui gouverne les systemes que nous voulons
modéliser.

A~ AY AT A
1t — o o |

[ R
_ o s+ sho it ]

Y of & Y
b
] R T, Y AU P PRNRE S ..... SR ST

: : : : : : : : Q_ : :

-1 12 0 12 A1 -32-1-1/2 0 1/2 1 3/2

I, I,

Figure 2. Les baryons. A gauche : baryons de I’octet. A droite : baryons du décuplet.
3. La Chromodynamique Quantique

3.1 Description du Lagrangien de QCD

La Chromodynamique Quantique (QCD) est le modele le plus sophistiqué pour décrire la
physique des quarks [2, 4]. Son Lagrangien décrit I’interaction forte, c'est-a-dire 1’interaction
subie par les quarks. Les vecteurs de cette interaction sont les gluons. Ce sont des particules
de spin égal a un. Le Lagrangien de QCD s’écrit, sous une forme condensée [5, 17, 18] :

1., _
£QCD=‘Z'Gﬂv‘Gﬁw+§‘/’f(l7’ﬂDu‘mOf)‘/’f ; (14)

avec:
D,=9,-ig,-A, , (15)
dans lequel nous avons:

8 A . . y) e .
Ay = > Ay 7" écrit aussi comme A, =A; ?” (Sommation implicite d’Einstein). (16)
a=1
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Au niveau de (14), D, correspond a d,, c’est a dire 'opération de dérivée, dans laquelle
nous appliquons une transformation de jauge, comme détaillée dans (15). g, est la constante

de couplage associée a I’interaction forte. Aussi, G

v €st le tenseur du champ de gluons,

exprimé comme :
a _ ra abc
G,uv_F,uv"'gs'f 'Ab,u'A

cv

a

dans lequel F,, est défini comme :

Fo, =9 ,A% ~3,A% . (18)

Le A, correspond a la composante x du champ de gluons A. Le a est un index de couleur.

Les 4, sont les 8 générateurs de SU (3), f“ sont les constants de structure associées, voir
(9) et annexe B. Mais, maintenant, le groupe de symétrie SU (3) est noté, ¢ comme couleur.
Le y; correspond au champ de quarks de saveur f. Plus précisément, les y, sont des triplets,

c'est-a-dire des vecteurs a trois composantes. Ils admettent SU (3)C comme groupe de
symétrie. Ils s’écrivent sous forme développée [4] :

rouge

Yy

veri 19
v <l | (19)

V,?ku

N

Les indices rouge, vert, bleu sont associés a un nombre quantique spécifique a la
chromodynamique : la couleur. De la méme maniere, les « anti-valeurs » sont anti-rouge, anti-
vert et anti-bleu. Elles sont associées aux champs d’antiquarks.

La saveur est un autre nombre quantique, li€ au type de quarks considéré. Nous en avions déja
parlé au paragraphe 2.3. En fait, dans le modele actuel, six saveurs de quarks existent : u, d, s,
¢, b, t, et ainsi de suite pour leurs antiquarks équivalents : anti—u, noté u, ... Chacun d’eux a
une masse, connue sous le nom de masse nue, ou de masse courante. Dans 1’équation (14),
elle est notée my ;. Le quark le plus léger est le u, dont la masse est proche de 2 ou 3 MeV,

alors que t aurait une masse d’environ 173 GeV, donc comparable a celle d’un noyau d’or,
voir annexe A. Par conséquent, des arguments de thermodynamique 1égitiment notre choix de
garder uniquement les trois quarks u, d et s, comme fait dans notre travail exposé dans les
chapitres suivants. Plus précisément, les autres quarks n’interviennent pas vraiment dans la
physique que nous voulons décrire : ils sont certainement trop lourds pour étre réellement
crées de maniere notable, méme si nous verrons plus tard le role que pourrait jouer les mésons
constitués par ¢ et ¢ ... Par analogie avec (19), nous écrivons le champ de quark complet
comme :

V.
v=lvy |- (20)
v,
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Chaque composante du vecteur présenté dans (20) peut divisée comme dans (19), avec
f=u,d,s. Aussi, ¢ admet SU (3) ; comme groupe de symétrie (9). Pour finir cette analyse,

imaginons que nous n’ayons pas de gluons dans les équations. Cela correspondrait a une
théorie ou les quarks n’interagiraient pas entre eux. Donc, ils seraient considérés comme des
particules libres. L’équation (14) serait alors écrite comme :

Liipre =§'/7f (179, =mos )y =§V_’f (12 =mos Jws. Q1)

Finalement, elle pourrait s’écrire comme :

Liipre =W (id —my v, (22)

dans laquelle m, correspond a une matrice définie comme :

Mou
my = oy . (23)
Mo

Clairement, (22) est le Lagrangien de Dirac [19]. Il décrit I’évolution de particules quantiques
relativistes de spin 2.

3.2 La symétrie chirale

Une caractéristique importante liée au Lagrangien de QCD est liée a la notion de symétrie
chirale. Plus précisément, Les quarks peuvent étre classés en deux catégories par rapport a
leur chiralité : droite (le spin et la quantité de mouvement sont dans le méme sens) et gauche
(sens opposés). Nous notons ¥, un champ de « quarks droits », et y; un champ de « quarks

gauches ». Un champ de quarks peut alors s’écrire comme :

W= [V/D J . (24)
Ve

En utilisant la matrice »° définie dans une représentation de Weyl (chirale), annexe B :

S e3)
-2

nous définissons les projecteurs selon les états gauche et droit [20] :

-7 L +y _L+py
2 b

_ _ _1,-
SV V=V =V Vp ==V l/fD=l/fB7o=1//4275, (26)

Ve =

ou 1, et 1, sont respectivement les matrices identités 2x2 et 4x4. Si nous utilisons ces

projecteurs dans le Lagrangien de QCD (14), et si nous n’explicitons pas les saveurs, nous
obtenons :

1 — — _
Locp :—Z‘Gﬂv -Gy +"//D7ﬂDﬂl//D +"//G7ﬂDﬂ‘//G -m-yy, (27)
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a cause de la relation d’anti-commutation {}/”,75 }:0, annexe B. Clairement, les termes

Wpy'Dyp et Wey"D,ye indiquent qu'un quark gauche peut seulement interagir avec

d’autres quarks gauches. De la méme manicre, les quarks droits interagissent avec les quarks
droits. Ce clivage des quarks gauches et droits correspond a la symétrie chirale. Cependant, le

terme m-Yy =m- (VW +Wsy,,) brise cette symétrie, car les quarks gauches et droits sont

« autorisés a interagir » via ce terme, dans lequel m est la masse des quarks. A hautes
températures et/ou hautes densités, les masses des quarks sont proches des masses nues my .
Pour les quarks u et d, les masses nues sont assez faibles pour nous permettre de négliger le
terme m, -y . Cela veut dire que la symétrie chirale est une symétrie approchée. On dit alors
que la symétrie chirale est explicitement brisée. Cependant, dans certains calculs, il est
possible de travailler a la limite chirale, qui consiste a négliger complétement les masses nues
des quarks.

Au contraire, a basses températures/densités, des condensats de quarks-antiquarks peuvent
apparaitre. Ils sont notés traditionnellement comme <<1/7f vy >>, et sont fréquemment désignés

sous le terme de condensats de quarks ou condensat chiral. L’ antiquark d’un condensat peut
interagir avec un quark (non issu d’un condensat). De cette maniere, un quark gauche et un
condensat peut donner un quark droit, comme illustré par la figure 3. Ce couplage brise la

symétrie chirale.

Condensat

Figure 3. Description de la brisure de la symétrie chirale par le condensat. Ce schéma a été largement
inspiré par [5].

En fait, cette interaction conduit a considérer des masses effectives. Clairement, nous
considérons la une masse m largement plus forte que la masse nue. Puisque m-ypy est
responsable de la brisure de la symétrie chirale, un accroissement de m permet a de terme de
devenir non négligeable. Dans ce cas, la symétrie chirale est spontanément brisée.

3.3 La brisure de la symétrie chirale

En physique, la brisure de symétries présente certaines applications. Plus précisément, le
théoreme de Goldstone [21, 22] explique que lorsqu’une théorie continue est spontanément
brisée, cela donne naissance a des bosons, nommés bosons de Nambu-Golstone. Si la
symétrie est exacte, ces bosons sont sans masse. Au contraire, dans le cas de symétries
approchées, les (pseudo) bosons de Nambu-Goldstone ont une masse. Dans le cadre de la
symétrie chirale avec les quarks légers u et d, la symétrie n’est pas exacte, mais bien vérifiée,
grace aux faibles masses nues de ces quarks. En conséquence, les bosons de Nambu-
Goldstone associés ont de faibles masses. Ils correspondent aux pions. En fait, la relation de
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Gell-Mann-Oakes-Renner (GMOR) [23] établit un lien entre la masse des pions m,, leur
constante de désintégration dans le vide f,, les masses nues m,,m,, des quarks u et d, et la

valeur du condensat de quarks 1égers <<l/7ql//q >> [20, 24] :

mzzr ) f;r2 = _(m()u +my, )'<<l/7ql//q >> , AVeC <<l/7ql//q>> <<l/7ul//u >> -’2-<<l/7dl//d >> . (28)

Le quark étrange est plus lourd. Ainsi, la symétrie chirale mettant en jeu des quarks de
SU (3) ; est plus approchée. Il est imaginé [25] que les bosons de Nambu-Golstone

correspondant puissent €tre associée aux 77 et aux kaons dans la limite ou les trois quarks u, d,
s seraient de masses nulles.

D’autre part, la théorie de Landau sur les transitions de phase [26] considere les transitions de
phase pour lesquelles une symétrie est brisée ou restaurée, par exemple en fonction de la
température. Un parametre d’ordre est une quantité utilisée afin d’étudier de telles transitions
de phase. Dans la phase dans laquelle la symétrie est respectée, le parametre d’ordre en nul. A
I’opposé, quand la symétrie est brisée, le parametre d’ordre est non nul. La maniere selon
laquelle le parametre d’ordre varie, d’une valeur nulle a une valeur non nulle (ou
inversement), nous permet de connaitre 1’ordre de la transition de phase. Plus précisément,
quand le parametre d’ordre présente une discontinuité entre les deux phases, nous avons une
transition de phase du premier ordre. Quand le parametre d’ordre chute brutalement a zéro,
mais de maniere continue, cela correspond a une transition du deuxieme ordre. Dans ce cas, la
dérivée du parametre d’ordre selon la température présente une discontinuité. Aussi, quand le
parametre d’ordre converge seulement vers zéro, c'est-a-dire qu’il a des valeurs non nulles
tout le temps, nous avons un crossover. Ces trois configurations sont représentées sur la
figure 4, dans laquelle 7. correspond a la température critique de la transition.

1" ordre 2°Me 5rdre Crossover
A A A
Parametre Parametre Parametre
d’ordre d’ordre d’ordre
T, T T, T T

Figure 4. Evolution du parametre d’ordre en fonction de la température 7.

Dans le cas de la symétrie chirale, la valeur du condensat de quarks <<l/7q1,yq >> constitue un

parametre d’ordre. Clairement, un objectif peut €tre d’étudier la restauration de la symétrie
chirale a hautes températures, quand la valeur du condensat tend vers zéro.
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4. Caractéristiques et problemes lies a la physique
des quarks

4.1 Confinement des quarks a I’intérieur des hadrons

N

Le confinement des quarks est un phénomene important 1ié a I’interaction forte [4]. Par
exemple, considérons un quark et un antiquark. Si ces deux particules sont liées, cela
correspond physiquement a un méson. L’interaction forte interdit a nos deux particules de se
séparer si aucune autre particule n’intervient, figure 6 paragraphe 4.3. Par conséquent, quand
la distance entre ces deux particules est trop forte, I'interaction forte agit via une force de
rappel, comme un ressort. Ladite force empéche les deux particules de se retrouver isolées
I’une par rapport a I’autre. En fait, il est possible de modifier une structure comme un méson
ou un baryon lors de collisions a hautes énergies. Cependant, un quark ou un antiquark ne se
retrouveront jamais isolés, c'est-a-dire a 1’état libre, méme s’il y a création de paires quarks-
antiquarks.

En effet, le modele standard stipule que les seules particules qui puissent exister a 1’état libre,
et par extension puissent étre observés, doivent étre des objets de couleur soit nulle (« noir »),
soit une « couleur complete » (« blanc » ou « anti-blanc »). Pour étre plus précis, le concept
de couleur est associé a la charge de couleur portée par les objets décrits par la QCD (évoquée
paragraphe 3.1). Les quarks ont une couleur qui peut étre r,v,b. De la méme maniere, les
antiquarks peuvent avoir une « anti-couleur » 7,v,b. Par exemple, un méson bati avec un
quark rouge a nécessairement un antiquark 7 . En conséquence, les mésons ont une charge de
couleur nulle : « r+r =noir ». De plus, les baryons doivent étre composés de trois quarks de
couleurs différentes. Par conséquent, les baryons ont une charge de couleur « compléete » :
« r+g+b=blanc ». Par extension, nous avons « anti-blanc » pour les antibaryons.

Dans le cadre de la théorie des groupes, ce raisonnement peut étre développé. Plus
précisément, des calculs SU(3) f (saveur), comme avec (13), peuvent étre effectués avec

SU (3), (couleur). Le tableau 2 propose de tels calculs. Les représentations dont les particules

existent réellement a 1’état libre sont uniquement celles qui peuvent étre scindées en une
somme incluant la représentation triviale 1 : ce sont des invariant de couleur, c'est-a-dire des
scalaires selon la couleur [15]. Cela concerne bien entendu les mésons et les baryons. D’autre
part, un raisonnement similaire peut étre fait pour les antibaryons gqq .

Mentionnons maintenant le role particulier joué par les gluons, les vecteurs de 1’interaction
forte. Concretement, ils agissent en échangeant de la couleur avec les quarks. A cause de cela,
ils peuvent porter une charge de couleur et une anti-charge de couleur différente, et sont donc
non observables. Par exemple, si un quark porte initialement un couleur rouge, alors il peut
interagir avec un gluon portant br, et finalement il portera une couleur bleue apres
interaction. En fait, cette description est purement illustrative. Dans le cadre de la mécanique
quantique, les états des gluons sont mélangés, pour former des combinaisons linéaires. Par

exemple, cela peut donner (1/ «/§)~(rl; +b7). Nous avons 8 possibilités de combinaisons

linéaires indépendantes formées a partir des possibilités couleur-anti-couleur, c'est-a-dire en
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fait 8 gluons. Ils correspondent aux 8 générateurs de SU (3)C, notés A, dans la partie 3. Les
matrices de Gell-Mann, voir annexe B, sont une représentation possible de ces générateurs, ou
(1/ ﬁ)-(rl? +br) peut étre associé 2 A,. D’autre part, il peut étre souligné le fait que I’état
singulet (1/ 3 )~(r7+ g§+bl7 ), associé a la matrice unité, n’est pas un neuvieme gluon, car il

peut étre formé par combinaison linéaire des 8 générateurs de SU (3), [27].

structure représentation nom observations
quarks/antiquarks et simplification possible éventuel
q 3 quark n’existe pas a 1’état libre
q 3 anti-quark | n’existe pas a I’état libre
— 5 < existence prouvée
94 3©3=198 fmeson expérimentalement
_ ne peut pas exister a
qq 33=6®3 diquark I’état libre, non observé
expérimentalement
999 303®3=3®3®6®15 - n’existe pas
999 3®3®3=108@8®10 baryon existence prouvee
expérimentalement !
9999 3303®3=3D3@3D6D6D... - n’existe pas

Tableau 2. Structures possibles de quarks /antiquarks, inspiré de [1, 15].

Aussi, rien n’interdit les gluons d’interagir avec eux-mémes, puisque leur charge de couleur le
. . 1
permet. Cette auto-interaction des gluons correspond au terme ——-G¢,-G*" de (14). Ce
4 uv  Ya

comportement ne peut pas exister avec des interactions électromagnétiques. En effet, les
vecteurs de cette interaction, les photons, ne portent pas de charge liée a I’interaction, c'est-a-
dire de charge électrique. Concernant les gluons, leur auto-interaction suggere 1’existence
d’états liés de gluons, les glueballs ou gluoniums [1, 28, 29]. Toutefois, ils n’ont pas (encore)
été observés expérimentalement. Une explication possible est qu’ils pourraient se combiner
avec des états quantiques de mésons.

4.2 Insolvabilité des équations de QCD

L’interaction entre gluons mentionnée au paragraphe 4.1 est un obstacle qui fait que 1’on ne
sait pas résoudre les équations de QCD dans le cas général. Mais, ce n’est pas la seule raison.
Nous pouvons ainsi parler de la constante de couplage o de I'interaction forte. Celle-ci est

reliée au terme g, de I’équation (15) par la relation a, = g,* /47:. En fait, oy n’est pas
réellement une constante, notamment pour les domaines en énergie qui nous intéresse [18].
En outre, sa valeur est suffisamment forte pour interdire d’utiliser les méthodes perturbatives,
qui sont appliquées avec succes par exemple en physique atomique ou en électrodynamique
quantique. En effet, dans ces théories, la constante de couplage rencontrée correspond a la
célebre constante de structure fine @=1/137, qui gouverne les interactions

électromagnétiques. En revanche, en ce qui concerne g , une valeur approchée de 0.1184 est
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souvent rencontrée dans la littérature (pour la masse du boson Z). Cette valeur est assez forte
pour qu’une « simple » interaction entre deux quarks fasse intervenir un grand nombre de
gluons, de paires particules/antiparticules ... Par conséquence, cela induira une grande
quantité d’événements possibles a prendre en compte pour décrire cette interaction [1].
Calculer tous ces événements est tres difficile, notamment si nous nous placons aux énergies
correspondant a la QCD dite de « basses énergies ».

Plus précisément, ces basses énergies sont celles ou il faut étre pour décrire les hadrons. Mais,
dans ce régime, &, est encore plus forte que la valeur donnée plus haut. En conséquence, on

ne peut pas modéliser les quarks a I’intérieur des hadrons a partir des équations de QCD.
Puisque les quarks ne peuvent pas exister a I’état libre dans des conditions normales, et
puisque on ne sait pas décrire leur interaction au sein des hadrons, certaines de leurs
caractéristiques ne sont pas faciles a étudier. Cela concerne en particulier leur masse,
nommées masse nue dans la partie 3. Des valeurs des masses nues des quarks sont disponibles
dans la littérature, mais I’incertitude est assez grande.

4.3 Phénomene de liberté asymptotique

A Topposé de ce qui a été vu a basses énergies, l'interaction forte est paradoxalement
beaucoup plus « coopérative » aux hautes énergies. Imaginons un systeme constitué de quarks
et/ou d’antiquarks, qui soient suffisamment proches les uns des autres. Si le rapprochement
est suffisant, on est alors dans les conditions d’un deuxieéme phénomene typique de la
physique des quarks, caractéris€é par une faiblesse relative de Il’interaction forte. Cela
correspond au phénomene de liberté asymptotique [2, 4]. D’autre part, dans ce cas, les
méthodes perturbatives évoquées précédemment sont alors utilisables [5]. Par conséquent,
cette branche de la théorie est nommée perturbative QCD. Pour ’illustrer, considérons la
figure 5, fortement inspirée de [5]. Elle décrit de maniere trés schématique le phénomene
évoqué avec les baryons. Dans cette figure, I’'image (1) correspond aux conditions ordinaires,
dans un noyau. Si le rapprochement de plusieurs baryons est suffisant, images (2) et (3), leurs
quarks peuvent se mélanger, puisque plus rien n’indique que tel ou tel quark appartient a tel
ou tel baryon. Si nous interprétons le baryon comme un « sac » qui confine les trois quarks
(voir le modele du sac évoqué plus loin dans ce chapitre), I’image (3) peut étre interprétée
comme une fusion des sacs. Donc, le confinement est toujours présent, mais il s’exerce sur un
plus grand volume et avec plus de quarks qu’avec un simple baryon.

En second exemple, considérons un quark et un antiquark. Tout d’abord, admettons que les
deux particules ne subissent pas l'influence d’autres particules, c'est-a-dire qu’elles sont
isolées. Dans ce cas, I’interaction entre ces particules peut étre donnée par la formule
suivante :

(r=—Z+xr. (29)

Ce potentiel quark-antiquark est représenté par la figure 6, directement inspirée de [5]. Il
correspond a la courbe étiquetée « sans écrantage ». Nous en avions parlé au paragraphe 4.1.
Clairement, le quark et I’antiquark ne peuvent pas étre séparés. Toutefois, en général, de telles
particules ne sont pas seules. Ainsi, il est nécessaire de prendre en compte en effet
d’écrantage, associé a l’autre courbe dans la figure 6. Plus précisément, si le quark et
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I’antiquark sont assez éloignés, nous pourrions avoir d’autre quarks/antiquarks entre eux.
Cette remarque est vraie notamment si le milieu est assez dense, c'est-a-dire image (3) de la
figure 5. Ainsi, ils peuvent « masquer » ’interaction entre notre quark et notre antiquark.
Finalement, les quarks et les antiquarks peuvent étre séparés. Si I’effet d’écrantage est pris en
compte, (29) est alors modifié€ et donne [14] :

qu écrantage (l’) = _g ’ exp(_r/R) . (30)

(1) (2) (3)

2 > ° | 2, 9° :‘ﬂ' ,3
2 . v \ o .l I.. L ‘ : ° o". v
rz,‘: g d=18fm d<2r, L

Figure 5. Schématisation de la “fusion” de plusieurs baryons.

L’effet d’écrantage permet la formation d’une phase, dans le sens thermodynamique de ce
mot, ou les quarks et gluons peuvent coexister, sans manifestation apparente du confinement.
Cette phase est le plasma de quarks et de gluons.

sans écrantage

qq

avec écrantage

Figure 6. Potentiel quark-antiquark V, fonction de la distance r entre le quark et I’antiquark.
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4.4 Le plasma de quarks et de gluons et diagramme de
phase

Le plasma de quarks et de gluons (QGP dans I’appellation Anglaise) [5, 17] est un état tres
particulier de la matiere, puisque c’est le seul ol les quarks sont déconfinés des hadrons. De
nos jours, on connait deux systeémes physiques dans lesquels un tel état a pu ou pourrait
exister. Le premier correspond a I’Univers dans ses premiers instants, peu de temps avant le
Big Bang. Quand la température s’est suffisamment abaissée, 1’énergie initiale s’est convertie
en matiere/antimatiere. Pendant cette phase, il est supposé que la taille de 1’Univers était
proche de celle de I’orbite actuelle de Jupiter. Ensuite, durant le refroidissement, 1’interaction
forte a commencé a agir et le confinement des quarks dans les hadrons s’est amorcé. Par un
processus encore mal connu, comme une brisure de la symétrie matiere/antimatiere (en faveur
de la matiere), la matiere a dominé 1’antimatiere. Cela explique pourquoi la matiere forme
I’Univers tel que nous le connaissons aujourd’hui. L’antimatiere apparait seulement dans des
cas tres particuliers, comme au sein des mésons. Clairement, le refroidissement initial de
I’Univers constitue une transition de phase du plasma de quarks et de gluons en maticre
hadronique. Dans cette configuration, la température est le seul parametre agissant sur cette
condensation.

Le second systéme physique est le coeur de certaines étoiles a neutrons, ou la densité excede
plusieurs fois la densité nucléaire des noyaux des atomes. Les étoiles a neutrons sont des
astres morts du point de vue de leur activité thermonucléaire. Donc, elles sont considérées

comme des objets froids. Dans cette configuration, une masse comparable a celle du Soleil,
c'est-a-dire M = 2-10°kg, est contenue dans une sphére d’environ dix kilometres de rayon.
Cela met en valeur un autre parametre pour former du QGP : la densité baryonique pg. En
fait, celle-ci est lié au nombre baryonique N, vu au début de ce chapitre. Donc, les étoiles a
neutrons illustrent une autre possibilité de transition de phase, mais cette fois-ci la densité est

le parametre permettant cette transition. Pour certaines étoiles a neutrons massives, dont les
masses dépassent largement M, il est courant de parler d’étoiles a quarks. Dans les

références [30, 31], il est d’ailleurs expliqué que ces étoiles ne peuvent pas €tre constituées
uniquement par des neutrons, mais aussi par de la « matiere de quarks », et méme de matiere
étrange. C’est pour cela que 1’on peut parler d’étoiles étranges [32].

Les deux exemples précédents sont des cas particuliers. Pour chacun, seul un parametre, la
température ou la densité, permet cette transition de phase. Dans le cas général, un graphe
peut étre fait selon ces deux parametres. Ledit graphe est alors divisé en plusieurs zones : une
ou le plasma de quarks et de gluons existe, une autre pour la matiere hadronique... Chaque
zone correspond a une phase. Cela forme le diagramme de phase, figure 7, inspiré de [5] et
[30]. Dans cette figure, un nouveau parametre est introduit : la densité d’étrangeté pg, en
référence aux quarks étranges et a la matiere étrange précédemment évoquée. Une surface est
utilis€ée pour matérialiser la frontiere entre la matiere hadronique et les autres phases.
Cependant, dans I’espace pg,pg,T , une phase mélangeant matiere hadronique et phase QGP
est attendue, notamment a hautes densités et basses températures. La figure 7 propose aussi de
résumer les spéculations actuelles au sujet d’hypothétiques objets exotiques. Ils existeraient a
certaines températures et densités. Ce sont les MEMO (Metastable Exotic Multihypernuclear
Objects) [30, 33, 34] ou les strangelets [30, 32, 34]. Par ailleurs, une autre phase est attendue
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a hautes densités et basses températures : la phase de supraconductivité de couleur, qui peut
elle-méme étre divisée en plusieurs sous-phases [35—41]. Cette phase sera évoquée de
nouveau plus tard dans notre travail. Les sigles AGS, SPS, RHIC et LHC désignent les projets
visant a étudier la phase QGP expérimentalement. Leurs positions sur le graphe indiquent les
zones potentiellement explorées par ces expériences. Quelques résultats liés auxdites
expériences sont données dans la partie 6.

Figure 7. Diagramme de phase dans I’espace pg,pq.T .

5. Aspects théoriques : la QCD sur réseau

Méme si les équations de QCD ne peuvent pas €tre résolues dans le cas général, des
approches numériques existent pour effectuer certains calculs. La QCD sur réseau (LQCD) est
une de ces méthodes. Elle a été proposée en 1974 par Kenneth Wilson [42]. Avec cette



Chapitre 1. Connaissances actuelles liées au QGP 35

méthode, [43—47], les calculs de QCD sont effectués sur un réseau a quatre dimensions, c'est-
a-dire trois dimensions spatiales et le temps, dans un espace Euclidien. Cela veut dire que la
composante temporelle est écrite comme x, =i-t. Avec LQCD, la valeur moyenne d’une

observable A peut étre évaluée avec une relation comme [46] :

<A>=%'IDUDI/773'//'A'CXP(—S)’ 31)

ou ¥ est un champ de quarks. Aussi, Z est la fonction de partition, définie comme :
Z=[DUDPDy -exp(-S), (32)

dans laquelle S est I’action. Nous rappelons que S=jd4x~/$, ou L est la densité

lagrangienne, aussi nommée plus simplement Lagrangien dans la pratique, comme dans notre
travail. L action peut étre scindée en deux parties : une associée au gluons, et 1’autre concerne
les quarks : =5 +S

gluons quarks *

5.1 L’action de jauge de Wilson et les boucles

Tout d’abord, focalisons-nous sur les gluons. L’action liée aux gluons peut étre évaluée par
I’action de jauge de Wilson, qui s’écrit comme [44] :

Setuons =B Y [l—éRe(T (B (x)))} (33)

X, U<V

Dans cette expression, S est I’inverse de la température. Aussi, P,, (x) est une plaquette.

uv
Grace a la figure 8, on exprime la plaquette comme [48] :

Buy (x)=U, (x)Uy (x+ 2)U_, (x+ 2+V)U_, (x+V) 34

dans laquelle U, (x) est une variable de champ de jauge, avec U, (x)e SU(3).

xJﬁl U, (XJ/QWA) lx_+/{}+\’>
U (x+, A
Lty AU (xtw)

X_T U:(x) T;ﬁi\t

Figure 8. Une plaquette.

U, (x) est reli€ aux champs de gluons A, par U ﬂ(x)zexp(igj;+ﬂdi-Aﬂ()”c)). Cependant, si

nous considérons que A, est constant durant la propagation entre x et x+ 4 (la valeur de A,

changeant seulement quand nous atteignons le noeud suivant sur le réseau), il vient :
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Uﬂ(x)zexp(igﬂ-Aﬂ(x)), (35)

ou g est la constante de couplage. Aussi, a est le parametre du réseau. Plus précisément, il
correspond a la distance entre deux nceuds consécutifs du réseau, quand il est appliqué aux
dimensions spatiales.

En fait, une plaquette est un cas particulier de boucles de Wilson. Ce sont des boucles
rectangulaires formées dans un sous-espace qui inclut une dimension spatiale et le temps.
Clairement, une plaquette est une boucle de Wilson 1x1. Les boucles de Wilson sont des
invariants de jauge, c'est-a-dire selon SU(3), tout comme les boucles de Polyakov. Une

boucle de Polyakov est une ligne selon le temps, dont les extrémités sont reliées par des
conditions aux limites périodiques. Nous verrons au chapitre 2 que dans le cadre du
formalisme du temps imaginaire, de telles conditions peuvent étre satisfaites. Une

ligne/boucle de Polyakov s’écrit comme :
N,-1

P(%) =T{ IV, ()?,T)} ,avec U, (%,7)=exp(ig-a-A,(%,7)). (36)

7=0

Dans (36), N, est le nombre de temps différents considérés dans le calcul. Physiquement,
comme expliqué par exemple dans [44], P(x) simule I’introduction d’un quark statique a la

position X. De la méme maniere, on peut aussi définir le complexe conjugué PT(?c) de la
boucle de Polyakov (36), ol on remplace U, (%,7) par exp(—ig-a-A,(%,7)). Clairement, la

conjugaison complexe «renverse le temps » dans la boucle. Physiquement, on simule
I’introduction d’un antiquark statique. Nous verrons plus tard comment la boucle de Polaykov
sera considérée dans le cadre de cette these.

5.2 Action due aux quarks et limitations de LQCD

Quand les quarks ne sont pas inclus dans 1’étude, S =0. De tels calculs sont nommés

quarks

calculs LQCD en pure jauge. A 1’opposé, si les quarks sont pris en compte, leur action s’écrit
dans un espace Euclidien comme :

S quarks =Jd4x-y7(x)(,D/+m)y/(x). (37)
Dans le cadre de calculs sur réseau, cette action peut se réécrire par exemple comme [49] :
_ Uy ()p(x+2)-U_, (x)y(x-2)
S quarks = Zw(x)(Z — . +m-y(x) |. (38)
x H

Quoi qu’il en soit, I’action des quarks est fréquemment écrite sous la forme :
Squarks(lp’l//’U)Ezlp(x) Mxy [U] l//(y)’ (39)

dans laquelle M est la matrice d’interaction, aussi nommée opérateur de Dirac. En fait, dans
(32), l’intégration de la contribution des quarks peut étre effectuée [46]; cela mene a
I’expression :
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Z=[DUDFDY -exp(-S)= [ DU -(det(M[U]))" -exp (=S yons ) (40)

avec n; est le nombre de saveurs considérées dans les calculs (habituellement deux ou trois).

Dans le passé, une approximation, connue sous le nom Anglais de quenched approximation,
consistait a dire que det(M [U ]) =1. Cela conduit a négliger les actions locales, et les boucles

de fermions sont supprimées [44, 49, 50]. De nos jours, cette approximation tend a étre évitée
dans les calculs de LQCD. En effet, cette approximation n’est exacte que quand les masses
des quarks tendent vers I’infini. En conséquence, cette méthode pourrait étre intéressante pour
les quarks lourds, mais pas pour les 1égers.

En fait, les calculs de LQCD prenant en compte les quarks connaissent deux limitations
majeures. Tout d’abord, par rapport aux calculs en pure jauge, I’inclusion de I’action des
quarks s’accompagne d’une tres forte augmentation du temps de calcul. En parallele, ce temps
de calcul explose au fur et a mesure que I’on augmente la taille du réseau. De tels calculs
requierent de tres fortes puissances de calculs, via I'utilisation de supercalculateurs. Cela
justifie ainsi 1’approximation quenched, au moins d’un point de vue numérique, car elle
permet de réduire le temps de calcul en simplifiant la modélisation. Sans cette approximation,

un autre probleme apparait a potentiels chimiques non nuls, car dans ce régime, det(M [U ])

devient complexe. Dans ce cas, les calculs effectués via la méthode de Monte-Carlo sont
invalidés, parce que dans cette approche exp(—S) est interprété comme une densité de

probabilités. En outre, ce déterminant présente des oscillations qui affectent les valeurs
trouvées dans (31). Ces problemes numériques sont désignés dans la littérature sous le terme
de fermion sign problem [48, 51-53].

5.3 Quelques observables et résultats de la LQCD

Les calculs de LQCD permettent de calculer des observables, en partir de la fonction de
partition Z [54]. Notamment, la densité d’énergie libre est obtenue avec :

¥ =—§an(T,V), 41)

la densité d’énergie est :
T2 9InZ(T.V)

E=— . 42
Vv oT (42)

Aussi, la pression peut étre trouvée avec :
p:TalIlZ(T,V)’ (43)

oV

ou p=—f dans le cas de grands systemes uniformes. Avec ces quantités, on peut aussi

+ . d, .
P ou la vitesse du son g =’ Dans ces relations,

. . . £
estimer la densité d’entropie avec s= y
£

le volume est trouvé avec V =(N, ~a)3 ,ou N, est la taille du réseau. Aussi, la température est
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obtenue avec T = ,ou N, estle nombre de temps différents. Le lien entre le temps et la

N,-a

température sera clarifié au chapitre 2, dans le cadre du formalisme du temps imaginaire.

Avec ces observables, une motivation peut étre d’étudier le régime pour lequel £=3p.

Comme expliqué par exemple dans [5, 17], cette égalité est vérifiée quand les particules qui
forment le systéme sont sans masse et sans interaction. Cela correspond a la limite de Stefan-

g 3 3 s
Boltzmann, pour laquelle —-, —IZ and 4—S3 (selon la définition de s) convergent vers la
T T T
méme valeur. Dans la littérature, ce comportement est souvent attendu pour QCD quand la
température tend vers 1’infini [55].

D’autre part, les calculs de LQCD permettent aussi d’évaluer la valeur du condensat chiral,
évoqué dans la partie 3. Clairement, la finalité est d’étudier la restauration de la symétrie
chirale a hautes températures. Plus précisément, il a été trouvé [56] que la valeur du condensat
décroit tres rapidement quand le systeme atteint la température critique. Apres celle-ci, il été
observé que la valeur du condensat tend vers zéro, confirmant la restauration escomptée de la
symétrie chirale.

5.4 Modeles effectifs

Les résultats de LQCD sont souvent considérés comme des références. Toutefois, nous avons
vu dans le paragraphe 5.2 que LQCD présente des limitations. Clairement, la LQCD seule ne
permet pas d’étudier la transition de phase entre le QGP et la phase hadronique. En fait, des
modeles phénoménologiques peuvent donner des résultats intéressants, d’ailleurs de maniere
plus simple qu’avec LQCD. La non-solvabilité des équations de QCD a basses énergies est
liée a certains aspects, comme le confinement. Ainsi, certains de ces modeles traitent cet
aspect directement, afin d’essayer de mimer un mécanisme de confinement. L’un d’entre eux,
traité dans cette these, concerne 1’inclusion d’une boucle de Polyakov dans un modele effectif.
Aussi, comme expliqué précédemment, les masses nues des quarks sont actuellement assez
mal connues. En prenant le probleme a I’envers, puisque I’interaction forte est suffisamment
intense pour occulter les caractéristiques des quarks d’une maniere non négligeable, alors un
modele peut se baser sur les masses de quarks effectifs ou quarks constituants. Les masses
effectives des quarks n’ont rien a voir avec les masses nues, elles prennent en compte une
bonne partie des interactions entre quarks. Pour les quarks u, la masse nue est d’environ
3 MeV, alors que la masse effective dépasse les 300 MeV dans le cadre de certains modeles,
c'est-a-dire le tiers de la masse du nucléon. Pour lier ces quarks constituants, une interaction
résiduelle peut étre ajoutée au modele. Bien entendu, cette interaction n’est pas capable de
décrire correctement le confinement. Par conséquent, certaines améliorations sont imaginées a
ce modele de quarks constituants, pour €tre en mesure d’obtenir des résultats vérifiés
expérimentalement. Par exemple, il est quelquefois fait appel a des modeles comme le modele
du sac (M.I.T. bag model), afin de simuler le confinement, ou du moins imiter ses aspects
[1, 5]. Plus précisément, cette approche stipule 1’existence d’un sac imaginaire avec des parois
« infranchissables ». Ce sac devrait contenir les quarks a I’intérieur du hadron étudié, comme
dans I’'image 1 de la figure 5.
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6. Etude expérimentale du QGP

Nous avons vu dans le paragraphe 4.4 que le Quark Gluon Plasma était probablement présent
dans les premiers moments de 1’Univers et serait formé dans le cceur des étoiles a neutrons.
Afin d’étudier cet état de la matiere «en laboratoire », des collisions d’ions lourds sont
provoquées dans des collisionneurs. Si les noyaux apportent assez d’énergie, la phase QGP
peut étre formée. Clairement, cela concerne des collisions hautement relativistes : la vitesse
des noyaux est tres proche de la vitesse de la lumiere. L’évolution du QGP est décrite par un
scénario proposé en 1983 par J D Bjorken [57]. Dans ce scénario, figure 9, la description du
systeme est faite selon un axe z (direction de propagation des noyaux, voir figure 10) et selon

le temps t.
t

A
N Freeze out

~ -

Phase mixée

Formation

Projectile Cible

Figure 9. Représentation schématique d’une collision d’ion lourd formant que QGP, selon le scénario
de Bjorken [5, 57].

Dans la figure, le temps propre z est constant selon une hyperbole, ou 7 est reli€¢ au temps ¢

et A la distance z par la relation 7=+/t>—z>. En fait, on s’attend & ce que le QGP soit
rapidement formé. Ensuite, les quarks, antiquarks et gluons se combinent pour former des
hadrons. On parle alors d’hadronisation. Dans certaines versions du scénario de Bjorken [5], il
est imaginé qu’il existe une phase mixée, mélant QGP et hadrons. Apres I’hadronisation, le
systeme s’étend rapidement. Le terme Anglais de freeze out désigne I’état dans lequel les
particules n’interagissent plus entre elles, en raison d’une trop grande dilution du systeme.
Dans ce scénario, il est précisé que la phase QGP n’aurait une durée de vie que de
quelques fm/c. A I’opposé, les particules produites sont mesurées au niveau de détecteurs
bien apres I’hadronization du systeme.

6.1 Signatures du QGP

A cause du confinement, il n’est pas possible d’observer directement la phase QGP. En
conséquence, la finalité est alors de collecter des preuves que le QGP s’est formé durant les
expériences. Donc, différentes « signatures » du QGP sont étudiées.
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Notamment, un scénario mis au point par Matsui et Satz en 1986 [58] prévoit une forte
décroissance de la production de J/y . Un J/y est un méson composé par un quark charmé

c et par un antiquark ¢ . Dans des collisions d’ions lourds, des paires c¢,c sont formées. Selon

le scénario, c et ¢ peuvent facilement se combiner dans matiere hadronique, et donc former le
méson J/y . Cependant, dans la phase QGP, I'interaction entre ces quarks et antiquarks

devrait €tre écrantée par les autres quarks/antiquarks. Cet effet devrait empécher la formation
de J/y, et donc conduire a la baisse escomptée de leur production. Cependant, cette

signature possible du QGP a été critiquée. En effet, d’une part, un processus de régénération
des J/y a été imaginé [59, 60], qui pourrait contrarier la mesure de la baisse de production

attendue. D’autre part, il a aussi été imaginé que des J/y pourraient aussi disparaitre par des
interactions multiples avec la matiere hadronique.

Une autre signature possible du QGP est I’accroissement de 1’étrangeté, préduite par Rafelski
et Miiller dans les années 1980 [61, 62]. En fait, des réactions comme u-+u —>s+7s,
d+d —s+75 et entre deux gluons g+g —s+75 ont des seuils cinématiques élevés, car les
quarks/antiquarks étranges sont des particules lourdes. Clairement, si I’énergie des particules
incidentes est plus basse que ce seuil, la réaction ne peut pas avoir lieu. Les hautes
températures atteintes dans la phase QGP permettent de franchir ce seuil. Donc, une forte
production de s,s5 est attendue dans cette phase, induisant une production non négligeable de

mésons étranges et d’hypérons comme A, =, Q, etc. ou d’anti-hypérons (Q ...).

Nous pouvons aussi mentionner la production de di-leptons [63]: e*/e” ou x4/~ . En fait,
ces particules résultent de désintégrations de mésons. Les désintégrations de J/y sont

particuliecrement connues. Nous pouvons de méme évoquer les désintégrations des mésons
vectoriels comme p,w,¢. En fait, la température du QGP augmente I’instabilité de ces

mésons, ce qui favorise leurs désintégrations en dileptons. Comme noté dans [5], 1’étude des
leptons est intéressante, car ces derniers ne peuvent pas interagir par interaction forte avec la
matiere hadronique. On s’attend donc a ce qu’ils permettent une description fiable du QGP.
Cependant, une limitation de cette approche est de savoir reconnaitre la formation de
dileptons résultant du QGP par rapport a ceux formés par des scénarios hadroniques,
notamment avec le processus de Drell-Yann entre deux hadrons [64].

Aussi, d’autres « témoins » pertinents du QGP sont les photons thermiques émis [17]. Plus

précisément, leur production obéit A une loi selon la température évoluant en T*. En
conséquence, une forte émission de photons par la phase QGP est attendue. De plus, comme
les leptons, les photons ne peuvent pas réagir avec le QGP par interaction forte. Toutefois,
une limitation de cette approche concerne les photons émis avant et apres I’existence du QGP,
ce qui peut perturber 1’analyse. Notamment, des photons sont aussi émis par des réactions de
désintégration, et pas seulement pas I’émission thermique prévue.

Ensuite, nous pouvons aussi parler du phénomene de jet quenching [65-67]. Les partons
(quarks et gluons) produits dans les premiers instants de la formation du QGP forment des
faisceaux de particules, nommés jets en Anglais. Avant leur hadronization, on s’attend a ce
que ces faisceaux de partons traversent la phase QGP, et y perdent une bonne part de leur
énergie, notamment par bremsstrahlung de gluons. Au niveau des détecteurs, les faisceaux de
hadrons résultant de I’hadronisation de ces partons devraient avoir des quantités de
mouvement tres réduites. Cela constitue le jet quenching.
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6.2 Le flot elliptique v

Par ailleurs, d’autres observables sont aussi étudiées, pas forcément d’ailleurs pour prouver la
formation de la phase QGP, mais pour caractériser celle-ci. Parmi eux, nous pouvons
particulierement citer le flot elliptique v, [59, 68, 69]. Comme indiqué précédemment, le
QGP est étudié expérimentalement par des collisions d’ions lourds, c'est-a-dire une rencontre
entre deux noyaux allant dans des sens opposés. Ils peuvent se déplacent le long d’'un méme
axe ou le long d’axes paralleles entre eux. Dans ce cas, la distance minimale entre les centres
des noyaux est nommée parametre d’impact, et est notée b. Dans cette configuration, un
fragment de chaque noyau ne participe pas a la collision et continue d’avancer selon une
trajectoire rectiligne. A I'opposé, figure 10, I’ellipsoide correspond a la fusion entre deux
parties de ces noyaux.

Ay

plan de
réaction

0 ¢
y Z
v

Figure 10. Représentation d’une collision, inspirée de [59], et projection dans le plan xy.

La, le QGP peut se former. Rapidement apreés son hadronisation, les particules produites
quittent cette zone centrale. La distribution des quantités de mouvement transverses p, de ces

particules, c'est-a-dire selon le plan xy, constitue la distribution azimutale. Dans ce plan, on
utilise I’angle ¢, comme dans la partie droite de la figure, ou ¢ = tan”! ( Py / px) et p,,p, sont

les projections de p, selon les axes x,y. Le flot elliptique v, est la seconde harmonique de la
transformée de Fourier de la distribution azimutale. Il est défini comme [70] :

v, =(cos(29)), (44)

c’est a dire la moyenne de cos(2¢) sur les particules quittant la zone centrale. En outre, grice
a la relation mathématique,

2_ 2
cos[ltan‘{ﬁﬁz% , (45)
px px+py

nous pouvons alors proposer [68] :
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22
Px—Pp
Py + Dy
En fait, v, donne des informations sur le comportement collectif des particules. Plus

précisément, il permet d’étudier la friction au sein de la matiere formant la zone centrale, donc
donne certaines propriétés sur le QGP créé.

6.3 Résultats récents

D’anciens projets étaient le AGS (Alternating Gradient Synchrotron) et le SPS (Super Proton

Synchrotron). La densité d’énergie atteinte par le AGS était proche de 0.8 GeV/fm>, pour une
température d’environ 150 MeV. Le SPS mettait en jeu des densités d’énergie de

2.5 GeV/fm®, associées a une température de 190 MeV [5]. Les conditions atteintes au SPS
étaient assez proches de celles requises pour former du QGP dans les expériences effectuées
en 2000.

Aussi, un des projets les plus importants alloué a 1’étude du QGP est le RHIC (Relativistic
Heavy Ion Collider), au Brookhaven National Laboratory, dans 1’Etat de New-York. Dans les

expériences effectuées au RHIC, la densité d’énergie atteinte est voisine de 5 GeV/fm?, pour
une température d’environ 230 MeV [5]. Ces conditions sont favorables a la formation du
QGP sans ambiguité. Plus précisément, la création de cet état de la matiere au RHIC a été
annoncée en avril 2005. En fait, concernant les signatures du QGP vues plus haut, le jet
quenching a été observé au RHIC [71]. Par ailleurs, jusqu’aux années 90, il était imaginé que
le QGP était un gaz. Cependant, les résultats obtenus ont indiqué que dans les expériences, la
phase QGP agit comme un liquide [59]. Plus précisément, les mesures de v, ont montré que
le comportement d’un fluide parfait, sans friction. Clairement, la vision de quarks et de gluons
libres, imaginée pour décrire la phase QGP, n’a pas été vérifiée par les résultats du RHIC.
Cela amene a considérer le sQGP, c'est-a-dire le strong interacting QGP [59], et d’adapter la
vision de cet état de la matiere que 1’on pouvait en avoir.

L’autre projet majeur est le LHC (Large Hadron Collider) au CERN [72]. Des densités

d’énergie proches de 10 GeV/fm® et des températures de 260 MeV sont attendues [5], c'est-a-
dire des conditions encore plus extrémes que celles du RHIC. En mai 2011, il a été annoncé
que du QGP a été produit au LHC. Les résultats obtenus avec les expériences de QGP ALICE
(A Large Ion Collider Experiment) ont confirmé ceux obtenus au RHIC [59]. Plus
précisément, les mesures de v, indiquent aussi le comportement d’un liquide parfait [69]. De
la méme maniere, le phénomene de jet quenching a aussi été observé au LHC [73, 74]. Les
futures expériences prévues au LHC, qui permettront d’augmenter les énergies et les
températures atteintes, sont prévues pour 2015, et ensuite pour 2018 [17] ...
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7. Conclusion

Dans ce chapitre introductif, nous avons présenté certains aspects qui vont directement
concerner le travail que nous allons effectuer dans cette these. Il a été souligné deux thémes
cruciaux fortement liés a la physique des quarks. Cela a concerné tout d’abord la théorie des
groupes. A partir d’exemples assez simples, nous avons progressivement présenté quelques
notions liées a cette théorie, comme la notion de vecteur (au sens large du terme), de courants
conservés, de quantités scalaires conservées, etc. A cette occasion, nous avons présenté les
quarks, mésons et baryons qui seront traités dans les chapitres suivants. Ensuite, nous nous
sommes focalis€s sur une description de la Chromodynamique Quantique, et de divers aspects
reliés a cette théorie, comme la symétrie chirale. Méme si 1’écriture du Lagrangien de QCD
est finalement relativement simple, nous ne pouvons dissimuler les difficultés lies a cette
théorie. D’ailleurs, il n’existe toujours pas de nos jours de description correcte et complete du
confinement. Mais, la physique des quarks et par extension la physique subatomique est aussi
une thématique fascinante, car liée a divers phénomenes, comme la transition de phase entre
la matiere hadronique et le plasma de quarks et de gluons, la supraconductivité de couleur,
etc. D’autre part, nous avons présenté certains aspects expérimentaux. En fait, nous avons vu
que les résultats récents sont particulierement intéressants, car ils montrent que la phase QGP
agit comme un fluide parfait dans les expériences du RHIC et du LHC.

Evidemment, ce chapitre ne peut pas étre exhaustif, concernant la théorie des groupes, la
QCD, la LQCD ou les recherches expérimentales actuelles. Par ailleurs, nous ne pouvons pas
parler de la physique des quarks sans parler de la théorie quantique des champs ou de la
relativité. Mais, ces aspects seront développés plus en aval dans les chapitres suivants.
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Chapitre 2

Le modele de Nambu et Jona Lasinio et
le modele Polyakov NJL

Une partie de ce chapitre a été publiée dans J. Phys. G: Nucl. Part. Phys. 38 105003

1. Introduction

Il a été vu dans le chapitre précédent que la physique nucléaire des hautes énergies et la
physique des particules sont correctement décrites par la Chromodynamique Quantique
(QCD). Cependant, nous avons aussi remarqué que ce modele ne peut pas €tre résolu dans le
domaine qui nous intéresse, c'est-a-dire quand les quarks sont confinés dans les hadrons. La
QCD sur réseau (LQCD) est une solution intéressante pour étudier la physique des quarks [1].
De plus, les résultats obtenus par cette méthode sont souvent considérés comme des données
de références. Mais, comme noté précédemment, LQCD requiert des ressources informatiques
conséquentes. Aussi, il a été signalé [2, 3] que LQCD présente quelques limitations a densités
finies. En effet, la LQCD rencontre alors un probleéme connu sous le nom de fermion sign
problem [4, 5]. Comme nous I’avons vu au chapitre 1, ce probleme numérique est causé par la

contribution des quarks, via le déterminant det(M[U]) associé a ces particules. Plus

précisément, a densités finies, ce terme devient complexe, ce qui invalide des approches
stochastiques, comme celle de Monte-Carlo. Aussi, il induit des fluctuations indésirables dans
le calcul des observables.

Par conséquent, des modeles effectifs ont été développés pour essayer de surmonter les
difficultés liées a la QCD ou a ses méthodes numériques. Parmi elles, le modele de Nambu et
Jona-Lasino (NJL) [6, 7] a prouvé depuis longtemps sa fiabilité pour étudier la physique des
quarks. Comme vu dans ce chapitre, ce modele présente d’intéressantes qualités. Notamment,
il permet de travailler a température finie, via ’utilisation du formalisme de Matsubara [8].
Concretement, comme avec QCD, il montre la brisure de la symétrie chirale [9], et sa
restauration a hautes températures. Aussi, il permet des calculs a densités finies. Par ailleurs,
nous verrons dans les trois prochains chapitres qu’il permet de modéliser des mésons, et aussi
des baryons par l'utilisation de diquarks. Depuis sa création, le modele NJL a été
progressivement amélioré. La référence [10] propose une chronologie partielle des évolutions
du modele. Durant les années 1980 ou plus tard, mentionnons [11, 12] et [9, 13—16]. En ce qui
concerne les années 1990, citons [17-19] et [20]. Ces références ont proposé une formulation
élégante du modele NJL, le rendant utilisable dans le domaine de la physique des quarks, en
utilisant ces derniers comme degrés de liberté. Plus récemment, soulignons aussi le travail
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effectué dans [21, 22]. Nous remarquons que le modele est toujours 1’objet d’améliorations.
Notons par exemple le travail effectué en rapport avec I’interaction a huit quarks [23-30].

L’idée principale du modele NJL est de considérer des gluons massifs, dont 1’interaction
devient ponctuelle, évitant alors de fait les difficultés rencontrées avec la QCD. Une
conséquence directe de cette simplification est que les gluons sont alors absents de la
description faite par NJL, au moins en tant que particules dynamiques. Par conséquent, le
confinement n’est pas traité dans cette approche. Pour essayer de corriger ce défaut, il a
récemment été proposé de coupler les quarks NJL avec une boucle de Polyakov [31-34], afin
de simuler un mécanisme de confinement. Cela a alors donné le modele de Polyakov Nambu
Jona-Lasinio (PNJL) [35—44]. Il a été reporté dans la littérature que cette évolution du modele
permet de corriger certains aspects concrets de NJL. Cela concerne notamment le
comportement du modele PNJL a basses températures, comparé a une pure description NJL :
par exemple, mentionnons la suppression de la contribution des états colorés dans la
thermodynamique du systtme, comme noté dans [40]. Aussi, grace a une décroissance rapide
de la masse des quarks (observée plus loin dans ce chapitre), 1’approche PNJL est plus
efficace que le modele NJL pour décrire la restauration de la symétrie chirale [42]. Par
ailleurs, il a aussi été remarqué que les résultats PNJL correspondent bien aux données
obtenue avec LQCD [3, 37]. Comme avec le modele NJL, plusieurs versions du modele PNJL
peuvent étre vues dans la littérature récente, comme le modele EPNJL (Entangled Polyakov
Nambu Jona-Lasino) [45], prouvant que le modele est activement utilisé et amélioré. Dans
I’ensemble, dans le cadre des modeles (P)NJL, les masses des quarks (« habillés ») est étudié
en fonction de la température [42], et quelquefois en fonction du potentiel chimique x, [37].

Toutefois, de tels calculs sont relativement moins fréquents en fonction de la densité
baryonique py.

Prenant en compte ces observations, nous proposons dans ce chapitre de présenter le modele
NJL et d’expliquer les modifications requises afin d’inclure une boucle de Polyakov au
modele. Pour arriver a ces objectifs, nous rappelons dans la partie 2 les équations importantes
associées au modele NJL. Cela concerne une présentation du formalisme de Matsubara et une
étude du Lagrangien NJL. Dans la partie 3, nous donnons les équations a résoudre pour
trouver les masses des quarks habillés, en considérant la température et la densité baryonique
comme parametres. Ensuite, dans la partie 4, nous proposons une description du modele
PNJL. Nous insistons tout particulierement sur les modifications apportées au Lagrangien
NIJL et nous considérons les nouvelles variables introduites, comme celles associ€es au champ
de Polyakov. Nous indiquons ensuite les équations supplémentaires a prendre en compte pour
trouver les masses des quarks. Finalement, dans la partie 5, nous rassemblons les résultats
obtenus par la résolution des équations établies lors des parties précédentes. Un objectif est de
retrouver les résultats déja publiés dans la littérature, et de présenter des résultats dépendant
de la densité baryonique. Ce travail inclut notamment une étude dans le plan T, p;. Nous

proposons aussi des résultats additionnels, en étudiant le comportement du champ de
Polyakov, aussi dans le plan 7, p,, ainsi qu’une analyse du lien entre le potentiel chimique
baryonique et la densité baryonique. Par ailleurs, comme dans les chapitres suivants, des
comparaisons sont effectuées entre les résultats trouvés avec NJL et ceux de PNJL, afin de
pouvoir conclure quant a I’effet de I'inclusion de la boucle de Polyakov. De plus, dans ce
chapitre, nous insistons tout particulierement sur les régions pour lesquelles les deux modeles
donnent des résultats proches I'un de 1’autre, et nous proposons alors d’expliquer ces
similarités observées.
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2. Présentation du modele de Nambu et Jona-Lasinio

2.1 Le formalisme de Matsubara

Le formalisme utilis€, nommé formalisme a temps imaginaire, ou formalisme de
Marsubara [8], utilise une analogie entre le facteur thermique exp(—f-E) et le facteur

exp(—i-t-H), en faisant une correspondance entre I’inverse de la température 7, noté S,

et i-r. Cela explique alors I’appellation de temps imaginaire. Une caractéristique de ce
formalisme est que les fonctions de Green dépendent de ce temps imaginaire i-¢ de telle
manicre que 0<i-r<f3, et cela conduit a une périodicité de période S . Par ailleurs, la
transformée de Fourier selon le temps est remplacée par une série de Fourier. Une autre
conséquence est que les énergies sont quantifiées. Elles sont multiples de z/ £ : multiples
pairs pour les bosons et impairs pour les fermions. Concretement, quand nous avons a calculer
une intégrale dont la variable d’intégration est un quadrivecteur, nous devrons alors effectuer

la transformation suivante :
d4 . +o0 d3
P4 5Ly 1’3 , (1)
(2z)" B =) (27)

La composante 0 est la composante femporelle du quadrivecteur, c'est-a-dire qu’elle
représente une €nergie. Cette derniere n’est alors pas une variable d’intégration, mais de
sommation, puisque I’énergie devient une variable discrete dans ce formalisme. L’indice n,
avec ne Z, est associé 2 la n®™ énergie de Matsubara. Il est d’usage de parler de fréquence
de Matsubara, définie par :

i@ , (2)
B
ou I’énergie est celle d’une fermion (FD : Fermi—Dirac), et :
. 2n-w
i@t ==, 3)

pour un boson (BE : Bose—Einstein).

Nous verrons tout au long de ce travail que ce formalisme est tres présent dans notre modele,
méme si cela n’apparait pas de maniere explicite. Des exemples de calculs utilisant le
formalisme a temps imaginaire sont disponibles a la fin du chapitre 4, associé aux diquarks.
Un calcul complet d’un propagateur de fermion y est présenté. Aussi, I’annexe D présente
certains calculs directement reliés a ce formalisme. Plus précisément, le début de cette annexe
y détaille une méthode générale pour effectuer une sommation de fréquences de Matsubara.
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2.2 Fondements du modele NJL

L’idée principale du modele NJL est de considérer que les gluons échangés entre les
quarks/antiquarks ont une masse effective. Ladite masse est supposée étre assez forte face aux
quantités de mouvement des gluons. Ces quantités de mouvement sont alors négligées dans
I’écriture des propagateurs des gluons. En conséquence, le propagateur d’un gluon est
assimilé est a une constante et est réduit a un simple facteur effectif. Etudions cette
approximation pas a pas. Le propagateur du gluon de quadri-impulsion k s’écrit initialement
comme [46] :

K2
Les indices a et b sont liés aux couleurs a chaque extrémité du propagateur. Le symbole de

k,k
it (0)=0% o (1-20) 22 | @

Kronecker 8% garantit la conservation de la charge de couleur. x,v sont des indices associés
aux quatre composantes d’un quadrivecteur. 7,, est la métrique de Minkowski, voir

annexe B. Concernant &, il dépend de notre choix de jauge pour notre champ de gluon.
Parmi les possibilités existantes, la jauge de Landau consiste a prendre &; =0, ou &; =1 pour
la jauge de Feynman. Nous considérons la seconde possibilité, ce qui permet de
simplifier (4) :

. 5ab'77 (5)
Dﬂ;/b (k)zk—Zﬂv

Malgré ce choix, nous ne sommes pas encore satisfaits. En effet, pendant I’interaction entre
un quark et un antiquark, le gluon échangé va certainement interagir avec d’autres gluons
et/ou avec des paires quark/antiquark, comme représenté sur la partie gauche de la figure 1.
Ce comportement est expliqué par la forte valeur de la constante de couplage o [47].

q q q q
q q q q
(1) (2)

Figure 1. Schématisation de 1’approche NJL.

Q|
Q|

(1) Interaction entre un quark et un antiquark décrit par la QCD
(2) Les gluons acquicrent une masse effective
(3) Gluon traité dans le modele NJL

Cet aspect conduirait a des calculs tres difficiles. Si le gluon possede une masse effective X,
cas n°2 de la figure 1, alors (5) devient [48] :
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_ 5ab 'nﬂv

D,Zif)(k)_ kz_zz ' (6)

Les phénomenes physiques qui nous intéressent dans le cadre de ce travail concernent par
exemple la formation d’hadrons a partir de quarks/antiquarks. Cet exemple correspond a la

QCD de « basses énergies ». Ainsi, allons plus loin, en négligeant k> face a X*. Pour étre
précis, nous ne sommes pas sur la couche de masse. Ainsi, (6) se réécrit comme [49] :
. 5ab 'nluv 5ab '77/11/
D,Z{/ (k) = 2 2 == P ’ (7)
k“=-X X

de telle maniere que le gluon est réduit a un simple vertex, partie droite de la figure 1.
Précisément, les gluons n’existent pas dans le modele de Nambu et Jona-Lasinio en tant que
degrés de liberté dynamiques. Bien siir, cela n’est pas sans conséquence, comme I’absence de
confinement dans une pure description NJL. Toutefois, I’approximation permet de simplifier
les calculs. Le Lagrangien associé est aussi fortement modifié par rapport a celui de QCD. En

effet, considérons I’élément de matrice :
2

(w72 l/f)-[_ziz}(wﬂﬂ“ v). (8)

décrivant I’interaction entre le quark et I’antiquark en fonction des approximations que nous
venons de faire. y est associé a un champ de quark. Le g est une constante de couplage entre

le gluon et le quark/antiquark. La quantité (8) correspond a la contraction du courant conservé

J ﬂ“ associé a SU (3) Iz c’est a dire un des termes d’interaction du Lagrangien [19, 20, 49].

Donc, (8) modélise ici I’interaction entre un quark et un antiquark. Le facteur x=—g> / ¥? est

finalement une constante effective d’interaction. Le terme d’interaction dans le Lagrangien se
met alors sous la forme :

8
int gq :K'Z(W?/ﬂla l//)z : (9)

2.3 Le Lagrangien NJL

Le Lagrangien le plus complet utilisé dans notre étude est écrit comme [20, 22, 48, 50, 51] :

£ML:f;% 7y (18 =mos) v,

ra- 3 [(way) +(pinaty) |

a=0

G, ¥ [(l/?n,/%“vf)z +(l/77,,i?5/1"1//)2}

a=0

(10)

— K[ det(7(1+75) ) +det(7 (1= 7)) |

+ 3 Glo (T 7, Tows ) (75 ¥ Ty, ) £ -,
a i,j
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Ce Lagrangien est la somme de plusieurs « sous-Lagrangiens ». Chacun d’eux a un role bien
défini dans 1’étude des particules traitées dans ce travail. Le premier terme

> ¥ (i 4 —my f) y, est le Lagrangien de Dirac pour des particules de spin %2, dans lequel
f=ud,s

my, désignent les masses nues des quarks u,d,s. Les quatre termes restants de

I’équation (10) sont completement nouveaux par rapport au Lagrangien de QCD. Ils font
appel aux constantes G,Gy ,K,Gp,, du modele NJL étendu, voir tableau 1. Les termes :

8 —aa 2 —. a 2
GEO[(W v) +(FirAy) } an

> {(l/m/i“vf)z +(l/7ni75/1“l//)2}

a=0

décrivent I’interaction d’un quark et d’un antiquark. IIs seront utilisés dans le chapitre suivant,
pour modéliser les mésons [52, 53]. Ils constituent le Lagrangien d’interaction L, ,- Vu
équation (9), apres application d’une transformation de Fierz [19, 20, 48]. Cette réécriture
de (9) fait apparaitre deux termes distincts dans (11), associé a la constante G pour le premier

2

et —Gy pour le second. Chacun d’eux peut étre divisé en deux sous-termes : (1/7/1”1//) qui
. . . . . _. 2 . .

modélise une interaction scalaire quark/antiquark, (1/1175/1“://) une interaction pseudo-

2 2
scalaire, (1/7;/#/1“1//) une interaction vectorielle et (y?;/ﬂi}g/%“w) une interaction axiale. La

matrice A° =,/2/31; est ajoutée dans la sommation sur les 8 matrices A définies annexe B,

c'est-a-dire les générateurs de SU (3) e Aussi, 15 est la matrice identité de dimension 3x3. En

fait, A° vient directement de la transformation de Fierz appliquée [19, 20]. Dans (10), le
terme :

K[ det (7 (14 75 )w) + det (7(1- 75)w) ] (12)

est connu comme terme de ‘t Hooft. Il intervient aussi pour décrire une interaction entre un
quark et un antiquark, par conséquent pour certains mésons. C’est un terme ajouté pour briser

de maniere explicite la symétrie pseudo-scalaire U, (1). Clairement, comme expliqué

dans [20], si cette symétrie était respectée, il existerait un méson pseudo-scalaire dont la
masse serait comparable a celle du pion. Mais un tel méson n’a pas été observé ...

Finalement, le dernier terme du Lagrangien est :

> G D(aruTovs )75 v Thw,) e &% (13)
a=S.PV,A ij

qui s’identifie au terme d’interaction L du Lagrangien, c'est-a-dire qu’il modélise

int gq
I’interaction entre deux quarks. Il sera utilisé pour construire les diquarks au chapitre 4, dans
lequel nous détaillerons la sommation sur a=S,P,V,A : S pour des diquarks scalaires, P pour

des pseudo-scalaires, V pour des vectoriels et A pour des axiaux ...
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2.4 Parametres employés dans NJL

Le modele de Nambu et Jona-Lasinio n’est pas renormalisable. En conséquence, un cut-off,
noté A, est utilisé dans les calculs. Dans la pratique, il correspond a la borne supérieure des
intégrales, dont la structure est celle de (1). Aussi, le modele utilise les constantes
G.Gy.K,Gpyp» visibles dans I’équation (10), qui sont plus ou moins liées explicitement a des
grandeurs physiques. Parmi ces dernieres, nous avons la constante de couplage g associée aux
interactions décrites par la QCD, dont I’incertitude est tres forte a basses énergies. Dans la
littérature, ces constantes et le cut-off sont souvent rassemblés, pour former un jeu de
parametres. Le tableau 1 propose trois jeux de parametres différents. Celui désigné sous le
sigle « RK » est associé a [53], le « P1 » a [48, 50] et le « EB » que nous avons ajouté dans le
cadre de notre travail, en modifiant le « P1 » dans le cas ou m, #m, . Pour cela, nous avons
pris en compte les contraintes actuellement admises quant aux masses nues des quarks [54].
De plus, nous verrons dans les chapitres suivants que G, et Gp, ont ét¢ adaptés afin

d’augmenter 1’accord entre nos résultats et ceux trouvés dans la littérature. Le lien entre les
valeurs de G, données dans le tableau 1 et celles de G, s py 4 SET@ expliqué dans le
a=5,r,v,

chapitre 4. Aussi, notons que la constante G est souvent notée Gg dans certains papiers.

RK Pl EB

My, 5.50 4.75 4.00

Moy 5.50 4.75 6.00
M 140.7 147.0 120.0
cut-off A 602.3 708.0 708.0
G-A? 1.835 1.922 1.922
Gy — 0.310G 0.295G
Gpig — 0.705G 0.705G
K-AS 12.36 10.00 10.00

Tableau 1. Jeux de parametres utilisés. Les masses et le cut-off sont en MeV.

Les constantes G; sont liées a des constantes sans dimension g, par la relation [19] :
p 2
G =2 .
i ( A) (14)

Les G; sont donc exprimés en MeV > dans le tableau 1. De plus, des transformations de Fierz

permettent d’établir des relations entre certaines des constantes [19, 39, 55], et nous

obtenons :

G 3
G,=— et Gpp=—-G. 15
V=5 pIQ =7 (15)

Cependant, ces relations ne sont pas toujours strictement respectées dans la pratique, comme
nous pouvons le constater des diverses publications NJL et dans le tableau 1.
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3. Masses des quarks constituants

3.1 Equations de gap

La détermination des masses des quarks constituants (quarks habillés) constitue une premiere
application du modele de Nambu et Jona-Lasinio. Les masses des autres particules
dépendront d’elles plus ou moins directement. En notant m,, la masse nue d’un quark de

saveur f et en notant m, sa masse effective correspondante, nous €crivons [19, 53, 56] :

G-N, K-N?

My = Moy = 72_2 ‘ Ty, .A(mu"uu)—i- 87[4C TMmg g 'A(md’ﬂd)'A(ms’#s)
G-N K-N?

Mg =Mpq — 7[2 ‘ My .A(md”ud)-’_ 872_46 Tmg-m, 'A(ms’ﬂs)'A(mu’ﬂu) ’ (16)
G-N K -N?

mg = my, —TC.ms-A(mS,ﬂx)-i- 87[40 .mu.md.A(mu,luu).A(md,,ud)

ce qui forme les équations dites de gap. Elles sont obtenues en appliquant I’approximation du
champ moyen, aussi nommée approximation de Hartree, dans le Lagrangien (10) [51, 53]. A

cause de cette approximation, les termes issus de L;, ,, n’interviennent pas dans (16). Dans

ces équations, N, indique le nombre de couleurs différentes prises en compte, c'est-a-dire
trois. 4, est le potentiel chimique du quark de saveur f. Par ailleurs, nous avons utilis¢ une
fonction générique A associée a une boucle a un quark, voir [53, 56] et annexe D :

1672 d&p 1
A N N ,A = : ’
Iy B8) == ;[(2”)3 G (17)

ou E; =1/([7)2 +mf2 est I’énergie d’un quark de saveur f, f=1/T et T est la température. En

outre, nous avons la relation :
m
157 (x) = ). a9

dans laquelle Tr est la trace (matricielle). S/ est le propagateur d’un quark de saveur f dans le
formalisme du temps imaginaire, donc a température finie :

j . , 3
Sf(?c—?c',r—f'):L.Zel'a’n'(f—f). d P3 | e _ '
p (27) 70‘(l‘wn+,uf)—}"p—mf

(%)

(19)

n

Les x,X" correspondent a des positions et 7,7" a des temps. La fonction A est aussi liée a la
valeur du condensat chiral <<l/7f l//f>> introduit dans le chapitre précédent. En effet, nous

avons la relation [19, 57] :

'Nc
({7 vi))- mfmz A(myopg BA)- (20)
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Schématiquement, chaque ligne de (16) est équivalente a [17, 20-22, 49] :

i-N,-Tr Sf i-N,-Tr SJ
Sy = Q
i-N.-Tr Sk
my = my, +  AG(i-NTr(sT)) + 2K-(i-NC~Tr(Sj))~(i-NC~Tr(Sk))

ou, en utilisant I’expression du condensat (20),
my =myy —4G- <<9”fo >>+2K<<l/fﬂ/fj >><<Wk'/’k ‘f cuds @D

f#jet f#k

Chaque boucle correspond a une fonction A, ce qui nous permet de reconnaitre facilement les
termes de (16). Le premier terme, my ., prend en compte la masse nue des quarks. Le second

terme, 4G~(i “N, -Tr(S f )), traduit I’effet d’une boucle de saveur f sur le quark considéré. Le

troisieme, 2K-(i-NC -Tr(Sj))-(i-NC -Tr(Sk)), modélise les effets des deux autres saveurs de

quark sur la masse de notre quark. Comme dans [17, 22], les traits épais sont utilisés quand
les masses effectives (quarks habillés) sont prises en compte, y compris dans les boucles, voir
me dans (18, 19). Les traits fins correspondent aux quarks courants, associés aux masses

nues.

3.2 Symétrie isospin

Dans la littérature, et dans certaines parties de notre travail, la symétrie isospin est prise en
compte. Elle consiste a dire que les quarks u et d ont les mémes propriétés, ce qui s’écrit
symboliquement comme « u=d=gq ». En conséquence, leurs masses et leurs potentiels

chimiques sont considérés comme identiques, et notés respectivement comme m, et x4, . La

q
finalité est tout d’abord de simplifier les calculs. Cette approximation est valide dans la
majorité des systemes physiques étudiés théoriquement et expérimentalement. Quand la
symétrie isospin est vérifiée, le jeu d’équations (16) se simplifie et on obtient :

N, K- N,
My =Mog —”—E'mq 'A(mq"uq)'(G_ Sﬂ_zc RS -A(ms,,us)j

(22)
G-N K- N2 ’
mszmos—?.ms-A(ms,,us)+ 87;46 .(mq.A(mq,,aq))2

ou il reste deux équations et deux inconnues, c’est a dire les masses m, et m.
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3.3 Traitement des densités

Pour les calculs a densités non nulles, la formule suivante, issue de [18, 19], est utilisée :

= + _Ne p?. 1 h 1 )
Py <<‘”f '/’f>> 2| PP 1+exp(B-(E;—uy)) 1+exp(B-(Ef+ur)) |

L’indice f indique la saveur du quark (u, d, s). Dans la pratique, les bornes d’intégrations
seront de 0 2 A (cut-off tableau 1). En fait, (23) donne la relation entre la densité p, du

quark de saveur f et son potentiel chimique correspondant u,. Dans le cas général, et

températures et densités finies, il est nécessaire de résoudre un jeu de 6 équations avec 6
inconnues. Ce jeu d’équations s’écrit comme :

G-N K-N?
T 87 f=ud,s
F#jetf#k
N 1 1
py=—%5-|dp-p’ 24)

I E, —u,) E, +
T 1+exp(fT'ufj 1+exp(fT'ufJ

f=ud,s

Les parametres (fixés) sont la température et les densités voulues p,. Les inconnus sont les
masses effectives m, et les potentiels chimiques u,. A cette occasion, nous pouvons

mentionner I’existence d’un décalage selon les potentiels chimiques, défini par :
ouy =Gy '<<‘/’f+ V’f>>:Gv P> (25)

évoqué notamment dans [19, 20, 22, 52], avec un facteur deux pour les deux dernieres
références. Ce décalage traduit les effets de I’interaction vectorielle, quand cette interaction
est prise en compte dans le Lagrangien, quand G, #0. Le potentiel chimique x, qui apparait

dans la seconde ligne de (24) est solution de cette équation. En conséquence, il correspond a
un potentiel chimique effectif, ou « renormalisé », selon la terminologie utilisée dans [22]. En
d’autres termes, c’est le potentiel chimique apres le décalage [19]. Donc, il est relié au
«vrai » potentiel chimique ,, (avant le décalage) par u, = iy, —du, . Dans la pratique, x,
est utilisé dans les calculs ol un potentiel chimique est utilisé, apres avoir été obtenu via (24).
Dans notre travail, nous considérons la température et les densités p, comme parametres

(d’entrée). Ainsi, nous n’utilisons pas réellement .. Quoi qu’il en soit, il peut €tre observé

que le décalage a une influence assez faible sur les résultats obtenus quand G, <G/3, comme
avec nos jeux de parametres, tableau 1.

Les équations (24) sont réduites a un systeme de 4 équations / 4 inconnues quand nous faisons
appel a la symétrie isospin, comme dans (22). En accord avec le paragraphe 3.2, nous
écrivons que p, = p, = p, . Dans notre travail, p, =N, /V est interprété comme la densité de

quarks de saveur u, ou de saveur d, nécessairement identiques pour avoir m, =m, =m, et
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My, =y =4, . Done, p, n’est pas la somme de ces deux densités. De la méme maniere, le
nombre de quarks N, n’est pas ici le nombre fofal de quarks légers, mais finalement la

moitié. Dans le cadre de la symétrie isospin, nous définissons la densité baryonique comme
[18]:

2
Py =31, (26)

L’équation (26) peut étre interprétée en disant que quand la symétrie isospin est satisfaite, un
nucléon est constitué en moyenne par 1.5 quarks u et autant de quarks d, et p,=0.

Concretement, dans nos résultats, le rapport pz/p, sera utilisé au lieu de pg, ou

Po =0.16 fm™ correspond 2 la densité nucléaire ordinaire.

4. Le modele PNJL

Dans le modele NJL, nous avons vu au paragraphe 3.1 que les quarks sont couplés au
condensat chiral (16, 20) dans le cadre de I’approximation du champ moyen. Comme
mentionné dans I'introduction de ce chapitre, la motivation du modele PNJL est d’essayer de
corriger un défaut majeur du modele NJL, c'est-a-dire 1’absence de confinement, en couplant
aussi les quarks a une boucle de Polyakov. Nous allons expliquer dans cette partie comment
effectuer ce couplage.

4.1 Le Lagrangien PNJL

Concretement, nous considérons tout d’abord les modifications qui concernent le Lagrangien
NIJL. Dans le cadre du modele PNJL, celui-ci devient [37, 40, 42] :

Loy =Ly ~U(T.2,8)+ > w1, -7,y 27)
f=u,d,s

ot Ly, correspond au Lagrangien NJL (10), dans lequel la dérivée 4=y 4 intervenant

dans le terme . Zd g (iﬂ—mof )l//f est remplacée par y*D,, ot D, =9, —i-A,. Dans cette
J=u,a,s

derniere relation, A est le champ de jauge Euclidien associés aux gluons. Si nous faisons une

comparaison avec les équations de QCD vues au chapitre 1, nous notons que la constante de

couplage g, est absorbée dans A, donc ici A, =g, - A}, - 4,/2, voir par exemple [42]. Aussi, le

terme > U ¥ 7’ ¥ qui apparait dans (27) est rajouté pour pouvoir effectuer des calculs
f=ud,s

a potentiels chimiques non nuls [40], donc a densités finies.

Ensuite, une autre modification du Lagrangien NJL est I’inclusion d’un potentiel effectif, noté
U (T,CD,CTD). Celui-ci correspond a un Lagrangien de QCD pure jauge, c'est-a-dire sans
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quarks/antiquarks, seulement des gluons. Donc, nous pouvons [’associer au terme

—% -Gy, -G du Lagrangien de QCD, voir chapitre 1.

Le potentiel U/ (T,CIJ,CT)) dépend explicitement de la température 7, mais aussi des quantités &
et de @. Celles-ci sont définies par les relations [37, 40, 42] :

@(;)zw et 5(;):M, (28)

N, N,

c c

ou Tr. est la trace selon la couleur et <<L(7c)>> est un invariant de jauge représentant la

moyenne de la ligne de Polyakov, notée ici L(X) :

L()?)=Pexp(iij4(i,T)~dT). (29)

Dans (29), # est un opérateur d’ordre, et S=1/T. Aussi, A4=i~A0 est la composante
temporelle du champ de jauge Euclidien (A, A4) évoqué plus haut. Physiquement, ® et &

devraient correspondre respectivement a la valeur de la boucle de Polyakov et son conjugué.
Mais, comme remarqué dans [39], ce sont leurs valeurs moyennes. En fait, il est aussi
remarqué dans cette référence que ® et ® peuvent étre considérées comme des variables
indépendantes. Par ailleurs, les deux sont des réels dans le cadre de 1’approximation du champ
moyen.

Dans la pratique, ®, et par extension @, sont utilisés comme paramétres d’ordre dans la

transition de phase entre une « phase confinée de couleur » et une « phase déconfinée de
1 . RN s < g

couleur » . Aussi, ® est associé a la symétrie 7Z Ne» avec Ne =3, c'est-a-dire le centre du

groupe de symétrie SU(3)C de QCD [42]. Nous rappelons que le centre d’un groupe de
symétrie G est un ensemble d’éléments de G qui commutent avec tous les autres éléments de
G. Clairement, Z, est composée des solutions dans C de 1’équation x* =1, c'est-a-dire 1,
j=exp(2iz/3) et j*. En fait, la symétrie Z; est brisée dans la « phase déconfinée », pour
laquelle on a ®,® —1, et restaurée dans la « phase confinée » [42], ou ®,& —0. Cette

correspondance entre ®,® et ces deux phases peut étre vérifiée si nous appliquons
I’approximation du champ moyen, ce qui conduit a écrire A, (X,7)=A,, c'est-a-dire un cham
4 4

invariant dans le temps et I’espace. Dans ce cas, (28, 29) donnent, en utilisant A, =i- AY [39] :

17, (exp(ia, ) T exo(-4"/7))
N N

c c

(30)

= < exp(—AE/T).

' Nous utilisons des guillemets pour évoquer les phases « confinée » et « déconfinée », car elle correspondent &
des calculs effectué en pure jauge, c'est-a-dire sans quarks, dans lesquels la premiere phase est associée a des
glueballs et la seconde a des gluons déconfinés [40]. Nous pouvons garder la dénomination
« confinée/déconfinée » quand les quarks sont rajoutés dans le modele, mais nous ne pouvons pas dire que la
boucle de Polyakov introduit un réel confinement de couleur pour les quarks...
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En suivant par example I’interprétation de [40], AE est I’énergie requise pour ajouter un
quark statique (« masse infinie ») au sein du systeéme. A température finie, dans la « phase
confinée », AE — o, de sorte que ® —>0. A l'opposé, dans une «phase déconfinée »,
AE —0, et donc ® — 1. De la méme maniére, le raisonnement est similaire avec @, associé a
I’introduction d’un antiquark statique, selon [4] et la présentation des boucles de Polyakov
effectuée dans le chapitre 1.

Maintenant, considérons 1’écriture de Z/I(T,tb,CTD). En fait, dans la littérature, deux possibilités

sont proposées. Par exemple, dans [40, 44], on trouve :

UT.2.3)_ b(T) F0-0 (0348 + 22 (30) (31)
T* 2 6 4 ’
avec .
by (T)=ag +a,(Ty/T) +a, '(TO/T)2 +ay '(To/T)3 (32)

dans laquelle q,q,,a,,a5,b5,b, sont des constantes, dont les valeurs sont données dans [40].
Une autre possibilité peut étre trouvée par exemple [39, 42], dont voici I’expression :

UT.®.®) o) - _ _ 12
= -q>q>+b(T)-1n(1—6c1>cI>+4(cI>3+c1>3)—3(c1>c1>)), (33)
avece .
E) E)Z E)3
a(T) =dy +a1 (?J*‘ﬂz (?J et b(T) :b3 (?j . (34)

Les valeurs des constantes qui apparaissent dans ces relations sont indiquées dans le
tableau 2.

Ay a; a bs T
3.51 -2.47 15.2 -1.75 270 MeV

Tableau 2. Parameétres PNJL.

Elles ont été choisies par les auteurs des publications citées afin de reproduire correctement
les données obtenues lors de calculs LQCD en pure jauge. Plus précisément, comme dans
[37], ces données concernent la densité d’énergie &, la densité d’entropie s et la pression p.

1672

De plus, comme expliqué dans [39], le choix de a, = ~3,51 a été fait afin d’atteindre la

limite de Stefan-Boltzmann a hautes températures, c’est a dire typiquement 7 —oo. Aussi,
comme noté dans [39], la contrainte b; =-0.108-(a, +a, +a,) permet d’obtenir une transition
de phase du premier ordre quand 7 =T;,. En fait, la constante 7, aussi notée 7, dans la
littérature, correspond a la température critique de déconfinement dans une théorie pure jauge
(mg, — o) [35]. Cette température est supposée &tre plus forte que la température critique de
la transition de phase chirale a la limite chirale (m,, —0), dont une valeur proposée dans la

littérature est 7. =170 MeV [34]. Dans la suite de notre travail, nous choisissons dans nos
calculs le potentiel proposé équation (33). En effet, comme expliqué dans [39], (33) présente
une divergence logarithmique quand ®,® — 1 (« phase déconfinée »), ce qui limite ces deux
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grandeurs a des valeurs inférieures a 1, en accord avec le comportement attendu que nous
avons expliqué précédemment.

Certaines de ces propriétés sont vérifiées avec la figure 2. Dans sa partie gauche, nous avons
représenté u/ T* (33) en fonction de @, en posant ® = . Dans le paragraphe suivant, nous

verrons que les valeurs de ¢ qui minimisent u/ T* sont pertinentes dans notre étude. En fait,

pour T <T,, u/ 7% admet un minimum pour ®=0. Quand T=7,, ®=0 est encore une

valeur qui minimise le potentiel, mais nous avons aussi un autre minimum associé a une

valeur de & non nulle. Pour 7 >Tj,, nous avons seulement la valeur non nulle. Nous avons
tracé ces valeurs de @, notées comme @, , en fonction de 7/T, , dans la partie droite de la

figure. Comme expliqué précédemment, ® est un nombre réel. En conséquence, ® =0 est la
seule solution pour laquelle ® respecte la symétrie Z, [33]. Donc, ® satisfait bien cette

symétrie pour 7 <T;,. Quand T est plus fort que 7;,, Z; est spontanément brisée. Selon la

théorie de Landau décrite au chapitre 1, le fait que u/ T* ait deux minimums (pour une valeur
de @ nulle et pour une non nulle) quand 7 =7, nous permet de conclure que nous avons alors

12 une transition de phase du premier ordre entre la phase « confinée » et « déconfinée ». Cet
aspect correspond a la discontinuité visible sur la partie droite de la figure. Pour conclure,
nous vérifions aussi que @, ;, — 1 a hautes températures.

1
0.8
1
| 0.6
1@
' min
1
! 0.4
1
]
0.2
-15 , , , =0 ) — ]
0 0.2 0.4 0.6 0.8 1 0 0.5 1 1.5 2 2.5 3
P TIT,

Figure 2. Partie gauche : comportement de L{/ T* en fonction de ®, inspiré de [39].
Partie droite : évolution de @ ;, par rapporta T/T; .

4.2 Le grand potentiel PNJL

L’inclusion de la boucle de Polyakov induit aussi des modifications dans 1’écriture du grand
potentiel. Dans le modele NJL, ce grand potentiel s’écrit de la maniere suivante [35, 51] :
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Qi = 2Gf:§d’s<<'/7f§”f >>2 ~4K (T )T ) (7)) (35)

2 B | (e () o n( (5,)

dans laquelle E, = / p2+m f2 est I’énergie d’un quark/antiquark de saveur f. L’expression des

condensats <<I/7fl/lf >> est donnée équation (20). Par ailleurs, Z+(Ef) et Z_(Ef) désignent

respectivement les fonctions de partition des fermions et anti-fermions, c'est-a-dire ici les
quarks et les antiquarks. Elles sont écrites ici comme :

z*(Eg)=1+exp(~B-(E; 1))

. (36)
Les distributions de Fermi-Dirac pour les fermions et anti-fermions, notées respectivement
f* et f7, peuvent étre obtenues en dérivant les fonctions de partition par le potentiel
chimique, et il vient :

1 ol(z*(£)) 1

fABAEp —us))=— =

( ( f f)) B Op s exp(,B~(Ef—,uf))+l an

] 1 om(Z(£/)) |

f ﬂ E +lu - =

(B8 4y )= ur  exp(B-(E;+up))+1

Avec I’inclusion de la boucle de Polyakov, le grand potentiel se réécrit comme [35, 42] :
QpnyL = Z/{(T,CID,CTD) +2G f_Zd <<‘/7fo >>2 —4K <<‘/7u‘//u >><<‘/7de >><<l/7.vl//x >>
o (38)

A2
p”-dp T s T )
—2NC | E +—.Trcln 7. (E ) + 'Tl’cln 7 (E )

f=§d,sL 21 ( 77N, (23 Ep) N, (Zo (B, )]

D’une part, une modification concerne I’inclusion du potentiel ¢/ défini précédemment.
D’autre part, des modifications sont requises au niveau des fonctions de partition. En effet,
elles sont réécrites sous la forme [35, 40, 43, 44] :

23 (E;) =1+ Lexp(--(E; - 7)) (39)

Zo(E;)=1+L exp(-B-(E; +u;))
ot les lignes de Polyakov L et L' sont déja apparues équations (28, 29).

Pour calculer le terme T, ln(Z:f,(Ef)) qui apparait dans (38), dans lequel 77, est une trace

selon la couleur, nous considérons une nouvelle fois I’approximation du champ moyen
évoquée dans le paragraphe 4.1. Cela nous permet de réécrire L comme :
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L(Z)=7 exp(i 7 4 (5.7)-dz)=exp(iBA,), (40)

de sorte que I’expression du champ de Polyakov & devient :

Tr;V(L) _ Tr, ( ex}f:/(iﬁAz;)) :%-(exp(iﬁ(m )“)+exp(iﬁ(A4 )22)+exp(iﬁ(A4 )33)) .

Cc Cc

oo (1)

Tr, ((exp(-iBA,))

c

De la méme maniere, ® = . En utilisant (40) dans la fonction de partition Zg

des quarks (39), la trace selon la couleur nous donne :
Tr. ln(Zc; ) =Tr. ln(l + Lexp(—ﬁ(Ef — iy ))) = ln(l + exp(—ﬁ(Ef — iy )) : exp(iﬁ(A4 )11 )) (42)

+ln(1+exp(—,3(Ef — Uy ))-exp(iﬁ(A4 )22))+ln(1+exp(—/3(Ef — Uy ))-exp(iﬁ(A4 )33)) ,

ou:

(1+exp(—ﬁ(Ef —,uf))~exp(iﬁ(A4)”))
Trcln(Z&;):ln X(l+exp(—ﬂ(Ef—,uf ))-exp(i,é’(A4)22)) . (43)

x(l+exp(—ﬁ(Ef — U ))~exp(iﬁ(A4 )33))

Si nous développons cette relation, nous obtenons :

Tr,n(Z) = (44)
1+exp(-B(E; —us))-(exp(iB(4y), )+exp(lﬂ(A4) )+exp(iB(Ay)5,)) .
In +exp(—2ﬂ(Ef—,u )) ( (zﬂ 33))+exp(z,[)’ A, (A4)33))+exp(iﬂ((A4)“+(A4)22)))

+exp(—3ﬂ(Ef—ﬂ )) ( (113(( ) (A4)22+(A4)33)))

Immédiatement, en utilisant (41), nous identifions 3® dans la premiere ligne de (44). Pour
continuer, nous rappelons la possibilité évoquée dans [35] d’écrire L sous la forme d’une
matrice diagonale, comme :

exp(i/59)
L= exp(if¢) . (45)
exp(—if(p+9))

Cette écriture nous permet d’identifier chaque terme (A, ) , et ensuite nous remarquons que :
CXP(iﬂ((A4)22 +(4 )33)) eXP( iB(Ay), )
exp(iB((4:)y, +(44),, ) =exp(-iB(44),, ) (46)
eXp(iﬂ((A4 )y +(A4)22)) =exp(~if(A,)y,)

et:

exp(iﬁ((A4)11+(A4)22+(A4)33))=1. (47)
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En conséquence, (44) peut se simplifier de la manieére suivante :
Tr, ln(Z&;):ln(l—i-exp(—ﬂ(Ef —Hy ))-3CI>+exp(—2ﬂ(Ef — Uy ))-3cf>+exp(—3,5(Ef —,uf))-l) (48)

=1n(1+3(¢>+&>exp(—,b’(Ef — 11y )))eXp(—ﬂ(Ef — ;) +exp(-3B(E; -, )))

Ce calcul peut étre refait avec Tr, ln(Zq}> (Ef )), et nous retrouvons le résultat visible dans la
littérature PNJL [37, 40, 42] :

Tr,n(z4 (E, )
=ln(1+3(CID+CT>exp(—,6’(Ef —Hf )))GXP(_IB(Ef —Hy ))+6Xp(_3ﬁ(Ef —Hy )))
Tr, n(Zg (E, )

:ln(1+3(CTD+CI>exp(—,6’(Ef + Uy )))CXP(_IB(E,‘ Uy ))""CXP(_?’ﬁ(Ef t Uy )))

(49)

Rappelons que le signe plus correspond aux quarks, et le signe moins aux antiquarks. Nous
observons que :

Tr,In(Zg (E; ) =Tr, 1n(Z (Ef))‘(m&, : (50)
et

Ces modifications des fonctions de partition nous amenent a considérer une réécriture des
distributions de Fermi-Dirac, comme expliqué dans [40]. En suivant la méthode détaillée dans

(37), et en notant ces distributions comme f;f (quarks) et fg (antiquarks), nous écrivons :

1 +
N .B(NTrC ln(Z(;)j 51)

C

E ou f

et donc :

fa (B-(Ef~uy))

_ (q’”&"exl’(‘ﬁ'(Ef ‘ﬂf)))'eXp(‘ﬂ'(Ef ~ iy ))+exp(=38-(E; ~uy )
1+3(¢+&"6XP(‘ﬁ'(Ef ‘ﬂf)))'eXp(‘ﬂ'(Ef ~uy))+exp(=38-(E; ~uy )

0 ) o

_ (CT>+2<I>-exp(—,B~(Ef +,uf)))-exp(—,5-(Ef +,uf))+exp(—3ﬁ-(Ef +uf))
1+3(&’+¢'6XP(‘ﬁ'(Ef +ﬂf)))'e"p(‘ﬁ'(’5f +up))+exp(-38-(E; + 4y )

Si ®=®, nous avons f3"(—x)=1-f3" (x) et comme avec les fonctions de partition, nous
vérifions que :
fa (B-(Ep +up))= 13 (B -(E, _/“f))‘ : (53)

DD
Uy ==l
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Comme indiqué dans [40, 42], cette mise a jour des statistiques de Fermi-Dirac doit étre
appliquées chaque fois que les distributions de quarks et antiquarks interviennent. Cela
concerne notamment le traitement des mésons, diquarks, baryons, et les calculs de sections-
efficaces.

4.3 Equations de gap dans le modele PNJL

Finalement, 1’inclusion de la boucle de Polyakov a aussi des conséquences sur les équations a
résoudre pour trouver les masses des quarks constituants. En effet, le jeu d’équations (24) doit
étre mis a jour afin de prendre en compte les nouvelles distributions de Fermi-Dirac (52).
Mais, il est aussi nécessaire de minimiser le grand potentiel PNJL par rapport 2 ® et ®. Cela
amene a considérer des équations supplémentaires pour pouvoir extraire les valeurs de @
et @ [40, 42] :

9Qpyy, ~0 9Qpyy, ~0 (54)
0P 0D ’
avec :
9QpNy T4 _a(T)-cTJ_6. b(T)~(<T>—2-CI>2+<T>2~CI>)
0P 2 1-6-@-3+4-(0° +3°)-3-(3 @)’
(55)
e
-dp _
-6-T- -I D0, 5, E,,
f%:dv 2 ( BEs.up)
dans laquelle 7 est défini par :
1(®.®.B.Ep .y )=
exp( ﬁ(Ef uf )
1+3- (<I>+<I>exp Ef ,uf)))exp( Ef ,uf))+exp( 3ﬁ(Ef ,uf)) (56)
N exp( 28 Ef + g )
1+3(CI>+<I>exp( Ef+uf))) ( Ef+,uf))+exp( Bﬁ(Ef+,uf))
Par ailleurs, nous avons :
0Qpny1 _ aQPNJL| 57
oD 0P |pod
Hy<=Hy

Dans I’expression du grand potentiel PNJL (38), ¢ est présent. Nous avons étudié dans le
paragraphe 4.1 le comportement de U/ par rapport a ses minimums selon &®. En fait, ce
comportement aura une influence sur la minimisation effectuée dans (54). Cela veut dire
notamment que les propriétés 0<® <1 et 0< P <1 seront vérifiées. Physiquement, la figure 2
considere uniquement I, c'est-a-dire une description pure jauge, alors que la résolution de
(54) prend en compte I’influence des quarks/antiquarks.
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Finalement, comme indiqué plus haut, ® et ® sont des réels dans le cadre de
I’approximation du champ moyen. De plus, ils peuvent étre trait€és comme des variables
indépendantes. Donc, quand la symétrie isospin n’est pas considérée, et a densités finies, le
jeu complet d’équations a résoudre comporte 8 équations, c'est-a-dire (24) et (54), avec 8
inconnues. Trois de ces inconnues sont les masses des quarks habillés u,d, s, trois sont leurs
potentiels chimiques respectifs, et deux sont & et & . Concrétement, un tel systéme peut étre
résolu numériquement, en utilisant un algorithme root-finder. D’autre part, comme évoqué
dans la littérature, le modele PNJL décrit ici correspond au couplage minimum de la boucle
de Polyakov avec les quarks. Cela implique par exemple que les équations de gap (16, 24) ne
dépendent pas explicitement de la boucle de Polyakov, sauf via (52). Dans un modele comme
EPNIJL, une différence est que G devient une fonction de ®,® [45].

5. Résultats obtenus

5.1 Masses des quarks

En résolvant (24), les masses des quarks habillés NJL, a température et densité nulles, sont
rassemblées dans le tableau 3. Nous avons considéré les trois jeux de parametres définis dans
le tableau 1. Puisque « RK » et « P1 » utilisent la symétrie isospin, les masses des quarks
légers u et d sont identiques pour chacun de ces deux jeux de parametres. Ces masses m, 4

trouvées avec RK sont proches de m,,,,,/3 alors que celles obtenues avec P1 avec EB sont
plus élevées. Cependant, ces derniéres sont comparables aux masses trouvées dans des
références comme [58—60], que nous utiliserons dans le chapitre alloué aux diquarks. De plus,
elles restent conformes au domaine de validité des masses effectives établi dans [22]. Les
autres résultats exposés dans ce chapitre ont été établis avec le jeu de parametres P1.

RK P1 EB
quark u 367.65 424.23 419.10
quark d 367.65 424.23 422.31
quark s 549.48 626.49 588.17

Tableau 3. Masses effectives des quarks a température et densité nulles.

Les masses des quarks a températures et densités finies sont représentées dans la partie
gauche de la figure 3. Nos résultats proposent alors une comparaison entre les modeles NJL et
PNIJL. Lesdits résultats sont en accord avec ceux publiés par exemple dans [57] (modele NJL
pur), et [42] qui propose aussi une comparaison entre les approches NJL et PNJL. Pour les
deux modeles, nous observons que les masses décroissent quand la température augmente. A
hautes températures, les masses des quarks 1égers tendent vers les valeurs de masses nues,
voir tableau 1. A I'opposé, les masses des quarks étranges diminuent, mais restent assez
hautes, méme pour 7 =400 MeV .
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A cette occasion, il devrait étre rappelé que le modele PNJL présente une limitation en
fonction de la température, qui correspond a T = 2.5T;, [33, 40, 42]. Plus précisément, comme
expliqué dans [33], les effets de la boucle de Polyakov sont optimaux au niveau de la
« transition de phase de déconfinement », quand 7 =T,. Mais pour de hautes températures,
c'est-a-dire 7 >2.5T;, ces effets tendent vers une saturation, visible dans [33] et dans la partie
droite de la figure 2 ; dans le méme temps, la contribution de la masse effective des gluons sur
la thermodynamique devient importante. Ladite contribution n’est pas prise en compte dans
les modeles (P)NJL. En fait, il est vrai qu'une limitation selon la température peut aussi étre
prédite dans un modele NJL pur. Clairement, NJL est un modele de basse énergie, dans le
sens ou il considere des gluons « gelés », voir 2.2. A hautes températures, cette approximation
devient invalide pour la mé€me raison : les degrés de liberté des gluons ne peuvent pas étre

négligés dans ce régime. Ainsi, dans (7), la simplification k> <X? devient questionnable, tout
comme le fait que la masse effective des gluons, notée X, est considérée comme une
constante dans cette équation, alors que [33] a montré que £(7)o<T a hautes températures.

Une limitation physique des modeles (P)NJL selon la densité est discutée plus loin dans ce
paragraphe 5.1.

Pg=0 T=0
700 700

0 100 200 300 400
T (MeV) Ps/P,

Figure 3. Evolution de la masse des quarks.

A température nulle, comme dans [42] par exemple, les modeles NJL et PNJL donnent
exactement les mémes masses. Ce comportement sera vérifié lors des chapitres suivants avec
les mésons, diquarks et baryons. Donc, des résultats comme ceux exposés dans le tableau 3,
c'est-a-dire calculés a température et densité nulles, seront valides pour les deux modeles. Une
explication de ce comportement vient du fait qu’a densité nulle, ® =® — 0, comme confirmé
par la figure 7 et [42]. Comme indiqué précédemment, cette valeur correspond a une « phase
confinée ». En utilisant ce résultat dans les distributions de Fermi-Dirac modifiées (52), nous
obtenons :

fg(ﬂ(Ef —,Uf)) P=p—0 eXp(_3'B(E.f —,uf)) _ 1

t+exp(-38(E, —4y))  exp(38(E, —uy))+1

(58)
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Un résultat similaire est trouvé pour fg ( B (E Uy )) . Mis a part le facteur 3 observé au sein

de la fonction exponentielle dans (58), nous retrouvons les distributions de Fermi-Dirac
classiques, utilisés dans le cadre d’un pur modele NJL. Puisque nous sommes la a basses
températures, ce facteur 3 est sans conséquence dans notre raisonnement. Ainsi, puisque dans
cette configuration les équations NJL et PNJL sont identiques, les deux approches nous
donnent bien le méme résultat.

De plus, les résultats NJL et PNJL tendent a étre les mémes a hautes températures, c'est-a-dire
T =400 MeV pour les quarks légers. Les explications de cela sont proches de ce que nous

venons de voir. A hautes températures, ®=® —1 [40, 42] (« phase déconfinée »), de telle
maniere que nous écrivons alors que :

fa (B(E; ~uy))

D=1 (1+2exp( )e —Hy ))+exp(—3ﬁ(Ef _'uf))
”3(”6"1’( (Ef ﬂf)))e ( (Ef2 #y)) +exp(-3B(E; - /“f))’ (59)
_ exp(—?)ﬂ(E )(1+exp(,5 )) _ 1
exp(—?)ﬂ(Ef Uy )(1+exp(,5 ))3 exp(,B(Ef—,uf))+l

c’est a dire aussi la distribution classique de Fermi-Dirac. Donc, a basses et hautes
températures, les modeles NJL et PNJL donnent des résultats comparables. A 1’opposé, a
températures modérées, c’est a dire pour 7 =200-300 MeV , des différences sont observées.
Clairement, les résultats PNJL sont décalés vers des les hautes températures par rapport aux
résultats NJL. De plus, comme évoqué dans notre introduction, la décroissance des masses
des quarks PNJL est plus brutale comparé au comportement des quarks NJL. Pour les
résultats PNJL, nous avons une zone jusqu’a 7 =250 MeV pour laquelle les masses sont
quasi-constantes.

La partie droite de la figure 3 nous permet de voir I’évolution des masses de quarks en
fonction de la densité baryonique, a température nulle. Il peut étre observé que les deux
modeles donnent exactement les mémes résultats, quelle que soit la densité baryonique. Les
explications liées a (58) restent valides ici. Pour les deux modeles, les masses décroissent
quand la densité baryonique augmente. Le quark étrange est moins affecté par une variation
de la densité baryonique que les quarks légers. En effet, la dépendance des quarks s en
fonction de la densité baryonique, via les potentiels chimiques ., , apparait seulement

2
<, mais pas dans le terme lié a

Ne . Une telle
2

analyse des masses des quarks en fonction de la densité baryonique peut étre trouvée par
exemple dans [48], méme si les résultats trouvés dans cette référence avec leur jeu de
parametres « P3 » (my, =m,,; =0, donc a la limite chirale) sont incorrects : il est en effet
possible d’obtenir des masses de quarks pour 0< pz <2.5p,, alors qu’il y est indiqué le
contraire.

dans le terme de (16) associé au facteur

Apres, nous avons étendu les calculs au plan T, p; . Cela nous a donné les résultats exposés
dans les figures 4 et 5. La figure 4 montre I’évolution des masses des quarks 1égers, et la
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figure 5 concerne la masse du quark étrange. La partie gauche de la figure 4 est en accord
avec la figure équivalente publiée dans [19]. En effet, I’aspect de ces deux graphes est
rigoureusement identique, méme si les valeurs ne sont pas les mémes, parce que nous n’avons
pas pris le méme jeu de parametres que dans cette publication. Nous pouvons faire la méme
remarque avec la partie gauche de la figure 5 et [61]. Par ailleurs, ces figures permettent de
continuer la comparaison entre les résultats NJL et PNJL. Clairement, le comportement
observé dans la figure 3 est confirmé, c'est-a-dire que les résultats NJL et PNJL coincident a
basses et a hautes températures. Aussi, a températures modérées, 1’inclusion de la boucle de
Polyakov engendre un décalage des graphes vers les hautes températures. Clairement, par
rapport aux résultats NJL, les valeurs des masses ne sont pas modifiées par I’inclusion de la
boucle de Polyakov, mais elles sont simplement décalées. De plus, ladite boucle de Polyakov
n’a pas effet visible selon la densité, car le décalage n’est observé que selon I’axe des
températures.
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Figure 4. Masse des quarks g en fonction de la température 7' et de la densité baryonique p,.

En fait, nous devons étre prudents en ce qui concerne les résultats effectués a densités finies.
En effet, comme vu au chapitre 1, quelques zones, pour lesquelles la température est réduite et
la densité baryonique est assez forte, sont susceptibles de subir le phénomene de
supraconductivité de couleur [62-70]. Le traitement correct de ce phénomene requiert
I’utilisation d’un formalisme adapté, comme celui de Nambu-Gorkov, comme indiqué dans
les références citées. Cependant, la frontiere entre les phases hadroniques, QGP, et de
supraconductivité de couleur n’est pas connue avec précision. Dans [67], il est supposé que la
supraconductivité de couleur pourrait intervenir a des densités baryoniques pgz =10p,, c’est a

dire largement au dela des densités abordées dans notre travail (0< pgz <5p,). Mais, d’autres

papiers suggerent que les phases concernées par la supraconductivité de couleur pourraient
exister bien avant. En effet, ils mentionnent des valeurs de potentiels chimiques baryoniques
assez réduites, voir [65] par exemple. Toutefois, il semble admis que l’influence de la
supraconductivité de couleur puisse étre négligée dans les conditions dans lesquelles nous
allons travailler. Cela concerne les masses des particules, mais aussi les sections-efficaces des
réactions associées. Par ailleurs, un consensus semble considérer que la supraconductivité de
couleur ne peut pas intervenir pour des températures supérieures a 100 MeV [65, 67, 69],
méme si on s’attend que la boucle de Polyakov décale cette température vers des plus hautes
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valeurs. Mais, clairement, des températures plus hautes que 150 MeV, c'est-a-dire
typiquement au-dela de 200 MeV, semblent étre non affectées par la supraconductivité de
couleur. Une motivation de notre travail est d’étudier le refroidissement d’un systeme de
quarks/antiquarks et son hadronisation en hadrons. En conséquence, nous pouvons étre siirs
que les zones T, p, intéressantes dans lesquelles nous allons travailler, tout particulierement

dans les simulations du chapitre 7, sont clairement non concernées par la supraconductivité de
couleur.
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Figure 5. Masse des quarks s en fonction de 7' et p,.

5.2 Etude des parametres d’ordre du modele (P)NJL

Nous avons vu que les équations de gap utilisées correspondent au couplage des masses nues
des quarks aux condensats chiraux associés. De plus, avec le modele PNJL, les quarks sont
couplés a la boucle de Polyakov @. Le condensat chiral est un parametre d’ordre lié a la
symétrie chirale, alors que @ est un parametre d’ordre 1i€ a la transition entre les phases
« confinée » / « déconfinée » (rigoureusement dans des calculs en pure jauge). Nous avons
représenté I’évolution de ces quantités selon la température, a densité nulle, dans la partie
gauche de la figure 6. Immédiatement, on peut les comparer a ceux exhibés dans [35, 37].
Qualitativement, les résultats sont treés similaires.

Nous avons tracé 1’évolution du condensat chiral <<l/_/ql//q >> des quarks légers, normalisé par

sa valeur <<l/7[]l//q >>o a température et densité nulle, dans les modeles (P)NJL. Pour les deux,

nous observons une décroissance quand la température augmente. Cela va dans le sens de la
restauration de la symétrie chirale attendue a hautes températures, évoquée dans le chapitre 1.
Selon la théorie de Landau sur les transitions de phase, cette restauration est réalisée via un
crossover. En effet, la valeur du condensat de quarks ne tend vers zéro qu’a hautes
températures. Un tel résultat est explicable par le fait que nous ayons utilisé le jeu de
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parametres P1, dans lequel les masses nues des quarks légers sont non nulles. A la limite
chirale, il est possible de voir une transition de phase du second ordre [18, 22] : la valeur du
condensat chute continument vers zéro, quand 7 =7,. Dans [18], T.=150MeV, et

T. =220 MeV dans [22].
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Figure 6. Partie gauche : évolution des parametres d’ordre en fonction de la température.

Partie droite : condensat chiral normalisé dans le plan T — pg, dans le modele PNJL.

Si nous comparons I’évolution des condensats des modeles NJL et PNJL, deux différences
sont notables. Premierement, nous pouvons étudier la pseudo température critique?, notée T,
pour laquelle nous supposons que la pente de la courbe est maximale, c'est-a-dire que nous
suivons la méthode de [37]. En fait, 7, est plus forte dans le modele PNJL que pour NJL,
respectivement 270 MeV contre 230 MeV. Ce résultat confirme celui trouvé dans la littérature
[35, 37]. Toutefois, la courbe PNJL du condensat chiral est moins réguliere avec le potentiel
(33) qu’avec celui de (31) [71]. Donc, notre méthode utilisée pour estimer 7, devrait étre
améliorée... Deuxiemement, autour de 7,, la décroissance est plus forte avec le modele
PNIJL. Cela va dans le sens des résultats de LQCD [39], voir chapitre 1. Cela explique la
remarque faite dans [42], reproduite dans I’introduction de ce chapitre, qui indique que la
description de la restauration de la symétrie chirale est plus efficace dans le modele PNJL
qu’avec NJL. Dans la partie droite de la figure 6, nous avons étendu I’étude du condensat des
quarks 1égers dans le plan T, pg, pour le modele PNJL. Comme précédemment, les valeurs

sont normalisées par <<1/741//q>>0. Evidemment, on remarque la forte ressemblance entre ce
graphe et celui montrant la masse des quarks légers (partie droite de la figure 4). En

conclusion, dans I’équation de gap (21) des quarks légers, le terme G associé au couplage au
condensat de quarks légers est dominant. D’autre part, en utilisant (20), nous avons obtenu

<<1/7ql//q>>0z—(283 MeV)’. Cette valeur est comparable, mais supérieure, 2 la valeur

? La notion de température critique, définie notamment pour les transitions de phase du 1 et du 2°™ ordre, est
fréquemment étendue a des transitions de type crossover. Dans ce cas, le terme usité est pseudo température

critique [35].
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« empirique » —(250 MeV)3 admise fréquemment dans la littérature [20, 22]. Toutefois, ce
résultat reste cohérent avec la relation GMOR évoquée au chapitre 1. De plus, la valeur
trouvée est plutdt proche du —(287 MeV)’ utilisée dans [18] ou du —(283 MeV)® de [72].

Nous proposons maintenant d’étudier 1’évolution de & . Dans la partie droite de la figure 2,
nous avions observé une transition de phase du premier ordre quand nous prenions en compte
uniquement le potentiel effectif, c'est-a-dire sans quark. Dans la partie gauche de la figure 6,
la contribution des quarks conduit a modifier cette transition de phase en crossover. Cela
confirme les observations de [35]. Donc, comme expliqué dans [40], la symétrie Z; est alors
non exacte, mais les deux régimes « confiné » / « déconfiné » sont toujours visibles sur le
graphe. En fait, dans la littérature, les champs de Polyakov & et & ont été étudiés selon la
température, et quelquefois pour divers potentiels chimiques [37]. Dans notre travail, nous
proposons de compléter cette analyse via une étude dans le plan T, p; . Dans la partie gauche
de la figure 7, le champ de Polyakov & est étudié, alors que la partie droite de la figure
concerne la différence entre ® et ®. A propos de @, nous notons que cette grandeur
augmente quand la température croit. La courbe pour laquelle p; =0 est en accord avec celles
publiées dans [42]. Le comportement observé vérifie ce que nous avons vu dans la partie 4.
En effet, quelle que soit la densité baryonique, & -0 quand 7 — 0. A hautes températures,
® semble converger vers une valeur finie. Nous savons que cette valeur est égale a 1, mais la
convergence sur notre graphe n’est pas assez forte pour nous permettre de le voir, comme
dans les références utilisant le potentiel effectif (33). Dans tous les cas, nous pouvons aussi
vérifier que 0< P <1, comme mentionné dans [39].
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Figure 7. Champ de Polyakov @ et ® —® fonction de T et Pg.

Par ailleurs, la partie droite de la figure 7 confirme certaines observations trouvées dans la
littérature. Tout d’abord, il a été reporté que ® =& a température nulle, mais aussi a potentiel
chimique nul [39]. En fait, comme confirmé par la figure 8, uz =0« pz =0. Donc, dans la
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partie droite de la figure 7, la différence entre ® et @ est nulle quand T =0 ou pgz =0. Aussi,

la convergence de ® et ® a hautes températures (vers 1) induit aussi une diminution de la
différence entre ces deux grandeurs. Nos résultats indiquent que ladite différence est
négligeable quand 7 >300MeV. La référence [39] mentionne que ®=® 2a potentiels
chimiques non nuls (et températures non nulles), donc a densités baryoniques non nulles sur
notre graphe. D’autre part, il a été observé dans [37], qui utilise le potentiel effectif (31), que
® > @ pour des valeurs données de 1 # 0, quelle que soit la température. Dans la partie droite
de la figure 7, nous confirmons cette affirmation pour toutes les valeurs du plan 7,p,

étudiées dans ce graphe.

En fait, ces résultats sont en accord avec [4], qui donne une explication physique du
comportement observé. Clairement, nous avons vu que @ o< exp(—AE/T), ol AE est I’énergie

requise pour ajouter un quark (statique) dans le milieu, alors que ® o exp(—AE/T) est lié a

I’énergie AE pour rajouter un antiquark (statique). A densité nulle, les quarks et les antiquarks
présentent un comportement identique, donc ®=® . Quand x #0, ce raisonnement n’est plus
valide, d’ott ® #® . Plus précisément, quand x>0 (densité positive), le milieu a un exces de
quarks par rapport aux antiquarks. Cela veut dire que AE >AE, ce qui se traduit par ® <@,
comme observé. Evidemment, a densités négatives, nous avons vérifié que & >® . D’autre
part, 2 température nulle, nous avons vu que ®=® — 0. Physiquement, cela correspond 2 la
« phase confinée », donc AE et AE tendent tous les deux vers I’infini. En d’autres termes, le
« confinement » agit de la méme maniere pour les quarks et pour les antiquarks. Cela
explique que ®=® quand T —0. A I'opposé, de fortes températures (7 >300 MeV )
correspondent a la «phase déconfinée ». Méme si les quarks et les antiquarks agissent
différemment a densités finies, le « déconfinement » fait que AE et AE tendent vers zéro.
C’est pour cela que la différence entre ® et ® s’annule a hautes températures.

Par ailleurs, nos résultats nous aménent a remarquer que la différence entre ® et @ reste
toujours assez modeste, de telle maniere que nous pouvons considérer que ® =®, au moins
dans la partie du plan 7, p, explorée dans notre travail.

5.3 Le potentiel chimique

Pour conclure ce chapitre, nous proposons maintenant d’étudier la relation entre la densité
baryonique pp (26) et le potentiel chimique des quarks légers u,. Dans le cadre de la
symétrie isospin, la densité baryonique est li€e a g, par la relation ugz =3y, . Par rapport a

certains aspects numériques, nous rappelons que la densité est un parametre (choisi), alors que
le potentiel chimique (un inconnu) est trouvé durant la résolution numérique du systeéme
d’équations (24). Aussi, en prenant en compte la remarque effectuée au paragraphe 3.3,
mentionnons que nous avons représenté ici ce potentiel chimique, c'est-a-dire le potentiel
chimique « effectif ». Quoi qu’il en soit, nous avons observé que le décalage du, est inférieur

a 15 MeV quand g, =500 MeV et T — 0. Cela confirme I'influence modeste de ce décalage,
mentionnée plus haut dans ce chapitre.
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Les résultats de ce travail sont exposés dans la figure 8, pour les modeles NJL et PNJL.
Immédiatement, nous notons que les modeles donnent qualitativement des résultats similaires.
La seule différence vient du décalage du graphe PNJL selon 1’axe des températures, par
rapport aux résultats NJL. Un tel comportement correspond a ce que nous avons observé
précédemment avec les masses des quarks. Mais, pour les deux modeles, la structure trouvée
doit étre commentée. Tout d’abord, nous nous focalisons sur la région des graphes pour
lesquels la température et la densité baryonique sont proches de zéro. Une discontinuité y est
présente. Méme si cette particularité est assez spectaculaire, elle peut tre expliquée. Grace
aux équations (23, 26), il est facile de vérifier que pz =0 conduit a la solution triviale u, =0,

quelle que soit la température. En revanche, a température réduite et quand pyz — 0", nous
observons sur les graphes que :

Jim sty (T =0.p3) = >0, (60)

Pp>0

ce qui constitue la discontinuité observée. L’équation (60) est explicable avec (23). Pour notre
résonnement, nous considérons la version NJL de cette équation, c'est-a-dire que nous
utilisons les distributions de Fermi-Dirac « classiques » (37). A température nulle, ces
distributions prennent la forme de fonctions de Heaviside, c'est-a-dire des fonctions « marche
d’escalier », de telle maniere que le terme a intégrer dans (23, 24) :

1 1

L o125 o

1+exp(

ressemble a une « fonction rectangulaire » selon la variable E, =/ pr+m f2 . En conséquence,
quand E, >u,, (61) est €gal a zéro. Si le potentiel chimique décroit et tend vers m,, la zone

ou (61) est nulle augmente et occupe finalement tout le domaine d’intégration de
I'intégrale (23). A la limite x, —m,, I'intégrale, c'est-a-dire la densité calculée, converge

vers 0. Avec le modéle PNJL, ces explications sont toujours valables, notamment parce que
nous avons vu équation (58) que les distributions de Fermi-Dirac modifiées ressemblent aux
classiques a températures réduites.

Les résultats présentent une autre particularité. Focalisons-nous maintenant sur la zone
localisée a basses températures, le long de I’axe ou la température est nulle. Pour le moment,
considérons seulement des densités positives. Dans 1’approche PNJL, pendant la résolution de
(24), une température et une densité baryonique données correspondent, pour un quark
effectif 1éger, a une masse et a un potentiel chimique x,. Cependant, la figure 8 indique que

la réciproque n’est pas vraie par rapport a x,, dans la zone évoquée. En fait, si T=0 et
pp >0, la fonction u,(pp) décroit lentement, et ensuite croit quand p, augmente. En
conséquence, ,(pp) n’est pas ici une bijection : un potentiel chimique correspond dans cette

zone a deux densités baryoniques distinctes. Par ailleurs, a températures réduites, le potentiel
chimique dépend de la densité baryonique, mais aussi de la température. Ainsi, dans le cadre
d’études (P)NJL effectuées a potentiels chimiques finis, ce résultat nous montre que certaines
précautions sont nécessaires.
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Figure 8. Potentiel chimique £, fonction de la température et de la densité baryonique.

En revanche, avec le modele NJL, ce comportement disparait pour une température au-dela de
200 MeV. A cet endroit, la relation entre la densité baryonique et le potentiel chimique tend
de plus en plus vers un comportement linéaire. Grace a la figure 8, nous trouvons la relation
approchée :

py =g, = g1y = (62.2 MeV)~%. (62)
0

Cette relation n’est bien sir valide qu’avec le jeu de parametres utilisé (P1), qui respecte
d’ailleurs la symétrie isospin. La relation est aussi utilisable avec le modele PNJL, mais au-
dela de 300 MeV, a cause du décalage du graphe PNJL vers les hautes températures,
conduisant a un élargissement des structures décrites plus haut.

Dans la figure 8, les graphes ont été étendus a des densités négatives. Nous observons que
I'axe pp=0,4,=0 correspond a un axe de symétrie pour les deux graphes. De la méme

maniere, la discontinuité existe aussi a températures réduites et pgz <0 :
limO,uq (T:O,pB)=—mq <0. (63)

Pp—
Pp<0

En utilisant la définition thermodynamique du potentiel chimique, c'est-a-dire 1’énergie
requise pour rajouter une particule dans le systeme, un lien entre les densités négatives et
I’antimatiere peut étre établi. En effet, des densités négatives signifient physiquement que
I’antimatiere domine la matiere. En d’autres termes, il a été étudié la le comportement de
quarks plongés dans I’antimatiere. En fait, il pourrait étre montré que des valeurs de potentiel
chimique négatives n’affectent pas les masses effectives des quarks. L’équation (16) indique
que les masses sont calculées en utilisant les potentiels chimiques uniquement en tant
qu’arguments de la fonction générique A. Il a été€ vu dans I’annexe D, équation (13), que cette
fonction utilise seulement la valeur absolue du potentiel chimique. En conclusion, par
exemple avec les figures 4 et 5, nous pourrions étendre nos graphes a des densités négatives,
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en considérant le plan p, =0 comme plan de symétrie, pour les deux figures. La symétrie

entre la matiere et ’antimatiére sera encore utilisée a diverses occasions lors de la
modélisation des particules composites.

En fait, dans la littérature, les calculs a g finis sont plus fréquents que ceux a densités finies.
En conséquence, il est intéressant de voir si nous pouvons retrouver les résultats de la
littérature a partir de notre approche. Ainsi, dans la partie gauche de la figure 9, nous avons
tracé 1’évolution du condensat chiral et de la boucle de Polyakov pour plusieurs potentiels
chimiques, dans le modele PNJL. Ces données obtenues sont trés similaires a celles visibles
notamment dans [35, 37]. Pour établir le lien entre ces graphes et ceux effectués a densités
finies, nous avons portés les trois potentiels chimiques u, dans le graphe établi dans la

figure 8. Nous avons obtenu la partie droite de la figure 9. Plus précisément, pour chacun des
trois 4, , la courbe associée donne la correspondance entre la densité baryonique et le

potentiel chimique, pour chaque température. Si cette relation est triviale a potentiel chimique
nul, cela n’est pas le cas pour les « trajectoires » obtenues avec les trois u, €tudiés. Ensuite,

nous avons utilisé ces correspondances dans la partie droite de la figure 6 (condensat chiral) et
dans la partie gauche de la figure 7 (champ de Polyakov). Cela nous donne la figure 10. Tout
d’abord, pour 4, =300MeV, et par extension pour les potentiels chimiques faibles, la

trajectoire trouvée est lisse, comme les variations de < ¥P¥ > et ®. Au contraire, pour
4, =380 MeV , la trajectoire est différente. Plus précisément, une portion de la courbe évolue

a température constante, proche de 150 MeV. Cela veut dire qu’a cette température, plusieurs
densités correspondent au méme potentiel chimique. Avec la figure 10, nous montrons que
cela implique que les parametres d’ordre présentent des discontinuités pour cette température,
comme observable sur la partie gauche de la figure 9. Nous pourrions faire des observations
similaires pour g, =420 MeV, ou les discontinuités sont plus marquées, et se trouvent a une

température voisine de 40 MeV.

1 (@)1/3 =420 MeV
c F <TT>, gt =380 MeV.
o : : :
08f | I b =300 MeV
N w ¢ :
N (0]
o © e £
S =z < ao0-1H#
0.6} @ @ () (It
< < HIH
= 300 ?
= (e et
0.4f 200-{f 1M ;
100 NN 5
0.2 i =380 MeV (AR Wb 4
q J l LT FHH NG 3
- 300 ey AL ¥
: : 100
0 100 200 300 400 20 300 4 0 PBPO
T (MeV) T (MeV)

Figure 9. Etude des parametres d’ordre pour plusieurs potentiels chimiques, et « trajectoires »
associées dans le plan T — pp .
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Physiquement, ces discontinuités selon le condensat chiral peuvent €tre interprétées comme
des transitions de phase du premier ordre [35, 37], en négligeant le fait que les courbes ne
chutent pas a zéro apres la discontinuité. Une extension possible de ce travail pourrait
concerner I’étude du point critique (du second ordre) entre le crossover et la transition de
premier ordre. Des calculs effectués a hauts potentiels chimique semblent aussi étre
prometteurs. Toutefois, comme indiqué précédemment, ce type de calculs requiert de prendre

en compte la supraconductivité de couleur, et une adaptation du formalisme utilisé.
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0.8 X i "" b R
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Figure 10. Evolution des parametres d’ordre dans le plan T — pp, avec trois potentiels chimiques
donnés.

Dans le cadre de cette these, nous continuerons a utiliser la température et la densité comme
parametre d’étude. En effet, d’'un point de vue numérique, les discontinuités observées
conduisent a des instabilités numériques, indésirables dans le cadre d’une étude dynamique.
Au contraire, le crossover rencontré avec les densités ne présente pas cette difficulté.

6. Conclusion

Dans ce chapitre, nous avons proposé une alternative intéressante a la QCD : le modele NJL.
Par T’utilisation de gluons dont la dynamique a été « gelée », ce modele est utilisable pour
étudier la physique des quarks. Il a été étudié la possibilité d’estimer les masses de quarks
effectifs, par des équations de gap, et I’évolution de ces masses en fonction de la température
et de la densité baryonique. Un autre aspect intéressant du modele NJL est qu’il montre la
restauration de la symétrie chirale, comme QCD, a hautes températures et/ou densités. Mais, a
cause de I’absence de confinement, il a ét€ montré que le modele NJL peut étre complété,
dans le cadre du modele de Polyakov Nambu Jona-Lasinio. Dans ce modele, les quarks sont
minimalement couplés a une boucle de Polyakov, dont le role est de simuler un mécanisme de
confinement. La boucle de Polyakov provient des calculs LQCD en pure jauge, dans lesquels
elle est utilisée comme parametre d’ordre, pour décrire la transition de phase entre les phases
« confinée » et « déconfinée ».
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Via nos résultats numériques, nous avons montré que I’inclusion d’une boucle de Polyakov
conduit a un décalage des masses des quarks, du condensat chiral de quarks légers, et des

N

potentiels chimiques vers de plus hautes températures. Nous avons réussi a retrouver les
résultats de la littérature, et les avons effectué dans le plan 7, pg. De tels calculs ont aussi

inclus une étude du potentiel chimique des quarks légers dans ce plan.
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Chapitre 3

Les mésons

Une partie de ce chapitre a été publiée dans J. Phys. G: Nucl. Part. Phys. 38 105003
Pour ce chapitre, et pour les chapitres 4 et 5, les constantes de couplage ont été publiées dans :
J. Phys. G: Nucl. Part. Phys. 39 105003

1. Introduction

Dans le chapitre précédent, nous avons présenté les modeles considérés dans cette these, c'est-
a-dire les modeles NJL et PNJL. Nous avons vu que ces modeles permettent de modéliser les
quarks habillés u,d,s , dont la masse dépend de la température et de la densité baryonique. En
fait, a partir de ces quarks, un des premiers succes de 1I’approche NJL a été de modéliser les
mésons légers de maniere fiable. Parmi les références NJL citées dans le chapitre précédent,
nous pouvons tout d’abord mentionner [1-6], puis [7-9], [10] et [11]. Ces références ont été
suivies par d’autres papiers qui ont utilisé cette modélisation des mésons, comme [12—17].
Plus récemment, les mésons NJL ont de nouveau été considérés, dans des travaux
comme [18-20]. Parmi les mésons évoqués dans ces références, les mésons pseudo-scalaires
sont particulierement étudiés. En fait, ces mésons sont les plus 1égers. D’autre part, il a été
observé expérimentalement une production massive de mésons pseudo-scalaires dans des
collisions de hautes énergies, notamment des pions et des kaons, voir par exemple [21]. Aussi,
les mésons scalaires ont été particulierement considérés dans le modele NJL, notamment pour
intervenir en tant que propagateurs dans les calculs de sections-efficaces [13, 14]. Grace aux
résultats encourageants rencontrés avec le modele PNJL, des développements récents de ce
modele ont inclus la modélisation de mésons PNJL. Cela a concerné principalement des
mésons pseudo-scalaires et scalaires [22, 23], mé€me si des mésons plus exotiques ont aussi
été traités [24]. Les résultats NJL et PNJL ont été comparés. Globalement, ce travail a été
effectué en étudiant les masses des mésons en fonction de la température. Il a été reporté [23]
que I’effet de I’inclusion de la boucle de Polyakov est similaire a ce qui a été observé pour les
quarks, c'est-a-dire un décalage des courbes associées aux masses vers des températures plus
hautes, opérant de fait une distorsion de ces courbes.

Dans le cadre du modele NJL, les masses des mésons ont ét€ estimées en fonction de la
température, du potentiel chimique [11], ou de la densité baryonique [9, 25]. Avec le modele
PNIJL, Ia température et le potentiel chimique sont aussi utilisés [22, 23], mais pas la densité
baryonique. D’autre part, des études dans le plan 7,p,; sont rares pour ces deux modeles,
mais nous pouvons citer [26, 27]. Travailler dans ce plan permet de cerner les zones de
stabilité completes des mésons étudiés. En outre, méme si les mésons axiaux et vectoriels ont
été modélisés dans les références premicrement citées, 1’étude de ces mésons n’est pas
fréquente dans les travaux récents, ce qui inclut ceux liés au modele PNJL. Pour ces mésons,
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il pourrait étre investigué si I’accord entre les données obtenues et les valeurs expérimentales
est aussi bon que celui observé pour les mésons pseudo-scalaires et scalaires. Les mésons
axiaux sont peut-€tre moins cruciaux dans le cadre de notre étude, mais cette remarque ne
peut pas s appliquer aux mésons vectoriels. En effet, les mésons vectoriels p sont importants

en physique des particules. Ils sont certes plus massifs que les pions, kaons et 77, mais ils sont

plus 1égers que les autres mésons. Aussi, ils interviennent dans la diffusion élastique entre
deux pions en tant que propagateurs [17], et leurs diverses désintégrations sont
particulierement étudiées (en une paire de deux pions, en un dilepton, etc.). Aussi, les travaux
précédemment évoqués prennent en compte la symétrie isospin. Il pourrait étre instructif
d’étudier les mésons en dehors de cette approximation, c’est a dire en prenant m, #m, .
Notamment, une question serait de voir si I’on pourrait gagner en précision vis-a-vis des
données expérimentales de cette maniere.

Dans ce chapitre, ces questions associées aux mésons sont prises en compte, en étudiant ces
particules. Tout d’abord, le début de ce chapitre est consacré a décrire et expliquer les
équations utilisées pour modéliser les mésons. A cette occasion, nous indiquons les
modifications a effectuer pour faire la transition d’un pur modele NJL a un modele PNJL. Ces
descriptions concerneront la partie 2. Les résultats associés aux mésons pseudo-scalaires sont
présentés dans la partie 3. Un objectif de cette partie est de retrouver les résultats déja exposés
dans la littérature, c'est-a-dire les masses, les largeurs de niveau et les constantes de couplage
de ces particules. Cependant, nous considérons aussi des aspects moins ou pas traitées dans
les références citées, comme le diagramme de phases des mésons stables, 1’étude de ces
particules a densités baryoniques finies (y compris négatives), 1’angle de mélange 7 -7, etc.
Dans la partie 4, les autres mésons sont traités : scalaires, vectoriels et axiaux. Dans ces deux
parties, les résultats liés aux modeles NJL et PNJL sont comparés. Dans la partie 5, nous
proposons de voir les conséquences de I’abandon de la symétrie isospin sur les résultats
obtenus. A cette occasion, nous insistons sur les complications induites par cette étude pour
les mésons 7,,77,77". A la fin de cette partie, un tableau récapitulatif rassemble les masses des

mésons obtenus a température et densité nulles. Une discussion y est alors proposée.
2. Description du formalisme

2.1 Méthode générale

Dans le cadre du modele NJL, I'idée essentielle est de considérer un méson comme une
association d’un quark et d’un antiquark, formant une boucle. Cette boucle est capable de se
reproduire a I’infini. La figure 1 ci-aprés donne une représentation schématique de la méthode
appliquée [11].
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el 1

— III

Figure 1. Schématisation de I’approche utilisée pour traiter les mésons.

Seul le terme direct est considéré, dans le cadre 1’approximation des phases aléatoires (RPA)
[32-35], comme dans [13]. Pour obtenir I’équivalent mathématique de la figure 1, nous
prenons ®=Z. Il correspond a un couplage effectif a chaque vertex. Pour un systeéme
quark/antiquark donné, ce terme est une constante. Aussi, la boucle est notée IT :

<:::> = s S (1)

Cette boucle interne, faite par un quark et un antiquark, est nommée fonction de polarisation
irréductible [11, 13, 15]. La boucle est fonction de sa quadri-impulsion totale. Dans le cadre
de I’équation de Bethe-Salpeter, voir par exemple [8, 9], nous identifions I’interaction dans la
premiere ligne de la figure 1 a la matrice de transition T. L’équation de Bethe-Salpeter s’écrit
T=Z+Z-I1-T, dans laquelle le couplage Z est associé a un noyau d’interaction a deux
corps [8, 19]. Nous avons alors :

T=Z+ZZ+ ZNZNZ + ZNZNZ1Z +..., )

qui traduit le passage de la premiere ligne a la seconde ligne de la figure. Puisque I1Z
satisfait la propriété :
lim (I1Z)" =0, (3)

n—oo

I’équation (2) correspond a une série géométrique convergente, de sorte que le passage de la
seconde a la troisieme ligne de la figure 1 s’écrit :

Z
T=Z-(1+I1Z+I1Z[1Z+...)= .
( ) 1-T1Z @)

La propriété suivante est vraie pour toute matrice A, si son déterminant est non nul,

T(com(A)) , (5)

Al = :
det(A)
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ol com(A) est la comatrice de A et ” 1’opération transposée matricielle. En appliquant la
relation (5) dans (4), il vient :

zZ zZ T 1
= = - |com(1-11Z roportionnel 3. ——.

Tz dmp_mz) \©om(-TIZ)) prop det(1-T1Z) ©
Si nous revenons a la premiere ligne de la figure 1,
— —X—

nous écrivons, par de simples arguments de théorie des champs :
—v- ! +
il "
oll ——— estle propagateur standard d’un méson de masse m et de quadri-impulsion k. En

k> —m?
outre, V™ et V' sont respectivement les vertices de gauche et de droite, matérialisés par des
points noirs sur la figure. Ces termes seront explicités plus tard, mais nous pouvons préciser

qu’ils sont non nuls et non infinis. Quand k> —m?, une divergence est observée dans
I’équation (7). Puisque (6) et (7) sont supposés €tre équivalents, cette divergence doit aussi
étre trouvée dans (6). Et, puisque Z et IT sont finis, I’équivalence entre ces deux expressions
n’est satisfaite que si :

det(l—HZ) :O|kz_>m2 . (8)

Pour un méson au repos, sa masse est obtenue en résolvant :

det[l—H(kO,lz)-ZJ=0‘kO:m’ o )

alors que pour une quantité de mouvement k£ donnée, 1’équation est écrite comme :

det[l—n(ko,]g)-z:|=0k0:\/m’ Igfixé. (10)

Excepté pour la figure 7b, seuls des mésons au repos sont pris en compte dans nos simulations
numériques. Quand un méson est considéré comme stable par le modeéle en ce qui concerne sa
désintégration en un quark et un antiquark, les équations (9) ou (10) a résoudre sont réelles,
comme les masses obtenues. Donc, dans cette configuration, la fonction de polarisation est
une fonction réelle. Cela correspond au régime pour lequel la masse du méson est inférieure a
la masse totale du quark et de 1’antiquark qui le composent. A I’opposé, quand cette condition
n’est pas satisfaite, la fonction de polarisation est une fonction complexe, et la masse devient
un nombre complexe elle aussi. Nous 1’écrivons alors comme :
l

o ——.T .
physique 2 (11)

m=m

Monysique €N €St la partie réelle et est identifiée a la masse de la particule, alors que T" est

associée a la partie imaginaire et correspond a la largeur de niveau de la particule. Une
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maniere de comprendre ce comportement consiste a dire qu’en mécanique quantique non
relativiste, la fonction d’onde est proportionnelle a :

exp(—i%)zexp(—i-m-‘%ﬁj. (12)

Si m est un nombre réel, alors I’exponentielle garde un module constant, alors que si m est
complexe, cela donne :

A . T (v-%
exp(—l.m~—h j_eXp _l'(mphysique_lgj'( - ) 13)
. T r(v-z))
) eXp[_l physique (TD ' eXp(_E ' (TD

L’exponentielle située a I’extréme droite de (13) traduit le fait que la fonction d’onde tend a
s’évanouir. Cela correspond donc a un instabilité de la particule, indiquée par cette largeur de
niveau I'.

2.2 Lagrangien associé aux mésons

La partie intéressante du Lagrangien NJL qui intervient dans la modélisation des mésons
s’écrit comme :

(

«Gy- 3| () +(wmav) | (14)
[
(

A ce stade, une transformation est appliquée pour développer le terme de ‘t Hooft, c'est-a-dire
le dernier terme de (14), et d’incorporer les sous-termes obtenus dans la sommation

8 2 2
Gy - Z[(W,“z//) +(1/7i;/5/1“1//) } En d’autres termes, la seconde et la quatrieme ligne de (14)
a=0

sont fusionnées [11, 13], et il vient :



86

8 2 2
Ainsi, le terme associé au canal vectoriel -G, - Z|:(l/7}/ﬂﬂal//) +(1/7;/ﬂi;/5/1“y/) } n’est pas
a=0

modifié. Par extension, les mésons vectoriels (termes avec y,) et les mésons axiaux (termes

avec y,iys) ne sont pas concernés non plus. Les nouvelles constantes introduites s’écrivent :
+ _ _1 . u . d . K
Ky =Gy +§NCK~[1'Tr(S )+1'Tr(S )+z~Tr(S )}
1
Kt =Ky® = Kyt =Gy J_rENCK[i.Tr(SS)}
1
Kyt = Kss* =Gy J_rENCK-[i-Tr(Sd)] : (16)
= + 1 : u
1 . . d\_ .
Kg* =Gg+—N K~[21~Tr s*)+2i-Tr(s9) =i Tr(S* J
s =Cs N (5*)+20-7r(s?)=i-7r(s7)
et:
1
Kyt =Kyt =5——N K-[i~Tr §*)=i-Tr(s }
o =Ko =Nk 1 (s7) 7o)

2

Kog™ = Kgo* =iENCK-[i~Tr(S“)+i-Tr(Sd)—2i-Tr(Ss)} . a7
Kug" = Kys* =i%NCK-[i~Tr(S”)—i-Tr(Sd)J

Les quantités physiques exposées dans ces équations ont été définies au chapitre 2. Tr(S f)

est la trace du propagateur §f(x,x') d’un quark de saveur f, exprimé en coordonnées
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d’espace [13-15]. Celui-ci est reli€ au propagateur S, ( p) dans I’espace des quantités de
mouvement, écrit comme :
_ i

P +Yolhy=mys

Sy (#) (18)

A cette occasion, nous indiquons que ce propagateur est réécrit dans le modele PNJL
comme [22] :
i

b

S =
T P (19)

qui prend en compte la dépendance vis-a-vis de la couleur, via le terme A, .

Dans 1’équation (4), en accord avec [8, 11], nous avons Z = 2-I(abi pour les mésons pseudo-

. . 2 . . . + 7z z
scalaires (signe +) ou les mésons scalaires (signe —). Le choix des K~ dépend du méson
étudié, voir tableau 2 ci-apres. Aussi, Z=2-G, pour les mésons axiaux et vectoriels.

2.3 Fonction de polarisation irréductible des mésons

Une fonction de polarisation IT, équation (1), peut étre comprise comme une boucle de deux
quarks. Le premier a une masse m, un potentiel chimique g et une quadri-impulsion

(i-®,,p). Concernant le second quark, sa quadri-impulsion est (i-a)n—i~vm, ﬁ—E), voir
figure 2 [13].

my, Hy

(i-@,.p)

—i- 11" (i-v,,.k)

I
)1
!

my, Hy
(i'a)n_i'vm’ﬁ_lg)

Figure 2. Représentation schématique de la fonction de polarisation des mésons.

Plus précisément, la figure 2 montre que le quark ¢, « va vers la droite », c'est-a-dire vers le
futur. Par conséquent, il doit €tre interprété comme un « vrai » quark, alors que le second
quark « va vers la gauche », c'est-a-dire vers le passé. Ce dernier est en fait un antiquark selon
le point de vue de Feynman. Donc, il est noté comme g,, et nous écrivons la fonction de

polarisation comme II_ - . La quadri-impulsion de la boucle est (i v .k ) . Le terme I dans la
192 m

figure 2 représente le type d’interaction a chaque extrémité de la boucle, c'est-a-dire a chaque
vertex. Quatre types d’interaction sont considérés ; chacune d’elle correspond a une
« famille » de mésons, comme indiqué dans le tableau 1 [19].
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Type de? n,lé,son Valeurde T’ Mésons correspondants
considéré
pseudo-scalaire (P) iy pion, kaon, 7,5’
scalaire (S) 1 ay, Ky > fo fo
vectoriel (V) a p.K ¢
axial (A) Y iy a. Ky fio fy

Tableau 1. Valeurs de la matrice I', suivant les mésons étudiés.

L’expression générale de la fonction de polarisation des mésons s’écrit comme [11, 13] :

(i~vm,lg):NC%~ZJ((213l;3 Tr(i-sh(i-@,.p) T+i-8" (i-@,~i-v,.p-k) T), (20)
n T

. T
! Hfiﬁz

ou s/ ( /p/ ) est le propagateur d’un quark de saveur f, comme défini équations (18, 19) pour

les modeles NJL et PNJL. Dans le chapitre précédent, nous avons vu que I’inclusion d’une
boucle de Polyakov conduit a d’importantes modifications des équations a résoudre pour
trouver les masses effectives des quarks. Cependant, comme indiqué dans [22, 23], les
adaptations concernant les équations des mésons consistent a remplacer les distributions de
Fermi-Dirac classiques par les distributions modifiées, équation (41) du chapitre 2. En fait,
dans les calculs numériques, ces distributions sont employées via les fonctions génériques A
et B,, afin d’estimer (16, 17) et la fonction de polarisation (20). Des détails complémentaires

concernant ces aspects sont proposés dans 1’annexe D.

Dans (20), la fréquence de Matsubara i-@, du quark / est impaire, parce que le quark est un
fermion. Cette remarque est aussi valide pour le quark 2, dont la fréquence i-@, —i-v,, est
également impaire. La « somme » de ces deux fréquences nous donne la fréquence de
Matsubara i-v,, de la fonction de polarisation. Elle représente aussi la fréquence du méson
étudié. La fréquence i-v,, est de type bosonique : la somme de deux nombres impairs donne
un nombre pair, et bien slir un méson est un boson.

2.4 Détail des équations pour chaque méson

Pour tous les mésons cités dans le tableau 2, I’équation (4) est écrite sous la forme :
2C

T1—2c-fm

1)

La quantité M est appelée matrice de diffusion, comme dans [9, 13]. Elle correspond a la
matrice de transition T vue précédemment. Aussi, c’est le propagateur d’un méson dans les
modeles (P)NJL. Le facteur f ajouté dans (21) est un facteur de saveur. Sa valeur est de 2 pour
tous les mésons cités dans le tableau 2. Plus précis€ément, nous avons J2 2 chaque vertex,
comme expliqué dans 1’annexe C. Le choix de C et IT dépend du méson étudié¢, comme
détaillé dans le tableau.
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méson C I1 méson C I1

g K" ;" ag Ky ;"

" K" HuJP ag’ Ky HuJS
pseudo K~ Ky m,;" scalaire Ky Ky n,;°
scalaire K+ Kyt .’ Kot Ky~ I,;°

K’ Ko " KSO Koo m,°

K’ K66+ g i ESO Koo I ’

o Gy ;" a Gy ;"

P Gy ;" @’ Gy ;"

¢ Gy Hﬁv f1, Gy HﬁA

vectoriel K- Gy " axial K~ Gy 4
K™ Gy M, K Gy I,

K" Gy m," K G, m,A

K Gy ;" K/ Gy ;"

Tableau 2. C et IT pour chaque méson.
Pour ces mésons, I’équation (8) est réécrite sous la forme d’une expression scalaire [13, 15] :
1—4~C-H(k0,k)=0k0:m, s (22)

Les autres mésons SU (3), non présents dans le tableau 2 sont des mésons couplés. Ces

f
mésons sont z°,7,n" et leurs équivalents scalaires, vectoriels et axiaux, quand ils existent.

Cependant, quand la symétrie isospin est appliquée, 7z° est découplé de 7,7". Dans ce cas, le

propagateur de z° est identique de ceux de #°. Mais, 7,57 requierent quand méme un

traitement spécifique. Dans le paragraphe suivant, nous proposons de reproduire la méthode
exposée dans [13]. A la fin de ce chapitre, une étude complémentaire étend cette méthode au-
dela de la symétrie isospin.

2.5 Mésons 7-7" et f,— f, (avec la symétrie isospin)

Les mésons 7,7° sont couplés a cause d’un mélange des canaux d’isospin A° et A%.
L’amplitude de diffusion M est ici une matrice non diagonale. Elle est de la forme :

M M -1
M { 00 08}:2K+(1—2n”1<+) , (23)
Mg, Mgg
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avec :
2 P P 2\/E P P
& [Kgo Kog . - §~(2qu+nﬁ) N '(qu—nﬁ) (24)
= e - )
K3y Kgg 22 P P 2 p p
20 (o, ) 2 von

H% et I1% sont les fonctions de polarisation de mésons pseudo-scalaires, respectivement
pour une boucle de deux quarks g et de deux quarks s. Ici, I'utilisation de la symétrie isospin
permet d’établir que Kgjq=Kg, et Mg =Mg,. Pour les autres mésons, nous avons obtenu les

masses en cherchant les pdles de M. Cela revient ici & calculer M ', pour la diagonaliser, et
résoudre le systeme d’équations découplées, dans lesquelles les valeurs propres sont posées
égales a 0. Cela donne :

—
2det(K*) [B €]~ (23)
avec :
4 P P
A:Kg—gdet(lﬁ)-(znqq+Hﬁ)
42 (20)
B:—Kgg—Tdet(W)-(H%—Hg)
4 P P
Cng—Edet(KJr)-(qu+2Hs§)
Il vient :
-1 -1 _ _ _ )2 2
e 1 M, 0  avee M, =A+C—(A-C) +4B . 27)
4det(K+) 0 M,;'l M;,1:A+C+ (A_C)2+4B2

Nous avons « découplés » n et 7n’. Il nous reste a résoudre ces équations : si les particules
sont au repos, nous avons :

n

—0
M} (my,0)=0

M_l(mﬂ,()) 28)

Pour les mésons scalaires f, et f,, la méthode est strictement identique. Nous avons
seulement besoin de remplacer les fonctions de polarisation pseudo-scalaires par des
fonctions de polarisation scalaires et K* par K~ .
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3. Résultats pour les mésons pseudo-scalaires

3.1 Masses obtenues

L’évolution des masses des mésons pion, kaon, 1 et 7° en fonction de la température est

présentée dans la figure 3. A propos des courbes NJL, les données obtenues sont en accord
avec celles des références [9], comme avec celles de [13, 15] et [25-27]. Aussi, les données
PNJL produites vont dans le sens de celles trouvées dans la littérature associée [22, 23]. En
fait, nos résultats PNJL ressemblent plus a ceux a ceux de [23], comparés a ceux de [22], a
cause du choix du potentiel effectif, voir chapitre 2. Comme avec les autres résultats présentés
ci-apres utilisant la symétrie isospin, ces résultats ont été trouvés avec le jeu de parametres P1

[19]. Cela entraine une dégénérescence des mésons 7*, 7~ , 7° d’une part (courbe « pion »),
et des mésons K~ , K™, K°, K° d’autre part (courbe « kaon »).

Aussi, comme observé dans les références, ces mésons sont trouvés comme stables a
températures réduites, mis a part pour 7°. En effet, cette affirmation est confirmée par la

figure 4, dans laquelle nous avons représentés les largeurs de niveau des mésons. Comme
expliqué dans (11), la largeur de niveau est associée a la partie complexe des masses. Quand
la largeur de niveau est non nulle, cela révele que les mésons sont instables vis-a-vis de leur
désintégration en un quark et un antiquark. Quand la masse d’un méson est égale a la masse
de la paire quark/antiquark qui le constitue, cela correspond alors a la température connue
sous le nom de «température de Mott », ou de température critique. Cette température
marque la frontiere entre la stabilité et I’instabilit¢é du méson. Comme précisé dans la
littérature PNJL [22, 23], I'inclusion de la boucle de Polyakov induit une augmentation de
cette température critique, quel que soit le méson étudié. En ce qui concerne 7, il a été trouvé
que ce méson est instable, quelle que soit la température. De plus, nous notons que la courbe
associée a ce méson s’arréte brusquement, pour les deux modeles, correspondant a une
annulation de la largeur de niveau de cette particule. A ce moment la, les équations associées
a cette particule deviennent instables numériquement. Des résultats peuvent €tre obtenus pour
compléter la courbe, mais la convergence des équations devient non fiable. Méme si [13]
évoque une manifestation du manque de confinement, il peut étre observé que le modele
PNJL ne modifie pas le comportement de ce méson.

Dans la figure 5, les masses des mésons pseudo-scalaires sont étudiées, a température nulle,
en fonction de la densité baryonique. Comme expliqué dans le chapitre précédent, les modeles
NJL et PNJL coincident a température nulle, quelle que soit la densité. C’est pourquoi nous
n’avons pas spécifié si nos résultats ont été obtenus avec le modele NJL ou PNJL. Une telle
étude est effectuée par exemple dans [19] (partie gauche de la figure), méme si cette référence
ne mentionne pas la levée de dégénérescence partielle observée pour les kaons. Ce
phénomene est visible sur la partie gauche de la figure 5 via les deux courbes associées avec

. P . . , . .
les kaons. En fait, IT ;" est invariant par échange de la paire quark/antiquark (par exemple
ud < dir ), méme 2 densités baryoniques non nulles. Cependant, HS;]P (correspondant a K~

eta K%) n’est égal & HqEP (pour K* et K°) que lorsque 4, =0, c'est-a-dire quand pgz =0, la
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densité d’étrangeté étant fixée a zéro. A densités baryoniques non nulles, H@P #I1 qu , et cela

conduit a la séparation observée : les kaons K™ et K° forment la branche K™, alors que K~
et K constituent la branche K~ .

Modéle NJL Modele PNJL
1200 . . - 1200 : : .
1000
%‘ % 800
s kaon s
) o 600
(] (O]
(/)] )]
(7] ]
© ©
s 400} S 400
200} pion 200 pion
0 i i i ) 0 i i i ‘ ) )
0 100 200 300 400 0 100 200 300 400
T (MeV) T (MeV)

Figure 3. Masses des mésons pseudo-scalaires en fonction de la température, a densité nulle.
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Figure 4. Largeurs de niveau des mésons pseudo-scalaires selon la température, a densité nulle.

Aussi, dans la figure 5, mis a part pour 7’, seuls les kaons K~ présentent une transition
stable/instable en fonction de la densité. Elle est matérialisée dans la partie droite de la
figure 5 par le fait que les largeurs de niveau de ces kaons sont nulles jusqu’a pgz =3.8p,.

Pour les pions, kaons K* et 7, leurs masses augmentent avec la densité baryonique,
deviennent plus fortes que la masse des quarks/antiquarks qui les composent, mais leurs



Chapitre 3. Les mésons 93

largeurs de niveau restent nulles. Ce comportement apparemment étrange est en fait expliqué
par la figure 6, dans laquelle un « diagramme de phase NJL » est construit pour les mésons
étudiés, nommé a cette occasion « diagramme de stabilité/instabilité ». A densité baryonique
nulle, le long de I’axe des températures, les températures critiques trouvées dans la partie
gauche de la figure 3 peuvent étre observées, quand les courbes coupent 1’axe des
températures. A 1’opposé, le long de 1’axe des densités baryoniques, seule la courbe des kaons

K~ coupe cet axe. Les autres courbes divergent. Pour ces dernieres, cela suggere une
transition « douce » entre ces phases de stabilité et d’instabilité, c'est-a-dire a une transition de
type cross-over. Pour la figure 6, ce diagramme a été effectué dans le cadre du modele NJL,
mais pas dans le PNJL. Cependant, a I’aide des résultats obtenus dans les figures 4 et 5, nous
devinons que I’inclusion d’une boucle de Polyakov devrait déformer les graphes pour étendre
la zone de stabilité de chaque méson vers les hautes températures.

1200 T T T T 300

1000 1 250

50 k%
00 1 2 3 4 5
Ps/P,

Figure 5. Masses et largeurs de niveau des mésons pseudo-scalaires en fonction de la densité
baryonique, pour 7 =0.

Le comportement des mésons a été étudié a des densités baryoniques négatives. Les résultats
ont été exposés dans la figure 7a, c'est-a-dire la partie gauche de la figure 7. Comme expliqué
dans le chapitre précédent, des densités baryoniques négatives sont synonymes que
I’antimatiere domine la matiere. Les résultats obtenus confirment ce que nous pouvions
prévoir, c'est-a-dire que I’axe pgz =0 est un axe de symétrie des courbes, sauf pour les kaons.

Pour ces derniers, le passage de densités positives a négatives échange les courbes K* et K.
Mais, la partie négative de K~ est symétrique par rapport a la partie positive de K, et
inversement. Une application possible des résultats de la figure est de nous permettre de
vérifier la validité des calculs numériques. Une asymétrie ou une discontinuité des courbes,
notamment a densité nulle, aurait ét€ une sérieuse anomalie.

Dans la figure 7b, la dépendance des masses des mésons vis-a-vis de leurs quantités de
mouvement est considérée. Plus précisément, dans ce cas, I’équation (10) est utilisée, au lieu
de (9). II a été trouvé que la tendance générale est que la masse d’un méson augmente quand
sa quantité de mouvement croit. Dans la pratique, cette dépendance est systématiquement
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omise dans les travaux (P)NJL. Comme observé sur la figure, cette approximation est
justifiable a quantités de mouvement modérées.
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Figure 6. Diagramme de stabilité/instabilité avec le modele NJL pour les mésons pseudo-scalaires; ces

particules sont stables « a I'intérieur de la courbe » (dans la zone contenant le point (0;0) ) et instables

a I’extérieur.
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Figure 7a. (partie gauche) Masses des mésons pseudo-scalaires selon la densité baryonique.
Figure 7b. (partie droite) Influence de la quantité de mouvement sur les masses des mésons.
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3.2 Constantes de couplage

Une constante de couplage est une quantité décrivant le couplage d’'un méson avec le quark et
I’antiquark qui le constituent, au niveau d’un vertex [11]. Cette notion est tres utilisée lors de

calculs de sections efficaces, comme au chapitre 6 de cette thése. Les V™ et V* introduits
équation (7) sont des constantes de couplage. Dans la littérature, cette quantité est
habituellement notée g. En nous inspirant de [13], nous reprenons les expressions du

propagateur, équations (7) et (4, 21). Ensuite, proche du péle, c'est-a-dire pour k> — m?, nous
avons la relation :

2K =g (29)
— 2 2 b
1-4K -1 (ko k) s Kot
a partir de laquelle nous en déduisons :
1-4K T (ky.k ) K2 —m?
= 3 (30)
2K P —8 K2=m?
En dérivant par rapport a k, il vient :
oI ( &y, k
. (0-k) <2k 31)
ok —g?
K2=m? 8 k*=m?
2_ 2 Lo s oo JKo=m
Imposer k“ =m~ est équivalent a écrire eb
Donc, pour un méson au repos, on a :
(32)

L’équation (32) est toujours valide dans le modele PNJL. Seule la fonction de boucle IT doit
étre adaptée, au niveau des distributions de Fermi-Dirac, comme expliqué précédemment.
Cette formule est applicable aux kaons et aux pions, c'est-a-dire aux mésons pseudo-scalaires
décrits par la relation (21). Pour les particules 7 et 7°, la méthode est plus délicate, a cause
du couplage entre ces deux particules. La méthode a appliquer est détaillée dans [11, 13].
Nous avons vu précédemment que la masse est un nombre complexe quand la particule
devient instable. Cette remarque est aussi valide pour la fonction de polarisation IT.
Clairement, g est un nombre réel quand la particule est stable, sinon elle est complexe. Mais,

dans la pratique, seul le module carré | g|2 est utilis€ dans les calculs. En conséquence, le

choix arbitraire du signe de g que nous avons fait dans (32), devant la racine carrée, n’est pas
important.
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Les figures 8 et 9 montrent le comportement du module des constantes de couplage des
mésons pseudo-scalaires z,K,7n . Dans la figure 8, nous avons représenté leur dépendance vis-
a-vis de la température. Les résultats li€s au modele NJL sont en accord avec des références
comme [13], et celles associées au modele PNJL confirment qualitativement ce qui est montré
dans [23]. Pour les deux modeles, nous confirmons que 1’évolution des constantes de
couplage est réduite a basses températures. Mais, une chute brutale des valeurs trouvées est
observée pour toutes les courbes étudiées. En fait, la température pour laquelle g —0

correspond aux températures critiques des mésons étudiés. A cette température, le méson a
une énergie de liaison nulle. Autrement dit, la masse du méson est égale a la masse de la paire
quark-antiquark qui le constitue. Nous avons montré dans la figure 3 que I’inclusion de la
boucle de Polyakov conduit a une augmentation de la température critique. Donc, cela
explique dans la figure 8 le décalage observé des courbes si on compare les résultats du
modele PNJL avec ceux de NJL. Apres la température critique, les masses des mésons, et par
extension les constantes de couplage, deviennent complexes, car les mésons sont maintenant

instables. Mis a part pour ‘gn_ﬁ

, cela correspond alors a un accroissement des valeurs

trouvées.
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Figure 8. Constantes de couplage des mésons pseudo-scalaires en fonction de la température.

La figure 9 montre I’évolution des constantes de couplage en fonction de la densité
baryonique, a température nulle. Un tel travail a été proposé€ par exemple dans [19, 27], mais

la premiere référence n’inclut pas les résultats associés au méson 7 et a la courbe K~ . En

fait, comme dans la figure 5, la courbe K~ est la seule qui présente le méme comportement
que celui observé selon la température, c'est-a-dire une décroissance brutale g —0.

N

Concernant les autres courbes, les variations observées peuvent suggérer a une transition
douce entre leurs régimes de stabilité/instabilité, comme proposé précédemment.
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Figure 9. Constantes de couplage des mésons pseudo-scalaires en fonction de la densité baryonique.

3.3 Angle de mélange 777’

Le modele de Nambu et Jona-Lasinio, et par extension le modele PNJL, permettent de
calculer I’angle de mélange -7 [8, 25, 26, 28]. Cet angle est intrinséque pour ces modeles.
En d’autres termes, il ne requiert pas I’inclusion de données additionnelles dans le modele.
Comme expliqué dans ’annexe C, cet angle est utilisé pour estimer les facteurs de saveur
mettant en jeu 7 ou 7. La méthode utilisée pour estimer 1’angle de mélange € est détaillée
dans [11]. En utilisant les équations (23, 24), cela consiste a prendre en compte la quantité :

M
p = (33)
MOO kzzmﬂ2
L’angle 6 estli€ a a, par la relation:
1
tan(0)=—— . (34)
@

Nos résultats numériques sont présentés dans la figure 10. Pour chacun d’eux, nous notons

que méme si My, My, et éventuellement m, sont complexes, I’angle de mélange reste

toujours un nombre réel. Par ailleurs, méme si la masse de 7’ n’est pas accessible pour toutes
les températures, figure 3, cela ne nous empéche pas de trouver des valeurs pour €. Cela est
di au fait que ladite masse n’intervient pas dans la détermination de My, et M,. En outre,

dans q,,, nous utilisons la masse de 7 ...

77’
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Figure 10. Angle de mélange en fonction de la température et de la densité baryonique.

La partie gauche de la figure étudie 1’évolution de I’angle en fonction de la température, a
densité baryonique nulle. Les courbes présentées sont assez proches de celles publiées
dans [23]. Par rapport a cette référence, nous avons utilisé le méme potentiel effectif &/ (pour
la courbe PNJL), mais un jeu de parametres différent (P1, défini tableau 1 du chapitre 2).
Dans la figure 3, nous remarquons que la température critique du méson 7 est égale a
T =216 MeV avec le modele NJL, et 7 =267 MeV avec le modele PNJL. Pour chaque courbe
de la partie gauche de la figure 10, ces températures correspondent a une forte décroissance
des valeurs trouvées. Dans la partie droite de la figure, I’évolution de I’angle de mélange est
tracée en fonction de la densité baryonique. Puisque ces calculs ont été effectués a
température nulle, les valeurs trouvées avec les modeles NJL et PNJL coincident. Nous
observons que I’angle de mélange décroit jusqu’a une densité baryonique proche de 4p,, et
ensuite augmente pour des densités plus fortes. Le comportement de cette courbe, observé
aussi dans [26], rappelle celui trouvé avec ‘gﬂ_ﬁ

4. Résultats obtenus pour les autres mésons

4.1 Mésons scalaires

Comme les mésons pseudo-scalaires, les mésons scalaires sont particulierement étudiés dans
la littérature (P)NJL. A cette occasion, nous souhaitons préciser que le nommage de ces
mésons présente quelques différences dans les publications citées. Ainsi, le méson f; [9, 30]

correspond a o dans [13, 14, 16, 22, 23]. De la méme maniere, g, [9, 30] est nommé o,
dans [13, 14, 16]. Kg [30] est équivalent a o dans [13, 14, 16] ou x dans [23]. Finalement,

fo' [9] correspond a ¢’ dans [13, 14, 16] ou f, dans [23, 30], c'est-a-dire une résonance de
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fo, ou f, dans [31]. Comme expliqué dans la partie 2, les équations & résoudre pour les
mésons scalaires et pseudo-scalaires sont tres proches [13]. Les deux utilisent le terme de

‘t Hooft K - [det(l/?(1+ ¥5 )W) +det (7 (1- s )l//)] utilisé dans (14).

Nos résultats sont exposés figures 11 a 13. Tout d’abord, dans la figure 11, nous nous
focalisons sur une étude des masses des mésons scalaires en fonction de la température, a
densité nulle. Les données produites avec le modele NJL peuvent étre comparées avec celles
de [13, 16], et les résultats PNJL avec [22, 23]. Dans I’ensemble, 1’aspect des courbes est en
accord avec celui des publications citées. Nous confirmons aussi la distorsion des courbes
induites pour I’inclusion de la boucle de Polyakov. Aussi, grace a la figure 12, nous notons
que f, est le seul méson scalaire trouvé comme stable a températures réduites. En effet, sa

largeur de niveau est nulle jusqu’a T =200MeV dans le modele NJL, et jusqu’a
T =260 MeV avec le modele PNJL. Les autres mésons scalaires sont instables, quelle que soit
la température. En outre, malgré le comportement de 7, le méson f, présente une évolution

tout a fait conforme par rapport aux autres mésons scalaires, c'est-a-dire que la courbe ne
s’arréte pas brusquement, comme avec 7’.

Modéle NJL Modéle PNJL
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Figure 11. Masses des mésons scalaires en fonction de la température.

Dans la figure 13, les mésons sont étudiés en fonction de la densité baryonique, a température
nulle. La partie gauche se focalise sur les masses. Ce graphe peut étre comparé a celui publié
dans [9]. Méme si I’approche et le jeu de parametres utilisées ne sont pas les mémes, les

résultats sont similaires. Mais, comparé a cette référence, nous avons rajouté le méson KS .
Comme avec leurs « partenaires » pseudo-scalaires, la courbe se divise en deux parties, K,
et K, . Les explications de ce comportement sont strictement les mémes que celles données
pour les mésons pseudo-scalaires. Aussi, comme avec les mésons a, et K,", un point

anguleux est trouvé sur les courbes, pour une densité proche de 0.5p,, c'est-a-dire quand les

largeurs de niveau chutent a zéro. Ce comportement est un artéfact causé par une
approximation numérique expliqué dans [15] et dans la partie 3 de I’annexe D.
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Figure 12. Largeurs de niveau des mésons scalaires en fonction de la température.
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Figure 13. Masses et largeurs de niveau des mésons scalaires en fonction de la densité baryonique.

D’autre part, comme dans [9], nous pouvons remarquer que le pion et le f, deviennent

dégénérés quand la densité baryonique est assez forte, figures 5 et 13. Comme indiqué dans
cette référence, cette dégénérescence a lieu quand la symétrie chirale est restaurée pour les
quarks légers. Cet argument peut s’expliquer en disant que quand cette symétrie est restaurée,
la valeur du condensat de quarks 1égers est fortement réduite (apparaissant dans (16, 17) via le

terme i ~Tr(Sf ) ), tout comme les masses effectives des quarks 1égers, apparaissant quant a

elles dans les fonctions de polarisation. En conséquence, certains termes associés a ces
quantités peuvent devenir négligeables dans les équations des mésons, et permettre cette
dégénérescence. En fait, ce phénomene est aussi observé selon la température, figure 3, 11 et
4, 12. Cela concerne aussi d’autres mésons. En effet, nous observons cette dégénérescence a
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2, .« , *, — *_ A .
hautes températures/densités avec a, -7, K '-K," et K —K, , méme si la convergence est

moins rapide pour les kaons. Evidemment, nos remarques concernent le modele NJL, mais
aussi PNJL.

4.2 Mésons vectoriels

Les mésons vectoriels ont été étudiés dans le cadre du modele NJL, par exemple dans des
papiers comme [3, 7, 8], mais des études de ces mésons en fonction de la température et de la
densité sont relativement rares dans ce modele. Cette remarque est aussi valable pour le
modele PNJL. Nos résultats sont présentés figures 14 a 16. Sans surprise, nous concluons
avec la figure 14 que I’inclusion d’une boucle de Polyakov conduit au décalage, déja observé,
des courbes PNJL vers les hautes températures. Afin de ne pas surcharger notre description,
les graphes des largeurs de niveau ne sont pas inclus dans ce document. Mais, sans lesdites
largeurs de niveau, nous pouvons indiquer que les mésons vectoriels sont stables dans les
modeles (P)NJL a températures et densités baryoniques réduites. Ce comportement rappelle
celui observé pour les mésons pseudo-scalaires, sauf pour 7”.

Modéle NJL Modéle PNJL
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Figure 14. Masses des mésons vectoriels en fonction de la température.

En revanche, la dépendance vis-a-vis de la température est différente : les masses des mésons
vectoriels décroissent de maniere continue jusqu’a leurs températures de Mott. Par ailleurs,
dans le cadre de la symétrie isospin, les mésons p et @ sont dégénérés, quelles que soient la

température et la densité baryonique. Nous rappelons que ces mésons sont respectivement les
équivalents des mésons pseudo-scalaires 7 et 7. En fait, le terme de ‘t Hooft présenté

dans (14) agit seulement sur les mésons scalaires et pseudo-scalaires, mais pas sur les mésons
vectoriels. En conséquence, les termes K, " utilisés pour modéliser les mésons pseudo-
scalaires sont remplacés ici par la constante G, voir tableau 2. Cela conduit au

comportement observé. Une autre différence est que les mésons vectoriels ont globalement
des températures critiques plus basses comparés a celles des mésons pseudo-scalaires,
figure 14. Cette remarque est aussi valide pour les densités critiques, figure 15. En
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conséquence, dans le diagramme exposé figure 16, les zones pour lesquelles les mésons
vectoriels sont stables sont plus réduites que celles trouvées figure 6.
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Figure 16. Diagramme de stabilité/instabilité des mésons vectoriels, avec le modele NJL.

Mais, des similarités peuvent étre trouvées entre les figures 6 et 16. Notamment, les courbes
sz zZ * . sz N 2z 2z .
associées aux mésons p,w,K * divergent vers les hautes densités a températures réduites,
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sans atteindre I’axe des densités sur la figure 6. Ce comportement, associé a une transition
« douce », a aussi été observé avec les mésons z,7,K* dans la figure 16. En revanche, le

2 H_ . — < . . P . . o .
méson K ~ agit comme K , c'est-a-dire qu’il semble présenter une transition visible selon la
densité.

4.3 Mésons axiaux

Nos résultats numériques, exposés figures 17 et 18, montrent que tous les mésons axiaux
étudiés sont instables a température et densité nulles, sans exception. Leur comportement
rappelle celui des mésons scalaires. Cependant, comme pour les mésons vectoriels, le terme
de ‘t Hooft est aussi absent pour les mésons axiaux. Ces derniers sont clairement les mésons

les plus massifs modélisés dans ce travail. En effet, le méson £ a une masse comparable a
b : . z z ’ . *
celle d’un baryon lourd. Aussi, I’artéfact observé pour les mésons scalaires a, et K," est

aussi présent pour les mésons g, — f; et K;*. Comme dans la figure 13, cet artéfact est visible
sur la figure 18, et se manifeste par des points anguleux, localisés a 1.8p, pour a, — f; et

2.4p, pour K,*.
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Figure 17. Masses des mésons axiaux en fonction de la température.

D’autre part, comme avec les mésons pseudo-scalaires et scalaires, nous observons aussi que
certains mésons vectoriels et axiaux deviennent dégénérés a hautes températures/densités.

Clairement, cela concerne p,w avec a;,f; d’une part, K" —K,;* et K~ —K,  d’autre part,
figures 14, 17 et 15, 18. En fait, la seule différence entre les équations des mésons vectoriels
et axiaux vient de leurs fonctions de polarisation respectives, via les termes m,* + m,” * 4mm, ,
annexe D. On s’attend donc a ce que ces derniers deviennent négligeables a hautes 7, p, , par

rapport aux autres termes des fonctions de polarisation, si au moins un des deux quarks mis en
jeu est un quark léger.
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Figure 18. Masses des mésons axiaux en fonction de la densité baryonique.

5. Au-dela de la symétrie isospin

La symétrie isospin est tres employée dans le cadre de cette theése, comme dans la littérature
liée aux modeles (P)NJL, voir [7] par exemple. Puisque les masses des quarks u et d sont tres
proches comparées a celle du quark étrange, cette approximation est pleinement justifiée.
Comme indiqué au chapitre 2, elle mene a des simplifications des calculs. Par ailleurs, les
résultats obtenus sont satisfaisants. Toutefois, dans certaines conditions, cette approximation

n’est pas valable, comme par exemple quand g, (respectivement p,, ) est tres différent de u,
(respectivement p, ). Cette situation se rencontre dans des systetmes physiques comme des
étoiles a neutrons ou simplement avec des noyaux lourds [19]. Ces derniers sont le
« substrat » de base pour étudier le plasma de quarks et de gluons, dans des collisions d’ions
lourds. Dans cet exemple, le rapport entre les neutrons et protons, proche de 1.5, crée une
asymétrie. Dans cette partie, nous n’avons provisoirement pas utilisé 1’approximation isospin,
afin d’étudier les conséquences de cela sur nos résultats. Bien entendu, 1’abandon de la
symétrie isospin induit des complications dans certains calculs. Notamment, nous proposons
ci-apres de reconsidérer ce qui a été fait dans le paragraphe 2.5 et de montrer les
modifications a effectuer.

5.1 Traitement des mésons 7°, et 7” dans le cas ou m, #m,

Le couplage 7#°—n—n" fait que la matrice de diffusion M associée a ces trois particules est
écrite sous la forme d’une matrice 3x3 :
My Moz Mg »
M=| My, My My |=2K*(1-201°K*) (35)
Mgy Mgy Mgg
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avec :
Koo Kiz Kog
K" = K;O K;I;B K3+8 (36)
Ky Kg K
et:
Mg Mgy Mg
(37)

P P P P
IT" =| I3, H33 H38

P P P
HSO H83 HSS

Si I’approximation isospin n’est pas utilisée, la matrice K* ne peut pas étre simplifiée. Dans
le cas général, tous ces termes sont non nuls. La propriété suivante est par contre toujours
vérifiée :
+ _ ot + _ ot + _ ot
K30 =Koz, Kgo=Kpg et Kg3=Ksg - (38)

Donc la matrice K* est symétrique. Cette propriété est aussi vérifiée par la matrice I1”, dont
nous avons explicité chaque terme ci-apres, comme par exemple dans [25] :

1
H§O=§-(H5M+H§d+nfs) ﬂoxﬂ():%- 1
1
2 2 !
Mg = 5'(1155—1153) Agx A3 = 31 7!
NG 4l
H(’)’g:?-(njﬂnjg—zng) Aoxdg ===+ 1
)
- 39
| (39)
I =T/ + 11/ AixAy=| 1
B 5|
Mfy === (117, —110;) AyxAg ="l —]
3 3
1
p_L1 (P P P 1
nggzg-(nuﬁndﬁmﬁ) Agxdg=—r| 1
4

Les matrices sur la partie droite de (39) sont utilisées afin d’expliquer les facteurs associés
aux termes I17_, Hdpg et 112 . Ces derniers désignent les fonctions de polarisation des mésons

pseudo-scalaires. Par analogie avec le paragraphe 2.5, 'inverse de la matrice M est écrite
formellement comme :
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DA B

mi=——1 __lu D c|, (40)
2det(K*) | g ¢ D,

ol :
A=Ky Kfy— Koy Kiy =2 TI{; - det (K"
B=Kg- Kjy— Koy K3 = 2Ty -det (K™
C =Ky Koy —Kgo - K3y —2- Ty -det (K ™)
Dl=K;3'Kgs_(K;S)z_z'ngo'det(KJr) o
D2=Kgo-1(g8—(1(58)2—2~n§3-det(K+)
D3=Kgo-K3+3—(Kg3)2—2-r1§8-det(K+)

et:

det(K™) = Ko K Ki — Ko (K )~ K oK) Ky (KGa) +2KGs Ky K3y . (42)

Nous devons maintenant trouver les valeurs propres. Elles correspondent aux propagateurs

des mésons (une valeur propre par propagateur). Donc, nous diagonalisons la matrice M ™',
c'est-a-dire nous trouvons les racines de son polyndme caractéristique. De manicre
symbolique, celui-ci s’écrit comme :

| S 7

a
p : (43)
+(2-4-B-C-A*>.D;-B* D, -C* D, +D,-D, - Dy

Les racines sont :

2 2
. x/3 3 9 x/3 3 9 3
M,  =|- + +— [+ + i
0 12 x5 3 6 x5 2
2 2
. x/3 3 9) af | x73 3 9)\3
M, = + +— |- + —_i (44)
12 x5 3 6 x5 2
2
1 6(_ﬁ_aJ
M,I_X 3_ 3 9 +g
7 6 P 3
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avec :
X=36-8-a+108-5+8-a° )
+124-12- B —3- B2 a? +54-B-at- 5 +81. 82 +12-8- o
11 suffit alors de résoudre, dans le cas général :
_ - \2 -
M, 1( my” + (kg ) ,k%]:o
-1 2 (r V7 lo 46
M, ( my? +(ky) ,kﬂj_o . (46)
1 2 (r
M, ( my +( 77) ’knJZO

Les k sont les quantités de mouvement des particules, et les m sont les masses recherchées.
Bien entendu, nous pouvons choisir d’étudier les particules au repos, c'est-a-dire pour k =0,
comme nous 1’avons précédemment fait dans ce chapitre. Pour conclure ce calcul, il peut étre
utile de voir ce que nous obtenons si nous prenons maintenant m, =m,. En d’autres termes,
nous essayons de retrouver les résultats obtenus avec 1’approximation isospin a partir des
formules que nous venons d’établir. Dans ce cas, il est facile de vérifier que :

P P
Ky =K3g=0 et Ilpz=TI%=0 . 47)
En reprenant I’équation (40), nous avons :
D, A B 48)
2det(K ) B ¢ D
= + : 0 K3, - det” % — 2114, 0
LES (—Ks — 2115 - det’) 0 K3 - (Kgy — 201 -det) |
avec :
2
det(K* )= K3, -(Kgo-Kgg ~(KG) j:K;S det’ . (49)
Ce qui est équivalent a :
Ky — 211 -det’  —Kif — 2117, - det’ . (50)
2det’ 2det’ |
2det’ 2det’ 0 [M,, —1]
P 0
0 0 M
i 2K3;
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Nous retrouvons les équations décrites dans [13], ou I’approximation isospin était employée.
La particule 7z, y est découplée de 77—7". Son propagateur est alors :

2- K3

C1-2-K5 -1k D

7o

. . A e . 0 ’
Tout ce raisonnement est bien siir identique pour g, et f,— f -

5.2 Résultats obtenus, discussion

Le tableau 3 rassemble les masses et largeurs de niveau des mésons étudiés a température et
densité nulles. Dans ce tableau, la colonne P1 est associée a nos résultats trouvés avec ce jeu
de parametres, c'est-a-dire celui utilisé pour les graphes exposés dans ce chapitre. La colonne
EB concerne le jeu de parametres vu au chapitre 2 qui n’utilise pas la symétrie isospin. La
colonne « valeurs expérimentales » a été constituée grace aux valeurs données dans [29, 30].

Cependant, les valeurs liées a fo' et fl' de cette colonne ont été estimées grace a [31]. En fait,

cette référence nous fournit les valeurs utilisées dans le cadre des modeles QMD/URQMD.
Ces deux modeles considerent la symétrie isospin. Les données associées aux mésons sont
reproduites dans I’annexe A. Elles constituent une autre possibilit¢ de comparaison,
notamment avec nos données qui utilisent la symétrie isospin. En fait, méme si des
différences peuvent €tre mentionnées entre nos données P1 et celles de la littérature (données
expérimentales, [31]), les valeurs restent dans 1’ensemble du bon ordre de grandeur en ce qui
concerne les masses. Par ailleurs, I’accord avec les publications liées aux modeles (P)NJL
[7, 13, 16, 19, 22, 23, 25-27] est aussi correct, conscient que le choix du jeu de parametres
utilisé a une grande influence sur les valeurs trouvées. En revanche, concernant les largeurs de
niveau, nous observons des dissemblances par rapport aux données expérimentales. Mais,
nous rappelons que dans le cadre de notre travail, la notion de largeur de niveau ou
d’instabilité est associée a la désintégration du méson en une paire quark/antiquark, alors que
dans les données expérimentales, 1’instabilit¢é d’'un méson correspond notamment en sa
désintégration en un méson plus 1éger.

Concernant les données de la colonne EB, qui ont d’ailleurs motivées les travaux effectués
dans cette partie, ’accord avec les données expérimentales est tres bon. Dans la pratique,
méme si nous avons utilisé les masses des pions et des kaons pour calibrer les valeurs de notre
jeu de parametre EB (notamment les masses nues des quarks), nous pouvons souligner la
précision remarquable obtenue avec les mésons pseudo-scalaires. Concernant les mésons

7°,1.17", nous rappelons que les résultats EB ont été obtenus en appliquant la méthode décrite
au paragraphe 5.1. Ces résultats sont également corrects, méme si nous nous attendions a une
différence de masse plus grande entre celle de z° et celle des pions 7~ . D’autre part, de bons
résultats sont aussi observables avec les mésons vectoriels. En fait, en général, les particules
trouvées stables dans le modele (typiquement les mésons pseudo-scalaires et vectoriels, mis a
part 17”) ont des masses plus proches des données expérimentales que celles qui sont instables,

c'est-a-dire les mésons scalaires et axiaux, sauf f,.



Chapitre 3. Les mésons 109

Jeu de parametres | Jeu de parametres Valeurs
P1 EB expérimentales
mésons masses | largeurs | masses | largeurs | masses | largeurs
zt ud ,du 135.96 0 139.46 0 139.57 0
70 mix(uit,dd) | 13596 | 0 13938 | 0 134.98 0
pseudo n mix(uit,dd ,s5) | 557.13 0 517.86 0 547.85 | 0.00118
scalaire n’ | mix(uit,dd,ss) | 1012.16 | 158.74 | 955.92 | 15233 | 957.78 | 0.194
Kt s, SI 548.50 0 493.94 0 493.677 0
K°/K° ds,sd 548.50 0 497.94 0 497.614 0
ay* ud ,dit 979.48 | 193.73 | 970.16 | 187.84 | 984.7 | 50-100
a,’ mix(uit,dd) | 979.48 | 193.73 | 970.17 | 187.88 | 984.7 | 50-100
o fo mix(uﬁ,dcz s5) | 84313 | 0 834.07 | 0 980 | 40-100
7y mix(uit,dd,ss) | 1353.34 | 168.15 | 1274.05 | 161.45 | 1370 200
K s, S’ 1178.14 | 199.28 | 1132.89 | 191.88 | 1429 294
K /Ky ds,sd 1178.14 | 199.28 | 1135.99 | 191.94 | 1429 294
o ud ,di 746.09 0 764.12 0 775.5 146.2
o’ mix(ui,dd) | 746.09 | 0 | 764.08 | 0 775.5 | 146.2
vectoriel ® mix(uit,dd,s5) | 74609 | 0 | 76408 | 0 782.65 | 8.49
¢ 55 1061.18 | 0 | 102579 | 0 | 1019.455| 4.26
K us , S’ 912.25 0 899.96 0 891.66 | 50.8
K[k ds,sd 912.25 0 902.12 0 896.10 | 50.7
a* ud ,di 1171.06 | 434.01 | 1173.77 | 478.50 | 1230 265000‘
a’ mix(uit,dd) | 1171.06 | 434.01 | 1173.78 | 478.54 | 1230 265000‘
axial fi mix(uit,dd,ss) | 1171.06 | 434.01 | 1173.78 | 478.54 | 1281.8 | 243
£ 55 1607.45 | 487.39 | 1531.55 | 522.49 | 1512 350
K* us , sit 1387.78 | 46439 | 1349.69 | 502.58 | 1273 90
K/ K" ds,sd 1387.78 | 464.39 | 1353.21 | 503.04 | 1273 90

Tableau 3. Masses des mésons a température et densité nulles.

Cependant, concernant la validité de nos résultats, nous devrions avoir un regard critique sur
le traitement de certains mésons. Pour les mésons pseudo-scalaires, il n’y a pas de vrais
défauts a signaler, sauf bien siir pour 7’. Mais, en revanche, nous sommes conscients que les

fortes masses trouvées pour les mésons axiaux suggerent que nous soyons la potentiellement
proches des limites de validité de notre approche. Aussi, pour les mésons vectoriels et
scalaires, stricto sensu notre modélisation n’est pas complete, simplement parce que certaines
désintégrations importantes ne sont pas incluses dans notre description. Il est en effet bien
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connu que le méson vectoriel p a de fortes chances de se désintégrer en deux pions, plutot

qu’en une paire quark/antiquark. L’inclusion de ce processus de désintégrations d’un méson
en d’autres mésons pourrait conduire a des modifications des résultats, comme celles de la
figure 16. Mais, nous pouvons remarquer que dans le cadre de notre travail, ou dans des
papiers comme [13, 14, 17], les mésons scalaires et p sont pris en compte principalement

pour intervenir dans les calculs de sections efficaces, en tant que propagateurs.

6. Conclusion

Dans ce chapitre destiné a 1’étude des mésons, nous avons tout d’abord exposé la méthode
utilisée pour estimer numériquement les masses des mésons. Nous avons vu qu’il nous a été
possible d’inclure une grande variété de mésons dans notre modele, pour ensuite les étudier a
températures et/ou densités finies. Nous avons aussi calculé certaines données annexes,
comme les constantes de couplage ou I’angle de mélange entre 7 et 7”. La précision obtenue

est apparue tres prometteuse, en particulier quand nous n’avons pas utilisé la symétrie isospin.
Dans I’ensemble, nos résultats sont en accord avec ceux exposés dans la littérature.
Notamment, nous avons aussi confirmé I’effet de 1’inclusion d’une boucle de Polyakov sur
nos résultats, c'est-a-dire un décalage des valeurs vers des hautes températures. Cela a aussi
entrainé des masses quasi-constantes a températures réduites. Une partie des travaux décrits
dans ce chapitre ont déja été publiés dans les références citées. Mais, grace a certains aspects
de notre travail, comme les « diagrammes de phase », nous avons souligné des phénomenes
bien particuliers. Cela concerne notamment le comportement de certains mésons pseudo-
scalaires et vectoriels a température nulle et densités finies.

Nous verrons dans les prochains chapitres comment construire les autres particules que nous
utiliserons dans notre travail, c'est-a-dire les diquarks et les baryons. Dans ces chapitres, nous
remarquerons que le travail a effectuer sera fait selon une méthode similaire a celle utilisée
ici. Au-dela des mésons, nous avons donc vu une méthode générale pour modéliser des
particules composites. Cela justifie que nous ayons passé beaucoup de temps a décrire les
équations. Pour les autres particules, nous n’aurons qu’a reprendre la méthode, en adaptant
simplement lesdites équations.

/ /
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Chapitre 4

Les diquarks

Une partie de ce chapitre a été publiée dans J. Phys. G: Nucl. Part. Phys. 38 105003

1. Introduction

Dans les chapitres précédents, nous avons vu les possibilités offertes par les modeles (P)NJL,
afin de modéliser des quarks, et ensuite des mésons. L’étape suivante devrait tre maintenant
d’étudier les baryons avec ces deux modeles. Cependant, comme observé dans le chapitre 3,
les approches (P)NJL traitent facilement les particules composites via 1’utilisation de boucles.
Dans I’exemple des mésons, nous avons vu que ces particules étaient décrites comme des
boucles de quarks/antiquarks. Concernant les baryons, nous avons a traiter une association de
trois quarks. Les équations de Faddeev pourraient permettre de traiter des interactions a 3
corps [1, 2]. Elles ont déja été utilisées dans le cadre du modele NJL [3-5]. En fait, grace a la
représentation des équations de Faddeev proposée dans [6], une simplification de ces
équations peut €tre proposée. Elle consiste a considérer une interaction a deux corps entre
deux des quarks, et ensuite de considérer un état lié de ce groupe de deux particules avec le
troisieme quark. En d’autres termes, les interactions a trois corps sont négligées. Comme
montré dans [6], cette simplification est pleinement justifiable, parce que les interactions a
trois corps sont supposées €tre négligeables devant celles a deux corps. Plus précisément,
dans cette description, les interactions a deux corps s’exercant entre deux quarks amenent
naturellement a considérer les particules composites associées, c'est-a-dire les diquarks. En
conséquence, cette simplification propose de modéliser les baryons comme un état 1i€é formé
par un quark et un diquark, par exemple comme dans [7, 8]. Cela justifie ainsi I’étude des
diquarks. En outre, quand nous étudierons les réactions permettant la formation de baryons,
les diquarks vont intervenir. Il sera alors discuté leur rdle a cette occasion : propagateur dans
les réactions, intermédiaires réactionnels, les deux ? En effet, comme observé dans la
littérature, par exemple dans [9, 10], les diquarks semblent étre largement plus qu’une simple
astuce phénoménologique utilisée pour modéliser les baryons, comme expliqué dans [6].

Mais, dans le cadre du modele standard, nous avons vu au chapitre 1 que les diquarks sont des
particules colorées. En conséquence, ils ne peuvent pas €tre observés a 1’état libre. Cela
implique que nous ne disposons pas de données expérimentales, notamment concernant leurs
masses. Toutefois, des études théoriques ont concernées la modélisation de diquarks, comme
[11-14]. IIs fournissent donc des données relatives aux masses des diquarks. Certaines
approches ont été effectuées avec le modele NJL, comme par exemple [15-17], ou [18, 19]
dans le cadre de la supraconductivité de couleur, mais pas encore en se servant du modele
PNJL. 1I est toutefois vrai que [20] a inclus des termes prenant en compte les contributions
des diquarks, mais la finalité de cet article n’était pas d’étudier les masses des diquarks. Dans
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I’ensemble, ces références se sont focalisées sur les diquarks les plus légers, c'est-a-dire les
diquarks scalaires. Certains travaux ont analysé 1’évolution de leurs masses en fonction de la
température, ou de la densité baryonique, comme par exemple [17].

Néanmoins, un tel travail est plus rare pour les autres diquarks, c'est-a-dire les diquarks
pseudo-scalaires, axiaux et vectoriels. En fait, les diquarks axiaux pourraient permettre
notamment la modélisation du décuplet de baryons. Dans le méme temps, comme remarqué
avec les mésons scalaires et axiaux, certains de ces diquarks peuvent étre considérés comme
moins importants par rapport aux autres. Cela concerne les diquarks pseudo-scalaires et
vectoriels. Cependant, nous verrons au chapitre 6 que les diquarks pseudo-scalaires
interviennent dans les réactions de baryonisation, en tant que propagateurs. En suivant ce
raisonnement, le méme argument peut étre appliqué aux diquarks vectoriels : dans des
évolutions futures de ce travail, ils pourraient étre considérés comme propagateurs dans des
réactions formant des baryons du décuplet. Aussi, d’autres aspects de I’étude de diquarks sont
encore absents de la littérature. Cela concerne 1’étude de la stabilité des diquarks, en
particulier avec les diquarks scalaires et axiaux, par exemple dans le plan T,p;. Cela

concerne aussi le traitement des anti-diquarks, afin de pouvoir modéliser des antibaryons...

Afin de traiter les points évoqués dans le paragraphe précédent, ce chapitre est organisé de la
maniere suivante : tout d’abord, dans la partie 2, nous présentons les équations consacrées a
I’étude des diquarks. Il y est expliqué comment le travail effectué¢ précédemment avec les
mésons peut étre simplement adapté afin de nous donner les masses des diquarks, en utilisant
des quarks/antiquarks conjugués de charge. Evidemment, ce travail inclut 1’adaptation des
équations NJL afin d’obtenir celles de la description PNJL. Aussi, certaines considérations de
théories des groupes sont présentées. Comme avec les mésons, notre analyse théorique s’est
aussi focalisée sur I’établissement des €équations consacrées a 1’estimation des constantes de
couplages des diquarks. Apres, la partie 3 expose les résultats obtenus pour chacun des
diquarks cités : scalaires, pseudo-scalaires, axiaux, vectoriels, mais aussi pour les anti-
diquarks. L’effet de la boucle de Polyakov est également souligné pour tous ces résultats. Un
résumé des masses trouvées est disponible a la fin de la partie, nous permettant de conclure
sur la qualité des données obtenues. La conclusion est proposée dans la partie 4. Apres, pour
cloturer ce chapitre, les calculs détaillés établissant le propagateur d’un quark conjugué de
charge sont proposés dans la partie 5.

2. Etude théorique

2.1 Méthode employée

Pour modéliser un diquark, 1’idée principale de notre approche consiste a reprendre ce qui a
été fait pour les mésons, afin de 1’adapter [6, 17]. Un méson a été trait€é comme une boucle de
deux quarks, I'un allant vers le futur et ’autre allant vers le passé. Ce quark est en fait un
antiquark, selon le point de vue de Feynmanl. Pour un diquark, il est nécessaire de remplacer
cet antiquark par un quark. Pour faire cela, une astuce consiste a remplacer le propagateur de
la particule par celui de sa particule conjuguée de charge. Ainsi, le « quark » qui allait vers le

' Feynman R P 1949 The Theory of Positrons Phys. Rev. 76 749-59
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passé (c'est-a-dire 1’antiquark) deviendra virtuellement un « vrai quark », ou du moins il va
agir comme tel. La figure 1 ci-apres propose de résumer et d’expliquer la méthode sous la
forme de diagrammes. En toute rigueur, cette approche « mime » seulement le comportement
de quarks en appliquant la conjugaison de charge a des antiquarks.

e I
Moot
e
XD

Figure 1. Schématisation de la méthode utilisée pour modéliser les diquarks.

I

aQ

v

L’astuce apparait dans le passage de la seconde a la troisicme ligne de la figure 1. Chaque
antiquark conjugué de charge est indiqué par le symbole de la conjugaison de charge C . Cela
concerne les antiquarks au sein des boucles, mais aussi les lignes externes. Par analogie avec
les chapitres précédents, nous écrivons immédiatement que m=Z pour décrire le couplage
effectif au niveau de chaque vertex. De la méme maniere, la fonction de boucle est écrite

comme :
Q =]1 ) (1)

N

de sorte que la matrice de transition T est structurellement identique a celle vue pour les
mésons. En partant de 1’équation de Bethe-Salpeter T=Z+Z-II-T, nous arrivons comme
dans le chapitre 3 a la relation :

Z

T1-nz )

Dans laquelle seul le Z et I’écriture de IT differe. Dans tous les cas traités dans ce chapitre,
les diquarks ne sont pas couplés, comme ce fut le cas pour certains mésons. En conséquence,
les équations utilisent toujours des Z et IT scalaires. Ainsi, pour obtenir la masse m d’un
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diquark ayant une quantité de mouvement k, I’équation a résoudre présente la forme générale

suivante :
ky=\|m* (12)2, k fixé 3)

Pour tous les diquarks vus ici, les facteurs de saveur sont égaux a 1 au niveau de chaque
vertex mettant en jeu un diquark et une paire de deux quarks, comme expliqué dans
I’annexe C.

1-T(ky.k)- 2=0

2.2 Considérations de théorie des groupes

Nous débutons notre analyse en utilisant le travail effectué dans le chapitre 1 pour les
diquarks. En effet, il avait été noté que les diquarks pouvaient étre écrits sous la forme d’un

produit tensoriel de deux représentations 3 de SU(3) f associées aux quarks. Cela conduit a

deux représentations irréductibles [6],
3®3=3®6, 4)

de sorte que les diquarks sont divisés en deux groupes. Les diquarks de la représentation 6
peuvent étre composés par deux quarks de saveurs identiques, alors que cela n’est pas

possible pour ceux de la représentation 3, figure 2.

2/3 2/3
Y Y
-1/3 -1/3
—4/3 ;
s8] .
-1 -1/2 IO 1/2 1 -1/2 I0 1/2
3 3

Figure 2. Diquarks dans la représentation 6 (partie gauche), et dans la représentation 3 (partie
droite).

En effet, les diquarks de la représentation 6 ont une fonction d’onde symétrique en saveur. Par

L(ud+du).

V2

En revanche, les diquarks de la représentation 3 ont des fonctions d’onde antisymétriques en

exemple, pour un diquark [ud] issu de cette représentation, nous avons |[ud ]> =
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saveur, de sorte que pour un [ud] de cette représentation 3, la fonction d’onde est

|[ud]>=%(ud—du) [12].

Le méme raisonnement que celui que nous venons de faire pour la saveur est faisable dans
I’espace des couleurs. Cela nous conduit ainsi aux mémes résultats, c'est-a-dire deux groupes
possibles. Ils correspondent tout d’abord aux diquarks qui ont une fonction d’onde symétrique
en couleur, c'est-a-dire que cela correspond a une représentation 6. Les autres diquarks ont
une fonction d’onde antisymétrique en couleur, avec la représentation 3. Cependant, comme
expliqué dans [6], comme la finalité est de pouvoir construire des baryons en utilisant des
diquarks, nous voyons mal comment des diquarks symétriques en couleur pourraient nous
conduire a cet objectif. Plus précisément, un baryon est un objet « blanc », par conséquent
composé de quarks avec différentes couleurs. Un diquark constitué par exemple avec deux
quarks bleus associés a un autre quark de couleur quelconque ne peut pas donner un baryon.
Les diquarks traités dans ce chapitre sont donc antisymétriques en couleur. Par ailleurs, cela

permet a des diquarks comme [uu] de respecter le principe d’exclusion de Pauli.

Pour les mésons, les courants conservés ont la forme ¥y, 'y . Les courants conservés des
diquarks sont obtenus en considérant I’interaction entre deux quarks. Cela conduit a :

vy, Ty, (5)

ot il apparait le champ conjugué de charge #° . Celui-ci est défini, selon [6], comme :

yC=Cypw ou w=-y'C'=y’C. (6)

Dans ces équations, * indique la conjugaison complexe et ' 1’opération de transposition.
Le I'V correspond au canal d’interaction. Aussi, C est I’opérateur de conjugaison de charge,
défini par C=iy’y* dans la représentation de Dirac. De plus, comme avec les mésons, nous

avons plusieurs types de diquarks. Les diquarks scalaires et pseudo-scalaires sont des
particules de spin 0, alors que le spin des diquarks vectoriels et axiaux est égal a 1. Le
tableau 1, inspiré de [6], propose de rassembler ces données. Concernant les courants

conservés, nous notons l’introduction du tenseur totalement antisymétrique £ afin de
respecter le fait que les diquarks traités doivent €tre antisymétriques en couleur. Chaque lettre
a, b, ¢ font référence a des couleurs. La couleur a est associée au champ conjugué de

charge y’ ¢!, et la couleur b au champ w . Comme expliqué, les diquarks peuvent étre
symétriques ou antisymétriques en saveur, ce qui correspond respectivement aux
représentations 6 et 3. En conséquence, les générateurs de SU(3) , et A%, cest-a-dire le 9™

A’ qui apparait dans les courants conservés, sont divisés en deux groupes. Pour les diquarks

symétriques en saveur, nous avons A° ‘ sk’ alors que pour ceux qui sont
$=0,1,3,4,6,

antisymétriques, cela concerne /1*“ vsq”
A=2,5,7

En outre, un point important du tableau 1 concerne la maniere de nommer les types de
diquarks. En effet, le nommage est inversé par rapport a celui vu pour les mésons. Par
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exemple, les diquarks scalaires correspondent a un canal ;. Ce comportement est dii a

I’opérateur C =iy’y*, comme expliqué dans [6, 12].

Type de Valeur Courants conservés Spin Représentation Diquarks
diquarks de T’ P des diquarks possibles
Scalaire (S) iy’ w, Clys Aty i e .
Pseudo- -1 . abc 2
scalaire (P) 1 '/’aTC tiah y,i-€ b 3 [ud],[us],[ds]
Vectoriel (V) | #*-iy° | v, Cli Yu?s Ay, i-e
1 [ud],[us],[ds],
Axial (A “ Tetiy, Ay, i-e™ 6
( ) 7 l//a 7/1 l//h [MM],[dd],[SS]

Tableau 1. Liste des diquarks étudiés.

2.3 Lagrangien des diquarks

Dans le chapitre 2, nous avons vu que la partie du Lagrangien NJL associée aux diquarks,

c'est-a-dire L, ,,, €tait Ecrite comme :

Ling= 2 Ghio 2(WurTaws (W5 r T, )& e, (7)
a=S.P.V.A ij

dans laquelle 7, j font références aux matrices de saveur A’ incluses dans le terme I';/, ol &

est associé aux quatre canaux d’interaction : Scalaire, Pseudo-scalaire, Vectoriel et Axial.
L’équation (7) est maintenant réécrite, en particulier pour clarifier la sommation sur ces
quatre canaux. Grace a une transformation de Fierz, cela conduit a I’expression [6, 7, 15, 18] :

ﬁint q9q :Gng : Z (l/7al7/5/’i,JCl/7;)(l/7§C—l i75/1j1//e)'€ahc '€Cde
j=2.5.7
+ G£1Q~ Z (1/7a ,116,/7;)(,/756—1 /ljl//e)'gabc '5ch
=257 ©

+ Gpg- 2. ('/7,11'75-;/#/1/(31/7;)(,/756—11-75,7ﬂ/1jy/e)'€ahc.€cde
Jj=2,5,1

+ GSIQ . z (l/7a 7;1/7'JC‘/717T)(1/75 ¢! ?,,U/ij l//e)_gabc _gcde
j=0,1,3,4,6,8

Les a, b, c, d, e sont associés a la couleur ; nous notons d’ailleurs la somme implicite sur c.
Dans le développement effectué dans (8), chaque ligne correspond a un canal. Pour chacun

d’eux, une constante Gp,, est utilisée. Ces quatre constantes sont reliées a la constante Gy,
introduite au chapitre 2, pendant la description des jeux de parametres. Nous avons [6] :
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S P
GDIQ = GDIQ = GDIQ

Gpip * ©)
Gl‘;IQ = GSIQ = T

Clairement, le terme Z utilis€é dans les équations (2, 3) s’identifie aux constantes de (9).
Nous rappelons que la méthode était identique pour les mésons. En conséquence, pour un
diquark de type « :

dans lequel a peut étre S, P, V ou A, voir tableau 1.

2.4 Fonction de boucle des diquarks

La fonction de polarisation d’un diquark ¢q, peut étre écrite selon deux formes,
équation (11). En fait, comme montré dans 1’annexe D, 1’échange des deux quarks laisse
invariantes les deux formes présentées dans (11). Clairement, cela implique que ces deux
formes sont strictement équivalentes. Les détails techniques associés aux calculs, qui
expliquent notamment I’intérét de ces deux formes, ont été relégués dans I’annexe E.

' d? -
—i Hlt;lqz(z > ):é'ZJ’(Zn]; Tr(i~Sfl (z W, —1 Vm,p—k) I'-i SfQC(z a)n,p) F)
. I , (11)
—i Hl;lqz(z- m,k):é-Z:J(zﬂ.)3 Tr(i~SflC(z W, —i Vm,f)—lg) i Sf (l (t)n,p) F)
ol :
S (#) et S o (p)= l (12)

Y —Yoty—myg ﬁ‘?’o(ﬂf—iAzx)—mf
sont les propagateurs d’un quark conjugué de charge, dans les modeles NJL et PNJL [20, 21].
Les calculs complets effectués pour établir le propagateur NJL (12) sont rassemblés a la fin de
ce chapitre. Concernant les modifications a apporter aux équations NJL pour obtenir leurs
équivalents PNJL, nous voyons que nous avons tout d’abord a remplacer u, par u,—iA,

dans les propagateurs des quarks/antiquarks (et pas ailleurs), comme noté dans [21]. En outre,
dans le cadre des calculs numériques, les autres modifications concernent 1’adaptation des
distributions de Fermi-Dirac associées aux quarks/antiquarks. Clairement, cette adaptation,
suggérée dans [21, 22] pour les mésons, est toujours valable pour les diquarks. Nous
rappelons que les distributions de Fermi-Dirac modifiées dans le modele PNJL ont été
établies dans le chapitre 2. Dans la pratique, comme avec les mésons, ces modifications
affectent la fonction IT .
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2.5 Constantes de couplage

La méthode pour estimer les constantes de couplage mettant en jeu un diquark et une paire de
deux quarks est la méme que celle décrites pour les mésons. En fait, seule 1I’expression du
propagateur differe :

4Gpyp | B —g2
1=2Gp (kg k)| ,_, &2 =mfa (13)
Cela donne :
1 aH(kO,lg) 2%
e zjgz - (14)
R K2=m

ko
k*=m? est équivalent 2 écrire {4 _ . Ainsi, pour un diquark au repos, cela revient a
k=0

considérer la formule :

(15)

3. Résultats numériques

Dans cette partie, nous proposons d’étudier chaque type de diquark. Dans 1’ensemble, nous
utilisons le jeu de parametres P1 défini au chapitre 2 (qui utilise la symétrie isospin).
Cependant, dans le paragraphe 3.6, le jeu de parametre EB est aussi utilisé pour estimer les
masses des diquarks a température et densité nulles.

3.1 Diquarks scalaires

Les résultats associés aux masses et aux largeurs de niveau des diquarks scalaires sont
exposés dans les figures 3 a 5. Tout d’abord, nous remarquons que les courbes obtenues avec
le modele NJL peuvent étre comparées a celles de [15, 17]. Qualitativement, 1’accord est bon
avec des références, notamment parce que nous utilisons un jeu de parametres assez similaire,
c'est-a-dire P1. Toutefois, des différences peuvent €tre observées quantitativement, par
exemple en regardant la masse a température et densité nulles. En fait, nous avons pris
Gpip /G=O.705 (voir chapitre 2), alors que [15, 17] semblent avoir considéré des valeurs

différentes. Comme indiqué dans [15], leur choix a été fixé afin d’obtenir un bon accord pour
les nucléons entre leurs résultats et les valeurs expérimentales. Plus précisément, leurs
résultats peuvent étre retrouvés avec Gpy, /G =0.735, c'est-a-dire une valeur proche de celle

indiquée dans [16], mais pas le Gy, /G =~0.55 annoncé dans [15, 17].
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Comme confirmé par 1’étude des largeurs de niveau dans la figure 5, les diquarks scalaires
sont stables a températures et densités réduites. Bien entendu, cette notion de stabilité se
réfere a leur désintégration en une paire de deux quarks. La stabilité de ces diquarks est aussi
observée avec les résultats PNJL. En fait, en ce qui concerne les différences entre les modeles
NJL et PNJL, les figures 3 a 5 montrent le méme comportement que celui obtenu avec les
quarks et les mésons. D’une part, il consiste en une déformation des courbes PNJL, par
rapport aux NJL, vers les hautes températures. A températures réduites, cela conduit a des
masses de diquarks assez constantes pour les courbes PNJL, jusqu’a 7 =200 MeV . D’autre
part, les résultats NJL et PNJL coincident a température nulle, quelle que soit la densité
baryonique. Apres, la grande ressemblance entre les courbes de mésons et celles des diquarks
peut étre expliquée par le fait que les équations a résoudre sont trés semblables pour ces deux
types de particules. Plus précisément, le comportement des diquarks scalaires rappelle
fortement celui des mésons pseudo-scalaires. En fait, ces particules correspondent a une

interaction via le canal »°, et la ressemblance entre leurs équations peut étre facilement étre
constatée dans 1’annexe D. Cependant, les masses de diquarks sont plus fortes que celles des

mésons pseudo-scalaires, conduisant a un résultat prévisible : ces diquarks sont moins stables
que ces mésons.

Modéle NJL Modéle PNJL

1200

1000} RN 1000} \

200 200 \
e .
0 100 200 300 400 0 100 200 300 400
T (MeV) T (MeV)

Figure 3. Masses des diquarks scalaires en fonction de la température.

Une autre différence entre ces deux types de particules concerne 1’évolution de leurs masses
en fonction de la température et de la densité baryonique. En effet, pour les diquarks scalaires,
il est observé sur les figures 3 et 4 une décroissance des masses quand 7 ou pp augmente,
jusqu’a leur limite de stabilité. Plus précisément, une température critique et une densité
critique sont présentes pour chaque diquark, respectivement dans la figure 3 et dans la
figure 4. Ce comportement, notamment pour la température, rappelle celui trouvé pour les
mésons vectoriels, pour lesquels le terme de ‘t Hooft n’était pas appliqué. En fait, une densité
baryonique forte correspond a un large exces de quarks g par rapport aux antiquarks g . Ainsi,
une structure construite a 1’aide de quarks, comme un diquark, devrait étre « stabilisée » par
une augmentation de la densité baryonique. Cette observation peut expliquer I’évolution des
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masses dans la figure 4. Mais, les masses des quarks qui composent nos diquarks décroissent
plus rapidement que les masses des diquarks. Donc, 1’énergie de liaison de ces derniers, c'est-
a-dire my,, —2m,, tend a décroitre (en valeur absolue). Cela peut expliquer la transition

stable/instable observée sur la figure 4, a environ 3p, pour [ud] et =3.5p, pour [us].

1200

1000} ~~.

Figure 4. Masses des diquarks scalaires en fonction de la densité baryonique.
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Figure 5. Largeurs de niveau des diquarks scalaires en fonction de la température et de la densité
baryonique.

Les masses des diquarks scalaires semblent étre assez faibles pour pouvoir les considérer
comme de bons candidats pour former des baryons. Plus précisément, la masse de [ud] est
d’environ 600 MeV a température et densité nulles. Associé a un quark léger, dont la masse
est ici proche de 420 MeV, il est raisonnable d’envisager de former un nucléon a partir de ce
systeme. Cela justifie I’estimation des constantes de couplage de ces diquarks, notamment
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pour utiliser ces données lors de la modélisation des baryons, et ensuite dans les sections
efficaces concernées. Nos résultats sont proposés dans les figures 6 et 7. Comme avec les

masses, nos courbes NJL peuvent étre comparées a celles de [15, 17], conduisant a des
remarques similaires.

Modeéle NJL Modeéle PNJL
4.5 v v v 4.5 v v v
ot |91q5)—gs| 4t |91q5)— gs]
() (0]
235 235 {g ‘
el ol d]—ud
%— 3 !g[ud]—ud‘ %. 3 [ud]—u
(&] (&]
8 2.5 8 2.5 /
Q 2 S 2
c c
815 815
2 2
o o
0.5 0.5
00 100 200 300 400 00 100 200 300 400
T (MeV) T (MeV)

Figure 6. Constantes de couplage des diquarks scalaires en fonction de la température.

En fait, les courbes rappellent fortement celles trouvées pour les pions et les kaons,
notamment selon la température, figure 6. Méme qualitativement, les valeurs prises par les
constantes de couplage restent plutot proches de 4 a basses températures. D’autre part, la forte
décroissance (g —0) est aussi observée avec les diquarks. Cette forte décroissance
correspond a une transition stable/instable, cela confirme donc nous observations précédentes
pour ces diquarks. L.’analyse sera étendue a des densités négatives dans le paragraphe 3.5.

4.5
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‘Q[QS]—QS|
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(&)}

Constantes de couplage
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o
—_

Figure 7. Constantes de couplage des diquarks scalaires en fonction de la densité baryonique.
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3.2 Diquarks pseudo-scalaires

Les diquarks pseudo-scalaires et les diquarks vectoriels ne sont pas traités dans la littérature.
En conséquence, nous ne pouvons pas proposer de comparaison de nos résultats avec
d’autres. Concernant les diquarks pseudo-scalaires, nous avons étudié€ leurs masses et largeurs
de niveau selon la température dans les figures 8 et 9, et selon la densité baryonique dans la
figure 10. En fait, le comportement des diquarks pseudo-scalaires est qualitativement tres
proche de celui trouvé pour les mésons scalaires. En effet, ces particules ont été trouvées
comme étant toujours instables, quelle que soit la température ou la densité baryonique. Cette
affirmation est justifiée en notant que les masses des diquarks pseudo-scalaires sont toujours
plus fortes que celles des quarks qui les composent, figure 8. Par ailleurs, les largeurs de
niveau associées sont toujours non nulles, figure 9. Concernant 1’évolution des masses selon
la température, nous notons que les mases de ces diquarks évolue de maniere parallele par
rapport a celles des quarks qui les constituent, c'est-a-dire respectivement 2m, pour [ud] et

m +mg pour [gs], jusqu’a T ~180 MeV pour le modele NJL et T ~220 MeV pour PNJL.

Cela conduit a des valeurs assez stables de largeurs de niveau, figure 9, jusqu’a atteindre ces
températures. Un tel comportement est aussi présent selon la densité baryonique, méme s’il
est moins marqué.

Modeéle NJL

Modeéle PNJL

0 1 60 260 360 400 0 1 60 260 360 400
T (MeV) T (MeV)

Figure 8. Masses des diquarks pseudo-scalaires en fonction de la température.

Qualitativement, les masses des diquarks pseudo-scalaires sont relativement fortes a basses
températures et densités, environ 920 MeV pour [ud] et 1140 MeV pour [gs]. En fait, [ud] a
une masse proche de celle d’un nucléon. Ainsi, dans le cadre de la modélisation du nucléon,
nous pouvons supposer que la contribution des diquarks pseudo-scalaires ne devrait pas étre
dominante, et devrait étre méme plutdt négligeable. En effet, si nous associons le [ud]
pseudo-scalaire avec un quark, il faudrait une énergie de liaison plus forte que 400 MeV pour
obtenir une masse de nucléon proche de celle mesurée expérimentalement, c'est-a-dire 938

MeV. Une telle valeur de I’énergie de liaison semble étre trop proche pour étre réaliste.
Cependant, comme indiqué dans I’introduction de ce chapitre, les diquarks pseudo-scalaires
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ne sont pas inutiles : ils peuvent étre considérés dans les calculs de sections efficaces, en tant
que propagateurs, dans le cadre de réactions mettant en jeu des baryons.
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Figure 9. Largeurs de niveau des diquarks pseudo-scalaires en fonction de la température.
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Figure 10. Masses et largeurs de niveau des diquarks pseudo-scalaires, en fonction de la densité
baryonique.

D’autre part, comme avec les mésons, nous observons que les diquarks scalaires et pseudo-
scalaires [ud]| deviennent dégénérés a hautes températures et hautes densités, figures 3, 8 et
4, 10. Cette remarque s’applique aussi pour [us], mais la dégénérescence intervient pour des
valeurs de T, p; plus fortes. De la méme maniere, ce comportement sera aussi observé avec
les diquarks vectoriels et axiaux [ud] et [us].
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3.3 Diquarks vectoriels

L’évolution des diquarks vectoriels en fonction de la température est représentée dans la
figure 11. L’influence de la densité baryonique est étudiée dans la figure 12. Ces résultats sont
structurellement similaires a ceux vus pour les diquarks pseudo-scalaires. Les diquarks
vectoriels sont les diquarks les plus lourds étudiés dans notre travail. Ils ressemblent
fortement aux mésons axiaux. Comme avec ces particules, les fortes masses pourraient
suggérer que nous sommes la aussi a la limite de validité de notre approche. Comme avec les
diquarks pseudo-scalaires, une application possible de ces particules pourrait concerner leur
utilisation en tant que propagateurs dans des calculs de sections efficaces. Cependant, si nous
avons réellement utilisé les diquarks pseudo-scalaires pour cet objectif, cela n’a pas été le cas

pour les diquarks vectoriels, au moins dans le cadre du travail présenté dans cette these.
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Figure 11. Masses des diquarks vectoriels en fonction de la température.
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Figure 12. Masses des diquarks vectoriels en fonction de la densité baryonique.
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3.4 Diquarks axiaux

Dans notre travail, les diquarks axiaux sont les seuls qui puissent avoir deux quarks de méme
saveur. Grace a cette propriété, ces diquarks peuvent intervenir dans la modélisation de
baryons comme A, Q, ou pour les composantes axiales de saveur d’autres baryons. En
conséquence, ce sont des particules particulicrement intéressantes. Nos résultats concernant
I’évolution de leurs masses selon la température et la densité baryonique sont exposés dans les
figures 13 et 14. Dans la littérature, nous n’avons pas d’élément de comparaison, sauf pour
des valeurs estimées a température et densité baryonique nulles, comme dans [11-13] par
exemple.

Modele NJL Modeéle PNJL
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200 v 200} N
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Figure 13. Masses des diquarks axiaux en fonction de la température.
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Figure 14. Masses des diquarks axiaux en fonction de la densité baryonique.
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Dans nos deux figures, nous avons trouvé que les diquarks axiaux sont stables a des
températures et densités réduites. En effet, méme si nous ne présentons pas ici I’évolution des
largeurs de niveau, cette information peut facilement étre vérifiée a travers le comportement
des courbes, mais aussi avec les résultats exposés dans les figures 15, 16, 18. En fait,
qualitativement, 1I’évolution des masses des diquarks axiaux rappelle celle observée pour les
diquarks scalaires. Cependant, dans leur zone de stabilité, les masses des diquarks axiaux sont
tres proches des masses des paires quark-quark qui les composent. Cela veut dire que leurs
énergies de liaison sont tres faibles (en valeur absolue). En conséquence, les diquarks axiaux
sont moins stables que les diquarks scalaires. Cette remarque est confirmée dans la figure 18,
si nous comparons la zone de stabilit¢é de chaque diquark. Mais, cette observation ne
s’applique pas au diquark [ss]. En fait, cette particule est composée de deux quarks étranges,

donc [ss] est moins sensible a la température et a la densité baryonique, comme observé avec
le quark s dans le chapitre 2. Mis & part pour [ss] selon la densité baryonique, les diquarks

étudiés ont une température critique, et une densité critique. Ainsi, nous avons une séparation
nette entre leurs zones de stabilité et instabilité, selon ces deux parametres.

Conscients de I'utilité des diquarks axiaux, nous proposons d’étudier ci-apres leurs constantes
de couplage. Cela correspond aux figures 15 et 16. Tout d’abord, nous pouvons souligner que
leur allure rappelle celles trouvées pour les diquarks scalaires et pour les mésons. Cependant,
quelques différences sont identifiables. Tout d’abord, cela concerne les valeurs a température
et densité nulles. Mis a part pour le méson 7, nous avons trouvé précédemment des valeurs

proches de 4, alors qu’ici, nous avons pour =1.73 pour ‘g[qq]_qq , 2.32 pour ‘g[qs]_qs et 2.85
pour ‘g[ss]—ss .
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Figure 15. Constantes de couplage des diquarks axiaux, selon la température.
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Figure 16. Constantes de couplages des diquarks axiaux, selon la densité baryonique.

Pour les diquarks axiaux, plus le diquark est 1éger, plus sa constante de couplage est faible,
pour 7=0 et pz =0. Pour des températures localisées dans la zone d’instabilité des diquarks,
les constantes de couplage deviennent plus fortes, voir figure 15. Elles dépassent les valeurs
que nous avions a basses températures : elles sont supérieures a 3.5. Dans cette figure, les
courbes nous donnons aussi I’impression de converger vers des valeurs treés proches.
Evidemment, ces remarques sont vérifiées dans les modeles NJL et PNJL. En revanche, a
hautes densités (figure 16), les constantes de couplage gardent des valeurs tres distinctes.

, 2.8 pour

SS

Mais, les courbes tendent a se stabiliser rapidement : vers 2.5 environ pour ‘ 8[ss]-

‘g[qq]—qq‘ et 3.1 pour ‘g[qS]—qs

3.5 Autres résultats

Nous proposons maintenant d’étendre les résultats trouvés pour les diquarks scalaires et
axiaux a des densités négatives. Plus précisément, nous avons étudié le comportement d’anti-
diquarks en fonction de la densité baryonique, figure 17, et nous avons effectué un
« diagramme de phase » étendu aux densités négatives, figure 18. Pour les résultats de la
figure 17, notre méthode consideére la symétrie matiere-antimatiere. Cela consiste a dire
qu’une particule plongée dans un milieu dans lequel la densité est égale a —p, (valeur
négative, c'est-a-dire un milieu dominé par 1’antimatiere) agit de la méme maniere que son
antiparticule correspondante plongée dans un milieu dans lequel la densité est égale a pj
(c'est-a-dire dominée par la matiere), et réciproquement. En conséquence, les anti-diquarks
peuvent étre trouvés simplement en renversant le signe de la densité baryonique. Avec les
mésons, ces particules pouvaient €tre leurs propres antiparticules, notamment quand la
symétrie isospin est utilisée. Ainsi, nous avions trouvé que les masses des mésons évoluaient
de la méme maniere dans des densités positives ou négatives, sauf pour les kaons.
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Figure 17. Diquarks scalaires et axiaux, et leurs antiquarks correspondants.

Evidemment, un diquark et son anti-diquark sont supposés agir de manieres tres différentes,
comme confirmé dans la figure 17. Dans cette figure, les anti-diquarks sont représentés en
pointillés. Les graphes ont été établis a température nulle. Ainsi, les modeles NJL et PNJL
coincident strictement. En fait, a densité nulle, la structure des équations conduit a des masses
identiques pour un diquark et son anti-diquark correspondant, quelle que soit la température.
Mais, a densités non nulles, les masses des diquarks/anti-diquarks peuvent étre différentes. Ce
comportement est observé pour les diquarks composés par un moins un quark léger g. En
effet, quand pp #0, les potentiels chimiques g, et u; sont aussi non nuls, et 4z =—u, . Cette

différence de signe provient directement des expressions des fonctions de boucle liées aux
diquarks et anti-diquarks, annexe D, conduisant a une asymétrie entre les diquarks et les anti-
diquarks. Cela explique cette différence de masse. Intuitivement, nous comprenons qu’un
couple de diquark/anti-diquark constitués par deux quarks/antiquarks Iégers est plus sensible a
cet effet qu’un couple constitué seulement par un quark/antiquark léger. Cela est confirmé par
les résultats numériques. En effet, dans la figure 17, nous notons que la différence entre les

masses des diquarks/anti-diquarks scalaires [ud] et @ croit plus vite que celle observée

pour les diquarks/anti-diquarks scalaires [gs] et m Mais, cette comparaison n’a pas été

possible avec leurs équivalents axiaux, parce que les anti-diquarks axiaux [gg] n’ont pas pu

étre calculés numériquement. Ces anti-diquarks sont trop sensibles a la densité baryonique
pour étre modélisés de maniere fiable. Cette observation explique également pourquoi la

courbe de I’anti-diquark scalaire [ud] n’a pas pu étre continuée apres 0.7p,. A I’opposé, les

[ss] et m sont constitués respectivement par deux quarks/antiquarks étranges. Les masses
des quarks/antiquarks étranges dépendent de la densité baryonique exactement de la méme
maniere. En conséquence, les masses de [ss] et [ss] évoluent selon pz. Mais, I’asymétrie

mentionnée plus haut ne peut pas intervenir pour ces diquarks. Ainsi, il n’a pas de différence
de masse pour eux : les courbes restent dégénérées, quelle que soit la densité baryonique.

D’autre part, dans la figure 18, I’asymétrie mentionnée peut €tre observée aussi sur le
diagramme de stabilité/instabilité des diquarks, parce que I’axe pz =0 n’est pas ici un axe de
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symétrie du graphe. Clairement, les diquarks sont plus stables dans un milieu dans lequel
pg >0 que dans un milieu dominé par 1’antimatiere ( oz <0). Une explication physique est
que les diquarks sont porteurs de deux quarks. Plongés dans un milieu ot la densité
baryonique est négative, c'est-a-dire dans lequel les antiquarks g (confinés ou pas) sont en
large exces par rapport aux quarks g, les diquarks tendent a libérer leurs quarks. En d’autres
termes, ils deviennent instables. Ces quarks sont alors capables de se combiner avec les
antiquarks pour former des mésons, qui sont clairement plus stables. En revanche, comme
dans le paragraphe précédent, ces explications ne peuvent pas s’appliquer a [ss]. Plus
précisément, cette particule est trop stable selon la densité baryonique. Donc, nous ne I’avons
pas représenté sur la figure 18.

250 T T T T T T T T T
N N N N 1 N N N N
i E z
5 5 5 5 ; ﬁ[us]scalaifre
200F CEPPRPPPT AN I e f RS b N NG FTTTTIY -
00 5 5 : : i [ud] N
: / : : T - “scalaire:
1 N
150 ERRKIEES SRR o S : Do s
< E f E E i [us] .
% ; : aX|aI§
= : i :
— : 3 : i : ]
L]0 SRR R \CFITNSNNEIEIEE THIFEs RESSCSCTN SUMSESOISY ENSTIOONNINES: TP e
5 ! :
: 1 :
: i :
| | | | |
: ] :
: i :
- ! :
I ] i
-5 -4 -3 -2 -1 0 1 2 3 4 5
Ps/Py

Figure 18. Diagramme NJL de stabilité/instabilité des diquarks scalaires et axiaux.

3.6 Masses obtenues

Le tableau 2 ci-apres résume les valeurs trouvées a température et a densité nulles. La colonne
associée au jeu de parametre P1 correspond aux données décrites dans les graphes précédents,
c'est-a-dire en prenant en compte la symétrie isospin. Comme dans les chapitres précédents, la
colonne associée au jeu de parametre EB n’applique pas cette symétrie. Entre les deux
colonnes, nous avons inséré des valeurs extraites de la littérature : de [11] et de [12, 13]. Ces
publications ont considéré d’autres approches que la ndtre, et elles ont pris en compte la
symétrie isospin. Dans ces références, les largeurs de niveau sont nulles. En effet, ces articles
ont étudié les diquarks qui sont apparus comme stables. C’est pourquoi les cases
correspondant aux diquarks pseudo-scalaires et vectoriels sont vides. Pour les autres diquarks,
c'est-a-dire pour les scalaires et les axiaux, un tres bon accord est obtenu entre nos résultats et
ceux de ces références. Cependant, nous reconnaissons que nous avons utilisé les données de
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M. Oettel [12, 13] afin de déterminer notre valeur de G, . En fait, nous considérons que
Gpio/G=0.705 dans les jeux de parametre P1 et EB.

Résultats obtenus Valeurs de la Résultats obtenus
(jeu de parametres P1) littérature (jeu de parametres EB)
. Largeurs | Masses de | Masses de Largeurs
Diquarks Masses de n%veau [11] [12,13] Masses de n%veau
[ud] 599.14 0 595 598 592.82 0
Scalaire [us] 794.75 0 795 - 752.43 0
[ds] 794.75 0 795 - 754.86 0
Pseudo [ud] 929.37 91.11 - - 921.72 89.81
Scalaire [us] 1146.25 125.40 - - 1100.17 118.45
[ds] 1146.25 125.40 - - 1103.60 119.08
[ud] 1229.39 715.76 - - 1222.38 715.08
Vectoriel [us] 1430.38 733.84 - - 1387.24 730.39
[ds] 1430.38 733.84 - - 1390.49 730.62
[ud] 836.94 0 835 831 830.77 0
[us] 1017.06 0 1000 - 978.27 0
Axial [ds] 1017.06 0 1000 - 980.81 0
[uu] 836.94 0 835 831 827.94 0
[dd] 836.94 0 835 831 833.59 0
[ss] 1181.94 0 1160 - 1116.68 0
u 42423 0 450 425 419.10 0
Quarks d 424.23 0 450 425 422.31 0
S 626.49 0 650 - 588.17 0

Tableau 2. Masses des diquarks a température et densité nulles.

Concernant les valeurs trouvées avec P1, nous avons un bon accord entre notre [ud] scalaire

et celui trouvé dans [12, 13], mais aussi nos [us], [ds]| scalaires et [ud], [uu], [dd] axiaux
avec ceux de [11]. Pour ce qui est des valeurs trouvées avec EB, nous avons des similitudes
entre le [ud] scalaire et celui de [11], et les [ud], [uu], [dd] axiaux avec ceux de [12, 13].
Finalement, ces comparaisons sont globalement excellentes car les différences n’excedent pas
3 MeV. Pour les autres valeurs, c'est-a-dire les [us], [ds], [ss] axiaux (non disponibles dans
[12, 13]), nos valeurs sont du bon ordre de grandeur par rapport a celles de [11]. Mais, les

différences entre nos résultats et ceux de la littérature sont un peu plus fortes que
précédemment.

4. Conclusion

Dans ce chapitre, nous avons vu tout d’abord qu’adapter les équations de mésons peut
permettre facilement d’obtenir celles des diquarks, grace a I'utilisation de la conjugaison de
charge. En effet, cette astuce nous a permis de transformer une boucle quark-antiquark en une
boucle quark-quark. Comme avec les mésons, quatre types de diquarks ont été considérés : les
diquarks scalaires, pseudo-scalaires, vectoriels et axiaux. Il a d’ailleurs été observé des
similarités entre les diquarks et les mésons, notamment en ce qui concerne le comportement
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de leurs masses en fonction de la température et de la densité baryonique. L’effet de la boucle
de Polyakov a aussi été étudié. 1l a été trouvé qu’elle agit de la méme manicre que pour les
mésons, c'est-a-dire qu’elle induit un décalage des courbes vers les hautes températures.

D’autre part, les diquarks scalaires et axiaux sont apparus comme de bons candidats pour
former des baryons. Les deux ont été trouvés stables a 7 =0 et pgz =0. Pour eux, il a alors été
étudié leurs constantes de couplage associées, et leur comportement a des densités
baryoniques négatives. Cela a permis de construire les diagrammes de stabilité/instabilité de
ces diquarks dans le plan T,p,. A cette occasion, nous avons aussi vu la possibilité de
modéliser des anti-diquarks, ce qui nous permettra de considérer des antibaryons. Finalement,
les masses a température et densité nulles ont été comparées avec celles d’autres approches
théoriques. Il a été trouvé une bonne correspondance avec ces autres approches.

5. Calcul du propagateur d’un quark conjugué de
charge

Cette section a été grandement inspirée par les notes de Regina Nebauer [23].

Le propagateur NJL d’un quark conjugué de charge s’écrit comme :
5¢(e-7.5-%)=(T(p (2.7 (7.7)) (16)
=6(r- r’)-<l//§c (T,)?)Wgrc (7, ic)>+ 0(1’—1).<1/7§,C (7, fc')l//gc (r?c)>

dans lequel T est 1’opérateur d’ordre selon le temps, & est la fonction de Heaviside et 7,7’
correspondent a des temps. En utilisant la décomposition :

(17)

v (r,x)=J(;’”’;3 Eﬂk > (g (7.K)-uf (K)-exp(ik - %)+ by (7,k) - vE (K)-exp(~ik - %))

9

— R d3k, m s —ao ’ g, = -, ’ ey
wgrc(r,w{(z i (doe" (7K -TE (K')-exp(=ik'- %) + by (7K')-VE (K)-exp(ik”-¥))
T K o

le propagateur est écrit comme :

o dy (T.k)dg " (7'.K'))-exp(ik -5 =ik ¥)-uf (k)ag (k)
=€(T—T/)~Jd3k~Jd3k/~z < a > ( ] } ) ¢ 5, ,

o, +<ba+(z',k)bar(r',k')>~exp(—ik ik F) v (kK)TE (K)
do* (7K' dg (7.k) ) - exp(ik - % =ik ¥)- TE (K')uf (k)

but (7K )by (7.K))-exp(—ik - 5 +iK'- ) -5E (k) (k)
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3 3 3,0
avec jd3k EJ d k3 Eﬂ et [d’k’'= [ d k3 Eﬂ : (19)
»

Maintenant, grace aux relations,
by (7.k)=exp(—i(E, — ) 7) b, (k) bt (7.k)=exp(i(E, —p)-7) by (k) (20)
dy (7.k) =exp(~i(Eq + 1) 7)- dg (k) ’

nous avons :

X

(d (K)dor" (k) exp(—ik -+ ik x)exp( i(E, +)7)exp(i( By + 1)) -uf (K)ag (k)
a,a’[+<ba+(k)baf(k "))-exp(ik - ¥ =ik ¥ )exp(i( B - )7)exp(~i( By — ) 7) - vE (K)FE (K) }
+6(7'-7)- &’k [d*K’

’ (do* (K')dg (k) - exp(=ik -+ ¥ )exp(i( By + )2 )exp (=i B, + 1) 7) -7 (K)uf (k)
aa’[+<ba/(k')ba+(k)>~exp(il€-?c—il€"5c)exp(—l(Ek/—,u) Nexp(i(E, - p)7)-v¢ (K)vE (k) }

Si nous gardons seulement les termes non nuls, le propagateur est alors simplifié :
S (r-7,5-%) (22)

et:
§¢(r-7,3-%) .
(k) () exp(-if (5= )exp(-i( s + )5 -)- EE"
ZQ(T_T,)'.[aﬁk 2 - K-m
a4 ba+(k)ba(k)> exp(ik (fc—fc))exp(i(Ek —,u)(~¢-_1-)).7




Chapitre 4. Les diquarks

135

La finalité du calcul est d’exprimer le propagateur dans 1’espace des énergies-impulsions
Ainsi, dans un premier temps, une transformée de Fourier est appliquée aux temps

(i, 1) =], a2 2)-exp(i(i0, =) S (e 5D
N

o
(=) e (cilian) (e-7)) S (e F Ty L

Cela donne I’expression :
5S¢ (iw,, i - %)=

~

(25)
6(c—7)- | &% | (d(k)d" (k) X exp(ik (x-x'))]-(jo"'ﬂd(r—r').e’”(l’“’n—Erﬂ)'(f—f'>)
+9(T—T,)'.) d3]; <b+(k)b(k)>%z;mexp(—l/g(f—f’))j( O_iﬂd(z._z-’),ei~(iwn+Ek—ﬂ)'(T—f'))
+0(7-7):| S| (d* (k) (k) %2;”1 exp(ik - (¥~ %)) (— (-7t )
o(e—0). [ &% <b(k)b+(k)>-k/_m exp ik (x-x’)))(— R P A ))
J 2m
Pour ce qui est de I’intégrale selon z—7", nous écrivons :
i P .. , ) E + +1
.[o d(t-7")-exp(i(iw, — E, —u)(z-7))=i- [exp(lw Ekk “) J (26a)
~iB i _ exp +1
[, 7 d(z=7)-exp(i(io, + E; - ﬂ)(T—T))Zl'[ i, +Ek J (26b)
B N e o N eXP(IB(Ek+/1 +1 (26¢)
[, " d(z~7)-exp(~i(i@, - B, —u)(z-7')) =i- { P J

_Iglﬁd(r—r’).exp(—i(iwn +E, —p)(z-7))= i'{eXp(_'B(Ek _#))HJ :

(26d)
i, +E, —u
car la fréquence de Matsubara i@, est de type fermionique, ce qui implique que
exp(im, -ﬁ)zexp((2n+1)~ﬂ')=—1. 27

Aussi, nous avons :

(b (k)b (k)= ! (a* (k)a (k)= !

exp(B(E, —p))+1 exp(B(E; +u))+1
exolpE-) (e m)
+ _ kK~ + _ k
(b(k)b* (k)= o A} (d(k)d* (k)=

exp(ﬂ(Ek +,u))+1
Nous injectons maintenant ces relations dans (25), nous groupons les termes
obtenons :

et nous



136

Sc(iwn,?c—?c')=iJ'd3I€~]{+m.eXp(ﬂg'(f—x’)) H_Jd%%_m'exp(—ﬂé.(yc—x’)) o

SC(,' *_j’)_i.[l[(d% .k/_i_m‘exp(ilg.(x—fc'))_i_l[ Ik .k/_m‘exp(—ilg-(?c—fc')) . 30)

2y 2B, iw,—E —u (2z) 2E 10, + By —H
Nous appliquons maintenant une transformée de Fourier sur les positions :

$¢(iw,, p)=[d* (¥~ X)-exp(-ip- (¥~ ¥)) -5 (iw,,. X - %), (31)
ce qui donne :

Sc(ia’n’ﬁ):i'J(dSk Kam, ! Jd3()?—)?’)pr(i(E—ﬁ)-(}?—fc'))

o) 2B i, -E —p

, (32)
| Pk K-m 1 o o
”'J(zz)’ 5 a1 ) elH(f ) ()
(2;;)3.5(3)(k+ a)
ou:
@, p)=i| SO T PR Y i0, 7 pm
Sc(lwn’p):l- 7/0 14 }/ p + , (33)
2Ep.(ia)n—Ep —/1) 2Ep'(iwn+Ep—,u)
et, finalement :
sClio )b
(7] P—m=y U (34)

Dans le cadre du modele PNJL, en raison de I'inclusion de la boucle de Polyakov, les quarks
sont minimalement couplés a cette boucle, induisant une dépendance selon la couleur dans le
propagateur. Comme évoqué précédemment, cela conduit au remplacement
Uy — uy —iAy [21]. Le propagateur PNJL est alors écrit comme [20, 21] :

c - ! 35
() P =% 1y ~iAg)=my .

D’autre part, I’expression du propagateur ordinaire (non conjugué de charge) est connue dans
le cadre du formalisme de Nambu et Jona—Lasinio depuis longtemps [24]. Mais, elle pourrait
étre retrouvée par un calcul similaire a celui effectué dans cette partie. En effet, nous avons
seulement a refaire le calcul en remplagant 1I’équation (17) par :

ye(7.X) ZJ(;’; ~Eﬂk§(ba(r,k)-ug’ (k)-exp(ik - %) +d," (z.k)- v (k)-exp(—i x)) (36)

3,7 ’
Wg,(r',x'){ L I S (b () -TE (K)-exp =ik - ¥) + dy (£.K) -TE (K) -exp(iE - )
(271') L
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ce qui donne :

. - . ?/O'ia)n_7'ﬁ+m 70'iwn+7'ﬁ_m
S(i =i + ,
( ) 2E, (iw,~E, +u) 2E,-(iw, +E,+ 1) 37)

et il vient :

i
S (ia) , [3) = 38
De la méme maniere, la transformation u, — u, —iA, donne aussi la possibilit¢ de retrouver

le propagateur PNJL associé [20, 21] :

Sy el )=

i

Py =idy)=my

(39)

Quel que soit le modele, NJL ou PNJL, la seule différence entre le propagateur du quark et
celui du quark conjugué de charge est le signe placé devant le terme du potentiel chimique,
c'est-a-dire avant la matrice y,. En conséquence, quand le potentiel chimique est nul, les deux

propagateurs sont égaux : S (iw,,p)=S(io,, ﬁ)‘ﬂ 0’ et idem pour les propagateurs PNJL.
f =
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Chapitre 5

Les baryons

Une partie de ce chapitre a été publiée dans J. Phys. G: Nucl. Part. Phys. 38 105003

1. Introduction

Nous avons vu dans les chapitres précédents que le modele NJL peut étre complété par
I’inclusion d’une boucle de Polyakov, formant le modele PNJL. Comme indiqué dans la
littérature et comme observé dans notre travail, ces modeles peuvent permettre la
modélisation de quarks habillées et de mésons. L’étape suivante est d’inclure les baryons dans
I’analyse. En fait, pour étudier le refroidissement d’un plasma de quarks/antiquarks, les
baryons ne peuvent pas €tre négligés, méme si une forte mésonisation du systeéme est
attendue.

Cependant, si les mésons sont des particules composites formées par une paire quark-
antiquark, les baryons sont composés de trois quarks. Cela nécessite donc la modélisation
d’un systeme a trois corps. Comme évoqué dans le chapitre précédent, les équations de
Faddeev doivent étre prises en compte dans un tel travail [1, 2]. Mais, il a aussi été montré
qu’'une simplification de ces équations, consistant a prendre en compte uniquement le
« premier terme d’interaction », conduit a considérer un baryon comme un état li€ entre un
quark et un diquark [3-5]. Dans la littérature, des études utilisant cette approche ont été
publiées [6-8]. En outre, la modélisation des baryons a aussi été effectuée dans le cadre du
modele NJL, notamment avec cette approximation quark-diquark. Cela conduit a divers
travaux. Durant les années 90, des publications comme [9-14] peuvent €tre mentionnées.
Apres 2000, nous avons notamment [15-21]. Parmi les études effectuées, certaines d’entre
elles concernent I’estimation des masses des baryons a température et densité nulles, comme
dans [3]. Par exemple dans [15, 19], les baryons ont été étudiés a densités finies ...

En fait, le modele quark-diquark semble €tre particulierement intéressant dans la description
NJL, notamment parce que cela permet d’utiliser des fonctions de boucle comme fait
précédemment avec les autres particules composites. Clairement, nous avons vu au chapitre 3
que les mésons ont ét€ considérés par le biais d’une fonction de boucle quark-antiquark.
Concernant les diquarks, chapitre 4, nous avons simplement utilisé une conjugaison de charge
a ’antiquark pour mimer une boucle quark-quark. Une fonction de boucle constituée par un
quark et un diquark est possible ici. Cependant, c’est au prix une approximation
supplémentaire, connue sous le nom d’approximation statique [13]. Elle consiste a négliger la
quantité de mouvement du quark échangé par rapport a sa masse. Des études utilisant cette
idée ont été développées, comme [16—18] qui utilisent les diquarks scalaires pour calculer les
masses des baryons de I’octet, selon la température et la densité baryonique. Cependant, il est
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observable dans [16] quelques limitations de cette tentative, sous la forme d’instabilités
numériques sur certaines courbes. D un point de vue numérique, cela révele que les équations
a résoudre nécessitent des méthodes de calcul plus performantes que celles utilisées pour les
mésons.

Revenons a un point de vue physique. Il est souvent considéré que la modélisation des
baryons est traitée de maniere incomplete dans la littérature. Cela suggere des évolutions et
des modifications des travaux déja effectués. De plus, les baryons n’ont pas ét€¢ modélisés
dans le cadre du modele PNJL. Ainsi, il serait intéressant d’observer les effets de 1’inclusion
de la boucle de Polyakov. Avec les quarks, mésons et diquarks, cette modification du modele
induit un décalage des courbes vers les hautes températures. Concernant les baryons, il n’est
pas évident d’obtenir le méme résultat. D’autre part, les masses des baryons ont été étudiées
principalement selon la température, plus rarement selon la densité baryonique, mais pas dans
le plan T, p; complet. Clairement, il serait instructif de voir les limites de stabilité de certains

baryons, comme les nucléons. Aussi, grace au travail effectué dans le chapitre précédent, nous
avons la possibilité d’inclure les diquarks axiaux de la modélisation des baryons, comme
évoqué par exemple dans [11]. Cela pourrait permettre le traitement des baryons du décuplet.
De la méme maniere, en utilisant des anti-diquarks, nous pourrions étudier le comportement
des antibaryons.

Dans ce chapitre, en prenant en compte ces observations, nous proposons d’établir dans la
partie 2 les équations consacrées a modéliser les baryons. A cette occasion, I’approximation
statique est introduite dans notre travail et expliquée. Dans la partie 3, ces calculs théoriques
se focalisent sur I’étude de chaque baryon d’une maniere systématique. Plus précisément, les
composantes scalaires ou axiales en saveur de ces particules sont détaillées. Ensuite, la
partie 4 présente nos résultats numériques effectués a températures et densités finies. A cette
occasion, nous soulignons les différences entre les modeles NJL et PNJL. Cette partie inclut
notamment une étude de la masse du nucléon dans le plan T,p,, des diagrammes de

stabilité/instabilité des baryons étudiés, et une modélisation des antibaryons. Dans la partie 5,
des calculs des constantes de couplage impliquant les baryons sont présentés. Les équations
utilisées pour les mésons et les diquarks ne peuvent pas étre utilisées ici. En conséquence,
nous nous focalisons tout d’abord sur la méthode a appliquer. Nous présentons ensuite les
résultats obtenus. Dans la partie 6, les masses des baryons a température et densité nulles sont
étudiées, dans le cadre de la symétrie isospin, et au-dela de celle-ci. Ces résultats sont
comparés aux données expérimentales. Cela amorcera alors une discussion au sujet de la
fiabilité de notre approche, notamment en ce qui concerne les approximations utilisées. Notre
méthode est alors comparée a d’autres. Cela concerne évidemment les travaux que nous avons
cités, effectués dans le cadre du schéma quark-diquark avec le modele NJL, mais aussi les
travaux effectuées dans [22], c'est-a-dire n’utilisant pas les quarks pour décrire les baryons.

2. Présentation de la méthode employée

L’idée de base de notre modélisation des baryons est de revenir a une structure proche de
celles observées pour les mésons et les diquarks. En d’autres termes, la finalité est d’utiliser
I’équation de Bethe-Salpeter pour une diffusion quark-diquark. Cela veut dire que nous
devons étre capables de revenir a une description utilisant une fonction de boucle, mettant en
jeu un quark et un diquark. Notre maniere de procéder est résumée dans la figure 1. La finalité
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de cette partie est d’expliquer le passage d’une ligne a I’autre de cette figure, et de donner les
relations mathématiques associées. En fait, la méthode décrite ici peut &tre appliquée
directement a des cas « simples », comme la composante scalaire en saveur du nucléon. Les
adaptations a faire dans des cas plus complexes, comme le baryon A, seront expliquées dans
la partie 3, quand ces baryons seront décrits individuellement.

v

Figure 1. Schématisation de la modélisation des baryons.

2.1 Approximation statique

L’approximation statique [13, 16] évoquée dans I’introduction correspond au passage de la
seconde a la troisieme ligne de la figure 1. Gréice a cette approximation, nous pouvons revenir
a la structure de boucle voulue. Dans la pratique, cela consiste a « effacer proprement » les
quarks échangés visibles sur la ligne II de la figure 1.

gD'—qq” : f’ : ]‘—"

D/

<
\
Y)

7 As(7) 7 g

>
Yy

Y
<

gD—q”q' ’ f T

Figure 2. L’approximation statique.
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Nous prenons ensemble le propagateur du quark échangé S( /{ ) avec ses deux vertices

associés. Cela conduit tout d’abord a I’écriture suivante :

(gD—q”q' 'f'r)'S(/{)'(gD'—qq” 'f,'rf) :(gD—f/‘l' f .F).[ﬁ]'(g[);qq” .f,'r,) ' @
q

Le deux g représentent les constantes de couplage entre un diquark et une paire de deux

quarks. De tels termes ont été¢ étudiés dans les chapitres précédents. Aussi, les deux f

rassemblent des termes comme des facteurs de saveur (annexe C), ou des facteurs de couleur

[16, 18]. IIs incluent aussi les deux termes I'. Ces derniers correspondent aux matrices de

Dirac traduisant le type d’interaction, au niveau des vertices. Dans notre étude, nous

considérons des interactions scalaires ( y5) ou vectorielles ("), comme dans [7, 10, 11]. Les

autres interactions ne sont pas prises en compte, parce que nous avons vu que les diquarks
pseudo-scalaires et vectoriels ne sont pas de bons candidats pour former des baryons.

Dans le cadre de I’approximation statique, la quadri-impulsion du quark échangé est négligée
devant sa masse. Cela permet de remplacer le propagateur du quark échangé par un vertex
effectif. Celui-ci est matérialis€ par un point noir sur la partie droite de la figure 2. Nous
avons :

(gD—q”q"f'F)'[/;_lm J'(gD'—qq"f/‘F,)
q

i 7 4
~ o )| ——- s - 5
(gD ¢ )( qu (gD g’ ) 2)
’ i . 4
8p-'q 8D~ TS '(_m_}lzt si '=I"=7s
q
=Zpy g = .
, i : ,

4'gD—q”q"gD'—qq"'f'f .(__J.14 si I'=T" :7/.1

my

ou 1, estla matrice identité de dimensions 4x4 .

2.2 Description des équations

Maintenant, nous nous focalisons sur la troisieme et la quatrieme ligne de la figure 1. Le
vertex matérialisé par un point noir, impliquant deux diquarks et deux quarks, correspond au
noyau d’interaction a deux corps de I’équation de Bethe-Salpeter [3, 16]. Il est associé au Z
défini précédemment dans la description de 1’approximation statique :

8D-q"¢ " 8D"~qq" 3)

My

e = Z proportionnel a —i-

De la méme maniere, la boucle diquark/quark correspond a la fonction de polarisation des
baryons, aussi désignée sous le terme de fonction de boucle des baryons dans notre travail :
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La matrice de transition T est écrite, grace a I’équation de Bether-Salpeter, comme
T=Z+Z-I1-T. Comme avec les mésons, nous écrivons alors, dans le cas général :
Z

T:Z+ZHZ+ZHZHZ+ZHZHZHZ+...:1 TR (5)
Rigoureusement, (5) est vérifiée seulement si :
lim (1Z2)"=0. (6)

n—oo

Posons que Z soit égal a g> / m . Ensuite, g ne dépasse pas 4, voir chapitre sur les diquarks.
En outre, les masses effectives des quarks m sont supérieures a 16 dans le domaine dans
lequel les baryons seront étudiés. En conclusion, Z" est nécessairement proche de zéro quand
n est suffisamment grand. Pour ce qui est de IT, des tests numériques nous ont permis de
conclure que (6) est bien vérifiée. Alors, T est écrite comme :

Z Z

1
T= = .
1-TIZ  det(1-TIZ)

det(1-T1Z) @

r (com(1-TIZ)) proportionnel a

Pour obtenir la masse du baryon, il est nécessaire que T diverge. Par conséquent il nous faut :
det(1-T1Z)=0. &)

Pour les cas simples, IIZ est un nombre scalaire. Ainsi, pour un baryon de quantité de
mouvement & , (8) est équivalent a I’équation :

1_H(k0’]€)'Z:0 ko=/m> (E)z , K fixé ©)

ou m est la masse du baryon. Dans des cas plus complexes, I1Z est une matrice. Toutefois, la
relation (8) reste valide.

2.3 Fonction de boucle des baryons

Bien que structurellement proches des fonctions de polarisation des mésons et des diquarks, la
fonction de boucle de baryons IT est plus délicate a traiter, pour plus plusieurs raisons. Tout
d’abord, la fonction de boucle n’inclut pas un terme, mais deux. Cela est dii a 1’asymétrie
causée par le fait de considérer un quark et un diquark. Nous pouvons faire le choix de
prendre un quark et un diquark conjugué de charge. Mais, nous pouvons aussi considérer un
diquark et un quark conjugué de charge. Pour écrire notre fonction, nous devrions construire
celle-ci comme une combinaison linéaire de ces deux possibilités, figure 3 et équations (10,
11). Cependant, nous avons montré dans I’annexe D que ces deux composantes sont
strictement égales. En conséquence, c’est une fausse complication.
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C
S-S O
N 2 B
C
Figure 3. Les deux composantes de la fonction de boucle des baryons.
. . AR . - 1. . -
—1~H(1~Vm,k)=§~(—1~H(1)(l-Vm,k))+§~(—l~H(2)(1~Vm,k)) R (10)
avec
—i-H(D(i-Vm,§)=%-Zn]J(j;§3Tr(i-sq(i-wn,fa)-i-SDC(i-wn—i-vm,ﬁ—IE)) (11a)
—iH(Z)(i-vm,l?)=é-§J(j;’;3Tr(i-sD(i-a)n,ﬁ)-i-sqc(i-a)n—i-vm,,s—lé)) (11b)

Ensuite, nous devons prendre en compte que la fonction de boucle inclut un fermion (le
quark) et un boson (le diquark). Cela impose de réfléchir aux fréquences de Matsubara.
D’ailleurs, ce ne sont pas les mémes dans (11a) et (11b). Mais, pour ces deux composantes, la
fréquence totale i-v, est celle d’un baryon. Par conséquent, i-v,, est une fréquence
fermionique, c'est-a-dire un nombre impair. Dans 1’équation (11a), i-@, est la fréquence
associée au propagateur du quark. Donc, i- @, est fermionique. La fréquence de Matsubara du
propagateur du diquark doit alors étre bosonique. Cela est vérifié, puisque i-@,—i-v,,
correspond a cette fréquence : la somme ou la différence de deux fréquences fermioniques
(nombres impairs) donne nécessairement une fréquence bosonique (nombre pair). Dans
I’équation (11b), cette fois, i-@, est la fréquence associée au propagateur de diquark. Ainsi,

cela implique que celui-ci soit bosonique. La fréquence du propagateur du quark est
fermionique. En effet, elle est égale a i- @, —i-v,, : la somme ou la différence d’une fréquence
bosonique (nombre pair) avec une fréquence fermionique (nombre impair) est nécessairement
une fréquence fermionique (nombre impair).

Concernant les adaptations des équations causées par I’inclusion de la boucle de Polyakov,
nous continuons ici aussi d’appliquer l'idée évoquée dans les chapitres précédents.
Clairement, cela concerne 1’adaptation des statistiques de Fermi-Dirac pour les quarks et
antiquarks, en généralisant ainsi la méthode proposée dans [23] pour les mésons.

3. Etude de chaque baryon

Dans cette partie, nous effectuons une étude systématique de chaque baryon, en prenant en
compte les canaux d’interaction scalaires et axiaux. Cela donne alors deux composantes [7,
11], c'est-a-dire respectivement la composante scalaire en saveur et I’axiale. Pour chacune
d’elles, nous proposons d’écrire les diagrammes associés, comme ceux observables dans [4,
16]. Ensuite, nous étudions leurs fonctions d’onde, en nous inspirant de [6, 7, 18]. Finalement,
nous établissons les équations a résoudre pour trouver les masses des baryons, dans le cadre
des modeles (P)NJL.
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3.1 Nucléons: proton et neutron

La composante scalaire en saveur du proton est une des plus simples a étudier, figure 4. En
effet, elle concerne un quark u est un diquark scalaire [ud]. Le quark échangé est le quark d.

[ud] u [ud]
d d
u [ud] u

Figure 4. Composante scalaire en saveur du proton.

Dans la figure 4, un vertex traduisant I’interaction scalaire est indiqué par un point noir. La
fonction d’onde de cette composante est écrite comme un produit tensoriel associant un
quark u et un diquark [ud] [6, 7, 18] :

1 1
i
. =0|®—-4,-|1].
|P >sca1a1re 0 \/5 2 0 (12)
= -5
u [ud]

Une technique mnémotechnique pour comprendre cette fonction d’onde est de considérer que

I’espace des quarks est résumé en un vecteur colonne. Plus précisément, la premiere

composante est associée au quark u, la seconde au quark d, et la troisieme au quark s. Cette

idée peut €tre reprise pour les diquarks. Dans ce cas, nous devons prendre en compte deux
1

quarks. Ces derniers sont bien siir ceux qui constituent le diquark, d’out le | 1 | pour [ud].
0

Concernant la matrice 4, , le lecteur est invité a consulter I’annexe C. Plus précisément, un

parallele peut étre fait entre cette matrice et le facteur de saveur des vertices ou [ud]

apparait [6]. En appliquant la relation (9) dans le cas de la composante scalaire en saveur du
proton, nous obtenons 1’équation a résoudre pour trouver sa masse M ,. Pour un proton au

repos, nous avons :

2
. —2- 8ud
my

1-2 'H[ud],u(Mp’a)ZO . (13)

Maintenant, considérons la composante axiale en saveur. Comme indiqué par la figure 5, la
composante axiale est constituée par I'état [ud] . +u et par Pétat [uu] . +d. Dans cette

figure, les vertices matérialisé€s par des cercles indiquent des interactions axiales.
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[Ud] axial

>

>

[Ud] axial

\

Y

>

u

>

>

Y

u [UU] axial

>
>

u

O] >

[Ud] axial

Figure 5. Composante axiale en saveur du proton.

Cette combinaison linéaire entre ces deux états est trouvée dans I’expression de la fonction
d’onde associée a cette composante axiale, qui est écrite comme [6, 7] :

1 : 1 : 0 !
|p>axial: 5 0 ®Eﬂ’l =1 ®i'/1+1'/12' 0 s (14)
0 0| |0 0
— —_—
! [ud ]axial d [uu ]axial
avee |
(15)

/1ﬂ=¢\g.(zlii.,12) .

La méthode utilisée pour obtenir I’équation a résoudre, c'est-a-dire 1’équivalent de (13) pour
la composante axiale en saveur, sera expliquée avec le baryon A, dans le paragraphe 3.2.
Cependant, elle peut étre employée sans probleme avec les autres baryons. En fait, il sera
juste nécessaire d’y insérer les quarks et diquarks qui correspondent a la composante de
saveur voulue ...

Il est possible de refaire ce travail avec le neutron. Il suffit seulement de remplacer tous les u
par des d, en inversement, dans toutes les formules associées au proton. Evidemment, si la
symétrie isospin est appliquée, les résultats doivent strictement coincider. En effet, dans ce
cas, les quarks u et d sont similaires. Dans le cas général, la fonction d’onde de la composante
scalaire en saveur du neutron s’écrit comme :

o] 1
l
|n>scalaire: 1 ®$Zz 1 ’ (16)
0 0
==
[ud]
et la composante axiale en saveur est :
; 0 . 1 1 0
- : A7)
i =37 | ! &5 A 1]=[0/@id 2|1
0 0 0 0
— — — —
d [ud] . u [dd] .
axial axial
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3.2 Baryon A

Le baryon A est conceptuellement plus délicat a traiter. En effet, la fonction d’onde de ce
baryon résulte d’une combinaison linéaire de trois états distincts : u+[ds], d +[us] et s+[ud].

La figure 6 ci-apres décrit la composante scalaire en saveur :

[ds] d [ud] u
S u d
u [us] S [ds]

Figure 6. Composante scalaire en saveur du baryon A .

La fonction d’onde associée a la figure 6 est écrite comme [7, 18] :

| 0 1 0 1
| >scalaire :ﬁ. g ®l/17 1 + (1) ®lﬂ'5 (1) -2 (1) ®lﬂ«2' (1) (18)
—_— = — ——
@] 4[] 5 [ud]

Les vertices d’interaction entre les quarks et les diquarks qui composent le baryon sont
rassemblés dans le terme Z, qui est maintenant une matrice 3x3. Celle-ci se présente sous la

forme :

0
Zy=| 2™
ZSM

Zud
0
Z.S‘d

[ 0 8us 8ds 2 8ud 8as |
Zus n my
gds |_| Bus 8as 0 ~28ud Sus
0 ms mu
28,4845 2 8ud 8us 0
L my m,

(19)

Pour chaque constante de couplage g, les deux quarks mis en indice sont ceux qui forment le
diquark. Nous pouvons aussi noter le facteur —2, qui apparait devant les termes incluant g, ,

[16, 18]. Ce facteur est assimilé a

un facteur de saveur. En fait, ce facteur apparait aussi

dans (13). Comme avec Z, le terme II dans (8) est aussi une matrice 3x3. Celle-ci est

diagonale :

(20)
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ou IT, est la fonction de boucle des baryons impliquant le quark « et le diquark [ds]. Aussi,
I1, indique celui impliquant le quark d et le diquark [us]. Et, II; est celui incluant s et le
diquark [ud]. Dans cette configuration, la matrice de transition T est évidemment une matrice
3x3. Mais, T est toujours définie par I’équation de Bethe-Salpeter T=Z+ Z-I1-T. Stricto
sensu, (6) est alors réécrite comme T=Z(1-11Z )_1, puisque dans le cadre de calculs

matriciels, nous ne pouvons pas diviser par une matrice, mais nous pouvons multiplier par sa
matrice inverse. Dans tous les cas, I’équation det(1-IIZ)=0 (8) reste toujours valide.
Formellement, 1’équation a résoudre est la méme que celle vue précédemment, c'est-a-dire

quand Z et IT étaient des nombres scalaires. Mais, si nous explicitons les termes, en utilisant
(19, 20) dans (8), nous obtenons :

1-2-11, -TI, -TI, - 2% . 2% . 2% _11, -T1, -(zud)z—nu I, ~(z‘“)2—nd I, -(st)z =0 . (21

Le baryon A peut aussi avoir une composante axiale en saveur, décrite par le diagramme de
la figure 7. 1l est facile de remarquer la similarité avec la figure 6.

[ds] axial d [ud] axial u
Y s AU Y d
u [US] axial S [dS] axial
Figure 7. Composante axiale en saveur du baryon A .
La fonction d’onde associée est écrite comme [7] :
. 1 0 0 1 0 1
|A>am=ﬁ- 0[®Ag-|1|+|1|®A,-|0[-2[0|®A-1]] . (22)
0 1 0 1 1 0
== —_— == [ —] —— S —
! [dS ]axial d [MS ]axial s [ud ]axial

Par rapport a (18), les diquarks scalaires sont remplacés par des axiaux. En conséquence, la
nature des vertices est modifiée, comme les matrices utilisées dans (22). D’autre part, dans
I’équation a résoudre pour trouver la masse du baryon, c'est-a-dire 1’équivalent de (21), un
facteur 4 additionnel doit étre ajouté a chaque vertex. En effet, ces derniers traduisent ici une
interaction axiale, voir équation (2). Mis a part de ces différences, I’équation est
structurellement identique a (21). Ainsi, nous ne I’expliciterons pas a nouveau.
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3.3 Baryon X’

Le baryon x° est traité séparément de £~ et X, car la maniére de décrire ce baryon est trés
différente de celle des deux autres. Clairement, la structure des équations décrivant ce baryon

est assez proche de celle vue pour A . La seule différence entre A et £ est que ce dernier
n’inclut pas de terme associé a la boucle formée par s et [ud], figure 8. Cette remarque est

valide pour les composantes scalaires et axiales en saveur.

[us] u [us]
s S
d [ds] d

Figure 8. Composante scalaire en saveur du baryon 0.

En revanche, la fonction d’onde est assez différente de celle vue équation (18) [16, 18] :

1 0 0 1
‘z°> =Lllo|®@ir,-|1]-|1]@iz|0]] . (23)
scalaire 2 0 | 0 1
= 0 = =T
u [ds] d [us]

en raison du terme de normalisation (1/2) et du signe moins au centre de 1’équation. Malgré
cela, I’équation donnant la masse du baryon est facile a trouver. Nous utilisons ce que nous
avons fait pour A, et nous écrivons [18] :

0 —8u,s " 8d.s 0
0o z“ 0 s m, 0 0
Zo=|2% 0 o= Husfds 0 0| et =/ 0 1, 0
0 0 0 s 0 0 0

0 0 0

de sorte que I’équation a obtenir s’écrit, en partant de det(1-I1Z)=0 (8), comme :

1—Hu-nd-(z”d)2=o . (25)

La composante axiale en saveur de £° est obtenue exactement de la méme maniére. En effet,
celle-ci est structurellement identique a la composante scalaire en saveur du baryon, voir
figure 9 et sa fonction d’onde (26).
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1 0 0 1
‘z°> _Llolea1|-|1]|®a, |0
axial 2
0 1 0 1
wfas| 4 fus]
u [ds]aXlal [ ]axial
[US] axial u [US] axial
Y s A S
d [ds] axial d

Figure 9. Composante axiale en saveur du baryon 0.

3.4 Baryons X' et X~

(26)

La forme des équations décrivant ces deux baryons rappelle fortement ce qui a été fait pour
les composantes scalaires en saveur des nucléons. Nous pouvons le voir sur la figure 10

pour X* : il suffit de remplacer le quark d du proton par le quark s.

[us] u [us]

> >

> [

Y

> >

»

Yy
Y

Y o

u [us] u

Figure 10. Composante scalaire en saveur du baryon .

La fonction d’onde s’écrit comme :

1 1
E+> =0®L.15.0 ,
scalaire
0 2 1
—_  —
u [1as]
et I’équation a résoudre est :
2 guxz N —
1-2- T, (Mg ,0)=0

27)

(28)
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Une composante axiale en saveur peut aussi étre considérée. Selon la figure 11, elle a la
méme structure que son équivalent scalaire. Les diquarks scalaires sont seulement remplacés
par leurs équivalents axiaux. Cela entraine bien s{ir une mise a jour des vertices.

[US] axial u [US] axial

> O > Q0 >
> >

Yy
Y

> Q

u [us] axial u

Figure 11. Composante axiale en saveur du baryon X*.

Ainsi, comparé a (27), seul le terme matriciel est modifié dans 1’expression de la fonction
d’onde [7] :

1 1
1
=) [0 o5 M (1’ : (29)
“ [us]axial

Pour obtenir ¥, tous les u sont remplacés par des d. Cela conduit aux deux fonctions d’onde
qui correspondent aux deux composantes en saveur :

U 0 0 1
—_ l _
7 e =| ! o5 M i et [£7) = (1) ® = As|1) (30)
et | ——— - =
¢ [dS] d [ds]axial

3.5 Baryons =

La maniere de décrire ces baryons est trés proche de celle que nous avons vu pour les
£ + : - A
nucléons et £*. En effet, la composante scalaire en saveur de Z° est composée par un seul

terme, figure 12.

[us] S [us]
§ > i
u u
> $ >
S [us] s

Figure 12. Composante scalaire en saveur du baryon =0,
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En conséquence, la fonction d’onde de la composante scalaire est écrite comme :
0 1

Eo>scalaire: 0 ®L'/15' 0

2 1

S )

L’équation a résoudre pour trouver la mase est :

I—QI—M-H[MS]’S(MEO,())=O .

m,

(31

(32)

z +
Par rapport aux nucléons et aux baryons £~, nous n’avons pas le facteur 2 devant le terme

2.g 2 ) . . .
Z2 8w Comme avec les nucléons, la composante axiale en saveur inclut deux termes, voir
mbt
figure 13.
[us] axial u [us] axial S
3 0 I o) 3 0 >
Y s A s Y u
> Y § ¢ - Y (<
S [SS] axial S [US] axial

Figure 13. Composante axiale en saveur du baryon =0,

Par conséquent, nous avons [6, 7] :

. 0 . 1 1 0 0
=0 R . _ .
H>am1 NSRRI 0
1 1| o NRE
— = | ———— — = \
* [us]a"ial ! [Ss]axial

Pour Z~, nous remplagons les u par des d, ainsi nous obtenons :
0] 0
“lol®_L. A1,

)
scalaire | \/E 1

REEPY

——
(]
—

(33)

(34)
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et:
. 0 | 0 0 0 0
= >axial - 5 0 ®$ﬁ6 INERE 0 190 (35)
1 1] |o NARE
—— | ——— —— k
g [ds ]axial d [ 58 ]axial

3.6 Baryons A

Les baryons A et Q sont traités par une seule composante, c'est-a-dire la composante axiale
en saveur. En effet, si nous considérons ces baryons comme un état lié¢ quark-diquark, les
diquarks doivent avoir des fonctions d’onde symétriques en saveur, car nous avons besoin ici

de diquarks comme [uu].[dd],[ss]. Seuls les diquarks axiaux peuvent satisfaire cette
contrainte [7], comme observé dans le chapitre précédent. D’autre part, si la symétrie isospin
n’est pas considérée, nous avons quatre baryons A différents: A*Y, AT, A" et A°.
Commengons par A", voir figure 14.

[uu] axial u [uu] axial
3 C > ) 3
Y uUu A U
> Q 3 0} >
u [uu] axial u

Figure 14. Composante axiale en saveur du baryon A*".

Selon ce que nous avons vu plus haut, la fonction d’onde associée est écrite comme [7] :

1 1
i
A7) =0 ®—= A A0 . (36)
0 0
u [uu]axial

et I’équation utilisée pour obtenir la masse du baryon est :
(M,...0)=0 . (37)

Un facteur 4 est présent, en raison du canal d’interaction scalaire. Le baryon A~ est obtenu a
partir de ce que nous avons vu pour A", par un remplacement des u par d. Il vient :
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o] 0

‘A‘>: 1 ®L2-,1_1~/12~ 1] . (38)
0 0
d [,

N

Pour A", nous avons a prendre en compte une combinaison linéaire de deux termes,
figure 15.

c

[Ud] axial d [Ud] axial

> >

>
> Q >

Y
Yy

u [uu] axial u [ud] axial

Figure 15. Baryon A" .

Mais, ce diagramme correspond exactement a la composante axiale en saveur du proton. Par
conséquent, la fonction d’onde du baryon A" est identique a celle écrite équation (14).

Pour le baryon A°, nous remplagons les u par des d, et inversement, dans la figure 15. Cela
correspond a la composante axiale en saveur du neutron, et ainsi la fonction d’onde associée
est identique a (17).

3.7 Baryon Q

Le baryon Q~ peut étre modélisé comme une association d’un quark s et d’un diquark
axial [ss]. Evidemment, le quark échangé est un quark s, comme représenté sur la figure 16.

[sS] axial S [sS] axial

[ (O,
>

/
)
o

>
>

O]

\

Yy
\

S [ss] axial S

Figure 16. Baryon Q.

La fonction d’onde associée a ce baryon est écrite comme :
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0 . 0 0
‘Q‘>: 0| 0 1ol , (39)
1 N
g [Ss]axial
et I’équation a résoudre est :
—2-4 8552 0=
L T (M, .0)=0 . (40)

S

4. Résultats a températures et densités finies

Dans nos résultats numériques, nous avons noté que les baryons de I’octet peuvent étre
correctement décrits uniquement par leur composante scalaire en saveur. En fait, méme s’il a
été possible d’inclure la composante axiale en saveur, comme dans [7], nos résultats
numériques ont montré que cette contribution peut €tre négligée dans la description (P)NJL
que nous avons effectuée ici. De la méme maniere, les baryons du décuplet ont ét€ modélisés
en utilisant leur composante axiale en saveur.

D’autre part, comme dans les chapitres précédents, nos calculs a températures et densités
finies ont été effectués avec le jeu de parametre P1. Cela veut dire que nous avons considéré
la symétrie isospin. En fait, avec les baryons de I’octet et du décuplet, nous avons ainsi a
traiter 18 baryons. Grace a la symétrie isospin, certaines masses de baryons sont dégénérées.
En conséquence, le nombre de courbes a tracer est de fait réduit. Cela évite de surcharger nos
graphes.

4.1 Octet de baryons

Comme indiqué dans D’introduction, certains travaux NJL liés a l’octet de baryons a
températures et densités finies sont disponibles dans la littérature, comme par exemple [16—
18]. Ces références ont utilis€ la composante scalaire en saveur pour décrire 1’octet de
baryons. IlIs n’ont pas modélisé les diquarks axiaux, donc ils n’ont pas inclus la composante
axiale en saveur. Concernant les résultats PNJL, nous rappelons que la modélisation des
baryons dans le modele PNJL n’a pas été traitée dans la littérature avant notre travail.

Nos résultats sont présentés dans les figures 17 a 19. Dans la figure 17, nous étudions les
masses des baryons en fonction de la température, a densité nulle, alors que dans la figure 18,
les masses sont calculées a densités finies, avec 7 =0. Dans ces figures, dans 1’ensemble, les
masses diminuent quand la température augmente, jusqu’a ce que les baryons atteignent leurs
limites de stabilité. Cependant, en fonction de la densité, il est aussi observé que les masses
atteignent chacun un minimum, et ensuite ré-augmentent. Ce comportement intervient
notamment pour les nucléons, E et A . De maniere générale, les baryons de I’octet sont plus
sensibles a la densité baryonique qu’a la température. La diminution de la masse en fonction
de ce parametre est inférieure a 20 % dans les modeles NJL et PNJL. Le taux est proche de
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30 % en fonction de la densité baryonique. Aussi, dans notre description, la masse des
nucléons est égale a 897.5 MeV a densité nulle. A la densité nucléaire ordinaire p,, la masse

est de 724.4 MeV. Cela conduit a un rapport M (pg =p,)/My (ps =0)=0.8, alors que [22]

propose une valeur de 0.6. En conséquence, on s’attend a ce que la décroissance de la masse
du nucléon en fonction de la densité baryonique soit plus forte que dans notre approche. Nos
résultats NJL peuvent étre comparés a certains de [16—18]. Notamment avec I’étude selon la
densité baryonique, nous notons que nos courbes ne présentent pas les défauts observables
avec ces références, notamment avec [16], caractérisés par de fortes instabilités numériques.
Une autre différence concerne les masses obtenues a températures réduites, notamment
avec . Notre choix de la constante Gp,, dans le jeu de parametre utilisé explique ladite

différence. En fait, notre choix semble étre meilleur en ce qui concerne le comportement
de £. En effet, tous nos baryons ont une température critique et une densité critique,
figures 17, 18, alors que cela ne semble pas étre le cas pour le E traité dans [16-18].

Modele NJL Modele PNJL
1600 1600
1400 1400 ===
0, v
1200 1200F= '/'\'““““\‘--“\\ \
—~ —~ \Q\ - —g ~ —S_ - -
> 1000 3 1000F ~ -~ - —------ x [asl+s ~
g ?, z \\ Vo=
» 800 o soob Nucléon u [ud] +s
2 2 PR
\ S
8 600 & oo} , foslva
= = -7
400 400} [ud] +q
200 200}
0 0
0 100 200 300 400 0 100 200 300 400
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Figure 17. Masses des baryons de I’ octet en fonction de la température.

Plus précisément, concernant Z, nous avons trouvé que ces particules sont les baryons de
I’octet qui tolerent le mieux la température et la densité baryonique. En effet, ils ont les
températures et densités critiques les plus fortes. Les E sont constitués globalement par deux
quarks étranges s et par un seul quark léger. Cela explique cet exces de stabilité par rapport
aux autres baryons. En effet, les quarks étranges s sont moins sensibles a 7, p; que les quarks
légers. Cependant, 1’énergie de liaison de = est toujours faible. Nous rappelons que 1’énergie
de liaison peut étre trouvée en comparant les valeurs données par les courbes de [gs]+s et

de =.

Concernant les baryons X, les courbes associées 2 £°,£* sont strictement dégénérés, quelle
que soit la température ou la densité baryonique. Dans le cadre de la symétrie isospin, un tel

résultat est parfaitement valide. Cependant, les équations utilisées pour traiter les baryons x°
et ¥* sont différentes, paragraphes 3.3 et 3.4. Ainsi, il n’était pas évident d’obtenir
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exactement les mémes résultats. Cette remarque sera aussi valide pour les baryons du décuplet
»%,x" . D’autre part, les énergies de liaison des baryons ¥ sont toujours assez modestes.

Pour le baryon A, nous avons vu dans le paragraphe 3.2 que sa fonction d’onde est décrire
par trois états distincts ([ud]+s, [us]+d et [ds]+u ). Dans le cadre de la symétrie isospin, les
deux derniers sont dégénérés, ainsi nous avons les états [ud]+s et [gs]+q. Cela entraine

«deux températures critiques » et « deux densités critiques » pour ce baryon. En d’autres
termes, le phénomene est présent selon la température et la densité baryonique, voir
respectivement les figures 17 et 18. Quand la courbe de A coupe tout d’abord la courbe de
[gs]+ ¢, le A devient instable par rapport a cet état. Mais, il reste stable par rapport a 1’état
[ud]+ s, jusqu’a ce qu’il coupe la courbe associée. Apres cela, le baryon devient instable.

Dans les figures, la « double transition stable/instable » est observable par une croissance
rapide de la masse de A, entre les courbes de [gs]+q etde [ud]+s.

1600

1400

1200

V)

© 1000F

Figure 18. Masses des baryons de I’octet en fonction de la densité baryonique.

Dans le cadre de notre travail, nous rappelons que I'instabilité d’un baryon est associée a sa
désintégration en un quark et un diquark. Cela n’inclut pas la désintégration en un autre
baryon. D’autre part, dans nos résultats liés aux baryons, nous nous sommes focalisés sur
I’étude de leurs masses dans leur zone de stabilité, et pas dans celle d’instabilité. En fait, les
équations de nos baryons ont été construites en utilisant I’approximation proposée dans [24].
Elle consiste a négliger la partie imaginaire du terme k, voir (9), utilisé en tant qu’argument
de la fonction B,. Dans le cadre des baryons, cette approximation interdit de travailler dans la
zone d’instabilité des baryons, comme expliqué dans le paragraphe 5.3 de I’annexe D.
Clairement, des calculs de ce type nécessitent d’effectuer des intégrations utilisant des
nombres complexes. Certaines versions de nos algorithmes numériques effectuent de telles
intégrales.

D’autre part, les figures 17 montrent que 'inclusion de la boucle de Polyakov entraine le
décalage déja observé vers les hautes températures. En fait, nous confirmons que cette
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distorsion de la courbe n’altere pas les valeurs trouvées : par exemple, le comportement de A
décrit plus haut peut étre trouvé dans les modeles NJL et PNJL, figure 17. Dans le cadre du
modele PNJL, a densités réduites, les masses des baryons restent constantes dans un domaine
en température large d’environ 200 MeV, comme pour leurs constituants (quarks et diquarks).
Aussi, les températures critiques sont décalées vers des valeurs plus fortes. Concrétement,
elles sont localisées apres 260 MeV pour les courbes PNJL, c'est-a-dire 20 MeV en plus par
rapport au modele NJL. En conséquence, les zones de stabilité sont augmentées sous 1’effet de
la boucle de Polyakov. Cette observation est confirmée par la figure 19, dans laquelle la
masse du nucléon est estimée dans le plan 7, pg, dans sa zone de stabilité, pour les modeles
NJL et PNJL. Dans cette figure, nous pouvons estimer de maniere concrete 1’extension de la
zone de stabilité causée par la boucle de Polyakov. 1l y est aussi confirmé que les approches
NJL et PNJL coincident a température nulle, quelle que soit la densité baryonique. D’autre
part, comme pour les quarks dans le chapitre 2, nous confirmons aussi que la boucle de
Polyakov agit seulement selon la température, et pas selon la densité. Une figure comme la
figure 19 est aussi un test pertinent en ce qui concerne la stabilit¢ de notre méthode
numérique. Nous concluons que le test est trés positif, car aucun défaut n’est observable sur
les graphes, comme des discontinuités ou autres comportements pathologiques.
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Figure 19. Masse du nucléon dans le plan 7 — pp .

4.2 Décuplet de baryons

Dans le cadre des modeles (P)NJL, I’étude des baryons du décuplet a températures et densités
finies effectuée ici peut étre considérée comme nouvelle par rapport a la littérature. En fait,
des estimations des masses de ces baryons ont été effectuées a T =0, pg =0, par exemple
dans [3]. Mais, ces données seront considérées plus tard, dans la partie 6. Nos résultats sont
exposés dans les figures 20 et 21. Clairement, le décuplet de baryons présente des différences
par rapport a ceux de l’octet. Les variations de masse selon la température sont faibles,
figure 20. Les masses des baryons A tendent a augmenter quand la température croit, alors
que nous avions trouvé une décroissance pour les baryons de 1’octet. Mais, comme pour ces
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derniers, les masses des baryons du décuplet diminuent quand la densité baryonique
augmente, figure 21. Concernant les résultats NJL, des valeurs tres disparates ont été trouvées
pour les températures et densités critiques. Les températures critiques des baryons du décuplet
sont globalement plus faibles que celles trouvées pour 1’octet de baryons. De maniere
générale, les baryons les plus l1égers, comme A, sont clairement les plus fragiles selon 7, pg .
En revanche, le baryon Q est le plus résistant : sa température critique est comparable a celles
des baryons de 1’octet. En outre, ce baryon est manifestement trop stable pour admettre une
densité critique a température nulle, au moins dans notre domaine d’étude, voir figure 21. Les
comportements de ces baryons sont reliés a ceux des diquarks [gq] et [ss] qui les constituent.

D — A z N
D’autre part, concernant les baryons E , nous observons le méme phénomene de « double
transition » que celui observé pour A, entre les courbes [ss]+q et [gs]+s.

Modele NJL Modele PNJL
1800F 1800
1600 1600
> >
(0] ) ()
g 1400f \Ef 1400
()] (%)
(O] o
% 1200F % 1200
= =
1000} 1000
[Ss]axial+q
800 i i i i i 800 i i i i i
0 50 100 150 200 250 300 0 50 100 150 200 250 300
T (MeV) T (MeV)

Figure 20. Masses des baryons du décuplet en fonction de la température.
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Figure 21. Masses des baryons du décuplet en fonction de la densité baryonique.
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Dans le modele PNJL, mis a part le comportement déja observé pour les particules
précédentes, nous prouvons souligner le fait que la zone de stabilité des baryons A est
fortement augmentée par 1’ajout la boucle de Polyakov. Plus précisément, pour ces baryons,
nous avons une température critique proche de 125 MeV dans le modele NJL, contre 225
MeV avec PNIJL. En outre, si la dispersion des températures critiques est forte pour les
baryons NJL du décuplet, cette dispersion est réduite avec le modele PNJL.

4.3 Autres résultats

Afin de compléter les résultats trouvés dans les paragraphes précédents, nous proposons ici
d’étudier les antibaryons et d’établir les diagrammes NJL de stabilité/instabilité pour les
baryons traités. Comme expliqué dans le chapitre précédent avec les diquarks, 1’utilisation de
la symétrie matiere-antimatiere rend possible d’étudier des antiparticules. Pour un antibaryon,
I’astuce consiste a admettre que le comportement d’un baryon a une densité de —p, est le

méme que celui de son antibaryon correspondant a pj, et inversement. Nos résultats pour les

baryons/antibaryons de 1’octet et du décuplet sont exposés figure 22. Pour ces particules, les
couples baryons/antibaryons sont strictement dégénérés a densité nulle. Quand la densité est
non nulle, pour tous les couples baryons/antibaryons, la masse de 1’antibaryon est toujours
plus forte que celle de son baryon correspondant. Comme escompté, cela révele que les
antibaryons sont moins stables que les baryons a densités positives. En fait, en raison de
I’instabilité des antibaryons pour ce régime, cela explique pourquoi notre domaine en densité
baryonique est si réduit dans la figure 22. La tendance générale est que la différence de masse
entre un baryon et son antibaryon croit rapidement si le baryon est composé par des quarks
légers. Cette remarque est particulicrement vraie avec les nucléons et les anti-nucléons.
D’ailleurs, pour cette antiparticule, I’augmentation de sa masse est si forte que 1’anti-nucléon
devient instable quand pj; =0.1p, . Dans la figure 22, les pointillés indiquent que les données
ont été trouvées dans sa zone d’instabilité. A cette occasion, nous avons utilis€ une méthode
numérique légerement différente que celle que nous utilisons d’habitude, en effectuant des
intégrales avec des nombres complexes, comme évoqué précédemment.
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& 1000 "" Nucleon S 1500 B
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—= k —%
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i i i i i 1300 i i i i i
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Figure 22. Masses des baryons et des antibaryons en fonction de la densité baryonique.
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Dans le chapitre précédent, nous n’avons pas modélisé les anti-diquarks [gq] a densités finies
(pour T=0), car ils étaient trop instables. Par conséquent, nous n’avons pas considéré
I’antibaryon A dans les figures 22, 24. A I'opposé, les [ss] et m sont toujours dégénérés,
quelle que soit la densité baryonique. Ce comportement est aussi observable pour les
baryons/antibaryons Q,Q, dans la figure 22. Dans la figure 24, cela conduit a une symétrie
parfaite de la courbe de Q selon I’axe p, =0. Nous rappelons que les quarks étranges, et par

extension [ss| et Q, sont seulement affectés par la valeur absolue de la densité baryonique.

Dans la figure 23, nous avons établi le diagramme NJL de stabilité/instabilité pour les baryons
de I'octet, alors que dans la figure 24, nous nous intéressons au diagramme NJL pour les
baryons du décuplet, sauf pour A. Comme trouvé avec les diquarks, les courbes des baryons
présentent une asymétrie par rapport a l’axe pz =0, sauf pour Q. Cela confirme les
observations faites pour la figure 22 : les baryons sont plus stables a densités positives qu’a
densités négatives. Concernant les baryons qui présentent « plusieurs transitions », comme les

A et ", la courbe indique la limite pour laquelle fous les états qui composent les baryons
sont stables, c'est-a-dire la « premiere » transition sur les figures 17, 18, 20, 21. Sur les deux
figures, les courbes pointillées correspondent aux diquarks. Elles permettent de remarquer
que, pour tous les baryons traités, la limite de stabilité d’un baryon est atteinte avant que le ou
les diquarks qui le composent deviennent instables. Ce point sera discuté plus tard dans ce
chapitre.
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Figure 23. Diagramme NJL de stabilité/instabilité pour I’octet de baryons.

En fait, avec les résultats obtenus pour les baryons, nous observons que les masses des
baryons, ou leurs limites de stabilité, sont strictement continues selon la densité baryonique,
positive ou négative. C’est un signe positif en ce qui concerne la fiabilité de notre approche.
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Comme on s’attend a ce que les baryons de I’octet interviennent dans le modele d’évolution
dynamique effectué dans le chapitre 7, un résultat différent a ce niveau aurait été€ inacceptable,
physiquement ou numériquement.
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Figure 24. Diagramme NJL de stabilité/instabilité pour le décuplet de baryons.

5. Constantes de couplage

5.1 Etablissement des constantes de couplage des baryons

Comme avec les autres particules composites étudiées précédemment, les constantes de
couplage mettant en jeu un baryon peuvent €tre considérées. Cependant, la méthode a
appliquer est plus délicate pour les baryons. En effet, nous avons vu avec les mésons et les
diquarks que la matrice T obtenue pouvait étre associée a un propagateur (P)NJL. Celui-ci
pourrait &tre comparé au propagateur traditionnel, c'est-a-dire celui trouvé dans le cadre de la

avec les mésons. En fait, ce

1
k* —m?
dernier et le propagateur (P)NJL sont scalaires. Comme avec les baryons, nous devons
remarquer la nature scalaire de la fonction de boucle utilisée. En conséquence, la matrice T, et
donc le propagateur (P)NJL sont aussi scalaires, alors que le propagateur du baryon obtenu

avec la théorie quantique des champs (propagateur « libre ») est un quadrivecteur, c'est-a-dire
¥ +m
k> —m?

permettant que valider 1’équation (8). Cet aspect n’a pas de conséquence sur la fiabilité de la

théorie quantique des champs, comme par exemple

. Cependant, la divergence est aussi vérifiée avec ce dernier propagateur, nous
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méthode [16-18], mais cela impose certaines précautions dans les calculs associés aux
constantes de couplage.

Plusieurs solutions sont possibles pour établir I’expression des constantes de couplage des
baryons. Mais, dans tous les cas, il semble nécessaire de procéder a une approximation. Par
exemple, une méthode simple consiste a considérer la trace du propagateur « libre » du
baryon, et ensuite d’établir I’équivalence avec le propagateur (P)NJL. Pour un nucléon, cela

conduit a I’expression :
2

- ‘
m
q =iG-| Tr M lG, (41)
g2 _ k2_m 2
1+4-5— 11 ko, k) B k2=,
g kzszz

dans lequel my est la masse du nucléon et G est la constante de couplage voulue. Ensuite,

nous appliquons la méme méthode que dans les chapitres précédents. Clairement, nous
inversons tout d’abord 1’équation (41), nous dérivons par rapport a k, et finalement nous

posons k, =m, k =0. Finalement, nous obtenons la relation :
1

oI1(ky.0)

Yo

|

(42)

ko=mp

Dans cette écriture, la dérivée de IT par rapport a k, a été trouvée négative numériquement,
conduisant a Ge C. Mais, seul |G| est utilis€é dans les calculs. Par conséquent, ce

comportement est sans conséquence sur les résultats. Concernant les autres baryons, nous
n’avons besoin que de reprendre (41) et de remplacer D par celui du baryon considéré. Pour
les baryons décrits par une combinaison linéaire entre plusieurs états distincts, comme A, il
est nécessaire de considérer chaque état séparément.

5.2 Résultats

Nous avons obtenu les données présentées dans les figures 25 a 28. Les figures 25 et 26
concernent les baryons de 1’octet, alors que les figures 27 et 28 sont associées a ceux du
décuplet. Pour les mésons et les diquarks, sauf pour 7, il a été observé que les constantes de

couplage sont assez constantes a températures modérées. Ensuite, les courbes décroissent,
tendent vers zéro pour la température critique, et ensuite ré-augmentent quand la particule
devient instable. Un comportement similaire a été observé aussi selon la densité baryonique
quand la particule présente une transition stable/instable selon ce parametre. Concernant les
baryons, nous rappelons que nous les avons étudiés jusqu’a ce qu’ils atteignent leur limite de
stabilité. Par conséquent, seule une partie de la courbe est représentée sur nos résultats. Selon
la température, certaines courbes des baryons correspondent a cette description, c'est-a-dire

9

une décroissance jusqu’a zéro des constantes de couplage. Cependant, comme pour ‘g Aud]s

, les courbes ont un comportement différent. Pour la premiere, la courbe ne tend pas

‘g E{gs]s
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vers zéro. Concernant la seconde, la courbe admet un maximum avant d’atteindre la
température critique. Un tel comportement est aussi observé pour certains baryons de 1’octet,
selon la densité baryonique, figure 26. Cette remarque est particulierement vraie pour

, pour laquelle le maximum est particulicrement spectaculaire. En fait, ces

gnucle()n—[ud]q

maximums correspondent aux densités pour lesquelles les masses des baryons sont stables,
comme visible sur la figure 18. Plus précisément, une constante de couplage admet un
maximum quand la masse du baryon présente un minimum selon pg, ou au moins une

stabilisation de la masse.
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Figure 25. Constantes de couplage des baryons de I’octet en fonction de la température.
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Figure 26. Constantes de couplage des baryons de 1’octet en fonction de la densité baryonique.

Concernant les baryons du décuplet, nous pouvons souligner que la figure 27 confirme nos
observations faites dans le paragraphe 4.2, c'est-a-dire que 1’effet de la boucle de Polyakov
conduit a un décalage des températures critiques, mais aussi tend a rassembler les
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températures critiques des baryons. D’autre part, les courbes ‘gw* présentent un aspect

‘[SS]‘Z‘
intéressant, selon la température ou la densité baryonique. En effet, c’est le seul baryon pour
lequel nous avons obtenu des valeurs apres g — 0, c'est-a-dire quand les courbes remontent.
Clairement, nous avons trouvé 1a un comportement similaire a celui obtenu pour les mésons et
les diquarks en régime instable. Un tel résultat est visible pour = en raison de sa « double
transition stable/instable » associée a ces deux états [ss]+q et [gs]+s, voir figures 20, 21. En
outre, I’intervalle entre les transitions est assez large, selon 7 et pg, pour rendre ce

phénomene tres visible dans les figures 27 et 28. Le méme comportement aurait dii étre
observé pour A . Mais, cela n’a pas été le cas dans les figures 25 et 26, parce que I’écart entre
les deux transitions est la par contre trop faible, selon la température et la densité.
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Figure 27. Constantes de couplage des baryons du décuplet en fonction de la température.
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Figure 28. Constantes de couplage des baryons du décuplet en fonction de pg, avec T =0.
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6. Masses a température nulle et densité nulle

6.1 Présentation des résultats

Afin de comparer qualitativement nos résultats avec ceux de la littérature, nous rassemblons
dans le tableau 1 les masses des baryons trouvés a température et densité nulles. Comme nous
I’avons fait pour les mésons et les diquarks, nous avons utilisé le jeu de parametres P1 pour
trouver nos résultats dans le cadre de la symétrie isospin, et avec le jeu de parametres EB, qui
ne respecte pas cette symétrie. Concernant les données trouvées dans la littérature, nous
pouvons mentionner [3, 16] qui ont fait usage du modele NJL. D’autres études théoriques qui
ont modélisé des baryons sont par exemple [6, 7, 22]. Pour ce qui est de la symétrie isospin,
les valeurs proposées dans le cadre de la Quantum Molecular Dynamics (QMD) [27]
constituent aussi une source intéressante de données. Celles-ci sont reproduites dans
I’annexe A. D’autre part, des valeurs expérimentales peuvent étre trouvées dans [25, 26].

Elles correspondent a la colonne de droite dans le tableau 1.

Résultats Résultats Valeurs
obtenus (P1) obtenus (EB) expérimentales
Baryons Masses Masses Masses Largeurs
de niveau
proton uud 897.46 887.11 938.3 0
neutron udd 897.46 884.76 939.6
A uds 1163.83 1119.45 1116
¥t uus 1204.72 1148.91 1189
Octet 50 uds 1204.72 1151.22 1193
Y dds 1204.72 1153.52 1197
=0 uss 1410.44 1332.36 1315
= dss 1410.44 1335.37 1321
ATt uuu 1215.64 1211.62 1232 120
A" uud 1215.64 1212.55 1232 120
A udd 1215.64 1213.34 1232 120
A ddd 1215.64 1214.19 1232 120
3 b uus 1377.96 1336.08 1383 36
Décuplet ‘
¥ 0 uds 1377.96 1336.96 1384 36
Y- dds 1377.96 1337.81 1387 39
=*0 uss 1569.55 1512.74 1532 9
= dss 1569.55 1514.73 1535 10
Q- 5SS 1769.54 1674.88 1672

Dans le cadre de nos résultats numériques, nous avons fait le choix de traiter les baryons de
I’octet par leurs composantes scalaires en saveur, et les baryons du décuplet par leurs

Tableau 1. Masses des baryons, a température et densité nulles, en MeV.
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composantes axiales. Les données obtenues prouvent que ce choix était judicieux car 1’accord
est bon entre nos valeurs et celles d’autres études ou des données expérimentales.

Pour les valeurs P1, nous observons que ces résultats sont du bon ordre de grandeur. Nous
n’avons pas obtenu de valeurs aberrantes. Ces données sont comparables a celles de [3]. Afin
de quantifier I’exactitude de ces résultats, nous pouvons utiliser les relations de Gell-Mann—
Okubo, améliorées dans [28] :

2-(my +mg)=3my, +m2+%-(mN +my —2my, )
(43)

Nous obtenons une variation inférieure a 1 % pour la premiere relation, et moins de 4 % pour
la seconde. De plus, si nous comparons les données avec celles de [27], les variations sont
respectivement de moins de 0.4 % et de moins de 0.91 %. Cependant, la masse des nucléons

est sous-estimée dans notre approche, alors que les masses des £ semblent €tre surévaluées.
A I’opposé, I’accord est meilleur pour les baryons du décuplet.

Concernant le jeu de parametres EB, I’abandon de la symétrie isospin conduit a une
amélioration de la précision pour certains baryons. Ce phénomene est particulierement visible

pour les baryons de 1’octet : la surestimation des Z par le jeu de parametres P1 est corrigée
par EB. Cependant, les valeurs obtenues avec P1 sont 1égerement meilleures que celles de EB

pour certains baryons du décuplet, comme X, sauf pour Q. En effet, la masse de ce baryon
obtenue avec le jeu de parametres EB est trés proche de la valeur expérimentale : 1’erreur est
inférieure a 0.2 %.

D’autre part, I’abandon de la symétrie isospin induit I’apparition d’une « hiérarchie » entre les
baryons qui étaient dégénérés quand m, =m,. Cette hiérarchie en masse est notamment

visible pour les baryons A. Méme si ce phénomene n’est pas observé expérimentalement,
cela reste assez cohérent. En effet, m, <m,, donc il apparait physiquement admissible de

trouver m,.. <m,, <m,, <m,_, en raison de leur composition respective en quarks u et d,

x
voir tableau 1. Ce raisonnement marche aussi avec £*.2°,¥7, avec E°,Z7, et avec leurs
équivalents du décuplet. Dans ces cas 1a, la hiérarchie en masse est confirmée par les données
expérimentales. Cependant, ce raisonnement ne marche pas pour le proton et le neutron. Pour
eux, nos résultats EB sous-estiment toujours les données expérimentales, mais 1’aspect le plus
important a souligner est que nos résultats indiquent que le proton est plus lourd que le
neutron. Bien entendu, cet aspect n’est pas en accord avec les faits expérimentaux.

L’explication de ce comportement est détaillée dans le paragraphe 6.2 ci-apres.

6.2 Explication de I’inversion de masse

Afin d’expliquer l'inversion de masse entre le proton et le neutron, nous réécrivons
I’équation (13) a résoudre pour ces deux baryons :
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2
8ud
my

1+4.

Mg (M ,0) =0 (44)

I+d- g,;dz Mgy (M,.0)=0

La premiere équation concerne le proton de masse M ,, la seconde est pour le neutron de

masse M, . Le second argument des fonctions IT, fixé a z€ro, est la quantité de mouvement

du baryon. Autrement dit, les baryons sont considérés comme étant au repos. Dans les

explications suivantes, nous omettrons cet argument. Nous notons que la constante de

% est la méme que pour les deux baryons. La seule différence entre ces derniers

couplage g,,
est la fonction de boucle IT et le quark échangé, exprimé par sa masse : m, pour le proton,
m, pour le neutron. Quand les deux équations (44) sont satisfaites, nous écrivons

formellement :

Hra)u (m,) _ Mpgya (M) (45)
my m, '

En fait, I, (Mp) est différent de IIj,,,(Mp), mais nous pouvons raisonnablement

négliger cette différence, méme si nous ne prenons pas en compte la symétrie isospin. Ainsi,
nous avons :

H[ud],u(MB)zH[ud],d(MB)EH(MB) ’ (46)

ou My est la masse d’un baryon, utilisée comme argument de la fonction de boucle IT. Nous
réécrivons I’équation (45) comme :
n(M,)-m,=11(M,)-m, . (47)

u

Nous avons étudié le comportement de la fonction de boucle IT. Nous avons trouvé que pour
des masses de baryons tres diverses, sur un domaine tres large, la fonction est négative et
décroissante. En multipliant I’équation (47) par —1, nous avons :

~I1(M,))-m, =-T1(M,)-m, . (48)

Puisque nous avons m, >m, en dehors de la symétrie isospin, nous déduisons de (48) que
_H(Mp)>_H(Mn) : (49)

La fonction —II(M ) est croissante, donc nous trouvons finalement que :
M,>M, . (50)

En conclusion, la structure des équations, via I’approximation statique, est responsable de
notre inversion de masse entre le proton et le neutron. En revanche, nous n’observons pas ce
phénomene avec la composante axiale en saveur, ou avec les autres baryons. En effet, les
composantes scalaires en saveur du proton et du neutron sont les seules qui utilisent la méme

constante de couplage g,,> avec des quarks échangés différents (m, et m, ).
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6.3 Discussion

A la lumiere de ces résultats, nous pouvons maintenant discuter au sujet de la validité de notre
approche, et de ses possibles limitations. Tout d’abord le modele quark-diquark NJL proposé
par [3] constitue une premicre approximation. Cependant, cette référence a montré la validité
de cette description. En dehors du modele NJL, nous pouvons citer le travail exposé dans [29—
31] qui étudient la possibilité d’aller au-dela de cette approximation. En fait, ils ont prouvé
que le modele quark-diquark conduit a une variation d’environ 5 % par rapport a une
description a trois quarks. Ainsi, cette approximation semble €tre bien validée.

En revanche, comme indiqué avec les mésons, nous manipulons ici des particules lourdes. A
cause de I'utilisation d’un cut-off dans les calculs numériques, les descriptions faites avec les
modeles (P)NJL peuvent présenter certaines limitations pour décrire des baryons lourds. Le
bon accord entre nos résultats trouvés avec les baryons les plus massifs et les données
expérimentales nous amene a considérer que nos résultats sont fiables, méme avec cette
limitation. Un autre aspect concerne le fait que nous n’avons pas intégré dans nos descriptions
la désintégration des baryons, qui auraient certainement nécessité I’'inclusion de mésons dans
notre modélisation. Plus précisément, une amélioration du travail présenté dans ce chapitre est
d’inclure les décroissances des baryons lourds en baryons plus légers. Un tel travail pourrait
conduire a des modifications, surtout concernant lesdits baryons lourds, en particulier pour ce
qui est de leurs zones de stabilité, figures 23, 24.

Ensuite, un point important de la modélisation des baryons concerne [’utilisation de
I’approximation statique. En effet, cette approximation est suspectée d’étre a 1’origine
d’imprécisions dans nos résultats. Nous pouvons nous référer a [7] qui n’a pas utilisé cette
approximation, mais en dehors du modele NJL. Aussi, dans le cadre NJL, des réflexions ont
déja été menées dans la littérature par rapport a cet aspect, comme dans [16-18], qui se
réferent notamment aux travaux effectués dans [13—15]. En fait, nos résultats confirment la
réflexion menée dans [18]. L approximation statique consiste a négliger la quadri-impulsion
du quark échangé par rapport a sa masse. Par conséquent, cette simplification est bien validée
pour les quarks lourds, c'est-a-dire ici les quarks étranges, quand ils sont utilisés comme
quarks échangés. Cette observation est une explication possible du bon accord trouvé pour les
baryons lourds, et notamment pour Q. De plus, nous avons montré que les quarks étranges ne
sont pas sensibles a la température et a la densité baryonique. Cela veut dire que
I’approximation statique reste applicable pour les baryons lourds, pour un large domaine en
températures et densités.

A I’opposé, les quarks légers présentent des masses faibles, et tendent vers les valeurs de leurs
masses nues a hautes températures/densités. La, I’approximation statique pourrait étre moins
fiable. Méme a température et densité nulles, nous pourrions étre tentés d’évoquer
I’approximation statique pour expliquer le fait que certains de nos résultats sous-estiment les
données expérimentales. Aussi, le travail effectué dans [15] a mené a la conclusion que
I’utilisation de I’approximation statique conduit le nucléon a décroitre plus vite que dans des
approches n’utilisant pas cette approximation. Quoi qu’il en soit, nous avons montré dans le
paragraphe 3.2 que I’inversion de masse non physique entre le proton et le neutron peut étre
associée a cette approximation. Une autre explication pour expliquer le fait d’avoir sous-
estimé les masses des baryons de 1’octet, y compris les nucléons, pourrait étre 1i€ au fait que
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nous n’avons pas inclus de composante axiale en saveur. Mais, cet argument ne peut pas
marcher pour les baryons du décuplet, comme A .

Un autre aspect a mentionner concerne les équations (11a) et (11b) utilisées pour définir la
fonction de boucle des baryons IT. Dans celle-ci, comme dans des travaux comme [16—18],
les propagateurs utilisés pour modéliser les diquarks sont les propagateurs « libres », c'est-a-
dire les propagateurs établis en théorie quantique des champs, et non les propagateurs (P)NJL.
En fait, nous rappelons que ces deux propagateurs ne sont strictement équivalents que quand
la particule est sur sa couche de masse. Dans ce cas, les couplages g intervenant dans le
terme Z, équation (3), sont constants pour une température et une densité donnée. Cela
justifie ainsi I’appellation de « constante de couplage » que 1’on peut rencontrer fréquemment
dans la littérature. Clairement, ces constantes de couplage ont été trouvées dans le chapitre
associé aux diquarks, précisément en écrivant 1’équivalence entre les deux propagateurs

quand k? — m?. Mais, pour des quantités de mouvement quelconques, il a été montré que les
couplages deviennent dépendants de la quantité de mouvement, comme expliqué dans
[32, 33]. En fait, cette observation n’invalide pas nos résultats, mais notre traitement des g
constitue une approximation. La prise en compte de cette dépendance vis-a-vis de la quantité
de mouvement devrait constituer une évolution future de notre travail.

Une autre propriété de notre étude est visible sur les figures 23, 24. Quelle que soit la
température ou la densité baryonique, on peut noter que les baryons sont stables uniquement
quand les diquarks qui les composent sont stables eux aussi. En d’autres termes, nous n’avons
pas modélisé des baryons stables a partir de diquarks se trouvant dans des états instables.
Cette observation ne contredit pas les travaux de [11, 15, 18], qui ont considérés les équations
de Faddeev (et leur simplification), comme nous. Mais, il est expliqué dans [20] comment
modéliser des baryons NJL stables composés d’un quark et d’un diquark qui peut étre stable
ou instable. Dans cette description, le comportement du baryon est comparé a un état
Borroméen (ou état de Efimov). En fait, ce résultat ne contredit pas forcément notre
modélisation, puisque nos équations n’interdisent pas la création de baryons stables formés
par des diquarks instables, méme si nous ne 1’avons pas observé. Une extension intéressante
de notre travail pourrait étre de vérifier cet aspect dans le cadre de notre approche (P)NJL.
Cependant, méme si [20] utilise le modele NJL, 1’approche menée dans cette publication
semble étre différente de celle vue dans [11, 15, 18]. Quoi qu’il en soit, la thématique de cette
publication suggere aussi une autre piste d’évolution de notre travail, qui consiste a étudier le
comportement des baryons proches de la phase de supraconductivité de couleur.

7. Conclusion

Dans ce chapitre, nous avons exposée la méthode utilisée pour inclure les baryons dans notre
description (P)NJL. Par une simplification des équations de Faddeev, nous avons vu que le
baryon peut &étre considéré comme un état 1li€é d’un quark et d’un diquark. Dans cette
modélisation, nous sommes revenus a une structure proche de celle décrite dans les chapitres
précédents. En d’autres termes, nous avons utilisé I’équation de Bethe-Salpeter pour trouver
le propagateur du baryon. Cela a conduit a considérer une fonction de boucle constituée par
un quark et un diquark. Cette modélisation a aussi impliquée 1’usage d’approximations,
comme I’approximation statique. Ensuite, nous avons analysé les équations associées aux
baryons de I’octet et du décuplet.
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Concernant nos résultats, nous avons montré que les baryons de I’octet peuvent étre modélisés
d’une maniere fiable en utilisant uniquement sa composante scalaire en saveur, alors que les
baryons du décuplet ont été traités par leur composante axiale en saveur. Nous avons analysé
le comportement de ces baryons a températures et densités finies. Au sujet de la différence
entre les résultats NJL et PNJL, nous avons observé le méme comportement que dans les
chapitres précédents, c'est-a-dire une distorsion des courbes selon la température. Cela induit
une extension significative des zones de stabilité de certains baryons. D’autres études ont
concernées la modélisation des antibaryons ou une estimation des constantes de couplage
mettant des baryons en jeu. Ensuite, nous nous sommes focalisés sur une étude des résultats a
température et densité nulles, afin de les comparer a ceux d’autres études, ou a des données
expérimentales. Méme si notre modélisation peut €tre considérée comme assez simple, nous
avons obtenu de bons résultats. Nous avons aussi noté que I’abandon de la symétrie isospin
conduit a une amélioration de la précision de nos données.

Dans une derniere partie, nous avons réfléchi au sujet de la fiabilité de notre approche. En
effet, si la modélisation des mésons et diquarks est assez standard, le traitement des baryons
nécessite diverses précautions et simplifications. Parmi celles-ci, nous avons analysé tout
particulicrement les effets de I’approximation statique. En effet, celle-ci est suspectée d’étre a
I’origine de certains défauts dans nos résultats. D’autre part, les autres simplifications et
limitations de nous modélisation ont été analysées. Elles peuvent suggérer plusieurs pistes
d’évolutions de notre travail.
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Chapitre 6

Sections efficaces

Ce chapitre a été publié€ dans J. Phys. G: Nucl. Part. Phys. 39 105003

1. Introduction

Pour modéliser le refroidissement d’un systeme de quarks et d’antiquarks, les calculs des
sections efficaces [1-5] apparaissent comme une étape essentielle de 1’étude. En effet, la
connaissance des interactions entre les particules est cruciale pour caractériser la dynamique
du systeme. Une telle étude peut étre divisée en deux parties, correspondant aux deux types de
sections efficaces : les inélastiques et les élastiques. Durant le refroidissement, les réactions
inélastiques permettent la formation de particules composites a partir des quarks et
antiquarks. Les sections efficaces de ces réactions sont fortement reliées au taux de création
des particules composites. D’autre part, les réactions élastiques sont responsables de transferts
de chaleur des zones chaudes vers les zones froides.

Le modele de Nambu et Jona-Lasinio a montré sa pertinence pour modéliser des particules
comme des quarks, mésons ou baryons, comme vu dans les chapitres précédents. En outre, il
autorise des calculs de sections efficaces mettant en jeu ces particules. Plus précisément, il a
été reporté dans la littérature la possibilité d’évaluer des sections efficaces de réactions
produisant des mésons a partir d’un paire quark-antiquark g+g — M +M [6, 7]. Des sections
efficaces treés importantes ont été observées, notamment a proximité du seuil cinématique des
réactions. Cela pourrait permettre une mésonisation massive du plasma de quarks/antiquarks
durant son refroidissement, comme observé dans les collisions de hautes énergies. De plus,
des sections-efficaces €élastiques ont aussi été calculées dans le modele NJL. Elles concernent
la diffusion élastique entre deux quarks g+¢—¢g+g¢g, et entre une paire quark-antiquark
qg+q—q+q [8,9]. Plus récemment, certaines études ont été entreprises, tout d’abord pour
reprendre les processus décrits plus haut [10], mais aussi pour essayer d’évaluer les sections
efficaces des réactions de baryonisation [11, 12]. Dans I’ensemble, les réactions mettant en
jeu deux particules incidentes et deux particules sortantes ont été traitées, mis a part dans des
études comme [13]. En effet, on s’attend a ce que les réactions a trois corps soient trop rares
pour intervenir de maniere notable.

D’autre part, les travaux cités concernent globalement des calculs de sections efficaces en
fonction variable de Mandelstam ~/s, pour diverses températures. Certaines études ont
considéré 1’influence du potentiel chimique baryonique, mais plus rarement la densité
baryonique. En effet, [7, 8] ou [14, 15] par exemple ont considéré la température, [16] la
densité baryonique, et [17] les deux. En fait, méme si des processus comme g+g —>¢g+¢g ou
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q+q —>M+M sont cruciaux pour décrire correctement la mésonisation d’un plasma de

quarks/antiquarks, ils n’ont pas encore été traités a des densités finies. Dans le cadre d’études
dynamiques, négliger I’influence de la densité dans ces réactions pourrait conduire 2 manquer
certains aspects importants du refroidissement, notamment dans des systemes physiques ot la
densité est positive. En outre, les limitations du modele NJL ont été signalées, dues
notamment a son défaut principal : I’absence de confinement [18]. Dans le calcul des sections
efficaces, cet aspect peut limiter la fiabilité des résultats obtenus.

Ainsi, plusieurs pistes sont possibles pour améliorer et développer les calculs de sections
efficaces impliquant les particules citées. Cela consiste tout d’abord a étudier 1’influence de la
densité baryonique sur les sections efficaces, notamment avec les processus décrits dans
[7, 8]. D’autre part, grace a I’inclusion de la boucle de Polyakov, il pourrait étre intéressant de
voir les modifications apportées sur nos résultats. Plus précisément, quelles sont les
conséquences du mécanisme de confinement simulé par le modele PNJL, comparé a de purs
résultats NJL ? Nous avons vu dans les chapitres précédents que les masses des particules
PNJL sont décalées vers les hautes températures par rapport aux particules NJL. Dans le cadre
des sections efficaces, les modifications induites par 1’inclusion de la boucle de Polyakov
agissent a différents niveaux des calculs requis. En conséquence, le résultat final n’est pas
évident. De telles comparaison des sections efficaces NJL-PNJL ne sont pas abordées dans la
littérature, mais devraient étre faites. De plus, grace a la modélisation des baryons effectuée
dans le chapitre 6, nous sommes capables d’inclure des réactions de baryonisation dans notre
étude, en nous inspirant des réactions mentionnées dans [11, 12], mais aussi en y rajoutant de
nouvelles. En effet, la liste des réactions NJL déja traitées dans la littérature est intéressante,
mais non exhaustive. Afin de préparer I’étude dynamique effectuée dans le chapitre suivant,
cette liste devrait étre complétée. Cela concerne notamment les réactions élastiques. Aussi, le
role joué par les diquarks devrait étre précisé clairement. Plus précis€ément, nous devrions
analyser s’ils agissent principalement comme propagateurs dans les réactions de
baryonisation, ou s’ils agissent comme intermédiaires réactionnels dans le systeme, c'est-a-
dire deux quarks s’assembleraient ensemble pour former un diquark, et ensuite un quark
réagirait avec le diquark pour former un baryon.

Le travail exposé dans ce chapitre a été effectué afin de prendre en compte les évolutions
proposées dans le paragraphe précédent. Dans la partie 2, nous rappelons les méthodes
générales utilisées pour effectuer des calculs de section efficace. Tout d’abord, nous abordons
les réactions inélastiques. Dans la partie 3, nous reprenons les réactions de mésonisation [7],
afin de voir I'effet des densités et de la boucle de Polyakov. Dans la partie 4, des réactions
induisant la formation de diquarks sont traitées, alors que la partie 5 se focalise sur celles qui
produisent des baryons. En fait, les calculs effectués dans ces deux parties requierent des
calculs mathématiques évolués, notamment les calculs de spineurs avec des quantités de
mouvement différentes. De tels calculs sont détaillés dans 1’annexe B, qui utilise la
référence [19]. Ensuite, nous nous focalisons sur les réactions élastiques. Dans la partie 6, la
diffusion quark-quark et la diffusion quark-antiquark exposées dans [8] sont calculées a
nouveau. Comme dans la partie 2, un objectif est de comparer les résultats NJL-PNJL, et
d’étendre les calculs a densités finies. Dans la section 7, les réactions élastiques mettant en jeu
des mésons et des diquarks sont étudiées. Des réactions impliquant des baryons sont ensuite
abordées dans la partie 8.
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2. Méthodes de calcul

La méthode requise pour effectuer des calculs de sections efficaces est sensiblement toujours
la mé&me, quelles que soient les réactions que nous allons décrire dans ce chapitre. Tout
d’abord, nous établissons une liste des canaux possibles, nommés s, s’, ¢, u ... Nous verrons
par la suite des cas concrets ou ces canaux seront utilis€s. Chacun d’eux correspond a un
diagramme de Feynman et a un élément de matrice M, . Ensuite, ces éléments de matrice sont

sommés, puis on calcule le carré de la valeur absolue de la quantité obtenue. Aussi, on somme
selon les états finaux et on fait la moyenne selon les états initiaux, comme expliqué par
exemple dans [7], selon les degrés de liberté de spin et de couleur :

1 2
Z|Mtotal| » avec Mtotalz Z i-/\/li' (1)

2
4N c S, canaux i

. 2 . , .
Cela demande de calculer des termes carrés ‘/\/ll‘ et des termes mélangés M, - M j*, aussi

appelés comme termes d’interférences dans la littérature, ou termes croisés. Dans I’annexe B,
la méthode utilisée pour déterminer les termes carrés et mélangés est expliquée. Dans la partie
droite de (1), les signes * placés devant les éléments de matrice sont liés a la symétrisation ou
a l’antisymétrisation des fonctions d’onde impliquées dans les processus de diffusion,
notamment dans le cas de particules identiques. Afin de I’expliquer, nous prenons 1’exemple
de la diffusion élastique entre deux diquarks identiques. L’interaction peut concerner un
canal ¢ ou un canal u, figure 39. Celui-ci differe du canal ¢ par I’échange des deux particules
produites (sortantes). Si I’interaction considérée utilise les deux canaux, cela conduit a
additionner les amplitudes de transition et nous avons M, =M, + M, . En effet, les mésons

total
sont des bosons : la fonction d’onde décrivant la « voie de sortie » doit €tre symétrique par
I’échange de ces deux particules. Cela explique le signe plus. A 1’opposé, concernant la
diffusion élastique mettant en jeu deux quarks identiques, figure 30, nous avons
Mo =M, =M, . En effet, la fonction d’onde associée doit étre antisymétrique par 1I’échange

de deux quarks, car les quarks sont des fermions. Cela justifie 1’'usage du signe moins.

D’autre part, les éléments de matrice peuvent avoir la structure suivante, extraite de la
partie 3 :

_iMs :fs 501,02 v(1)2) igl ZDSS r ig2 u(pl) (2)

Les u(p,) et v(p,) désignent des spineurs. Ils sont obtenus par application des regles de

Feynman [4, 5]. Le terme D est un propagateur (P)NJL. Nous pouvons remarquer la
différence de notation avec le S utilisé pour désigner les propagateurs libres, comme ceux vus
dans les chapitres précédents, notamment dans les fonctions de boucle IT. Clairement, dans
ce chapitre, les propagateurs (P)NJL sont utilisés pour les mésons et les diquarks, alors les
propagateurs libres concernent les quarks. D’autre part, dans (2), f, est un facteur de saveur

S
[7]. Ce type de terme est traité dans I’annexe C. Les g, et g, sont des constantes de couplage
au niveau des vertices. Ces derniers ont été étudiés dans les chapitres précédents. Les autres
termes seront expliqués plus tard. Ensuite, la section efficace différentielle exprimée dans le
référentiel du centre de masse des deux particules incidentes s’écrit comme [7, 8] :
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L’annexe F rappelle certaines notions au sujet des variables de Mandelstam s,z,u utilisées
dans cette relation. Elle propose aussi de définir nos conventions d’écriture. Notamment, les
particules entrantes sont nommées particules 1 et 2, alors que les particules sortantes sont les
particules 3 et 4. Pour estimer la section efficace o, I'intégrale est effectuée selon la variable
de Mandelstam ¢. Ensuite, deux facteurs de blocage sont insérés [20]. Ils prennent en compte
que les deux particules produites apparaissent dans un milieu ou d’autres particules identiques
existent déja. Si la particule 3 ou la 4 est un fermion, son facteur de blocage est

1—fF(ﬁ~(E;4—ﬂ3,4)). Dans le cas d’un boson, on a 1+fB(ﬁ~(E;4—,u3,4)). Les fr et fg

correspondent respectivement aux statistiques de Fermi-Dirac et de Bose-Einstein. Les signes
devant les potentiels chimiques 3, sont adapt€s quand nous avons des anti-fermions ou des

anti-bosons. Comme expliqué dans les chapitres précédents, les statistiques de Fermi-Dirac
sont modifiées pour les quarks et les antiquarks si les calculs sont effectués dans 1’approche
PNIJL, a cause du champ de Polyakov [21]. La section efficace est finalement écrite comme
[7, 8] :

b 90(s,T)

o(s.T) =(1ifF,B(E; —ﬂ3))'(1ifF,B (EZ —ﬂ4))'L_ dt Y

“4)

Dans la pratique, les sections efficaces sont non nulles selon /s apres un seuil cinématique,
défini comme [7, 11] :
\/Eseuil =max[(m1 +m2)’(m3 +my )] ’ (5)

ou my, sont les masses des particules incidentes, et m; , les masses de particules produites. Si

my +m, >my +my, le seuil cinématique correspond a m; +m,. Au niveau de ce seuil,

B et
Hﬁzu tendent vers zéro, voir annexe F. Selon (3), la section efficace différentielle diverge, sauf
bien sir si les éléments de matrice sont nuls a ce moment 1a.

Avec les réactions inélastiques, il pourrait €tre utile de considérer les réactions inverses,
comme par exemple M +M — g+q [10] : les particules 3 et 4 produisent les particules 1 et 2.

Evidemment, les facteurs de blocage sont adaptés. Ensuite, un raisonnement similaire est
appliqué pour H Ps H ou ‘ Pa

inverse, il y a possibilité de diverge au niveau du seuil cinématique si m; +m, >m; +m, .

, qui remplacent H pr H dans la relation (3). Ainsi, pour une réaction

D’autre part, il pourrait tre intéressant d’introduire le taux de transition @, comme proposé

dans [7]. Cette quantité est associée a la section efficace o par la relation [2, 7] :

ARE

@(5,T) =V -0(s.,T) avec vy="—+"—. (6)
E B

Dans I’équation (6), v, est la vitesse relative des particules incidentes, dans leur référentiel
du centre de masse.
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Réactions inélastiques

3. Réactions de mésonisation

Nous considérons tout d’abord q+q—>M+M : un quark et un antiquark donnent deux

mésons pseudo-scalaires. C’est une réaction dominante dans les processus d’hadronisation
d’un plasma de quarks/antiquarks. Cette affirmation est notamment vérifiée avec les mésons
pseudo-scalaires, car ce sont les plus légers. Comme expliqué dans I’introduction de ce
chapitre, cette réaction a été proposée dans [7], dans laquelle les calculs de sections efficaces
ont été effectués a températures finies. Nous proposons de retrouver ces résultats, de voir les
différences avec le modele PNJL, et d’étendre ces calculs a des densités non nulles.

Les canaux possibles sont présentés dans la figure 1 par leur diagramme de Feynman. Pour
chacun d’eux, les éléments de matrice correspondants sont écrits dans (7).

Q: EM q M
M : M : ><
g M g M

canal s canal s’
q M q
M
q canal ¢ q canal u
M
q M q

Figure 1. Diagrammes de Feynman.

—iM = [, 8, . V(p2)ig iD; (p+p2) T(pi+ 02 s p3) igy u(py)
—iM = [y 8, . V(p2) igy iDY(py+py) T(pi+ps s pa) igs u(py)
—iM,=f, O ., V(py) i7s igy Sp(pi—p3) i7s igr u(py)
—IM = [y O, V(py) s igy Sp(p1—pa) ivs g u(py)

(7
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Dans les canaux s et s, les quarks/antiquarks incidents forment temporairement des mésons
scalaires, dont les propagateurs (P)NJL sont notés DSSJ'. Comme vu dans le chapitre 3 et dans

[7], nous pouvons les écrire, pour a, ou KS , par I’écriture suivante :
- 2K
DS (ko k )= i — . 8
¥ (koo 1=4K; 10 (ko £) ®)

Ces mésons sont liés a la structure « quark-triangle », décrite par la fonction I', comme
dans [7] :

. 3
i T(iv. B, 5)=-N. L5 | 44
i F(zvm i p) N, F; %[(27[)3 | ©)

XTr[iSfl (i@,)-i7s-iS 1, (i, —icg.G~ p)-i75-iS, (i, —ivm,ZI—E)}

Comme expliqué dans I’annexe D, ce I'" requiert I’utilisation de la fonction C, [22]. La
structure I' permet de produire deux mésons pseudo-scalaires. Comme visible sur la figure 1,
la différence entre les canaux s et s” est que ces mésons sont échangés dans le canal s* par
rapport au s.

La regle concernant les constantes de couplage g;,g, dans (7) est de les inclure a chaque
vertex connecté a des lignes externes, ou a des lignes internes qui ne sont pas des
propagateurs (P)NJL, c'est-a-dire des propagateurs de quarks dans la pratique. En fait, des
constantes de couplage sont incluses par construction dans les propagateurs (P)NJL [23].
D’autre part, les canaux ¢ et u utilisent le propagateur de quarks nommé S, dans (7). Celui-ci
a été défini par exemple dans le chapitre 4. Pour les canaux ¢ et u, les matrices iy sont
incluses a cause de la nature pseudo-scalaire des mésons produits. Aussi, les regles associées
aux calculs de trace imposent un nombre pair de telles matrices dans (9), voir annexe B, ce
qui justifie I'usage de mésons scalaires en tant que propagateurs. Clairement, les mésons
pseudo-scalaires ne sont pas possibles en tant que propagateurs dans cette configuration.
Aussi, les termes f; sont des facteurs de saveur, annexe C. En outre, les mésons sont des
objets non colorés, au sens de la QCD. Cela impose des contraintes sur le choix des couleurs
des quarks, comme indiqué par le symbole de Kronecker ¢.

L’existence des quatre canaux présentés dans la figure 1 dépend des particules mises en jeu
dans la réaction. Nous proposons dans le tableau 1 une liste des réactions les plus courantes
dans le cadre de q+q—>M+M. Cette liste n’est pas exhaustive. Plus précisément, des

réactions produisant des mésons lourds, comme 7°, ont des sections efficaces faibles par
rapport aux autres [7]. Ainsi, elles peuvent €tre omises.

Concernant les calculs numériques, nous nous focalisons sur la réaction u+u —-7° +7x".
Comme observé dans [7, 10], cet exemple génere les sections efficaces les plus fortes du
processus q+q — M+M. Les résultats sont rassemblés dans les figures 2 a 7. Tout d’abord,

avec les figures 2 et 3, il est possible d’effectuer une comparaison des résultats donnés par les
modeles NJL et PNJL. En fait, j’ai déja publié¢ une figure similaire a la figure 2 dans la
référence [10]. Comme pour les masses des particules et comme avec les constantes de
couplage, I’inclusion de la boucle de Polyakov conduit aussi a un décalage des valeurs vers
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les hautes températures. Les valeurs trouvées ne sont pas modifiées, mais décalées. En effet,
nous avons utilisé la méme légende et la méme échelle dans les figures 2 et 3. Clairement,
I’inclusion de la boucle de Polyakov n’induit pas des sections efficaces plus faibles ou plus
fortes. Numériquement, ladite boucle intervient dans les équations de gap, et dans d’autres
relations, par le remplacement des statistiques de Fermi-Dirac par les versions modifiées [21],
comme vu dans les chapitres précédents. Cela concerne les équations utilisées pour trouver les
masses des mésons, ainsi que des calculs spécifiques, comme la fonction I' (9).

réactions méson(s) propageés canal
(canal s) s & : »
AT T AT ay’ - fo- Sy BREE
Wt o7+ a’ ooy BERE
u+d > K+ K (a0)- fo- £ v v |
u+a -’ +n al. fo. fol J | v |V
ut+d -zt +x’ ay’ VN AN A
u+d > K" +K° agt N N
u+d -zt +n ay" N NN
u+s > +K° Ky N N
u+s -z’ +K" Kt N N
u+s ->n+K* Kt N N
s+3s > K +K* forfo \ N \
s+5 > K%+ K" forfy N
s+s —=>n+n fo,fo/ N N

Tableau 1. Quelques réactions de mésonisation.

Comme expliqué dans la partie 2, une divergence au niveau du seuil peut étre présente si les

particules incidentes sont plus lourdes que les particules produites. Avec u+u — 7" +7, les
quarks sont plus lourds que les pions a températures et densités modérées, donc des
divergences sont observables dans cette configuration, comme confirmé par la figure 6.
Comme noté dans [10], ces divergences conduisent a des sections efficaces tres fortes. Au
niveau du seuil, une bande trés étroite selon /s peut quelquefois dépasser 40 mb, ou méme
plus. Dans le modele NJL, la divergence existe jusqu’a 7 =240 MeV . Les sections efficaces
maximales sont trouvées juste avant cette température. Celle-ci correspond a la température
critique des pions a densité nulle, comme vu au chapitre 3. Avec le modele PNJL, cette
température est plus forte, c'est-a-dire 7 =290 MeV . En conséquence, la divergence (la zone
la plus foncée sur les graphes) existe pour un domaine en température plus large.
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Figure 2. Sections efficaces de u+u — z* +7~ dans le plan T-+s, pour pp =0, en utilisant le
modele NJL.
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Figure 3. Sections efficaces de u+u — 7" +7z dans le plan T-s , pour pp =0, en utilisant le
modele PNJL.
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Figure 4. Sections efficaces de u+u — 7" + 7~ dans le plan pg — Js,a température nulle.
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Figure 5. Sections efficaces de u+u — 7" + 7~ dans le plan pp —s,a T=200MeV .
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L’étude de I’influence de la densité baryonique est nouvelle dans le cadre de ¢g+qg > M + M .
En conséquence, nous n’avons pas d’élément de comparaison dans la littérature. Pour
analyser cet aspect, nous proposons de considérer tout d’abord les figures 4 et 5. Dans la
figure 4, les calculs ont été effectués a température nulle, alors que nous avons pris
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T =200 MeV pour la figure 5. Dans I’ensemble, la densité baryonique agit de maniere
comparable a la température. Concernant la figure 4, nous notons que la zone pour laquelle
o >10 mb est plus large que pour les figures 2 et 3. Par ailleurs, a environ 2.5p,, la largeur de
cette zone est maximale. Nous avons 1a des valeurs extrémes, proche du barn localement,
juste apres le seuil. A I’opposé, pour pg >3p,, les sections efficaces deviennent plus faibles.
Comme observé dans le chapitre 3, le pion n’as pas de transition stable/instable selon la
densité baryonique quand la température est nulle. Toutefois, pgz >3p, correspond a la zone
pour laquelle le pion devient plus lourd que la paire quark/antiquark qui le constitue.

Concernant la figure 5, des différences peuvent €tre notées par rapport a la figure 4. Tout
d’abord, la zone o>10mb est étendue vers les plus hautes densités, car cette zone existe
jusqu’a 3.5p,. Cependant, sa largeur est plus réduite que sur la figure 4. Une autre différence
concerne le fait qu’a 7'=200 MeV , le pion devient instable par une transition stable/instable.
Dans le modele PNJL, cette transition a lieu juste avant 4p,. Elle correspond aux structures
visibles sur la figure 5, le long de la droite verticale d’équation pgz =4p,. Ce phénomene est
aussi présent selon la température, mais il semble moins marqué dans les figures 2 et 3. Il est
expliqué par le fait que la constante de couplage du pion s’annule, voir chapitre 3.

Modele PNJL p, =0 Modéle PNJL T =250 MeV
40 . . . —; . 40 . — 5 . .
T h X "
] -
35 E: .: 35 :: E' pg = 150,
—_ 1 — -
€ 30 IE ; 2 30} ¥ I
Tl . 2|
1 - 1
25 1 !' 25 N 1
|
© 20 ' i O 20 ; !
5 ¥ 5 i
L i 1
&1 ' s 9 :
- — 1 - —
-7 1 -2 1
3 10 F 3 1of :
1
5[T=290 | : 5,
T =300 —] ! ‘
0 0
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Figure 6. Sections efficaces de u+u — 7"+, en fonction de la température et de la densité
baryonique.

Nous proposons de compléter cette analyse avec les figures 6 a 8. Dans la figure 6, les
sections efficaces sont étudiées en fonction de /s pour diverses températures pour P =0

(partie gauche de la figure), et pour plusieurs densités pour 7 =250 MeV . En fait, le choix de
cette température est motivé par la remarque formulée au chapitre 2 au sujet de la
supraconductivité de couleur. Comme expliqué, a densités finies et a températures modérées,
I’état de supraconductivité de couleur est supposée intervenir [24, 25] et affecter nos calculs
de sections efficaces. Cependant, comme argumenté, des températures au dessus de 200 MeV
ne sont certainement pas concernées par ce phénomene. D’autre part, pour étudier le
refroidissement d’un systeme de quarks/antiquarks, il vaut mieux travailler a des températures
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proches de celle de la transition de phase. Clairement, cela justifie notre choix d’effectuer nos
calculs a densités finies a de telles températures dans ces figures, et dans le reste de ce
chapitre.

La figure 6 est aussi complétée par la figure 7, dans laquelle le taux de transition @, défini
dans la partie 2, est estimé dans les mémes conditions que dans la figure 6. L’avantage du
taux de transition est d’atténuer la divergence au niveau du seuil. En effet, quand
T <280 MeV , la valeur du seuil correspond a la masse de la paire incidente quark/antiquark.
La, les sections efficaces tendent vers 1’infini, mais la vitesse relative entre les particules
incidentes est trés proche de zéro, voir (3—6) et ’annexe F. Pour les figures 6 et 7, le
comportement global confirme les observations de la figure 3: o et @ tendent vers des
valeurs fortes au niveau du seuil quand la température augmente, jusqu’a ce que les pions
atteignent leur température critique. Apres cette température, les divergences disparaissent, ce
qui expliqué par le fait que les pions produits sont alors plus lourds que les pairs incidents
quarks/antiquarks.
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Figure 7. Taux de transitionde u+u = 7" +7~.

La figure 8 montre le taux de transition obtenu avec la réaction 7° +7~ —u+i, c'est-a-dire

la réaction inverse de u+u — 7"+~ étudiée dans les figures précédentes. La partie gauche
de cette figure peut €tre comparée aux résultats de [10], dans laquelle les sections efficaces
NJL de ces réactions inverses ont été étudiées a températures finies et densité nulle. D autre
part, si nous comparons aussi la partie gauche de la figure 8 avec celle de la figure 7, nous
pouvons conclure que les valeurs trouvées sont faibles pour la réaction inverse, par rapport a
celles de la réaction directe.

Maintenant, considérons la partie gauche des figures 6 a 8. A T=250MeV et a p,z =0, les
pions sont encore plus légers que les paires quarks/antiquarks qui les composent, c'est-a-dire
qu’ils sont encore stables. Pour des densités réduites, o et @ augmentent encore quand la
densité croit. A cette température, la disparition de la divergence au niveau du seuil est située
entre 2.5p, et 3p, dans le modele PNJL. A 2.5p,, o et @ explosent localement. Apres 3p, ,
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les évolutions de o et @ rappellent fortement ce qui avait été observé pour les hautes
températures. De la méme maniere, les valeurs du taux de transition pour la réaction inverse
sont assez faibles selon la densité, partie droite de la figure 8. Méme si les courbes ont des
pics au niveau du seuil, ils restent réduits par rapport a ceux observables pour la réaction
directe, figure 7. Ainsi, dans I’ensemble, la réaction inverse n’est pas supposée contrarier la
réaction directe, au moins dans les conditions de la mésonisation.
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Figure 8. Taux de transitionde 7% +7~ —u+u .

Pour résumer cette analyse, nous voyons que les sections efficaces (et les taux de transition)
tendent a exploser juste avant que le pion ne devienne instable, ou du moins quand sa masse
est plus forte que celle de la paire quark/antiquark qui le compose. Comme indiqué dans [10],
ce comportement et I’extension de la zone o>10mb dans le plan T - p; suggeérent une
mésonisation écrasante du plasma de quarks/antiquarks, quand la température et/ou la densité
baryonique auront suffisamment diminué.

4. Réactions mettant en jeu un diquark

4.1 Regles de Feynman

Les diagrammes de Feynman et les éléments de matrice associés précédemment présentés
correspondent bien aux techniques déja utilis€ées dans le cadre de la théorie quantique des
champs [1-15, 19], adaptées au cadre des modeles (P)NJL, comme décrit dans [7, 8, 14, 15].
Mais, pour étre capable de manipuler des éléments de matrice impliquant des diquarks,
certaines précisions sont nécessaires [11, 12]. Les mésons sont décrits dans les modeles
(P)NJL par une boucle composée d’un quark allant vers le futur, et un quark allant vers le



Chapitre 6. Sections efficaces 187

passé. Selon le point de vue de Feynmanl, ce second quark est interprété comme un antiquark.
Clairement, le méson est constitué d’un quark et d’un antiquark. Concernant le diquark, nous
avons vu dans le chapitre 4 qu’appliquer une conjugaison de charge a 1’antiquark donne la
possibilité de mimer le comportement d’un quark. Cette astuce est aussi utile pour écrire les
éléments de matrice. En fait, les regles de Feynman traditionnelles telles que nous les utilisons
ne prennent pas en compte la conjugaison de charge. Autrement dit, il est nécessaire de
trouver quel est (sont) les quarks/antiquarks conjugués de charge, afin de déterminer quelles
particules sont réellement des quarks ou des antiquarks. Logiquement, il pourrait y avoir
ambigiiité seulement au niveau de vertices ou un diquark/anti-diquark intervient. Dans les cas
traités ci-dessous, il y a quelquefois « plusieurs solutions ». Par conséquent, plusieurs canaux
sont possibles pour le méme diagramme de Feynman. Dans les exemples suivants, seuls les
diquarks scalaires sont utilis€és comme particules incidentes ou produites. Ces exemples sont
inspirés de [11, 12]. Toutefois, nous avons observé que les résultats de ces références ne sont
pas vraiment en accord avec ceux de la littérature, ou avec les ndtres. Cela inclut notamment
un désaccord entre certains résultats de [11] avec ceux de [8], alors que de notre coté, nous
avons retrouvé les valeurs de [8].

4.2 Réactions +D —>M+q

Nous considérons tout d’abord le processus g+D—>M+q et son inverse, c'est-a-dire
M+q—q+D. Clairement, celui-ci est particulierement intéressant dans le cadre d’une

éventuelle production de diquarks. D’autre part, ces réactions sont les plus simples de celles
traitées dans cette partie. En effet, seul un canal est pris en compte, le canal ¢, décrit par la
figure 9 et par son élément de matrice, équation (18). Cela constitue une premiere occasion
d’utiliser la méthode exposée dans le paragraphe précédent. Le vertex supérieur du
diagramme de Feynman n’est pas connecté a un diquark. Ainsi, I’antiquark en position 7,
c'est-a-dire en haut a gauche, doit vraiment étre traité comme un antiquark, impliquant le
spineur v ( p;). En revanche, le vertex inférieur utilise un diquark, donc le quark en position 4

(en bas a droite) doit étre vu comme un antiquark conjugué de charge. Par conséquent, celui-
ci est représenté par v(p,). Dans I’équation (18), les matrices iy; sont associées au méson
pseudo-scalaire et au diquark scalaire. En outre, le tenseur completement antisymétrique

Cr,Cs

g% est utilisé pour rappeler les contraintes de couleur entre le diquark, le quark propagé et
le quark en position 4. Plus précisément, la couleur du diquark doit étre la « somme » de

C),C;Cy

celles des deux quarks. Ce terme & , aussi utilisé dans [11, 12], peut étre trouvé aussi
dans I’écriture du Lagrangien des diquarks ou dans I’expression des courants conservés, voir
chapitre 4. Nous rappelons que les diquarks scalaires sont antisymétriques en couleur.

' Feynman R P 1949 The Theory of Positrons Phys. Rev. 76 749-59
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Les résultats trouvés pour la réaction u+[ud]— 7z~ +u sont exposés dans la figure 10.
L’allure des courbes rappelle celle de la figure 6. La réaction peut présenter des divergences
au niveau du seuil, car la masse totale des particules incidentes est plus forte que celle des
particules produites. En effet, le diquark [ud] est plus lourd que le pion. Quand la température
augmente, la divergence au niveau du seuil est toujours présente, a 1’opposé du comportement
trouvé dans la partie 3. Aussi, quand les masses des diquarks commencent a décroitre, a partir
d’une température 7 =250 MeV, le seuil est décalé vers des valeurs plus basses le long de
I’axe /s . Ensuite, avant que le pion et le diquark n’atteignent leur température critique, les
sections efficaces sont minimales. Apres 7 =270 MeV, les sections efficaces augmentent

ol

Figure 9. Canal 1.

fortement, et tendent a exploser apres 7 =300 MeV .
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La figure 11 montre les résultats associés a la réaction inverse 7~ +u —u +[ud] . Elle n’a pas
de divergence au niveau du seuil comme la réaction directe. Dans la partie gauche de la
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Figure 10. Sections efficaces de u +[ud|—> 7~ +u.
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figure 10, les sections efficaces atteignent des valeurs de quelques millibarns a basses
températures. Au niveau du seuil, les valeurs sont environ 10 fois plus faibles que celles de la
réaction directe. En revanche, les sections efficaces de la réaction inverse varient de la méme
manieére que pour la réaction directe, c'est-a-dire en diminuant jusqu’a 7 =270 MeV , avant de
ré-augmenter rapidement.
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Figure 11. Sections efficaces de 7~ +u —u +[ud].

Selon la densité baryonique, partie droite des figures 10 et 11, une augmentation de ce
parametre conduit a une diminution progressive des sections efficaces, pour la réaction
u+[ud]— 7" +u. Concernant la réaction inverse, les sections efficaces augmentent pour
devenir optimales pour des densités de py =2p,, et diminuent apres cette densité. En fait, si
nous généralisons ces résultats a toutes les réactions du type M+q—>q+D, elles sont
supposées produire des diquarks dans de telles conditions. Cependant, sauf dans ce cas, le
processus q+D —>M+q présente globalement des sections efficaces plus fortes que son
processus inverse. En conséquence, les diquarks sont certainement consommés, mais non
produits. Clairement, on ne s’attend pas a ce que M+q—>q+D soit un bon candidat pour

créer des diquarks. Cependant, comme remarqué dans [12], g+D —->M+q a besoin d’un

antiquark pour se produire. Ainsi, une maniere d’interpréter ces résultats est d’imaginer
qu’une production éventuelle de diquarks, et par extension de baryons, ne peut pas avoir lieu
avant qu’une mésonisation massive n’ait consommé les antiquarks, afin de les « neutraliser »
dans les mésons.

4.3 Réactions q+q—D+D

Ce type de réaction peut étre modélisé en adaptant les travaux effectués pour q+q—>M+M.
Comme indiqué dans la figure 12, nous avons appliqué une conjugaison de charge a certains
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quarks et antiquarks de la figure 1. En conséquence, les éléments de matrice associés (11)
sont structurellement identiques a ceux de (7). Dans la pratique, la méme fonction I' que celle
vue avec les mésons a été utilisée, en appliquant seulement une conjugaison de charge sur un
des quarks, comme indiqué par la figure 12. D’autre part, les mésons utilis€és comme
propagateurs dans le canal s sont des mésons scalaires, comme dans la partie 3.

q D q
M —
q D q
canal s
q D q
C
q = a e
C
q D q
canal ¢ canal f

Figure 12. Canaux de la réaction.

—iM;=f; O, V(py) u(p) iD; (pi+p2) T(pi+ 1y p3) igy igs
—iM, = f,V(py) iys €% igy Sp(pr—p3) ivs €7V igy u(py)
~iMp=—f, v(py) ivs €75 igy Sp(py—p1) ivs €7 gy u(p,)

(1)

Dans la partie 4.2, nous avons vu que nous avions seulement un canal 7. Ici, deux « solutions »
peuvent étre proposées pour ce canal. En effet, nous avons deux possibilités en ce qui
concerne 1’identification de particules conjuguées de charge. Le canal nommé ¢ stipule que le
quark et ’antiquark sont réellement ce qu’ils sont. En revanche, pour le canal 7, ces deux
particules incidentes sont en fait de particules conjuguées de charge. Dans la pratique, ces
deux canaux doivent étre traités comme deux canaux distincts. Un terme croisé comme

M, M;" est donc possible. Ils entrainent des calculs mettant en jeu des termes comme
v(py)v(p) et u(p)u(p,), clest-a-dire des spineurs avec des quantités de mouvement
différentes, voir annexe B.

Dans la figure 13, nous présentons les résultats trouvés avec la réaction u+u — [ud|+[ud], et
avec sa réaction inverse [ud|+[ud]—u+1u . Les sections efficaces associées ont été estimées a
températures finies, et pour une densité nulle. En effet, comme observé au chapitre 4, I’anti-
diquark [ud] est décrit dans notre modele uniquement quand la densité baryonique est



Chapitre 6. Sections efficaces 191

réduite, largement inférieure a p,. Ainsi, les calculs n’ont pas été effectués a densités non

nulles. La réaction directe ne donne pas de fortes sections efficaces, quelle que soit la
température. En fait, il n’y a pas de divergence au niveau du seuil, et les valeurs n’excedent
pas 0.40 mb. Ainsi, cette réaction est certainement dominée par des réactions comme

q+q—>M+M. D’autre part, les sections efficaces de la réaction inverse [ud]|+[ud]|—>u+u

sont légerement plus fortes que celles de la réaction directe. Mais, de la méme maniere, elles
ne dépassent pas 0.6 mb. En conséquence, le processus q+q—>D+D et son inverse ne
devraient pas intervenir de maniere notable.
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Figure 13 Sections efficaces de u +u — [ud |+ W et [ud] +w —u+u adensité nulle.

4.4 Réactions q+q—D+M

Comme avec les réactions précédentes, nous commencons par identifier les particules qui sont
conjuguées de charge. Dans le diagramme de Feynman associé au canal ¢, figure 14, le quark
en position / est un antiquark conjugué de charge. Son spineur associé est v(p,), comme
écrit dans 1I’élément de matrice équation (12). Ce processus admet aussi un canal u. Dans ce
cas, le vertex dans lequel le diquark intervient est celui en bas du diagramme. Ainsi, un quark
en position 2 est un antiquark conjugué de charge. Cela explique le spineur v(p,) dans (12).

D’autre part, deux canaux s sont considérés. Comme dans la partie 3 et dans le paragraphe
4.3, ils incluent une fonction I' (9). Celle-ci prend en compte les deux matrices iys associées

au méson et au diquark produits. En conséquence, le diquark utilisé comme propagateur doit
étre pseudo-scalaire : contribution 1,, c'est-a-dire la matrice identité de dimensions 4x4 . En

revanche, des diquarks scalaires ne sont pas possibles ici en tant que propagateurs. En effet, la
trace dans la fonction I' doit avoir un nombre pair de matrices iys, sinon le calcul donne un

résultat nul. Comme dans le paragraphe 4.3, I’effet de la conjugaison de charge sur les quarks



192

dans la fonction I' consiste a changer le signe de leur potentiel chimique. En outre, en
étudiant les quarks/antiquarks conjugués de charge, deux solutions possibles sont obtenues.
La premiere garde le nom de «canal s » dans la figure 14. Dans 1’écriture de I’élément de
matrice associé, elle a la méme structure que le canal s utilis€ pour q+q—M+M. La
seconde solution est nommée «canal 5§ ». De la méme maniere, I’étude inclut aussi des
canaux s . IlIs ont été établis comme dans (7) : ils consistent en un échange des particules
produites en sortie du triangle modélisé€ par T".

q D q C C D q q
D c D
q = q q
C
q M q M q q

If
Ko}

<
<

canal ¢ canal u
q p———— D
C
D
C
C
¢ C
q ——— D q canal s ——— M
D = ou c
q C ——— D
C
q ——— M D C
q canal § M
Figure 14. Canaux s, et u.
—iM,=f, 6., £V vi(p) ivsigy Sp(p3—p1) i7s igy u(ps)
_iMu = Ju 5cu,cl g2 v(pZ) 175 i81 SF(pl_p4) 175 i8> u(pl)
—iM = f, €7 V(py) ig iDI® (pi+p2) T(pi+ P2 s p3) ig2 u(py) (12)

—iM; = f, €D 5 (p)) ig iDE (pr+py) T(py+ s - py) ig2 u(py)
—iMy = fy €00 5 (p,) igy iD° (py+py) T(pi+ Py » py) igy u(py)
—iMy = fy €00 5 (p) ig, iDL (py+py) T(py+ Py p3) igy u(py)

Les calculs des termes carrés ne présentent pas de différence par rapport a ceux traités dans la
littérature [7, 8]. Cependant, comme dans le paragraphe 4.3, certains termes mixés, comme
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M, M, et M, M,”, impliquent des calculs mettant en jeu v(p,)v(p,) et u(p,)u(p).

Dans I’annexe B, nous présentons notre méthode en traitant I’exemple du terme M, - M,*.

Nous considérons la réaction u+d —[ud]+z° et sa réaction inverse, c'est-a-dire

[ud] +7° > u+d . Nous résultats associés sont présentés respectivement dans les figures 15 et

16. Dans la figure 15, les sections efficaces montrent des divergences au niveau du seuil. En
effet, les deux quarks incidents peuvent étre plus lourds que le diquark et pion produits.
Cependant, les divergences sont moins marquées que pour les réactions de mésonisation.
Selon les résultats trouvés en fonction de la température, les sections efficaces tendent a
augmenter quand la température croit, jusqu’a 7 =200 MeV, voir la partie gauche de la
figure 15. Pour des valeurs plus fortes, elles diminuent. A 7 =300MeV et apres, la
divergence au seuil disparait et les sections efficaces deviennent hautement négligeables. Les
valeurs maximales atteintes par cette réaction restent assez modestes : elles ne peuvent pas
dépasser 2 mb a densité nulle. La contribution des canaux s et s* semble étre optimale proche
du seuil cinématique. La masse du diquark pseudo-scalaire [ud] utilisé comme propagateur

peut expliquer cette observation. En effet, a densité nulle, sa masse est proche de 930 MeV

jusqu’a T'=200 MeV, donc sa résonance quand Js est proche de cette valeur permet cette
contribution pour des températures réduites.

Modele PNJL pg =0 Modéle PNJL T =200 MeV
10

ol T=200 "
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Figure 15. Sections efficaces de u+d — [ud]+7°.

Selon la densité baryonique, les sections efficaces augmentent jusqu’a pz =2p,, densité pour

laquelle les sections efficaces peuvent ponctuellement dépasser 10 mb, voir partie droite de la
figure 15. Dans I’ensemble, les sections efficaces sont affectées de maniere non négligeable
par les facteurs de blocage (4), notamment a densités non nulles. En effet, une augmentation
de la densité baryonique conduit a des variations des potentiels chimiques. Ces derniers
interviennent dans les statistiques de Fermi-Dirac et de Bose-Einstein utilisées dans les
facteurs de blocage. Cela explique les allures tres différentes des courbes obtenues pour la
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réaction directe u+d — [ud | +7° et pour sa réaction inverse, figure 16, 2 densité baryonique

non nulle. Clairement, la réaction directe utilise des facteurs de blocage bosoniques, alors que
la réaction inverse utilise des fermioniques.
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Figure 16. Sections efficaces de [ud |+ 7’ su+d.

Les valeurs trouvées pour la réaction u+d — [ud | +7° sont globalement plus fortes que celles

de [ud]+7‘[0 —u+d . Cependant, la différence n’est pas trés marquée a densité nulle. La

production de diquarks semble étre assez réduite. Ses conditions optimales sont proches de
T=200MeV et pg=2p,. Pour de telles températures ou au-dela, si les processus de
mésonisation ont consommé assez d’antiquarks, ces derniers ne pourront pas détruire les
diquarks, par exemple via g+D — M+q . Avec cette hypothese, quelques diquarks pourraient
se former.

5. Réactions de baryonisation

Nous traitons maintenant des réactions inélastiques dans lesquelles un baryon est produit, en
partant de quarks et/ou de diquarks. Comme dans la partie précédente, nous considérons

certains des processus décrits dans [11, 12]. Cela concerne g+D—-D+B, M+D—q+B,
q+q—>B+q, q+D—>M+B, mais nous avons ajouté le processus D+D — B+q. Pour tous

ces processus, nous nous sommes focalisés sur la production de nucléons. Plus précisément,
comme expliqué dans le chapitre précédent, ces baryons ont été décrits par leur composante
scalaire en saveur, et non pas leur composante axiale. Cette simplification se retrouvera au
niveau des descriptions effectuées dans cette partie. En effet, un vertex impliquant un nucléon
et un diquark vont donc traduire une interaction scalaire. Quoi qu’il en soit, nous avons vu
avec les diquarks que certaines précautions sont nécessaires dans I’écriture de nos éléments de
matrice. C’est notamment le cas pour l'identification des quarks/antiquarks conjugués de
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charge. Cette méthode sera considérée ici, méme si nous ne ferons plus apparaitre nos
diagrammes de Feynman équivalents, qui révélaient de maniere explicite les particules qui
étaient conjuguées de charge.

D’autre part, grace aux travaux effectués dans le chapitre précédent, nous remarquons que la
masse du nucléon est trés proche de la masse totale de ses constituants, c’est a die un quark
léger et un diquark [ud]. Cela induit une énergie de liaison assez réduite. Plus précisément, a

température et densité nulle, celle-ci est inférieure a 150 MeV, en valeurs absolues. Dans le
cadre de la production de nucléons, cela veut dire que nous ne pouvons pas modéliser des
processus dans lesquels les particules incidentes sont plus lourdes que les particules produites,
si une des particules produites est un nucléon. Comme remarqué précédemment, ce
comportement est traduit par I’absence de divergence au niveau du seuil cinématique. De
plus, cela peut induire des sections efficaces plus fortes pour les réactions inverses,
précisément celles qui tendent a détruire les baryons. Clairement, pour chacun des exemples
traités, cette propriété est capable de limiter le champ d’application de ces processus de
baryonisation. Mais, nous étudierons dans quelles conditions les réactions inverses pourraient
ne pas intervenir.

5.1 Réactions g+D—-D+B

Quelles que soient les particules concernées, le canal 7 est considéré pour ces réactions. Celui-
ci est décrit par le diagramme de Feynman de la figure 17, et par 1’élément de matrice
équation (13). Le vertex impliquant I’anti-diquark (en haut a droite de la figure) et les deux
antiquarks requiert une matrice s, parce que 1’anti-diquark est scalaire. En revanche, le
vertex en bas du diagramme est connecté a un baryon, un diquark scalaire et un quark. Ce
vertex indique une interaction de type scalaire, ce qui se traduit par une matrice 1, (identité),
dans le méme esprit que 1’équation (2) vue dans le chapitre précédent. Cette matrice 1,
n’apparait pas de maniere explicite dans (13). La «regle » au niveau de tels vertices est de
considérer que le quark est toujours un vrai quark. En d’autres termes, ce quark n’est pas un
antiquark conjugué de charge. Nous concluons que la seule solution est que 1’antiquark en
position / soit en fait un quark conjugué de charge : son spineur associé est u(p;) dans

I’équation (13).

ol
ol

D B
Figure 17. Canal ¢.

~iM, = f, igy W(py) Sp(py—p2) 175 igy €75 u(p) . (13)
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Nous considérons la réaction u+[ud]—[ud]+n en tant qu'exemple. Le neutron est
représenté par n. Puisque cette réaction utilise un anti-diquark, I’étude des sections efficaces
selon la densité baryonique n’a pas été effectuée, comme pour la réaction u+u — [ud]+[ud]

vue précédemment. Les résultats, disponibles dans la figure 18, révelent que les sections
efficaces sont plutot faibles. En fait, a densité baryonique nulle, elles ne dépassent pas
0.25 mb. Nous pouvons alors extrapoler a toutes les réactions g+D —D+B. De plus, a
densités positives ou nulles, nous prédisons que les anti-diquarks sont si mal tolérés dans un
systeme physique que leur existence pourrait €étre a I’origine de la destruction des baryons
déja présents dans le milieu, notamment via les réactions inverses de celles traitées ici, c'est-a-
dire D+B —q+D.

Modele PNJL p_ =0
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o
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Figure 18. Sections efficaces de la réaction u + [ud] - [ud] +n pour plusieurs températures.

En conséquence, nous pouvons considérer que cette réaction ne conduit pas vraiment a la
baryonisation du systeme, et peut étre négligée. Dans I’ensemble, comme u + i — [ud | +[ud],
les réactions produisant des anti-diquarks ne devraient pas intervenir de maniere significative

5.2 Réactions M+D —»q+B

Nous testons ici un processus capable de consommer un diquark et de produite un baryon.
Cette réaction nécessite la présence d’un méson. En raison de la forte mésonisation escomptée
grace aux réactions q+q— M+M, cette contrainte ne semble pas €tre un probleme. Dans
notre description, les réactions M+D — q+B sont décrites par le canal ¢, voir figure 19 et
équation (14). Le vertex en bas du diagramme met en jeu un baryon. Donc, ce vertex indique
une interaction scalaire, et utilise alors la matrice 1,. Selon les «régles » exposées dans le

paragraphe précédent, le quark impliqué dans ce vertex est un vrai quark. En conséquence,
I’antiquark en position 3 est un vrai antiquark.
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Figure 19. Canal t.

—~iM = f, igy u(py) Sp(ps—p2) i¥5 igy v(ps) - (14)

La figure 20 décrit les sections efficaces trouvées avec la réaction 7~ +[ud]| —>u +n. Dans

I’ensemble, lesdites sections efficaces sont réduites. Elles n’excedent pas un millibarn dans
les résultats présentés. A densité baryonique nulle, les sections efficaces tendent a diminuer
quand la température augmente. A 7 =200 MeV , le méme comportement est observé quand
nous faisons varier la densité baryonique. D’autre part, les particules produites sont plus
lourdes que les particules incidentes. En conséquence, aucune divergence au seuil n’a été
observée. Une autre conséquence est que la réaction inverse a des sections efficaces plus
fortes. Cependant, comme indiqué dans le paragraphe 4.4, si les antiquarks tendent a étre plus
rares, cette réaction inverse ne peut pas avoir lieu. En parallele, des diquarks peuvent étre
formés, pour permettre la formation de quelques baryons, par exemple via ce processus
M+D—q+B. Les antiquarks produits en méme temps pourraient €tre consommeés

préférentiellement par les réactions de mésonisation. Quoi qu’il en soit, M+D —q+B semble
étre trop limitée pour assumer seule la baryonisation du systeme de quarks.
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Figure 20. Sections efficaces de 7~ +[ud| > u +n.
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5.3 Réactions D+D —B+q

Nous décrivons les réactions D+D — B+q avec deux canaux, figure 21 et équation (15). Il
n’y a pas ambigiiité au niveau des vertices impliquant les baryons, mais au niveau de ceux
mettant en jeu un diquark et deux quarks. Le quark en position 4 est un antiquark conjugué de
charge pour les deux canaux. Cet aspect est traduit par le spineur v(p,) dans (15).

D B D
B
q canal 7 q canal u
q
D 9 D

Figure 21. Canaux mis en jeu.

—iM, = f, € ig v(py) ivs Sp(p3—py) igy w(ps)
—iM, = f, €Vig v(py) ivs Sp(p1—ps) igy w(p3)

(15)

Les résultats numériques correspondent a la réaction [ud|+[ud]— p+d, dans laquelle p est

un proton. La figure 22 indique que la température a une influence modeste sur les sections
efficaces, jusqu’a 7 =250 MeV . Apres cette température, les sections efficaces décroissent
brutalement. Des observations similaires peuvent étre faites selon les densités, pour
T =200 MeV . Pour des densités au dessus de 2p,, les sections efficaces ne peuvent pas

dépasser le milibarn. La réaction est capable d’avoir des sections efficaces proches de 4.5 mb
au maximum. C’est certainement mieux que les réactions que les réactions traitées dans les
paragraphes précédents. En outre, nous verrons ci-apres que les autres sections efficaces
associées a des réactions de baryonisation ne donneront pas des valeurs plus fortes.
Cependant, cela reste faible devant les valeurs trouvées pour les réactions de mésonisation.
Aussi, cette réaction inélastique entre deux diquarks suppose une production de diquarks
relativement importante. Les résultats trouvés dans la partie 4 ne semblent pas confirmer cette
hypothése, notamment a densité nulle. En fait, on s’attend a ce que D+D —>B+q agisse

durant la baryonisation d’une maniere assez modeste. Clairement, la réaction inverse ne peut
pas réellement se produire dans la Nature, sauf dans des systeémes physiques treés chauds et
tres denses. Il n’y a pas de réelle chance qu’un baryon stable, frappé par un quark, se
désintegre entre deux objets colorés comme des diquarks dans des conditions « normales »,
c'est-a-dire a températures et densités modérées.



Chapitre 6. Sections efficaces 199
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Figure 22. Sections efficaces de la réaction [ud]+[ud]— p+d pour plusieurs températures et

densités baryoniques.

5.4 Réactions q+q—B+q

A T’opposé des réactions D+D —B+q, les réactions q+q— B+(q sont une alternative au

scénario imaginant que les diquarks interviennent comme particules intermédiaires. Une
production de diquarks assez réduite peut nous amener a étudier des réactions qui ne soient
pas concernées par ces particules. En effet, le processus décrit dans ce paragraphe crée des

baryons directement a partir de quarks. Les diquarks jouent seulement le role
d’intermédiaires, car servent de propagateurs dans les canaux traités, figure 23. Ils

correspondent aux propagateurs (P)NJL DP dans I’écriture des éléments de matrice (16). Les
diquarks utilisés sont scalaires, donc ils impliquent des iys; au niveau des vertices mettant
aussi en jeu deux quarks/antiquarks. La structure des diagrammes de Feynman présente des
similitudes avec les diagrammes utilisés pour modéliser les diffusions élastiques
quark/antiquark, voir [8] ou partie 6. Concernant les canaux ¢/7 , nous avons une ambigiiité
au niveau du quark en position 2 et de I’antiquark en position 4. Un des deux est conjugué de
charge. Pour le canal 7, I’antiquark est en fait un quark conjugué de charge. Pour le canal 7, le
quark est un antiquark conjugué de charge. Ensuite, pour les canaux «/#, I’ambigiiité se situe
au niveau du quark en position / et de I’antiquark en position 4. Si I’antiquark est un quark
conjugué de charge, nous obtenons le canal u. Sinon, nous avons le canal i. Pour les canaux
s/5, I’ambigiiité est liée aux deux quarks incidents. Un des deux est un antiquark conjugué de
charge...
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canal s

canal 1 canal u

Figure 23. Canaux mis en jeu.

—iM, = f, € T (py) ivs u(py) iD (pr+ p2) @ (p3) v(ps)
—iM; = f; €2 V() ivs u(py) iD (pr+ pa) w(ps) v(ps)
—iM, = f, € i@ (py) iys u(py) iDP (p3—py) @ (p3) ulpy) (16)
~iM; = f, €9V (py) ivs v(ps) iDP (p3—py) @(ps) u(py)

Les résultats obtenus avec u+u — p+d sont exposés dans la figure 24. Les canaux s/§ ne
sont pas disponibles dans cet exemple. En effet, les diquarks [uu], symétriques en saveur,
sont des diquarks axiaux, mais pas scalaires. En outre, a I’opposé de certains processus
évoqués dans ce travail, notamment q+q — M+M [7], la contribution des canaux s/§ n’est
pas importante dans le cas des réactions q+q— B+q. D’autre part, le choix des diquarks

scalaires, au lieu de diquarks pseudo-scalaires, a été motivé par le fait que les scalaires
permettent d’obtenir des sections efficaces plus fortes.

Concernant I’évolution des sections efficaces, la température et la densité baryonique agissent
de la méme manicre. En effet, ces parametres décalent le seuil vers les basses valeurs de Js .
Cependant, la température ne modifie pas vraiment les sections efficaces obtenues, alors
qu'une augmentation de la densité entraine une réduction des valeurs trouvées. Dans la
figure 24, les valeurs restent assez basses, car elles n’excédent pas 1.5 mb quand /s est
inférieur a 1.7 GeV. De plus, q+q — B+{q est capable de concurrencer q+q —>D+M ou les
réactions élastiques entre quarks [8]. Ces trois réactions ont des sections efficaces d’égales
importances, méme si q+q—>D+M permet la formation de diquarks, et peut donc
indirectement permettre la création de baryons. Concernant la réaction inverse de
q+q—>B+q, on s’attend a ce qu’elle soit plus forte que nos réactions, quand elle est en
mesure de se produire. Mais, comme indiqué précédemment, la disparition des antiquarks
(grace a une mésonisation massive) peut neutraliser le processus B+q —q+q. En outre, on
s’attend a ce que la mésonisation continue, méme apres que la baryonisation ait démarrée, en
capturant tous les antiquarks qui pourraient étre formés durant cette phase. Clairement, on
peut considérer que le processus q+q— B+q est intéressant dans la cadre de la baryonisation
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du systeme. Il a certes des sections efficaces réduites, mais il est totalement indépendant de la

production de diquarks.
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Figure 24. Sections efficaces de la réaction d +u —>n+d .

5.5 Réactions q+D—>M+B

Dans ces réactions, les particules produites ne sont pas
cas pour les particules incidentes, c'est-a-dire le quark

I’avantage que les réactions inverses ne peuvent pas

des objets colorés, alors que c’est le
et le diquark. Aussi, g+D—>M+B a

intervenir, sauf dans des conditions

extrémes. Dans un scénario dans lequel quelques diquarks pourraient étre produits, on peut

imaginer que q+D —M+B soit le processus final qui

combinerait les diquarks formés avec

les quarks libres restants. A ce niveau la, on s’attend a ce que I’antimatiere, c'est-a-dire
notamment les antiquarks, soit déja consommée par les réactions précédentes pour former des

mésons. Apres les réactions q+D — M+B, toutes les

particules formées seraient alors des

particules observables. Dans notre travail, ce processus est décrit par le canal ¢, voir figure 25.

q M

D B
Figure 25. Canal 1.
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L’élément de matrice associé est écrit équation (17). Il n’y a pas de vertex impliquant un
diquark et deux quarks. Ainsi, il n’y a pas ambigiiité sur les quarks et antiquarks présents. Par
conséquent, le canal 7 n’est pas subdivisé en un autre canal 7 .

—iM, = f, ig, LT(P4) SF(Pl_P3) Y5 i8> ”(pl)- a7)

La réaction u+[ud]— 7" +n est considérée en tant qu’exemple. Les résultats associés,
exposés dans la figure 26, indiquent que les sections efficaces sont faibles. Cependant, méme
si nous notons une ressemblance entre les équations (17) et (14), les valeurs sont ici
légerement plus fortes que celles observées dans le paragraphe 5.2. En effet, la réaction
q+D—>M+B est capable d’atteindre 1.2 mb dans certaines conditions. Le comportement
selon la température, a densité nulle, est décrit dans la partie gauche de la figure 26. Il y est
montré que les sections efficaces augmentent trés lentement quand la température croft,
jusqu’a T =220 MeV . Apres cela, les valeurs chutent rapidement jusqu’a la limite de stabilité
du nucléon. En ce qui concerne 1’évolution en fonction de la densité, partie droite de la figure,
nous suggérons de comparer avec la figure 20 pour observer un comportement assez similaire
qualitativement entre les deux réactions. D’autre part, méme si un canal s a été imaginé par
[11, 12], aucune divergence au niveau du seuil n’est attendue pour cette réaction, méme avec
ce canal additionnel. Peut-&tre que I’inclusion dudit canal est capable d’augmenter les valeurs
des sections efficaces, mais cela serait seulement d’une maniére assez modeste.
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Figure 26. Sections efficaces de la réaction u +[ud]| > 7" +n.
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Réactions élastiques

Etudions maintenant les réactions élastiques. Celles-ci sont moins courantes dans la littérature
NJL que les réactions inélastiques, sauf pour les diffusions élastiques quark-quark et
quark/antiquark [8]. Concernant ces dernieres, comme expliqué dans I’introduction de ce
chapitre, les objectifs sont de retrouver les résultats trouvés dans cette référence, puis de les
étendre a densités non nulles, et d’effectuer les calculs dans le cadre du modele PNJL.
Notamment avec q+q-—>q+q, un autre but est d’étre capable de comparer les résultats

trouvés avec ceux de q+q—M+M, pour voir si la diffusion élastique est capable de

contrarier la mésonisation, c'est-a-dire si elle peut &tre une concurrente sérieuse. Une telle
étude est ensuite étendue aux autres réactions élastiques traitées dans cette seconde partie du
chapitre. Clairement, 1’objectif est donc de voir les processus élastiques qui seraient capables
d’intervenir de maniere notable, notamment en tant que concurrents des réactions
inélastiques.

6. Collisions élastiques entre quarks et antiquarks

6.1 Diffusion quark—-antiquark

Comme observé dans [8], la diffusion élastique entre un quark et un antiquark est décrite par
les canaux s et u, figure 27 et équation (18). Les propagateurs utilisés concernent des mésons
scalaires et pseudo-scalaires, qui sont représentés respectivement par les propagateurs

NJL/PNJL Dfu et D), . Les symboles T correspondent 2 des facteurs de saveur.

M canal ¢

Q|

canal s

q

Figure 27. Canaux s et 1.

o]

—iM; =0, .0,

1,0y Y C3,04

V(py) Tu(py) iDy (pi+py) w(ps) T v(py)
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Nous avons évalué les sections efficaces de u+u —u+u . Les résultats sont présentés dans
les figures 28 et 29. La partie gauche de la figure expose nos résultats NJL, alors que 1’autre
partie concerne les valeurs PNJL. Pour tous ces graphes, comme mentionné dans [8], les

calculs sont restreints par une valeur limite selon Js

S limite = 2\//\2 +m,”

dans laquelle A est la borne supérieure des intégrales utilisées pour calculer les masses des
particules concernées, voir chapitre 2.

f=ud,s (19)

Concernant les sections efficaces NJL, nous observons un bon accord avec les résultats de [8].
Pour les résultats NJL et PNJL de la figure 28, les sections efficaces sont modestes a basses
températures. Ensuite, elles augmentent brutalement, et elles forment des structures proches
du seuil cinématique. Apres cela, a hautes températures, les valeurs diminuent quand la
température monte. Comme avec q+q—>M+M, l'inclusion de la boucle de Polyakov

conduit a un décalage des courbes vers les hautes températures. Plus précisément, avec le
modele NJL, les sections efficaces de fortes valeurs sont obtenues a 7 =250 MeV , en accord
avec [8], alors que dans le modele PNJL, les sections efficaces optimales sont trouvées a des
températures proches de 300 MeV. En fait, quel que soit le modele, NJL ou PNIJL, la
température optimale correspond aux températures critiques (températures de Mott) de
certains mésons pseudo-scalaires utilisés comme propagateurs.
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Figure 28. Sections efficaces de u+u — u +u selon la température.

Pour les études a densités non nulles, figure 29, nous avons estimé 1’évolution des sections
efficaces PNJL a T=250 MeV . En effet, a cette température, I’effet de la densité est assez
spectaculaire. En fait, le comportement des sections efficaces est semblable a celui observé
avec la température. Les valeurs sont faibles a basses densités. Elles augmentent et forment
des structures comparables a celles de la figure 28, et ensuite elles diminuent a hautes
densités, c'est-a-dire ici pg =5p, .
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Une explication globale consiste  dire que les sections efficaces deviennent fortes quand /s
est comparable a la masse des mésons pseudo-scalaires les plus légers utilis€és comme
propagateurs dans le canal s, c'est-a-dire le pion et 7. D’ailleurs, nous avons vérifié que le

canal s domine, notamment quand les sections efficaces sont fortes. Dans la figure 28, sauf
pour la divergence au seuil, les deux autres maximums de la courbe NJL a 7 =250 MeV et de

la PNJL a 7=290 MeV traduisent les résonances de ces mésons quand Js est égal a leurs
masses.
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Figure 29. Sections efficaces de u+u — u +u selon la densité baryonique.

Nous considérons maintenant les différences entre q+q—>q+q et g+q—>M+M. A densité
nulle, les sections efficaces maximales du processus élastique u+u —u+u sont trouvées a
une température proche de 7 =300MeV, alors que la température optimale de

u+u -t +x a été trouvée sur la figure 6 a T =280 MeV environ. Une telle différence
pouvait aussi étre notée avec le modele NJL. Avec ce denier, la température optimale sont de

T =230 MeV pour u+u =z +7x (voir figure 2), contre T=250MeV pour u+iu —>u+iu

[10]. En revenant aux résultats PNJL, 2 T =250 MeV , la section efficace de u+u > 7" +7~
explose pour une densité d’environ 2p, ou 2.5p,, mais inférieure a 3p, . La figure 29 indique
que la densité optimale pour la réaction u+u —u+u est plus forte, car nous avions
obtenu 4p,. En extrapolant au plan 7,p,, nous pouvons deviner que ces deux dernieres
réactions ne devraient pas interférer ensemble de maniere notable, car elles devraient se
dérouler dans des conditions voisines, mais différentes. La diffusion élastique est capable
d’intervenir a des températures/densités tres fortes. Pendant le refroidissement d’un plasma de
quarks/antiquarks, une thermalisation du systéme, induite par le processus élastique, devrait
se produire juste avant une mésonisation massive.
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6.2 Diffusion quark—quark

Dans le cadre de I’évolution d’un systeme de quarks, la diffusion quark/quark devrait jouer un
role important, notamment dans les premiers instants de son expansion. En nous inspirant de
[8], nous proposons d’estimer les sections efficaces avec les canaux ¢ et u représentés figure
30. Les éléments de matrice correspondants sont écrits équation (20). Comme avec la
diffusion quark/antiquark, des mésons scalaires et pseudos scalaires sont utilisés comme

propagateurs. Ils sont notés respectivement inu et inu. De la méme maniere, 7 fait
référence a des facteurs de saveur, en utilisant les mémes notations que dans la référence [8].

q q q
q
M canal ¢ M canal u
q
q q q
Figure 30. Canaux 7 et u.
_lM 501 03502 cy l’_t( ) ( 1) lDtS( ) l’_t(p4) T u(pl)
+ 501 63562 4 l’_t(p3) iys T u(pl) ( p3) l’T(p4) iys T u(p2)
—iM, =8, 0,8y, T(Ps) Tulpy) iDF (py=pa) T(ps) T u(py) 0
+ 501 C45C2 c3 ( ) 17/5 T M(]?l) ( p4) I/_t(p3) i?/5 r u(pZ)

Nos résultats sont exposés dans les figures 31 et 32. IlIs concernent I’étude de la diffusion
élastique entre deux quark u. La figure 31 rassemble les données trouvées a densité
baryonique nulle, pour les modeles NJL et PNJL. Nos résultats NJL sont en accord avec ceux
de [8]. Comme avec les autres comparaisons entre les modeles NJL et PNJL, il a aussi été
observé un décalage selon la température. Par exemple, la courbe NJL trouvée a T =250 MeV
ressemble fortement a la courbe PNJL trouvée a 7 =300MeV. Ces deux valeurs
correspondent a la température pour laquelle les sections efficaces sont optimales, dans
chaque modgle. En fait, en nous focalisant sur les valeurs de /s inférieures a2 1 GeV, les
sections efficaces tendent a augmenter quand la température monte, jusqu’a atteindre les deux
températures citées, mais tres lentement. Apres cela, elles commencent a diminuer. Les

mésons propagés sont 7,.7,77,ay, fy, f, pour cette diffusion. La présence de mésons pseudo-
scalaires est une explication possible du comportement observé. En raison de leurs faibles
masses, ils peuvent intervenir pour des valeurs de Js assez basses. Le maximum absolu
observé pour la réaction u+u —u+u pourrait correspondre assez bien aux températures
critiques de ces mésons, c’est a dire 7=250 MeV (NJL) et 7=300MeV (PNJL). Et, la

disparition de ce maximum au-dela de ces températures pourrait Etre associée a leur
instabilité.
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Selon la densité baryonique, les calculs ont été effectués a 7 =250 MeV, avec le modele
PNIJL. Les résultats sont présentés dans la figure 32. Ils montrent que les sections efficaces
tendent a diminuer quand la densité baryonique augmente. Cette évolution devrait aussi se
produire aux autres températures. A hautes températures ou a hautes densités baryoniques, les
sections efficaces ont un aspect trés similaire, presque linéaire en fonction de /s . Dans
I’ensemble, la diffusion élastique entre deux quarks semble Etre assez faible quels que soient
les parametres appliqués, au moins pour de faibles valeurs de /s . En effet, quel que soit le
modele utilisé, les sections efficaces restent assez basses, en dessous de 2.5 mb. De telles

valeurs sont comparables a celles de q+q—D+M et q+q—B+q, c'est-a-dire les
concurrents directs de la diffusion élastique entre quarks.
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Figure 31. Sections efficaces de u +u — u +u selon la température.

D’autre part, une évolution possible du traitement de ce processus élastique pourrait €tre la
prise en compte d’un canal s. Celui-ci pourrait utiliser des diquarks scalaires ou pseudo-
scalaires comme propagateurs, comme dans les paragraphes 4.4 et 5.1. Leurs contributions
aux valeurs obtenues pourraient alors €tre évaluées. Une autre évolution de ce travail
concerne aussi 1’étude de la diffusion antiquark-antiquark, avec des réactions comme
u+u —u+u. Mais, en fait, a densité nulle, les sections efficaces associées a q+q—>q+q
sont identiques a celles de q+q —>q+q. A densités non nulles, nous pouvons utiliser la
symétrie matiere-antimatiere évoquée dans les chapitres précédents. Nous rappelons que
celle-ci consiste a dire qu'un antiquark plongé dans un milieu ou la densité est positive agira
comme un quark plongé dans un milieu ou la densité est négative. Mais, comme observé au
chapitre 2, les quarks sont seulement affectés par la valeur absolue de la densité. Avec
u+u—u+u, cette observation peut étre étendue a tous les termes de (20), ce qui inclut les
propagateurs de mésons. Finalement, la seule différence entre v +u > u+u et u+u —>u+u

vient finalement des facteurs de blocage (4), c'est-a-dire (1— fr(E; —,u3))~(1— fr(Ey - u4)).

Clairement, la différence entre un quark et un antiquark est le signe de leur potentiel
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chimique. Celui-ci est positif pour un quark, négatif pour un antiquark (a densité positive).
Naturellement, cela induit des résultats différents au niveau des distributions de Fermi-Dirac.
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Figure 32. Sections efficaces de u +u — u +u selon la densité baryonique.

7. Collisions élastiques avec mésons ou diquarks

7.1 Diffusion méson—quark

Au début de ce chapitre, il a été vu que les sections efficaces trouvées pour les réactions
q+q — M+M sont fortes, conduisant a une mésonisation massive. On s’attend a ce que ces

mésons soient formés tot dans I’évolution du systeme physique. Ainsi, leurs collisions avec
les quarks ou antiquarks restants doivent étre considérées. Pour traiter les réactions
q+M —>M+q, nous considérons le canal ¢ décrit par la figure 33 et par son élément de

matrice (21). Une évolution possible de ce travail serait d’inclure d’autres canaux, mais ils ne
devaient pas apporter des modifications importantes. D’autre part, le processus
q+M —>M+q peut étre déduit de q+M —M+q. Plus précisent, par rapport a (21), son

diagramme de Feynman requiert seulement de remplacer u(p,) par v(p,). Sg(p; —p;) par
Sp(ps—py) et u(p,) par v(py), en se rappelant le travail fait au paragraphe 4.2. En fait,

fopn c 2 <
nous pouvons vérifier que les termes carrés |M t| de ces deux processus sont égaux. Seuls
les facteurs de blocage sont différents a densités baryoniques non nulles.
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M q
Figure 33. Canaltde q+M > M +q.

_th:ft 50,,01 504,6, u(pl) in igl SF(pl_p3) i75 i82 l’_t(p4) . (21)

Nos résultats considerent la diffusion élastique entre un pion z° et un quark u, dans la
figure 34. Dans la partie gauche de la figure, nous observons que les sections efficaces
augmentent quand la température monte. En effet, les valeurs sont inférieures a un millibarn a
températures réduites. En revanche, elles dépassent quelques millibarns pour 7 =280 MeV .
De telles valeurs ne peuvent pas €tre négligées. Selon la densité baryonique, partie droite de la
figure, nous notons que les sections efficaces tendent a diminuer quand la densité baryonique
augmente, sauf au niveau du seuil. Clairement, la divergence au seuil devient significative.

Modéle PNJL pg=0 Modéle PNJL T =200 MeV

4 — 1
,T=280
35F
]
o) ' 5 0.8}
E 3' n E
N || SN
o i ©
o 25[ ® 0.6}
(&) 1 (&)
@© ! ©
L 2 o
© ©
c 15} c 04f
2 9
i3] 3]
o 1f D
) w» 0.2}
0.5}
0 0
0 0

Figure 34. Sections efficaces de la réaction u + 7 su+°.

La diffusion méson-quark a un seul concurrent, c'est-a-dire M+q —>q+D étudié dans le

paragraphe 4.2. En fait, les résultats des figures 11 et 34 sont assez comparables selon la
température, méme si la réaction élastique semble €tre 1égerement favorisée. Cependant, a
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densités non nulles, M+q— q+D a des sections efficaces plus fortes, notamment via la forte
diverge au seuil que nous pouvons observer pour pg =2-3p,.

7.2 Diffusion diquark—quark

En nous inspirant du paragraphe 5.5, nous proposons avec la figure 35 un diagramme de
Feynman pour modéliser les réactions élastiques q+D — D+q. Il pourrait étre argumenté
qu’il nous faudrait également inclure un canal s mettant en jeu un baryon. Cependant, comme
dans le paragraphe 5.5, nous ne 1’avons pas inclus, notamment pour obtenir de sections
efficaces équivalentes entre q+D —>D+q et q+D—>M+B. Les deux éléments de matrice
possibles sont écrits équation (22) : nous avons un canal 7 et un canal 7. En fait, il y a
ambigiiité au niveau des deux vertices sur la figure 35, ce qui explique ces deux canaux. La
premiere solution consiste a dire que seul le quark propagé est conjugué de charge. Cela
correspond a I’élément de matrice du canal ¢. L’autre possibilité consiste a dire le contraire :
les quarks associés aux lignes externes dans le diagramme de Feynman sont en fait des
antiquarks conjugués de charge. En revanche, le quark propagé n’est pas affecté. Cela donne
le canal 7 .

q
D // q
Figure 35. Canaux #/7 .

—iM, = f, € U (py) iys igy Sp (= p3) iv5 €74 gy u(py) 22)
~iM; = f, €7 v(py) iys igy Sp(pa—py) i¥s €74 gy v(p))

Nous étudions la réaction u+[ud]—>[ud]+u en tant qu’exemple. Les résultats sont

rassemblés dans les figures 36. A températures finies et densité nulle, les valeurs sont
inférieures a 2.5 mb. En outre, plus la température augmente, plus les sections efficaces sont
réduites. Par ailleurs, selon la densité baryonique, nous observons qu’une divergence au seuil
apparait quand la densité baryonique est proche de 2p,. La, les sections efficaces peuvent
largement dépasser 6 mb. Au-dessus de cette densité, la divergence au seuil est toujours
présente, mais les sections efficaces deviennent plus faibles.
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Modéle PNJL pg=0 Modéle PNJL T =200 MeV

3 7 !
il
5 i
25 ]
—_ —_ P, = 2p 3 -3
o) o B o Pg =P,
£ Es e
b 2 o i
3 84
o] I
g5 2
© © 3
C c
o 1 o
3] © 2
D 0]
wn n
0.5 1
0 00

Figure 36. Sections efficaces de la réaction u +[ud]|— [ud]+u .

Si nous comparons q+D—>D+q et q+D—>M+B a densité nulle, nous notons que le

processus élastique a des sections efficaces qui sont le double de celles du processus
inélastiques, voir les figures 36 et 26. A densités finies, q+D —D+q domine largement

q+D — M +B. En conséquence, le processus €lastique est capable de limiter la production de
baryon via q+D—>M+B. Les conditions les plus favorables en ce qui concerne cette
production de baryons semblent étre a densités réduites.

7.3 Diffusion diquark—-antiquark

Le processus q+D —q+D est décrit dans nos travaux par les canaux s et §, figure 37 et

équation (23). Clairement, a cause des deux vertices impliquant un diquark et un antiquark,
cela conduit a deux solutions pour le choix des quarks conjugués de charge. Plus précisément,
pour le canal s, les antiquarks entrants et sortants sont en fait des quarks conjuguées de

charge, conduisant respectivement aux spineurs u(p,;) et u#(p;). Concernant le canal 5, le
quark utilisé comme propagateur est en fait un antiquark conjugué de charge.

a q

Figure 37. Canaux s/5 .



212

C3,C,C

~iM=f, €7 u(py) iys igy Sp(p+pa) ivs € +igy u(p3) (23)
—iM;=f, €75 V(py) ivs igy Sp(=pi— py) i¥5 €7 igy v(ps3)

Les résultats associés a ce processus sont exposés dans la figure 38, dans laquelle nous
considérons la réaction u+[ud]—u +[ud]. Quelle que soit la température et la densité
baryonique, les sections efficaces restent réduites, car elles sont incapables de dépasser 1 mb,
sauf peut-étre pour des divergences au niveau du seuil, pour des densités comme 3—-4p,. En
fait, ces divergences ne sont pas observées selon la température, partie gauche de la figure 38.

Deux autres types de processus utilisent un antiquark et un diquark comme particules
incidentes. Ce sont g+D —q+M et g+D — D+B. Tout d’abord, grice a la figure 10, nous
concluons que q+D —q+D ne peut pas étre un sérieux concurrent de g+D —>q+M. En
effet, les sections efficaces de ce processus sont nettement plus fortes que celles de
g+D—q+D. En revanche, les valeurs trouvées avec q+D—D+B, figure 18, sont
comparables a celles de notre de notre processus élastique. En fait, cela veut dire que les
réactions associées 2 q+D—-D+B et q+D—g+D sont négligeables par rapport 2

q+D —q+M. Cette remarque est vraie selon la température, et selon la densité baryonique.
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Figure 38. Sections efficaces de la réaction  +[ud | — i +[ud].

7.4 Diffusion diquark—diquark

Des études des sections efficaces entre deux particules composites sont rares dans le cadre des
modeles (P)NJL. Les complications induites par ce type de calculs en sont souvent la raison.
Cependant, nous pouvons remarquer notamment le travail effectué dans [14-16]. Ces
publications nous permettent considérer la diffusion quark-quark, en utilisant des diagrammes
de Feynman, figure 39, proches de ceux proposés dans ces références. Les structures en
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triangle pour les canaux ¢ et u correspondent a la fonction I' (9) utilisée pour modéliser
q+q—>M+M. Dans I’écriture des éléments de matrice, équation (24), elles sont désignées

par Fﬁﬁ”’ ou Fff. Entre elles, un propagateur (P)NJL de méson est utilisé, correspondant a

Dfu. Comme rappelé par le S, seuls des mésons scalaires sont utilisés pour cela, comme
dans [15]. D’autre part, la figure 39 inclut aussi un nouveau canal, le canal « box » [15, 16].
Ce canal ne peut pas étre décrit en utilisant les fonctions génériques A,B, décrites dans
I’annexe D. En conséquence, nous ne 1’avons pas inclus dans nos calculs.

Nous considérons la diffusion élastique entre deux diquarks [ud] comme exemple. Les
résultats sont proposés dans la figure 40. Nous remarquons la faiblesse relative des valeurs
trouvées. A densité nulle, nous ne dépassons jamais le millibarn, malgré la présence de
divergences au seuil, quelle que soit la température. En fait, les sections efficaces tendent a
diminuer quand la température monte. A 7 =200 MeV , la densité baryonique agit de manicre
inverse : les sections efficaces sont plus fortes pour pz = p, qu’a densité nulle, notamment au
niveau du seuil cinématique.

D D D D
M M
D D D D
canal ¢ canal u
D D
canal box
D D

Figure 39. Canaux possibles.

—iM, =1, ig ig; Ffmm(l’l—l?y Pl) iDtS(Pl_P3) Fim(Pl_Py P4) I8, I8y

24
—iM, = f, 181 ig4 anm(l?l = P4s P1) iDuS(pl = P4) Fﬁm(l’l — P4 P3) 182 i85 9
Un intérét de cette étude est de comparer les résultats avec ceux des réactions qui utilisent
deux diquarks comme particules entrantes, c'est-a-dire D+D —>q+B. Selon les résultats
trouvés dans la figure 22, nous voyons que la réaction inélastique domine largement la
réaction élastique a densité nulle. En effet, nous trouvons des sections efficaces qui peuvent
dépasser 4 mb pour D+D —q+B. A densités finies, les sections efficaces de ce processus

diminuent quand la densité croit. En conséquence, la domination de D+D — q+B par rapport
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a D+D—D+D est ici moins manifeste. Cependant, nous concluons que la production de
baryons par le biais de réactions comme D+D —q+B pourrait ne pas étre réellement
contrariée par la diffusion quark-quark. Comme vu précédemment, la principale limitation de
D+D —q+B est en fait le manque de diquarks ...
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Figure 40. Sections efficaces de [ud | +[ud]— [ud]+[ud].

Une évolution du travail effectué dans ce paragraphe est évidemment de 1’étendre a des
sections efficaces mettant en jeu deux mésons, un méson et un diquark, ou une diffusion
baryon-baryon. En fait, des calculs des sections efficaces de M+D —->M+D ont été faites
dans le cadre de notre travail, conduisant a des résultats comparables a ceux trouvées dans la
figure 40, mais des valeurs plus fortes ont été trouvées. Pour les sections efficaces méson-
méson, une complication apparait pour modéliser la diffusion entre deux pions. En effet,
comme expliqué dans [14], une telle étude requiert I’utilisation d’'un méson p comme

propagateur, dans un canal s. Ces calculs constituent une évolution intéressante de notre
travail. D’autre part, de la méme manicre, il est possible d’imaginer, de décrire la diffusion
baryon-baryon avec les modeles (P)NJL, en utilisant des diagramme de Feynman comme
ceux de la figure 39. Cependant, en raison de la nature fermionique des baryons, une étude de
ce type induit des complications au niveau des calculs des éléments de matrice. En
conséquence, nous considérons les données et les formules fournies par [26, 27], pour estimer
les sections efficaces des processus B+M —-B+M et B+B—B+B.
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8. Collisions élastiques incluant des baryons

8.1 Diffusion baryon—quark

Pour modéliser la diffusion élastique entre un baryon et un quark, nous considérons le canal ¢
présenté dans la figure 41 et équation (25). Les diquarks utilisés comme propagateurs, via le
terme D,, sont scalaires. En fait, nous concédons que notre description pourrait étre
complétée par des canaux plus complexes, notamment par des canaux de type box, en
adaptant le travail effectué dans le paragraphe précédent.

q B

B q
Figure 41. Canal .

—iM,= f, u(ps)u(ps) iD(ps—p) u(ps)ulp) - (25)

Concernant nos résultats numériques, nous avons choisi d’étudier p+u — p +u, c'est-a-dire la
diffusion élastique entre un proton et un quark u. Les résultats associés sont présentés dans la
figure 42. Dans I’ensemble, les valeurs trouvées ne sont pas négligeables, car elles peuvent
dépasser 10 mb a températures et densités réduites. En fait, ces deux parametres agissent de la
méme maniere : quand la température ou la densité baryonique augmente, il est observé une
diminution des sections efficaces. A la limite de stabilité du proton selon la température, les
sections efficaces peuvent encore atteindre 4 mb. Selon la densité baryonique, la diminution
est plus forte. A pp =2p, et T =200 MeV , les valeurs sont proches de 2 mb.

D’autre part, I’autre processus mettant en jeu un baryon et un quark comme particules
incidentes est q+B — D+ D . Clairement, les réactions associées sont les réactions inverses de
D+D —q+B, étudié dans le paragraphe 5.3. Méme si nous ne présentons pas les résultats
associés a ces réactions inverses, ils sont plus forts que ceux de D+D —q+B. En effet, la

masse totale des deux diquarks est plus faible que la masse totale d’un baryon et d’un quark,
ainsi nous n’avons pas de divergence au niveau du seuil cinématique pour D+D —>q+B.

Mais, les divergences sont présentes pour q+B—>D+D, permettant a ces dernieres
d’atteindre des sections efficaces assez fortes. En pratique, au niveau de la divergence, les
valeurs dépassent fréquemment 20 mb. En conséquence, nous concluons que q+B —>q+B et

q+B —>D+D ont des sections efficaces assez équivalentes, méme si le processus inélastique
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domine, grace a la divergence. Quoi qu’il en soit, un aspect intéressant du processus élastique
est qu’il puisse géner q+B — D+D, c'est-a-dire qu’il réduise une destruction indésirable des
baryons par les quarks.
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Figure 42. Sections efficaces de la réaction u+p - u+p.

D’autre part, 1’étude effectuée dans ce paragraphe peut facilement €tre adaptée aux réactions
q+B —q+B, en utilisant la symétrie matiére-antimatiére, comme expliqué plus haut pour
d’autres réactions. Cependant, il est vrai que I’on ne s’attend pas a ce que les antibaryons
soient présents dans un systeme physique dans lequel la matiere domine 1’ antimaticre.

8.2 Diffusion baryon-antiquark

Une modélisation possible des collisions €lastiques entre un baryon et un antiquark inclut le
canal s, comme présenté figure 43 et équation (26). Dans ce canal, les diquarks scalaires sont
utilisés comme propagateurs. Ils correspondent au terme D, .

B B

Q|
Q|

Figure 43. Canal s.

—iM; = f, V(py)u(py) iDy (i + pa2) u(p3)v(ps) - (26)
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En tant qu’exemple, nous avons estimé les sections efficaces de la diffusion p+u — p+u, et
nous avons rassemblé nos résultats dans la figure 44. Les courbes obtenues ont un
comportement tres différent de ceux décrits précédemment. Clairement, ils n’ont pas de point
commun avec les sections efficaces trouvées par exemple avec q+B—q+B. Les résultats
montrent que p+i — p+u n'est pas capable d’intervenir avant /s <1,6 GeV. Aprés cette
valeur, les sections efficaces augmentent fortement, mais elles restent inférieures au millibarn
pour /s =2 GeV, quelle que soit la température ou la densité baryonique.
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Figure 44. Sections efficaces de la réaction p+u — p+u .

D’autre part, deux autres processus considerent un baryon et un antiquark comme particules
incidentes : ce sont q+B—q+q et g+ B—>M+D. Ils correspondent aux réactions inverses

des réactions de baryonisation vues aux paragraphes 5.2 et 5.4. Aussi, +B—>q+q et
q+B—>M+D sont des réactions exothermiques (les particules incidentes sont plus lourdes
que les particules produites). Ainsi, elles ont des divergences au niveau du seuil cinématique,
et elles présentent des sections efficaces que celles de M+D—q+B et q+q—q+B. Cela
veut dire que G+B—q+B est hautement négligeable pour /s <2GeV. Ce processus
élastique est ainsi incapable d’éviter la destruction des baryons par des réactions comme
q+B—q+q ou g+B—>M+D. Comme remarqué plus haut dans ce chapitre, cela suggere un

scénario dans lequel la production de baryon pourrait n’étre efficace que si la population
d’antiquarks est assez réduite.

8.3 Diffusion baryon-diquark

Le dernier processus décrit dans ce chapitre concerne les réactions élastiques entre un baryon
et un diquark. Nous proposons d’étudier ce processus avec un canal #, voir figure 45.
L’élément de matrice associé est écrit équation (27). Dans notre modélisation, un quark est
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utilis€é comme propagateur. Nous somme particuliecrement conscient que cette description peut
étre complétée par 1’inclusion de canaux plus complexes, comme un canal box dans lequel le
diquark et le baryon échangent un quark, en nous inspirant de celui de la figure 39.

D

B

B

D

Figure 45. Canal 1.

~iM, = fu(p,y) igs Sp(ps—py) igy u(p3) - 27)

Nous considérons la réaction p+[ud]— p+[ud] comme exemple. Nos résultats sont exhibés

dans la figure 46. Tout d’abord, nous observons que les sections efficaces obtenues peuvent
dépasser quelques millibarns, c'est-a-dire plus de 6 mb a certaines occasions. Dans la partie
gauche de la figure, nous notons que les valeurs augmentent légerement quand la température
croit, jusqu’a 7 =230 MeV . Ensuite, les sections efficaces diminuent, jusqu’a la limite de

stabilité du baryon, pour 7 =260 MeV .
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Figure 46. Sections efficaces de la réaction [ud ]|+ p — [ud]+ p .

Selon la densité baryonique, partie droite de la figure, le pic au niveau du seuil devient plus
important quand la densité est assez forte. Mais dans le méme temps, les sections efficaces
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sont plus ténues loin le seuil, c'est-a-dire quand Js>2 GeV. Dans I’ensemble, grice aux
valeurs trouvées, la réaction ne peut pas €tre considérée comme négligeable. En outre,
D+B — B+D est le seul processus pour lequel nous avons un baryon et un diquark comme
particules incidentes. Ainsi, il n’y a pas de concurrence pour un tel processus. En
conséquence, il est probable que D+B — B+D ait lieu durant le refroidissement du plasma
de quarks/antiquarks.

9. Conclusion

Dans ce chapitre, nous avons étudié des sections efficaces mettant en jeu des particules
modélisées dans le cadre de notre travail, c'est-a-dire les quarks/antiquarks, les mésons
pseudo-scalaires, les diquarks scalaires et les baryons de 1’octet. Plus précisément, nous avons
restreint nos calculs aux réactions impliquant des particules 1égeres. Autrement dit, nous
n’avons pas inclus 1’étrangeté. En effet, des particules comme des quarks ¢, des pions, [ud] et

les nucléons permettent d’obtenir les sections efficaces les plus fortes. En fait, nos calculs
sont pleinement applicables aux particules étranges, mais exposer les résultats correspondant
aurait nettement surchargé ce chapitre.

Un premier objectif était de reprendre les réactions déja traitées dans la littérature NJL. Cela
concernait tout d’abord le processus q+q —>M+M [7]. Comme noté dans [10], nous avons
confirmé que les divergences au niveau du seuil cinématique conduisent a des sections
efficaces fortes pour ces réactions, c'est-a-dire plus fortes que 100 mb. Ce comportement a
aussi été confirmé selon la densité baryonique. En outre, nous avons aussi analysé les effets
de I’inclusion de la boucle de Polyakov sur les résultats obtenus. Comme pour les masses des
particules, nous avons observé que les courbes PNJL sont décalées vers les hautes
températures par rapport aux résultats NJL. Quantitativement, les sections efficaces optimales

de la réaction u+u — 7"+~ ont été trouvées a T =230 MeV (avec pz =0) dans le modele
NIJL, alors que nous avons 7 =280 MeV avec PNJL. Dans I’ensemble, nous avons vu que ces

conditions optimales, selon la température ou la densité baryonique, ont été trouvées juste
avant que les pions produits deviennent plus lourds que les paires ¢/q qui les composent,

c'est-a-dire juste avant leur limite de stabilité. D’autre part, il est intéressant de noter que
T =280 MeV est tres comparable a la valeur de déconfinement critique dans une théorie pure
jauge, dont la valeur escomptée est 7, =270 MeV [28], voir chapitre 2.

De la méme maniere, nous avons aussi effectué des travaux similaires concernant les
réactions élastiques impliquant des quarks et/ou des antiquarks, c'est-a-dire q+q —>q+q et

q+q—q+q, en suivant la méthode exposée dans [8]. Nous avons retrouvé les résultats de

cette référence selon la température, mais nous les avons étendus a des densités finies.
Comme pour q+q — M+ M, nous avons aussi observé les effets de la boucle de Polyakov sur
ces résultats. Clairement, pour u+u —u+u et u+u —u+u, nous avons trouvé des sections
efficaces optimales pour 7' =250 MeV dans le modele NJL, contre 7 =300 MeV avec PNJL.

En comparant ces températures optimales avec celles de u+i — 7 + 77, il a été imaginé que,
pendant le refroidissement du systeme quarks/antiquarks, q+q — q+q devrait fortement agir,

notamment pour permettre une thermalisation du systéme, avant une mésonisation massive



220

via q+q > M+M. Autrement dit, on ne s’attend pas a ce que q+q—>q+q et qg+q—>M+M
interviennent en méme temps.

D’autre part, d’autres travaux effectués dans ce chapitre ont concerné la modélisation de
réactions mettant en jeu des diquarks, et ensuite d’autres impliquant des baryons. Ces calculs
ont été faits dans le cadre du modele PNJL, selon la température et la densité baryonique. En
nous inspirant des processus proposés dans [11, 12], et en y ajoutant de nouveaux comme
D+D — B+q, I'objectif était ainsi de voir les réactions dominantes qui peuvent permettre la

formation de baryons, et le role joué par les diquarks. Globalement, des sections efficaces
assez faibles ont été trouvées, par rapport a celles de q+q — M +M . Elles ont des valeurs de
quelques millibarns. Selon nos résultats, on s’attend a une production plutot réduite de
diquarks, permise seulement si les processus de mésonisation ont consommé la grande
majorité des antiquarks présents initialement dans le systeme. Il apparait que le processus
dominant qui peut permettre cette création de diquarks est q+q—D+M. Les conditions

optimales de cette production de diquarks semblent étre a densités modérées, c'est-a-dire deux
fois la densité nucléaire standard p,, et en dessous de la température optimale de

mésonisation.

En fait, nos résultats nous ont conduit a développer un scénario décrivant le refroidissement
du plasma de quarks/antiquarks. Apres une domination de q+q — q+q a hautes températures

(=300 MeV dans le modele PNJL), et apres une forte mésonisation via q+q—>M+M a des

températures proches de 7 =280 MeV, la baryonisation est supposée avoir lieu, notamment
quand la température est assez réduite. D’autre part, on s’attend a ce que la baryonisation se
produise pendant que la mésonisation est toujours active, afin de « supprimer » tous les
antiquarks, produits par exemple par q+q— B+q, qui pourraient détruire les baryons qui

viennent d’étre créés. Avec cette hypothese, la faiblesse relative des sections efficaces de
baryonisation n’est pas une réelle limitation de notre approche. En effet, en dehors des
réactions €lastiques, les quarks restants ne peuvent réagir entre eux que par des réactions
produisant des diquarks et/ou des baryons. Dans le cadre de la production des baryons, nous
avons vu que q+q—>B+q, qg+D—>M+B, D+D — B+q sont des réactions particulierement

pertinentes. Evidemment, le dernier processus cité est tres 1ié a la production de diquarks au
sein du systeme.

Nous avons vu que les réactions dans cette partie nécessitaient d’interpréter correctement les
diagrammes de Feynman, en identifiant les quarks/antiquarks qui sont en fait conjugués de
charge. Cela a quelquefois conduit a des subdivision des canaux mis en jeu, comme par
exemple #/f. Aussi, cela a mené a devoir traiter des calculs assez singuliers, car impliquant

des spineurs avec des quantités de mouvement différentes. Nous avons alors établi une
méthode, décrite dans I’annexe B, pour pouvoir effectuer de tels calculs. Bien siir, la méthode
ne semble pas €tre limitée aux modeles (P)NJL, mais pourrait étre adaptée a d’autres
configurations impliquant un nombre élevé de quadrivecteurs. Aussi, les résultats trouvés
avec cette méthode restent finalement assez proches de ceux obtenus avec la « méthode
standard » utilisée pour traiter des calculs avec des spineurs, comme ceux décrits dans [7, 8].
Cette observation était loin d’étre triviale avant d’effectuer les calculs. En fait, ces similarités
peuvent s’expliquer par la méthode développée dans [29]. Plus précisément, 1’approche
exposée dans cette publication propose d’effectuer des transformations qui permettent de
réécrire certains éléments de matrice, afin de simplifier énormément les calculs. Plus
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précisément, comme nous l’avons montré dans I’annexe B, le terme M, - M, de
q+q—>D+M (paragraphe 4.4) devient équivalent apreés transformation a celui vu dans le
processus q+q — M+ M . Clairement, cette méthode alternative confirme nos calculs. D’ autre

part, elle permet de valider les signes des termes mixés, désignés sous le sigle RSIF (Relative
Sign of Interfering Feynman graphs) dans cette référence.

Un autre aspect de ce chapitre concerne la modélisation des réactions élastiques mettant en
jeu des mésons, des diquarks et des baryons. Sauf avec la diffusion méson/méson [14-16], la
littérature (P)NJL est pauvre en ce qui concerne de telles réactions. Certains des processus
étudiés ont présenté des sections efficaces intéressantes, comme M+q—>M+q,

q+D—q+D et B+q—>B+q. Il a été montré que ces réactions sont capables de constituer

une source de concurrence par rapport aux réactions inélastiques utilisant les mémes
particules incidentes. Par exemple, nous pouvons mentionner la rivalité entre q+D —>q+D et

q+D>M+B.

D’autre part, nous avons vu que la description de certains de ces processus pourrait tre
complétée par I’inclusion de nouveaux canaux, comme les canaux de type « box ». Cet aspect
pourrait constituer un développement futur de notre travail. En fait, d’autres évolutions
peuvent étre évoquées, comme la modélisation complete de la diffusion méson/méson [14—
16] dans le cadre des modeles (P)NJL, notamment pour décrire la diffusion entre deux pions.
Dans la continuité de cette idée, comme suggéré dans [11], nous pourrions aussi considérer de
traiter les réactions élastiques comme B+B —>B+B ou B+M — B+ M. D’autres possibilités
d’évolution pourrait de méme concerner I’étude de I’influence de la supraconductivité de
couleur [24, 25] sur les sections efficaces, a basses températures et densités finies.
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Chapitre 7

Evolution du systeme
en fonction du temps

Ce chapitre a été soumis a Physical Review C.

1. Introduction

Dans les chapitres précédents, nous avons vu les possibilités offertes par les modeles (P)NJL
pour modéliser des quarks, mésons, diquarks et baryons. Ce travail permet d’estimer la masse
de chacune des particules citées, en fonction de la température 7 et de la densité
baryonique pg. Dans le chapitre 6, nous avons étudié les sections efficaces associées aux

réactions mettant en jeu ces particules, en fonction de ~/s , mais aussi en prenant en compte
T et pg. Par conséquent, a ce stade du travail, nous avons les outils requis pour nous focaliser

maintenant sur la dernicre partie de cette these, c'est-a-dire I’étude de I’évolution du systeme
en fonction du temps. Cela concerne le refroidissement d’un plasma de quarks et
d’antiquarks, et son hadronisation.

Dans la littérature dédiée a la physique nucléaire et a la physique des particules, divers
modeles d’évolution dynamique ont été proposés. Tout d’abord, nous pouvons citer
I’hydrodynamique et les modeles QMD/UrQMD. L’hydrodynamique relativiste [1-9] a été
proposée en 1953 par Landau pour décrire des systemes dans lesquels les interactions entre
particules sont fortes. Dans cette approche, la matiere est modélisée comme un fluide continu.
Cette méthode est applicable si 1’équilibre thermodynamique local est satisfait : cela impose
de faibles variations de la température et de la pression, en fonction du temps et de la
distance. En fait, le scénario de Bjorken [10], vu dans le chapitre 1, prévoit I’existence d’une
évolution de type hydrodynamique, depuis 1’hadronisation (rapide) de la phase QGP, jusqu’au
freeze out de la phase hadronique. Des résultats expérimentaux semblent confirmer cette
hypothese, validant que cette évolution semble satisfaire le critere d’équilibre local. Dans la
pratique, ’hydrodynamique relativiste peut €tre utilisée pour modéliser 1’évolution de la
phase QGP et celle de la phase hadronique. L’UrQMD (Ultra-Relativistic Quantum Molecular
Dynamics) [11, 12] est une approche microscopique. Cela veut dire qu’il modélise 1’évolution
de particules, dans un régime hautement relativiste. Plus précisément, cette méthode considere
des équations de transport covariantes et traite les interactions entre particules via des sections
efficaces. UrQMD peut étre employée dans la pratique pour décrire la phase hadronique, voir
par exemple [13, 14]. Dans certaines versions d’UrQMD, les cordes de Lund [15] sont
considérées pour décrire les collisions a hautes énergies entre hadrons. Elles permettent la
formation de nouvelles particules (mésons), tout en respectant le confinement des quarks au
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sein des hadrons. Des approches récentes peuvent aussi étre citées, comme la PHSD (Parton
Hadron String Dynamics) [16-19], BAMPS (Boltzmann Approach for Multi-Parton
Scattering) [20], etc.

Ces travaux sont souvent considérés comme une base de travail dans le cadre de telles études.
Par exemple, le critere de collision proposé€ dans [11, 12] est utilisé dans divers travaux, tout
comme les équations du mouvement relativistes détaillées dans [11]. Ces aspects, inclus dans
le modele NJL, ont déja donnés des résultats disponibles dans la littérature, comme [21-24].
Dans I’ensemble, la température apparait comme un parametre crucial qui régit le
refroidissement du systeme de quarks. Ce refroidissement peut étre traité selon deux
méthodes. La premiere utilise un thermostat externe dont le réle est d’imposer une baisse
programmée de la température en fonction du temps. La seconde considere la température
comme un parametre local [24]. Cela veut dire que la température ressentie par chaque
particule dépend de son environnement proche. Si la premiere méthode semble €tre adaptée
pour décrire le comportement d’un systeme infini, la seconde est capable de modéliser
I’interdépendance entre particules, et de traiter des effets locaux, comme I’interaction cceur-
couronne.

Les travaux dynamiques NJL évoqués dans le paragraphe précédent semblent se focaliser sur
la transition de phase entre un plasma de quarks/antiquarks et une phase mésonique. En effet,
par exemple dans [24], des réactions impliquant des quarks, antiquarks et mésons ont été
considérées. Puisque cette référence mentionne une hadronisation « quasi-complete » du
systeme, cela suppose donc un systeme composé initialement par des quarks et antiquarks en
quantités égales, c'est-a-dire une densité moyenne nulle. Grace a I’inclusion des baryons dans
les modeles (P)NJL, cette description pourrait étre étendue a des systemes de
quarks/antiquarks dans lesquels nous avons plus de quarks que d’antiquarks, c'est-a-dire une
densité moyenne positive. Par ailleurs, si des études comme dans [23] ont proposé une
tentative d’utiliser les baryons dans un tel travail, le nombre des réactions possibles doit étre
augmenté. La finalité est de pouvoir gérer les réactions possibles entre deux particules
quelconques (quarks, mésons, diquarks, baryons et leurs antiparticules), via des collisions
élastiques et/ou éventuellement inélastiques.

Dans le chapitre précédent, il a été proposé un scénario prenant en compte les sections
efficaces obtenues. Notamment, a hautes températures, on s’attend a ce que g+q > g+q

domine g+g — M +M , alors que la situation est renversée a températures moyennes et

faibles. Cela laisse présager une mésonisation massive, c'est-a-dire une forte consommation
de quarks et d’antiquarks. En parallele, il a été reporté que les réactions produisant des
diquarks et des baryons présentent des sections efficaces assez modestes. Il a donc été
envisagé que la baryonisation intervienne apres la mésonisation, notamment apres disparition
de la majorité des antiquarks, pour éviter des réactions parasites entre baryons et antiquarks.
Clairement, dans le cadre d’une étude dynamique, il serait intéressant de valider ou pas ce
scénario. A cette occasion, le role joué par les diquarks devrait étre précisé : est-ce que leur
production est suffisante durant 1’évolution du systeme pour réellement intervenir ? Dans le
méme temps, puisque les particules et les sections efficaces dépendent dans notre travail de la
température et de la densité, I'influence de la densité devrait aussi étre estimée.

Par ailleurs, a cause de la relative faiblesse des sections efficaces des réactions de
baryonisation, au moins par rapport a celles de mésonisation, il devrait étre étudié 1’éventuelle
conséquence de cela sur les simulations. Plus précisément, a cause de I’expansion du systéme,
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nous pouvons imaginer que quelques quarks n’auraient pas le temps d’interagir par des
collisions inélastiques avant de quitter le systeme. En effet, puisque le modele NJL n’inclut
pas de confinement, un quark (ou un diquark) peut apparaitre libre en dehors des conditions
attendues pour le plasma de quarks et de gluons, c'est-a-dire qu’il peut se retrouver isolé des
autres quarks. Evidemment, comme noté dans le chapitre 1, ce comportement est
physiquement non acceptable : un quark ne peut pas €tre observé a 1’état libre. Cet aspect
constitue une contrainte importante dans le cadre d’une étude dynamique qui doit pleinement
étre prise en compte. A cause de cela, le modele NJL peut étre considérée comme insuffisant
pour modéliser correctement 1’évolution du systeéme. Dans les chapitres précédents, nous
avons vu que l'inclusion d’une boucle de Polyakov permet de simuler un mécanisme de
confinement dans le modele NJL, en formant le modele PNJL. Il a ét€ observé son effet sur
les masses des particules traitées, et sur les sections efficaces. A cette étape du travail, il est
maintenant intéressant d’évaluer I’effet de la boucle de Polyakov sur la dynamique du
systeme. Ainsi, une question cruciale, qui motive le travail effectué dans ce chapitre, est de
voir si I’inclusion de cette boucle permet d’éviter la présence de quarks/antiquarks libres a la
fin des simulations.

Dans ce chapitre, nous démarrons notre analyse, partie 2, en expliquant notre méthode, et en
établissant les équations requises pour modéliser I’évolution du systeme. Nous débutons cette
partie avec une description de 1’algorithme global. Le reste de la partie se focalise alors sur
une étude de chaque étape de cet algorithme. Cela concerne tout d’abord 1’évaluation des
parametres externes ressentis par chaque particule, c'est-a-dire les densités et la température.
Concernant la température, il est expliqué comment ce parametre statistique, bien maitrisé en
thermodynamique, doit étre adapté dans le cadre de systemes relativistes. Aussi, un aspect
important traité dans la partie 2 concerne le traitement des collisions dans notre modele. La
procédure associée est alors décrite, et ensuite il est proposé une liste des réactions incluses
dans notre programme. Nous continuons cette description en explicitant les équations du
mouvement relativistes. Celles-ci sont issues de [11, 24]. A ce moment la, une discussion est
alors amorcée sur la maniere de les interpréter. Notamment, la notion d’interaction a distance
entre les particules est introduite. Dans la partie 3, nous présentons quelques résultats
préliminaires. Certains d’entre eux son liés a la discussion démarrée dans la partie 2 au sujet
de l'interaction a distance. D’autres tests concernent I’étude d’un systeme fermé, afin de
simuler un systeme de quarks chauds. Notamment, une finalité de ce travail est de caractériser
les trajectoires des quarks. A cette occasion, nous voulons voir si leur comportement peut étre
comparé a celui d’un mouvement Brownien relativiste [25] ou pas. Dans la partie 4, les
résultats de simulations sont présentés. Un premier objectif est de comparer les modeles NJL
et PNJL, afin de voir si I'un des deux peut permettre une hadronisation complete du plasma
de quarks/antiquarks. Dans la partie 5, nous décrivons les résultats d’une simulation complete,
en incluant une étude de I’évolution de certains observables, afin de décrire les diverses
phases du refroidissement. Nous nous focalisons aussi sur une analyse des collisions qui ont
eu lieu durant les simulations, afin de déterminer lesquelles dominent.
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2. Mise en équation du modele

2.1 L’algorithme global

Dans le cadre du travail exposé dans ce chapitre, nous avons développé un programme
informatique indépendant. Le programme et par extension 1’algorithme programmé peuvent
étre désignés par le nom non officiel du logiciel, c'est-a-dire ARCHANGE. Notons que ce
nom ne correspond pas a un acronyme. L’algorithme global utilisé n’est pas si différent de
ceux décrits dans la littérature, comme [23, 24]. En effet, nous considérons les étapes
suivantes :

1. Initialisation du systeme. Dans cette étape, les particules initiales sont créées et
ajoutées dans le systeme. Dans le cadre du travail décrit dans ce chapitre, nous
considérons les mésons pseudo-scalaires, les diquarks scalaires et 1’octet de baryons.
Mise a part la nature des particules, nous fournissons seulement les positions et
quantités de mouvement de nos particules comme données d’entrée. En effet, le
programme détermine I’environnement de chacune d’entres elles, c'est-a-dire il calcule
les valeurs des parametres externes (7,p,) au voisinage de chaque particule. Cela

permet d’estimer la masse initiale de chacune d’elles.

2. Traitement des collisions. Cette étape est dédiée a I’étude de toutes les possibilités de
collisions entre chaque couple de particules que 1’on peut former. Les collisions
effectuées sont déterminées par le programme. Celui-ci traite alors le remplacement
éventuel des particules au sein du systeme.

3. Traitement des déplacements. Ici, nous appliquons les équations de mouvement afin
de mettre a jour périodiquement la position et la quantité de mouvement de chaque
particule.

4. Retour au point 2 pour la prochaine itération en temps, jusqu’a la fin de la simulation.

2.2 Détermination des densités

Notre approche prend en compte des parametres locaux. Comme vu dans le paragraphe
précédent, la détermination de ces parametres externes est utilisée dans la premiere étape,
c'est-a-dire I’initialisation du systeme. Cependant, dans la pratique, la mise a jour de ces
valeurs est effectuée dans presque toutes les autres étapes, notamment apres une collision ou
apres le traitement des déplacements. Dans notre travail, ces parametres externes sont la
température 7T et les densités. Ces dernieres sont notées Py, avec f=u.d,s, c’est a dire une

densité par saveur de quark. Dans le cadre de la symétrie isospin, p, =p,, et la densité
baryonique p; peut étre trouvée par la relation sz% p, [26]. Cependant, dans les

simulations effectuées ci-apres, cette symétrie n’est pas appliquée. Clairement, nous avons
utilisé le jeu de parametres EB défini dans le chapitre 2. La température et les densités sont
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évaluées pour chaque particule dans le référentiel du laboratoire. Nous considérons que ce
référentiel coincide toujours avec le référentiel du centre de masse du systeme entier.

Concernant le calcul des densités, nous remarquons tout d’abord que notre choix de les
utiliser est différent de celui fait dans [24], qui utilise quant a lui le potentiel chimique. Notre
choix s’explique par le comportement observé sur la figure 6 du chapitre 2. Plus précisément,
la relation entre pp et u, (g=u,d ) n’est pas triviale dans les modeles (P)NJL. En fait, x, est
une fonction de p, mais aussi de la température 7, notamment a basses températures. Cette
remarque est tout a fait généralisable aux p, et aux potentiels chimiques ;. Toutefois,

puisque chaque u, est solution du jeu d’équations utilisé pour trouver la masse des quarks

(chapitre 2), les potentiels chimiques peuvent étre calculés par 1’algorithme. Ils sont ensuite
écrits dans les données de sortie fournies par le programme.

Considérons une particule quelconque, étiquetée avec I'indice i. La densité p, ressentie par

cette particule est déterminée par la formule :

(o7), =$'Zw(i»1)((nf)j-("f)jj’ (1)

VEZ)

ol f est une saveur de quark (u.d,s ). Aussi, V =4/3-7-R> est le volume d’une sphére factice
centrée sur la particule étudiée i. Cette sphere définit le voisinage de la particule. Dans (1), la

sommation est effectuée sur les particules constituant le systeme. Aussi, (nf). et (nf)

J S0
désignent respectivement le nombre de quarks de saveur f et le nombre d’antiquarks d’anti-
saveur f «contenus » dans la particule j. Par exemple, dans le cas d’un proton, n, =2,
n;=0, ny;=1, n;=0, n;=0 et ny;=0. De la méme maniere, avec un antiquark u, n;=1, et
zéro pour les autres compteurs. En conséquence, le comptage ne considere pas I’état des
quarks, c'est-a-dire que I’on ne prend pas en compte qu’ils soient confinés ou pas. Mais, afin
de prendre en compte la distance entre les particules i et j, un coefficient est appliqué durant le
calcul. Ce coefficient est donné par une fonction que [24] appelle fonction de pondération.
Comme dans cette référence, nous utilisons une fonction Gaussienne :

4.2
w(i,j)zexp[— . }, (2)

2D’

ou d,; est la distance entre les particules i et j, et D est li¢ au rayon R de la sphere. Dans la

pratique, nous prenons D =1.75 fm dans nos simulations. L’équation (2) permet de considérer
les densités comme des parametres locaux, comme escompté.

2.3 Estimation de la température

Dans [24], un lien a été établi entre les densités et la température. Dans notre approche, la
température et les densités sont des parametres indépendants, sans corrélation entre eux. Cela
permet de considérer diverses configurations : systtme chaud et/ou dense ... En physique
statistique, ['utilisation du théoréme d’équipartition est une approche particulierement
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pertinente pour estimer la température. Dans notre cas, des complications viennent de
I’adaptation de ce théoreme dans un cadre relativiste, et de la nécessité de travailler a
I’équilibre thermique. Concernant 1’aspect relativiste, certaines approches ont été proposées
afin d’introduire la notion de température relativiste [27-34]. Nous proposons d’expliquer

leur raisonnement.

Tout d’abord, dans le cas d’un systeme non relativiste, nous rappelons que la température
d’un gaz parfait peut étre obtenue, a 1’équilibre thermique, par le théoreme d’équipartition
classique :

3

<EK>NR:2~I<B~T, 3)

ou <EK> ve st la valeur moyenne de Iénergie cinétique non relativiste, c'est-a-dire I’énergie

cinétique moyenne par particule. kj est la constante de Boltzmann, prise égale a 1 dans nos
unités. En fait, le théoreme d’équipartition peut étre étendu. Une formulation générale

explique que pour chaque degré de liberté ¢, c'est-a-dire pour chaque variable quadratique
dans I’écriture de I’énergie, la relation suivante est satisfaite [27] :

Jd
<¢%-a—§i>=k3~T. @)

Dans le cadre d’une formulation relativiste, 1’énergie moyenne d’une particule est écrite

comme (E) :<\/ P +pyHp+m’ > . Nous avons alors trois possibilités :

2

z s .. —~\2 . < . . .
e Régime non relativiste. Dans ce cas (p)” <m~, conduisant a I’approximation bien

connue :

2 2 2
<E>z by +py, tp, m E<EK>NR+<m>- (5)

2m

2
bi
m

ap,

i

. . . oE N
En utilisant les équations (4, 5), nous obtenons <pi —> :< >= kg-T,oui=xy,z.

Evidemment, nous retrouvons (3).

e Régime ultra-relativiste [24]. Ici, la masse est négligeable devant la quantité de

—\2 2
mouvement : (p)” > m”. Dans ce cas, nous avons :

<E>z<«/px2 ipi+ p22>E<EK )y ©)

2
Di

[px2+_py2+_p12
2 2 2
. Py +p,+p oE
vient <EK>UR = > > = o 2 (P S et <EK>UR =3-kp-T. (7)
4,px 4-py +—pz i=x,y,2 Di

" N oE )
De la méme maniére, nous trouvons < p,--a—>= =kp-T, et il
Di
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e (as général. En utilisant la méme méthode que dans les cas précédents, nous avons

encore (E) =<\/px2 +p+p+m’ > , et nous écrivons :

2
(| s o T ®
D; \/px +p, +p +m

En sommant les contributions des composantes x, y,z , nous obtenons [27, 33, 34] :

-\2 ~\2
p) p)\_3

L’équation (9) présente I’avantage d’€tre satisfaite dans tous les cas, puisqu’aucune
approximation n’a été utilisée pour elle, a la différence des deux autres régimes vus plus haut.
Nous avons considéré cette relation (9) dans nos calculs. Dans notre travail, la notion de
température locale est utilisée, donc 1’équilibre local doit étre considéré localement. Dans la

pratique, I’opérateur de moyennation < ) concerne les quantités de mouvement p et 1’énergie

E des particules situées au voisinage de la particule étudiée. Comme avec les densités, la
fonction de pondération (2) est utilisée dans ce calcul. A cette occasion, nous pouvons
souligner le role important joué par le D utilisé dans cette fonction, car ce parametre définit ce
qui est considéré comme le voisinage de chaque particule. Il a une influence sur les calculs de
la température et des densités.

D’autre part, I’énergie E =+/p*>+m* d’une particule dépend de sa masse m. En conséquence,

la masse d’une particule j intervient, via (9), sur le calcul de la température ressentie par une
particule i. Nous avons vu dans les chapitres 2 et 4 que les masses de toutes les particules
traitées dépendent de la température dans les modeles (P)NJL. Ainsi, la température de la
particule i a une incidence sur la masse de cette particule i. Cette variation de la masse a des
conséquences sur la température ressentie par la particule j. Cette température a une incidence
sur la masse de cette particule j ... Clairement, il y a ainsi une interdépendance entre les
masses et les températures. Numériquement, cet aspect est pris en compte par le biais de
plusieurs itérations, jusqu’a convergence des valeurs. C’est notamment le cas pour I’étape
numéro 1 vue au paragraphe 2.1, c'est-a-dire I'initialisation du systeme.

2.4 Traitement des collisions

L’algorithme gérant les collisions consiste tout d’abord a prendre en compte une particule en
particulier. Nous 1’étiquetons comme étant la particule i. Ensuite, le programme établit une
liste de tous les couples de particules qui peuvent €tre constitués en utilisant la particule i et
une autre de son voisinage, que nous nommerons j. Chaque couple (i,j) représente une

possibilité de particules incidentes qui peuvent réagir ensemble.

Les quantités de mouvement des particules sont exprimées dans le référentiel du laboratoire
dans les données manipulées par le programme. Les sections efficaces (P)NJL disponibles
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dans la littérature, et par extension celles calculées dans notre modele (chapitre 6), sont
estimées dans le référentiel du centre de masse des deux particules incidentes (i,j). En

N

conséquence, la procédure consiste 2 calculer /s pour le systtme formé par ces deux
particules, et ensuite d’appliquer un boost de Lorentz a ce systeme, afin d’exprimer les
énergies et quantités de mouvement des deux particules dans leur référentiel du centre de
masse.

Pour chaque couple (i, j), le paramétre d’impact b;P ; est estimé dans leur référentiel du centre

de masse. Certains couples peuvent €tre invalidés a ce stade 1a, notamment si le programme
détermine que les particules s’éloignent 1’'une de 1’autre, ou si le parametre d’impact est
physiquement trop fort, c'est-a-dire incompatible avec le critere de collision (10) quelle que
soit la valeur de o physiquement admissible. Aussi, le programme proceéde a une
extrapolation des trajectoires afin de ne valider le couple (i, j) que si la distance entre i et j est
minimale, suivant I’idée exposée dans [24]. En d’autres termes, la collision n’a pas lieu a un
temps ¢ s’il est établi que les particules peuvent encore se rapprocher lors de I’itération en
temps suivante.

Pour chaque couple (i, j) restant, le programme établit une sous-liste des types de réactions
qui peuvent se produire avec i et j. Dans notre modélisation, les collisions faisant intervenir
deux particules en entrée et deux en sortie sont prises en compte. Par exemple, avec une paire
quark/antiquark (g,g), les types de réaction possibles sont g+q —>g+q, g+q—>M+M et
g+q — D+D. Ensuite, pour chaque type de réactions, 1’algorithme prévoit les particules
pouvant étre produites par chaque processus. Si cette étape est triviale pour des réactions
comme g+q— q+q, les choses sont plus délicates dans d’autres cas. Le tableau 1 propose

une liste dans la configuration d’un couple de quark/antiquark (u,u) incidents.

Type de réaction Réactions possibles
u+u >u+u
q+q—>q+q u+i —>d+d

u+u >s+s

uti - +7°
u+17—>71'0+77
g+q—->M+M u+u —>n+n

u+u >+
u+u > K +K~

q+c_1—>D+5 u+ﬁ—>[ud]+w

u+ﬁ%[us]+m

Tableau 1. Liste des réactions possibles quand un quark u interagit avec un antiquark u .

La notion de réactions élastiques doit €tre comprise ici comme des réactions lors desquelles
les types de particules (quark, méson, etc.) ne sont pas modifiés. Mais, les particules elles-
mémes peuvent étre remplacées, comme dans u+u —d +d . Concernant g+¢q — M + M , nous

n’avons pas pris en compte les réactions dans lesquelles 7 pourrait apparaitre. En effet, les
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sections efficaces des réactions de mésonisation mettant en jeu 7" sont négligeables par
rapport aux processus de mésonisation formant des mésons légers, comme des pions [35].

A ce stade de la procédure, le programme évalue les sections efficaces de toutes les réactions
listées. Pour chaque couple (i,j) et pour chaque réaction (étiquetée avec k), la section

. 2 \ . * z oz
efficace obtenue o, ;, est comparée au parametre d’impact b; ; du couple. Plus précisément,

le critere de collision mentionné dans [11, 12] est appliqué : il stipule qu’une réaction est
possible si sa section efficace satisfait I’inégalité exposée équation (10), et schématisée
figure 1.

*

b; ;< O'i’j’k/ﬂ'. (10)

Figure 1. Schématisation du critere de collision géométrique avec deux particules.

Parmi toutes les réactions qui vérifient ce critere, le programme choisit la réaction k associée
au couple (i, ;) qui sera considérée. Ce choix est déterminé de maniere stochastique, mais la

probabilité de chaque réaction (i, j,k) est pondérée par sa section efficace correspondante. En

d’autres termes, la réaction qui présente la section efficace la plus forte a ce moment la est
celle qui a le plus de chance de se produire. A 1’opposé, une réaction ayant une section
efficace nulle a cet instant ne peut pas €tre choisie.

Une fois que la réaction et le couple associé sont déterminés, c'est-a-dire qu’il a été trouvé la
particule j qui réagira avec la particule i via la réaction k, le programme estime I’angle de
diffusion et les quantités de mouvement des particules produites. Quand ces particules sont
insérées dans le systeme, leurs masses sont estimées au préalable dans les conditions exactes
(températures et densités) ressenties par les particules incidentes (i,j) avant leur

remplacement. Les formules utilisées pour traiter la collision d’un point de vue géométrique
(boosts de Lorentz, parametre d’impact, angle de diffusion) sont rassemblées dans 1’annexe F.

Quelle que soit la réaction qui a eu lieu, élastique ou inélastique, ces nouvelles particules ne
vont plus interagir avant la prochaine itération : elles sont provisoirement « désactivées » par
la procédure. Ceci est fait afin d’éviter que les mémes particules n’interagissent indéfiniment
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entre elles durant la méme itération. De la méme maniere, si le programme juge que la
particule i considérée ne peut pas interagir a ce moment la (trop €éloignée des autres, etc.), la
particule i est aussi désactivée jusqu’a la prochaine itération.

Finalement, le programme prend en compte une autre particule i, et recommence la procédure
expliquée dans ce paragraphe 2.4, jusqu’a ce que toutes les particules aient été passées en
revue, c'est-a-dire « désactivées ».

2.5 Liste des types de réactions inclus dans notre modele

Le tableau 2 ci-apres rassemble les types de réactions implémentées dans le programme. Cela
révele qu'un nombre important de réactions possibles doit &tre considéré, notamment parce
que nos simulations n’utilisent pas la symétrie isospin. Nous rappelons que les particules
incluses dans le programme sont les quarks ¢, les mésons pseudo-scalaires M, les diquarks
scalaires D, I’octet de baryons B et leurs antiparticules associées.

En outre, comme observé auparavant dans cette these, les sections efficaces dépendent de Js ,
de la température T et des densités (ou des potentiels chimiques). En conséquence, utiliser des
valeurs « pré-calculées » n’est pas la meilleure solution, notamment en utilisant une base de
données de sections efficaces, comme dans [24]. Certainement cette solution est possible,
mais au prix d’approximations trop fortes. En effet, par exemple avec ¢+g —>M + M , une

forte mésonisation est attendue, mais dans des conditions selon Js T, py bien précises. En

fait, cet aspect est important pour étudier le refroidissement d’un systeme de quarks. Durant
les simulations, les sections efficaces sont calculées en temps réel, c'est-a-dire qu’elles sont

estimées quand le programme en a besoin, en prenant Js, T, py en compte. La méthode pour

estimer une section efficace avec les modeles (P)NJL est détaillée dans le chapitre précédent.
Notamment, concernant les types de réactions décrits dans le tableau 2, nous avons utilisé la
méthode décrite dans [36, 37] pour calculer les sections efficaces de réactions comme
D+ D — D+ D . Mais, nous nous sommes servis des formules exposées dans [12] pour estimer
les sections efficaces de réactions comme M +M - M+M , M+B—M +B et B+B—B+B.
Cette remarque est évidemment valable pour des réactions mettant en jeu leurs antiparticules,
comme B+B—>B+B ...
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Particules incidentes Types de réactions possibles

q+q g+q9—q+q g+q—->M+M g+g—>D+D
qg+q g+qg—>qg+gq g+qg—>M+D q+q—>q+B
7+q g+q—>q+q g+q—>M+D g+q—q+B
q+M qg+M > g+M q+M —>qg+D

g+M g+M —>g+M g+M —qg+D

qg+D q+D—qg+D g+D—>qg+M g+D—>D+B
g+D g+D—qg+D g+D—g+M | q+D—>D+B
q+D g+D—q+D q+D—-M+B

g+D g+D—qg+D | g+D—>M+B

q+B q+B—>qg+B g+B—>qg+q q+B—->M+D
g+B g+B—q+B g+B—>g+q g+B—M+D
q+B q+B—>qg+B q+B—=D+D

g+B g+B—g+B g+B—D+D

M+M M+M—->M+M M+M—q+q

M+D M+D—->M+D M+D—qg+q M+D—>qg+B
M +D M+D—>M+D | M+D—>g+q | M+D—q+B
M +B M+B—>M+B M+B—qg+D

M +B M+B—>M+B | M+B—>g+D

D+D D+D—D+D | D+D—q+7q

D+D D+D—->D+D D+D—>qg+B

D+D D+D—D+D D+D—g+B

D+B D+B—>D+B D+B—g+D

D+B D+B—>D+B D+B—q+D

D+B D+B—-D+B

D+B D+B—D+B

B+B B+B—B+B

B+B B+B—>B+B

B+B B+B—>B+B

Tableau 2. Liste des types de réactions incluses dans le modele.

2.6 Equations du mouvement

Dans le paragraphe 2.3, nous avons souligné la nécessité de travailler dans notre modele dans
un cadre relativiste. Cet aspect doit apparaitre de maniere explicite dans les équations du
mouvement. Dans la littérature, des théories relativistes ont été développées, comme par
exemple [11, 12, 38, 39]. Comme noté dans [11] ou dans [24], I’écriture des équations de
départ rappelle fortement les équations de Hamilton. Cependant, comme expliqué dans ces
références, les équations a utiliser dans un formalisme relativiste sont différentes.
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Dans notre travail, nous considérons les équations exposées par exemple dans [24] :

d(riﬂ)_l?iﬂ

(‘” y & | (n
d\p m; am

drt :_jz'ilZE ar _]Z#E] ar

Ces sont des équations de mouvement classiques (c'est-a-dire non quantiques). Dans ces

relations, E =+/p> +m* est ’énergie de la particule concernée, c'est-a-dire la composante 0 de

son quadrivecteur énergie-impulsion. Comme mentionné dans [24], la réécriture de la seconde
équation de (11), en fonction des masses m;, est justifiée par le fait que nous n’avons pas de

potentiel explicite V; dans le cadre des modeles (P)NJL. Cependant, la masse de chaque

particule dépend de parametres comme la température ou les densités. Clairement, ces
parametres sont calculés pour chaque particule via son voisinage, c'est-a-dire les autres
particules. Donc, il est possible de considérer que le potentiel est « caché » dans les masses

aV; am om;
== . Le terme Z —=L est donc

4y Ti u j#iEj ariﬂ

interprétable comme une interaction a distance entre les particules.

Aussi, en suivant le raisonnement de [24],

4y
amj om; OT; . om; apfj. (12)
r; aT arﬂ Foud sOPr; Oy

Cependant, une autre interprétation de ce terme peut €tre donnée, en disant qu’il représente
directement les variations des masses des particules j induites par la variation de position de la
particule i. Notre raisonnement est illustré figure 2. Plus précisément, le déplacement d’une
particule induit des perturbations sur les particules situées dans son voisinage. Tout d’abord,
les densités ressenties par les autres particules sont modifiées, notamment pour les particules
dans son environnement proche. Ensuite, le déplacement induit aussi une modification de la
température locale. En fait, ces deux effets peuvent étre compris par la méthode que nous
utilisons pour estimer les densités et la température, voir paragraphes 2.2 et 2.3, notamment
par l'utilisation d’une fonction de pondération (2). Plus précisément, chaque déplacement
induit une variation des valeurs retournées par cette fonction, ce qui opere alors des
modifications dans le comptage.

Puisque la masse d’une particule est calculée en utilisant la température et les densités comme
parametres, cela explique pourquoi le déplacement d’une particule est capable de modifier les
masses d’autres particules. Clairement, ces observations montrent la nécessité de mettre a jour
les masses, températures et densités apres 1’étape n°3 du paragraphe 2.1 (traitement des
déplacements). Concernant les densités, puisque ce parametre est lié aux positions des
particules, le calcul est facile. Mais, comme vu dans le paragraphe 2.3, I’interdépendance
entre les masses et la température locale nécessite d’effectuer plusieurs itérations dans le
calcul de ces quantités, jusqu’a convergence. Cependant, dans la pratique, cette convergence
est rapidement atteinte. La conservation de I’énergie totale et de la quantité de mouvement
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totale sont deux contraintes imposées a l’algorithme durant cette procédure. En fait, la
conservation de I’énergie est compatible avec la maniere dont (11) est utilisée. Clairement, il
est vrai que la détermination des parametres 7,p, est imparfaite, dans le sens ou ils

dépendent de la valeur (arbitraire) du D introduit équation (2). Cependant, premi¢rement, ces
parametres sont estimés de la méme manicre pour toutes les particules présentes dans le
systeme étudié. Deuxiemement, nous remarquons que la deuxieme équation de (11) permet
des variations de I’énergie cinétique d’une particule par des variations de son énergie
potentielle. Mais, 1’énergie totale de la particule étudiée de varie pas, du moins si elle ne
participe pas a une collision.

Figure 2. Schématisation de 1’effet induit par le déplacement d’une particule.

3. Résultats préliminaires

3.1 Interaction a distance entre particules

Dans ce paragraphe, nous proposons d’étudier numériquement les propriétés de 1’interaction a
distance évoquée dans le paragraphe 2.6. La finalité est d’essayer de répondre a la
question que nous pouvons avoir depuis plusieurs chapitres. Résumons-nous : I’interaction
forte, décrite par la chromodynamique quantique, gouverne les interactions entre les quarks
et/ou les antiquarks par 1’échange de gluons. Cette interaction est tres attractive, car elle st
responsable du confinement des quarks et antiquarks dans les hadrons. Quand nous
considérons le modele NJL, nous perdons les gluons et le confinement, méme si I’inclusion de
la boucle de Polyakov mime un mécanisme de confinement. La question est finalement de
voir si nous avons toujours un potentiel attractif entre quarks et/ou antiquarks. Aussi, est-il
assez fort pour mimer 1’interaction forte de maniere réaliste ?

Tout d’abord, deux tests ont été effectués, en utilisant le modele PNJL. Dans le premier, deux
quarks u lents sont considérés. Leurs quantités de mouvement sont de sens oppos€, mais nous

avons |p| =70 MeV pour les deux. Dans un second test, les deux quarks u ont méme quantité
de mouvement, avec aussi |p| =70 MeV . Pour ces deux tests, la procédure de collision est
désactivée. Un thermostat externe impose une température de 200 MeV pour les quarks,
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ajoutée a celle produite par les particules elles-mémes via (9). Les trajectoires dans le
référentiel du laboratoire sont représentées sous la forme d’un chronogramme dans la figure 3.
Les trajectoires des quarks sont marquées périodiquement avec des points. Les points qui
présentent la coloration la plus vive correspondent aux positions les plus récentes des quarks.
Pour ces tests, comme avec ceux décrits figure 4, nous avons vérifié que 1’énergie totale et la
quantité de mouvement totale sont strictement conservées, pour chaque itération en temps.

Modéle PNJL : test 1 Modéle PNJL : test 2
2 2 . . . . .
15 1 1.5}
1 1
E 0.5 netese, é 0.5}
> > | e T e
5 0 I <
2 05 et D _o.5
o o
1 1
-15 1 -1.5}
-2 -2
=2 -1 0 1 2 0 1 2 3 4 5 6
Position x (fm) Position x (fm)

Figure 3. Trajectoires de deux quarks u, pour 7 =200 MeV .

Les résultats de la figure 3 montrent une interaction a distance entre les quarks. Cette
interaction est clairement attractive. En poursuivant la discussion amorcée dans le paragraphe
2.6, ce comportement est expliqué par la seconde équation de (11). La tendance générale est
qu’une particule modifie sa trajectoire de telle maniere qu’elle tende a minimiser les masses
des particules de son voisinage. Ainsi, les deux quarks sont attirés mutuellement I’un vers
I’autre. En effet, pour un quark j, I’approche d’un autre quark i induit que la température et la
densité p, ressenties par le quark j augmentent, donc sa masse diminue, comme confirmé par

la figure 3 du chapitre 2. Le méme raisonnement est applicable au quark i vis a vis du quark j,
de maniere symétrique. Dans la zone du plan 7 - p; dans laquelle nos deux quarks évoluent,

c'est-a-dire pgz =0 et T =200 MeV, la dérivée par rapport a la densité p, semble €tre plus

forte que celle selon la température. Cette remarque peut étre étendue a des zones pour
lesquelles les densités sont réduites et 7 <200 MeV. Dans les tests de la figure 3, le
comportement observé des quarks semble provenir principalement des variations de densité
ressenties par ces deux particules, voir équations (11, 12).

Plus précisément, nous interprétons le terme —Zﬁ~ﬂ dans la seconde ligne de (11)
= Ej Ony

comme une force. Il doit étre remarqué que I’interaction a distance est clairement non linéaire.

En effet, multiplier le nombre de quarks n’induit pas forcément que I’effet attractif sera

multiplié par le méme facteur. Elle devrait €tre vue comme une interaction a N-corps. En

outre, I’interaction observée a une portée limitée, a la différence du potentiel quark-quark

décrit par la QCD. En fait, I’interaction a distance (P)NJL est fortement liée aux variations de
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T et des densités induites par une particule sur son environnement. Evidemment, la fonction
de pondération (2) joue un role central sur le comportement de cette interaction, notamment
en ce qui concerne sa portée. Dans une évolution dynamique, les modeles (P)NJL semblent
capables de mimer les phénomenes de courtes portées décrits par la QCD, mais doivent
présenter des limitations pour modéliser ceux impliquant de longues portées.

D’autre part, les masses des quarks tendent vers leurs masses nues (m,,) a hautes

températures et densités, comme vu au chapitre 2. En conséquence, dans ces conditions
extrémes, la masse d’un quark n’est plus influencée par ces parametres, donc par son
environnement. Ainsi, les quarks deviennent libres dans ce régime. Il coincide avec le
phénomene de liberté asymptotique, traité par la QCD perturbative évoquée au chapitre 1.

Maintenant, étudions les différences entre les modeles NJL et PNJL en ce qui concerne cette
interaction observée. En d’autres termes, nous essayons de voir I’influence de la boucle de
Polyakov sur ce phénomene. Ces différences sont évaluées par le biais de deux tests, dans
lesquels deux quarks u interagissent ensemble dans des conditions identiques, avec
initialement ||p|=30 MeV et pour une température proche de 250 MeV, imposée par un

thermostat externe. La seule différence entre ces deux tests est le modele utilisé : NJL ou
PNJL. Les résultats présentés dans la figure 4 indiquent que I’interaction a distance PNJL est
plus intense que celle de NJL, au moins dans le cadre de ces simulations. En effet, les
trajectoires montrent que les déviations induites par l'interaction a distance sont plus
importantes quand le modele PNJL est utilisé. Dans le test NJL, 1’attraction n’a pas été assez
forte pour retenir les quarks ensemble : ils sont partis dans des directions opposées.

Modéle NJL Modéle PNJL
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Figure 4. Comparaison des résultats trouvés pour les modeles NJL et PNJL, pour T =250 MeV .

Une premiere explication de ces comportements observés est donnée par la figure 3 du
chapitre 2 : I’effet de la boucle de Polyakov sur les masses des quarks est de décaler les
valeurs observées vers de plus hautes températures, en appliquant un effet de distorsion aux
courbes. Selon nos explications données dans les paragraphes précédents, on s’attend a ce que
Iinteraction quark-quark soit directement reliée aux variations des masses selon T et p,. La
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variation de masse est plus forte dans 1’approche PNJL que dans la NJL, dans une région pour
laquelle la densité baryonique est plus basse que 3p, et la température approximativement

entre 200 et 300 MeV. Cette zone est particulierement intéressante, car elle correspond aux
conditions pour lesquelles on s’attend a ce que 1’hadronisation se produise.

La, I’interaction a distance quark-quark pourrait €tre plus forte dans le modele PNJL que dans
le NJL. En suivant cette hypothese, cela pourrait induire un effondrement provisoire du
systtme de quarks, ce qui pourrait optimiser les processus d’hadronisation. D’autre part, a

densités réduites, la zone pour laquelle ;Tm est forte est plus large dans le modele PNJL
f

qu’avec NJL. En effet, nous avons trouvé respectivement 7 <220 MeV contre T <150 MeV

dans la figure 3 du chapitre 2. Conscient des résultats de la figure 3 ci-dessus, expliqués par

les variations de masses en fonction de la densité, cela laisse entrevoir que 1’effet attractif

pourrait étre plus présent durant le refroidissement du systeme de quarks grace a 1’inclusion

de la boucle de Polyakov.

3.2 Mouvement Brownien relativiste ?

Si nous considérons I’interaction a distance mise en évidence dans le paragraphe précédent et
les collisions décrites dans les paragraphes 2.4 et 2.5, nous allons maintenant voir s’il pourrait
y avoir un comportement dominant entre les deux. En d’autres termes, si les collisions
dominent largement la dynamique, le systeme pourrait montrer un comportement proche de
celui d’un mouvement Brownien relativiste [25]. A I"opposé, si I’interaction a distance est
assez forte, cela pourrait induire le mouvement d’implosion évoqué dans le paragraphe
précédent.

Afin d’essayer de répondre a cette question, nous avons effectué une autre simulation utilisant
le modele PNJL. Nous avons rassemblé 6 quarks u et 6 quarks d dans un cube de 2 fm de
coOté, dans les conditions d’un systeme chaud et dense. Plus précisément, ces 12 quarks dans

un volume de 8 fm® correspondent 4 une densité baryonique proche de 3p,. D’autre part, la

quantit¢ de mouvement moyenne de chaque quark est voisine de 780 MeV. En accord
avec (9) et conscient des masses des quarks légers dans ces conditions, cela correspond a une
température d’environ 250 MeV. Afin de simuler le comportement d’un systeme infini, les
parois du cube sont parfaitement réfléchissantes pour les quarks. Clairement, la quantité de
mouvement est modifiée lors d’un rebond, mais pas sa norme. En conséquence, la
conservation de I’énergie totale peut tre satisfaite. Nous avons vérifié que cela a été vraiment
le cas. D’autre part, les collisions inélastiques n’ont pas été incluses dans cette simulation.
Cela veut dire que nos quarks ne sont pas modifiés dans ce test. Aussi, comme dans les
prochaines simulations, aucun thermostat externe n’a été utilisé.

Les résultats sont présentés dans les figures 5 a 8. Dans les figures 5 et 6, I’évolution de
certaines grandeurs physiques pertinentes a été représentée. Cela concerne la masse moyenne
et la quantité de mouvement moyenne des quarks, la température moyenne et le champ de
Polyakov & moyen ressenti par ces particules. Concernant ce dernier, nous avons observé au
chapitre 2 que ® ~® quelles que soient la température et la densité baryonique. Cela explique
pourquoi nous avons seulement représenté @ dans nos graphes.
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Figure 5. Evolution de la masse moyenne et de la température moyenne en fonction du temps.

Les grandeurs physiques étudiées présentent des fluctuations en fonction du temps, mais
aucune déviation n’est observée. La masse oscille autour d’une valeur moyenne proche de
220 MeV. La température moyenne est proche de 250 ou 260 MeV, comme escompté. Aussi,
la quantit¢é de mouvement moyenne semble étre proche de 780 MeV. D’autre part, nous
notons que les variations de la température et de la quantité de mouvement ont quelques
similarités. Celles-ci sont explicables avec (9) : grosso modo, la température peut €tre vue
comme une moyenne des quantités de mouvement (de leur norme). De plus, les variations de
la masse et de la température semblent €tre opposées I'une de I’autre. Autrement dit, quand la
température est maximale, la masse admet un minimum, et inversement. Cet aspect est
explicable par le comportement des masses des quarks en fonction de la température. Plus
précisément, pour les températures observées ici, la masse d’un quark léger g décroit presque
linéairement quand la température augmente, voir chapitre 2.

En ce qui concerne le champ de Polyakov @, il est souvent au-dessus de 0.5. Stricto sensu, le
régime « déconfiné » s’identifie a ® — 1. Toutefois, a cause du potentiel effectif utilisé, c'est-
a-dire celui de [40, 41], une telle valeur n’est atteinte par construction que pour une
température infinie. Dans la pratique, nous avons observé que ® =0.8 pour 7 =400 MeV . En
outre, la valeur de T, c'est-a-dire la température critique de déconfinement dans une théorie
de pure jauge [42], a été prise égale a 270 MeV. En conséquence, les valeurs de T et @
trouvées dans les figures 5 et 6 suggerent que nous sommes proches de la « transition de
déconfinement » dans ce test. Ainsi, notre simulation correspond a la description d’un
systeme plutdt chaud. Il pourrait étre associé aux conditions d’un systeme en train de se
refroidir, quand 1’hadronisation est supposée intervenir.



242

0.65 . . . . . r 810
0.6 3 500
=
T 055 =
e @ 790
S £
> 05 Q
& 3 780
Q 0.45 S
S ()
o O 770
O 0.4 \_.G__,J
5
760
0.35 S
g
750
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Temps (fm/c) Temps (fm/c)

Figure 6. Champ de Polyakov moyen et quantité de mouvement moyenne des particules, en fonction
du temps.
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Figure 7. Nombre de collisions en fonction du temps.

L’évolution du nombre de collisions en fonction du temps est représentée dans la figure 7. Le
taux de collision est similaire a celui observé dans [24], dans des conditions assez proches.
Aussi, ces résultats sont en accord avec ceux des figures 5 et 6. En effet, méme si nous
observons des variations, les résultats semblent osciller autour d’une valeur moyenne. Cela
confirme que nos résultats décrivent 1’évolution d’un systeme a I’équilibre. Ce comportement
est parfaitement explicable pour un tel systeme fermé et isolé. En fait, cet équilibre semble
étre atteint des le début de la simulation. D’un point de vue numérique, une déviation des
valeurs aurait été le signe d’une possible anomalie dans nos algorithmes, ou d’un pas en
temps mal choisi. Plus précisément, dans ce test et dans les suivants, nous avons choisi un pas
en temps Ar=5x1072 fm/c.
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Pour justifier ce choix de Ar, nous utilisons la méthode standard utilisée en physique
statistique pour estimer le libre parcours moyen A. Cette quantité correspond a la distance
minimale parcourue par une particule entre deux collisions. Nous 'interprétons comme la
hauteur d’un cylindre fictif, comme schématisé dans la figure 8 ci-apres.

o—> o

A
Y..

A

Figure 8. Méthode pour évaluer le libre parcours moyen A .

L’aire de la base du cylindre correspond a la section efficace o associée aux collisions entre
la particule et les autres de son voisinage. Le volume V du cylindre est le volume maximal
que la particule puisse occuper seule. Si nous considérons la densité p définie par le nombre

de particules/antiparticules divisé par le volume (# p, ...), nous avons p-V =1. D’autre part,
V =01, de sorte que le libre parcours moyen est donné par :

1 (13)
p-o

Dans notre test, p= 12/ 2% et 0=2mb=0.2 fm? (diffusion entre deux quarks), ainsi A=3 fm .
D’autre part, grace au libre parcours moyen, nous pouvons estimer le temps moyen A7 entre
deux collisions. En effet, si nous notons v la vitesse de la particule, il vient Az =( p~0'-v)_1.
Comme effectué de maniere implicite dans [24], nous prenons v=1 (la célérité de la lumiere).
Cela conduit a minimiser A7, ainsi nous nous plagons dans la configuration la plus

défavorable. Aussi, nous verrons que cette approximation sera justifiée avec d’autres
simulations, figure 28. En conséquence, nous proposons :

Ar= (14)

1
p-oc

Dans ce test, A7z =3 fm/c. Puisque notre incrément en temps vaut At =5%10"2 fm/c, nous
concluons que la condition Ar<A7 est satisfaite, c'est-a-dire que notre incrément en temps a
été correctement choisi. Dans d’autres simulations, des sections efficaces plus fortes sont

considérées, notamment ¢ =100 mb=10 fm> pour ¢g+g — M +M dans certaines conditions.
Si nous gardons la valeur de p utilisée dans les calculs précédents (surestimant les valeurs

réellement trouvées dans ces simulations), nous trouvons maintenant AT=7x107 fm/c, de
sorte que notre choix de Ar est toujours valide.
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Figure 9. Simulation de 12 quarks légers dans un cube, et détail de la quantité de mouvement de 1’un
de ces quarks.

Maintenant, focalisons-nous sur la figure 9. Dans la partie gauche de cette figure, les
trajectoires des quarks sont représentées, dans les premiers instants de la simulation, c'est-a-
dire 0<¢<7.2 fm/c. Nous avons souligné la trajectoire d’un de ces quarks, afin de faciliter la
lecture du graphe. D’autre part, les collisions entre les quarks sont matérialisées par des
étoiles, mais pas les rebonds de ces particules sur les parois du cube. Dans la partie droite de
la figure 9, la valeur de la quantité de mouvement du quark souligné est tracée en fonction du
temps. La partie de la courbe en trait plein correspond aux temps de simulation réellement
représentés dans la partie gauche de la figure. A 1’opposé, la partie de la courbe en pointillés
est associée a 1’évolution de la quantité de mouvement du quark pour les moments ultérieurs
de la simulation.

Dans I’ensemble, nous remarquons que les trajectoires sont des lignes droites. Cela suggere
que I’interaction a distance identifiée dans le paragraphe précédent n’intervient pas dans cette
simulation. Cela peut étre expliqué par plusieurs raisons, comme les hautes températures du
milieu, comme expliqué au paragraphe 3.1. Plus précisément, les quantités de mouvement des
particules sont plus fortes que dans les figures 3 et 4. Clairement, 1’interaction a distance n’a
pas le temps de réellement influencer les mouvements des quarks. Ensuite, un autre argument
est la promiscuité des quarks, induisant un environnement plutdt constant. Comme mentionné
précédemment, I’interaction a distance n’intervient réellement que quand les parametres
externes ressentis par les particules présentent des variations suffisantes.

Toutefois, le quark souligné est une exception a ce comportement général. En fait, sa
trajectoire est fortement courbée, notamment dans la partie droite du graphe tridimensionnel.
Cette portion de la trajectoire correspond a des temps de simulation entre 3 et 7.2 fm/c. Pour
t=17.2 fm/c, le quark va vers le coin supérieur droit du graphe. La déviation du quark a été
induite par les autres quarks présents dans son voisinage, en accord avec le comportement
décrit dans les figures 3 et 4. En fait, dans la partie droite de la figure 9, pour 3<¢<7.2 fm/c,
la quantit¢ de mouvement du quark est largement réduite par rapport a celles des autres
quarks, voir figure 6, car elle est inférieure a 200 MeV. Cette observation confirme nos
observations précédentes : I’interaction a distance entre quarks ne peut réellement agir que sur
des quarks lents. Dans le cadre du refroidissement d’un plasma de quarks/antiquarks,
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impliquant (au moins initialement) de hautes températures, donc des quarks rapides,
I’influence de cette interaction a distance semble étre assez limitée. En conséquence, les
collisions semblent diriger la dynamique des quarks, et dominer les effets de I’interaction a
distance. En accord avec ces résultats, le mouvement des quarks peut étre comparé au modele
du mouvement Brownien relativiste.

4. Premieéres simulations

4.1 Comparaison entres les résultats NJL et PNJL

Maintenant, procédons a des simulations completes, en considérant des systémes ouverts. En
d’autres termes, nous ne considérons pas une boite, comme dans le paragraphe précédent, qui
confine les particules. Nous considérons un systeéme sphérique composé initialement avec des
quarks et antiquarks légers, voir table 3 et partie gauche de la figure 10. La matiere domine
I’antimatiere. En effet, le rapport quarks/antiquarks est proche de 1.5. Aussi, notre systéme ne
contient pas initialement des quarks/antiquarks étranges. La sphere est inhomogene pour ce
qui est des quantités de mouvement des quarks, comme visible sur la partie droite de la
figure 10. Ce profil est comparable a celui de [24]. Puisque des quantités de mouvement
importantes sont synonymes de hautes températures, 1’objectif est clairement d’obtenir une
structure en couches, avec un ceeur chaud et des couches externes plus froides. La figure 13
montre que les profils en température obtenus sont en accord avec cette description.

Particules u % d d
Nombre 30 20 36 25

Tableau 3. Composition initiale du systeme.
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Figure 10. Partie gauche : positions initiales des quarks. Partie droite : leurs quantités de mouvement
initiales en fonction de la distance par rapport au centre du systeme.
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La simulation de 1’expansion/hadronisation de ce systeme a été effectuée dans les modeles
NJL et PNJL, en utilisant chaque fois exactement les mémes conditions initiales que celles
décrites plus haut. Les résultats correspondant sont présentés dans les figures 11, 12 et dans le
tableau 4. Concernant les versions en couleur de cette these, ces figures utilisent la convention
de couleur donnée dans I’annexe G. L’évolution du nombre de quarks/antiquarks en fonction
du temps est exposée dans la figure 11, alors que la figure 12 concerne les mésons. Ces
données correspondent a deux simulations, mais nous avons vérifié que d’autres tests ont
donné des résultats trés proches. Plus précisément, dans 1’algorithme de collisions décrit
paragraphe 2.4, les collisions sont déterminées en prenant en compte des considérations
stochastiques, méme si chaque réaction est prise en compte, et chacune est pondérée par sa
section efficace correspondante dans ce « choix ». Cela induit des fluctuations statistiques.
Cependant, nous avons vérifié que les variations concernent peu de particules dans les
résultats décrits ci-apres, typiquement moins de 5 quarks/mésons. D’autre part, a propos de la
procédure de collision, conscient de la fragilité relative des antiparticules composites, c'est-a-
dire D et B, ces objets n’ont pas été inclus dans ces simulations. Les réactions présentées
dans le tableau 2 qui incluent ces antiparticules ont été désactivées. D’un point de vue
numérique, les réactions ont été prises en compte dans 1’algorithme, mais le programme a
retourné des sections efficaces nulles pour elles.

Modele NJL Modele PNJL
120 120 r r v v

100 1 100

80
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Figure 11. Comparaison de la consommation de quarks/antiquarks dans les modeles NJL et PNJL.

Dans ces simulations, nous avons vu que ’interaction a distance entre quarks intervient de
maniere négligeable sur les résultats. Cela confirme notre conclusion formulée au
paragraphe 3.2. Clairement, comme nous pouvons le voir sur la figure 10, les quarks localisés
initialement dans les couches les plus externes semblent étre assez lents pour subir cette
interaction de maniere notable. En fait, cela entraine des modifications sur les trajectoires des
quarks. Cependant, puisque les sections efficaces peuvent étre fortes, notamment pour des
réactions comme g+g — M + M , les déviations des trajectoires ne sont pas assez importantes
pour intervenir dans les collisions. En outre, les quarks provenant du cceur ou des couches
chaudes sont certainement trop rapides pour subir I’interaction a distance. En conséquence,
des trajectoires rectilignes ont été trouvées pour eux.
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Figure 12. Production des mésons dans les modeles NJL et PNJL.

Qualitativement, la production de mésons décrite dans la figure 12 concerne seulement des

pions. Nos simulations ne prennent pas en compte la symétrie isospin, donc z~, 7z° et z*
sont indépendants. Mais, les résultats ne montrent pas de production de 7 ou de kaons. De la
méme maniere, dans la figure 11, aucune production de quark ou d’antiquark étrange n’a été
observée. En fait, méme si nous n’avons pas inclus de particules/antiparticules étranges dans
la composition initiale du systeme, ils peuvent apparaitre au sein dudit systeme via des
collisions, voir tableau 2. Toutefois, comme montré dans [43] dans le cas de u+u > s+5 et

dans [35] pour u+ d—>K +K° ou u+u —K +K", les sections efficaces des réactions
produisant de la matiere étrange sont réduites par rapport a celles qui utilisent exclusivement
des particules 1égeres. Cela explique 1’absence de matiere étrange dans ces simulations, méme
s’il était en théorie possible d’en observer. En fait, dans certains tests similaires a ceux décrits
ici, nous avons toute de méme observé la production de kaons.

Concernant 1’évolution de la population des quarks/antiquarks et des mésons, nous notons
tout d’abord que leurs populations ne semblent pas varier apres 7> 20 fm/c. Cette remarque
est valide pour les modeles NJL et PNJL. Pour les deux, les simulations se sont arrétées a
t =30 fm/c . Ainsi, ce temps correspond a « 1’état final » du systeme. Le tableau 4 nous montre
sa composition a cet instant la. Puisque dans ces simulations la production de diquarks et
baryons est fortement réduite, 1’évolution du systeme peut étre décrite uniquement par les
figures 12 et 13, c'est-a-dire en étudiant les quarks/antiquarks et les mésons. Dans 1’ensemble,
la production de mésons est optimale dans les premiers instants de la simulation. Cela induit
une diminution de la population de quarks/antiquarks de maniere symétrique. Cette forte
mésonisation est expliquée par la haute concentration de quarks et d’antiquarks, conduisant a
un taux de collision important. Comme vu précédemment, I’interaction attractive entre quarks
décrite au paragraphe 3.2 n’intervient pas de manicre notable. En conséquence, le systeme
s’étend spatialement. Puisque le systeme est libre (ouvert), une telle expansion est sans
limitation. Cela entraine une dilution des particules, donc une diminution du taux de collision.
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Quand I’expansion devient trop forte, les particules n’interagissent plus. Cela explique la
stagnation observée quand ¢ > 20 fm/c.

Particules Quarks Mésons Diquarks Baryons
NJL 76 33 1 1
PNJL 60 50 0 1

Tableau 4. Composition du systeme a =30 fm/c.

Qualitativement, des différences sont observables entre les modeles NJL et PNJL. Cela
constitue un aspect important de nos résultats. La production de mésons est plus rapide et plus
efficace dans le modele PNJL que pour un modele NJL pur. Plus précis€ément, le nombre de
mésons stagne dans le modele PNJL pour 7>5 fm/c, alors que cette stagnation intervient
apres 15 fm/c dans le modele NJL. De plus, la production de mésons est de 50 avec PNJL,
contre 33 avec NJL. Une telle différence induite par I’ajout de la boucle de Polyakov peut étre
expliquée en étudiant les figures 13 et 14 ci-apres. La figure 13 décrit la température initiale
ressentie par chaque quark/antiquark. La figure 14 étudie leurs masses initiales. Les deux
figures permettent une comparaison entre ces deux modeles. Clairement, méme si les
positions et quantités de mouvement initiales sont strictement égales pour les simulations NJL
et PNJL, figure 10, I’estimation des masses des quarks et des températures ne donnent pas les
mémes résultats pour les deux modeles. D’autre part, dans notre modele dynamique, nous
rappelons I'interdépendance entre la masse et la température : les masses des quarks sont
estimées a une température donnée (voir chapitre 2) et les températures requicrent les masses
des quarks dans I’estimation des énergies (9). Donc, ces quantités ne peuvent pas étre étudiées
séparément. Une conséquence de l'inclusion de la boucle de Polyakov est que les
températures sont plus basses dans le modele PNJL que dans le NJL. A 1’opposé, les masses
sont plus fortes avec PNJL qu’avec NJL. Ces différences sont particulierement visibles dans
le coeur du systeme, c'est-a-dire pour r<1.5 fm.
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Figure 13. Températures initiales dans les modeles NJL et PNJL.
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En fait, il peut étre observé que la différence de masse entre les modeles (P)NJL intervient
dans la premiere équation de (11), via I’énergie. Pour une quantit¢ de mouvement identique,
puisqu’un quark PNJL est plus lourd, on s’attend a ce que le terme p/E soit plus réduit pour

ce quark. En conséquence, % devrait étre plus faible. Ainsi, la vélocité d’un quark PNJL
T

devrait étre plus faible qu’avec NJL. Donc, cela devrait réduire la vitesse de I’expansion.
Toutefois, la plupart des quarks sont hautement relativistes, donc cette explication ne peut pas
expliquer les différences obtenues.

Clairement, une explication plus pertinente concerne directement les valeurs des sections
efficaces. Selon le travail effectué dans le chapitre précédent, la température optimale (a

densité nulle) de mésonisation, via u+u — 7" + 7, semble étre proche de 230 MeV dans le

modele NJL, contre 280 MeV dans le modele PNJL. En fait, u+u — 7" + 7~ est la réaction
dominante de celles écrites comme g+q — M +M , et ces résultats peuvent €tre extrapolés

aux autres réactions de mésonisation de ce type, mettant en jeu des quarks légers et des
pions [35]. De plus, la réaction élastique u+u —u+u est optimale pour une température
20 MeV au dessus de celle trouvée pour le processus de mésonisation, dans les descriptions
NJL et PNJL. A la lumiere de ces informations et avec la partie gauche de la figure 13, pour
la simulation NJL, nous concluons qu’une partie significative du systéme est initialement trop
chaude pour subir le phénomene de mésonisation. Clairement, dans le cceur, les réactions
élastiques entre les quarks et/ou les antiquarks ont di dominer les réactions inélastiques de
mésonisation, au moins dans les premiers instants de 1’expansion. Cela entraine alors une
production de mésons réduite, qui s’est produite principalement dans les couches externes. A
I’opposé, pour la simulation PNJL, partie droite de la figure 13, tout le systtme est
initialement en dessous de 7 =280 MeV . Méme si la mésonisation n’est pas optimale pour des
températures modestes, les sections efficaces y restent tout de méme assez fortes, notamment
au niveau du seuil cinématique [35, 44]. En conséquence, dans la simulation PNJL, la
mésonisation peut démarrer dans tout le systeme des le début de la simulation, entrainant
alors une production de mésons plus rapide et plus efficace.
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Figure 14. Masses initiales dans les modeles NJL et PNJL.
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Toutefois, méme le modele PNJL ne parvient pas a une hadronisation complete dans ces
simulations. Plus précisément, 68 % des quarks/antiquarks sont toujours libres a la fin de la
simulation avec le modele NJL, et 54 % dans la version PNJL. Méme s’il est imaginable
d’améliorer ces résultats, notamment au niveau de la composition du systeme, de sa
géométrie, des quantités de mouvement initiales, etc., les modeles (P)NJL seuls ne semblent
pas capables de permettre une hadronisation complete d’un tel systeme. En fait, une
explication de ce phénomene pourrait étre associée a la faiblesse relative des sections
efficaces des réactions de baryonisation, notamment par rapport aux sections efficaces
trouvées pour g+¢q — M + M . Ainsi, il est réaliste d’atteindre des taux d’hadronisation élevés

avec des systemes composés équitablement par des quarks et des antiquarks. Dans ces
systemes, une hadronisation totale est possible, exclusivement via une mésonisation, c'est-a-
dire en négligeant les réactions de baryonisation, comme dans [24]. En fait, nous avons
précédemment vu la possibilité de modéliser une interaction de courte portée entre les quarks.
Mais, celle-ci s’est révélée étre trop limitée. En conséquence, nos résultats montrent la
nécessité d’une interaction a longue portée entre les quarks/antiquarks, comme celle observée
dans le cadre de la QCD. Clairement, la finalité d’une telle interaction est de réduire la vitesse
d’expansion du systeme, au moins pour les quarks/antiquarks, afin de permettre aux quarks de
se combiner, pour former des diquarks et ensuite des baryons.

4.2 Une solution pour permettre une hadronisation
complete

Pour résoudre le probleme évoqué dans le paragraphe précédent, plusieurs solutions sont
possibles. La finalité est de trouver un mécanisme qui puisse modéliser I’interaction a longue
potée dont nous avons parlé. Cela pourrait entrainer une modification des modeles (P)NJL
utilisés. Toutefois, dans ce travail, nous proposons d’ajouter une sphere qui confinera le
systeme de quarks et antiquarks décrit a la figure 10 dans une « phase QGP », et donc qui
mimera le comportement d’une force de rappel a longue portée. Comme avec la boite décrite
paragraphe 3.2, la paroi de la sphere est réfléchissante selon la loi de Descartes sur la
réflexion. Cependant, les seules particules concernées sont les quarks, antiquarks et les
éventuels diquarks rassemblés dans la sphere. A 1’opposé, les particules non colorées, comme
les mésons et les baryons, peuvent quitter la sphere librement. Puisque les populations de
quarks, antiquarks et diquarks vont évidemment décroitre avec le temps, le rayon de la sphere
est mis a jour a chaque itération en temps. Plus précisément, le volume de la sphere est
proportionnel au nombre total de quarks/antiquarks, libres ou combinés dans des diquarks.
Cette phase QCD est supposée présenter une symétrie sphérique durant la simulation. En
conséquence, le centre de la sphere coincide avec le centre du systeéme.

L’évolution des populations de chaque type de particules est proposée dans les figures 15 a
17. Dans cette simulation, nous avons fait appel au modele PNJL. Nous pouvons observer que
la sphere permet d’obtenir une hadronisation compléte, puisque le nombre total de quarks et
d’antiquarks converge vers zéro (et atteint zéro), et il n’y a pas de diquark a la fin de la
simulation. En fait, I’hadronisation s’est totalement terminée au temps 86.6 fm/c. Ce temps
est plus long que celui escompté dans des références comme [16, 24]. Cependant, 1’évolution
du nombre de quarks/antiquarks et de mésons, observés figures 15 et 16, rappelle celle prédite
dans [16]. En effet, la production de mésons est forte dans les premiers instants de la
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simulation, jusqu’a r=8fm/c, via les réactions g+g — M +M . Ensuite, la production

commence a €étre moins rapide, jusqu’a ¢ =25 fm/c. Apres cela, les variations du nombre de
mésons sont lentes, mais assez régulieres. Mais, dans cette derniere phase, la production de
mésons est permise par des réactions comme g+D —M +B, et non par g+g >M +M . En

fait, méme si la sphere évite que les quarks/antiquarks quittent la phase QGP, le taux de
collision tend a décroitre avec le temps. Comme observé dans la figure 25 avec une autre
simulation, cette diminution ne peut pas €tre associée a une modification des conditions dans
la phase QGP. En effet, il a été trouvé qu’un effet indirect de la sphere est de stabiliser la
température et les densités dans cette phase. La raison de la diminution du taux de collision
est liée a des considérations cinématiques. Clairement, avec des réactions
comme g+q — M + M , les sections efficaces sont maximales au niveau du seuil cinématique.

Cela veut dire que la probabilité de création de mésons est optimale si les quantités de
mouvement du quark et de I’antiquark incidents sont réduites dans le référentiel du centre de
masse de ces deux particules, annexe F. Au début de la simulation, le grand nombre de quarks
et d’antiquarks rend cette condition cinématique hautement probable. Mais, au fur et a mesure
que le nombre de quarks et d’antiquarks diminue, la probabilité décroit également. Ce
comportement peut &tre comparé aux processus décrits par la loi exponentielle. En outre, les
quarks et antiquarks rapides ne sont clairement pas favorisés en ce qui concerne cette
condition cinématique. Ils peuvent rester dans la phase QGP pendant longtemps avant leur
hadronisation. Cependant, les réactions élastiques permettent de diminuer leurs quantités de
mouvement, et elles permettent ainsi a ces particules de réagir plus facilement via des
réactions inélastiques.

Nombre de quarks
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Figure 15. Evolution de la population de quarks-antiquarks en fonction du temps.

D’autre part, des quarks/antiquarks rapides peuvent aussi étre de bons candidats pour réagir
via des réactions mettant en jeu de la maticre étrange. Comme vu précédemment, nous
pouvons citer u+i —s+5, u+d ->K"+K° ou u+it > K +K*. Ces réactions ont des
sections efficaces réduites, mais leurs seuils cinématiques sont plus forts que pour les
réactions mettant en jeu uniquement des particules légeres. Elles ne peuvent pas étre négligées
pour des valeurs de /s modérées [35, 43]. L’inclusion de la sphere évite que les
quarks/antiquarks rapides quittent le systéme, et dans le méme temps elle permet d’accroitre
le nombre de collisions durant la simulation entiere. En conséquence, la figure 15 montre que
des quarks et antiquarks étranges ont été produits, par exemple via ¢+¢ — s+5 . En outre,
une production de kaons a été observée, figure 36 et tableau 5. Comme escompté, cette
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production est réduite par rapport a celle des pions. Aussi, un X" a été produit, figure 37 et
tableau 5.

120 T T

—

o

(=]
T

©
[=)
T

Nombre de mésons
N o
o o
T

20

40 50
Temps (fm/c)

Figure 16. Production des mésons en fonction du temps.

Particules = 2 7+ k- kv K° K° Neutron Proton Y*
Nombre 30 22 33 6 3 7 3 4 2 1

Tableau 5. Composition finale du systeme.

Concernant les baryons, leur production a démarré plus tard dans cette simulation, c'est-a-dire
apres 16 fm/c. Dans cette description, nous ne prenons pas en compte les nucléons formés au
tout début de la simulation, car ils ont été rapidement détruits par des réactions inélastiques.
Ces observations confirment notre scénario qui imaginait que la mésonisation interviendrait
avant la baryonisation, afin de « consommer » assez d’antiquarks pour bloquer les réactions
inélastiques qui peuvent détruire les baryons, comme g+B —qg+qg et g+B— M +D. D’autre
part, aucun antiquark libre (non combiné dans un méson) n’a été trouvé dans le systeme, tout
d’abord pour 7=33,6fm/c, et ensuite définitivement pour ¢=48,8 fm/c. Clairement, la
mésonisation, via g+¢q — M + M , s’est achevée nettement plus tot que la baryonisation.
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Figure 17. Nombre de diquarks et baryons en fonction du temps.
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5. Etude complete d’une simulation

Les simulations précédentes ont fait intervenir un nombre réduit de particules. En
conséquence, la production de diquarks assez modeste observée dans la figure 17 ne peut pas
étre considérée comme un résultat général. Ainsi, nous avons effectué une autre simulation
PNIJL, mettant en jeu 279 particules. La composition initiale est donnée par le tableau 6. Par
rapport aux simulations précédentes, tableau 3, I’asymétrie entre la matiere et 1’antimaticre a
été renforcée. Plus précisément, le rapport quarks/antiquarks est maintenant égal a 2. Comme
précédemment, aucun quark/antiquark étrange n’est présent initialement dans le systeme. Les
positions et quantités de mouvement initiales sont représentées sur la figure 18. Dans la
simulation précédente, le rayon initial était de 3.8 fm. Maintenant, il est de 4.5 fm. D’autre
part, comme nous pouvons le voir sur la figure 18, les quantités de mouvement maximales
peuvent largement dépasser 1500 MeV, c'est-a-dire plus que les quantités de mouvement
décrites figure 10.

Particules u uw d d
Nombre 86 43 100 50

Table 6. Composition initiale du systeme.
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Figure 18. Positions et quantités de mouvement initiales des quarks-antiquarks de notre systeme.

Ces conditions initiales induisent un systeme chaud et dense. Cette affirmation est confirmée
par les figures 19-21. Tout d’abord, dans la partie droite de la figure 19, la température dans
le cceur peut dépasser 300 MeV. Cela veut dire que nous sommes au dessus de la température
de mésonisation optimale 7 =280 MeV . La température décroit régulierement au fur et a
mesure que le rayon augmente. Dans les couches les plus externes, les valeurs de la
température sont plus fortes que 180 MeV. Dans la partie gauche de la figure 19, les masses
des quarks/antiquarks semblent étre réduites dans le coeur, mais restent plus fortes que leurs
masses nues. En effet, dans le cadre du modele PNJL, les masses des quarks nues peuvent
seulement Etre atteintes pour des températures supérieures ou égales a 400 MeV, voir
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chapitre 2. Cependant, puisque les valeurs du champ de Polyakov & sont proches de 0.7 dans
le ceeur, figure 21, nous pouvons considérer que les quarks/antiquarks sont la dans une phase
« déconfinée ».
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Figure 19. Masses et températures initiales des quarks-antiquarks.

D’autre part, dans les simulations précédentes, les densités n’ont pas été prises en compte
dans nos descriptions. Mais, dans le cadre de cette simulation, de fortes densités ont été
trouvées, comme le prouve la figure 20. Les profils des densités p, et p, sont similaires,

mais les densités trouvées pour p, sont légerement plus élevées que celles de p, , en raison
de I’exces de quarks d par rapport aux u, tableau 6. En fait, grace a la relation pp =2/3 p, [26]
utilisée dans le cadre de la symétrie isospin, avec p, =0, nous concluons que la densité
baryonique est proche de 3p, dans le ceeur.
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Figure 20. Densités initiales.
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Figure 21. Valeurs initiales du champ de Polyakov ressenti par les quarks et antiquarks.

L’annexe G propose une visualisation des positions des particules en fonction du temps.
D’autre part, 1’évolution des populations des particules est représentée sur la figure 22.
Concernant les quarks/antiquarks et les mésons, les évolutions observées rappellent fortement
celles trouvées dans la simulation précédente, figures 15 et 16. Grosso modo, la population de
quarks/antiquarks est exponentiellement décroissante. Cependant, pour les diquarks et les
baryons, des différences sont observables par rapport a la figure 17. Dans la simulation
précédente, les diquarks ont été produits de maniere treés ponctuelle. Ici, une production
massive de diquarks a eu lieu dans les premiers instants de I’expansion, jusqu’a ¢ =10 fm/c.
Pendant environ 15fm/c, le nombre de diquarks stagne, et ensuite il décroit
exponentiellement. En ce qui concerne les baryons, leur formation n’a réellement démarré
qu’a 3.7 fm/c. Dans un premier temps, le nombre de baryons est réduit, jusqu’a ¢ =25 fm/c.
Ensuite, la production devient plus forte. Ce comportement est directement explicable par la
consommation des diquarks, afin de former les baryons. Apres 60 fm/c, la production
commence a €tre plus réduite, et stagne apres 102 fm/c. En fait, I’évolution des populations de
diquarks et baryons rappelle fortement ce qui est observé en chimie. Plus précisément, les
diquarks jouent parfaitement le rdle d’intermédiaires réactionnels. Clairement, par leur
production non négligeable, ils permettent une création de baryons plus efficace. C’est vrai
notamment pour 30<¢<60 fm/c. Dans cette simulation, ce comportement est explicable par
les températures et densités obtenues dans certaines couches du systeme, permettant des
réactions comme g+q— M + D . En effet, il a été vu dans le chapitre 6 que ces réactions ont

des sections efficaces optimales pour des densités proches de 2-3p, et des températures
d’environ 200 MeV, ou légerement plus.

Qualitativement, la figure 22 est complétée par le tableau 7. Celui-ci décrit la composition
finale du systéme, une fois que 1’hadronisation est complete, c'est-a-dire pour ¢=133.4 fm/c.
Comme avec le tableau 5, la production de pions est forte. Clairement, ils représentent
environ 79 % des particules trouvées a la fin de la simulation. Aussi, une production de 26
nucléons est observable : ils représentent 1égerement moins de 10 % de I’ensemble des
particules. De plus, des particules étranges ont également €té produites. En fait, puisque nous
avons considéré plus de particules et puisque nous avons atteint des températures plus hautes

N

que dans la simulation précédente, nous avons réussi a produire des particules rares.
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Clairement, grace aux conditions rencontrées dans cette simulation, des paires s,5 ont été
produites. Cela a permis notamment la formation d’un diquark comme [us]. Dans I’état final,

nous remarquons la présence de mésons 77 et d’hypérons £, X" . Ces particules sont formées
par des réactions ayant des sections efficaces limitées.
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Figure 22. Populations des particules mises en jeu en fonction du temps (N : neutron, P : proton).

Particules 7= % 4+ M g~ kv K K® Neutron Proton Y- Y7
Nombre 84 64 72 3 3 9 6 7 9 17 2 3

Tableau 7. Composition finale du systéme.

Nous considérons maintenant la figure 23. Celle-ci montre I’évolution de la température en
fonction du rayon (c'est-a-dire la distance par rapport au centre du systeme) et en fonction du
temps. Dans ce graphe, nous avons aussi tracé le rayon de la sphere introduite dans la
simulation décrite au paragraphe 4.2. La zone localisée a gauche de cette courbe est ’intérieur
de cette sphere. Elle représente la phase dans laquelle les quarks/antiquarks et les diquarks
sont présents, c'est-a-dire la phase QGP. Jusqu’a 20 fm/c, une production massive de mésons
a eu lieu, entrainant une forte consommation de quarks et d’antiquarks. En conséquence, la
décroissance du rayon de la sphere est forte au début de la simulation. Ensuite, entre 20 et
110 fm/c, la décroissance du rayon est moins forte, et semble &étre presque linéaire. Ce
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comportement est expliqué par la diminution de la consommation de quarks et d’antiquarks.
Apres 110 fm/c, le rayon stagne, jusqu’a I’hadronisation totale, environ 20 fm/c plus tard.
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Figure 23. Température en fonction de la distance par rapport au centre du systéme, et en fonction du
temps. La courbe grise matérialise la limite de la phase QGP. Les points blancs montrent les collisions
élastiques et les points noirs les réactions inélastiques.

D’autre part, durant toute 1’hadronisation de la phase QGP, sa température est plutot
constante, comme visible sur la figure 25. Selon la partie droite de cette figure, cette remarque
est aussi valide pour les densités p, et p,. La température moyenne dans la phase QGP est
proche de 250 MeV, méme si des variations sont observables. Clairement, 1’inclusion de la
sphere conduit a ce comportement. A 1’opposé, la dynamique du systeme en dehors de la
sphere est completement différente. Plus précisément, cette partie du systeme est composée
par les mésons et baryons qui ont quitt¢ la phase QGP. Les réactions g+q >M +M
impliquant des particules légeres sont particulierement exothermiques [35]. Cela veut dire que
les particules incidentes sont plus lourdes que les particules produites. Notamment avec les
pions formés par ces réactions, on s’attend a ce que ces particules aient de fortes vélocités,
comme confirmé par la figure 28. Ces fortes vélocités impliquent de fortes températures
autour de la phase QGP, formant une « couronne chaude » de pions. Cette couronne explique
la légere augmentation de la température du plasma ¢/g, visible dans la figure 23,
notamment entre 20 et 70 fm/c. Une autre conséquence est que I’expansion de la phase
composée par les mésons et baryons est tres rapide. Cela correspond a la partie droite de la
figure 23. Comme observable dans cette zone, ces particules se refroidissent progressivement
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quand r et le temps augmentent, en raison de la dilution. Comme vérifié sur la figure 25, cela
entraine une décroissance exponentielle de la température moyenne et des densités p, ,

moyennes du systeme.
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Figure 24. Collisions élastiques et inélastiques en fonction du temps.

Concernant les collisions, les figures 23, 24 et le tableau 8 permettent de les étudier selon
plusieurs aspects. Dans cette simulation, nous avons compté 559 collisions. Les réactions
élastiques représentent environ 63 %, contre 37 % pour les inélastiques. Selon la figure 24, les
collisions ont préférentiellement eu lieu dans les premiers moments de la simulation, jusqu’a
10 fm/c. La, les collisions €lastiques dominent les réactions inélastiques. Ce comportement est
explicable par les hautes températures rencontrées dans cette simulation. Cela permet a des
réactions comme g+g —>qg+q, g+q—q+q et g+qg—>qg+q de dominer, figures 23, 25.
Selon le travail effectué dans le chapitre précédent, nous rappelons que les fortes températures
permettent a ces réactions d’avoir des sections efficaces plus fortes que celles de
q+q —> M +M . Toutefois, ce type de réactions inélastiques est aussi tres présent, et il permet
I’hadronisation massive visible sur la figure 22. Entre 10 et 80 fm/c, en raison de la
diminution de la population de la phase QGP, le taux de collision décroit fortement, mais
reste assez constant. Comme vu précédemment, la température de la phase QGP est
quasiment constante durant la simulation. Ainsi, comme avec <10 fm/c, les réactions
élastiques dominent aussi les réactions inélastiques pour 10 fm/c <t <80 fm/c. Apres 80 fm/c,
le nombre de particules formant la phase QGP est bas. Cela conduit a une forte réduction de la
probabilité d’interaction entre deux particules dans la phase QGP, comme avec la simulation
décrite dans le paragraphe 4.2.

Ces observations sont en accord avec les données exposées dans la figure 23. Celle-ci donne
aussi des informations concernant la répartition spatiale des collisions. Dans 1’ensemble, les
collisions inélastiques (points noirs) ont eu lieu préférentiellement dans la phase QGP, mais
proche de sa surface. Dans cette zone, la température est plus réduite qu’au centre du
systeme : cela correspond a des conditions plus favorables pour les réactions inélastiques
comme ¢g+qg—>M+M. Cependant, des réactions inélastiques endothermiques,

comme g+q— ¢+ B, ne sont pas concernées par cette remarque. Elles sont associées aux

réactions inélastiques visibles sur la figure 23 proches du centre du systeme. D’autre part, les
collisions élastiques sont observées dans la phase QGP toute entiere. Cela concerne
principalement les diffusions élastiques entre quarks et/ou antiquarks. Mais, des réactions
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élastiques sont aussi observables en dehors de cette phase. Celles-ci correspondent a
M+M —M+M, et dune maniere plus secondaire a M+B—>M +B et B+B— B+ B, Voir
tableau 8. La domination de M + M — M +M par rapport aux deux autres est expliqué par le
fait que la production de mésons domine largement celle des baryons, figure 22. En
conséquence, la rencontre entre deux mésons est extrémement plus probable que M,B ou
B, B, indépendamment des sections efficaces associées a ces réactions.

D’autre part, le tableau 8 présente 1’occurrence de tous les processus traités dans la
simulation. Parmi les 559 collisions, les réactions g+¢ —¢g+¢ en représentent plus d’un

quart. Comme observé précédemment, ces diffusions élastiques dominent les réactions
inélastiques de mésonisation g+ —> M +M . En effet, celles-ci correspondent 2 moins de

20 % des réactions observées. Nous avons vu dans le paragraphe 4.2 que la mésonisation s’est
terminée assez tot. Mais, cette observation n’est pas confirmée dans cette simulation. En effet,
des antiquarks ont été trouvés dans le systetme jusqu’a 1’hadronisation complete. En
conséquence, les hautes températures rencontrées dans cette simulation ont agit sur
q+q —> M +M d’une maniere non négligeable. Toutefois, ces réactions inélastiques n’ont pas
été réellement perturbées par leurs réactions inverses M +M — g+¢q, car celles-ci n’ont eu

lieu qu’une seule fois dans toute la simulation. En effet, les sections efficaces trouvées avec
les réactions g+g —>M +M sont globalement plus fortes que celles de M +M —g+q.

Evidemment, ¢g+g —>M +M est la méthode privilégiée pour produite des mésons a partir
d’un systeme de quarks/antiquarks, largement devant ¢+¢q— M + D . Mais, cette conclusion

peut dépendre du rapport initial entre les quarks et les antiquarks. D’autre part, les mésons ont
principalement interagi avec les autres particules via des réactions élastiques, comme
M+M—>M+M, g+M —-qg+M ou g+M —g+M ,mais plus rarement via des réactions

inélastiques, comme ¢+M —g+D ou
constante du nombre de mésons, figure 22.

M+D—g+B. Cela explique I’augmentation

g+q9—>q+q 147 | ¢g+D—>M+B 14| D+D—>D+D 3
q+qg—>M+M 106 q+M —>g+M 14| M+B—>M+B 3
g+tq—>q+q 59 q+B—>D+D 10 B+B—B+B 2
g+q—>q+q 36 q+M —-qg+D 7 g+B—qg+q 1
g+D—q+D 31 g+B—>M+D 7 | M+M —qg+g 1

M+M-—>M+M 24 g+D—qg+M 5 g+D—>q+D 0
g+q—>M+D 22 D+B—D+B 4 gq+B—>q+B 0
qg+M —g+M 22 q+B—>qg+B 3 M+D—qg+q 0
D+D—q+B 17 | M+D>g+B 3 | M+B—>g+D 0
q+tq—>q+B 15 | M+D>M+D 3

Tableau 8. Occurrence de chaque type de collision.

Concernant les autres réactions évoquées dans le tableau 8, méme si g+¢ — ¢g+¢ intervient

d’une maniere notable, les autres réactions €lastiques mettant en jeu des quarks/antiquarks,
comme g+q—qg+q et g+q —q+q sont aussi présentes. Leur occurrence est plusieurs fois

plus faible par rapport a la diffusion quark-antiquark, puisque leurs sections efficaces sont
globalement plus réduites que celles de g+¢ — g+¢q [43]. D’une part, les sections efficaces

de g+g—>qg+q et g+g—qg+q sont similaires a basses densités. D’autre part, le rapport
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initial entre la matiere et I’antimatiere est ici égal a deux. Ainsi, cela explique pourquoi
I’occurrence de g+q — g+¢q est presque deux fois cellede g+9g > g+7 .

Concernant les diquarks, leur contribution ne peut pas étre négligée dans cette simulation,
figure 22. Comme indiqué plus haut, parmi les processus inélastiques étudiés dans les
chapitres précédents, les réactions g+¢g— M + D sont clairement celles qui produisent des

diquarks de maniere significative, comme visible dans le tableau 8. En outre, les réactions
inverses M +D —g+¢q n’ont pas eu lieu durant la simulation. En revanche, la contribution

des réactions g+M — g+ D est réduite, notamment en raison de sections efficaces faibles.
Une autre raison pour expliquer cela est que les réactions inverses g+ D — g+ M ont quant a
elles des sections efficaces plus fortes.
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Figure 25. Evolution de la température et des densités.

Pour ce qui concerne la formation des baryons, nous confirmons 1’hypothese formulée dans le
chapitre précédent : M + D — g + B peut étre négligée, l1a aussi en raison de sections efficaces
réduites et du fait que celles des réactions inverses g+ B — M + D sont toujours plus fortes.

Clairement, comme escompté, les trois réactions dominantes permettant la baryonisation sont
D+D—qg+B, g+D—M+B et g+qg—q+B.Dans le cadre de cette simulation, les trois ont

donné des contributions similaires. La production de baryons via D+ D — g+ B a été permise
par une production de diquarks non négligeable, figure 22, par des sections efficaces
intéressantes, et par les relatives hautes températures de la phase QGP. En effet, ces réactions
endothermiques requicrent de telles températures pour intervenir de maniere efficace.
L’argument de la température peut aussi étre évoqué avec les réactions g+q — g+ B. Mais,
concernant D+D — g+ B et g+qg— g+ B, nous notons tout d’abord que ¢+B — D+ D n’est
pas négligeable, diminuant I’efficacité de la production de baryons a partir de deux diquarks.
De plus, méme si g+ B — g+q peut €tre négligée selon nos résultats, cela n’est pas le cas
pour g+ B— M + D, conduisant aussi a des limitations de I’efficacité de la production de
baryons via g+q—>qg+B. A I'opposé, ¢g+D—>M +B n’est pas limitée par des réactions
inverses. En effet, les mésons ne participent pas énormément aux réactions inélastiques une
fois qu’ils sont produits. En conséquence, M +B—qg+D n’est pas observé dans nos
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simulations, alors que M +B—M +B s’est produit trois fois. Cependant, il est vrai que
g+ D — g+ D apparait comme une source de concurrence non négligeable de ¢+ D —>M + B,
méme si ce processus €lastique peut seulement ralentir la production de baryons.

Maintenant, considérons la figure 26 ci-apres. Sa finalité est de vérifier la validité de nos
résultats. Ce graphe montre [’évolution de 1’énergie totale en fonction du temps.
Physiquement, 1’énergie totale devrait étre constante, mais a cause d’arrondis numériques, des
variations sont observables. Les valeurs présentées dans la figure 26 peuvent étre considérées
comme le cas le plus défavorable, parmi les simulations décrites dans ce chapitre. Toutefois,
les variations restent toujours inférieures a 0.8 %. Par ailleurs, apres des variations observées
jusqu’a 40 fm/c, nous notons une stabilisation des valeurs vers 0.5 %. Une telle valeur est
acceptable, et est légerement plus forte que les variations annoncées dans [24]. Clairement,
dans le cadre de nos simulations, ces variations peuvent étre atténuées en augmentant la
précision des calculs numériques, mais au prix d’'une augmentation du temps de calcul. Nous
avons vérifié que I’inclusion de la sphere n’a pas d’incidence directe sur ces variations.
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Figure 26. Fluctuations de 1’énergie totale du systeéme en fonction du temps.

Pour poursuivre cette analyse, nous considérons les figures 27 et 28, qui décrivent le systeme
a la fin de la simulation, c'est-a-dire pour un temps ¢ =140 fm/c . La figure 27 nous montre les
masses et les quantités de mouvement des particules. Evidemment, en accord avec le
tableau 7, ces particules sont forcément des mésons et des baryons. A la fin de la simulation,
la température et les densités sont réduites, figure 25. Ainsi, les masses des particules, partie
droite de la figure 27, sont tres proches de celles observées pour 7=0 et p, =0, voir les

chapitres 3 et 5. En conséquence, nous notons quatre couches distinctes dans ce graphe. Deux
concernent les mésons : une pour les mésons légers, et un autre pour les autres mésons (kaons
et 7). De la méme manicre, les deux autres sont associées aux baryons légers (nucléons) et

étranges, c'est-a-dire aux hypérons X* dans notre simulation. Nous remarquons aussi une
forte concentration de mésons pour des rayons compris entre 100 et 150 fm. IIs attestent de la
mésonisation massive qui a eu lieu dans les premiers instants de la simulation. D’autre part,
ces particules sont celles qui ont parcourues les distances les plus grandes distances. Cela est
dé au fait qu’ils ont de hautes vitesses, en raison du comportement exothermique de
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q+q —> M+ M avec ces particules. Nous pouvons aussi invoquer le fait qu’ils sont produits
tot, comme confirmé dans la figure 22. Dans la partie gauche de la figure 27, nous avons tracé
les quantités de mouvement des particules. La quantité de mouvement la plus forte est proche
de 2 GeV, alors que la plus basse est 1égerement supérieure a 70 MeV. En conséquence, des
valeurs tres diverses sont observables. Cependant, les points semblent étre plus concentrés sur
la partie inférieure droite du graphe. Selon nos explications précédentes, ces points concernent
principalement les mésons, et notamment les pions.
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Figure 27. Masses et quantités de mouvement des particules a la fin de la simulation.
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Figure 28. Vitesses des particules a la fin de la simulation.
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Afin de terminer cette description, la figure 28 décrit la vitesse des particules en fonction de la
distance par rapport au centre du systeme, pour 7 =140 fm/c . Ces vitesses ont été obtenues par

les données apportées par la figure 27, et en utilisant la formule v = p - ¢ / E . Dans la figure, la
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ligne horizontale, pour laquelle la vitesse vaut 1, matérialise la célérité de la lumiere c¢. Une
partie significative des particules présente de fortes vitesses, proches de 1, parce que les
quantités de mouvement étaient initialement fortes, et a cause des réactions exothermiques.
Evidemment, aucun tachyon n’a été observé... D’autre part, nous avons vu que I’interaction a
distance entre les particules pouvait étre négligée. Cette remarque est vraie bien siir en dehors
de la phase QGP, en raison de la portée limitée de cette interaction. En d’autres termes, une
fois que les particules finales (mésons et baryons) ont été produites, leurs vitesses ne sont pas
susceptibles de varier jusqu’a la fin de la simulation. Cela permet de les considérer comme
des particules libres. En prenant cette hypotheése en compte, une ligne diagonale a été tracée
dans la figure 28 : elle matérialise la limite de causalité du graphe. Le décalage de cette ligne
selon I’axe des r prend en compte le rayon initial du systeme, d’environ 4.5 fm. Clairement,
des particules a droite de cette ligne auraient été non causales, parce qu’elles auraient été a
trop grandes distances du centre du systéme, par rapport a leurs vitesses. Un tel comportement
non physique n’a pas été observé dans nos résultats. Il aurait été le signe de défaut de
I’algorithme.

6. Discussion et conclusions

Dans ce chapitre, nous avons présenté un modele destiné a étudier dynamiquement le
refroidissement d’un plasma de quarks/antiquarks. Cela a été 1’occasion de rassembler les
travaux effectués dans les chapitres précédents dans notre programme effectuant la
simulation ; celui-ci est nommé ARCHANGE. En effet, nous avons vu que ce programme a
pris en compte les calculs des masses des particules, dans les modeles (P)NJL. Ces particules
ont ici été les quarks u,d,s, les antiquarks correspondants, les mésons pseudo-scalaires, les
diquarks scalaires et I’octet de baryons, sans appliquer la symétrie isospin. Ces masses ont été
calculées selon la température T et les densités p, ;.. Plus précisément, ces parameétres

externes ont été considérés dans notre modélisation comme des parametres locaux. En
d’autres termes, pour chaque particule, ils traduisent I’influence du voisinage, c'est-a-dire les
autres particules situées aux alentours.

En outre, afin de décrire les collisions, notre algorithme a inclus les calculs des sections
efficaces, en utilisant le travail effectué dans le chapitre 6. Notamment, 60 types de réactions
ont été implémentés, afin de permettre le traitement des diverses collisions possibles entre les
quarks, les mésons, les diquarks, les baryons et leurs antiparticules correspondantes. De plus,
les sections efficaces correspondantes ont été calculées en temps réel, en prenant en

compte s, mais aussi la température et les densités locales. Nous avons montré que cette
approche nous a permis d’obtenir certains résultats intéressants, comme une production non
négligeable de diquarks via les réactions ¢+ ¢ — D+ M . En effet, ces réactions peuvent avoir
de fortes sections efficaces, mais dans des conditions tres précises selon la température et les
densités.

De plus, nous avons considéré des équations de mouvement relativistes. Cela nous a donné
I’occasion de les interpréter dans le cadre des modeles (P)NJL. De cette maniere, nous avons
mis en évidence une interaction attractive a distance entre les particules, notamment entre les
quarks, par le biais de leur masse. En conséquence, certaines de nos simulations se sont
focalisées sur 1I’étude de cette interaction a distance. Nous avons vu que I’effet attractif est
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plus fort dans le modele PNJL que dans le modele NJL. Cependant, cette interaction est
apparue assez négligeable dans le cadre de systemes chauds, puisqu’ils mettent en jeu des
particules rapides. Aussi, cette interaction a une portée limitée, c'est-a-dire quelques
femtometres dans nos descriptions.

Ensuite, nous avons effectué une simulation complete. Nous avons tout d’abord noté que le
modele PNJL nous a donné de meilleurs résultats que le modele NJL pur, notamment en ce
qui concerne la consommation de quarks/antiquarks et la production de mésons. Ces
améliorations du modele PNJL ont été expliquées par le décalage en température induit par
I’ajout de la boucle de Polyakov. Plus précisément, cela concerne les modifications des
températures optimales des réactions g+qg — M +M impliquant des particules légeres :

230 MeV pour le modele NJL, contre 280 MeV avec PNJL. En conséquence, puisque les
réactions de mésonisation peuvent intervenir a des températures plus hautes dans la
description PNJL, ladite mésonisation est plus efficace dans ce modele.

Cependant, les modeles (P)NJL ne permettent pas une hadronisation complete de notre
systeme ouvert. Méme le mécanisme de confinement proposé par le modele PNJL n’a pas été
suffisant dans le cadre de ces simulations. Nous avons alors évoqué la relative faiblesse des
réactions de baryonisation pour expliquer ces résultats. Aussi, cette hadronisation incompléete
est éventuellement un signe que notre modélisation a besoin d’interactions longues portées,
afin de confiner suffisamment les quarks/antiquarks. Dans notre travail, nous avons proposé
de mimer ce comportement en utilisant une sphere. Bien entendu, cette astuce constitue une
premiere étape, et de futurs développements de ce travail doivent concerner la modélisation
de cette interaction a longue portée.

Cette sphere a permis d’effectuer deux simulations, pour lesquelles I’hadronisation fut
complete. L’évolution des particules présente des similarités avec celles décrites par exemple
dans [16]. Mais, nous avons aussi noté que le temps nécessaire pour obtenir une hadronisation
complete a été plus long que celui escompté dans cette référence, et en général que celui
attendu dans la littérature, en particulier dans le cadre du scénario de Bjorken [10]. L’absence
de gluons dans la modélisation en tant que particules dynamiques peut étre évoquée pour
tenter d’expliquer cet aspect. Clairement, on s’attend a ce que des réactions comme
g+g —>q+q ne soient pas négligeables durant I’évolution du QGP, voir chapitre 1. Plus

N

précisément, ces réactions peuvent conduire a une augmentation de la population de
quarks/antiquarks, donc a un accroissement du taux de collisions. L’inclusion des gluons en
tant que particules dynamiques pourrait mener a 1’obtention de I’interaction longue portée
attendue entre les quarks/antiquarks. Cependant, une telle évolution ne peut pas concerner les
modeles (P)NJL ... D’autre part, la contribution au temps d’hadronisation des réactions
mettant en jeu plus de deux particules (en entrée/sortie) devrait étre étudiée. Ces processus
peuvent intervenir quand le systéme est assez dense, c'est-a-dire potentiellement au début de
la simulation. Les négliger conduit certainement a une sous-estimation du taux de collisions.

Cependant, pour les deux simulations, certains aspects intéressants peuvent étre observés.
Tout d’abord, nous avons confirmé le scénario formulé dans le chapitre précédent. Il explique
qu’a hautes températures, le systeme est dominé par des réactions élastiques entre
quarks/antiquarks. Mais, quand la température devient assez basse, les réactions
q+q—>M+M permettent une mésonisation tres importante du systeme. La forte
consommation d’antiquarks permet alors la formation de baryons. Avec la seconde
simulation, nous avons montré une production non négligeable de diquarks. Ils ont réellement
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agi comme des intermédiaires réactionnels, et ont permis d’accélérer la production de
baryons. Dans cette configuration, nous avons vu que les baryons ont été préférentiellement
formés par des réactions comme D+D —g+B, g+q—>qg+B et g+ D—>M +B . En outre, il a

été observé un léger avantage pour g+ D — M + B . D’autre part, dans les simulations, un autre

N

aspect intéressant concerne la création de particules étranges a partir de quarks/antiquarks
légers.

En effet, nous avons vu au chapitre 1 que la production d’étrangeté est une des signatures
possibles du QGP. Mais, notre modélisation présente des limitations pour étudier les autres
signatures. C’est particulierement vrai avec 1’émission de dileptons et de photons thermiques,
parce que ces particules ne sont pas incluses dans notre approche. Concernant la production
de J/y, il nous faut inclure les quarks c. Il a été vu dans [45] que cette amélioration est

possible dans le modele PNJL. Concernant le jet quenching, nous pourrions étudier la
variation de I’énergie des quarks avant leur hadronisation. Mais, une limitation majeure vient
de I’absence de gluons, nous empéchant alors d’étudier le bremsstrahlung des gluons. D’autre
part, en raison du choix de nos conditions initiales (présentant une symétrie sphérique), nous
n’avons pas étudi€é v,. En conséquence, une amélioration de notre approche consiste a

prendre en compte des conditions initiales compatibles avec celles attendues dans des
collisions de hautes énergies ou »#0. Dans ce cadre 1a, nous pouvons citer par exemple le
modele de Glauber [6] utilisé dans diverses simulations.

Mise a part les améliorations mentionnées ci-dessus, nous pouvons proposer d’autres
évolutions possibles. Cela pourrait concerner par exemple 1’inclusion de mésons vectoriels,
du décuplet de baryons, etc. Evidemment, un tel développement requiert d’effectuer les
calculs de sections efficaces associées a ces particules. D’autre part, comme remarqué dans
les chapitres précédents avec les particules lourdes, une description correcte des processus de
désintégration de ces particules apparait aussi comme nécessaire, comme celle amorcée
dans [24] pour les mésons pseudo-scalaires (quand ils sont dans leurs zones d’instabilité).
Concernant les aspects numériques, certains développements pourraient étre faits en
considérant deux objectifs. Le premier est de réduire les arrondis numériques, afin de
minimiser les variations de I’énergie totale. Le second concerne une réduction du temps
requis pour effectuer nos simulations, afin d’étre capable de traiter des systemes avec plus de
particules.

yd yd
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Conclusions

Dans cette these, 1’objectif principal était d’étudier la physique des quarks, et notamment la
transition de phase entre le plasma de quarks et de gluons et la matiere hadronique. Pour
arriver a ce but, nous avons d’abord brossé un rapide apercu des connaissances théoriques
associées a cette thématique. Nous avons rappelé quelques notions de théorie des groupes. En
effet, nous avons vu tout au long de cette these la pertinence d’une telle théorie dans notre
travail. D’autre part, nous avons décrit la Chromodynamique Quantique (QCD), notamment
son Lagrangien et ses propriétés. Nous avons vu que cette théorie, méme si elle constitue le
modele le plus sophistiqué pour modéliser les quarks, n’était pas applicable dans notre
description. En effet, la QCD ne peut pas étre résolue dans le cas général. Des calculs sont
certes possibles dans le cadre de la QCD sur réseau. Ils sont d’ailleurs considérés comme des
calculs de référence, mais présentent quelques limitations a densités finies, a cause du fermion
sign problem. En conséquence, nous avons considéré un modele effectif, le modele de Nambu
et Jona-Lasinio. Dans cette approche, la description de I’interaction entre quarks est simplifiée
en considérant des gluons dont la dynamique est « gelée ». Plus précisément, ces derniers sont
traités a 1’aide de termes effectifs, et finalement les gluons disparaissent du modele, en tant
que degrés de libert¢é dynamiques. Nous avons vu qu’une conséquence directe de ce
traitement est que le confinement est absent dans le modele NJL « classique ». Afin de
corriger ce défaut, nous avons pris en compte une évolution du modele NJL, qui a été
récemment proposée dans la littérature [1]. Elle consiste a coupler les quarks et antiquarks a
une boucle de Polyakov, afin de mimer un mécanisme de confinement. Cela forme le modele
de Polyakov Nambu Jona-Lasinio (PNJL).

Durant trois chapitres de cette these, nous avons modélisé des particules a 1’aide du modele
NJL, et nous avons comparé ces résultats a ceux trouvés avec une description PNJL. Ces
particules étaient les quarks u,d,s, les mésons, les diquarks et les baryons. Notre
modélisation a notamment concerné 1I’étude des masses de ces particules dans le plan T, pg .
Nous avons aussi étudié la stabilité des particules composites citées, c'est-a-dire les mésons,
diquarks et baryons. Suite a I’inclusion de la boucle de Polyakov, nous avons trouvé que la
tendance générale consiste en une distorsion des courbes vers des températures plus fortes. En
d’autres termes, les valeurs des masses trouvées n’ont pas été modifiées, mais décalées vers
les hautes températures, par rapport aux résultats du modele NJL. Cet effet n’a pas été observé
en fonction de la densité. Concernant les quarks, nous avons retrouvé les résultats des
modeles NJL [2] et PNJL [3] exposés dans la littérature, et nous avons étendu les résultats
dans le plan T, p,. Nous avons aussi proposé d’étudier les valeurs moyennes du champ de

Polyakov ® et son conjugué & dans ce plan. De la méme maniére, une telle étude a été faite
également pour le potentiel chimique gx,. Nous avons vu que la relation entre u, , la

temperature 7 et la densité baryonique p, n’est pas triviale dans les modeles (P)NJL. A
propos des mésons, nous avons aussi trouvé des résultats en accord avec [3, 4], notamment au
sujet des mésons scalaires et pseudo-scalaires. Nous avons aussi étudié les mésons axiaux et
vectoriels. Pour les mésons dits stables (pseudo-scalaires et vectoriels), nous avons réalisé des
diagrammes stabilité/instabilité. D autre part, il a ét€ vu que nos résultats a température et
densité nulle sont tres proches des valeurs expérimentales, tout particuliecrement quand la
symétrie isospin n’a pas été utilisée. Ensuite, a propos des baryons, nous avons constaté qu’il
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est possible de les décrire comme un état 1ié quark-diquark. Cela nous a donc motivé a étudier
les diquarks avec les modeles (P)NJL. Nous avons conclu que les diquarks scalaires sont
utilisables pour décrire 1’octet de baryons, alors que les diquarks axiaux peuvent permettre de
décrire le décuplet de baryons. En fait, méme en ayant procédé a d’importantes
approximations dans notre traitement des baryons, comme |’approximation statique, nos
résultats se sont révélés tre proches de ceux trouvés dans d’autres approches théoriques [2, 6,
7] ou des données expérimentales. Toutefois, nous avons constaté que notre approche peut
étre 1’objet de plusieurs évolutions, comme 1’inclusion des désintégrations des baryons lourds.

Apres, un chapitre important de cette theése a concerné le calcul des sections efficaces de
réactions mettant en jeu les particules évoquées. Une part de ce travail s’est focalisé sur des
réactions comme qg+qg—>M+M, g+q—>qg+q et g+qg—>qg+q. Celles-ci, calculées
initialement dans [4, 5], ont été estimées en fonction de Js ,T,pp dans notre travail. Nous
avons également étudié 1’effet de la boucle de Polyakov sur ces sections efficaces.
Globalement, comme avec les masses, les sections efficaces PNJL ont été décalées vers les
hautes températures par rapport a celles trouvées avec le modele NJL. Plus précisément, la
température optimale de mésonisation via g+g > M +M a été trouvée égale a 280 MeV
avec le modele PNIJL, contre 230 MeV avec NJL. D’autre part, en nous inspirant des
réactions proposées dans [6], nous avons aussi étudié avec le modele PNJL des réactions
inélastiques impliquant des diquarks et/ou des baryons. Nous avons trouvé des valeurs assez
réduites pour ces réactions. D’une part, seules les réactions ¢+g—> D+ M semblent étre
capables de produire des diquarks d’une maniere non négligeable, mais dans des conditions
bien précises. D’autre part, trois types de réactions nous sont apparus comme de bons
candidats pour permettre la formation de baryons: D+D—>B+q , g+D—>M+B et
q+q— B+q. Pour décrire ces réactions, nous avons vu la nécessité de développer des
méthodes de calcul, notamment pour étre capable d’effectuer des opérations assez peu
communes, comme celles impliquant des spineurs avec des quantités de mouvement
différentes. Cela a induit des développements formels assez complexes, exposés dans
I’annexe B. Puis, nous avons aussi considéré des réactions peu ou pas traitées dans la
littérature, comme ¢g+M - M +q, q+D—>D+q, q+B—g+B, D+B— B+D. La finalité
était d’estimer dans quelle mesure ces réactions pouvaient intervenir par rapport aux réactions
inélastiques, en constituant éventuellement une source de concurrence. Nous avons observé
que celait pouvait étre le cas avec ¢+ D — D+ ¢ par rapport a g+ D — M + B . Nous avons vu
que notre description devrait étre complétée, notamment en prenant en compte plus de canaux
d’interaction, comme les canaux « box », pour certaines réactions. De plus, le travail effectué
pour D+D — D+ D, inspiré par [8, 9], devrait étre étendu a la diffusion entre mésons, ou
méme avec B+M —->B+M et B+ B— B+B.

Un dernier aspect de notre travail a concerné 1’étude dynamique. La finalité était de simuler
I’évolution d’un plasma de quarks et d’antiquarks en fonction du temps, d’observer son
refroidissement et son hadronisation. Dans un premier temps, nous avons décrit les différentes
étapes requises afin de construire un tel modele dynamique. Dans notre modélisation, les
particules peuvent étre affectées, au niveau de leur masse, via des parametres externes. Ces
derniers sont la température et les densités selon les saveurs u,d,s . Plus précisément, T, or

sont traités comme des parametres locaux. A 1’aide des équations du mouvement, nous avons
vu que I’influence de ces parametres sur les masses se matérialise sous la forme d’une
interaction a distance entre particules. Nous avons alors étudié les propriétés de cette
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interaction a courte portée, mais nous avons trouvé que ses effets étaient trop faibles pour
réellement influencer la dynamique du systeme, surtout si des particules rapides sont
considérées. D’autre part, nous avons décrit notre algorithme dédié au traitement des
collisions. Nous avons fait appel au critere de collision utilisé dans [10], qui compare la
valeur de la section efficace avec le parametre d’impact. Nous avons noté qu’un grand
avantage de notre description est d’estimer les sections efficaces dans les conditions
rencontrées par les deux particules incidentes, c'est-a-dire en prenant pleinement en compte

\/E,T, Py, sans utiliser de base de données rassemblant des sections efficaces pré-calculées.

Clairement, la plupart des travaux utilisés dans les chapitres précédents ont été implémentés
dans ce modele dynamique, afin d’estimer les masses ou les sections efficaces. Puis, nous
nous sommes concentrés sur une description des simulations effectuées. Elles ont pris en
compte les quarks u,d,s, leurs antiquarks respectifs, les mésons pseudo-scalaires, les
diquarks scalaires et ’octet de baryons. Nous avons d’ailleurs expliqué que I’inclusion de
particules lourdes dans notre modele dynamique, comme le décuplet de baryons, peut étre
considéré comme une évolution possible et intéressante de notre travail. Mais, cela
nécessiterait d’étendre les calculs de sections efficaces a ces particules, ainsi que le traitement
des désintégrations pour ces particules lourdes. D’autre part, nous avons conclu que
I’inclusion de la boucle de Polyakov permet d’obtenir de meilleurs résultats que le modele
NJL brut. En effet, la mésonisation est plus rapide et plus efficace avec le modele PNJL,
grace au décalage des températures mentionné plus haut. Cependant, nous ne sommes pas
arrivés a obtenir I’hadronisation complete d’un systeme ouvert avec le modele PNJL. 11 a été
indiqué que la relative faiblesse des sections efficaces des réactions de baryonisation nécessite
I’inclusion d’une interaction a longue portée entre les particules, pour retenir suffisamment les
quarks dans la phase QGP du systeme. En conséquence, une évolution importante de notre
description concerne la modélisation de cette force longue portée. Toutefois, nous sommes
arrivés a mimer celle-ci via I’inclusion d’une sphere qui a confiné les particules colorées
jusqu’a leur hadronisation en mésons et baryons. Grace a cette astuce, nous avons observé une
hadronisation complete de deux simulations différentes. Nous avons comparé nos résultats
avec ceux d’autres approches [11, 12]. Nos données sont qualitativement en accord avec ces
références. Cependant, nous avons trouvé que le temps requis pour permettre une
hadronisation complete était plus fort que celui prévu dans la littérature. Une telle différence
pourrait étre expliquée notamment via les valeurs de sections efficaces et 1’absence de gluons
en tant que particules dynamiques. En outre, nous avons noté la contribution non négligeable
des diquarks dans la formation des baryons, mais selon des conditions bien précises selon la
température et les densités. Nous avons également établi et vérifié un scénario, dans lequel
nous avons prévu une domination des réactions élastiques quarks/antiquarks a hautes
températures, puis une mésonisation massive via g+q¢ —> M +M quand T <280 MeV (dans le

modele PNJL), et ensuite une production de baryons, dés que la population d’antiquarks sera
assez réduite.

En conséquence, tout au long de cette these, nous avons montré la pertinence du modele NJL
pour décrire la physique des quarks, selon plusieurs aspects, et notamment pour modéliser
dynamiquement le refroidissement et 1’hadronisation d’un plasma de quarks et d’antiquarks.
En outre, par I’inclusion d’une boucle de Polyakov, pour former le modele PNJL, nous avons
confirmé que cette amélioration du modele est tres prometteuse, comme annoncé dans la
littérature associée. En effet, par le mécanisme de confinement simulé par le modele, nous
avons montré I’influence sur les résultats, et ses avantages, notamment lors des simulations
dynamiques. Cependant, nous reconnaissons que nous sommes d’accord avec les conclusions
formulées dans [13] : le modele PNJL mime certains aspects du confinement, mais il n’y a
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pas de réel confinement dans ce modele. Le confinement n’est toujours pas bien maitrisé. Sa
description via le modele PNJL est intéressante, mais incomplete. Certainement, des
évolutions futures du modele prendront en compte cette présente limitation. En ce qui
concerne les améliorations actuelles proposées dans la littérature, il serait instructif de
considérer par exemple le modele EPNIL (Entangled Polyakov Nambu Jona-Lasino) [14], et
de voir les modifications apportées par cette variante sur nos résultats (masses, sections
efficaces, simulations). D’autre part, une autre évolution possible de notre travail concerne le
traitement de la supraconductivité de couleur [15] avec le modele PNJL. Comme évoqué

précédemment, on ne s’attend pas a ce que ce phénomene se produise dans les conditions
T,p; de nos simulations dynamiques. En conséquence, cela ne constitue pas une limitation de

notre travail. Mais, le traitement de la supraconductivité de couleur peut permettre d’explorer
tout le plan 7, pg, ou du moins la partie encore mal connue se situant a températures réduites
et a de fortes densités baryoniques. Aussi, la supraconductivité de couleur présente des
applications en astrophysique, afin de décrire les couches profondes d’objets denses et froids,
comme les étoiles a neutrons. Cela constitue donc une extension possible de notre travail, en

prenant bien entendu en compte les modifications a appliquer au modele : formalisme de
Nambu-Gorkov [16] ...
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1. Les quarks

saveur nom masse . char.ge nombres quantiques
(MeV) électrique

u haut (up) 1.8-3.0 2/3 e I, =+1/2
d bas (down) 4.5-5.3 —1/3e 1, =-1/2
s étrange (strange) 90-100 -1/3e strangeness S =—1
c charme (charm) | 1.250-1.300 GeV 2/3 e charm C =+1
b fond (bottom) 4.15-4.69 GeV -1/3e bottomness B =—1
t sommet (top) 173.07+ 1.24 GeV 2/3 e topness 7 =+1

Tableau 1. Description des quarks.

Dans la colonne « nombres quantiques », seules les valeurs non nulles sont indiquées
(sauf 7). Par exemple, I’étrangeté d’un quark autre que s est forcément nulle. /_ désigne la

projection selon z de I’isospin 1. Les quarks sont des fermions : leur spin est égal a 2. Les
données présentées ont été extraites de [1, 2].
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2. Les mésons

0" I 0 " 1 2" I 1
nom V4 o, ao ai by a P P
masse 138 769 984 1230 1235 1318 1465 1700
largeur 0 151 100 400 142 107 310 323
isospin 1 1 1 1 1 1 1 1
étrangeté 0 0 0 0 0 0 0 0
nom K K* Ko* Ki* K K>* K* K*
masse 495 893 1429 1273 1400 1430 1410 1680
largeur 0 50 287 90 174 100 227 235
isospin 172 0 172 172 172 172 172 172
étrangeté +1 +1 +1 +1 +1 +1 +1 +1
nom n [ ﬁ) f1 hy fz [ w
masse 547 782 980 1282 1170 1275 1419 1662
largeur 0 8.43 100 24 360 185 174 280
isospin 0 0 0 0 0 0 0 0
étrangeté 0 0 0 0 0 0 0 0
nom n @ Jo* f hy’ 12 ¢ ¢
masse 958 1019 1370 1512 1380 1525 1680 1900
largeur 0.201 4.43 200 350 80 76 150 400
isospin 0 0 0 0 0 0 0 0
étrangeté 0 0 0 0 0 0 0 0

Tableau 2. Les mésons.

Concernant la premiere ligne du tableau, le nombre indique le spin du méson, le premier *
traduit le comportement de sa fonction d’onde selon la parité, le second * selon la
conjugaison de charge. Les données présentées ici sont celles utilisées par les modeles
QMD/URQMD ; elles sont extraites de [3]. Ces données respectent la symétrie isospin. Les
masses et les largeurs de niveau sont en MeV.
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3. Les baryons (particules et résonances)

Nucléon : uud ou udd A uuu, uud, udd ou ddd A :uds
S=0,1=1/2 §=0,1=3/2 S=-1,1=0
Masse | Largeur | Spin Masse | Largeur | Spin Masse | Largeur | Spin
0938 000 172 1232 115 3/2 1116 000 172
1440 200 1/2 1600 200 3/2 1405 050 1/2
1520 125 3/2 1620 180 172 1520 016 3/2
1535 150 172 1700 300 3/2 1600 150 172
1650 150 172 1900 240 172 1670 035 172
1675 140 52 1905 280 5/2 1690 060 3/2
1680 120 5/2 1910 250 172 1800 300 172
1700 100 3/2 1920 150 3/2 1810 150 172
1710 110 172 1930 250 5/2 1820 080 5/2
1720 150 3/2 1950 250 72 1830 095 52
1900 500 3/2 1890 100 3/2
1990 550 72 2100 200 712
2080 250 3/2 2110 200 5/2
2190 550 72
2200 550 9/2
2250 470 9/2

Y : 1 quark s E :ussoudss Q : 588
S=-1,1=1 S=-2,1=1/2 §=-3,1=0
Masse | Largeur | Spin Masse | Largeur | Spin Masse | Largeur | Spin

1192 000 172 1315 00 172 1672 00 3/2
1385 036 3/2 1530 09 3/2
1660 100 172 1690 50 3/2
1670 060 3/2 1820 24 3/2
1750 090 172 1950 60 3/2
1775 120 5/2 2030 20 5/2
1915 120 52
1940 220 3/2
2030 180 72

Tableau 3. Les baryons.

La masse de la particule correspond a la valeur la plus basse pour chaque sous-tableau. Les
autres sont les résonances. Les masses et les largeurs de niveau sont en MeV. Les données
sont issues de [3].
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Annexe B

Formulaire de théorie des champs
et calcul de traces

Les sections 3 et 4 ont été publiées dans J. Phys. G: Nucl. Part. Phys. 39 105003

1. Générateurs des groupes de Lie

1.1 Générateurs de SU(2)

SU(2) désigne I’ensemble des matrices unitaires de dimension 2 qui ont un déterminant égal
a 1. Les générateurs de ce groupe sont les matrices de Pauli, et leur représentation habituelle

est:
0 1 0 —i 1o
01{1 0} 02{1' ol} 03:[0 —J W

1.2 Générateurs de SU(3)

SU (3) désigne I’ensemble des matrices unitaires de dimension 3 qui ont un déterminant égal
a 1. Les générateurs de SU (3) sont les matrices de Gell-Mann. Une représentation possible

de ces générateurs est [1] :

[0 1 0] 0 —i 0 1 0 0
A=|1 0 0 A, =i 0 0 A3=[0 -1 0
10 0 0] 0 0 0 0 0 0
[0 0 1] [0 0 —i 000
As=|0 0 0 As=|0 0 0 /16{001 )
1 0 0] i 0 0 010
00 0 1100
A, =10 0 —i Ag=—=-10 1 0
70i0 8*/500—2
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Ces matrices sont reliées entre elles par la relation de commutation :

A4 b e A
_,_=-. ac._’ 3
{2 2} oo & &

abc

ou les f sont appelées les constantes de structure de SU (3), avec f 12321, f 147 =1/2,

=12, P =172, r9% =/3/2, les autres étant nulles.

Dans le cadre du modele de Nambu et Jona—Lasinio, il est d’usage d’introduire 4, qui n’est

bien siir pas un 9°™ générateur :

100
Ao = \E 10 1 0 4)
00 1
2. Matrices de Dirac
2.1 Représentations usuelles
Dirac (standard)
0 _ L 0 ; 0 o 5 0 1,
;/D_[O ‘12} yD:[—oi 0] yD_[lz 0} ®)
i=1,2,3
ou 1, estla matrice identité 2x2.
Chiral (spinorielle)
o |0 1 s s |1, 0
4 _Lz 0} 4 :Li 0 } g _[0 —12} ©
Majorana
0_ 0 o, 5 |02 0
! _sz 0} ! _[0 —aj )

i-0;3 o, O 0 —ioy
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2.2 Propriétés des matrices de Dirac

Algebre de Clifford

Quelle que soit la représentation, les relations suivantes sont toujours valables [2] :

(F Y =ry +rr=m" 1,
r)-
8
(7). "
Y =i"rry
(#) =7 . (7) ==/ =27F . (¥) =7
Plus précisément, (8) définit I’algebre de Clifford, avec
|
= , ©)

qui est la métrique de Minkowski et 1, la matrice identité 4x4. Nous pouvons également
introduire :

a‘”=é[7",7v}=é (77 -7 ). (10)

Autres propriétés

7/17//1 =4 Tl"(14)=4

(sommation implicite sur les 1) Tr(75)=0
Tr(;//‘;/"...y“}//”):Tr(}//”;/”;/V...y“)

Kuﬂ/y =_2ﬂ/ 5 ,

st B 7 = dab =Tr(y7 7" .Y 7")

v, AB ¢ =24 B a Tr(nombrelmpalrde;/ ) 0

u

o ey ) a

Tr(ﬂ’,lf):4ab Tr(;/ Y 75)

Tr(,d,l{;;)=0 Tr(}/ 7 76!7 ) (Uﬂvﬂaﬁ""] /)’nva nuanvﬁ)

ou a, estla e composante d’un quadrivecteur quelconque, et a,-y* =4 (dague de
Feynman). Idem pour b et c.
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3. Calcul standard de traces

La vocation des parties 3 et 4 est de montrer comment calculer les éléments de matrice
apparaissant dans les calculs de section efficace (chapitre 6). Dans ’ensemble, cela requiert
des calculs de traces, dans lesquels on rencontre des termes comme g« . La section 3 traite des
cas relativement classiques. La section 4 s’occupe de cas plus délicats, ou I’on a des spineurs
comportant des quantités de mouvement différentes.

3.1 Premier exemple

En tant que premier example, nous évaluons le terme carré du canal s, pour la réaction
q+q—>M+M. L’élément de matrice correspondant s’écrit comme :

—iM=f; 8, ., V(P2) 1y igy iDS (pr+p2) T(py+ 1y s p3) ig u(py)- (12)

Le terme carré se calcule en effectuant en sommant les couleurs et les spins :
1

’ Z M.Y'Mx*
4N o (13)
£ 2 oS 2 - - -
:4N '|8182| ‘| Ds |F| 'Z(V(Pz’sz)'lzt'”(P1’S1))'(V(P2’52)'14'”(Ppsl))
c 51582

ou s;,s, sont les spins des quark/antiquark entrants. La sommation sur les spins donne:
2 V(p2ss2) Ly -u(prsy) - w(pysy) 1s - v(passy)

51,8

=2 0(P2:52) V (P2sy) Ly x Zulprosy) - w(prosy) 1y : (14)

8

szi (Pz’sz)'vj (pZ’SZ).[14]jk quk (p1os1) -1 (pl’sl)'[lél]li

Sy 8

Au niveau de la derniere ligne de (14), les indices sur les spineurs i, j,k,/ sont 1’objet de la

convention d’Einstein sur les sommations. En utilisant la relation de complétude des
spineurs :

) “k(PpSl)'ﬁl(Pl’Sl):(%)kl +my - Oy
o=t (15)

> vi(pZ’SZ)'Vj(pZ’SZ):(,ﬁZ)U —my -8 ,

s,=t

(14) se réécrit comme :
((/2),-j_m2'5lj)'[14]jk'((/1 kl+m1'5k1)'[14]1,- . (16)

=Tr((}f2—m2)'(/1 +m1))=4'(P2'P1—m2'm1)
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Puisque 2p, - p, =s—m> —m,” , voir annexe F, nous retrouvons le résultat trouvé dans [3]:

1
4N ?

.Z|Ms|2 = ;]5 2185 -‘Df T‘z -(s—(ml +m2)2). (17)

3.2 Second exemple

Considérons maintenant le calcul du terme croisé des canaux u et ¢, pour la réaction
q+q—>M+M. Les éléments de matrice a utiliser sont :
—iM, = [, 8., V(P2) i¥s ig1 Sp(p1—p3) i7s igy u(py) (18)

—iM, = f, Oy, V(P2) 175 igy Sy (1= pa) i¥s igr u(py)

Nous écrivons :

1 AT
4N02 EM[ Mu ”4Nc (t—mtz)(u_muz)

couleur

(19)
XTr((#2 =my) 75 (o = ps+my ) 75 (o +m) 75 (o = P +my ) 75)

Le calcul de cette trace est plus délicat que pour (16). En prenant en compte les relations vues
au 2.2 de cette annexe, nous proposons la formule suivante :

Tr((# +ma) 75 ( o+ ) 15 (e +me ) 15 (2o +ma ) 75)

Tr(( o +ma) 15 (2 +my ) 15 ) Tr(( p +me) 75 (2 +ma ) 15) (20)
Zi' AT (4 ) 05 (21 +m ) 75) - Tr(( g +ma ) 1 (£ +ma)75) |
“Tr((#a +my ) 75 (pe +me) 75 ) Tr(( 2 +my, ) 75 (#a +mg) 75)

L’équation (20) est valide pour quatre matrices Js. Pour les cas ol nous avons deux ou
aucune de ces matrices, la relation (20) peut étre adaptée, en utilisant la propriété

¥s 7" -ys=—y". En fait, avec (20), la finalité est de partager la trace en des traces plus
restreintes, comparable a la trace intervenant dans (16), dont la forme générale est :
Tr((ﬁa +m, )75 (7 +mb)75):4(_pa “pptm, ), (21)

ou p, - p, estun produit scalaire de deux quadrivecteurs. Ce terme est forcément fonction des

variables de Mandelstam, comme vu annexe F. En conséquence, en utilisant (20), nous
pouvons retrouver le résultat exposé dans [3] :
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1 o Sifulgisal
Y M, M= :
4Nc2 C(%ur ! 4N, (t—mtz)(u—muz)
—(m22 —m3 +u)(m12 —m3 +t)—(m12 —mj +u)(m22 —m] +t) (22)

+2mym, (m22 —mf +t)+2m2mu (m12 —m32 -H)

+2mym, (m% —m32 +u)+2m2mt (ml2 —mf +u)

+(s—(m1 —my )2)(—m12 —m22 +m32 +m§)+(s—(m1 +m, )2)(2mumt)

Naturellement, M, - M,” conduit au méme résultat. Dans 1’esprit de la formule (20), nous
proposons aussi la relation :

Tr((pa +ma) 7 (# +m) 7 (e +m. )

; (23)
= m, -Tr(/]ib 7/5]/67/5)+mh -Tr((/a +ma)(/ﬁc+mc))+mc -Tr(/a 7/5]/,7 7/5)

a utiliser dans le cas de traces impliquant trois termes p; +m; .

4. Spineurs utilisant des quantités de mouvement
différentes

4.1 Calculs préliminaires

Notre point de départ sera les relations exposées dans [4]. A partir de cette référence, nous
extrayons les relations ol apparaissent des spineurs u faisant intervenir deux quantités de
mouvement p, et p,, associées respectivement aux masses m, et m, :

_ o lxy . 1F @
”(Pl»i)'”(pbi):(h' 275—1_- 275+m1-/52—mz~/51j'—%
24)

u(pl’i)'ﬁ(pZ’i)z(j+']{1 +m1)'}{2'1i275 +(j_~]€/2 +H12)~]{1.1$275

ou * est li€ au spin, et :

1 . m . 1 . m, .
/(1=£'(J+Fl‘m—;J_ﬁ2J /{2=Z'[J+}’2—;jﬁ}’1} , (25)

. Dy Dy +my-my T\ py-p,—my-m
]i:\/l L Ty 2\/5\/1 L) A=\/(p1~p2)2—(m1-mg)2, (26)
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dans lesquelles k;,k,,®,,@_ sont des quadrivecteurs de type lumiere, comme définis dans [4].
Dans la pratique, nous n’avons pas a expliciter @, dans les calculs décrits dans cette annexe.
En outre, k,k,,®, ,w_ satisfont les propriétés suivantes :
2 @, =
- - ik
) @, -k; =0

Nous allons maintenant travailler avec des termes comme v(p;,%)-v(p,,t). Pour atteindre
cet objectif, nous utilisons les relations :

@u(p+)=V22(p.+)  du(p.-)=—V2v(p,-), (28)

et nous écrivons :

—_ w_u(p]a ﬂ’ u p2a
vip;,t)-v ,t) =
() (o) 220 ) o
1 1 —
=E'ﬁ0_u(P1,+)'(u(Pz, )) Yo Y =5 u(p.+) - (py.+) @
En explicitant u(p,,+)-u(p,,+) en se servant de (4), nous obtenons alors :
_ 1 .1+ 1= 7]
V(p1,+)~V(P2,+)=E'ﬂ’_(J+' 2?/5_]_' 2;/5+m1-]</2—m2-]€/1j-T;'£0_ . (30)

Ensuite, puisque #, -k, + K, - . =2- @, -k; =0, nous en déduisons que @, - K =—K, - @, . De
plus, en utilisant {;/ﬂ, ;/5} =0, I’équation (30) devient :

_ . 1= .1+
V(P1,+)'V(P2’+):(J+' 2}/5_1—' 2}/5_m1'/{2+m2']</1j/63\//?+ A (3

Aussi, @ @, +@, - =-2, de sorte que 4 @, M =24 —@, W @ =24 . La
méthode est identique pour v(p,,—)-v(p,,—). Cela nous conduit a écrire la relation :

_ k- N E .
V(Pl,i)'V(Pz,i){—h- +275+J_. 27/5+m1-](2—m2-]€/1j'$. (32)

En parallele, avec v(p,,+) v (p,,—), nous trouvons :

o4 T (p2m) =3 @ () T (p21)

=—%-w_((j+-J<‘1+m1)-k’2-1+275+(j_-1<‘2+m2)~}€1~1_275
z((_j+./4+ml).(_]g2),1—2ys
=((j+.](1_ml).](2.1_7/5+(j_ Ky =my)- K, 1+y5j —2- 40, 4.

2 2 -2

o

+(_j_.%2+m2).(_1g1).1+275jﬂ’—_;;‘4'

(33)
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Les termes formés par g, @ sannulent car ils se terminent par K, (1-ys5)#, ou

¥ (1+ 7 )@, . En effet, en les réécrivant comme K, - @, (1+ et X @, (1-7), [4] précise
11Ut 7s5) 40, 2 A N\L+ s 12 \1=7s ¥
que de tels termes sont nuls. La méme méthode est utilisée afin de trouver I’expression de
v(pi.—)-v(p,,+) . Finalement, en rassemblant toutes les relations obtenues, nous avons :

u(pl,i)~ﬁ(p2,i)=[j+_1i275 _j__17r27’5 +m1'k/2_m2'k/1j'%

W(p) (o) = i Kotm) o Lo (o) Sy L2 o
V(Pl’i)'V(Pz’i){—J;'HT%HLIJI;/S +m1~}c’2—m2.}(1j.%
V(Pl’i)'V(Pzﬁ):(J;'/C/l—ml)~/<’2~h_rTy5+(j_-}(2_m2).kfl.1i27’5

4.2 Application

Pour utiliser (34), nous allons calculer le terme croisé M, - M," de la réaction q+q—>D+M,
en tant qu’exemple. Les canaux u et ¢ s’écrivent via les éléments de matrice :

—iM, = f, 8, ., €V V(p) i¥s igr Sp(ps—p1) i igy u(ps)

. (35)
—iM, =f, 6, ETNE V(py) i¥s ig) Sp(pi—pa) i¥s igr u(py)
Soient m, et m, les masses des quarks propagés respectivement des les canaux ¢ et u. En
supposant que les £ donnent +1, le terme croisé s’écrit comme :
2
1 1
2’ )3 Mu'Mt*:fuft|glg2| ' 2 2
4Nc spin 4NC (t_m[ )(u—m” )

couleur

(36)

X2 v(prs)V(pesa) vs (2= pa+m) Vs u(prs) )i (ponsy) 75 (25— 2+ my) s

81,82

Ici, les sommations sur les spins s;,s, ne peuvent pas étre séparées, comme dans la partie 3.
Ainsi, nous devons considérer quatre cas : s =+,5,=+; S =+ =—; S§=—,85=7;
s;=—,5,=—, désignés respectivement comme T, 77,77, T7". Tout d’abord,

concernant T** | I'utilisation de (34) nous permet d’écrire ce terme comme :

. 1= .1+ A
(—J+' 27/5"']—' 27/5+m1'kz—mz'/(lj'%'(_/l"'ﬂt"‘mu)

T =Tr (37)

R SR S A,
X| Jy- -Jj_- +my - Ky —my - ==t P tm
(J+ 5 e Ky ma Ky (s e m)
Conscient du comportement pseudo-scalaire des matrices ys, nous coupons (37) en deux

parties. Les six termes composant la premiere partie sont numérotés pour clarifier nos
explications. Les matrices p; de la seconde partie sont quant a elles traitées en utilisant

I’algebre de Clifford vue au 2.2. Nous avons :
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1

1 1
—Jy =t j_—t+m-f—m, - :
( J+ > J- > 1 k/z 2 k/lj

S |

4

(L'% J- —J %( —P+ Py m,)

3

'(_,7/1+,ﬁ4+mu)

T =Tr

(=g + p+my)
6

(38)

ASINPNINE

+Tr

(,-+ B zj S iem)

La premiere trace de (38) présente une structure similaire de celle de (20). La différence est
que (38) a 6 termes, alors que (20) en a quatre. L’idée est alors d’étendre la méthode suggérée
par (20). Pour cela, nous considérons tout d’abord une relation comme (20), mais en utilisant

¥s- 7" -ys =—y" afin de “retirer” les matrices y; de 1’expression. Nous établissons que :
Tr(( g +m)-(py +my)-( s +my)- (4 +my)
Tr(( g +m)-( +my))-Tr(( s +my)- }’4+m4)) (39)
=L () e ma)) 7o) o) |
(i =m)- (s +ms))- (s =ms ) /4+'"4))

-y

D’une manigcre symbolique, nous réécrivons (39) comme :

7r(1.2.3,4)=7 (Tr(l 2)-Tr(3,4)+Tr(1,4)-Tr(2,3) = Tr(1,3) - Tr(2,4)) . (40)

Chaque nombre est associ€ a un terme de la forme p; +m;, c’est a dire un quadrivecteur

utilisant la dague de Feynman et un terme scalaire (une masse dans (39)). La notation Tr(ﬁ)

rappelle que le signe d’un des scalaires de Tr(;) doit étre changé, comme montré dans (39).

Cette méthode est alors étendue a des traces faisant intervenir plus de quatre de tels termes. La
condition est que le nombre de termes doit étre pair. Bien entendu, la méthode peut tout de
méme étre adaptée aux cas ou le nombre de termes est impair.

L’idée générale de cette méthode de partage de la trace est d’associer les termes par groupes
de deux, afin de former des invariants de Lorentz, pour lesquels la trace est facilement
calculable. Dans le cas d’une trace avec 4 termes, 3 permutations sont possibles, comme

dans (40). Le signe placé devant certaines traces, comme avec —Tr(l,_3)-Tr(2,_4) dans (40),

correspond a la signature de la permutation appliquée. Plus précisément, la trace Tr(;)

concerne des couples de méme parité (paire/paire ou impaire/impaire). Cette complication est
motivée par notre souhait de garder ensemble les quadrivecteurs et les scalaires ensembles,
afin d’éviter la difficulté qu’engendrerait d’avoir a développer 1’expression entiere. Aussi, le
facteur 1/4 intervenant dans (40) rappelle que le calcul de la trace d’invariants de Lorentz

ajoute un facteur 4, voir 2.2. Pour exprimer une trace comme un produit de deux traces, nous
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i
avons besoin d’un tel facteur. Dans le cas de n termes, la valeur du facteur est 42 . Nous
rappelons que n est supposé &tre pair. En outre, (n—1)!! sont possibles, ou !! est la double

factorielle, c’est a dire le produit des termes impairs inférieurs a n. Dans le cas de (40), on
vérifie que n=4 conduit bien a (3)!!=1x3 =3 permutations.

Nous appliquons cette méthode a la trace a 6 termes de 1’équation (38). Cela conduit a un total
de 15 permutations possibles. La plupart d’entre elles s’annulent, en utilisant les

propriétés (27). Parmi les 5 permutations restantes, 3 d’entre elles concernent la trace 7r(1,4) .
Apres quelques étapes de calcul, nous arrivons a les exprimer de la maniere suivante :

Tr(@. (- ) Tr (0, (s - 1)
e (124 2 (= ) Tr (- 1) | (41)
+16(( = #)- (5= 1) +mm,)

Toutefois, la seconde partie de (38), qui rassemble les matrices s, s’écrit quant a elle :

[]; B %j-%(—/l + pym,)

Tr
42
X@+%+Lu%)£%{7@ﬂm+w) , (42)
=3 (24 52) 1@ (= e m )% (s i)

c’est a dire I’opposé de (41). En d’autres termes, (41) et (42) s’annulent mutuellement. Il reste
alors seulement deux permutations, 7r(1,6)-7r(2,5)-Tr(3,4) et Tr(l,_3)~Tr(2,5) : Tr(4,_6). On
montre que celles-ci sont strictement égales, et conduisent a I’expression :

T =~(=m2ky -(py = py) +my 2k - (py = pa) +my, (Jy = J))

AN (43)
x(—ml2k2 (3= p1)+my 2k (3= py) —my (J. _J—))
Par symétrie, le cas s, =—,5, =—, c’estadire T, est égal au résultat de (43). Nous avons :
T +T :—2(—m12k2 '(Pl - 1’4)+m22k1 '(Pl —pg)+m, (j+ _j—))
(44)

><(_’"12]‘2 (py=p1)+my 2k -(p3 = py)—m, (Js _j—))

Pour le moment, nous n’allons pas chercher a exploiter d’avantage cette écriture, en
particulier les quadrivecteurs k; ; définis équation (25). D’autre part, il est intéressant de

remarquer que nous n’avons pas eu besoin d’expliciter les quadrivecteurs @, [4].

Maintenant, considérons le cas ou s; =+, s, =—, qui s’écrit comme :
. 1-7% . 1+ 7.
(G =m) s (A=) G e e,
T =Tr

(45)

(UK e m T ) 2 e |
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En développant cette équation, nous obtenons 1’expression suivante :

T+_=T”(((J+k/1—m1)/( = ysj(—%+/4+m )((J+k/1 +m1)/(21+7/5j(‘,”3+,”1+m )J

(]+]€/1+m1 1+7/5j +p(1+m)J

(= K o)
(46)

—_
[\

(=
Ty (J+1<—m1)%zl_y5j(—%+m+m)((J Ko+ my) 215 —szwm)j
4

+Tr| | (1Ko =) K= j(—w,vfwm )[(J Ko tm ) i — j +/fl+"%)J

1%
2

Comme avec (38), les conduisent a couper chaque ligne de (46) en deux parties. Apres

quelques manipulations, nous trouvons que la premiere et la quatrieme traces de (46) donnent
ensemble le résultat :

~2ki -(p3 = p1)xky - (P = P4)
(j+2+j—2)' =2k (P = pa)xky (3= p1) |5 (47)
+(pr—ps) (P3— 1)

Alors que la seconde et la troisieéme traces donnent :
—2ki(p3—p1)xky - (P — Ps)
2mymy | =2ky - (py = pa)x<ky - (p3 = py) |- (48)

+(p1=p4) (Ps—p1)

En d’autres termes, seul le pré-facteur est différent entre (47) et (48). Nous observons de méme
que 7" =T*". Cela nous permet d’avoir, en utilisant j,” +j *=2p, - p,,

—2ki-(p3 = P )X 2ky (P = Pa)
+2(p1=p4)-(P3— 1)

En rassemblant les cas 77", 7%, T~" and T~ , nous trouvons alors, aprés quelques calculs :

T 4T +T " 4+7T =

=2py (P = Pa)>x2p - (P3 = 1) = 2Py (Py = P4)X2py (D3 — 1)

+2p1 - P2 }2(py = ps)-(p3 = py) +2mmy2(py = pa)- (P53 = p1) (50)
+2m,m2p; - (p3y = py) = 2m,my2py - (p3 = pr) '

=2mymy 2py - (py = py)+2mmy2py - (py = py)

+2m,m,2p, - py —4mymym, m,
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Pour finir, I’expression compléte de notre terme croisé M, - M," est :

1 sl

'ZMM'Mt*—

4N? o 4N, (t—mtz)(u—muz)

couleur

—(m22—m§+u)(m12—m32+t)—(m12—m§+u)(m22—mf+t)
+2mym, (m22 —mf +t)+2m2mu (m12 —m32 -H)

+2mym, (m% —m32 +u)+2m2mt (ml2 —mf +u)

+(s—(m1 —my )2)(—m12 —m22 +m32 +m§)+(s—(m1 +m, )2)(2mumt)

(D

Les calculs effectués avec M, - M, donnent le méme résultat. En outre, (51) est égal a ce
que nous avions trouvé équation (22). Cette remarque peut s’expliquer par la méthode
exposée dans [5]. Plus précisément, selon 1’approche suggérée dans ce papier, nous pouvons
choisir un flot arbitraire qui permet de réécrire nos éléments de matrice. Dans le cas de (35),
le flot allant de la particule 1 a la particule 2 ne modifie pas —iM,. Mais, avec —iM,, cela

conduit & remplacer Sy (py—p) par Sy (p—ps). ¥(p) par ¥(ps) et u(py) par u(p;).
Clairement, mis a part les termes &, nous obtenons des éléments de matrice identiques a ceux
de (18). Donc, cela explique pourquoi (51) et (22) sont équivalentes.

4.3 Autres configurations

Concernant les autres calculs de ce type, nous établissons que :

et:

L’équation (54) coincide avec ce que nous avons obtenu équations (16—17) avec :

> u(psi)it(prsy)-(p+m)-v(prsi)v (p2ssy)

51,85 R

=2m(2p; - py = 2mymy ) = 2my 2py - p+2my 2y - p

> V(Ppsl)V(P2’S2)'(}f"'m)'“(l’lasl)ﬁ(l?z’&)

51,89 R

=2m(2p; - py = 2mymy ) +2my 2py - p—2my 2y - p

2 ”(Pl’sl)ﬁ(Psz)‘V(Pl’sl)v(l?z’sz)=2'(S_(m1 +m2)2)-

51,8

Z u(pr>s1)u(prosi) v(p252)v (p2s57) -

81,82

(52)

(53)

(54)

(55)



Annexe B. Formulaire de théorie des champs et calcul de traces 291

5. Références

(1]

(2]

(3]

(4]

(5]

Robinson M, Bland K, Cleaver G et Dittmann J 2008 A Simple Introduction to Particle Physics
arXiv:0810.3328

Delamotte B 1996 Un soupcon de théorie des groupes : groupe des rotations et groupe de Poincaré,
cours en Francgais disponible sur Internet a 1’adresse : http://cel.archives-ouvertes.fr/cel-00092924

Rehberg P, Klevansky S P et Hiifner J 1996 Hadronization in the SU(3) Nambu—Jona-Lasinio model
Phys.Rev. C 53 410-29

Borodulin V I, Rogalyov R N et Slabospitsky S R 1995 CORE (COmpendium of RElations), version
2.1. arXiv:hep-ph/9507456

Denner A, Eck H, Hahn O et Kiiblbeck J 1992 Feynman rules for fermion-number-violating interactions
Nucl. Phys. B 387 467-81



292




293

Annexe C

Facteurs de saveur

Cette annexe a été publiée dans J. Phys. G: Nucl. Part. Phys. 39 105003

1. Méthode générale

Un facteur de saveur est une constante scalaire intervenant notamment dans le calcul des
sections efficaces. Il se détermine a chaque vertex du diagramme de Feynman étudié. La
méthode pour calculer un facteur de saveur est la méme, quelle que soit les particules que
nous considérons. Notons que pour déterminer un facteur de saveur, les quarks u et d doivent
étre traitées comme des particules différentes. Autrement dit, la symétrie isospin ne peut pas
étre considérée ici.

Chaque vertex matérialisera la rencontre entre trois particules : une particule composite
(méson, diquark, baryon) et deux autres particules « élémentaires » qui, réunies, donnent la
particule composite. A chaque particule composite correspond une matrice formée a partir
d’un ou d’une combinaison linéaire de deux générateurs de SU(3) (voir Annexe B). A partir
de la matrice obtenue, chaque ligne s’identifie a une premiere particule « élémentaire », les
colonnes a la seconde particule «élémentaire ». Dans le cas des mésons, les lignes
correspondent par convention aux quarks, les colonnes aux antiquarks. Pour les diquarks, les
lignes correspondent a un premier quark, les colonnes a un second quark. Pour les baryons,
les lignes sont associées aux diquarks et les colonnes aux quarks.

2. Mésons

Sl
&
“|
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1 . 1

7k +id) S (4+id)

Pour 77 et 77, nous devons utiliser I’angle de mélange &, que nous avons introduit dans le
chapitre 3, relatif aux mésons. Formellement, nous écrivons, comme dans [1] :

ot ol 0

1
3 3 3 1

ce qui nous donne :

ou :

n

cos (8)—~/2sin ()
7

cos (8)—~/2sin ()
NE]

~2cos(6)—~/2sin(8)
3

S|
“|

S

sin(6)+~/2 cos(8)

J3

sin(6)+~2 cos ()

J3

—2sin(0)+~/2cos(8)

V3

<
8|
“|
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3. Diquarks

u | d|s
;
3.1 Diquarks scalaires
[ud] [1as] [ds]
: 1 2 I d 1
d s s

B R N
“h 7 T

Cette écriture se justifie en disant que les diquarks [ud], [us], [ds] présents dans ces croquis

Bt

sont en fait des combinaisons linéaires des deux diquarks possibles. Plus précisément, les
diquarks scalaires ont une fonction d’onde antisymétrique en saveur. Par exemple, pour [ud ],

nous avons [2] :

[ud]:—\/g(ud—du), 3)

et de méme pour [us] et [ds].
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3.2 Diquarks axiaux

[ud] us] [as]

! 1 “ ] d 1
d Ky Ky
1 1 1 1 1 1
—-A| +—=1 — A +—=2 2 =2
\/5 lud \/5 ld”’ \/5 ! us \/5 ! su \/5 ° ds \/5 ° sd

V2 J2 V2
Pour ces trois diquarks, le raisonnement est identique a celui vu pour les diquarks scalaires,

seules different les matrices employées et la combinaison linéaire [2], puisque les fonctions
d’onde des diquarks axiaux sont symétriques en saveur :

[ud]z %~(ud+du). 4)

[uu] [dd] [ss]
% d 1 > 1
u d Ky
15 15 15

1; désigne la matrice identité de dimension 3.
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4. Baryons

[s]

[us]

[ud]
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Annexe D

Fonctions de boucle et fonction triangle

Une partie de cette annexe a été publiée dans J. Phys. G: Nucl. Part. Phys. 38 105003

1. Calculs préliminaires

Avant de décrire les fonctions utilisées, nous proposons d’établir ici quelques formules
générales, afin de pouvoir effectuer des sommes de Matsubara. Les calculs exposés ci-apres
ont été fortement inspirés de [1], que nous avons adapté a notre cas d’étude. L’objectif est ici
d’évaluer la quantité suivante :

1 (e}
—= 2 oi-o,). (1)
b= !
n étant un entier, S=1/T et i-®, une fréquence de Matsubara, qui peut étre :
) .. 2n+l)-7w
e soit fermionique : i-of’ _(n+l)m (22)
B
e soit bosonique : i-Pt = an-)z (2b)

Nous supposons que la fonction ¢ ne possede que des pdles simples, que nous noterons par la
suite z,, et que les i-@, ne feront jamais parti de ses pOles. Aussi, avec le modele NJL, nous
considérons :

et [ ()=

- s 3

comme étant respectivement les statistiques de Fermi-Dirac et de Bose-Einstein. On vérifie
que i-@” et i-wP" sont respectivement les poles de ™ (z) etde f""(z).Dans le cadre du

modele PNJL, ™ doit étre adaptée, comme mentionné au chapitre 2 et dans [2], mais les
résultats obtenus ici restent valides.

Nous considérons maintenant le théoréme suivant, bien utile pour le calcul d’un résidu :

P(z)
(z)

, alors res(y,zy)= Plz) : 4)

90
0z

si une fonction y(z) s’écrit sous la forme y(z)=

=2
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Nous déduisons de (4) que :

res(fBE,iﬂ)fE): !

1 FD . FD

E et VES(f NANON )Z_E. (5)

P 4 : FD : BE . FD
ar conséquent, la fonction f""-¢ (respectivement f°"-¢) admet donc z, et i @,

(respectivement i-@"" ) comme pdles. Nous intégrons ces fonctions dans le plan complexe

sur un contour circulaire C de rayon R — o, autrement dit englobant tous les pdles. Nous
avons, d’apres le théoreme des résidus :

[ OO R VA B o (A I TEAD WA RO

0

Cela nous donne les deux relations suivantes, comme dans [1] :

%Z¢(f-wf’))=Zf”(ze)~res(¢,ze) (7a)

—%Z¢(i-wa)=ZfBE(ze)-res(vﬁ,ze) (7b)

2. Fonctions génériques

Mise a part pour la fonction de boucle des baryons, les fonctions dont nous nous servons dans
nos calculs sont construites a partir de trois fonctions génériques A, B, et C,, introduites par

le groupe de S. P. Klevansky [3]. Elles intervenant respectivement dans des boucles a 1, 2, 3
fermions. Ici, ces fermions sont des quarks.

2.1 Fonction A (boucle a un fermion)

A est une fonction réelle n’admettant que des arguments réels et est définie par :

1677 &p 1
A m, U, ,A = . >
m.£:5.0) B ;J(ZE)B (i-@, + 1) - E> ®)

avee |

E=\/132+m2. 9)

Comme la fraction présente dans la partie droite de (8) est associée a un quark (fermion),
i-, estde type fermionique :

;. _(2n+1)-7[' (10)

! B
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Les pdles sont :

iro,=E—-u (an
irw,=-E—u
Ainsi, en utilisant (7a) :
3
A(m,ﬂ,ﬁ,A):l6ﬂ'2-J d L -i-(fFD(E—ﬂ)—fFD(—E—ﬂ))
(2z)” 2E (12)
1672 | 42 -i-(—1+fFD(E+u)+fFD(E—ﬂ))
(2z) 2E
Qui nous permet d’établir la relation :
A(m,u, B,A) = A(m,—u, B,A) = A(m,| |, B.A) . (13)

2.2 Fonction B, (boucle de deux fermions)

B, est une fonction complexe n’admettant que des arguments réels :
By (k’ml’ﬂl’mz’ﬂz’i'Vm’ﬁ’/\)

167> < [ d'p 1 . I : (14)
ﬁ n (27[)3(i'(()n+,t[1)2—E12 (i'wn_i'vm+ﬂ2)2_E22

avee |

E=\p2+m et Ey=\(p-k) +m] . (15)

Comme pour la fonction A, i-a, estde type fermionique :
2n+1)-
i-a),,:( n+ )z' (16a)
B

B, traduit une boucle entre deux quarks (fermions), la boucle en elle méme sera de type
bosonique. C’est d’ailleurs pour cela que B, intervient pour la construction des mésons. Son
argument i-v,, est donc de type bosonique :

iV = (16b)

Chacune des fractions de (14) correspondant a un quark (fermion), la fréquence de Matsubara
totale pour chacune des fractions est alors forcément de type fermionique, ce qui est vérifié :
la fraction de gauche a comme fréquence i- @, qui est de type fermionique et celle de droite a

comme fréquence i-w, —i-v,, qui est de type fermionique : ajouter ou soustraire un nombre
impair avec un nombre pair donne nécessairement un nombre impair.
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Les poles sont :
i@, =E — 4
i@, =—E — [
i'wn=E2_1u2+i'Vm

n

En utilisant (7a), nous avons :
Bo(k’mpﬂlamz’ﬂz’i"/m,ﬁ,/\)

~

fFD(El_:ul). 1
2E, (El_ﬂ1+ﬂ2_i'Vm)2_E22
_fFD(_El_/ul). 1
162 | L 2B (Bt —iov,) B
(2z)’ +fFD(E2—,U2)_ 1
_fFD(_Ez—ﬂz)_ 1
2E2 (_EZ +U— +i'Vm )2 - El2

o/

L’équation (18) nous permet de vérifier la relation :
Bo(E,ml,ﬂl,mz,ﬂz,_lVm,ﬁ,A):Bo(lg,mz,ﬂz,ml,ﬂl,lVm,ﬁ,A).

2.3 Fonction C, (boucle a trois fermions)

C, est une fonction complexe a variables réelles :

CO(k’q’5§,(}’ml’ﬂl’m2’ﬂ2’i'Vm’m3’/u3’i'al’ﬂaA)z

167° 5 &’p 1 ' 1 1
B

Les pdles sont :

3. 2 . . 2 "y . 2
(2”) (l'a)n+/ul) _E12 (l'a)n_l'vm—i_/uZ) _E22 (l'a)n_l'al+ﬂ3) _E32

17)

(18)

(19)

(20)

bl

21

(22)
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Comme précédemment, la nature fermionique de i- @, nous amene a utiliser (7a) :

Co(kﬁﬁz,zl’ml’ﬂl,mz,ﬂz,i'Vm’m3,ﬂ3’i'“1’,5,/\)=

r

P (E —t) 1 . 1
26 ((h-E)-E?) (h-E) -E?)
B -m) 1 _ I
26 ((A+EB)-E?) (h+E) -E?)
fFD(Ez — i) 1 1
BT '(( +E)2—E2).(( E) - E?)
iy ap . A +E, 1 A+ E, 3 (23)
(275)3 fP(E, —ﬂz)_ 1 . 1
2E, ((/?1—E2)2—E12) ((’%‘Ez)z_%z)
FP(Es — ) 1 1
* 2E ' 2 2 . 2 2
v (e E)-BY) ((h-E) -E?)
fP (B —p3) 1 . 1
J 28 ((-EV-EY) (h+E)-E) )
ou :
/11 =0Vt~
Ay =i+ My — Iy (24)
Ay =iV —i-0 =+ 11
3. Fonctions de boucle pour les mésons
Mésons pseudo-scalaires :
H‘Zﬁz (ko’]g)
N Al )+ A(my. i) (25)

C

87° L((’"l _m2)2 —(ko+ 14 —ﬂ2)2 +E2)'Bo(E’ml’ﬂl’mz’ﬂz’Re(l‘o))]

Meésons scalaires :
S -
H(Zlﬁz (ko k )

A(my, )+ A(my, 115 , (26)
+((m1 +m2)2 ~ (ko + 14 —ﬂ2)2 ""Ez)'Bo (E’mpﬂl’mz’ﬂz’Re(ko))

C

87°
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Mésons axiaux :
A -
H‘hﬁz (ko’k)
N | Alm.w)+ A(my. i) . 27)

Meésons vectoriels :

v -
HQl’qZ (ko’k)

n | Alm.n)+ A(my. ) . (28)
=_p. ¢, - -

Pour toutes les fonctions de boucle mentionnée ici, les arguments des fonctions A et B, sont
nécessairement réels. Lorsque k&, est complexe, I’approximation utilisée consiste a ne prendre
que la partie réelle de k,, notée Re(k,), en tant qu’argument de B, [3]. Cependant, le k,
présent dans le facteur placé devant le B, reste complexe : c’est en fait lui qui nous permet de

travailler dans la zone ou les mésons sont instables. Cette remarque est aussi valable pour les
diquarks.

4. Fonctions de boucle pour les diquarks

4.1 Expressions des fonctions de boucle des diquarks

Diquarks scalaires :
S -
HQI’QZ (ko’k)

1 A(my, py)+ A(my,—p) . (29)
z* +((m1 —m2)2 — (ko + 14 +ﬂ2)2 +E2)'Bo(E’ml’ﬂl’mza—ﬂz’ke(ko))

Diquarks pseudo-scalaires :
P -
HQI’QZ (ko’k)
: , -

Diquarks vectoriels :
v -
H(Zl"h (ko k )

5 [ Alm.m)+A(my.—u) . (31)

. , - )
z* +(m12+m22+4m1m2—(k0+/11+/12) +k2)-BO(k,ml,,tll,m2,—/l2,7€e(k0))
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Diquarks axiaux :

H?la‘fz (ko’]g)

5 | Alm.w)+A(my.—p1) : (32)

4.2 Echange des deux quarks

Pour les mésons, 11, ; #I1, - dans le cas général, sauf si g, =g, (mésons couplés 7Ty, 1,1 ).

ql’q
Pour les diquarks, nous sommes en droit de nous attendre a avoir IT ity = I1 a,.q, » AUtrement dit
I’échange des deux quarks doit laisser les fonctions de boucles invariantes. En fait, nous
remarquons, en regardant I’écriture des fonctions de boules de diquarks (29-32), que

I’échange des quarks ¢, et ¢, n’intervient que par 1’échange des masses m;, m, et des
potentiels chimiques g, u,. Le facteur placé devant B, est invariant par cet échange, quelle

que soit la fonction de boucle considérée pour les diquarks. Quant aux fonctions A, en
utilisant (13), nous écrivons :

A(my, )+ A(my,—p1, ) = A(my, ) )+ A(my,—41,) - (33)

Il ne nous reste plus qu’a montrer que 1’échange des deux quarks laisse invariante B, elle-
méme. Tout d’abord, on écrit :

Bo(’g,ml’ﬂl,mz,—ﬂz,i'Vm,ﬁ,/\)

™ -m) 1 (B -w) 1
=167°- d3—p 2 (E; _’1)2 - E22 2E, (-E, - /1)2 —E22 (34
(2z)’ +fFD(E2+,U2)_ 1 _fFD(_E2+,Uz)_ |
2E, (E, +1) —E} 2E, (-E, +/1)2 _E>
avec ici :
A=V + i+l (35)

En parallele, nouas avons :
BO (kme’#27m1,_ll’ll7i ' Vm’IB’A)

(B —m) | (B ) 1
_1672.2 . d3p . 2E2 (E2 —1)2 —E12 2E2 (_E2 _/1)2 _E12 , (36)
(27)’ +fFD(E1+,U1)_ 1 _fFD(—E1+,u1). 1
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Ce qui nous donne :

Bo(E’mz’ﬂz’mla_ﬂl’i'Vm’ﬂ’/\) (37
L= (~Ey+ 1) 1 1= f"P (Bt ) 1
L6 d*p 2E, (E,-4) -E’ 2E, (~E,—4)' - B’
= y/A —_—
(27)’ +1‘fFD(—E1‘ﬂ1), 1 =B ) 1

Dans I’équation (37), nous identifions B, (E Sy My =L TV, ,B,A) explicité équation (34) :

BO(lg’mZ’ﬂZ’ml’_:ul’i'Vm’ﬁ’A):BO(]g’mluul’mb_:ubi'vaﬁJ\)
1 I 1 I
2 2 2 2
cieg. | Ep |22 CErA) —ED 2B (B4 A) -E (38)
(27) |, L I 1 1
2E, (_)51_/7~)2_)522 2E, (El_/i)z_Ezz

et:
Bo(E,mz’ﬂz,ml’—ﬂl’i'Vm’ﬁ’/\)=Bo(’gampﬂpmz’—ﬂz’i'Vm’ﬂ’/\)
[ 22
1@ (-B+2) - B2) (B + )’ - B?) 39)
+167~ - o
(27)” |, 24
] ((_El -2)’ _E22)'((E1 -2)’ —E22)
Il vient :
Bo(]E’mz’ﬂz’mp—ﬂpi'Vm’ﬁ’/\)= (40)
Bo(k’mpﬂpmz,—ﬂz’i'Vm’ﬁ’/\)
[ 0
OO P O (e o R (et [ Ay
(2z)’ (p£§+ﬂf—Efyuﬁé+ﬂf—Ef)(b{g—ﬂf—Ef)(ug—ﬂf—Ef)
Donc, nous obtenons :
41

Bo(lg’mwﬂwml’_ﬂlvi'VmuBJ\) :Bo(E’ml’ﬂvmw_ﬂz’i'Vm’ﬂ’/\).

Ce qui nous permet de conclure que :

My =g - (42)
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5. Fonction de boucle des baryons

Pour construire un baryon, nous considérons une boucle quark-diquark ou nous pouvons
conjuguer soit le diquark, soit le quark. Les équations obtenues n’étant pas forcément les
mémes dans ces deux cas, nous calculons ici es deux, ce qui correspond a deux termes a priori
distincts. La nature des fréquences de Matsubara mises en jeu a été discutée dans le chapitre 5
consacré aux baryons.

5.1 Premier terme IT"

Si nous conjuguons le diquark, le premier terme de la fonction de boucle des baryons s’écrit :

. 3
—i'n(l)("'Vm”g)=é'§J(j;;3Tr(i~Sq(i-a)n,ﬁ)-i-SDC(iwn—i'Vm’ﬁ—E))’ (43)
avec :
Sq(i'wn’ﬁ)ESq(/;)zlp/+70.lﬂ -m, (44)
q q
R e e @
0 D D D

désignent respectivement le propagateur du quark de saveur g et du diquark conjugué de
charge (=anti-diquark). L’équation (44) doit étre mise a jour dans le cadre du modele PNJL,
comme expliqué au chapitre 4, par le remplacement x, — u, —iA,. Cela conduit a I’adaptation

des distributions de Fermi-Dirac [2], comme dans (55) par exemple, mais nos résultats restent
applicables.

La trace de (43) s’écrit alors comme :

Tr +m (46)
15, ()45 (4)- o) ,

avec

E =P +m) et Ep=\(p-K) +my. (47)

(43) se réécrit de la maniere suivante :

. 3
SO (iv, B) =L 3 | L2 g ! . (48)
( ) By ((i~a)n+,uq)2—Eq2j-((i-a)n—i~Vm—,uD)2—ED2)
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Puis, il vient :

=i- 11" (i-v,,.k )
1
4
:Lz d*p Am. - (i'wn+ﬂq—Eq)'(i'wn+'uq+Eq) @
By | 1

(i-w,—i-v,,—up—Ep)-(i-@,—i-v,, —up+Ep)

Les pdles sont :
i@, =}, +E,
i-®,=—p,—E, (50)

i, =Up+Ep+i-v,

i-w, étant de type fermionique, nous utilisons donc (7a) et nous obtenons :

~i- 11V (i-v,,.k) (1)
fFD(_'uq +Eq) _ fFD(_fuq _Eq)
. S, 2E,-(A-E,+Ep)-(A1-E,-E,) 2E,-(A+E,+Ep)-(A+E,—Ep) |
37 Mg . :
(27[) fFD(luD+ED+l'Vm) _ fFD(:uD_ED-i_l'Vm)
2E,-(A-E,+Ep)-(A+E, +Ep) 2E,-(A-E,-Ep)-(A+E,-Ep)
ou :
A=V + fly + lp - (52)
2m+1)-
i-v, estde type fermionique, i~vm=%, (53)
en conséquence : fFD(z+i-vm)=; —fP(2). 54

14 nB . Pz -
-1

Finalement, nous avons :

_i.n(l)(l'.vm,]g) 55)
" £ (-u, +E,) ) £ (-u, - E,)
i &p 2E,-(A-E,+Ep)-(A1-E,-E,) 2E,-(A+E,+Ep)-(A+E,—Ep)
q (275)3 . —fBE(,UD"‘ED) ) _fBE(,UD—ED)
2E, - (A-E, +Ep)-(A+E,+Ep) 2E,-(A-E,—Ep)-(A+E,—Ep)
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o 2
5.2 Deuxi¢me terme I1%

Maintenant, si nous conjuguons le quark a la place du diquark, le deuxieme terme s’écrit :

—fn“%fvmf)=é”§4}j:}T%stu-@wﬁyfs;%faa—fmwﬁ—ED’ (56)
ou :
Sp(i-@,,5)=Sp( f)= : , 57
D D(/) (pO+IUD)2_f)D2_mD2 ( )
. . - 7 — P i
ch("wn_Z'Vm’p_k)=sqc(%)_}(—7o-,Uq_mtf, %)

désignent respectivement le propagateur du diquark et du quark conjugué (=anti-quark).
Comme avec 1’équation (44), (58) est modifié dans le modele PNJL. Puis, (56) est écrit
comme :

1
d&p . (i.wn—i.vm—,uq—Eq).(i.a)n—i.vm—,uq+Eq) . (59)
(22 | 1
(i-@, +pp—Ep)-(i- @, + up +Ep)

~i- T (iv,,.k)=

5

Les poles sont :
[, =—fp +Ep

i@, =~Hlp—Ep (60)
i@, =p,+E +i-v,’
i@, =p,—E, +i-v,
Cette fois-ci, i- @, étant de nature bosonique, nous utilisons (7b) pour arriver a :
-1 (i-v,,.k) 61)
("
— % (—pp +Ep) _ — % (~pp — Ep)
@ \ 2E,-(A-Ep+E,)-(A-E,-E,) 2E,-(A+E,+E,)-(A+E,-E,)
=1- . m._ -
(22)" " (g + By +i-v,) 1 (g~ By +i-v)
+ —
] 2E,-(A-Ep+E,)-(A+E,+E,) 2E,-(A-E,-E,)-(A+Ep,—E,)
i-v, estde type fermionique, donc :
BE : _ 1 __,FD
f (Z+1'Vm)—m——f (2)- (62)

—
-1
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Nous avons :
~ I (v, k) (63)
r —fBE(_ﬂD+ED) _ _fBE(_/uD_ED)
i & p ' 2ED-(/1—ED+Eq).(/1—ED—Eq) 2ED.(/1+ED+Eq).(,1+ED_Eq) ‘
q (275)3 fFD (,Uq +Eq) ) fFD(luq —Eq)
2Eq.(/1—ED+Eq).(ﬂ+ED+Eq) 2Eq'(/1_ED_Eq)'(/1+ED—Eq)

J

En utilisant les relations,

fFD(—x)=1—fFD(x) et —fBE(—x)=1+fBE(x), (64)
I’équation (63) s’écrit alors :
1, ) <65>
[ F5 (up —Ep) +1 B S (up + Ep) +1
&p 2E;,-(A-Ep+E,)-(A-E,-E,) 2E,-(A+Ep+E,)-(A+E,-E,) |.
=dmg i | = FD FD
(27) -7 (_'uq_Eq) _ -7 (_'uq"'Eq)
2E,-(A-Ep+E,)-(A+Ep+E,) 2E,(A-E,-E,)(A+Ep,-E,)

J

Grice a I’équation (55), nous identifions une partie de (65) comme étant —i-I1V (i-vm,E ) :

=i (v, k) ==i- 10 (i-v,,.k) (66)
! _ 1
i &p 2E,(A-Ep+E,)-(A-Ep—E,) 2E,-(A+Ep+E,)(A+E,-E,) |,
4 3
(Zﬂ') + 1 B 1

2Eq-(/1—ED+Eq)-(/1+ED+Eq) 2Eq-(/1—ED—Eq)-(/1+ED—Eq)

=i- 11 (i-v,,.k)==i-T1" (i-v,,.k)

A
. (A-Ep+E,)-(A-Ep-E,)-(A+Ep+E,)-(A+Ep - E,) |. (67)
q (27[)3 _ y
(/1—ED+Eq)~(/1+ED+Eq)-(/1—ED—Eq)-(/1+ED—Eq)
’ 0

Donc, on trouve :
=11 (i-v,,€) == 11V (i-v,,, k). (68)

m
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5.3 Expression complete de la fonction de boucle

Afin de prendre en compte les deux composantes vues précédemment, nous écrivons

formellement :
—i-TI(iv,.k)
r
3
=4m, -i- d’p
(27)

Ce qui s’écrit bien siir, compte tenu de (68) et en explicitant tous les arguments de I :

Lt (i, )+

1/2-

%( 1 (i v, k))

(7 (g + B, )= 7 (1 - B,))

2Eq~(/1—Eq+ED)-(/1—Eq—ED)

_1/2'(fFD(_ﬂq_Eq)_fFD('uq"'Eq))

2E, (A+E,+Ep)-(A+E, - Ep)

_1/2'(fBE(ﬂD +Ep) = (~up _ED))

1/2'(fBE(,UD —Ep)— " (—up +ED))

2E,(A-E,+Ep)-(A+E,+Ep)

2E,-(A-E,-Ep)-(A+E, - Ep)

—i-H(lg,mq,,uq,mD,,uD,i-Vm,ﬂ,./\)

=4m -i-

r

J

fFD(_luq—i_Eq)
2E,-(A-E,+E,) (1-E,—E,)

fFD (_'uq_Eq)
2E,-(A+E,+E,) (A+E,-E,)

F(u, +Ey)
2E,(A-E,+E,) (A+E,+E,)

fBE (IUD_ED)
2E,(A-E,-E,) (A+E,-E,)

(69)

(70)

Notons que I’équation (69) présente 1’avantage d’€tre plus stable numériquement que
I’équation (70). Par contre, avec 1’équation (70), nous remarquons que la fonction de boucle
des baryons se résume en fait a une «version modifiée » de la fonction B, évoquée

précédemment, qui est une fonction complexe a variables réelles. Ceci implique que i-v,,

, qui

est I’équivalent de ce que nous nommions k;, est nécessairement réel. Cela nous interdit au
premier abord de travailler dans la zone ou les baryons sont instables. De toute maniere, du
simple fait que nous utilisons la masse du diquark m;, (contenue dans E,), nous nous
limitons a la zone ou le diquark est stable, puisqu’au dela, m;, devient complexe, ce qui rend
alors I’utilisation de (69) ou (70) non triviale.
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6. Fonction « triangle »

La fonction « triangle » de trois quarks, notée I' dans notre travail et dans la littérature [4],
intervient dans le calcul de certaines sections efficaces. Elle est définie par :

~i-T(i-v,.k 1 i-a.p) (71)

. 3 A _ .
VL 1 -Tr[isfl (i-@,.4)-is i8S (i-@, ~i- .G - p)-iys-iS" (i o, —i~Vm,21—k)J
ﬁ n (27[)

(i-,p)

(i-w,—i-a,G—Dp)

(i-vm—i-a,,E—ﬁ)

iYs

M

Figure 1. Schématisation de la fonction triangle I".

Nous vérifions que i-v,,, i-o; et i-v,, —i-a; sont de type bosoniques, ce qui correspond au
fait que ces trois énergies sont celles des trois mésons de la figure 1. Aussi, i-@,, i-@,—i-q;
et i-w,—i-v, sontde type fermioniques et sont les énergies des trois quarks du triangle. La
trace présente dans I’équation (71) n’est non nulle que si le nombre de matrices ;5 est pair, ce

qui impose que si nous voulons deux mésons pseudo-scalaires en sortie, alors le méson en
entrée doit forcément €tre scalaire (vertex 1) ou a la rigueur vectoriel.
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Nous obtenons, comme dans [4] :

T(i v,k 1 i-a.p)

+(ml _mZ)BO(ﬁ’ml7ﬂ],m2,ﬂ2,i'al)
+(ml +r”3)BO (Eamlyﬂlam:),,ﬂ?’,i'vm)

mlz'(m3_m2)

+my? - (my +my )

+m32-(m1—m2)—2-m1-m2-m3

. 2
(i V-t )’

p
(
+ml((f)_1€)2_(i'al_i'vm_:u2 +ﬂ3)2)

7. Références

(ms _mZ)BO(E_ﬁam27ﬂ2,n73,ﬂ3,i'Vm —iul)

Co(ﬁ’k’mpﬂl’mz’ﬂz,i'al’m3,ﬂ3,i'Vm)

(72)
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Annexe E

Calculs a potentiels chimiques non nuls

1. Techniques générales

Que nous travaillions avec les mésons, les diquarks ou les baryons, nous avons certaines
similitudes que nous allons voir maintenant. Considérons tout d’abord i-v,, qui est

I’argument de la fonction de boucle correspondant a I’énergie «brute » de la boucle de
particules. A potentiels chimiques non nuls, i-v,, se voit modifié par I’ajout ou le retrait des

potentiels chimiques des particules composant la boucle.

La regle générale pour une particule/anti-particule composite formée de deux particules/anti-
particules p, et p, est:

* Nous soustrayons , si p; est une particule ou une anti-particule conjuguée de

charge, c’est a dire qui va vers la droite sur un graphe de Feynman.
® nous ajoutons M, St p est une anti-particule ou une particule conjuguée de charge,

c'est-a-dire qui va vers la gauche sur un graphe de Feynman.

La démarche est identique pour p, par remplacement des notations. Le nouvel argument
« remplagant » i-v,, est ainsi :

kog=i-v, *u, *u, . (1)

Nous pouvons proposer une interprétation physique a cela en nous rappelant que la définition
du potentiel chimique d’une particule correspond a 1’énergie nécessaire pour ajouter cette
particule au systeme. Nous comprenons ainsi la différence de signe entre les particules et les
anti-particules. Ainsi, une facon d’interpréter (1) est de dire que 1’énergie i-v,, de la particule

composite se voit amputée de *u, *u, pour créer les particules/anti-particules p; et p, a

partir du vide, pour ensuite les lier et former la particule voulue, d’énergie k.

Nous sommes quelquefois €tre amenés a travailler dans un milieu dominé par I’antimatiere,
ou les potentiels chimiques deviennent alors négatifs. Dans ce cas-ci, comme dans d’autres
cas similaires, il peut arriver que k, devienne négatif, ce qui est incompatible avec les
fonctions que nous avons étudiées précédemment, et avec le fait que k, est la variable qui
doit nous donner la masse ... Pour s’en sortir, nous utiliserons alors la relation (19) de
I’annexe précédente :

Bo(Eampﬂl’mzaﬂza—ko’ﬂa/\): Bo(lg’mz’ﬂz’ml’ﬂl’ko,ﬂ’/\) . (2)
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Par conséquent, nous considérerons :
Bo(lg,ml,ﬂl,mz,ﬂz,ko,ﬂ,/\) si ky >0 3)

Bo(]g,mz,/,lz,ml,ﬂl,ko,z_ko,ﬂ,/\) Si k0<0

Pour chacune des particules, nous allons voir ci-aprés comment cette relation modifie la
fonction de boucle et son interprétation physique.

2. Mésons

L’étude des mésons est la plus simple du fait que, d’'une fagon générale, les fonctions de
polarisation des mésons ne sont pas invariantes par I’échange des deux saveurs entre le quark
et 'antiquark (sauf pour 7, ...) . Physiquement, nous concevons que, sauf exception,

419, # 4,4, - Les deux cas possibles sont représentés dans le tableau 1.

i-v, >0 i-v, <0
i@, p i-@,.p
my, fy My, Hy
my, f, my, ty

i@, —i-V,,p—k

=i-@,-li-v,

.p—k

ko =iV =t + 115

419>

i@, —iV,,p—k

=i @, +|i-v,|.p-k

kg =i -V,u| =t + 14

D9 =919,

Tableau 1. Graphes possibles pour les mésons.

Sinous avons i-v,, —u + 1, >0, alors nous sommes dans le cas de gauche de ce tableau. Cela
correspond a la situation ordinaire ou i-v,, >0, donc nous avons affaire a la particule ¢,q,,
composée d’un quark ¢, et d’un antiquark g,. D’apres les régles que nous avons vues

précédemment :
k0:|i'vm|_tul+tu2' (4)

Si, par contre, i-v,, —u + 1, <0, alors il s’agit du cas exposé dans la colonne de droite du
tableau 1. Il correspond a la deuxieme ligne de (3). Pour avoir I’équivalence avec le premier
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cas, il suffit de dire que i-v,, <0 : nous considérons donc 1’antiparticule ﬁ composée du
quark ¢, et de I’antiquark g, , ce qui est équivalent a la particule g,g, .
Nous avons :

k0:_|i'Vn1|_ﬂ2+ﬂ1' (5)

3. Diquarks

En accord avec (42) de I’annexe précédente, I’échange des deux quarks laisse la fonction de
polarisation invariante. Physiquement, cela ce traduit par [¢,q,]=[q,q,;]. Nous avons ainsi
deux cas supplémentaires par rapport aux mésons. Une autre différence est que les fonctions
de boucle sont construites différemment : afin de pouvoir employer les méme fonctions A et
B, (voir annexe précédente) que celles employées pour les mésons, nous devons avoir recours
a une astuce de calcul. Elle consiste a intervertir les énergies—impulsions des deux particules
de la fonction de boucle, ce qui a pour conséquence 1’ajout d’un signe moins devant i-v,, par
rapport a ce que nous avions pour les mésons.

Un autre point a souligner est ’emploi de particules conjuguées de charge. Son effet est de
changer le signe du potentiel chimique de la particule concernée. Remarquons que
I’invariance de la fonction de boucle par échange des deux quarks nous confirme que les
signes placés devant les potentiels chimiques doivent étre identiques: —u;,—u, pour les
diquarks et +u,,+u, pour les anti-diquarks. Les quatre cas possibles sont exposés dans le
tableau 2.
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i-v, >0
i@, —iv,,p—k
=i-@,—i-V,,.p—k
m
my,—H
C
i-@,,p

nmy, iy

H

o

i-v, <0
i-@,—i-V,,p—k
=i, +|i-v,|.p-k

—H

nmy, iy

0

S
~

N

my, iy

nmy, iy

O

ko ==|i V|t — 1 ko =|i- V| + 1+ 11y

924 N9 = >
i-w,—i-v,,p—k i@, iV, p—k
=i @, ~|i-v,|.p-k =i-@, +|i-V,|.p—k
C

—H,

aQ
L 5’5_5
|

S
~

N

My

My

ko ==li Vil =14 — 112
44>

Hy

S
>

|

N

ny, iy

Hy

o

ko =iVl + 1t + 11

99 = D

Tableau 2. Graphes possibles pour les diquarks.
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Si nous avons —i-v, —u — M, >0, alors nous sommes dans les deux cas de gauche du
tableau 2, qui sont bien sir strictement équivalents. On a i-v,, >0 donc il s’agit bien du
diquark ¢,q, . En vertu de nos remarques précédentes, nous avons :

ko =i V| =ty — 115 - (6)

Si —i-v,, —u — 1, <0, alors nous sommes dans la colonne de droite du tableau 2. Nous avons
les deux cas possibles de I’antiparticule g,g,, ce qui équivaut a ¢,q,. Ici, i-v, <0, nous
obtenons donc :

ko =iVl + 1 + 441 (7

4. Baryons

Pour les baryons, les choses sont formellement identiques a ce que nous avons pour les
diquarks, la seule différence est que nous remplacons un des deux quarks par un diquark.

D’ailleurs, il a été vu équation (68) de 1’annexe précédente que les deux composantes 1V et

I1® décrivant le baryon, bien que structurellement différentes, sont équivalentes. Ceci
correspond au passage de la premiere a la deuxieme ligne du tableau 3.

St —i-v,, =, — 4p >0, nous avons alors les deux cas de la colonne de gauche du tableau 3.

Nous avons affaire a des particules, d’ou i-v,,>0. Comme pour les diquarks, nous avons
alors :

ko =i V| =ty — 1 - (8)

Si —i-v, — My —Hp <0, c’est a dire les deux cas de la colonne de droite du tableau 3, nous

avons I’anti-particule Dg , ce qui est équivalenta Dg.Ona i-v, <0, d ou:
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i-v, >0 i-v, <0
i-a)n—i-vm,fa—lg i-a)n—i-vm,ﬁ—lg
=i-w,-|i-v,|.p-k =i-@,+|i-v,|.p-k

C
mg,,
m _——
\\mq’(y
i-@,,p
mq’:uq m

W

k0:|i-vm|+,uD+,uq

Dg =Dg

My Hy

l
Ny

kO :_|i'vm|_1uD _luq
Dq

i-w,—i-v,,p—k

=i-@,+[i-v,|.p-k
\§ég£%§¢/
i@, p

d
\§é2;;§%%

ko =i-Viu| + 4, + ip

gD =qD

Tableau 3. Graphes possibles pour les baryons.
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Annexe F

Eléments de cinématique

La partie 1 de cette annexe a été publiée dans J. Phys. G: Nucl. Part. Phys. 39 105003
La partie 2 intervient dans une publication soumise a Physical Review C

1. Variables de Mandelstam

1.1 Cas général

Considérons une collision quelconque ol I’on a deux particules en entrée, et deux en sortie.
La collision est schématisée par la figure 1, dans laquelle p; est le quadrivecteur énergie-

impulsion de la particule i. Via le principe de conservation de 1’énergie et de la quantité de
mouvement, on écrit :

D1tpPy=p3tps. (1)

P, P,

P, P,

Figure 1. Schématisation de la collision.

En introduisant les variables de Mandelstam s, ¢, u, nous avons les relations :
_ 2 2
s=(pi+py) =(ps+py)
2 2
t=(ps—p) =(ps—p2)" - 2)

u=(ps=p) =(ps=p:)’

Soit m; la masse de la particule i. Il vient :

s+t+u=m12+m22+m32+m42 , 3)

2 2 2 2 2 2
2p - pp=s—m~ —my", 2p - py=m° +my —t, 2py - pa=m"+my" —u,

“4)

2 2 2 2 2 2
2py py=s—my-—my", 2py - py=my” +my” —t, 2py p3=my +mg" —u.
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1.2 Référentiel du centre de masse

L’indice * utilisé ci-apres précise que la grandeur physique concernée est exprimée dans le
référentiel du centre de masse des deux particules entrantes. Nous rappelons que celui-ci est le
référentiel dans lequel p;+ p; =0. Nous avons alors les relations suivantes liant les quantités

2

de mouvement p; , les énergies E; =/( p; )2 +m; et les variables de Mandelstam [1]:

Js=0m+m ) )-(s=(m =m,)?)

E = =
! 2Js P 2Js
2 2
sS—m," +m
Ey="-—"1 _"2 Dy =—p (5)
2 2\/; P> D1
2 2 \/(s—(m +m )2)-(5—(n13—m )2)
g Stm —my ‘[3* _ 3Ty 4
: 2s : 20/s
2 2
S—my +m
E*: 3 4 Sk
4 —2\/; P4 D3

Nous avons aussi 7€ [r_,z, | avec:

P3

2t

' (6)

2. Calcul du parametre d’impact

Les quantités de mouvement des particules incidentes / et 2 sont exprimées initialement dans

le référentiel du laboratoire. Ainsi, une premiere étape pour trouver le parametre d’impact b
est d’appliquer un boost de Lorentz a ces quantités de mouvement, afin de travailler dans le
référentiel du centre de masse de ces deux particules :

ﬁl "_;CM -T

Py =P +Vey | (T-1) 1
[Pcn I )

* — —
E; =T'(E; - Py Veu )
ou vy, estla vitesse du référentiel du centre de masse. v, est écrit comme :

- Pt Dr
Vg =——>"% 8
M E +E, ®)
et le facteur de Lorentz est :
1
=, 9)
2
1- (VCM / ¢ )

dans lequel la vitesse de la lumiere est prise égale a 1. L’équation (7) est alors simplement
adaptée pour la quantité de mouvement de la particule 2. La méme procédure est aussi
appliquée aux positions de ces particules / et 2, afin de les exprimer dans le référentiel du

*

. ok ok . ok % -
centre de masse. Nous obtenons alors respectivement 7 et 7 . Soit 7 =7 -7 et
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ok ok ok . ok ok = ok ok . Ve A ,
p =p,—p,. Puisque p, +p, =0, prendre p = p, nous aurait donné le méme résultat que
celui que nous allons obtenir ci-dessous.

Figure 2. Détermination du parametre d’impact b".

A T'aide de la figure 2, les équations (10) sont alors trouvées par des considérations de
géométrie :
cos(a*): ; -p* sin(a*): —T7 (10)

Fllp r

En utilisant la relation sin(cos‘1 (x)) =v1-x", le parametre d’impact b~ dans le référentiel du

centre de masse s’€écrit alors, comme dans [2] :

(11

L’intérét de notre développement est que la premiere équation de (10) permet de savoir si les
particules s’approchent 1'une de [I’autre (cos(a*) >0) ou au contraire s’éloignent

(cos(a*) <0). Cette information ne peut pas étre obtenue par 1’équation (11) seule. Dans le

cas ou cos(a")<0, la procédure gérant les collisions est annulée pour ces deux particules

(voir chapitre 7).

3. Angle de diffusion et quantités de mouvement des
particules 3 et 4

La figure 3 montre la méthode utilisée pour estimer 1’angle de diffusion 6", dans laquelle o

est la section efficace de la réaction 1+2 — 3+4 considérée. D’autre part, 7 est un vecteur
allant de la particule 2 vers la particule /, au moment précis de leur interaction. Celle-ci est

supposée étre ponctuelle et instantanée. En outre, p; et p, sont les quantités de mouvement

des particules issues de la réaction, respectivement les particules 3 et 4. La norme de ces
vecteurs est obtenue en utilisant (5).
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Notre approche est basée sur le modele des spheres dures, sauf qu’ici la somme des rayons
des particules 1 et 2 est remplacée par /o/7 . Ensuite, la particule / devient la particule 3
apres un rebond sur la sphere, suivant la loi de Descartes sur la réflexion, pendant que la

particule 2 devient la particule 4. Par des arguments de géométrie, ’angle de diffusion 6"
s’exprime comme :

6" =x-2sin”' (b\[z/c). (12)

alq

Figure 3. Estimation de I’angle de diffusion 0.

A 3 2 Lk % R
Grace a cet angle, les coordonnées des vecteurs p; et p, sont alors completement
déterminables. Pour la particule 3, nous considérons un repere orthonormal (i,v). Nous

définissons un vecteur unitaire # construit a partir de p, :

PP L. - % . 2
Pour définir le vecteur unitaire v, nous observons que p; est forcément dans le plan formé

S

3
=1

(13)

*
1

S

% ok L L L% . A .
par les vecteurs p, et 7 . En conséquence, les vecteurs i,v, p; doivent étre coplanaires. Il y a
deux vecteurs possibles pour v. Ces deux vecteurs sont opposés 1'un de 1’autre. Nous
choisissons celui qui est dirigé en direction opposée de la particule 2. Apres quelques calculs,
il vient :
3k S T W
r —(I" l/t)l/t

(14)
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% s oz \ - - K — o — - . i - z

P est alors projeté dans ce repere (i,v): p3 :Hp§u-cos(6 )~u +Hp§ “~sm(9 )~v . La procédure
e A Lo 2oz A (2N % . .1 .

pourrait étre répétée de la méme manicre pour p,, ou sinon nous pouvons utiliser le fait que

Py =—D3, d apres (5).

Finalement, un boost de Lorentz est appliqué a ces quantités de mouvement ;3§ et p,, afin de
les exprimer dans le référentiel du laboratoire.

4. Références
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2.1. arXiv:hep-ph/9507456

[2] Bass S A et al. 1998 Microscopic models for ultrarelativistic heavy ion collisions Prog. Part. Nucl.
Phys. 41 255-369
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Annexe G

Simulation finale

La finalité de cette dernicre annexe et de représenter 1’évolution d’une de nos simulations
completes, vue au chapitre 7. Dans cette partie du travail, puisque nous n’y utilisons pas la
symétrie isospin, un grand nombre de particules doit €tre pris en compte. En effet, nos
simulations incluaient les quarks u,d,s , les antiquarks, les neuf mésons pseudo-scalaires, les
trois diquarks scalaires, les anti-diquarks, les baryons de 1’octet et les antibaryons associés.
Par conséquent, dans les versions couleurs de cette thése, nous proposons ci-apreés un code
couleur, afin de représenter les particules évoquées. Ce code couleur est basé sur la synthese
trichromatique utilisée en optique, photographie, etc. La figure 1 nous montre ce code pour
les quarks/antiquarks et mésons, alors que la figure 2 est associée aux diquarks/anti-diquarks
et aux baryons/antibaryons. D’autre part, le diametre des disques utilisés pour représenter
chaque particule permet de reconnaitre le type de celle-ci. Plus précisément, les quarks sont
représentés par les disques les plus petits. Les mésons ont un disque un peu plus grand, encore
un peu plus grand pour les diquarks, et les disques dont le diametre est le plus fort sont
réservés aux baryons.

KO

magenta

Figure 1. Code couleur pour les quarks/antiquarks et les mésons.
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magenta

Figure 2. Code couleur pour les diquarks/anti-diquarks et baryons/antibaryons.

Tt quark ®s, méson

Mﬁ{.@f’. collision

eo® diquark 999® Laryon

Figure 3. Représentation des particules incluses dans notre travail.
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Abstract:

To study the high energy nuclear physics and the associated phenomenon, as the
QGP/hadronic matter phase transition, the Nambu and Jona-Lasinio model (NJL) appears as
an interesting alternative of the Quantum Chromodynamics, not solvable at the considered
energies. Indeed, the NJL model allows describing the quarks physics, at finite temperatures
and densities. Furthermore, in order to try to correct a limitation of the NJL model, i.e. the
absence of confinement, it was proposed a coupling of the quarks/antiquarks to a Polyakov
loop, forming the PNJL model.

The objective of this thesis is to see the possibilities offered by the NJL and PNJL models, to
describe relevant sub-nuclear particles (quarks, mesons, diquarks and baryons), to study their
interactions, and to proceed to a dynamical study involving these particles.

After a recall of the useful tools, we modeled the u, d, s effective quarks and the mesons.
Then, we described the baryons as quarks—diquarks bound states. A part of the work
concerned the calculations of the cross-sections associated to the possible reactions implying
these particles. Then, we incorporated these works in a computer code, in order to study the
cooling of a quarks/antiquarks plasma and its hadronization. In this study, each particle
evolves in a system in which the temperature and the densities are local parameters. We have
two types of interactions: one due to the collisions, and a remote interaction, notably between
quarks. Finally, we studied the properties of our approach: qualities, limitations, and possible
evolutions.
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cross sections, finite temperatures and densities, dynamic evolution, cooling of a quark
plasma.
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Résumé :

Pour étudier la physique nucléaire des hautes énergies et les phénomenes associés, comme la
transition de phase quark-gluon-plasma/matiere hadronique, le modele de Nambu et Jona
Lasinio (NJL) constitue une alternative intéressante a la Chromodynamique Quantique, non
solvable aux énergies considérées. En effet, le modele NJL permet de décrire la physique des
quarks a températures et densités finies. D’autre part, afin de tenter de corriger une limitation
de ce modele, I’absence de confinement, il a été proposé un couplage des quarks/antiquarks a
une boucle de Polyakov, formant le modele PNJL.

L’objectif de cette these est de voir les possibilités offertes par les modeles NJL et PNJL, afin
de décrire les particules sub-nucléaires pertinentes (quarks, mésons diquarks et baryons),
d’étudier leurs interactions et de mener une étude dynamique avec ces particules.

Apres un rappel des outils pertinents, nous avons modélisé les quarks effectifs u, d, s, et les
mésons. Ensuite, nous avons décrit les baryons comme des états liés quarks—diquarks. Une
part du travail a concerné le calcul des sections efficaces liées aux réactions possibles avec ces
particules. Nous avons incorporé ces travaux dans un code de calcul pour étudier le
refroidissement d’un plasma de quarks/antiquarks et son hadronisation. Dans cette étude,
chaque particule évolue dans un systeme ou la température et les densités sont des parametres
locaux. Les interactions entre particules sont de deux types : interactions par collisions et
interactions a distance, notamment entre quarks. Finalement, nous avons étudié les propriétés
de notre approche : qualités, limitations et évolutions possibles.

Mots clés : Quark gluon plasma, boucle de Polyakov, modele de Nambu et Jona Lasinio,
baryons, sections efficaces, températures et densités finies, évolution dynamique,
refroidissement d’un plasma de quarks.
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