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Abstract. Clifford algebras are used for constructing spin groups, and
are therefore of particular importance in the theory of quantum mechan-
ics. An algebraist’s perspective on the many subgroups and subalgebras
of Clifford algebras may suggest ways in which they might be applied
more widely to describe the fundamental properties of matter. I do not
claim to build a physical theory on top of the fundamental algebra, and
my suggestions for possible physical interpretations are indicative only,
and may not work. Nevertheless, both the existence of three generations
of fermions and the symmetry-breaking of the weak interaction seem to
emerge naturally from an extension of the Dirac algebra from complex
numbers to quaternions.

1. Introduction

1.1. Clifford Algebras in the Standard Model

The spin-type groups used in physics [17,47,49] include not only the ordinary
spin group Spin(3) ∼= SU(2) and the relativistic [6] spin group Spin(3, 1) ∼=
SL(2,C), but also the gauge groups Spin(2) ∼= U(1) of quantum electrody-
namics [11] and Spin(3) ∼= SU(2) of the weak interaction [39]. Each of these
groups arises from two different Clifford algebras [30], so that already we have
at least 6 distinct Clifford algebras in the picture, namely C�(2, 0), C�(0, 2),
C�(3, 0), C�(0, 3), C�(3, 1) and C�(1, 3).

The Dirac algebra, as used in the Feynman calculus in the standard
model of particle physics, is a complex version of the real algebra C�(1, 3)
generated by the Dirac gamma matrices γ1, γ2, γ3 and γ0, whose essential
properties are that they anti-commute with each other, and square to −1,

∗Corresponding author.

0123456789().: V,-vol  

http://crossmark.crossref.org/dialog/?doi=10.1007/s00006-021-01160-5&domain=pdf
http://orcid.org/0000-0002-0726-2009


   59 Page 2 of 22 R. A. Wilson Adv. Appl. Clifford Algebras

−1, −1 and +1 respectively. Instead of using the scalar i as a fifth generator,
it is conventional (or at least instructive) to use the matrix γ5 := iγ0γ1γ2γ3,
which anti-commutes with the first four gamma matrices and squares to +1.

With respect to these five gamma matrices as generators, therefore,
the Dirac algebra has the structure of C�(2, 3), that is the Clifford algebra of
anti-de Sitter space [23], in contrast to its usual interpretation as the complex
Clifford algebra of Minkowski space, C�(3, 1) = C�(1, 3). Another reasonable
set of generators is

γ5, iγ1, iγ2, iγ3, iγ0 (1)

which gives a structure C�(4, 1) on de Sitter space, and a third possibility is

γ1, γ2, γ3, iγ0, iγ5 (2)

which gives a structure of C�(0, 5). All these algebras are isomorphic (as
algebras) to the algebra of all 4 × 4 complex matrices.

The same physical information can be packaged into slightly different
mathematics by reversing the signature of the Clifford algebra. We obtain
C�(3, 2), which consists of two copies of the algebra of 4×4 real matrices, and
C�(5, 0) and C�(1, 4), both of which consist of two copies of 2 × 2 quaternion
matrices. Since these are not isomorphic as algebras to the Dirac algebra, they
are less likely to be useful here, but should not be ruled out of consideration
entirely.

1.2. Clifford Algebras Beyond the Standard Model

Larger Clifford algebras have also been suggested [12] for purposes such as
including the strong force [15] gauge group SU(3), although SU(3) is not
itself a spin group. But SU(3) is a subgroup of SO(6), and by the Klein cor-
respondence Spin(6) ∼= SU(4), which contains SU(3) as a subgroup. Hence
this approach may also be useful in extending from the standard model to
a ‘four-colour’ model based on SU(4), such as the Pati–Salam model [2,25].
Similarly, Penrose’s twistor theory [1,26] is based on Spin(4, 2) ∼= SU(2, 2),
which can be constructed via the Clifford algebra C�(4, 2) or C�(2, 4). In fact,
the algebras C�(3, 3), C�(0, 6) and C�(4, 2) are all isomorphic to the algebra of
8 × 8 real matrices, so all three approaches can be pursued simultaneously if
desired. The reversed signatures C�(6, 0) and C�(2, 4) are both isomorphic to
the algebra of 4× 4 quaternion matrices, as are C�(5, 1) and C�(1, 5), so that
these provide an alternative approach for those who appreciate the virtues of
using quaternions [24].

By now, I have mentioned 19 distinct real Clifford algebras, and it is
obvious that some clear mathematical principles are going to be necessary in
order to make good choices for which ones to use in which physical contexts.
The main principle I want to discuss in this paper is the principle of choosing
a particular Clifford algebra structure from the many that are in general
available in a suitable abstract algebra. This is a mathematical symmetry-
breaking principle, which may or may not have anything to do with the
physical process of ‘spontaneous symmetry-breaking’ that is usually invoked
to explain the structure of the fundamental forces.
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Choosing a Clifford algebra structure is equivalent to choosing a par-
ticular subgroup of the algebra to call ‘the’ spin group, so that one can also
approach the problem from the point of view of studying subgroups [32–34] of
the Clifford algebra. It is intimately connected with the question of choosing
a particular real form of the Clifford algebra and the associated spin group.
In the physics literature, Clifford algebras are usually complexified, so that
the issue of choosing a real form does not arise. I hope to show that the
difference between the different real forms has real consequences for physics,
and is therefore worth paying attention to.

A number of recent papers, such as [35], have sought to use the complex
Clifford algebra C�(6) to combine the electroweak part of the standard model,
usually implemented in the Dirac algebra C�(4), with the strong part of the
model, usually implemented in SU(3). As far as I am aware, these papers
aim at re-packaging the standard model in a unified notation, rather than
going beyond the standard model. The latter aim is generally attempted only
with a larger algebra [37]. There is also a strong link between this Clifford
algebra and the octonions, which is exploited by Furey [13,14] in particular
to build octonionic models that unify the strong SU(3) with the rest of the
standard model in a single algebraic framework. The octonions provide an
elegant construction of the spin groups Spin(8) and Spin(4, 4), so can be
used instead of Clifford algebras for this purpose.

1.3. Aims

My concern in this paper is rather different from all of the above, namely
to try to deal with some issues that the standard model does not address,
without going outside the Clifford algebra framework. In particular, I want
to address the existence of three generations of fermions, and some aspects of
symmetry-breaking and the mixing between the different forces. This paper is
one of a series in which I look at some of the fundamental problems of physics
from a group-theoretical point of view. An overview is given in [40], and some
alternative approaches based on finite groups are described in [41,42].

2. Symmetry-Breaking

2.1. Examples

Every Clifford algebra is either a full matrix algebra over the real numbers,
complex numbers or quaternions, or the direct sum of two such algebras,
isomorphic to each other. Moreover, the algebra contains much larger groups
than the spin group it was designed to construct. Restricting from the large
group of all invertible elements of the Clifford algebra, to the spin group, is a
process of breaking a large symmetry group down to a small one. For example,
C�(0, 2) is a quaternion algebra, so contains not only Spin(2) ∼= U(1), but
also a copy of SU(2) ∼= Spin(3). Another example that I hope to show is
relevant to physics is C�(3, 1), that is a 4× 4 real matrix algebra, so contains
not only Spin(3, 1) ∼= SL(2,C) but also a copy of SL(4,R) ∼= Spin(3, 3).

In both these cases, the Clifford algebra breaks the symmetry. Thus
C�(0, 2) breaks the symmetry of SU(2) by choosing a particular subgroup
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U(1) to call Spin(2). This example may be relevant to the symmetry-breaking
of the weak gauge group SU(2), that distinguishes between the neutral Z
boson and the two charged W bosons. Similarly, C�(3, 1) breaks the symmetry
of SL(4,R) by choosing a particular copy of SL(2,C) to call Spin(3, 1). In the
Lie algebra context, this example is quite familiar to physicists, and has been
used in a recent proposed E8 model [4] for the breaking of symmetry between
the three generations of fermions. My point, however, is that this symmetry-
breaking arises more naturally in the context of small Clifford algebras than
in the context of large Lie algebras.

To see this operation of symmetry-breaking in a bigger context, we can
use the Clifford algebra C�(3, 3) to break the symmetry of the matrix group
SL(8,R) down to Spin(3, 3) ∼= SL(4,R). Then we can use C�(3, 1) to break
SL(4,R) symmetry down to Spin(3, 1) ∼= SL(2,C). The latter lies in both
C�(3, 0) and C�(1, 2), which can be used to break the symmetry to either of the
groups Spin(3) ∼= SU(2) or Spin(1, 2) ∼= SL(2,R), according to preference.

If further symmetry-breaking is required, one can use C�(0, 2) to break
SU(2) down to U(1), and C�(2, 0) to break SL(2,R) down to U(1), or even
use C�(1, 1) to break SL(2,R) down to GL(1,R). These chains of symmetry-
breaking should be sufficient to deal with the main examples of symmetry-
breaking in the standard model. The chain down through C�(3, 1), C�(3, 0)
and C�(2, 0) looks particularly promising.

2.2. A Quaternionic Dirac Algebra

One of many ways to construct C�(3, 3) is to extend the complex numbers in
the Dirac algebra to the quaternions. This is not just a matter of extending
the 4 × 4 complex matrices to 4 × 4 quaternion matrices, but of adjoining
quaternions i, j, k that commute with the four Dirac matrices γ1, γ2, γ3 and
γ0. This process requires 8 × 8 real matrices rather than 4 × 4 quaternion
matrices, since j and k must anti-commute with γ5. Details are given in
Sect. 4.2.

To obtain the required anti-commuting generators we can take

iγ1, iγ2, iγ3, iγ0, j, k (3)

which exhibits the structure of C�(3, 3). Some alternative sets of generators
for C�(3, 3) are

γ1, γ2, γ3, γ0, jγ5, kγ5;
γ1, γ2, γ3, γ5, jγ5, kγ5. (4)

It is not immediately obvious which of these choices will be most useful for
physical applications. But the mathematical structure of C�(3, 0) is quite
different from that of C�(0, 3), so the choice between γ1, γ2, γ3 generating
C�(0, 3) and iγ1, iγ2, iγ3 generating C�(3, 0) is likely to be significant. The
other important choice here is between using γ0 or γ5 as pseudoscalar (the
product of all the generators).

As noted above, the signatures (0, 6) and (4, 2) are available in the same
abstract algebra. Explicit matrices in the former case are given by Fairlie and



On the Problem of Choosing Subgroups of Clifford Page 5 of 22    59 

Manogue [10]. We may take the following two sets of generators, both with
pseudoscalar iγ5:

γ1, γ2, γ3, iγ0, jγ0, kγ0;
iγ1, iγ2, iγ3, γ0, jγ0γ5, kγ0γ5. (5)

We therefore have a choice of three distinct spin groups

Spin(3, 3) ∼= SL(4,R), Spin(0, 6) ∼= SU(4), Spin(4, 2) ∼= SU(2, 2) (6)

but only the first of these is suitable for further symmetry-breaking with
a smaller Clifford algebra. Both C�(3, 1) and C�(2, 2) are available for this
purpose, and although the former is the ‘obvious’ one, the latter may also be
useful. The remaining spin group

Spin(5, 1) ∼= SL(2,H) (7)

can similarly be used as input to further symmetry-breaking using any of
C�(4, 0), C�(1, 3) or C�(0, 4).

For now I will stick as closely as possible to the standard model, and
work with C�(3, 3) as an algebra of 8× 8 real matrices, with C�(3, 1) used for
symmetry-breaking of Spin(3, 3). I have suggested three possible generating
sets, two of which have pseudoscalar γ5, while the third has pseudoscalar γ0.
The choice between these options must be made on the basis of subgroups
other than the spin group itself.

3. Subgroups

3.1. Electroweak Gauge Groups

In the standard model Dirac algebra C�(2, 3), the modelling of electro-weak
interactions uses the 2-dimensional complex subalgebra spanned by 1 and
γ5. This permits the implementation of two copies of U(1), generated as
Lie groups by i and iγ5. In other words, only a subgroup U(1) of the weak
gauge group SU(2) appears explicitly in the Dirac algebra. The full SU(2)
can only be implemented by extending to the quaternionic Dirac algebra
C�(3, 3) described in Sect. 2.2. The Coleman–Mandula theorem [5] implies
that the gauge group must lie in the centralizer algebra of the relativistic
spin group SL(2,C), generated by even products of the original four gamma
matrices. This centralizer algebra is generated by j, k and γ5, and is therefore
isomorphic to C�(1, 2), and thereby to the algebra of 2× 2 complex matrices.

By choosing instead the generators jγ5, kγ5 and γ5 we can identify this
algebra also as C�(3, 0). Which generators should we choose? The four rota-
tions are i, j, k and iγ5, and the three boosts are γ5, jγ5 and kγ5. Whatever
happens, the symmetry is visibly broken, but we have a choice of which bits
of symmetry to keep, and which to abandon. This is largely a matter of phys-
ical interpretation, rather than mathematics, so it is not appropriate to try to
make such a decision here. What is clear, however, is that the four rotations
give a group U(1) generated by iγ5, and a group SU(2) generated by i, j, k,
and that these groups commute with each other, and generate a group U(2).
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This is exactly the formalism that is normally used to describe the unification
of quantum electrodynamics (QED) with the weak force.

Thus consideration of the electro-weak interactions suggests that the
third of the three proposed sets of generators for C�(3, 3) is likely to be the
most useful. There appear to be some minor technical differences between
what we see here and what appears in the Feynman calculus, in that the roles
of i and iγ5 appear to have been interchanged. Since this can be adjusted by
applying complex conjugation on half of the spinor, I suspect this is not a
serious issue. Indeed, this difference may be more apparent than real: it may
well be possible to take the Feynman calculus for one generation exactly as
it is, and then to use jγ5 and kγ5 for the second and third generations, in
place of γ5.

There is complete symmetry amongst these three elements of the Clif-
ford algebra, that is slightly obscured by the conventional notation. If we
write them instead as iγ0γ1γ2γ3, −kγ0γ1γ2γ3 and jγ0γ1γ2γ3, the symmetry
becomes obvious. It may therefore be possible to use these three elements
of the larger algebra to define three different copies of the Dirac algebra,
suitable for modelling the three generations of fermions. Since the symmetry
group here is the symmetry group of the quaternions, if we choose i, j, k as a
basis suitable for the three generations of electrons, then we can change basis
arbitrarily in order to implement another basis suitable for the quarks. With
this choice of notation, the electron generation symmetry can be expressed
explicitly by the element (−1 + i + j + k)/2.

There is also no clearcut answer to the question whether we should use
compact SU(2) or split SL(2,R) or complex SL(2,C) as the gauge group.
This ambiguity also exists in the standard model, so again, there should not
be a problem with this. Indeed, the groups themselves play a rather minor role
in the theory: it is the Clifford algebra where all the calculations take place. It
is clear, I think, that electro-weak mixing can be expressed mathematically,
not as a process of ‘mixing’ groups together, or mixing Lie algebras together,
but as a process of choosing bases for the matrix algebra to turn it into one
or more Clifford algebras. This viewpoint has some consequences for how to
think about gauge groups in the general case. Although they may sometimes
appear in the formalism as groups or Lie algebras, it is certainly possible
that these mathematical objects are secondary to a primary manifestation as
a Clifford algebra.

3.2. Spin Groups

The ordinary spin group Spin(3) ∼= SU(2) is generated as a Lie group by
γ1γ2, γ2γ3 and γ3γ1. The corresponding algebra can be regarded either as
the even part of C�(3, 0), generated by iγ1, iγ2, iγ3, or as the even part of
C�(0, 3), generated by γ1, γ2, γ3. The algebra C�(3, 0) is isomorphic to the
algebra of all 2 × 2 complex matrices, and therefore contains a subgroup
SL(2,C) that is isomorphic to, but not equal to, the relativistic spin group.
I do not know if this copy of the group SL(2,C) has any reasonable physical
interpretation.
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The algebra C�(0, 3), on the other hand, is the direct sum of two copies
of the quaternion algebra. Generators for these two copies may be taken as:

γ1 + γ2γ3, γ2 + γ3γ1, γ3 + γ1γ2;
γ1 + γ3γ2, γ2 + γ1γ3, γ3 + γ2γ1. (8)

They therefore have a fairly obvious interpretation as left-handed and right-
handed spins. Exponentiating these generators in the usual way we obtain
two copies of SU(2), one left-handed and one right-handed. These two copies
of SU(2) intersect trivially, and therefore they generate a copy of Spin(4).

The same effect is achieved in the standard model using C�(4, 0) gener-
ated by γ0, iγ1, iγ2, iγ3, with pseudoscalar element γ5. Here the full Clifford
algebra is a 2 × 2 quaternion matrix algebra, and the even part is the sum of
two quaternion algebras, which can be separated by the projections with the
idempotents (1 ± γ5)/2. The generators can be taken as

γ1γ2 + iγ0γ3, γ2γ3 + iγ0γ1, γ3γ1 + iγ0γ2;
γ1γ2 − iγ0γ3, γ2γ3 − iγ0γ1, γ3γ1 − iγ0γ2. (9)

The obvious question that occurs to an algebraist [38] at this point is whether
the extra complications in the standard model are actually necessary, if the
same effect can be achieved with the simpler mathematical machinery pre-
sented above? That is, can we take the same spin terms as always, γ1γ2 and
so on, but project with (1 ± γ1γ2γ3)/2 without the extra factor of iγ0? I do
not pretend to provide an answer to this, I merely ask the question.

The relativistic spin group Spin(3, 1) ∼= SL(2,C) can be obtained either
from the even part of C�(3, 1), generated by iγµ for μ = 0, 1, 2, 3, or from the
even part of C�(1, 3), generated by the γµ themselves. The algebra C�(3, 1)
is isomorphic to the 4 × 4 real matrix algebra, while C�(1, 3) is isomorphic
to the 2 × 2 quaternion matrix algebra, and the even part in both cases is
isomorphic to the 2 × 2 complex matrix algebra. In both cases the pseu-
doscalar is γ0γ1γ2γ3, which squares to −1. Hence there are no projections
onto left-handed and right-handed spins as such, but in the standard model
this distinction is made instead by complex conjugation. This is done by ex-
tending the Clifford algebra either from C�(3, 1) to C�(4, 1), or from C�(1, 3)
to C�(2, 3). Or, equivalently, complexifying the Clifford algebra.

So again, the question that occurs to an algebraist is, is this extension
really necessary, or is there already enough information in the odd part of
C�(3, 1) or C�(1, 3)? In both cases, the Clifford algebra provides the necessary
symmetry-breaking, either by choosing a copy of the complex numbers in-
side the quaternions, or by imposing a complex 2-space structure onto a real
4-space. The discussion in this section suggests that the algebra C�(1, 3) pro-
vides a closer link to experimental properties of left-handed and right-handed
spin, while the standard model is somewhat ambivalent.

3.3. The Mass Term in the Dirac Equation

In the standard model Clifford algebra, whether it is regarded as C�(4, 1) or
C�(2, 3) or C�(0, 5), the pseudoscalar term is always i. This pseudoscalar is
conventionally used for the mass term in the Dirac equation. But it may not
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be the most natural choice. The Dirac equation was modelled on a factorisa-
tion, into two linear factors, of Einstein’s equation

m2c2 = −p2 + E2/c2, (10)

in that particular form, rather than, for example,

E2/c2 = m2c2 + p2. (11)

If the mass term is a scalar, then any re-arrangement of the equation intro-
duces unphysical cross-terms in the squaring process, so is not possible. But
the symmetrical form

m2c2 + p2 − E2/c2 = 0 (12)

suggests that we should really be looking at a group SO(4, 1), and therefore
the Clifford algebra C�(4, 1), with generators iγµ for the energy and momen-
tum terms, and therefore γ5 for the mass term. This is consistent with the
earlier observation (Sect. 3.1) that extending to three generations of fermions
seems to force the roles of i and iγ5 to be interchanged.

Indeed, if we want to extend to a larger Clifford algebra in order to
incorporate the three generations of fermions, then i is no longer a natural
choice for pseudoscalar. The discussion so far has suggested either γ0 or γ5

as pseudoscalar, with a preference (see Sect. 3.1) for γ0. The question really
is whether (rest) mass (γ5) or (total) energy (γ0) is a better choice for pseu-
doscalar. One has to make a choice on physical, not mathematical, grounds.
Experiment makes it clear that mass is not conserved in the weak interaction,
while the whole of physics relies on the principle of conservation of energy.
This suggests that taking γ0 as the pseudoscalar may ultimately result in a
more fundamental theory.

The current suggestion for generators for the quaternionic Dirac alge-
bra is as follows, in two different notations, the second, more cumbersome,
notation exhibiting the symmetry between the three generations of fermions:

γ1, γ2, γ3, γ5, jγ5, kγ5;
γ1, γ2, γ3, iγ0γ1γ2γ3, jγ0γ1γ2γ3, kγ0γ1γ2γ3. (13)

This version has pseudoscalar γ0, which contrasts with the pseudoscalar iγ5

in the standard model Dirac algebra C�(3, 1). This change of pseudoscalar
has the effect that the relativistic spin group SL(2,C), defined in terms of
γ1, γ2, γ3, γ0, does not lie inside the copy of Spin(3, 3) defined by this C�(3, 3)
structure.

Instead, inside Spin(3, 3) there are three copies of SL(2,C), one for
each generation, each acting on the 6-vector representation of SO(3, 3) as a
Minkowski 4-vector plus two scalars. In particular, these Minkowski spaces
cannot be interpreted as spacetime or 4-momentum representations. This is
in contrast to many approaches, such as [4], in which the identification of
two distinct copies of SL(2,C) entails a counter-intuitive hypothesis of 3-
dimensional time in order to incorporate the three generations. I have no
need of this hypothesis, since I distinguish between four explicit copies of
SL(2,C) rather than three, and thereby distinguish between one dimension
of energy/time and three dimensions of generations/mass.
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Now it is worth pointing out that SO(3, 3) contains three distinct con-
jugacy classes of subgroups isomorphic to SO(3, 1), one of which contains the
three ‘generation’ copies just discussed. There is another class obtained by
fixing a direction of spin, for example by choosing just one of γ1, γ2, γ3 to lie
in the associated Clifford algebra. These also have Minkowski 4-space repre-
sentations in the 6-vector, but with the opposite signature. The third class
is quite different, as it has a Minkowski 4-space representation in the spinor
representation of Spin(3, 3) instead, and a complex 3-vector in the 6-vector
representation.

As far as I am aware, this third class of SO(3, 1) is not used in particle
physics, although in general relativity it is identified with the Lorentz group.
In other words, the two subjects do not agree about which mathematical copy
of SO(3, 1) to call the Lorentz group. I believe this may be one important
source of difficulty in unification. Current theories only accept the existence
of one group SO(3, 1) in physics, whereas a careful mathematical analysis
suggests there are many, and they need to be carefully distinguished. This
separation of four physically different copies of SO(3, 1) is something I have
not seen in other models, and it may have some important consequences,
which are discussed further in Sects. 5.1 and 5.4.

At this point, however, we are not concerned with unification. I have
made a proposal for embedding the electro-weak gauge groups and the spin
groups into the quaternionic Dirac algebra C�(3, 3), and the stage is set for at-
tempting to reproduce the rest of the standard model, with three generations
of fermions, and including the mixing angles and other parameters. Obtain-
ing the values of the parameters is not a matter of algebra, but obtaining a
classification of the parameters is.

4. The Structure of the Clifford Algebra

4.1. Undetermined Parameters

There are some parameters within the algebra C�(3, 0), that describes electro-
weak unification. These parameters include one that describes the breaking
of the symmetry within SU(2), and three that describe how the pseudoscalar
U(1) mixes with the three dimensions of SU(2).

The remaining parameters describe how C�(3, 0) relates to C�(0, 3). The
latter has 8 dimensions in total, but under rotation symmetries of space
these reduce to 4 different types, in degrees 0, 1, 2 and 3. The degree 0 is
the identity element of the algebra, so cannot mix with anything. Similarly,
C�(3, 0) has 8 dimensions, and since the symmetry is broken, all 7 non-identity
elements participate individually in the mixing. Hence there are 3 × 7 = 21
more parameters, making a total of 4 + 21, exactly the number required for
the standard model, according to some counts at least. The 25 parameters
consist of 5×3 mass terms, for 12 fermions and 3 bosons, 3+1 mixing angles
each from the Cabibbo–Kobayashi–Maskawa (CKM) matrix [3,20] and the
Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix [22,29], plus the fine-
structure constant and the strong coupling constant.
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The main group of 21 parameters splits under electroweak symmetries,
according to my suggestion, into 3 sets of 3+3+1, of which one may contain
lepton masses, and one quark masses, leaving the other to contain 3 + 3 + 1
of the 3 + 1 + 3 + 1 mixing angles. The other two scalars here, I suggest,
might be the fine-structure constant (to go with the lepton masses) and the
strong coupling constant (to go with the quark masses). That leaves the
electroweak group of four parameters as the three boson masses (Higgs, Z
and W ), together with the last mixing angle, which may be the CP-violating
phase in the CKM matrix. This proposed allocation of parameters may not be
exactly correct, of course, but it shows that the overall pattern of parameters
matches closely to the standard model.

In a little more detail, we can label the 3×7 parameters with products of
γ3, γ1γ2, γ1γ2γ3 with i, j, k, γ5, iγ5, jγ5, kγ5, and the remaining four with the
products of γ5 with 1, i, j, k. In the main block of 3× 7 parameters, the i, j, k
symmetry is a generation symmetry for fermions, while in the remaining four
it represents the broken symmetry 1, k, j of the weak interaction, since there
is a hidden multiplication by i in the theory.

4.2. A Quaternionic Notation

Since the notation inherited from Dirac obscures some of the symmetries, in
particular the generation symmetry, I suggest an alternative notation. The
algebra C�(1, 3) is the algebra of 2 × 2 quaternion matrices, so is the tensor
product of quaternions with 2× 2 real matrices. Let us take i′, j′, k′ for these
quaternions, and represent them as 4 × 4 matrices acting on quaternions by
left-multiplication by −i,−j,−k, commuting with right-multiplications by
i, j, k already defined. Then take 2 × 2 real matrices

I :=
(

0 1
−1 0

)
, J :=

(
0 1
1 0

)
, K := IJ =

(
1 0
0 −1

)
. (14)

Then we can take Dirac matrices as generators, defined as follows:

γ1 := Ji′, γ2 := Jj′, γ3 := Jk′, γ0 := K. (15)

Our chosen copy of C�(0, 3) is then generated by Ji′, Jj′, Jk′, and our
chosen copy of C�(3, 0) by Ii, Ij, Ik. Space symmetry is described by i′, j′, k′,
and generation symmetry by i, j, k. The pseudoscalar elements of these two
subalgebras and the whole algebra are

J = −γ1γ2γ3, I = iγ5, K = γ0 (16)

respectively. One then sees the breaking of symmetry between the three gen-
erations in the choice of γ5 = −Ii in the standard model.

The even part of the algebra corresponds to the diagonal matrices 1
and K, while the odd part corresponds to the off-diagonal matrices I and
J . The ordinary spin group SU(2) is generated by i′, j′, k′, and extends to
the relativistic spin group generated by Ii′, Ij′, Ik′. The weak gauge group
appears either as SU(2) generated by i, j, k, or as SL(2,R) generated by
i, Ij, Ik, with a commuting copy of U(1) generated by I. In particular, we
have separated two concepts of complexification: one with I and one with i.
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These two are mixed together in the standard model, in a way that depends
on the choice of the first generation of fermions as special.

To describe the 25 parameters, we must choose an arbitrary direction
in space, say the k′ direction, corresponding to the conventional choice of the
z direction in which to measure spin. Then we must mix the three elements
J, k′, Jk′ in C�(0, 3) with the seven elements i, j, k, I, Ii, Ij, Ik in C�(3, 0). The
remaining four parameters are perhaps best thought of as lying in i, Ii, Ij, Ik,
and the whole system of 25 parameters can then be arranged as follows:

i Ii Ij Ik
Ji Jj Jk Ki Kj Kk K
k′i k′j k′k Ik′i Ik′j Ik′k Ik′

Jk′i Jk′j Jk′k Kk′i Kk′j Kk′k Kk′
(17)

The second row of parameters does not have a momentum direction k′,
and the first six of them are rotations, and contain generation labels i, j, k,
so could reasonably be interpreted as the mixing angles between the three
generations in the CKM and PMNS matrices. At a guess, Ji, Jj, Jk lie in the
CKM matrix, and Ki,Kj,Kk in the PMNS matrix, although speculation on
such details is rather pointless at this stage. The first six elements in each of
the bottom two rows have momentum and generation labels, and 9 of them
are boosts, so could reasonably be interpreted as 9 of the 12 fundamental
fermion masses. The remaining 3 are rotations, so perhaps represent the so far
undetected neutrino masses, or some other generation-dependent property.

Of the remaining 7 parameters, two are rotations, and I tentatively sug-
gest i to hold the CP-violating phase of the CKM matrix, and Kk′ to hold the
CP-violating phase of the PMNS matrix. This leaves five boosts, K, Ik′, Ii,
Ij and Ik, to hold the remaining three masses and two coupling constants. A
reasonable guess might be that those involving I are electroweak parameters,
and K is a strong force parameter, therefore the strong coupling constant.
Perhaps Ik′ is the fine structure constant, and the remaining three the masses
of the Higgs, Z and W bosons. But electroweak symmetry-breaking may sig-
nificantly complicate this picture.

4.3. Even and Odd

The even part of C�(3, 3) consists of degrees 0, 2, 4 and 6, with dimensions 1,
15, 15 and 1 respectively. Bases are as follows, arranged with degrees 0 and
4 in the first block, and degrees 2 and 6 in the second:

1 Ki Kj Kk

Ki′ i′i i′j i′k
Kj′ j′i j′j j′k
Kk′ k′i k′j k′k

,

K i j k

i′ Ki′i Ki′j Ki′k
j′ Kj′i Kj′j Kj′k
k′ Kk′i Kk′j Kk′k

(18)

Neither block is closed under the Clifford multiplication, but the first block is
closed under Jordan multiplication AB +BA, and the second is closed under
Lie multiplication AB − BA. Indeed, the Lie bracket converts the degree 2
part of the algebra into the Lie algebra of Spin(3, 3). Exponentiating the
elements of degree 2 therefore gives (the canonical copy of) Spin(3, 3). This
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is the only copy of Spin(3, 3) that preserves the Clifford algebra structure
under its action by conjugation.

The pseudoscalar K defines two orthogonal central idempotents, namely
(1±K)/2, in the even part of the Clifford algebra. The corresponding projec-
tions map onto two 16-dimensional subalgebras, each of which is isomorphic
to the full 4 × 4 real matrix algebra. Since

(1 + K)(1 − K) = 0 (19)

each subalgebra annihilates the other. In particular, each algebra contains a
copy of SL(4,R) that acts on only half of the 8-dimensional real spinor. These
subgroups may be useful for physics, but it must be stressed that they do
not preserve the Clifford algebra structure, and therefore they unavoidably
break a great deal of symmetry. They do, however, preserve the distinction
between the even and odd parts of the Clifford algebra.

The odd part of the algebra splits into degrees 1, 3 and 5, with dimen-
sions 6, 20 and 6 respectively. Degrees 1 and 5 have bases

Ji′, Jj′, Jk′, Ii, Ij, Ik;
Ii′, Ij′, Ik′, Ji, Jj, Jk (20)

respectively. As a representation of Spin(3, 3), the degree 3 part splits into
a dual pair of 10-dimensional real representations. These are obtained by
multiplying the 10 elements

1
i′i i′j i′k
j′i j′j j′k
k′i k′j k′k

(21)

by J + I and J − I respectively. This splitting corresponds to the splitting
into the top-right and bottom-left 4 × 4 blocks of the 8 × 8 matrices.

Now

(J ± I)2 = 0, (J + I)(J − I) = 2(1 + K), (J − I)(J + I) = 2(1 − K)
(22)

so that each of these two 10-spaces has Clifford product identically zero. Their
product in one order gives one projection of the even part of the algebra, and
their product in the other order gives the other projection.

4.4. A Change of Signature?

The unification of space and time in special relativity mixes momentum
(which we might associate with Ji′, Jj′, Jk′, in the odd part of the Clif-
ford algebra) with energy (associated with K, in the even part). Similarly,
the unification of the electroweak interactions mixes i, j, k in the even part
with I in the odd part. In other words, both these unifications require groups
that extend into the odd part of the Clifford algebra.

This might mean that the Clifford algebra that I have suggested is irrel-
evant for physics. Or it might mean that the relationship between different
Clifford algebra structures may throw some light on the process of symmetry-
breaking. In particular, the necessity for using the odd part of the algebra for
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part of the relativistic spin group (conventionally identified with the Lorentz
group), and for part of the electro-weak gauge group, suggests the possibility
that the strong gauge group SU(3) may also lie partly in the odd part of the
algebra.

Alternatively, we may prefer to change our choice of Clifford algebra
structure to try to bring the standard model symmetries into the even part
of the algebra. Essentially, we have to make I even and K odd. One way to
do this is to choose the following generators, given in both notations:

γ1, γ2, γ3, iγ0, jγ0, kγ0;
Ji′, Jj′, Jk′,Ki,Kj,Kk. (23)

This has the effect of changing the signature to (0, 6), and the pseudoscalar
to I or iγ5, and changing the spin group to Spin(6) ∼= SU(4).

There are now two obvious ways to collapse the Clifford algebra from a
6-space to a 4-space, by multiplying together either the first three generators
or the last three. Both give copies of C�(1, 3). One of these has generators
equal to the original gamma matrices, and the corresponding spin group
Spin(1, 3) is the usual relativistic spin group. The other one has generators
iγ0γ5, iγ0, jγ0, kγ0, and the corresponding spin group is generated by

i, j, k, γ5, jγ5, kγ5. (24)

Hence it describes electro-weak mixing in exactly the same way as I have
already suggested (Sect. 3.1). Both collapsed Clifford algebras have pseu-
doscalar iγ5.

There is also an obvious copy of U(3) inside the spin group, generated
as a Lie group by the 9 elements

i + i′, Ii′i, I(j′k + k′j),
j + j′, Ij′j, I(k′i + i′k),
k + k′, Ik′k, I(i′j + j′i).

(25)

The scalar copy of U(1) is generated by I(i′i + j′j + k′k), and SU(3) is
generated by the orthogonal complement of this. There are other choices of
SU(3), but this is the most symmetrical.

Now comes the problem of interpreting the group SU(3) constructed
here. It is hard to support an interpretation as the gauge group of the strong
interaction, since the mathematical properties of this copy of SU(3) are not
the same as those of the gauge group in the standard model. In particular, it
does not commute with the relativistic spin group, generated by

i′, j′, k′, Ii′, Ij′, Ik′, (26)

and thereby violates the Coleman–Mandula theorem. Moreover, it does not
commute with the weak gauge group generated by i, j, k. The only things
it does commute with in the even part of the algebra are two copies of the
complex numbers, generated by I and I(i′i + j′j + k′k).

Nevertheless, this copy of SU(3) may repay further study, so let us
investigate its action on the Clifford algebra in more detail. We have already
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seen the adjoint representation and a scalar in degree 2, and the rest of the
degree 2 part is a 6-dimensional real representation on the generators

i′ − i, j′ − j, k′ − k,

I(j′k − k′j), I(k′i − i′k), I(i′j − j′i). (27)

The latter can be given the structure of a complex 3-space, using the natural
scalar I(i′i+j′j+k′k). The degree 4 part consists of equivalent pieces 8+1+6,
just multiplied by the pseudoscalar I. In degrees 1 and 5 we again see copies
of the 6-dimensonal real representation, and again there is a natural complex
structure defined by I(i′i + j′j + k′k).

In degree 3, however, there are two natural complex structures, defined
by I and I(i′i+ j′j + k′k). Both give this 20-dimensional space the structure
of a complex 10-space, breaking into irreducibles as 1 + 3 + 6. The complex
scalars are contained in J and K times (1 + i′i + j′j + k′k). The 3-space
consists of the anti-symmetric part

J(j′k − k′j), J(k′i − i′k), J(i′j − j′i),

K(j′k − k′j),K(k′i − i′k),K(i′j − j′i), (28)

and the 6-space consists of the symmetric part

J(3 − i′i − j′j − k′k), J(i′i − j′j), J(j′j − k′k),

J(j′k + k′j), J(k′i + i′k), J(i′j + j′i),

K(3 − i′i − j′j − k′k),K(i′i − j′j),K(j′j − k′k),

K(j′k + k′j),K(k′i + i′k),K(i′j + j′i). (29)

All of this structure is manifest in the quaternionic Dirac algebra, and
therefore must surely have a sensible interpretation in physics. But it seems
quite clear that this copy of SU(3) cannot be sensibly interpreted as the
gauge group of quantum chromodynamics (QCD). So what is it?

5. Prospects for Unification

5.1. Mass Versus Energy

Mathematically, the distinction between C�(3, 3) and C�(0, 6) is most evident
in the distinction between using I or K as pseudoscalar, that is, in physics
notation, the distinction between iγ5 and γ0. Physically this corresponds to a
distinction between symmetry groups for which mass is a scalar, and those for
which energy is a scalar. Roughly speaking, mass is a scalar in the theories
of special relativity and (classical) electromagnetism, as well as quantum
electrodynamics and quantum chromodynamics, while energy is a scalar in
general relativity, and in the theory of the weak interaction.

The former (QED and QCD) are the quantum interactions for which
the gauge bosons are massless. The gauge groups U(1) and SU(3) therefore
embed in the spin group Spin(0, 6) ∼= SU(4) which is the subgroup of the
Clifford algebra that fixes the mass coordinate. But these groups do not
necessarily commute with each other. The group U(1) maps onto a subgroup
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U(1) of SU(3), or more generally of U(3), and this subgroup is defined by a
3×3 unitary matrix, that appears in the standard model as the CKM matrix.

In the weak interaction, on the other hand, the gauge bosons are mas-
sive, so that the gauge group does not act on mass as a scalar, but instead
acts on energy as a scalar. Hence the gauge group SU(2) embeds instead in
the spin group Spin(3, 3) ∼= SL(4,R) that fixes the energy coordinate. Now
the Pati–Salam model extends the gauge group SU(2) ∼= Spin(3) acting on
three coordinates to Spin(4) ∼= SU(2) × SU(2)

acting on all six. The Clifford algebra formalism identifies the two scalars
here, so that the group Spin(4), which is not a subgroup of SL(4,R), is
replaced by SO(4), which is. In other words, the Pati–Salam model in effect
uses both Clifford algebra structures C�(0, 6) supporting SU(4), and C�(3, 3)
supporting SO(4) inside SL(4,R). But the model does not address the issue of
symmetry-breaking, which arises from embedding both groups into SL(8,R),
by identifying the two Clifford algebras as being two different ways of looking
at the same thing.

Similarly, in general relativity, in theory energy is a scalar (conserved,
but not necessarily invariant), so that the relevant group is SL(4,R), but most
formulations assume that mass is a scalar (both invariant and conserved),
which breaks the symmetry down to SO(3, 1). Now, in a flat spacetime it is
not possible for both mass and energy to be scalars, and therefore general
relativity incorporates a curvature of spacetime in order to solve this problem.
On the other hand, if one abandons the assumption that mass is a scalar,
which we must do in the case of the weak interaction anyway, then it may
be possible to construct a version of general relativity in a flat spacetime,
with gauge group SL(4,R), in such a way that the curvature of spacetime is
replaced by variations in rest mass between different observers, accelerating
with respect to each other.

In this way, C�(3, 3) and the associated group Spin(3, 3) ∼= SL(4,R)
can potentially describe all the theory that one sees if one assumes that
energy is a scalar, including the weak interaction, and a theory of gravity
that reduces to general relativity in the limit that rest masses can be treated
as constants; while C�(0, 6) and the associated group Spin(0, 6) ∼= SU(4) can
describe all the theory one sees if one assumes that mass is a scalar, including
electrodynamics and the strong interaction.

Any unified theory that uses a Clifford algebra must reconcile this differ-
ence in viewpoint in some way, either by choosing one or the other of mass and
energy to be a scalar and allowing the other to vary, or by providing a trans-
lation between the two. This fact is already evident in the unification of QED
(with scalar mass) and the weak force (with scalar energy). The translation
between the two is expressed in the standard model by a symmetry-breaking
that arises from treating both mass and energy as scalars simultaneously.
This symmetry-breaking is parametrized by an angle, known as the Wein-
berg angle, which necessarily changes as the relationship between mass and
energy changes, as indeed has been observed experimentally.

In terms of both physical principles, and experimental reality, it surely
makes more sense to treat energy as a scalar, rather than mass. This is already
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done very effectively in the theory of the weak interaction. But this can only
be done by breaking the symmetry groups that rely on mass being a scalar.
In particular, this requires breaking the Lorentz symmetry group SO(3, 1)
down to SO(3), and for QCD the group SU(3) is broken down to nothing
using the CKM matrix.

5.2. The Strong Gauge Group

If it is really possible to include all the unexplained parameters of the stan-
dard model inside the quaternionic Dirac algebra C�(3, 3), then this algebra
must effectively contain the gauge group SU(3) of the strong force as well.
But there are some serious mathematical problems with such a proposal, as
this Clifford algebra is simply not big enough to contain a commuting prod-
uct of all the gauge groups and the relativistic spin group. The only copies
of SU(3) that are available break the symmetry significantly.

But we have already seen, in the case of electro-weak mixing, that the
Clifford algebra imposes a symmetry-breaking that is not obvious in the stan-
dard model, so maybe the same is true for the mixing of the strong force with
the electroweak forces. The triplet colour symmetry is unobservable, and the
only available place to put it is in the triplet γ1γ2, γ2γ3, γ3γ1 that is indepen-
dent of the 25 significant parameters. This unavoidably identifies colour as
being essentially the same thing as the direction of spin. The direction of a
quark spin is surely not measurable, at least in practice, if not in theory. The
possible directions, moreover, form a 2-parameter family, consistent with the
property of colour confinement.

From a mathematical point of view, there is little prospect of linking
the gauge group SU(3) of quantum chromodynamics (QCD) as a theory of
the strong force to a subgroup SU(3) of the Clifford algebra. The alternatives
therefore seem to be either to keep the gauge group outside the Clifford alge-
bra completely, as in the standard model, or to try to re-write the formalism
in terms of the 8-dimensional subalgebra C�(0, 3), generated by γ1, γ2, γ3,
rather than the 8-dimensional group SU(3). I have no idea whether this is
possible, and therefore leave this as an open problem. It seems to require
a rather radical re-interpretation of the strong force as being not so much
a force as a quantisation of space itself. Such an interpretation is certainly
unconventional, but is perhaps hinted at by the phenomenon of asymptotic
freedom [18,28].

A more conventional approach would be to take the direct product of
all the gauge groups and the spin group

U(1) × SU(2) × SU(3) × SL(2,C) (30)

and embed it in the real group

SO(2) × SO(4) × SO(6) × SL(4,R) (31)

so that there is an obvious 16-dimensional real representation. Thus the group
can be embedded in a Clifford algebra of an 8-dimensional space with signa-
ture (8, 0), (5, 3), (4, 4), (1, 7) or (0, 8). A breaking of symmetry into 2+6 and
4 + 4 can be accommodated in C�(4, 3) or C�(0, 7). Alternatively, a breaking
of symmetry to incorporate the complex structure can be accommodated in
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C�(7, 0), C�(5, 2), C�(3, 4) or C�(1, 6). All of these approaches, however, in-
troduce a large number of extra parameters whose meanings and values still
have to be explained.

5.3. Further Remarks

The suggested splitting of the 6-vector representation as 3 + 1 + 2 keeps
C�(0, 3) intact, but splits C�(3, 0) into C�(1, 0) and C�(2, 0). A slightly closer
match to the standard model splitting into SU(3), U(1) and SU(2) can be
obtained by reversing the signatures, so that C�(0, 3) splits into C�(0, 1) and
C�(0, 2), which are the complex numbers and quaternions, respectively. Hence
we have obvious groups U(1) and SU(2), as subgroups of the group Spin(4)
that lies inside C�(0, 3). The other half of the algebra is then C�(3, 0), the
algebra of all 2 × 2 complex matrices, as a real 8-dimensional algebra to
replace the real 8-dimensional group SU(3). The group that we actually get
is, however, GL(2,C), also 8-dimensional as a real Lie group, with a normal
subgroup SL(2,C), that is isomorphic to, but distinct from, the relativistic
spin group of Dirac. From a mathematical point of view, I cannot see any
strong argument for adopting this reversal of signature, but it is possible
there are good physical arguments for it.

It is also interesting to consider the Georgi–Glashow model [16] in this
context. They unified 3+2 into 5, and because they were working with unitary
groups, they used SU(5) for unification of SU(2) and SU(3). But this group
has dimension 24, and turned out to be too big, as it contains extra gauge
bosons that cause proton decay, a phenomenon that has never been observed
experimentally. If instead we unify Clifford algebras C�(2, 0) and C�(0, 3),
then we obtain instead C�(2, 3), that is isomorphic to the Dirac algebra. The
largest group that could possibly be relevant here is the general linear group
GL(4,C) of (complex) dimension 16. This group is small enough to avoid the
problem of proton decay, since it contains 13 dimensions for the standard 13
bosons, plus 3 dimensions for the spin group itself.

A final remark on chirality is in order. The suggestion to use iγ5 as
a generator for the electromagnetic U(1), rather than i, is affected by the
fact that iγ5 anti-commutes with γµ for μ = 0, 1, 2, 3. This implies that
electromagnetism does not have a chirality, since the sign of γ1γ2γ3 is not well-
defined. On the other hand, the weak SU(2) generated by i, j, k commutes
with these γµ. This implies that the weak force does have a chirality, as
is experimentally observed [48], since it distinguishes between γ1γ2γ3 and
its negative. Our choice of possible generators for the strong force algebra
suggests that the strong force also should not have a chirality, since the γµ
anti-commute with each other.

5.4. Possible Relationships with Gravity

At a philosophical level, the suggestion that the strong force is essentially
describing the quantum structure of space relates closely to Einstein’s ap-
proach [8,9,36] to gravity, namely that gravity is not so much a force as a
description of the shape of spacetime on a macroscopic scale. At a physical
level, on the other hand, it seems much more likely to be the weak force
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that is responsible for curvature of spacetime, via the conversion of mass into
neutrinos and antineutrinos. Perhaps the real story involves both, and might
therefore require a new understanding of weak-strong mixing. At a mathe-
matical level, the use of C�(3, 3) and the spin group Spin(3, 3) ∼= SL(4,R)
may possibly be related to the use of GL(4,R) in some modern approaches
to general relativity [19,21]. But these superficial observations are a far cry
from actually unifying the theories of general relativity and particle physics.
A major stumbling block that I have already mentioned is the fact that it is
mathematically impossible in this context to identify the group that is called
the Lorentz group in particle physics with the group that is called the Lorentz
group in general relativity.

It may therefore be impossible to build a unified theory on this basis.
At the very least, one would have to contemplate the possibility that the
relationship between these two ‘Lorentz groups’ should be downgraded from
an equality to a mere analogy, as in the original work of Dirac. A first re-
mark is that in C�(3, 3) there are many ways to find two copies of SL(4,R)
that commute with each other. Therefore one could in principle use one copy
of SL(4,R) for particle physics and the other for general relativity, simply
placed side-by-side and not interacting with each other. Neither copy is equal
to the spin group Spin(3, 3), and neither of them respects the Clifford alge-
bra structure, but they are obtained by suitable projections, defined by the
pseudoscalar.

One could try to use the standard particle physics projections with
1 ± γ5, but the discussion in this paper suggests that projections with 1 ± γ0

are likely to be more useful in this context. This reflects the fact that general
relativity describes a gravity that depends on total energy (γ0) rather than on
rest mass (γ5). If one tries to use both pairs of projections together, one runs
into problems because γ0 and γ5 do not commute with each other. Whatever
choice of projections we make, the splitting of C�(3, 3) into two copies of 4×4
real matrices is a symmetry-breaking down to C�(3, 2). Further symmetry-
breaking down to a single copy of 4×4 real matrices can be achieved by going
to C�(3, 1) or C�(2, 2).

I have no idea whether it is actually possible to incorporate general
relativity into C�(3, 3) in this way. If it is, then there is an overlap between
the parts of the algebra that are used for particle physics and those that are
used for gravity. Such an overlap is not part of current mainstream thinking,
but has been considered at various times by Einstein [7], Sachs [31], Penrose
[27] and others [43].

An alternative approach, more in line with mainstream ideas, is to go
to a bigger Clifford algebra, so that this overlap can be avoided. For example,
C�(4, 3) is the sum of two copies of 8 × 8 real matrices, which permits one
copy to be used for C�(3, 3) to model particle physics, and the other to act on
four dimensions of spacetime and four dimensions of energy-momentum, to
describe classical physics and general relativity. Possibly it might be useful to
go further, to C�(4, 4), in order to have enough room for the standard model
strong gauge group SU(3).
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6. Conclusion

In this paper, I have explored the subgroups of many small Clifford algebras
in sufficient detail to conclude that C�(3, 3), on the generators γ1, γ2, γ3, γ5,
jγ5 and kγ5, with pseudoscalar γ0, is the closest match among the Clifford
algebras to the algebraic foundations of the electro-weak part of the standard
model of particle physics. I have shown that it incorporates the three gen-
erations of fermions, indexed by quaternions i, j, k, in the minimal possible
way, consistent with the experimental properties of electrodynamics and the
weak interaction.

The algebra C�(3, 3) also contains something that looks a bit like the
strong force, but is implemented with the 8-dimensional Clifford algebra
C�(0, 3), with generators γ1, γ2, γ3, rather than the 8-dimensional Lie group
SU(3), which can only be implemented with a change of signature to C�(0, 6).
This change of signature can be implemented within the real algebra, how-
ever, and does not require the complex algebra C�(6) that is used in other
approaches to this problem. The main mathematical technique employed is
to use the structures of the various Clifford algebras to describe symmetry-
breaking within the underlying matrix algebras.

It is certainly not clear whether a model of this type can be used in place
of the standard model formalism, since the embedding of the strong force is
very different from its embedding in the standard model. Further work will be
required to determine whether the proposals made here are consistent with
experiment, since they are clearly inconsistent with the generally accepted
theory. The justification for not rejecting the proposals immediately on these
grounds lies in the potentially huge benefits if this difficulty can be overcome.

Not only are the three generations incorporated into the algebra in a
natural rather than artificial manner, but so are all the unexplained param-
eters. If the model can be endowed with some actual numerical values that
explain some of these parameters, or relationships between them, then there
may be much to be gained from this approach. Some rather speculative ideas
along these lines are presented in [44,45], but without any particularly rigor-
ous mathematical or physical justification.

Further unification with general relativity is hinted at by the coincidence
of two groups, both isomorphic to SL(4,R). This coincidence suggests the
possibility of using either the Clifford algebra C�(3, 3) or perhaps a larger
Clifford algebra such as C�(4, 3) or C�(4, 4) to include models of both particle
physics and gravity. I make no attempt to build such a model, and again
there may be good physical reasons why such a model cannot exist. But if
such a model can be built, then there is a possibility that some gravitational
parameters can be related to some parameters of particle physics in a way
that current theories do not support. If so, then these relationships might,
in principle at least, be exploited to explain things that the current models
cannot explain.

More speculatively still, a theory of quantum gravity built on such a
relationship might be able to explain the geometrical aspects of general rela-
tivity in terms of a more fundamental algebraic structure. Clifford algebras on
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their own, however, do not contain any obvious natural method of quantisa-
tion, or discretisation. For such purposes one needs at some stage to introduce
finite groups into the algebra, whether this is done by reducing from a Lie
group to its Weyl group, as in the standard model, or by some other process.
One possibility that is rarely, if ever, considered, is to begin with a finite
group, and build the Lie groups, Lie algebras, Clifford algebras and so on
from them, rather than the other way round. This possibility is explored in
various different ways in [40–42,46].
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