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ABSTRACT: Three-loop vertex diagrams in HQET needed for sum rules for B%-B° mixing
are considered. They depend on two residual energies. An algorithm of reduction of these
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exactly in d dimensions; their € expansions are also obtained.
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1. Introduction

The mass difference Am in B~ BY mixing is determined in the Standard Model by the
matrix element <B%|Q(u)|B°> of the four-quark operator

Q(u) = JuJ*, J*= l_)L’}/adL (1.1)

(see, e.g., [). This matrix element is traditionally written as
_ 1 _
<B%Q(n)|B"> =2 <1 + ﬁ> <B°J,|0><0|J%B°>B(u), (1.2)
c

where N, is the number of colours. Here the first part of the right-hand side is the value
of the matrix element according to the naive factorization prescription (this part does not
depend on p), and B(u) describes violation of this prescription. The hadronic parame-
ter B(u) can only be obtained by using some non-perturbative method, such as lattice
simulations (see, e.g., [f]) or QCD sum rules [{—f].

In the QCD sum rules approach, the correlator <jQj> is investigated, where j is
a current with <B°[j|0> # 0 (axial or pseudoscalar). Contributions to the theoretical
expression for this correlator can be subdivided into two groups:

1

<jQj> :2<1+F> <Jjdo><J%j>+ <jQj>ns . (1.3)
4

The first term includes the leading perturbative contribution plus all corrections (pertur-

bative, vacuum condensates) to the two two-point correlators <jJ,>, <J%j> separately.

It just gives the square of the sum rule for f3. Only the second, non-factorizable part
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Figure 2: Diagrams to which the topology ¢ reduces.

contributes to the sum rule for B(u) — 1. Non-factorizable perturbative contributions first
appear at three loops (one gluon is exchanged between the two two-point correlators). In
general, their calculation is a very difficult three-loop problem with three energy scales
(m%, p%, p%; we suppose that g2 = 0) which cannot be solved at present. Several terms of
the expansion in p%, p% have been obtained [f]] (this is a much easier single-scale problem).
There are also non-factorizable terms due to vacuum condensates.

It is also possible to consider sum rules in the HQET framework (see, e.g., [, [).
The QCD operators @, j can be expressed via HQET operators; matching coefficients
are calculable series in ag4(mp). Correlators of HQET operators don’t involve the scale
myp. Therefore, no large logarithms appear in perturbative corrections. On the other
hand, derivation and analysis of HQET sum rules for 1/m;, corrections is difficult (though
not impossible). Calculations in HQET are technically easier. In particular, three-loop
diagrams describing the leading perturbative contribution to the sum rules for B—1 involve
only two scales — two residual energies. Here we present the method for calculating such
diagrams. Calculation of this perturbative contribution is very desirable, because it allows
one to control the u-dependence of B(u) — 1.

2. Reduction

Non-factorizable three-loop diagrams belong to three topologies (figure []). Four HQET
denominators in figure flc are linearly dependent; therefore, one heavy line can be killed,
and this diagram reduces to those in figure [}, which are particular cases of figure [lp.

Let the incoming and outgoing residual momenta be p; 2. The scalar integrals depend
only on the residual energies wi 2 = p12 - v, where v is the heavy-quark velocity. In the
case w1 = wy they reduce to single-scale HQET integrals [§] (see also [B}, [L0]).

We need to consider two topologies. The first one is (figure )

1 H ; ij ddkil ddkig ddkig
Io(ni;my; = L : 2.1
(n 7m,7)w17w2) (7:7Td/2)3 / HZ DZ?,L ) ( )
D1:—2(k‘1'U+W1), D2:—2(1{72"L)+WQ), Dgz—k,’%, D4:—k‘%,
Ds = —k3, D¢ = —(ks — k1)?, D7 = —(ks — k2)?,
Ny = —2ks -0, Ny = — (k1 — ks)?,
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Figure 3: Topology 1.
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Figure 4: Topology 2.

where —i0 is assumed in all denominators, n; and m; are integer, and m; > 0. They can

be reduced to master integrals using integration by parts [L].

A Mathematica program

(R.N. Lee, unpublished, based on [[[J]) has succeeded in constructing an algorithm to reduce

these scalar integrals to the following simple master integrals:

and one difficult integral:

o LN

The second topology is (figure f)

"9 qhkey dky dhs

1 I, N
Ib(m;mj;w17w2)=(md/z)g/ —

[L Dy

, (2.4)

Dy :—2(1{71"U+W1), DQZ—Q(]CQ'U—I-LUQ), D3:—2((k‘1—|—k73)-v—|—w1),

Dy = —ki, Ds = —k3, Dg = —k3 ,
Ny = — (k1 — k3)?, Ny = —(k; — ko)?.

D7 = —(ks — kq)?,



The same program has succeeded in constructing an algorithm to reduce these scalar inte-
grals to the same simple master integrals (B.2) and one difficult integral

3. Simple master integrals

We consider the below-threshold region w;s < 0; expressions for other regions can be
obtained by analytical continuation. The simplest master integrals are single-scale, or
products of single-scale integrals:

Q/\ = NI (—2w1)** % (—2wp) "2, (3:2)
where the n-loop HQET sunset is
I, =T(2n+1—ndI" (¢ -1). (3.3)

Several master integrals reduce to the one-loop vertex with two residual energies

n3
/—\ 1 d?k
w1 : na Wy F{m;mg, mgsw, wn) = imd/? / D' Dy*Dy?’ (34
D1:—2(k"U+OJ1), D2:—2(k‘-’U+WQ), D3:—k72.
It is [B]
2n3 — d 1
I(nl,ng,ng;wl,wQ) = I(n1 + ’I’LQ,’I’Lg) 2F1 ( n, M * 2 + 3 1-— —)
n1 + no x
X (—2uwp)dm—n2=2ns (3.5)
where the HQET two-point integral is
I'(ny +2ny —d)T (%l — ng)
I = 3.6
(n17n2) F(nl)F(ng) ’ ( )
and
w2
=—. 3.7
=2 (3.7
Naturally,

I(n17n27n3;w17w2) (n27n17n3;w27w1)7

=71
I(ny,ng,n3;w,w) = I(ng + ng,ng)(—2w)d_m_"2_2”3 .



Later we shall also need

I(nqy,n2,n3;w,0) = Io(nl,ng,ng)(—Qw)d_”l_n2_2n3,

r (% — ng) P(d —ng — 2n3)P(n1 + ng + 2n3 — d)

1 = .
o(n1,m2,m3) T(n1)D(n3)T(d — 2n3) (38)
Several ways to derive (B.5) are discussed in [L{].
Using this integral, we easily obtain
Ml(wl,WQ) = I2,[(5 — 2d, 1, 1; wl,WQ) = IQI(l, 5 — 2d, 1; w9, wl) N (39)
My(wy,ws) = I1(3 — d, 3 — d, 1;wy,ws), (3.10)
My(wy,wa) = P13 —d,3 — d,2;w1,ws). (3.11)
4. Master integral M,
We were able to calculate a more general integral
ns
, _wim m
J(n17n27n37n47n57w17w2) - \\_/; Ty Wa . (41)

n1
Substituting (B.H) for the left one-loop vertex subdiagram, we have

[(nl + n3, Tl4)
i7‘rd/2

dko d?—1k p (Pt ns 200 —d
) R

(_2wl)d—n1—n3—2n4

"5(—2(/€0 + w2 ny + ns

_ ko
w1 '

Then we perform Wick rotation kg = ikgo and take the di1k integral. The integrand has
a cut from 0 to +ico; we deform the integration contour around this cut (kgg = i(—w2)z):

I(?’Ll + ’I’L3,’I’L4)F (7”L5 — %)

7.‘.1/22d—2n5—1r(n5)

/OO dz 20 2ns—1 ni,ny +ng+2n4 —d
o (zrpm M ni +ng

COSs [77 (%l — n5)] (—2w1)d_"1_"3—2"4(_QW2)d—m—2n5

_ggz) |

This integral can be calculated in terms of two 3F5 functions, and we arrive at

L (§-na) T (5—ns)
« 3F) (ng,n1+n3+2n4—d,d—2n5

F(’I’Ll +n3+2n4—d)F(n2 —|—27”L5—d)
F(ng)F(nl + ng)

J(n1,n2,n3, N4, n5; Wi, wa) =

I'(n4)T'(ns)
T wd—n2—2n5
ny+ng,d—no —2ns + 1

F(d — N9 — 2’1’L5)F(’I’L2 + n3 + 2ns — d)I‘(m + no + ng + 2ny4 + 2n5 — Qd)
I‘(ng)F(d — 2’1’L5)F(’I’L1 + no + ng + 2n5 — d)

(ng,ng 4+ ng + 2n5 —d,ny + ng + ng + 2ng4 + 2n5 — 2d
X 313
X (_2wl)2d—n1—nz—n3—2n4—2n5 . (42)

ng+2ns —d+1,n1 +ng+n3z+2ns — d



Trivial cases are reproduced:

J(n1,ma,0,m4,m5;w1,w2) = I(n1,n4)1 (N, n5)(—2w1 )" 7214 (—2wg) 47127215
J(n1,0,n3,n4,n5;w1,w2) = I(ng,ns)I(n1 + ns + 2ns — d, n4)(—2w1)2d_"1_"3_2"4_2"5 .
At wy = ws, the single-scale integral [§, ] is reproduced (its derivation is also discussed
in [I).
Now it is easy to write down the master integral (R.5)

M4(W1,W2) :IlJ(l,l,?)—d,l,l;wl,wg). (4.3)

Note that the first 3F function in eq. ([.9) turns into 2 F; when one substitutes ny = 1 in
order to obtain Mjy.

5. Master integral Mj
This integral can be expressed as
Mj(wi,wo) = G1I(1,1,1,1,2 — 4107, wo) (5.1)

via the two-loop integral

ns Ty
15 1 %k diks
I(n1,m2,n3, M4, 153 w1,w2) = Zb=e o = e | LD (5.2)
D1:—2(k‘1-v—|—w1), D2:—2(1{72'U+W2)7
D3 =—Fki, Dy = —Fk3, D5 = —(ky — ka)?

with non-integer ns, where

I'(n+1-ng)Tmt (4-1)

G T T ()

(5.3)

is the n-loop massless sunset.

In order to express M3 in closed form, we can use the method of differential equa-
tions [[[4, [[§]. The differential equation for this master integral can be obtained by dif-
ferentiating it with respect to w; and then applying the reduction rules obtained by the
Mathematica program. It reads

oM. 3d — 10
w1 35517 W2) = 5 Mg(u)l, WQ) + H(wl, wg) s (54)
1

H(wy,ws) = %Ml(w%wl)_ (3d _87()d[(id3;j§b(t1_ _(5;12—) 214)@] Ly (— 237
2d—5 (3d—"T7)[(3d—8)wa — (5d—14)w1 | _
—72(w1_w2)2M1(w1,w2)+ S(d = 3)R (w1 —wa)? I3(—2wy )37



Using the explicit expressions for the simple master integrals, it is easy to check that
singularities at w; = wy cancel in H separately on the second and third lines in eq. (5.4).
The general solution of this differential equation has the form

Ma(wy,ws) = Mo(wr) [o+/_m1 do M () H (w, w2)| |

where
Mo(w) = (—2w)34/275

is the solution of the homogeneous part of the equation (f.4). In order to fix the constant
C, we consider the asymptotics of M3(wy,ws) when w; — —oo [L§]. Using the method of

expansion by regions (see [[[7]), it is easy to determine that there is no O(w?d/ 2_5) term in
the asymptotics. Thus, C = 0, and we obtain
3d/2-5 3d/2-5713 (d *dy
Ms(wr, w2) = 2(—2wy) (—2ws) I (§—1)T(8 —3d) 5
1/x (y - 1)

6 —2d

1,8 —3d
2F1<

8 —3d
1—y> —1—6_2d(1—y)]

2F1<1,8—3d 1_5)_1_2:_230_5)”. (5.5)

6 —2d
Note that the rational terms in brackets are the two first terms of expansion of the corre-

% { yA—3d/2

_ g3/

sponding 9 F7 with respect to its argument. Now, using the parametrization

2F1<1,8—3d 1_t)_1_8—3d(1_t)

6 —2d 6 —2d

_ T(6-2d) o _ 1 1 s(1—t)
_F(8—3d)F(d—2)/0 ds s734(1 + 5)% 5<1+3t_ e (1+S)2> , (5.6)

we can take the integrals first over y and then over s. Finally, we obtain

;U)
31'(9 — 3d 1,10 — 3d,5 — 3d
( ) )3F2< 2

2(d — 3)(3d — 10 6—3d,4—d

7T(6 — 2d) 5—3d,7-2d
(3d — 10)I'(d — 2) sin(3wd) > !

7['(6 — 2d) L3 2-47-2d
(d — 4)T'(d — 2) sin(rd) 21

Mg(wl,Cng) = 4(—2wl)3d_10F3 (%l — 1)

['(8—3d) 349 1,d—2,3d—4
F Y ’ 2
[2(d—3)$ 72\ 24-3,3d—8

_|_

)] 67

It follows from the analyticity of Mj(wi,ws) in the region wis < 0 that the above ex-
pression is analytical in the interval = € (0,+00). In particular, branching singularities at
x = 1 cancel.
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Figure 5: Regions: thick lines are hard (momenta ~ wy), thin lines are soft (momenta ~ ws).

The integral Ms is a symmetric function of its arguments. This symmetry can be made
explicit if we rewrite the integral over y of the terms in the last line of (F.J) as follows:

/dyz/ dy—/ d(1/y)y*,
1/ 0 x

and make the replacement y — 1/y in the second integral. Then, using the same parametriza-
tion (p.6), we obtain

Ms(wy,wa) = (—2w1)>Y275(=2wy)3# 27513 (d/2 — 1)
P(3d—4)T?(5—3d)T (2 9)
(d—3)T(d—2)

P R ¢ 22
te s 572\ 2d-3,3d-8

;)

47T(6 — 2d) 23425 R 3d,7—2d
(3d — 10)T(d — 2) sin(3md) >~ ' 6 — 3d

)

I'(8 —3d) 34794 1,d—2,3d—4
27 F ) 72
L P 2\ sq-33d-8|"
AT (6 — 2d)25—3%/2 3 B
w['(6 — 2d)x . JF 5 2d,2 2d . (5.8)
(3d — 10)I'(d — 2) sin(37d) —5d

We have performed two crucial checks of the above expressions for Mjs. The first
check is due to the fact that at wy; = wo the integral M3 reduces to the known single-scale
integral [[§. Though our representations do not literally coincide with those in [I§], we
have been able to check the perfect numerical agreement.

The asymptotics of M3 (5.7) at @ — 0 can be also obtained by using the method of
regions L7 for 7(1,1,1,1,n;wy,ws) with n = 2 —d/2 (b.]). There are 3 regions shown
in figure f} The region a gives the first term in (5.7); b — the fourth term; and ¢ — the
second and the third ones (this is clear from the powers of wy ).

In the region a, we expand 1/D; (p.3) in k; - v. Then we calculate the left massless
loop (lines 3 and 5) with the numerator (k; -v)" (see, e.g., [[7], eqs. (A.11), (A.12)). In the
numerator of the remaining HQET integral, powers of 2ks - v may be replaced by powers of
—2wsq, because integrals in which the denominator Dy cancels are zero. We obtain a series
in x whose coeflicients are finite sums. We have checked that a few terms in this series
agree with the expansion of the first term in (f.7).



In the region b, we expand 1/D2? (5.3) in k2. Then we calculate the left (hard) HQET
loop with a numerator (see [§, eq. (2.13)), and finally the right (soft) HQET loop (it also
has numerators). The coefficients of the resulting series are finite sums. We have checked
that a few terms in this series agree with the expansion of the fourth term in (f.7).

In the region ¢, we expand 1/Ds (f.9) in wa:

)
(_2w1)2d—2n—6 Z 10(171 + 17 17 17 n)(_:n)l )
=0

where

I(n1,n2,n3,n4,15;w,0) = In(n1,n2,n3, N4, N5 (—2w) 2471 ~M272n5 =204 =25

Using integration by parts, we obtain

Io(1,141,1,0,n 4+ 1) = Iy(1,1 + 1,0,1,n + 1)
d—n—1-3 ’

Iy(1,l4+1,1,1,n) =n
where

In(n1,n2,0,n4,n5) = I(n1,n5)lo(n1 + 2ns — d,n2, ng),
=7

Io(nl,ng,n3,0,n5) (n2,7”L5)Io(TL1,’I’L2 + 2ns5 —d,ng)
(see (B.9)). The contribution of the region c is thus

r(¢-1)r(¢-n-1)T@2n+6-2d

(d—n—-3)'(n)
“ I'2d —2n - 5)I'(2n + 3 — d) 7 n—|—3—d,2n+3—d$
I'(d—2) 2t n+4-d

1 Ln+3—d2n+6—2d
d—3%"? 4—dn+4—d

:

Substituting n = 2 — d/2 and multiplying by G; (see (b.1))), we reproduce the second and
the third terms in (p.7).

6. Conclusion

We have considered scalar loop integrals needed for the perturbative part of HQET sum
rules for B — 1. The sum rules will be considered in a future publication. The width
difference AT involves matrix elements of four-quark operators similar to ([L.]) but with
different Dirac structures. In higher orders in 1/m;, similar operators involving derivatives
appear. Matrix elements of such operators can also be estimated using HQET sum rules
(operators with derivatives are very difficult for lattice simulations).

More general classes of three-loop HQET vertex diagrams can be analyzed using the
same method. Master integrals calculated here will be useful for such an analysis.

We are grateful to A.A. Pivovarov for discussions of HQET sum rules for B%~B° mixing.



A. Expansions in €

We use the Mathematica package HypExp [[L9 to expand the master integrals in € (d =
4 — 2e):

_ I'3(1 — e)I'(1 + 6e)
M, = 7282(1 — 28)(1 — 36)(2 — 36)(3 — 46)(1 — 66) {3%(1 — x)3

1
= [36x(1 — 2)3logz — 6+ Tla — 14122 + 1052 — 27x4} e

1
- 5(1 — ) [18:17(1 —2)? (8L(z) — 4log?z — 9log x) — 4 + 63z — 78z* + 21x3] g2
+(1-2) [9;1:(1 — 2)2(48Lis(1 — 2) + 16 Lis(1 — ™) — 4log® x + 36L(x)

— 181log? z + 7log z) +2(2 — bda + 6922 — 18:173)] 4. }(—2u}1)4_66 (A1)

Mo — (1 —4e)I3(1 — e)I'2(1 + 22)I(1 + 6¢)
27 3622(1 — 26)2(1 — 36)(2 — 3¢)(1 — 6e)T(1 + 4e) {

— S -2?[(1 - 2)(1 +2) gz + e

- %(1 —2)*(1 +2?)

=l w N W

[8(1 —2)3(1 + 2)L(z) + (1 — 2z — 223 + 2*) log? =
—2z(l —z)(1+x)logx + 8z(1 — x)2]52
+ i [962%(2 — ) Lig(1 — ) — 96(1 — 20) Lig(1 —2~!)

+24(1 — 22 — 223 + 2 L(z) logz + (1 — 2)3(1 + ) log®
+24z(1 — x)(1 + x)(L(z) + log x)

—3z(1 —2)* (3log®z + 32)]53 SEP }(—2w1)4_6€3§_3€ , (A.2)

, (1—49)P (1 —e)I?(1 +22)(1 + 6¢) 1
My = 6 =291 = 391 — 6)T(1 + 42) {x tyl-a)e

1
+ 3 [3:1: log?z +3(1 — x)(1 4 z) log x + 4(1 — :E)2]€2

+ % [482 (2Lis(1 — ) +2Lis(1 — ") ~ L(x) log )
+24(1 — z)(1 + z)(L(z) + logz) + (1 — 2)* (3log® = + 32)]53

4 }(_le)2—6€x—3€ , (A.3)

— 10 —



_ I3(1 —&)0(1 + 6¢)
Mo = Ses = 2P — 392 - 31 — 62) {6”“’ —3(1+ 13z +a%)e
_ % {2x (9log? x + 167%) + 18(1 — 2)(1 + x)logz — 9(1 + x)2}52

- % [ 480 (12 Lis(1 — ) +12Lis(1 — ") — 6L(x) logx — 28¢(3) — 57
+9(1 —z)(1 +z) (16L(z) — 3log ) — 9(1 + 13z + x2) log? z

—12(1 — 15z + ;p2)} e+ }(—2w1)2—6€x—3€ : (A.4)
3(1—¢)l(1 + 6¢) 5 1 5
M, = — —z|6zlogr —1+1
! 2463(1—2&?)3(1—36)(1—66){x 2”5[6”5 oz — 1+ 18z + 27|
+5 [ 2 (3log2x — 272) — 182(1 — 9z — 22) log x + 2 — 453 + 9622 + 153:3]52
[ (24Lig(1 — @) + 24 Lig(1 — 2~ ') — 12L(x) log x — 47* log z — 60¢(3) — 97?)
+122(1 — 2)(1 + x)L(x) — 32(2 — 92 — 22%)log? x — 32(5 — 18z — 52%) log
+2(7+ 22 — xQ)} 4. }(—2w1)3_6‘5 , (A.5)
where

1
L(z) = —L(z™%) = Lip(1 — ) + 1 log? .

As it was mentioned above, all the master integrals are analytical in x € (0,4+00), and
hence the coefficients in the expansions (A.])—(A.§) are analytical, too. It is easy to see
that My, M}, Ms are symmetric with respect to wy <> wo. The series (A4), (AF) at
w1 = wy coincide with the expansions of the single-scale integrals [[I§, B, [
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