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Résumé

Le Grand Collisionneur de Hadrons (LHC) produit des collisions pp à 7 et 8 TeV depuis
2010 et promet une nouvelle ère de découvertes en physique des particules. L’une de ses
expériences, le "Large Hadron Collider beauty" (LHCb), a été construit pour étudier la
violation de CP dans le système des mésons B. En plus de la physique des mésons B, la
nouvelle physique au-delà du Modèle Standard est également étudiée dans ce spectromètre
à un seul bras. Avec plusieurs sous-détecteurs différents et la bonne résolution du système
de détecteurs de traces, le détecteur du LHCb a la capacité de rechercher les particules
chargées, lourdes et à longue durée de vie qui sont prédites dans les extensions du Modèle
Standard. L’une de ces extensions, le minimal Gauge Mediated Supersymmetry Breaking
(mGMSB), propose une telle particule, nommée stau (τ̃) - le partenaire bosonique du
lepton tau (τ) dans les théories supersymétriques. La théorie prédit que les staus sont
produits par paires dans les collisions pp ou à partir des désintégrations de particules
plus lourdes et qu’ils n’ont que des interactions électromagnétiques avec les atomes du
milieu comme les muons. A l’énergie du LHC, nous espérons que ces particules peuvent
être produites si elles existent vraiment. Et si le taux de leur production est suffisant,
nous aurons la chance de les découvrir au détecteur de l’expérience LHCb, ainsi que dans
les autres expériences du LHC.

Cette thèse est consacrée à la recherche des paires de staus produites dans des collisions
pp aux énergies de centre de masse

√
s = 7 et 8 TeV dans le détecteur LHCb. Dans ce

but, nous avons généré des paires de staus avec sept masses différentes dans l’intervalle
de 124 à 309 GeV/c2 et avons simulé leurs parcours, ainsi que celui de leur bruit de fond
de muons de la désintégration Z0, γ∗ → µ+µ−, dans le détecteur LHCb. En nous basant
sur le résultat de la simulation, un ensemble de coupures est alors défini pour sélectionner
les paires de staus.

Certaines paires de muons à haute énergies passeront aussi les coupures de sélec-
tion. Pour séparer les paires de staus et les paires de muons, des réseaux de neurones
(Neural Network) ont été utilisés. Le premier réseau de neurones a été utilisé pour
distinguer les traces de staus des traces de muons en utilisant leurs signaux laissés dans
les sous-détecteurs : le détecteur au silicium VELO, le calorimètre électromagnétique,
le calorimètre hadronique et les détecteurs RICH. Ensuite, nous avons développé deux
méthodes pour sélectionner les paires de staus : la première méthode est basée sur le
produit des réponses du premier réseau de neurones (NN1) aux traces d’une paire, la
deuxième méthode est d’employer un deuxième réseau de neurones pour séparer les
paires de staus des paires de muons en utilisant le produit des réponses NN1 et la masse
invariante de la paire. Enfin, une région de staus a été définie et les nombres attendus
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vi Résumé

des paires de staus et de muons dans cette région ont été évalués. L’entraînement des
réseaux de neurones a été réalisé avec des variables tirées de la simulation, les réseaux de
neurones entraînés sont ensuite utilisés pour classifier les données.

Les données utilisées dans notre travail ont été collectées par l’expérience LHCb en
2011 et 2012 et correspondent aux luminosités intégrées de 1 fb−1 à

√
s = 7 TeV et de 2

fb−1 à
√
s = 8 TeV. Aucun excès significatif d’un signal de stau n’a été observé.

Les limites supérieures à 95% CL sur la section efficace de production des paires de
staus dans les collisions pp à

√
s = 7 et 8 TeV ont été calculées en utilisant la méthode

de "profile likelihood", dérivée de celle de Feldman et Cousins.

Mots-clés : LHC, LHCb, Modèle Standard, Gauge Mediated Supersymmetry Brea-
king, particules chargées, lourdes et à longue durée de vie, staus.



Abstract

The Large Hadron Collider (LHC) has been producing pp collisions at 7 and 8 TeV since
2010 and promises a new era of discoveries in particle physics. One of its experiments,
the Large Hadron Collider beauty (LHCb) experiment, was constructed to study CP
violation in the B meson system. In addition to B physics, new Physics beyond the
Standard Model can also be searched for at this single-arm forward spectrometer. With
the different sub-detectors and the high resolution of the tracking system, the LHCb
detector has the ability to search for heavy, long-lived and charged particles, which are
predicted by extensions of the Standard Model. One of these extensions, the minimal
Gauge Mediated Supersymmetry Breaking (mGMSB), proposes such a particle, named
stau (τ̃) - the SUSY bosonic counterpart of the heavy lepton tau (τ). The theory proposes
that the staus may be pair-produced in pp collisions or in the decays of heavier particles,
and have only electromagnetic interactions with the atoms of the medium like the muons.
Therefore, we expect that at the energy of the LHC these particles can be produced if
they do exist and that we have a chance to discover them at LHCb, as well as at the
other experiments of the LHC.

This thesis is dedicated to the search for stau pairs produced in pp collisions at the
centre-of-mass energies

√
s = 7 and 8 TeV in the LHCb detector. For this purpose, we

generated the stau pairs with seven different particle masses ranging from 124 to 309
GeV/c2 and simulated their path through the LHCb detector, as well as their muon
background from the decays Z0, γ∗ → µ+µ−. Based on the results from the simulation, a
set of cuts are then defined to select the stau pairs.

Some muon pairs at high energies will also pass the selection cuts. Thus, to separate
the stau pairs from the muon pairs, the Neural Network technique has been used. A first
Neural Network has been used to distinguish the stau tracks from the muon tracks using
their signals left in the sub-detectors: the VELO silicon detector, the electromagnetic
calorimeter, the hadron calorimeter and the RICH detectors. Then, two methods to
select the stau pairs have been developed: the first one is based on the product of the
two responses from the first Neural Network (NN1) for the two tracks, the second one
employs a second Neural Network to separate the stau pairs from the muon pairs by
using the above product of the two NN1 responses and the invariant mass of pair. Finally,
a favourable region for the staus finding has been defined and the expected numbers
of stau and muon pairs in this region have been evaluated. The training of the Neural
Network has been achieved with the Monte Carlo variables, then the trained Neural
Network has been used to classify the data.
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The data used in our work were collected by the LHCb experiment in 2011 and 2012
and correspond to integrated luminosities of 1 fb−1 at

√
s = 7 TeV and of 2 fb−1 at

√
s

= 8 TeV. No significant excess of signal has been observed.

Upper limits at 95% CL on the cross section for stau pair production in pp collisions
at
√
s = 7 and 8 TeV have been computed by using the profile likelihood method, which

is derived from the well known Feldman and Cousins method.

Keywords: LHC, LHCb, Standard Model, minimal Gauge Mediated Supersymmetry
Breaking, heavy long-lived and charged particles, staus.
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Introduction

Modern particle physics can be thought of as starting in the late 1940s with the discovery
of the charged pions. After that, various particles, as well as their interactions, were
observed. To describe the physics of the particles, the key theoretical elements of the
Standard Model was formulated in the early 1970s. In 1983, the discovery of the W and
Z bosons at CERN convinced physicists that the Standard Model was correct. Thirty
years later, this model has once again shown its accuracy through the observation of the
Higgs boson-like particle in the ATLAS and CMS experiments.

Though successful, the Standard Model does not completely explain all the data that
we observed. To extend this model, the Supersymmetric theories were proposed in 1971
and are now one among the most plausible extensions. However, till now there is no
experimental evidence to confirm these theories. It motivates us to carry out the search
for a superparticle, the stau, at the LHCb detector. This manuscript describes this search
and is organized as follows:

In part I, we will discuss about the theoretical models. Chapter 1 will shortly
present the Standard Model and its limits. Then, in Chapter 2 we will describe the
Supersymmetry (SUSY) and focus on the minimal Gauge Mediated Supersymmetry
Breaking model, which predicts the existence of the massive and long-lived stau.

Part II will be dedicated to the description of the LHC and of the LHCb detector.
This part is composed of the next two chapters (3 and 4). Chapter 3 will introduce
briefly the LHC and its experiments. The LHCb experiment, its detectors, triggers and
software will be described quite in detail in Chapter 4.

In part III, we have three chapters (5, 6 and 7) to present the works that were done
to search for stau pairs:

+ Chapter 5 will describe the Monte Carlo for the stau pairs and their background in
the LHCb detector. The characteristics of the staus and the response of the sub-detectors,
will be examined to define the selection cuts for the stau pairs. The "calibration" of the
Monte Carlo signals will be exposed; the aim of this calibration is to have the MC signals
similar to the ones from data.

+ In Chapter 6, an analysis by a Neural Network to distinguish the stau tracks from
muon tracks by using their signals in the sub-detectors will be presented. After that, we
go on with the differentiation between stau pairs and muon pairs. The expected number
of pairs for signal and background in the signal region will be given.

1



2 Introduction

+ Finally, Chapter 7 will give the results obtained by applying the cuts and analysis
method presented in Chapters 5 and 6. The results allow to compute the limits on the
cross section for stau pair production in pp collisions at 7 and 8 TeV.



Part I.

Theoretical Models
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Chapter 1.

The Standard Model

The Standard Model (SM) [1], [2] of Particle Physics is presently the theory that gives the
best description of the elementary particles and their interactions. It allows to explain
most of the experimental results and to predict many discoveries in Particle Physics.
However, there are some experimental data that this model cannot explain. Moreover,
this model does not include the gravity. This chapter will shortly review the content of
the SM in section 1.1 and its limits in section 1.2.

1.1. The content of the Standard Model

The Standard Model (SM) of the Elementary Particles Physics is a quantum field theory
[3], which is made up from the electroweak theory and the Quantum Chromodynamics
(QCD) in order to represent the elementary particles and their interactions.

The particles and their interactions:

The most elementary fermions that we observed are the six leptons (e, µ, τ, νe, νµ, ντ ),
the six quarks (u, d, c, s, t, b) and their antiparticles. Matter is made up from these. The
particles interact with each other via their interactions: electromagnetic, weak, strong and
gravitational. However, the present SM is only able to describe the three first ones. The
three interactions in the SM are achieved by exchanging the force carriers (γ,W ± , Z0,
g) of spin 1, which are called the gauge bosons: the photon for the electromagnetic
interaction, the W ± and Z0 bosons for the weak interaction and the eight gluons (g)
for the strong interaction. In addition, the SM also predicts the existence of a massive
scalar (i.e. spin 0) particle, called the Higgs boson (H0 ); via the interaction with the
Higgs boson, the SM particles can acquire mass. Table 1.1 shows the elementary particle
of the Standard Model.

5



6 The Standard Model

Table 1.1.: The elementary particles of the Standard Model

Quantum Electrodynamics:

It is quite significant a progress in modern particle theories, the concept of gauge invariance
is now used for all forces of the SM: it has been first introduced in QED. Let us first have
look to the Quantum Electrodynamics (QED) - the starting point in the construction
of the SM. This is a relativistic quantum field theory that successfully describes the
electromagnetic interaction between charged particles via the photon (γ) exchange. This
interaction must conserve the total electric charge. Thus the Lagrangian must be invariant
under a certain group of symmetry transformation G. In QED, this group, denoted by
U(1), corresponds to a global shift in the phase of the particle wave-function, for which
the Lagrangian L is invariant.

GU(1)ψ → ψ∗ (1.1)

GU(1)L(ψ)→ L∗(ψ∗) (1.2)

However, under a local phase transformation G(x)L(ψ) → L∗(ψ∗) the Lagrangian
is not invariant L(ψ) 6= L(ψ∗) . It is a very nice surprise that this problem can be
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solved by redefining the derivative as a "covariant derivative" which then introduces an
infinite field (A) whose quantum is massless. The Lagrangian is now invariant under the
transformation:

GU(1)(x)L(ψ,A)→ L(ψ∗, A∗) (1.3)

The field required is the electromagnetic field whose quantum is the photon. In other
words, the photon is the force carrier in the electromagnetic interactions.

Electro-Weak interaction:

Observations show that only left-handed fermions participate in the weak interaction, so
we will split the wave-functions into the right and left-handed components. For example,
lepton components are:

lL =

(
νl

l−

)
L

, lR (1.4)

Let’s consider a left-handed doublet; regardless of the charge the two particles feel the
same weak interaction: this remind us of the low energy symmetry between the nucleon
doublet (neutron and proton) and for which Werner Heisenberg has introduced in 1933
the concept of "Isospin" and the SU(2) group of symmetry. Similarly, one can apply
the concept of "weak isospin" to the left-handed doublet of leptons, and the related
symmetry group is now SU(2)W where the superscript "W" refers to weak interaction.

As for QED and in order to comply with the local gauge invariance, one must
introduce the massless gauge bosons W ± and W 0. Here again, the gauge bosons W ± ,0

communicate the local convention of rotation in the isospin space to all the interacting
leptons. The fact that the gauge invariance requires the gauge bosons to be massless is
quite inconvenient here because the range of the weak interactions is very short (below
1 fm). Therefore one expects the weak gauge bosons to be quite massive with respect
to the energy scale which could be reached in the sixties. And this explains why these
gauge bosons were not discovered yet in that period.

This difficulty can be overcome with the mechanism of the spontaneous symmetry
breaking introduced by Peter Higgs and co-workers. The idea here is to introduce a
massless scalar field of two components Φ = (φ1, φ2), called the Higgs field and the
massless vector gauge particle, denoted by A for instance, responsible for communicating
the φ1, φ2 content from place to place. Let us define a Lagrangian whose shape is the
one of the wine bottle. The axes φ1 and φ2 are the average values of the corresponding
pattern field.

With this particular Lagrangian, the energy is not minimum for φ1 = φ2 = 0, but any
value on a circle φ2

1 + φ2
2 = R2.
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L(φ1 ,φ2)

φ1

φ2R−R

Figure 1.1.: The interaction energy chosen for the two components of the Higgs field. The
state of minimum energy corresponds to a non-zero value for the field [1].

Redefining these scalar fields, (φ1, φ2) −→ (φ
′
1 = φ1, φ

′
2 = φ2 − R), would keep the

Lagrangian conserved and leads to a consequence: the massless boson φ
′
1, called the

Goldstone boson, is eaten by the massless vector gauge particle A and A becomes massive.
The boson φ′2 also acquires mass after the redefinition and is called the Higgs boson.

Now, we apply the above ideas to the electro-weak interactions of the leptons. First,
we need four massless gauge vector bosons, of which two are charged for the charged
current weak interactions (W ± ), one is neutral for the weak neutral current (W 0) and one
for the electromagnetic current (B). The smallest possible group is then SU(2)×U(1).

If the symmetry holds, or prior to the spontaneous symmetry breaking, the two
components of a left-handed weak isospin doublet are identical except for the IW3 value,
IW3 = +1/2 for the neutrino and IW3 = −1/2 for the left-handed lepton. This latter can
be defined as

Q = e(IW3 + Y W/2) (1.5)

where Y W is called the weak hypercharge and has the value Y W = −1 for the left-handed
leptons.

Now we require that the interactions of the leptons conserve weak isospin and weak
hypercharge, i.e. the Lagrangian be invariant under SU(2)W ×U(1)W . The U(1)W of
transformation correspond to the shifting of the phases of the lepton wave-functions.
Using the same notations as before, we have

GSU(2)W ×U(1)WL(lL, lR,W
± ,0, B) −→ L(l∗L, l

∗
R,W

± ,0∗ , B∗) (1.6)

As we have to give mass to three vector bosons (W ± ,0) and keep the photon massless,
we need to introduce at least four scalar fields: (φ0, φ−) and its antiparticles (φ0

, φ+).
When the spontaneous symmetry breaking occurs, weak isospin and weak hypercharge
are no longer conserved, but their combination forming the electric charge remains
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conserved. This means that the U(1) gauge symmetry of QED holds and the photon
remains massless. Moreover, the two neutral gauge fields (W 0, B) mix to produce two
orthogonal components:

A = W 0 sin θW +B cos θW (1.7)
Z0 = W 0 cos θW −B sin θW (1.8)

where θW is Weinberg angle and sin2 θW = 0.23120± 0.00015 at Q = 91.2 GeV/c.

After spontaneous symmetry breaking (SSB), part of the gauge vector bosons get
mass by absorbing the scalar fields: W−,W+ absorb φ−, φ+, respectively; Z0 absorbs a
mixture of φ0 and its antiparticle φ0. The remaining of the mixture of φ0 and φ0 creates
a scalar massive particle - the Higgs boson. The photon A is left massless. In table 1.2,
we have the particles before and after the spontaneous symmetry breaking (SSB). The
numbers in the parentheses are the physical degrees of freedom corresponding to the
fields. The total physical degrees of freedom before and after SSB is always 12.

Before SSB After SSB
Φ− (1), W− (2) −→ massive W− (3)
Φ+ (1), W+ (2) −→ massive W+ (3)

Φ0 (1), Φ0 (1), W 0 (2), B (2) −→


Higgs boson (1)

massive Z0 (3)

massless A (2)

Table 1.2.: The bosons before and after the spontaneous symmetry breaking. In parentheses
are the physical degrees of freedom of the particles.

All the bosons generated after SSB in the above table have been discovered.

Quantum Chromodynamics (QCD):

Soon after the introduction of the quarks, one realized that for some combinations of
these quarks there is an incompatibility with the Fermi-Dirac statistics. Let us take the
example of the ∆++ and the Ω− particles which both belong to the JP = 3/2+ decuplet:
they have half integer spin, hence their total wave function must be antisymmetric.

ψtotal = ψspace×ψspin×ψflavour (1.9)

As the ∆++ and the Ω− both have three quarks of the same flavour (uuu for the ∆++

and sss for the Ω−), ψflavour is symmetric, as is ψspin. As the three quark spins add up
to form the particle spin of 3/2, the orbital momentum of these quarks must be zero and
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they should stand is such a way that the space wave function is symmetric. The total
wave function is then symmetric which is against the Pauli principle for particles with
half integer spin.

The contradiction can be solved if the quarks bear another quantum number which
would be different for the otherwise identical quarks. This quantum number is called colour
and appears as red, green and blue (3 colours) which can be taken as the fundamental
representation of a new symmetry group SU(3)C. Group algebra shows that the simplest
colour multiplet generated from the fundamental representation (r,g,b) is the colour
singlet. All hadrons (mesons and baryons) are thought to be colour singlets:

qq =
1√
3

[rr + gg + bb] (1.10)

qqq =
1√
6

[(rgb− rbr) + (gbr − grb) + (brg − bgr)] (1.11)

Now, we like to have a gauge theory for the colour description of the quark interactions.
As for the other theories, we require the local gauge invariance and then need to have
vector gauge fields to communicate the local colour convention; these gauge fields are
massless and have a spin-1; they are called gluons (g). As gluon mediates the interaction
between a quark and an antiquark, it should come from the combination of a colour
triplet and a anti-colour triplet.

3× 3 = 1 + 8 (1.12)

Indeed, we have eight gluons (colour octet) as rb, gr, etc. Bearing colour charges, the
gluons can interact therefore among themselves. We note that a photon cannot interact
with another photon, but a gluon can interact with another gluon and this has as a
consequence the confinement of quarks.

Together, the electroweak theory and the QCD build a beautiful model, the Standard
Model, for particle physics:

SU(3)C ⊗ SU(2)L ⊗ SU(1)Y (1.13)

The SM is working well at the electroweak scale with its 19 independent parameters:

X 6 quarks masses, 3 charged lepton masses,

X 3 gauge couplings (e, θW , αs),

X 3 Cabibbo mixing angles and the CP-violating Kabayashi-Maskawa complex phase,

X the QCD vacuum angle,

X the Higgs mass and the vacuum expectation value v.
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1.2. Limits of the Standard Model and beyond it

Even if we celebrate the triumph of the Standard Model with the discovery of the
Higgs-like boson, we still know that the SM remains an incomplete theory.

The absence of the gravity: At the electroweak scale, MZ,W ± , where the gravi-
tational force can be neglected, the SM describes well the electromagnetic, weak and
strong forces; however, at the Planck scale, MP = (8πGNewton)−1/2 = 2.4× 1018 GeV,
where quantum gravitational effects become important, how does the SM behave?

The neutrino problem: In the SM, quarks, electrons, muons and taus acquire
their masses from gauge invariant terms expressing their interactions with the Higgs
field. In this part of the Lagrangian left-handed and right-handed charged leptons are
involved. For neutrinos, right-handed neutrinos have never been observed and thus the
SM considers that this interaction does not exist. Hence, neutrinos cannot get a mass in
the SM. However, the mixing between the neutrino species [4] observed experimentally
shows that neutrinos have a non-null mass, even though it is tiny. To describe the
neutrino mixing, at least 9 parameters need to be introduced: 3 masses of neutrinos, 3
mixing angles and 3 phases.

The grand unification: The successful unification of two groups SU(2)×U(1) in
the electroweak theory inspired the theoretical physicists to unify them into a larger
symmetry group G. Of course, this larger group must be broken at an energy scale
(MGUT ) which is much higher than the electroweak scale. This is called the Grand Unified
Theories (GUT). The simplest GUT theory is the SU(5) symmetry. In this realm, quarks
can change to lepton and the proton can decay. However, this simple, non-SUSY SU(5)
is now excluded by the non observation of proton decay. Figure 1.2 shows the evolution
of the coupling constant in non-SUSY GUTs.

Figure 1.2.: The coupling constants as a function of energy using SM expression; α−1 is the
inverse of the coupling constants, the horizontal axis scale is the exponent of the
energy scale in GeV [11].
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The hierarchy problem ([6], [7], [8]): In the electroweak sector of the SM, there is
a parameter with energy dimension which sets the scale of all masses in the theory. It is
the vacuum expectation value of the Higgs field (v ≈ 246 GeV). For example, the mass of
W± is given by

mW = gv/2∼ 80 GeV/c2 (1.14)

where g is the SU(2) gauge coupling constant.

The Higgs boson mass is

mH = v

√
λ

2
(1.15)

where λ > 0 is the strength of the Higgs self-interaction in the Higgs potential V =
−µ2φ†φ+ λ

4
(φ†φ)2, 2µ2 = m2

H and φ is the SU(2) doublet field. Thus, m2
H is roughly in

order of ∼ (100GeV)2. The newly discovered like-Higgs boson has a mass about 125
GeV/c2.

The problem is that m2
H receives an enormous quantum correction from the virtual

effects of each particle that couples, directly or indirectly, to the Higgs field. Figure
1.3 shows a loop containing a fermion f of mass mf that couples to Higgs field: the
correction is then

(∆m2
H)f = −|λf |

2

16π2
(2Λ2

UV + ...) (1.16)

where ΛUV is an ultraviolet cutoff representing the energy scale at which new physics
appears and where the SM must be modified. If ΛUV is of order the Planck mass, then
the quantum correction ∆m2

H is about 30 orders of magnitude larger than the expected
value of m2

H . This is known as hierarchy problem, which is a big challenge of the SM.

Figure 1.3.: The loop containing a Dirac fermion f that couples to Higgs field [6].

Connection to Cosmology [5]: In Cosmology, the distribution of matter in galaxies
can be determined via the orbital velocities and radius of its objects with Kepler’s law

V =

√
GM(R)

R
(1.17)
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For luminous matter (stars, dust, gas), the matter density can be measured via the
disk surface brightness by assuming that this brightness is proportional to the surface
density of luminous matter. The surprise is that the radial velocity distribution levels
at a value which is quite higher than the one expected from Newtonian physics based
on the observed luminous matter. For example, in the Milky Way, the luminous matter
velocity is one tenth of the observed velocity. Figure 1.4 presents the results of the
measurement for the galaxy M33. What kind of matter is this mass excess? Nowadays,
a part of this mass is believed to belong to the black holes in the centre of the galaxies.
However the observed curve in figure 1.4 shows that the velocity stays constant from
near 5 kpc; this means that the mass M(R) is proportional to the radius R and that the
unknown matter must be distributed everywhere in the galaxies. This unknown matter
is called dark matter. Recent observations of gravitational lensing effects by the Hubble
Space Telescope also provide evidences for it.

Figure 1.4.: The velocities as a function of radius are measured using Kepler’s law and for the
luminous matter for the galaxy M33.

Today, it is believed that roughly 27% of the Universe is dark matter, the normal
matter accounting for about 5%. This dark matter is believed to be non baryonic and
thus do not belong to the Standard Model. If it were baryonic, we would be able to
detect it by its absorption of radiation passing through it. The most common view is
that the dark matter is make up of some particles which are Weakly Interacting Massive
Particles (WIMPs).

An other point about cosmology is the fact that the amount of baryons over photons
is (4± 1).10−10. This value can be reproduced in many Grand Unified Theories but using
only the quark sector CP violation of SM, one predicts that only one proton is left for
1018 protons, which is way off: the needed CP violation requires new physics beyond the
Standard Model.
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Chapter 2.

Supersymmetry

The Standard Model needs to be extended to correct its limits. One of the most
plausible extensions are Supersymmetry theories [6], [7], [8], [9], [10]. In this chapter,
we will concentrate on discussing about these theories. First, we will introduce to the
Supersymmetry in section 2.1, then we will see the construction of its Lagrangian in
section 2.2. After that, the content of the Minimal Supersymmetric Standard Model will
be presented in section 2.3. Finally, we focus on one of the SUSY versions, the minimal
Gauge Mediated Supersymmetry Breaking (mGMSB) model, which contains the stau
particle (τ̃) that we will study in this thesis (section 2.4).

2.1. Introduction to Supersymmetry

Back to the hierarchy problem, we know that the contribution from a fermion to the
Higgs mass correction is expressed by equation 1.16 and the problem comes from the
ΛUV .

Suppose now that there is a scalar particle S with mass mS which also couples to
Higgs boson as shown in figure 2.1(b), then the correction from this particle to the Higgs
mass is

(∆m2
H)S =

|λS|
16π2

(Λ2
UV + ...) (2.1)

From equations 1.16 and 2.1, we can see that if λS = |λf |2 and if each of the particle
of the Standard Model is accompanied by a partner whose spin differ by half a unit
from the one of the original particle, then the Λ2

UV contributions to the Higgs mass in
figure 2.1 will be neatly cancelled. This suggests that a symmetry between fermion and
boson might be a good solution for the "hierarchy problem". This symmetry is called
Supersymmetry and abbreviated as SUSY.

In supersymmetric theories, a supersymmetric operator Q is introduced in order to
allow to change a fermionic state into a bosonic state and vice versa; in other words, this
operator changes the spin of particle, the other quantum numbers being maintained.

15
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(a) (b)

Figure 2.1.: Feynman diagrams presenting the contributions to the Higgs mass from fermion
in (a) and from boson in (b) [6].

Q|Boson〉 = |Fermion〉, Q|Fermion〉 = |Boson〉 (2.2)

Particles in the same supersymmetry multiplet, called supermultiplet, have the
same gauge transformation properties (electric charge, weak isospin, colour,...). Each
supermultiplet contains both fermion and boson states whose degrees of freedom are
equal.

nB = nF (2.3)

The two simplest ways to combine particles according to equation 2.3 are:

• A supermultiplet containing a single Weyl fermion with two spin states, i.e. nF = 2,
has to contain two real scalars, i.e. nB = 2. The two real scalar degrees of freedom can
be assembled into a complex scalar field. Then, one can combine the two-component
Weyl fermion and the complex scalar field into a chiral supermultiplet.

• For a multiplet containing a spin-1 gauge boson, this boson is massless before the
gauge symmetry breaking, it has two helicity states, i.e. nB = 2. The superpatner of this
boson is a Weyl fermion of spin-1/2 which has two helicity states, i.e. nF = 2. These
fermionic partners are called gauginos. The combination of gauginos and gauge boson is
called gauge supermultiplet.

If we include gravity, the spin-2 graviton (with 2 helicity states, nB = 2) will have a
spin-3/2 superpartner called the gravitino. The graviton and gravitino would be massless
if supersymmetry were unbroken.

Each particle of spin σ in the Standard Model belongs to either chiral or gauge
supermultiplet and has a superpartner of spin σ± 1

2
.

A fermion (quarks and leptons) of the Standard Model has to belong to a chiral
supermultiplet. Its bosonic superpartners are prefixed by an s, for scalar; so they
are called sfermion (or squarks, sleptons). The symbol for a SM particle and its
superpartner is the same, but with a tilde (˜ ) for the superpartner. For example,
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the superpartners of the left-handed and right-handed electrons (eL, eR) are the left-
handed and right-handed selectrons (ẽL, ẽR). However, the handedness here does not
refer to the helicity of selectrons because they have spin-0, but to the handedness of
their superpartners. Neutrinos of the Standard Model are only left-handed, so their
superpatners are symbolized by ν̃ or with the subscript ν̃e, ν̃µ, ν̃τ to indicate their
flavours.

The Higss boson of the Standard Model should be considered as the complex scalar
component of a chiral supermultiplet since it has spin-0, its superpartners are fermions
and are called Higgsinos. In the Standard Model, the Higgs boson can be chosen
with hypercharge of Y = ± 1, so that the Higgsino can also take a hypercharge of
Y = ± 1. Two chiral supermultiplets are introduced, each of which has one of Y = ± 1.
Furthermore, we will see that in SUSY theories, only the Higgs chiral supermultiplet
of Y = +1 can give masses to quarks of +2/3 charge (u, c, t) and only one of Y = −1
can give masses to quarks of -1/3 charge (d, s, b) and to the charged leptons. For this
reason, we denote the complex scalar fields with Y = +1 and Y = −1 by Hu and Hd

respectively. Since the third component of weak isospin of each Higgs particle has two
values (± 1/2), the Hu has therefore two electric charges (1, 0) and denoted by H+

u and
H0
u. Similarly, Hd has two charges (0, -1) and symbolized by H0

d and H−d . The symbols
corresponding to Higgsino are H̃u, H̃d, H̃+

u , H̃0
u, H̃0

d , H̃
−
d . The chiral supermultiplets in

the Minimal Supersymmetric Standard Model are shown in table 2.1.

Names Symbol spin-0 spin-1/2 SU(3)C , SU(2)L, U(1)Y

squark, quarks Q (ũL, d̃L) (uL, dL) (3, 2, 1/3)
(× 3 families) u ũ∗R u†R (3̄, 1, -4/3)

d d̃∗R d†R (3̄, 1, -2/3)
slepton, leptons L (ν̃, ẽL) (ν, eL) (1, 2, -1)
(× 3 families) e ẽ∗R e†R (1, 1, 1/2)
Higgs, higgsinos Hu (H+

u , H0
u) (H̃+

u , H̃0
u) (1, 2, +1)

Hd (H0
d , H

−
d ) (H̃0

d , H̃
−
d ) (1, 2, -1)

Table 2.1.: Chiral supermultiplets in the Minimal Supersymmetric Standard Model.

Back to the gauge supermultiplets, the bosons of the Standard Model have superpat-
ners suffixed by −ino; for example, the gluon’s superpartner is the gluino (g̃). For the
bosons in the electroweak gauge symmetry (W+, W−, W 0 and B0), the superpartners
are the winos (W̃+, W̃−, W̃ 0) and the bino (B̃0.) After electroweak symmetry breaking,
the W 0 and B0 gauge eigenstates mix to give mass eigenstates Z0 and γ. Similarly, the
W̃ 0 and B̃0 also mix to create zino (Z̃0) and photino (γ̃). The gauge supermultiplets in
the Minimal Supersymmetric Standard Model are presented in table 2.2.
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Names spin-1/2 spin-1 SU(3)C , SU(2)L, U(1)Y

gluino, gluon g̃ g (8, 1, 0)
winos, W bosons W̃ ± , W̃ 0 W ± , W 0 (1, 3, 0)
bino, B boson B̃0 B0 (1, 1, 0)

Table 2.2.: Gauge supermultiplets in the Minimal Supersymmetric Standard Model.

However, the most noticeable point of this theory is that none of the superparticles
has been found. If supersymmetry was unbroken, then the superparticles would have the
same mass as their Standard Model partners. For example, selectrons ẽL and ẽR would
have masses exactly equal to me = 0.511 MeV/c2, gluino and photino are massless, etc...
Therefore, these superparticles would have been discovered a long time ago. The unique
explanation for this conflict is that supersymmetry was broken.

Assuming that SUSY still provides a solution to the hierarchy problem even in
the presence of supersymmetry breaking, i.e. that the quadratic divergences must be
systematically cancelled, the relationship λS = |λf |2 must be preserved. We are hence
led to consider soft supersymmetry breaking. A soft supersymmetry breaking term will
be added into the Lagrangian, which will break supersymmetry, but only "softly", this
adverb means that the modification of the Lagrangian at high energy is so small that
no new divergent contribution to the mass of a scalar is added. The Lagrangian can be
written

L = Lsusy + Lsoft (2.4)

where Lsusy contains all of the gauge and Yukawa interactions and preserves super-
symmetry invariance, Lsoft only contains mass terms and couplings with positive mass
dimension. If msoft is the largest mass scale present in Lsoft, the corrections to the
Higgs mass arising from Lsoft must vanish when msoft → 0, so they cannot grow as
Λ2. Additionally, the UV divergences are either quadratic or logarithmic, hence these
corrections must be of the form

∆m2
H ∼λm2

soft ln(
Λ

msoft

) (2.5)

Furthermore, within a supermultiplet we have m2
soft∼ (m2

B −m2
F ). We would like

that ∆mH should be less than or approximately equal to mH , therefore we deduce

m2
B −m2

F . (1TeV)2 (2.6)

Equation 2.6 motivates that the masses of superparticles are less than about 1 TeV/c2.
Therefore, we can hope they can be produced and detected at LHC.
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2.2. Supersymmetric Lagrangian

In this section, we will present the general recipe to construct the Lagrangian for the
supersymmetric theories with soft supersymmetry breaking. In section 2.1 we showed
that we have the chiral and gauge supermultiplets, we will therefore consider in turn
the Lagrangian for the free chiral supermultiplet (i.e. no masses, no interactions are
included), for interacting chiral supermultiplet and for gauge supermultiplet. Then, the
total Lagrangian of the supersymmetry theory is the sum of these Lagrangian components.

2.2.1. Lagrangian of the chiral supermultiplet

Free chiral supermultiplet

We start to consider a simplest chiral supermultiplet that contains a single left-handed
two component Weyl fermion ψα and its superpartner, a complex scalar φ. The simplest
action which consists of kinetic energy terms of these fields (no masses, no interactions)
is

S =

∫
d4x(Ls + Lf) (2.7)

Ls = −∂µφ∗∂µφ, Lf = iψ†σµ∂µψ (2.8)

where ∂µ = (∂/∂t,
−→
5), ∂µ = (∂/∂t,−

−→
5) are the covariant and contravariant derivatives;

φ∗ is the complex conjugate of φ and ψ† is the Hermitian conjugate of ψ; σ̄µ are the
transposed matrices of the Pauli matrices σµ.

Since a supersymmetric transformation should turn the scalar boson field φ into the
fermion field ψ, we have the following possibilities.

δφ = εψ, δφ∗ = ε†ψ† (2.9)

where ε is an infinitesimal, anticommuting, two component Weyl fermion object which
parametrises the transformation. Since ψ has dimension of [mass]3/2 and φ has dimen-
sion of [mass], ε has therefore dimension of [mass]−1/2. As we discuss about global
supersymmetry, we have ∂µεα = 0 as εα is a constant.

δLs = −ε∂µψ∂µφ∗ − ε†∂µψ†∂µφ (2.10)

We would like that this δLs is cancelled by δLf, so that the action S is invariant under
the SUSY transformation. For this and from equation 2.10, we see that δψ should be
linear in ε† and in φ, and must contain one space-time derivative. The only possibility is

δψα = −i(σµε†)α∂µφ, δψ†α̇ = i(εσµ)α̇∂µφ
∗ (2.11)
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where α̇ = 1, 2 is the spinor index of the right-handed Weyl spinor ψ†α̇ -the hermitian
conjugate of the left-handed Weyl spinor. Using equation 2.11, we obtain

δLf = −εσµσν∂νψ∂µφ∗ + ψ†σνσµε†∂µ∂νφ (2.12)

Using the following relations:

[σµσν + σνσµ]βα = −2ηµνδβα (2.13)

[σµσν + σνσµ]β̇α̇ = −2ηµνδβ̇α̇ (2.14)
∂µ∂ν = ∂ν∂µ (2.15)

where ηµν = diag(−1,+1,+1,+1) is the space-time metric.

we can write again the equation 2.12 as

δLf = ε∂µψ∂µφ
∗ + ε†∂µψ†∂µφ

−∂µ(εσνσµψ∂νφ
∗ + εψ∂µφ∗ + ε†ψ†∂µφ) (2.16)

The first two terms cancel against δLs and the rest is total derivative, we therefore
arrive at

δS =

∫
d4x(δLs + δLf) = 0 (2.17)

However, equation 2.17 is not enough to declare that the theory described by equa-
tion 2.8 is supersymmetric. It is still necessary that the supersymmetry algebra closes,
this means that the commutator of two SUSY transformations parametrized by two
different spinors ε1, ε2 is also a symmetry operation. For scalar fields, we find

(δε2δε1 − δε1δε2)φ ≡ δε2(δε1φ)− δε1(δε2φ) = i(−ε1σµε†2 + ε2σ
µε†1)∂µφ (2.18)

We have got i∂µ which is nothing but the four-momentum operator Pµ, the operator

of space-time translation, a symmetry of space-time. For fermion fields, we get

(δε2δε1 − δε1δε2)ψα = i(−ε1σµε†2 + ε2σ
µε†1)∂µψα

+iε1αε
†
2σ

µ∂µψ − iε2αε†1σµ∂µψ (2.19)

The first term of the equation 2.19 is similar to what we got for scalar field φ in
equation 2.18, but the two last terms only vanish on-shell, i.e. when the classical equations
of motion σµ∂µψ = 0 are satisfied. But we want also SUSY to be a valid symmetry even
off-shell. To solve this problem, we will use a trick and introduce a bosonic spin-0 field
which does not have any kinetic term and is called auxiliary field F . The F field has
dimension [mass]2 and does not affect the dynamic classically or in the quantum theory.
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From equation 2.19, we see that in order to cancel the two last terms the transformation
of F field should be:

δF = −iε†σµ∂µψ (2.20)

Then, SUSY transformation law for fermion field ψ will become:

δψα = −i(σµε†)α∂µφ+ εαF (2.21)

and this lead the commutator in equation 2.19 to become a symmetry operation for
on-shell as well as for off-shell.

Let us now count the fermionic and bosonic degrees of freedom. We recall that for
SUSY we must have nF = nB. On shell, the complex scalar field has two real components,
i.e. nF = 2 degrees of freedom which match the two spin polarization states of ψ. When
we go off-shell, the Weyl fermion ψ is a complex two-component spinor and has nf = 4
degrees of freedom. To have the same fermionic and bosonic number of degrees of freedom,
the introduction of the scalar auxiliary field is necessary. We have then φ which is a
complex scalar field with nB = 2 and the auxiliary field F which is also a complex scalar
with nB = 2. The counting rule nF = nB is then preserved off shell by the introduction
of this auxiliary field.

This does not harm when we are on shell as the Lagrangian for this auxiliary field is

Laux = F ∗F (2.22)

and the equation of motion is F = F ∗ = 0: the auxiliary field vanishes on shell.

For a free, massless chiral supermultiplet, we finally obtain the total Lagrangian that
is invariant under SUSY transformations expressed by equations 2.9, 2.20 and 2.21.

Lfree = Ls + Lf + Laux

= −∂µφ∗∂µφ+ iψ†σµ∂µψ + F ∗F (2.23)

By proceeding as before, we also obtain:

(δε2δε1 − δε1δε2)X ≡ δε2(δε1X)− δε1(δε2X) = i(−ε1σµε†2 + ε2σ
µε†1)∂µX (2.24)

for each of X = φ, φ∗, ψ, ψ†, F, F ∗. That means that the modified SUSY theory closes
off-shell as well as on-shell.

Interacting chiral supermultiplets

In the previous paragraph, we constructed a Lagrangian which is invariant under SUSY
transformations for the free, massless chiral supermultiplets (Lfree), i.e. the masses and
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the interaction were not included in this Lagrangian. In this paragraph, we will construct
a Lagrangian for interacting chiral supermultiplets (Lint) which still preserve SUSY
invariance.

To begin, we note that the terms of the Lagrangian must be renormalizable, so each
term has a field content with total mass dimension ≤ 4. Additionally, this interacting
Lagrangian must be invariant under the SUSY transformations (equations 2.9, 2.20 and
2.21) as the free Lagrangian Lfree is already invariant. So, the plausible Lagrangian is

Lint = (−1

2
W ijψiψj +W iFi) + h.c. (2.25)

where W ij and W i are polynominals in the scalar fields φi, φ∗i and have the degrees
number of 1 and of 2, respectively since [φ] = m, [F ] = m2 and [ψ] = m3/2; and W ij and
W i satisfy the following relations:

W i =
∂W

∂φi
, W ij =

∂2W

∂φi∂φj
(2.26)

The most general normalisable supersymmetric form is:

W =
1

2
M ijφiφj +

1

6
yijkφiφjφk (2.27)

and is called superpotential. Here,M ij is a symmetric mass matrix and yijk are couplings.

Linear terms Liφi are also possible when φi is a gauge singlet, but there is no gauge
singlet in MSSM, so we will omit them.

The equations of motion for the auxiliary fields are

Fi = −W ∗
i , F ∗i = −W i (2.28)

From the superpotential, a scalar potential can be determined:

V (φ, φ∗) = W kW ∗
k = F ∗kFk

= M∗
ikM

kjφ∗iφj

+
1

2
M iny∗jknφiφ

∗jφ∗k +
1

2
M∗

iny
jknφ∗iφjφk

+
1

4
yijny∗klnφiφjφ

∗kφ∗l (2.29)

In the above paragraphs, we constructed the free and interacting Lagrangians (eq 2.23,
2.25) in a chiral supermultiplet. The total Lagrangian of a chiral supermultiplet is now
the sum of these components.
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Lchiral = Lfree + Lint

= −∂µφ∗i∂µφi + iψ†iσµ∂µψi + F ∗F

−1

2
(W ijψiψj +W ∗

ijψ
†iψ†j) + h.c (2.30)

The superpotential can be put into the Lagrangian to get the full Lagrangian density
from which we can drive from the equation of motions that fermions and bosons do have
the same mass.

2.2.2. Lagrangian of the gauge supermultiplet

As said in the introduction, a gauge supermultiplet contains a gauge boson Aaµ and a
gaugino λa, where the index a runs over the gauge group generator: a = 1,2,...,8 for
SU(3)C ; a = 1,2,3 for SU(2)L and a = 1 for U(1)Y . The Lagrangian for the gauge
supermultiplet is

Lgauge = −1

4
F a
µνF

µνa + iλ†aσµDµλ
a +

1

2
DaDa (2.31)

where the field strength F a
µν and the covariant derivative of the gaugino are defined as:

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν (2.32)

Dµλ
a = ∂µλ

a + gfabcAbµλ
c (2.33)

Da is a real bosonic auxiliary field which is introduced in order for the supersymmetry
to be a valid symmetry off-shell: like chiral auxiliary field F , the gauge auxiliary field
also has dimension of [mass]2 and no kinetic term so that it can be eliminated on-shell
using its equation of motion.

The gauge transformations of fields in the gauge supermultiplet are

δAaµ = − 1√
2

(ε†σµλ
a + λ†aσµε) (2.34)

δλaα =
i

2
√

2
(σµσνε)αF

a
µν +

1√
2
εαD

a (2.35)

δDa =
i√
2

(−ε†σµDµλ
a +Dµλ

†aσµε) (2.36)

Using these SUSY transformation laws, we can show that the supersymmetry algebra
for the fields of the gauge supermultiplets closes on-and off shell thanks to the auxiliary
field Da.
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2.2.3. Lagrangian of the supersymmetric gauge interactions

We finally consider the general Lagrangian density for a supersymmetry theory with both
chiral and gauge supermultiplets Xi = φi, ψi, Fi. As SUSY and gauge groups commute,
all the fields Xi must transform according to the same representation of the gauge group,
with generator T a:

δgaugeXi = igλa(T aX)i (2.37)

To have a gauge invariant Lagrangian, the ordinary derivatives must first be turned
into covariant ones everywhere.

∂µφi → Dµφi = ∂µφi − igAaµ(T aφ)i (2.38)
∂µψi → Dµψi = ∂µψi − igAaµ(T aψ)i (2.39)

Then, one needs to add the other possible interactions between the fields in the chiral
and gauge supermultiplets. In fact, there are three such interactions between the fields
φ, ψ, λa and Da; these three interactions are expressed by the three last terms in the
Lagrangian of the supersymmetry theory.

L = Lchiral + Lgauge −
√

2g(φ∗T aψ)λa −
√

2gλ†a(ψ†T aφ) + g(φ∗T aφ)Da (2.40)

This Lagrangian is SUSY invariant, provided that the superpotential is gauge invariant:

δgaugeW =
∂W

∂φi
δφi = Wi(T

a)ijφj = 0 (2.41)

The equations of motion of Da are now:

Da = −g(φ∗T aφ) (2.42)

and the scalar potential:

V (φ, φ∗) = F ∗iFi +
1

2

∑
a

DaDa (2.43)

and is completely determined by the auxiliary fields. The terms F ∗iFi and
∑
a

DaDa are

referred to as the F -term and the D-term.

2.2.4. Soft supersymmetry breaking

As mentioned in 2.1, the supersymmetry breaking should be soft for the solution of
the hierarchy problem. The supersymmetry breaking Lagrangian would contain the
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only mass terms and coupling parameters with positive mass dimension. The possible
Lagrangian is

Lsoft = −(
1

2
Maλ

aλa +
1

6
aijkφiφjφk +

1

2
bijφiφj) + h.c− (m2)ijφ

j∗φi (2.44)

where Ma is gaugino masses with a = 1, 2, 3; (m2)ij and bij are scalar squared-mass terms;
aijk are couplings. It can be shown that Lsoft ( 2.44) is free of quadratic divergence in
quantum correction for scalar masses to all orders in perturbation theories.

2.3. The Minimal Supersymmetric Standard Model

2.3.1. Grand Unification in MSSM

Before presenting in some detail the Minimal Supersymmetric Standard Model, we
would like to come back to the unification of the interactions and show that a Minimal
Supersymmetric Standard Model (MSSM) would do the job. We define the coupling
strength of the SM interactions as:

α1 =
5

3

1

4π
g
′2, α2 =

1

4π
g2, α3 =

1

4π
g2
s (2.45)

The one-loop renormalization group equations for gauge couplings are

dαi
d logQ

= − bi
2π
α2
i (2.46)

where αi = g2
i /(4π) with i = 1, 2, 3; and Q is a "running" energy scale and bi are constants.

The solution of equation 2.46 is

α−1
i (Q) = α−1

i (Q0)− bi
2π

log(
Q

Q0

) (2.47)

where Q0 is the scale at which the running begins.

Suppose that the three gauge coupling constants of the Standard Model are unified
at some energy QU , then the coupling constants are equal:

α−1
1 (QU) = α−1

2 (QU) = α−1
3 (QU) (2.48)

Using equation 2.47 and 2.48, we obtain the relation

α−1
3 (Q0) = (1 +B)α−1

2 (Q0)−Bα−1
1 (Q0) (2.49)
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where

B =
b3 − b2

b2 − b1

(2.50)

The values of the α−1
i (Q0) have been measured very accurately at Q0 = mZ :

α−1
3 (mZ) = 8.5, α−1

2 (mZ) = 29.57, α−1
1 (mZ) = 59.00. Then, one can deduce

B = 0.716 (2.51)

We can now compare the value of B (Eq. 2.51) to values obtained by equation 2.50
using different models. The model that gives the B value consistent with equation 2.51
will be accepted as the one that can do the grand unification. In the minimal Standard
Model, the values of the bi are

b3 = 11− 4

3
ng

b2 =
22

3
− 4

3
ng −

1

6
nh

b1 = −4

3
ng −

1

10
nh (2.52)

where ng is the number of generations, nh is the number of Higgs doublets. For the
minimal case, nh = 1, we obtain B = 0.53 which is very poor agreement with 2.51, this
minimal Standard Model is therefore considered as having failed.

In MSSM, nh = 2, we get B = 0.714. This value is in good agreement with equation
2.51. Using equation 2.47, we easily find the unification scale QU ' 2.2× 1016 GeV.
Figure 2.2 shows the running of the three coupling constants α−1

i (Q) as a function of
logQ in the SM and in the MSSM.

Figure 2.2.: The coupling constants as a function of logQ in the SM and in the MSSM; where
α−1
i is the inverse of the coupling constants, the index i = 1,2,3 [11].
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2.3.2. Superpotential in MSSM

In the section 2.2, we showed the recipe for constructing the Lagrangians for the super-
symmetry theories with soft supersymmetry breaking. In this section, we will apply these
general results to the Minimal Supersymmetric Standard Model. By using equation 2.27,
we can now write the superpotential of the MSSM.

WMSSM = uyuQHu − dydQHd − eyeLHd + µHuHd (2.53)

where Hu, Hd, Q, L, u, d, e are chiral superfields corresponding to the ones in table 2.1.
The dimensionless Yukawa coupling parameters yu, yd, ye are 3× 3 matrices. These
couplings give masses to the quarks and leptons when the Higgs field acquire Vacuum
Expectation Value (VEV). The µ term is the supersymmetric version of the Higgs boson
mass in the Standard Model. We see no presence of mass terms for fermions in the
superpotential because they would explicitly break the SU(2)L gauge symmetry. In
equation 2.53, all the indices of family (i, j = 1, 2, 3), of gauge SU(3)C colour (a = 1, 2, 3)
and of gauge SU(2)L weak isospin (α, β = 1, 2) have been suppressed. For example, the
term uyuQHu can be explicitely written out as uia(yu)jiQjαa(Hu)βε

αβ and µHuHd as
µ(Hu)α(Hd)βε

αβ.

Figure 2.3.: The Yukawa coupling between Higgs boson and top quark (a), Higgsino ans stops
(b),(c) [6].

2.3.3. R-parity

The superpotential written in 2.53 does not include terms which explicitly violate lepton
or baryon numbers. However these terms exist and are invariant and renormalisable.
They are

W∆L=1 =
1

2
λijkLiLjek + λ′ijkLiQjdk + µ′iLiHu (2.54)

W∆B=1 =
1

2
λ′ijkuidjdk (2.55)

If baryon and lepton numbers were violated simultaneously, protons would decay in very
short time, for instance following the process p→ e+π0. However, the proton lifetime
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is observed to be greater than 1033 − 1034 years. In order to solve this problem, an
additional discrete symmetry, called R-parity , is introduced and the corresponding
quantum number is asked to be conserved.

R = (−1)3(B−L)+2σ (2.56)

where B is the baryonic number, B = 1/3 for quarks and squarks, B = 0 otherwise;
L is the leptonic number, L = 1 for leptons and sleptons, L = 0 otherwise; σ is the
spin. With this definition, R = 1 for all particles of the Standard Model, R = −1 for all
superparticles. The conservation of R-parity forbids the baryon and lepton numbers to be
violated simultaneously. In the case where the baryon or lepton numbers are separately
violated, R-parity is still conserved.

The conservation of R-parity leads to two important phenomenological consequences:

• The lightest supersymmetric particle (LSP) must be stable. This leads to a very
significant hypothesis in cosmology. In the high temperature of the early Universe when
the SUSY was not broken, an enormous amount of such superparticle would have been
produced. Since it can not decay, it must still exist in our Universe today. And if it is
electrically neutral and interacts weakly with ordinary matter, it can be a candidate for
the non-baryonic dark matter.

• The superparticles can be produced in pair in the collisions of SM particles. That
means we may catch the superparticles in our detectors if the collision energy is large
enough to produce them.

2.3.4. Soft SUSY breaking in MSSM

We now use equation 2.44 to write down the Lagrangian of soft SUSY breaking in MSSM.

LMSSM
soft = −1

2
(M3g̃ g̃ +M2W̃W̃ +M1B̃B̃ + h.c)

−Q̃†m2
QQ̃− ũm2

u ũ
† − d̃m2

d d̃
†

−L̃†m2
LL̃− ẽm2

e ẽ
†

−m2
Hu
H∗uHu −m2

Hd
H∗dHd − (bHuHd + h.c)

−(ũ au Q̃Hu − d̃ ad Q̃Hd − ẽ ae L̃Hd + h.c) (2.57)

The first line of equation 2.57 expresses the gaugino (gluino, wino and bino) mass
term (the gauge indices are suppressed).

The second and third lines are the squark and slepton squared-mass terms respectively,
where the m2

Q, m2
u, m2

d, m
2
L and m2

e are 3× 3 matrices, the family indices are also
suppressed (see Table 2.1).
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The fourth line is the Higss mass terms, where b is the squared-mass term of the type
bij and m2

Hu
, m2

Hd
are the squared-mass term of the type (m2)ij in the equation of soft

supersymmetry breaking 2.44.

The last line is the triple scalar coupling terms, where au, ad, ae are complex 3× 3
matrices and are of the type of aijk as in equation 2.44.

All the terms in 2.57 clearly break SUSY. We expect that all these parameters are of
the order of msoft and in the range of [100,1000] GeV.

2.3.5. The mass spectrum of the MSSM

• The Higgs sector

In MSSM, two Higgs doublets are needed, (H+
u , H

0
u) and (H0

d , H
−
d ), while there is one

Higgs in the Standard Model. The Higgs scalar potential in MSSM is

VHiggs = (|µ|2 +m2
Hu

)(|H0
u|2 + |H+

u |2) + (|µ|2 +m2
Hd

)(|H0
d |2 + |H−d |

2)

+[b(H+
u H

−
d −H

0
uH

0
d) + h.c.]

+
1

8
(g2 + g′2)(|H0

u|2 + |H+
u |2 − |H0

d |2 + |H−d |
2)2

+
1

2
g2|H+

u H
0∗
d +H0

uH
−∗
d |

2 (2.58)

The minimum of this potential is required to break electroweak down to electromag-
netic symmetry. This results in H+

u = H−d = 0 at the minimum of the potential. The
potential is now restricted to the neutral sector.

VHiggs = (|µ|2 +m2
Hu

)|H0
u|2 + (|µ|2 +m2

Hd
)|H0

d |2 − bH0
uH

0
d + h.c.

+
1

8
(g2 + g′2)(|H0

u|2 − |H0
d |2)2 (2.59)

The parameter b can be taken to be real and positive. For the electroweak symmetry
breaking, it is necessary that H0

u and H0
d get non-zero VEVs. This leads to two conditions:

2b < 2|µ|2 +m2
Hu

+m2
Hd

(2.60)
b2 > (|µ|2 +m2

Hu
)(|µ|2 +m2

Hd
) (2.61)

Now we require the non-zero VEVs ofH0
u andH0

d to be compatible with the electroweak
symmetry breaking with:

vu = 〈H0
u〉, vd = 〈H0

d〉 (2.62)
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and one must have a connection with the phenomenology of electroweak symmetry
breaking via:

v2
u + v2

d = 2m2
Z/(g

2 + g′2) ≈ (174GeV)2 (2.63)

The ratio of the two VEVs is written as

tanβ ≡ vu/vd (2.64)

Using the conditions at the minimum of the potential ∂V/∂H0
u = ∂V/∂H0

d = 0 and
relations 2.63, 2.64, we obtain:

sin 2β =
2b

m2
Hu

+m2
Hd

+ 2|µ|2
(2.65)

m2
Z =

|m2
Hd
−m2

Hu
|√

1− sin2(2β)
−m2

Hu
−m2

Hd
− 2|µ|2 (2.66)

In the minimal SM, there are four degrees of freedom (dof) for the Higgs doublet;
after electroweak symmetry breaking, three of them are absorbed by W ± and Z0 and the
other one given to the neutral Higgs boson. In the MSSM, there are two Higss doublets,
which correspond to eight degrees of freedom. When electroweak symmetry is broken,
these degrees of freedom become:

- The three degrees of freedom corresponding to the Goldstone bosons go to the
longitudinal mode of the massive vector bosons W ± and Z0.

- Two dof go to two CP even neutral scalars h0 and H0.

- One dof goes to one CP odd neutral scalar A0.

- Two dof go to two charged scalars H+ and H−.

The Higgs masses are then after some algebra:

m2
A0 =

2b

sin 2β
(2.67)

m2
H ± = m2

A0 +m2
W (2.68)

m2
h0,H0 =

1

2
(m2

A0 +m2
Z ∓

√
(m2

A0 −m2
Z)2 + 4m2

Zm
2
A0 sin2(2β)) (2.69)

• Neutralinos and charginos

After electroweak symmetry breaking, the higgsinos and electroweak gauginos mix
together to form new mass eigenstates. As the superpatners of the neutral Higgs and
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gauge bosons are not mass eigenstate, we write down their mass Lagrangian.

L = −1

2
ψT0 Mnψ0 (2.70)

where ψ0 = (B̃, W̃ 0, H̃0
d , H̃

0
u) and

Mn =


M1 0 −mZ cos β sin θW mZ sin β sin θW

0 M2 mZ cos β cos θW −mZ sin β cos θW

−mZ cos β sin θW mZ cos β cos θW 0 −µ
mZ sin β sin θW −mZ sin β cos θW −µ 0


(2.71)

Here M1 and M2 are the bino and wino mass parameters that come from equation 2.57.
In equation 2.57, they can be complex, but in this equations they are taken to be real
and positive by redefining their phases. The higgsino mass parameter µ is real with sign
I = ± 1.

Diagonalizing the above mass matrix gives the masses of the particles:

mÑ1
= M1 −

m2
Zs

2
W (M1 + µ sin 2β)

µ2 −M2
1

(2.72)

mÑ2
= M2 −

m2
W (M2 + µ sin 2β)

µ2 −M2
2

(2.73)

mÑ3
= |µ|+ m2

Z(I − sin 2β)(µ+M1c
2
W +M2s

2
W )

2(µ+M1)(µ+M2)
+ ... (2.74)

mÑ4
= |µ|+ m2

Z(I + sin 2β)(µ−M1c
2
W −M2s

2
W )

2(µ−M1)(µ−M2)
+ ... (2.75)

where sW = sin θW , cW = cos θW . These masses eigenstates are called neutralinos. The
lightest neutralino, Ñ1, is usually the LSP.

In a similar way, one can get the spectrum of charginos :

m2
C̃1
,m2

C̃2
=

1

2
(ξ∓

√
ξ2 − 4|µM2 −m2

W sin 2β|2 ) (2.76)

where ξ = |M2|2 + |µ|2 + 2m2
W .

• Squarks and sleptons

In general, squarks and sleptons of the same charge get mixed. But one can show that if
universality is valid, the mixing is only large for the third family. The first and second
families of squarks and sleptons have negligible Yukawa couplings, so they end up in
7 very nearly degenerate, unmixed pairs (ẽR, µ̃R), (ν̃e, ν̃µ), (ẽL, µ̃L), (ũR, c̃R), (d̃R, s̃R),
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(ũL, c̃L), (d̃L, s̃L). For the third family, due to the large Yukawa couplings (yt, yb, yτ ) and
soft couplings (at, ab, aτ ), they have significant mixing.

The mass term of the top squarks in the Lagrangian is:

Lstop masses = −
(
t̃∗L t̃∗R

)
M2

t̃

(
t̃L

t̃R

)
(2.77)

where M2
t̃
is the mass matrix for the top squark:

M2
t̃

=

(
m2
Q3

+m2
t + ∆ũL v(a3

t sin β − µyt cos β)

v(at sin β − µ∗yt cos β) m2
t̃R

+m2
t + ∆ũR

)
(2.78)

with

∆ = (T3 −Q sin2 θW )m2
Z cos 2β (2.79)

This matrix is hermitian and can be diagonalised using a unitary matrix. We have then
the mixing: (

t̃1

t̃2

)
=

(
ct̃ −st̃
st̃ ct̃

)(
t̃L

t̃R

)
(2.80)

where |ct̃|2 + |st̃|2 = 1, ct̃ and st̃ are cosin and sine of the mixing angle θt̃ if the all diagonal
elements of the mass matrix are real. We have here m2

t̃1
< m2

t̃2
. A similar analysis for

the sbottom and stau can be performed. Their mass matrices are:

M2
b̃

=

(
m2
Q3

+ ∆d̃L
v(a∗b cos β − µyb sin β)

v(ab cos β − µ∗yb sin β) m2
d3

+ ∆d̃R

)
(2.81)

M2
τ̃ =

(
m2
L3

+ ∆ẽL v(a∗τ cos β − µyτ sin β)

v(aτ cos β − µ∗yτ sin β) m2
e3

+ ∆ẽR

)
(2.82)

• Gluino

The gluino g̃ is a colour octet fermion, therefore it cannot mix with any other MSSM
particle. The gluino mass parameter M3 is related to the bino and wino mass parameters
M1 and M2 by M3 : M2 : M1 ≈ 6 : 2 : 1. This relation shows that the gluino should be
heavier than the lighter neutralino and chargino.

Finally, we obtain the particle spectrum in MSSM given in table 2.3
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Name Spin PR Gauge Eigenstates Mass Eigenstates
Higgs bosons 0 +1 H0

u H
0
d H

+
u H−d h0 H0 A0 H ±

ũL ũR d̃L d̃R same
squarks 0 -1 s̃L s̃R c̃L c̃R same

t̃L t̃R b̃L b̃R t̃1 t̃2 b̃1 b̃2

ẽL ẽR ν̃e same
sleptons 0 -1 µ̃L µ̃R ν̃µ same

τ̃L τ̃R ν̃τ τ̃1 τ̃2 ν̃τ

neutralinos 1/2 -1 B̃0 W̃ 0 H̃0
u H̃

0
d Ñ1 Ñ2 Ñ3 Ñ4

charginos 1/2 -1 W̃ ± H̃+
u H̃−d C̃ ±1 C̃ ±2

gluino 1/2 -1 g̃ same
goldstino 1/2 -1 G̃ same
gravitino 3/2 -1 G̃ same

Table 2.3.: The particles in the MSSM.

2.3.6. Origins of supersymmetry breaking in MSSM

We are interested mostly in the way supersymmetry got broken. We know a mechanism
by in which a symmetry can be broken, that is the spontaneous symmetry breaking.
However, it can be shown that original spontaneous symmetry breaking cannot occur
in MSSM. The prevailing idea is that spontaneous symmetry breaking occurs in some
hidden sector via some non renormalisable interactions and is communicated to the
visible sector by some interactions.

There have been two main hypotheses for mediating these interactions:

• Gravity mediation: Gravity is clearly a plausible candidate for the hidden sector
as quantum gravity is certainly outside the domain of present normalisable field theories.
The SUSY breaking source is transmitted from the hidden sector to the MSSM by the
new interactions including gravity that enter near the Planck mass scale MP . If SUSY is
broken in the hidden sector by some vacuum expectation values (〈F 〉) of the auxiliary
field F , the soft SUSY terms should be of the order:

msoft∼
〈F 〉
MP

(2.83)

If we demand that msoft is around 1 TeV, then
√
〈F 〉∼ 1011 or 1012 GeV.

• Gauge mediation: Here, the mediating interactions are the ordinary electroweak
and strong gauge interactions. More precisely, there exist some messengers that can
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couple directly to a SUSY breaking source in the secluded sector and also couple to the
MSSM visible particles via the SU(3)C ×SU(2)L×U(1)Y interactions. (From now on,
we will use the terminology "secluded sector" for GMSB models to distinguish them
from the hidden sector in the theories where SUSY breaking is mediated by gravity.)
This scenario is called gauge mediated supersymmetry breaking (GMSB). The soft SUSY
breaking terms come from loop diagrams containing these messengers. We can estimate
the msoft.

msoft∼
αa
4π

〈F 〉
Mmess

(2.84)

where the αa/4π is a loop factor for Feynman diagrams involving gauge interactions,
Mmess is the messenger mass. If msoft ranges from few hundreds GeV to 1 TeV and Mmess

and
√
〈F 〉 are of the same order, we estimate

√
〈F 〉∼ 104 ÷ 105 GeV, which is much

lower than the value we got in the case of gravity mediated symmetry breaking. In this
thesis, we concentrate on the minimal model of GMSB.

2.4. The minimal GMSB models

2.4.1. Structure of mGMSB

In the previous section, we have already given a short introduction on the GMSB. The
SUSY breaking is based on the F -term occurring for single chiral supermultiplet as F
acquires a non-zero VEV. So, the idea of GMSB is that there are some messengers which
couple directly to the single chiral supermultiplet in the secluded sector and also couple
to the MSSM particles via gauge interactions. The mechanism of the GMSB models is
presented in figure 2.4.

Figure 2.4.: The mechanism for mediating the SUSY breaking source from the secluded sector
to the visible sector in the GMSB models.

We first introduce the gauge single chiral supermultiplet S in the secluded sector.
And the messenger sector is described by Nf flavours of the new chiral supermultiplets
(messengers) Φi and Φi with i = 1, ..., Nf , the bar denotes that Φi and Φi transform
under conjugate representations of the Standard Model gauge group, so their quantum
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numbers are exactly opposite. We denote the scalar, fermionic and auxiliary components
of Φi by φi, ψi and Fi, those of Φ̄i by φi, ψi and F i; and those of S by φS, ψS and FS.

The components φS and FS acquire the non-zero VEVs, denoted by 〈φS〉 and 〈FS〉.
The Φi are a set of left handed chiral supermultiplets q, q, l, l. They contain messenger
quarks (ψq, ψq) and scalar (q, q) and corresponding messenger leptons and scalar leptons.
These particles must get very high masses in order not to be detected yet by experiments.

The messengers interact with the single supermultiplet in the secluded sector via the
superpotential:

Wmess = ΣyiSΦiΦi (2.85)

The Lagrangian of fermionic messenger fields is

L = −yi〈φS〉ψiψi + c.c. (2.86)

The fermion masses are given:

m2
fermion = |yi〈φS〉|2 (2.87)

The scalar superpotential containing the mass terms of scalar messenger fields is then:

V = |yi〈φS〉|2(φiφ
∗
i + φiφ

∗
i )− (yi〈FS〉φiφi + y∗i 〈F ∗S〉φ∗iφ

∗
i ) + quartic (2.88)

The first term presents the mass terms, while the second term consists of soft
supersymmetry breaking masses. The Lagrangian containing this potential can be
written as

L =

(
φ∗i

φi

)(
|yi〈φS〉|2 −y∗i 〈F ∗S〉
−yi〈FS〉 |yi〈φS〉|2

)(
φi

φ
∗
i

)
(2.89)

The matrix is the squared mass matrix. The scalar messenger masses are the
eigenvalues of this matrix.

m2
i = |yi〈φS〉|2± |yi〈FS〉| (2.90)

Comparing equations 2.87 and 2.90, we note that the supersymmetry is broken if
〈FS〉 6= 0; and each messenger supermultiplet pair (Φ and Φ) is split in mass by the effect
of SUSY breaking.
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The gauginos of MSSM obtain masses from the loop in figure 2.5 and the computed
masses are

Ma =
αa
4π
ΛN5 (2.91)

where Λ is the scale at which the SUSY breaking happens and is defined as:

Λ = 〈FS〉/〈φS〉 (2.92)

and N5 is the number of messenger supermultiplets. Because the messenger masses
far below the GUT scale can ruin the grand unification, the number of messenger
supermultiplets are required to be equal to the number of multiplets of SU(5) group.

Figure 2.5.: The loop gives masses to the gauginos [6].

For the MSSM scalars, the masses come from the two-loop order.

m2
φ = 2Λ2N5

3∑
a=1

Ca(i)(
αa
4π

)2 (2.93)

where Ca(i) is the quadratic Casimir group theory invariants for the superfields. For the
MSSM supermultiplets, we have:

C3(i) =

{
4/3 for Q, u, d
0 for L, e, Hu, Hd

C2(i) =

{
3/4 for Q, L, Hu, Hd

0 for u, d, e

C1(i) = 3Y 2
i /5 for each field with weak hypercharge Yi (2.94)

Equations 2.91 and 2.93 are equivalent to the estimation in equation 2.84 if the
messenger masses are in order of Mmess ≈ yI〈φS〉.
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2.4.2. The Lightest Supersymmetric Particle

In the Introduction, we mentioned the spin-2 graviton and its superpartner, the spin-3/2
gravitino. They should be included in the complete SUSY models of Nature. And if
the SUSY were unbroken, they are both massless. In the SUSY models, when SUSY is
spontaneously broken, the gravitino acquires mass by absorbing the goldstino. This is
called the super-Higgs mechanism, similar to the ordinary Higgs mechanism of the SM.
The mass of gravitino is calculated as:

m3/2∼〈F 〉/MP (2.95)

Equation 2.95 shows that if SUSY is unbroken, i.e. 〈F 〉 → 0, the gravitino will be
massless. Using predictions for 〈F 〉 in gauge-mediated and gravity-mediated models,
equation 2.95 gives the mass of gravitino in gauge-mediated that is much lower than in
gravity-mediated models. The GMSB models also predict Mmess � MP , i.e. that the
gravitino’s mass is much lower than the masses of the MSSM particles. It is clear that
the gravitino is the Lightest Supersymmetric Particle in the GMSB models. If R-parity
is conserved, all MSSM sparticles will follow decay chains leading to the gravitino.

2.4.3. The Next-to-Lightest Supersymmetric Particle

From equation 2.91 and 2.93, we see that since α1 < α2, α3 (for example, at the
electroweak scale, Q0 = mZ : α−1

3 (mZ) = 8.5, α−1
2 (mZ) = 29.57, α−1

1 (mZ) = 59.00), the
superparticles with only U(1)Y interactions will be the lightest among gauginos and
sfermions. These superparticles are the bino and the right-handed sleptons ẽR, µ̃R, τ̃R.
So the corresponding mass eigenstates (neutralino, or sneutrino, or sleptons) will be the
plausible candidates for the Next-to-Lightest Supersymmetric Particle. Depending on
the parameter choice, the NLSP are either the neutralino, or sneutrino, or slepton. We
will only discuss the case of slepton.

Finally, for GMSB, one arrive at the spectrum which depends on the six parameters:

Λ, Mmess,
√
〈F 〉/k, N5, tanβ, sgnµ (2.96)

Equation 2.82 shows that the mixing grows with tanβ. If tanβ is not very large, i.e.
the mixing is small, the masses of ẽR, µ̃R are close to the mass of τ̃1, the three-body
slepton decays, like ẽR → eτ ± τ̃ ∓1 , µ̃R → µτ ± τ̃ ∓1 are suppressed by kinetic condition.
Two-body decays are allowed: ẽR → eG̃, µ̃R → µG̃ and τ̃1 → τG̃. This picture is called
the "slepton co-NLSP" scenario. If tanβ is large enough, the three-body slepton decays
are allowed, and τ̃1 is the only NLSP and is dominated by the right-handed component
τ̃R. This picture is called the stau "NLSP" scenario. In any case, the τ̃1 decays into τ
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and G̃ with a width:

Γ(τ̃1 → τG̃) = 2× 10−3k2

(
mτ̃1

100 GeV

)5( √
〈F 〉

100 TeV

)−4

eV (2.97)

where k is a coefficient less than 1 and depends on how supersymmetry breaking is
communicated to the messengers.

The equation above shows that the lifetime of τ̃1 depends on
√
〈F 〉/k. If

√
〈F 〉/k is

larger than about 103 TeV, then the τ̃1 is long-lived, that means it can travel through
the detector before its decay. Figure 2.6 displays a spectrum of mass and lifetime of the
particles in the mGMSB. In this spectrum, the stau is the NLSP with a mass of 124
GeV/c2 and a lifetime of 184 ns and marked by the blue star.

Figure 2.6.: A mass spectrum and life time of the particles in the mGMSB, where the stau is
the NLSP marked by the blue star. The stau has a mass of 124 GeV/c2 and a
lifetime of 184 ns.

Now, back to equations 2.93 and 2.94, we see that the τ̃R get mass only from the
interaction of U(1)Y group, i.e. it has only U(1) quantum numbers; in other words, τ̃1

has only electromagnetic interactions with medium atoms. Hence, the staus (τ̃1) will
deposit little energy in the hadron calorimeter, but leave signals in the tracking and muon
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systems. If they have high speed, they will penetrate through the entire spectrometer
and are misidentified as muons.

As presented in section 2.3.3, the conservation of R-parity in the SUSY models allows
the staus to be produced in pair in the pp collisions. Figures 2.7 presents the Feynman
diagram for stau pair production via a Drell-Yan like processes at leading order (LO) in
perturbative QCD [12] (figure (a)) and one of the Feynman diagrams at next-to-leading
order (NLO) (figure (b)).

q

q 0*, Zγ

1τ∼+

1τ∼-

(a)

g

q

q
q

0*, Zγ

1τ∼+

1τ∼-

(b)

Figure 2.7.: Feynman diagrams for stau pair production at leading order in perturbative QCD
(a) and at next-to-leading order (NLO) (b) [12].

For the search of staus, physicists exploit mainly two features:

- Staus are slower than muons, therefore their time of flight is longer.

- Staus are very massive, so they would have anomalously high ionizing tracks.

These above points show that we have the ability to produce and detect staus at
LHC. As was mentioned in the Introduction, this thesis is dedicated to the search of stau
in LHCb detector by combining the signals from the different sub-detectors.
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Part II.

The LHCb experiment
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Chapter 3.

Large Hadron Collider

The Large Hadron Collider (LHC) ([13], [14]) is the largest collider in the world in 2013,
both because of its size and the energy of the accelerated particles. It was constructed by
the European Organization for Nuclear Research (CERN) from 1998 to 2008, with the
aim of testing the Standard Model and physics beyond it. The main subjects studied on
this machine are to search for the existence of the hypothesized Higgs boson, to provide
precise measurements of CP violation, to study the state of matter called quark-gluon
plasma, to search for monopoles, etc. In addition, with the pp collisions whose centre-of-
mass energy can go up to 14 TeV, one has the opportunity to look for new physics, like
Supersymmetry, dark matter and dark energy.

The LHC is built on the French and Swiss border, in a circular tunnel of 27 km in
circumference and around 50 m to 175 m underground to avoid a high flux of cosmic rays
and radiation hazard. It is designed to collide two counter-rotating beams of protons or
heavy ions; each beam can attain 7 TeV. Each beam consists of 2808 bunches (nb), and
each bunch has 1011 protons (Nb). The time between two consecutive beam crossing is
25 ns. The luminosity of LHC is given by

L =
N2
b nbν

F
(3.1)

where ν is the frequency of revolution and F is a factor that groups the terms describing
the beam geometry. The maximum luminosity of the LHC is 1034cm−2s−1.

Figure 3.1(a) shows the scheme of the LHC with its experiments and figure 3.1(b)
presents the tunnel of LHC. Seven experiments constructed on LHC are:

• ALICE (A Large Ion Collider Experiment) [15] focuses on studying the state of
matter known as quark-gluon plasma, which is believed to have existed soon after the
Big Bang. Alice uses the lead ion collisions.

• ATLAS (A Toroidal LHC ApparatuS) [16] and CMS (Compact Muon Solenoid)
[17] are designed for the main aim of discovering the Higgs bosons. The two experiments
are required to cross-check their results. However, many other subjects are being exploited
with these detectors.

43



44 Large Hadron Collider

(a) (b)

Figure 3.1.: The LHC scheme (a) and the LHC tunnel (b).

• LHCb (Large Hadron Collider beauty) [18] measures the B decays to study CP
violation, a high vertex resolution is therefore required. Hence, the luminosity at LHCb
is reduced to an optimal luminosity of 2× 1032cm−2s−1, which is much lower than the
designed LHC luminosity.

•TOTEM (TOTal Elastic and diffractive cross section Measurement)[19] is dedicated
to measure the total pp cross section and to study elastic and diffractive scattering at
the LHC. The TOTEM detector is located within the CMS detector.

• LHCf (Large Hadron Collider forward) [20] consists of two small detectors installed
on sides of the ATLAS detector, about 450 feet from the collision point. LHCf study the
production of neutral particles (π0, γ) at very forward angles in pp and nucleus-nucleus
collisions. This study will give important clues for the understanding of the development
of the atmospheric showers initiated by very high energy cosmic rays.

• MoEDAL (Monopole and Exotics Detector At the LHC) [21] shares the cavern
with the LHCb detector, and it is installed close to the VELO sub-detector of LHCb.
The goal of MoEDAL is to search for the direct production of magnetic monopoles at
the LHC and highly ionizing, stable (or quasi-stable) massive particles.

The first collisions of the LHC took place on 30th March 2010. The pp collisions were
produced at 7 TeV (i.e. 3.5 TeV per each beam) during 2011 and at 8 TeV during 2012.
The LHC promises a new era of discoveries in High Energy Physics.



Chapter 4.

LHCb detector

The LHCb ( Large Hadron Collider beauty ) detector ([14] [22]) is designed to provide the
precision measurements of CP violation and rare decays of B hadrons, i.e. the hadrons
which contain the "beauty" quark (also called bottom quark and symbolized as b). Since
the two B hadrons originating from a bb̄ pair produced in the pp collisions at LHC fly
in a same tight forward or backward cone, LHCb detector is designed as a single-arm
forward spectrometer. The layout of the LHCb detector in the yz plane is shown in
figure 4.1.

Figure 4.1.: The global LHCb detector

The LHCb detector stretches over 20 meters along the beam pipe and has a pseudo-
rapidity acceptance 1.9 < η < 4.9. It is composed of a magnet, a tracking system and
a particle identification system. The tracking system includes the Vertex Locator, the
Silicon trackers (TT and IT) and the outer trackers (OT). The particle identification
system includes the RICHs, the calorimeters and the muon chambers.
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4.1. Magnet

The LHCb warm dipole magnet is placed between the Tracker Turicensis (TT) and the
three tracking stations (T1, T2, T3) in order to measure the momentum of charged
particles with a precision of about 0.4% for momenta up to 200 GeV/c. It has an
integrated field of 4 Tm and covers an acceptance of ± 250 mrad vertically and of ± 300
mrad horizontally. This magnet is composed of two saddle-shaped coils arranged inside
an iron yoke of window-frame configuration. The total weights of the yoke and the two
coils are 1500 and 54 tons, respectively. The magnet gap is wedge-shaped in both vertical
and horizontal planes in order to fit to the detector acceptance. Figure 4.2(a) presents
the LHCb magnet installed in the LHCb cavern. At a given z position from 3 m to 8
m, the magnetic field B is not totally uniform, it can vary ± 1% in a plane xy of 1 m2 .
The main component, By, is shown in figure 4.2(b).

(a) (b)

Figure 4.2.: LHCb magnet in xy plane in (a); the vertical magnetic field along the z-axis in
(b).

The integrated field in the upstream TT region (0 - 2.5 m) is 0.1159 Tm and in
the downstream TT region (2.5 - 7.95 m) is 3.614 Tm. However, the maximum field
permitted at HPD’s position of RICH1 is 20× 10−4 T and of RICH2 is 9× 10−4 T to
ensure the operation of the HPDs. The measurement of the magnetic field attains
a precision of about 4× 10−4. This satisfies the requirement about the resolution in
momentum measurements of charged particles.

4.2. The tracking system

The task of the tracking system is to reconstruct the particle trajectory whose curvature
allows to deduce the momentum and the sign of the curvature with respect to the
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magnetic field direction gives the charge of particle. The LHCb tracking system consists
of three sub-detectors: the Vertex Locator (VELO) covering the collision point, the
Tracker Turicensis (TT) before the magnet and the three tracking stations T1-T3 behind
the magnet. The VELO and TT are silicon pad and micro-strip detectors. In the T1-T3
stations, two different techniques are employed: silicon micro-strips for the region close
to the beam pipe (Inner Tracker) and straw-tubes for the outer region of the stations
(Outer Tracker) where the occupancy is less severe.

4.2.1. Vertex Locator

The VErtex LOcator (VELO) is placed close to the beam pipe (∼ 8 mm) and surrounds
the collision point. It provides a precise measurement of the track coordinates in the
region close to the interaction point in order to form the primary and decay vertices.
The resolution of the vertices depends on the number of tracks; for example, for a
primary vertex of 25 tracks the resolutions are of 13, 12 and 69 µm in x, y, z dimensions
respectively (this result is from 2011 data and for events that have only one reconstructed
primary vertex). The VELO also allows to measure the deposited energies by the tracks
in the silicon sensors that may be used to identify the particles.

The VELO is composed of 42 half-disc shaped modules that are spaced and perpen-
dicular to the beam pipe over a length of ∼ 1 m. Upstream of the VELO sensors, there
are two pile-up veto stations. Each VELO module has two silicon sensors: one measures
the radial distance r and another one measures the azimuthal angle φ in the cylindrical
geometry. Each silicon sensor is 300 µm thick and has 2048 strips which are read out by
16 Beetle FE chip, providing analogue data. The modules are divided into two halves
(21 modules for each half) that are retractable during the beam injection to avoid the
very high radiation damage to the sensors and to increase the aperture around the beam
as required by LHC machine. These two halves will be moved to the closed position
during data taking with the stable beams. Figure 4.3 shows the arrangement of the
silicon sensors in the xz plane, and the relative positions of the sensors when the VELO
is fully closed or opened.

To enable the sensors to be close to the beams (∼ 8mm), the VELO vessel has to be
integrated directly into the beam pipe. However, in order to prevent any accident from
outgassing of the VELO modules which can jeopardize the LHC vacuum, the VELO
vessel is maintained with a secondary vacuum which is separated from the machine
vacuum by a thin wall of corrugated aluminium (RF foils). These RF foils form two
boxes that enclose the VELO modules. The RF foils face to the beams are 0.3 mm thick,
while the side walls of these boxes are 0.5 mm thick. A half of modules and a RF box are
shown in figure 4.4(a). The two halves of detector can overlap each other when they are
in the closed position, as in figure 4.4(b). These RF boxes are also intended to provide
a shield against radio-frequency noises from the LHCb beams that affect to the VELO
electronics.
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The modules are put inside a vacuum vessel with a length of 1.4 m and a diameter of
1.1 m. The overview of the vessel is shown in figure 4.5.

Figure 4.3.: The top figure shows the arrangement of the silicon sensors in the xz plane, at
y = 0, when the VELO is fully closed. The bottom figures describe the relative
positions of a right sensor and a left sensor when the VELO is fully closed or
opened.

(a) (b)

Figure 4.4.: In (a), the VELO modules and the RF box. In (b), the overlap of the RF-foil
corrugated faces when the detector halves are in the fully closed position. The
other edges of the boxes are cut away. The R and φ-sensors are in different
colours.
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Figure 4.5.: Overview of the VELO vacuum vessel.

4.2.2. Silicon Tracker

The Silicon Tracker consists of two parts: the Tracker Turicensis (TT) (or the Zürich
Tracker) and the Inner Tracker (IT). Both TT and IT use silicon micro-strip sensors with
a strip pitch of around 200 µm. The TT is located about 2 m from the interaction point,
upstream of the magnet. The IT is the innermost part of the three tracking stations T1
÷ T3, which are placed further away (8 m) from the interaction point, downstream of
the magnet. Both IT and TT detectors are in the very high density regions of particles,
a high spatial resolution and a fast time response are therefore required. This motivates
to choose the silicon micro-strips technology.

Tracker Turicensis

The TT consists of two stations (TTa and TTb) separated by a distance of 27 cm along
the z-axis, as shown in figure 4.6. Each station has two silicon layers of 138 ÷ 150 cm in
width and 130 cm in height covering the full acceptance of LHCb. The strips in the four
layers are arranged in different ways: in the first and last layers, the strips are vertical;
in the second and third layers, the strips are rotated by the stereo angles of −5◦ and
+5◦ respectively, these angles correspond to u and v coordinates. This arrangement will
permit to remove the track amplitudes.

Each layer of TTa station contains 15× 2 half-modules while each layer of TTb station
contains 17× 2 half-modules. The structure of the second layers is shown in figure 4.7(a).
Each half-module is a column of seven sensors; for the half-modules closest to the beam,
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where the particle density is highest, the seven sensors are divided into three sectors (4
sensors in L sector, 2 sensors in M sector and 1 sensor in K sector), these three sectors are
respectively connected to three readout hybrids via Kapton interconnect cables. These
half modules are called the 4-2-1 type. For the other half-modules, the seven sensors are
organized into two readout sectors (4 sensors in L sector and 3 sensors in M sector). It is
called the 4-3 type half module. The 4-2-1 and 4-3 half-modules are presented in figures
4.7(b) and 4.7(c).

The TT silicon sensors are single sided p+-on-n sensors. Each sensor is 500 µm in
thickness, 9.64 cm in width and 9.44 cm in length; it includes 512 strips with a strip
pitch of 183 µm.

The TT stations are vertically split up into two halves. These halves are housed inside
light tight, electrically and thermally isolated boxes made of light weight aluminium clad
foam. These boxes are mounted on rails and are retractable horizontally in order to avoid
the high radiation during the beam injection. The boxes are opened on the (z − y) side
so that the two halves of a station can join together for whole detector. This structure is
shown in figure 4.8. The temperature in the boxes is maintained below +5◦C and the
boxes are flushed with nitrogen to avoid condensation on the surfaces close to the cooling
system.

Figure 4.6.: Two stations of the TT.
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(a) (b)

(c)

Figure 4.7.: The second layer of TT (a) and the two types of the TT half-modules: the 4-2-1
type in (b) and the 4-3 type in (c).

Figure 4.8.: The structure of the TT stations.
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Inner Tracker

There are three IT stations close to the beam pipe. Each of them is composed of four
individual detector boxes that are placed around the beam pipe as shown in figure 4.9.

Figure 4.9.: The four individual detector boxes of an IT station.

Similar to the TT boxes, the IT boxes are also electrically, thermally and light tight
insulated, maintained below +5◦C and flushed by nitrogen. Each detector box has four
detection layers arranged in an x− u− v − x topology similar to that in the TT. Each
layer has seven detector modules. Figure 4.10 shows the layout of an x and u layers
with the silicon modules in the cross-shaped configuration. The modules in the boxes
above and below the beampipe consists of a single silicon sensor and a readout hybrid,
while the modules inside two boxes on either sides of the beampipe consists of a double
of silicon sensors and a readout hybrid. The sensors are single sided p+-on-n Si strip
detector. Each sensor is 7.6 cm in width and 11 cm in length. The thickness is of 320
µm for the single sensors and of 410 µm for the double sensors to maintain the ratio S/N
above 15. Each sensor has 384 readout strips with a strip pitch of 198 µm that results in
a resolution of about 57 µm.
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Figure 4.10.: Layouts of the x layer in (a) and of the u layer in (b).
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4.2.3. Outer tracker

In the three T stations, the Outer Tracker (OT) covers a large region outside the
acceptance of the Inner Tracker. The momentum resolution in the OT is required to be
of δP/P ≈ 0.4% for the reconstruction of the b-hadron mass, like B0

s → D−s π
+. Each

station consists of four layers of drift tubes arranged in the (x− u− v − x) configuration
as in the TT and IT. Each layer is built from 14 long modules (L) with a size in x and
y of 0.34 m × 4.85 m and 8 short modules (S1, S2, S3) above and below the IT. This
structure is shown in figure 4.11.

Figure 4.11.: The OT layer composes of 14 long modules and 8 short modules.

The dimensions of S1, S2, S3 modules in x and y dimensions are 0.34 m × 2 m, 0.34
m × 2.2 m and 0.17 m × 2.2 m, respectively. Each module of a standard width (0.34
m) is made of two staggered layers (monolayers), and each monolayer has 64 drift tubes
(or straws). This means that each module of the types S1 or S2 contains 128 straws, each
module of type S3 has only 64 straws. For L modules, the monolayers are cut into two
parts at the middle of its height, thus each L module contains 256 straws.

Figure 4.12 shows a module of 64 straw tubes. Each straw has an inner diameter of
4.9 mm and a length which is chosen according to its location. The cell wall (the cathode)
is made of two windings, the inner one is Kapton-XC, i.e. carbon doped polyimide which
is electrically conductive, and the external foil is made of a Kapton-Aluminium laminate
composed of 15 µm polyimide and 12.5 µm Aluminium. The anode is a 25.4 µm gold
plated tungsten wire. The drift gas is a mixture of Argon (70%) and CO2 (30%) giving a
drift time below 50 ns and a spatial resolution of 200 µm at the nominal working high
voltage value of 1500 V. Each monolayer of straw tubes is glued to a sandwich structure
made of 10 cm Rohacel and 120 µm Carbon fibre skins.
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Figure 4.12.: A module of 64 straw tubes in (a); the structure of a straw in (b).

4.2.4. Track reconstruction

For the track reconstruction, all hits in the sub-detectors (VELO, TT, IT and OT) are
combined to form the trajectories. First, the initial track candidates are formed from the
track segments, called seeds, in the VELO and T stations. Then, the trajectories of the
tracks are refitted using the Kalman filter method. Depending on the trajectories given
by the tracking system, the tracks are divided into five types, as shown in figure 4.13.

Figure 4.13.: Five track types in LHCb.

• VELO tracks traverse the VELO only. They are mainly backward tracks or large
polar angle tracks. These tracks are useful for reconstructing the primary vertex.

• Long tracks traverse all the trackers, from the VELO to the T stations. Therefore,
the measurements of their momentum have the highest accuracy. They are the most
important tracks.
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• Upstream tracks have their hits in the VELO and TT only. Due to their low
momentum, they are bent out of the detector acceptance by the magnet field before
reaching the T stations.

• Downstream tracks have hits in the TT and T stations only. They are the decay
products of the particles that decay outside the VELO acceptance.

• T tracks have the hits in the T stations only. They can be used for RICH2 pattern
reconstruction or for the internal IT/OT alignment.

4.3. The particle identification system

4.3.1. RICH

The Ring Imaging Cherenkov detectors (RICH) are used for particle identification. In
LHCb, two RICH detectors are employed depending upon the momentum of the particles.

When a charged particle traverses a medium of refraction index (n) with a velocity
(v) greater than the velocity of light in that medium, i.e. v > c/n with c being the
velocity of light in vacuum, Cherenkov lights are emitted in a cone. The emission angle
θc, between the emitted light direction and the particle direction, is given by the formula

cosθc =
1

nβ
(4.1)

where β = v/c. Thus, the particle’s velocity can be deduced from the measurement
of this angle. By using the velocity and the momentum measured by the tracking
system, the particle’s identification can be achieved. In a medium, the Cherenkov light
is only emitted when the particle’s speed β is above the threshold βt = 1/n. Therefore,
the refraction index of the medium is required to be large for the identification of low
momentum particles while a small index is more suitable for high momentum particles.
In the two RICH detectors of LHCb, three different radiators were chosen for particle
identification in a large momentum range: aerogel (n = 1.03), C4F10 gas (n = 1.0014),
CF4 gas (n = 1.0005). Figure 4.14 shows the Cherenkov angle versus particle momentum
in the three RICH radiators.

The RICH1 is placed between the VELO and the TT and covers the full LHCb
acceptance from ± 25 mrad to ± 300 mrad in horizontal and ± 250 mrad in vertical. It
uses aerogel and C4F10 gas which can identify the charged particles of the momentum
range from 1 GeV to 40 GeV. The photons emitted inside the radiators by the tracks are
reflected onto the Hybrid Photon Detector (HPD) located outside the LHCb acceptance
by a system of spherical and flat mirrors. The schematic layout of the RICH1 is presented
in figure 4.15(a).
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The RICH2 is located next to the T3 station. It contains CF4 gas which allows to
identify the charged particles of high momentum, from ∼ 15 GeV up to 100 GeV. Since
the particles of high momentum are mostly produced in the region around the beam,
RICH2 only covers a reduced acceptance from ± 15 mrad to ± 120 mrad horizontally and
to ± 100 mrad vertically. As in RICH1, an optical system of spherical and flat mirrors is
used to project the photons onto the HPDs placed outside the LHCb acceptance. Figure
4.15(b) shows the layout of the RICH2.

Figure 4.14.: Cherenkov angle versus the particle momentum in the three RICH radiators.

(a) (b)

Figure 4.15.: The schematic layouts of the RICH1 in (a) and the RICH2 in (b).



LHCb detector 57

The Hybrid Photon Detector (HPD):

The HPDs are vacuum photon detectors and aim to detect and measure the spatial
positions of the emitted Cherenkov photons. They are sensitive to single photons in
the wavelength range of 200÷600 nm. The HPD is depicted in figure 4.16(a). It puts
together in a single device the photocathode technology and the solid state technology.
The Cherenkov photons arriving on the photocathode of the HPD release photoelectrons
which are accelerated by a voltage of about -20 kV; these photoelectrons are brought
to the silicon array where they dissipate their kinetic energy in the creation of 3000 to
5000 electron-hole pairs. The light pattern which was incident on the photocathode is
thus imaged onto the silicon detector by the use of the electrostatic optics. The silicon
sensor is segmented in an array of 1024 pixels of size 500µm × 500 µm and arranged as
a matrix of 32× 32. The photocathode image is de-magnified by a factor of 5 onto the
silicon sensor. This corresponds to a pixel size at the HPD entrance window of 2.5× 2.5
mm2. The sensor is bump-bonded to the readout chips which provide a preamplifier, a
shaper and a discriminator circuit for each pixel.

The total number of HPDs in LHCb is 484, 196 which are in RICH1 and 288 in
RICH2. These HPDs cover an area of 3.5 m2. Figure 4.16(b) shows the picture of one
tube.

(a) (b)

Figure 4.16.: The schema of a HPD in (a); The HPD used for RICHs of LHCb in (b).

Particle identification by RICHs:

Since the photons are generated in a cone whose axis of symmetry is the track, their
impact points on the planes of HPDs form a ring whose radius is measured. Finding
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the emission point by inverse ray-tracing is impossible because of the spherical focusing
mirror, thus this point is assumed to be the middle point of the track segment inside the
radiator. In principle, the emission angle may be determined from the ring radius and
the emission position, thus allowing to identify the particle. However, in an event, the
signal in RICH detector is a set of rings, with many overlaps in the region of high track
density. The RICH information is treated globally for an event [23], [24], the starting
point being the assumption that all particles in that event are pions. For each individual
track the hypothesis is successively changed to e, µ, π,K, p and the "below Cherenkov
threshold" particle, the other tracks’ hypotheses being unchanged. When the change
in the event likelihood is the largest, the mass hypothesis for this track is set. The
procedure is repeated until all tracks have been set to their optimal value. The final
results are differences in the log-likelihood values (DLL) which give for each track the
change in the overall event log-likelihood when the track is changed from pion to muon,
electron, kaon, proton and below Cherenkov threshold particle.

4.3.2. Calorimeters

The calorimeters are designed to absorb electrons, photons and hadrons. They provide
energy and position measurements of the particles and allow to compute the transverse
energy (ET) that is used in the first trigger level (L0) to select the event of high ET. In
addition, the calorimeters also identify electrons, photons and hadrons.

In principle, when a particle interacts in the detector material, it produces a cascade
of secondary particles which forms what is called the particle shower. This shower is
finally absorbed by ionisation in the material. The collected signal is proportional to the
toal deposited energy of the particle. The LHCb calorimeters are sampling calorimeters
in which the active materials are scintillators.

For the electromagnetic particles, the shower contains mainly photons, electrons and
positrons created by Bremsstrahlung radiation and pair production. The rate of energy
loss of particle in the material is given by

dE

dx
= − E

X0

(4.2)

where E is the energy of particle and X0 is a distance, called radiation length, over which
a charged particle loses an average 37% of its energy through showering. The radiation
length X0 depends on the mass (m) and charge (z) of incident particle, the density (ρ),
the atomic number (Z) and the mass number (A) of the material.

X0 ∝
m2A

ρz4Z2
(4.3)



LHCb detector 59

For hadrons, the shower contains mainly pions and nucleons produced in hadron-nuclei
scattering and decay of excited nuclei. The hadronic shower development depends on the
nuclear interaction length of material (λI).

λI =
35A1/3

ρ
(4.4)

The material chosen for the calorimeters should have the radiation length and the
nuclear interaction length as small as possible to ensure the compactness of the detector.

In LHCb, the electromagnetic calorimeter system consists of three different compo-
nents: the Scintillating Pad Detector (SPD), the Pre-Shower Detector (PS) and the
Electromagnetic Calorimeter (ECAL) itself. The Scintillating Pad Detector (SPD) allows
to determine whether particles hitting the calorimeter system are charged (electron,
hadrons) or neutral (photon). After the SPD, electromagnetic showers from photons and
electrons are initiated in a 12 mm thick lead wall (2.5 X0) placed between the SPD and
Pre-Shower (PS).

Then, the electromagnetic showers continue to develop in the PS, whereas the hadrons
have low probability to create showers. Therefore, detecting this shower of electrons
in PS help to discriminate between electrons and hadrons. Finally, the showers of the
electrons and the photons continue to develop wide and are absorbed in ECAL.

For the hadrons, their showers can start at the end of ECAL and are absorbed inside
HCAL. Figure 4.17 presents the interaction of particles and the evolution of their showers
in the calorimeters.

Figure 4.17.: Interaction of particles and the evolution of their showers in the LHCb calorimeter
system.
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SPD/PS:

Both SPD and PS consist of 15 mm thick scintillator pads. A 2.5 X0 lead converter
(' 12 mm) is sandwiched between the SPD and the PS initiating the electromagnetic
showers. The scintillator light in the pads is first wavelength-shifted and then transmitted
to the multianode photomultipliers tubes (MAPMT) by the clear fibres placed outside
the acceptance. The SPD and PS planes are subdivided into three sections: the inner
section (3072 cells of 4 cm × 4 cm size), the middle section (3584 cells of 6 cm × 6 cm
size) and the outer section (5376 cells of 12 cm × 12 cm size). The sensitive area of the
detectors is 7.6 m wide and 6.2 m high. The total length of both SPD and PS in z-axis
is of 18 cm.

ECAL:

The shashlik technology was employed for the ECAL in LHCb: the calorimeter has the
sampling scintillator/lead structure which is read out with plastic WLS fibres. This kind
of detector provides an adequate energy resolution, fast time response and hard radiation
resistance.

The ECAL starts at 12.5 m in z-direction, has a total length of 1.8 m and covers
an acceptance from 25 mrad to 300 mrad horizontally and 250 mrad vertically. The
ECAL is subdivided into inner, middle and outer sections (see figure 4.18 where a quarter
of the ECAL is shown) and is built from individual modules (shown in figure 4.18 as
the small squares). Each module is made from 66 lead plates (2 mm) interspaced with
scintillator tiles (4 mm thick). The total thickness of a module is 25 radiation lengths
and 1.1 interaction length. Wavelength shifting fibres penetrate the entire stack and at
the back are fused to clear fibres which bring the signal to the photomultipliers.

As particle density depends upon the distance from the beam pipe, three types of
modules containing 3× 3, 2× 2 or 1 readout cells for the inner, middle and outer sections,
respectively, were used. These three types of modules produced for the ECAL of LHCb
are depicted in figure 4.19.

The design resolution of the ECAL is σE/E = 10%/
√
E ⊕ 1.5%, the first term of this

resolution reflects the stochastic fluctuation, such as the intrinsic shower fluctuation, the
photoelectrons statistics. The second term is due to the detector non-uniformity and
calibration uncertainties; ⊕ means that the two terms have to be added in quadrature,
E is expressed in GeV.

HCAL:

The HCAL is positioned behind the ECAL and has a dimension of 8.4 m in height, 6.8
m in width and 1.65m in length. The HCAL total weight is about 500 tons. The HCAL
is subdivided into inner and outer sections as in figure 4.20(a). The HCAL cells have a
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Figure 4.18.: The quarter of ECAL with inner, middle and outer sections.

Figure 4.19.: Three types of modules are used in ECAL.

size of 131.3× 131.3 (mm2) in the inner section and 262.6 × 262.6 (mm2) in the outer
section. This gives a resolution of σE/E = (69± 5)%/

√
E ⊕ (9± 2)% for HCAL, where

E in GeV.

The special characteristic of the HCAL is that the active scintillator tiles are placed
parallel to the beam axis. Along this axis we have six 202 mm long rows with interchanging
order of iron spaces and scintilator tiles. The scintilator is 4 mm thick and the iron is
1 cm thick. Figure 4.20(b) shows a schematic of a cell structure. As in the ECAL, the
scintillator light is captured and transmitted to the PMTs by the WLS fibres that lie
along the cell. In the longitudinal direction, the total length of the tiles and iron plates
is of 5.6λI .
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(a) (b)

Figure 4.20.: The quarter of HCAL with inner and outer sections in (a); the schematic of the
HCAL cell structure in (b).

4.3.3. The muon system

Among the detectable particles, the muons are the only particles which can traverse the
whole detector because they only have electromagnetic interactions in matter. Therefore,
the muon system is always the outermost part of the spectrometer. In LHCb, there
are five muon stations M1 ÷ M5. M1 is located before the calorimeters to decrease the
error on the momentum measurements due to scattering of muons in the calorimeters.
M2 ÷ M5 are placed after the calorimeters and separated by 80 cm thick iron plates to
filter any remaining hadronic background. Only the muons with momenta higher than 6
GeV/c cross all the five stations. The order of the muon chambers in z-axis is presented
in figure 4.21.

The muon system covers an acceptance from 20 (16) mrad to 306 (258) mrad in
horizontal (vertical). The three stations M1÷M3 have a high horizontal resolution in the
bending plane that allows to determine the track direction and to compute the transverse
momentum of muon candidate with a resolution of 20%. M4 and M5 have a limited
spatial resolution and are used to identify the penetrating particles. The measured PT is
used for high-PT muon trigger at the first level (L0) and the muon identification is used
for high level trigger (HLT) and offline analysis.

Detector technology:

All muon detectors are multi-wire proportional chambers (MWPC), except the inner
region of the station M1 which employs the triple-GEM technology because a high particle
rate in this region can affect the safety limit for detector ageing.
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Figure 4.21.: View of the muon system.

MWPC: The total number of MWPCs is 1368. Figure 4.22 shows one quadrant of a
station in the xy plane, each rectangle represents one chamber.

Figure 4.22.: One quadrant of a station in the xy plane, each rectangle represents one chamber.

The MWPCs in M2-M5 are made of five wire panels defining four gaps, as shown in
figure 4.23, each gap is 5 mm in width and filled with a gas mixture of Ar/CO2/CF4 in a
proportion of 40:55:5. In M1, the MWPCs have only three wire panels defining two gaps
to minimize the material in front of the calorimeters. The anode wires are made from
gold plated tungsten of 30 µm diameter, and are spaced by 2 mm from their neighbours.
The spacing between anode and cathode is of 2.5 mm. These MWPCs permit a time
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resolution of 5 ns. Thus, a time window of coincidence for all stations smaller than 25 ns
as required by the beam coming rate is possible.

Figure 4.23.: Cross section of MWPC showing the five panels defining four gaps.

Gas Electron Multilplier (GEM) detector: The triple-GEM detector is made
from three GEM foils sandwiched between anode and cathode planes. The schematic
cross section of the triple-GEM detector is shown in figure 4.24.

Figure 4.24.: Cross section of the strip-GEM chamber.

The GEM foils are made from 50 µm thick Kapton with two sides coated by 5 µm of
copper. The gas used in this detector is a mixture Ar/CO2/CF4 with a ratio 45:15:40,
this allows a time resolution better than 3 ns. The ionisation electrons produced in
the drift gap are attracted and multiplied by electric fields through three GEM foils.
When these electrons cross the last GEM foil, they drift to the anode, where the signal
is recorded.
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Muon identification:

For each long track reconstructed by the tracking system, we extrapolate this track and
search for the hits around the extrapolated segment in the "Field of Interest" (FOI) in
the muon stations, the "Field of Interest" being the region around the intersections of
the extrapolated segment of track with these stations. The stations which are required
to have at least one hit in the FOI depend on the muon momentum range. Table 4.1
lists the detailed requirements [25].

Momentum (GeV/c) Required muon stations
3 < P < 6 M2 + M3
6 < P < 10 M2 + M3 + (M4 or M5)
P > 10 M2 + M3 + M4 +M5

Table 4.1.: The muon stations are required to have hits in the FOI in order to identify muons.

4.4. Trigger

For pp collisions at 14 TeV, the cross-section of bb̄ pair production (σbb̄) is around 500
µb while the inelastic cross section (σinel) is 80 mb. The LHCb detector operates at an
average luminosity of 2× 1032cm−2s−1. This means that the inelastic pp collisions take
place at a rate of 16 MHz, whereas the rate of bb̄ pairs is about 100 kHz.

In LHCb, visible pp interactions are defined as collisions producing at least two charged
particles with sufficient informations in the VELO and T stations to be reconstructed.
They correspond to about ∼ 79% of the inelastic rate, i.e. 12.7 MHz.

The events cannot be written to the storage at such 16 MHz or 12.7 MHz rate because
they will occupy a huge data volume, and in addition, most of them are uninteresting
background while the fraction that contains the B decays in which we are interested is
very small. Hence, we need to reduce the data volume, in other words, we have to select
the data part of signal and reject the huge part of background. In LHCb, this task is
achieved by a trigger system with two levels: Level-0 (L0) and High Level Trigger (HLT).
The input and output rates for two levels are listed in table 4.2.

How do we trigger on B decays? Since the B mesons have a large mass, they produce
the decay products with a high transverse momentum (pT) and transverse energy (ET). In
addition, the long B lifetime allows to produce the tracks with a large impact parameter
with respect to the primary vertex. The trigger system will look for events having these
characteristics.
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Level input rate output rate

L0 16 MHz 1 MHz
HLT 1 MHz 3 kHz

Table 4.2.: The input and output rates for three levels.

X Level 0 trigger (L0) aims to reduce the rate of 16 MHz (crossing rate) to a rate
of around 1 MHz that can be handled by the DAQ, while keeping a high efficiency for B
events. The L0 contains the decision unit which receives the information from the VELO
pile-up system, the L0 calorimeter trigger and the L0 muon trigger, then makes the L0
trigger decision.

Purpose of the pile-up system is to veto the multiple visible interactions. It uses
four r-sensors of the two VETO stations placed upstream the VELO to measure the
radial position of backward tracks. It reconstructs the positions of the primary vertex
candidates along the beam line and counts the backward track multiplicity. The number
of hits in two stations are counted for each vertex to chose a vertex having the second
highest number of hits. Then, the number of tracks in this vertex and the multiplicity
are sent to the decision unit.

The L0 calorimeter trigger selects the high ET particles based on the sum of energy
deposits in clusters of 2× 2 cells in the ECAL and HCAL. The types of the particles
(photon, electron or hadron) are also identified by calorimeters. Then, for each type of
particles, the largest cluster is sent to the decision unit.

The L0 muon trigger selects the muon track of high pT. For each quadrant, the two
muon candidates of highest pT are sent to the decision unit.

The decision unit uses the information sent from the three trigger sub-systems to
decide to accept an event or to reject it.

The L0 is implemented in the hardware of the detector. The time delay between a pp
interaction and the corresponding L0 trigger decision is 4 µs. This time includes the time
of flight of the particles, the cable delays, the delays in the front-end electronic (2µs),
the time for processing data in the L0 trigger (2µs).

X High Level Trigger (HLT) is a software trigger; it is an C++ application, called
Moore, which runs on about 2000 computing nodes of the Event Filter Farm. The HLT
uses all the information of an event sent from the L0 output to execute the selection
algorithm. The HLT is composed of two levels: HLT1 and HLT2.

Purpose of the HLT1 is to confirm the trigger on high pT particle sent by the L0
trigger. Using more information in the regions around the candidate direction from the
VELO and trackers, the HLT reconstructs the track and sees if the particle candidate
matches with the track. The position of the primary vertex, the momentum of the tracks
and the impact parameter (IP) with respect to the primary vertex are also reconstructed.
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As said before, the track of the particle candidate has to have a large IP to match with
the B decay products. Therefore, for B decays the HLT1 will select the events with at
least one track which has a high p and a high pT, a good track quality and large IP. The
HLT1 receives an input rate of 1 MHz and gives an output rate of 50 kHz.

The HLT2 runs a complete reconstruction of the events. It searches for displaced
vertices by using tracks in the VELO as seeds. Then, it applies the cuts on the invariant
mass or the IP to reduce the output rate to the level at which the event can be written
to the storage. The HLT2 receives an input rate of 50 kHz and gives out an output rate
of 3 kHz.

4.5. Analysis framework and applications

All LHCb applications [26] for data processing are implemented in the GAUDI framework
which provides the necessary interfaces and services for these applications. The different
applications address the event generation, the detector and interaction simulations, the
digitisation, the trigger, the reconstruction, the physics analysis and the visualization.
These applications can be combined together or used individually.

X LHCb project is built on top of the Gaudi framework. It includes the general
purpose classes that are used throughout the LHCb applications. These classes are for
the general purpose main program and standard options, the core base classes, the event
data model, the detector description and conditions, etc.

In LHCb, all the applications (Gauss, Boole, Brunel, DaVinci and Panoramix) are
based on the Gaudi framework and on the LHCb project.

X Gauss mimics what will happen in LHCb detector to allow to understand the ex-
perimental conditions and the performance of the detector. It consists of two independent
phases: generation and simulation. The generator phase use Pythia program to generate
the event by simulating the pp collision. For the produced b-hadrons, their decays are
controlled by the EvtGen program. The simulation phase uses Geant4 toolkit to simulate
the interactions of particles with materials of the detector, the tracing of charged particles
in the magnet field and the decay of short lifetime particles. Pythia, EvtGen and Geant4
are all controlled by GAUSS. However the two generation and simulation phases can be
used separately.

X Boole: In real world, the output of the detector electronic system is an electrical
signal. Therefore, in order to simulate the real data, the energy depositions of the
particles during their crossing of the sensitive materials need to be digitized into the
electrical signals. This task is achieved by the Boole application.

X Moore is the High Level Trigger application. For real data, Moore can run either
online on the trigger farm that processes the online data from the LHCb DAQ system,
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or in the offline reconstruction. For MC data, it can run after the output of the detector
digitization (Boole).

X Brunel is the event reconstruction application for LHCb. Its task is to reconstruct
the tracks and to identify the particles.

X DaVinci is the physics analysis application for LHCb. From the reconstructed
tracks and identified particles given by Brunel, DaVinci will reconstruct the decayed
particles and the decay vertices, the primary vertices. This allows to reconstruct the
entire event.

X Panoramix is an application for the graphic display of the event. This appli-
cation can be used after or parallel with any other application in the simulation and
reconstruction sequence.
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Chapter 5.

Monte-Carlo

We have seen in chapter 2 that the staus do not have any interactions other than the
electromagnetic one. In the standard world, the only charged and long-lived particles
which only have electromagnetic interactions with the atoms of the medium are electrons
and muons. Since the electrons have a very light mass, leading to strong Bremsstrahlung,
the only standard particles which can be compared to the staus are the muons. Moreover,
if the high energy staus are long-lived enough to decay outside of the detector volume,
the main background that we have to face in a stau search will therefore be the muons.

In this chapter, we will present the Monte-Carlo study for staus and muons. We will
start with the calculation of the stau mass and its lifetime, next consider the production
of stau pairs in pp collisions and their simulation in the LHCb detector. Then, we will
identify the background source to stau pairs and have a detailed look at the responses of
the sub-detector to the staus and its background, as well as their characteristics in the
event. Finally, we will give a series of cuts to select stau pairs and the corresponding
selection efficiencies.

5.1. Generation of stau pairs in pp collisions

The mGMSB stau’s mass and lifetime:

In section 2.4 we have shown that the mGMSB depends on six parameters: the scale
at which the SUSY breaking happens (Λ), the mass scale of the messengers (Mm), the
number of the messenger supermultiplets (N5), the ratio of the two vacuum expectation
values of the two Higgs (tan β), the sign of Higgs mass term (sgnµ) and the decay constant
(
√
〈F 〉/k). For large tan β, the NLSP is the stau and it can be long-lived (see section

2.4.3). Using the above mentioned six parameters and the Spheno program [27], we
can generate the masses and the lifetimes of the superparticles of the mGMSB model.
The table 5.1 shows these parameters as proposed in the SPS7 benchmark [28] and the
corresponding masses and lifetimes of the staus.

71
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Λ (TeV) Mm (TeV) N5 tanβ sign(µ) 1/k (TeV) mτ̃ (GeV/c2) lifetime (ns)
40 80 3 15 1 4000 124 182
50 100 3 15 1 4000 154 150
60 120 3 15 1 4000 185 125
70 140 3 15 1 4000 216 107
80 160 3 15 1 4000 247 98
90 180 3 15 1 4000 278 83
100 200 3 15 1 4000 309 75

Table 5.1.: The six GMSB parameters and the corresponding masses and lifetimes of staus.

Generation of stau pairs in pp collisions:

Staus are produced in pairs and these pairs will be generated, simulated and reconstructed
by LHCb software which was presented in the second part of this manuscript. The stau
pairs originate from fermion and antifermion annihilation.

Generator phase: This step uses the above masses of the staus as input for the
generation program PYTHIA[29]. PYTHIA generates the stau pairs at LO in pp collisions
[12] at a centre-of-mass energy

√
s = 7 TeV for Monte-Carlo 11 (MC11) and

√
s = 8 TeV

for MC12. The parton distribution function (PDF) CTEQ5L [30] was used in PYTHIA.

For the calculations, we will use the cross sections for stau pair production calculated
by the program Prospino2.1 [31], [32]. Prospino2.1 is a program which computes the cross
sections at next-to-leading order for the production of supersymmetric particles at hadron
colliders. The program is written for the collisions at both LHC and Tevatron. In this
work, a special Prospino2.1 version that was developed by the ATLAS collaboration has
been employed. This allows the estimation of the cross sections and their uncertainties
by varying the parton distribution CTEQ6.6 [33], the scale factor and the strong coupling.
The original version only permits to compute the cross sections and the uncertainties by
varying the scale factor. Table 5.2 shows the cross sections for stau pair production in the
full acceptance corresponding to different stau masses at the center of mass energies

√
s =

7 TeV and 8 TeV. The cross sections are in femto-barns. The statistical and systematic
uncertainties are relative, i.e. expressed in percentage (%).

Since the LHCb detector is designed for an acceptance of 1.9 < η < 4.9 (η =
− ln(tan( θ

2
))) and as we demand that both staus enter the detector, an acceptance factor

(A) must be defined as the ratio between the number of stau pairs entering into the
LHCb detector’s acceptance and the number of stau pairs generated in 4π. These factors
are estimated using PYTHIA and are given in table 5.3. This factor decreases for higher
stau masses.
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mτ̃ (GeV/c2) σ (fb) at
√
s = 7 TeV σ (fb) at

√
s = 8 TeV

124 16.90 ± 0.07 (stat) +5.0
−4.4 (syst) 21.20 ± 0.07 +3.8

−4.8

154 7.19 ± 0.07 +6.1
−4.6 9.20 ± 0.07 +5.6

−4.3

185 3.44 ± 0.07 +6.6
−4.9 4.50 ± 0.07 +5.9

−4.7

216 1.79 ± 0.07 +6.8
−5.3 2.39 ± 0.07 +6.7

−4.8

247 1.0 ± 0.07 +7.5
−5.8 1.35 ± 0.07 +7.1

−5.4

278 0.57 ± 0.07 +7.6
−6.2 0.80 ± 0.07 +7.0

−5.9

309 0.34 ± 0.07 +8.6
−6.0 0.49 ± 0.07 +7.9

−5.9

Table 5.2.: Cross sections of the stau pair production at NLO in pp collisions of
√
s = 7 and 8

TeV in full acceptance.

mτ̃ (GeV/c2) 124 154 185 216 247 278 309
at
√
s = 7 TeV (%) 8.9 6.9 5.5 4.5 3.7 3.0 2.6

at
√
s = 8 TeV (%) 10.12 8.10 6.52 5.40 4.47 3.76 3.2

Table 5.3.: Acceptance factors of the stau pair in pp collisions of
√
s = 7 and 8 TeV.

Some characteristics of staus with the masses of 124 and 309 GeV/c2 are presented
here:

a) Invariant mass of stau pairs: In figure 5.1, the invariant masses of the stau
pairs are displayed. Here, the masses of the pairs are calculated with the generated true
mass of staus.

c) Velocity: The velocity distributions (β) are presented in figure 5.2. The distribu-
tions show that most of the staus can reach the outermost muon chamber following a
muon in the LHCb inter-spill time of 25 ns.

d) Kinetic variables: The stau tracks possess very high momentum and transverse
momentum as shown in figure 5.3 and this has some consequences as we will see.

b) Pseudorapidity: Figure 5.4 shows the distributions of the pseudorapidity (η) for
staus produced in the LHCb acceptance. For the high masses, individual stau tends to
be produced with a large angle with respect to the beam direction and that explains the
drop in the acceptance for high stau masses.
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Figure 5.1.: Invariant masses of the stau pairs. Figures (a) and (b) correspond to the two
masses of 124 and 309 GeV/c2 respectively.
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Figure 5.2.: Velocity of the staus generated in pp collisions at 7 TeV. The stau masses are 124
GeV/c2 and 309 GeV/c2 in figure (a) and (b) respectively.
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Figure 5.3.: P and PT of the staus generated in pp collisions at
√
s = 7 TeV, figures (a, c)

and (b, d) correspond to the staus of 124 and 309 GeV/c2.
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Figure 5.4.: Distributions of the pseudorapidity (η) for staus of 124 GeV/c2 mass (a) and of
309 GeV/c2 mass (b) passing through the LHCb acceptance.
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5.2. Simulation of staus and their backgrounds

The simulation of stau interactions in the LHCb detector is achieved with the Geant4
program [34] which is implemented in the LHCb software. Since the staus have only
electromagnetic interactions in media (see section 2.4.3), the following processes were
assigned to them: multiple scattering, ionization and Cherenkov effect. Bremsstrahlung
of staus can be neglected because of their mass. The staus are therefore believed to have
the same interactions in the detector as muons, except for the radiation.

In this thesis, we study the stau pairs which are produced directly in the pp collisions
with both staus entering into the LHCb detector. We simulated the stau events for the
seven different masses given in table 5.1.

5.2.1. Identification by the muon chambers

As mentioned above, staus have the same interactions as muon’s in the detector and
have a lifetime long enough to travel through the LHCb detector. Therefore, stau tracks
should be identified as muon tracks in the muon chambers and this is the main criteria for
the stau search. By examining the reconstruction of staus in the MC samples, we see that
the variable IsMuon has been always set to 1 for stau tracks. Therefore, the background
to stau pairs are the muon pairs of high energies from the decay Z, γ∗ → µ+µ−.

5.2.2. Backgrounds and a first attempt to reduce them

In this section, we will indicate the domain of the decay Z, γ∗ → µ+µ− that will affect
the stau search. As we do not know the true mass of the stau a priori, when we calculate
the invariant masses of the stau pairs, we will use the muon mass for the staus. By using
the muon mass instead of using the generated mass of 124 GeV/c2, the stau pairs will
have an invariant mass distribution in figure 5.5(a). Figure 5.5(b) shows the invariant
mass distribution of the decay Z, γ∗ → µ+µ− from the data taken by the LHCb detector
in 2011. This distribution is dominated by the Z peak at about 91 GeV/c2 with a cross
section of about 75 pb for muon pairs inside the LHCb acceptance at 7 TeV pp collisions
[35], while the cross section for the stau pair production is much lower (see table 5.2). By
comparing the two histograms of figure 5.5, we see that only the domain of the invariant
mass Mµµ > 100 GeV/c2 of the decay Z, γ∗ → µ+µ− will significantly affect the stau’s
signals.

Figure 5.6(a) shows the transverse momentum distribution of the staus with a mass
of 124 GeV/c2. Most of the stau’s PT are higher than 50 GeV/c, while most of muons
from Z, γ∗ → µ+µ− are less than 50 GeV/c (figure 5.6(b)). Hence, the background
Z, γ∗ → µ+µ− can be further reduced by requiring that each muon of the pair has a
transverse momentum larger than 50 GeV/c.
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Figure 5.5.: Invariant mass distribution of stau pairs using the muon’s mass (the true mass of
the generated stau is 124 GeV/c2) in (a). Distribution of Z, γ∗ → µ+µ− decay
selected from the 2011 data is shown in (b).
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Figure 5.6.: PT distribution of 124 GeV/c2 staus in (a) and the one of real muons in (b).

In the domain: MZ0,γ∗ > 100 GeV/c2, P µ±

T > 50 GeV/c, 1.9 < ηµ± < 4.9, the
theoretical estimations of the cross section for the Z, γ∗ → µ+µ− background are given
in table 5.4. The cross section is calculated at

√
s = 7 TeV by the program DYNNLO

[36] and at
√
s = 8 TeV by the program FEWZ [37]. Both programs use the parton

distribution function MSTW08 [38].
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cross section (σ) (pb)
at
√
s = 7 TeV 1.065 +0.03

−0.02
+0.07
−0.06

at
√
s = 8 TeV 1.24 +0.04

−0.03
+0.08
−0.06

Table 5.4.: Cross section for the decay Z, γ∗ → µ+µ− in pp collisions. The first uncertainty is
from the choice of PDF, the second one is from the theory.

5.2.3. Triggering and stripping

Stripping: The stripping line of the decay Z, γ∗ → µ+µ− (Z02MuMu) is suitable to
select the stau having the characteristics "like muons" in the detector. This line requires
two opposite charged muons with an invariant mass MZ0,γ∗ > 40 GeV/c2. This line
demands each muon to have PT > 15 GeV/c in the stripping 17 for 2011 data and PT > 3
GeV/c in the stripping 20 for 2012 data.

Trigger: The staus and their muon background have large transverse momenta, therefore
we will demand that at least one track of the pair has fired the trigger on single
muon of high PT with the three trigger lines: L0Muon, Hlt1SingleMuonHighPT and
Hlt2SingleMuonHighPT. The L0Muon will requires a muon with PT > 1.48 GeV/c in
2011 [39] and PT > 1.76 GeV/c in 2012 [40]. The Hlt1SingleMuonHighPT requires a
muon with PT > 4.8 GeV/c, while the Hlt2SingleMuonHighPT requires a muon with
PT > 10 GeV/c in both 2011 and 2012 [39], [40].
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5.2.4. Reconstruction of the tracks

As stau pairs come from the primary vertex and can attain the outermost muon chamber,
stau tracks should be reconstructed as long tracks. In order to ensure the track quality,
the cuts on chi-square per degree of freedom (χ2/dof < 3) and relative momentum
resolution (σP/P < 0.1) are applied. The distributions of these variables are shown in
figures 5.7 and 5.8 for staus of 124 GeV/c2 and 309 GeV/c2 masses.
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Figure 5.7.: The chi-square per degree of freedom (χ2/dof) is shown for staus of 124 GeV/c2

mass (figure (a)) and for staus of 309 GeV/c2 mass (figure (b)).
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Figure 5.8.: The relative momentum error (σP /P ) is displayed for staus of 124 GeV/c2 mass
(figure (a)) and for staus of 309 GeV/c2 mass (figure (b)).

The tracks selected by the above cuts show their momentum and transverse momentum
in figures 5.9 and 5.10 for staus of 124 and 309 GeV/2 masses, respectively. With a
higher mass of stau, these kinetic variables are shifted towards higher values, leading
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to a poorer momentum resolution (figure 5.8) and a larger χ2/dof (figure 5.7) for the
corresponding tracks.
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Figure 5.9.: P and PT are reconstructed for tracks corresponding to staus of 124 GeV/c2

mass.
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Figure 5.10.: P and PT are reconstructed for tracks corresponding to staus of 309 GeV/c2

mass.

5.2.5. Energy deposited in the VELO

The following three sections will describe the deposited signals in the LHCb sub-detectors.
We will start with the VELO, then go on with the calorimeters and with the RICH
detectors. In this section, we will discuss the deposited energies of staus and muons in
the VELO silicon sensors, then consider the ability to identify staus against muons.



Monte-Carlo 81

When a heavy charged particle travels through matter, it looses a part or all of its
energy by ionizing or exciting atoms of the matter. This lost energy rate (dE/dx) is
described by Bethe-Bloch formula [41]. Depending on their mass and charge, different
particles leave different amounts of energy. This helps us to identify the particles. At
very high momentum, a part of the energy lost by muons can come from radiation [41].

As described in section 4.2.1, the VELO is composed of 42 silicon sensors distributed
over a length of 1 m along z axis with each sensor having a thickness of 300 µm. A long
track originating from the primary vertex will leave its energy in some of the 42 sensors
(N in total, N < 42). The lost energies in these N sensors follow a Landau distribution
[41] with a long tail toward high values. To estimate the most probable value (MPV)
of the Landau distribution, we use the truncated mean method: 40% of the highest
depositions are discarded, then the average value of the remaining 60% is taken.

The VELO does not deliver directly the deposited energy, it gives Analog-to-Digital
Converter (ADC) counts. In the reconstruction program (Brunel), the average value
given by the truncated mean method will still be divided by a normalization factor of 47.1
and denoted by V eloCharge. This normalization transforms the deposited energy into a
value in "MIP" unit, where one MIP corresponds to the energy deposited by a minimum
ionizing particle. We will call this V eloCharge "∆E". An ADC count corresponds to a
charge of around 380 electrons collected in the silicon sensors.

Figures 5.11 and 5.12 show the distributions of ∆E simulated by MC11 for muons and
staus of 124 and 309 GeV/c2 masses. The figures (a) shows the ∆E values as a function
of the particle momentum and figures (b) show the projections of the 2D histograms (a)
on the ∆E axis. Here, the kinetic range is very high (P > 150 GeV/c), the muons should
therefore have some energy loss by radiation. However, this lost energy is not expected
to be high in the VELO since the VELO sensors are thin. Moreover, the truncated
method rejected the 40% of the highest depositions which probably contain the energy
lost by radiation. Hence, the deposited energy distribution of muons cannot go up to
high momentum as seen in figures (a). For staus, the shape of the Bethe-Bloch formula
can be seen. However, the resolution in ∆E is not sufficient to separate the staus and
muons.

In figures (b), we see that the ∆E distributions of muons are higher than the ones
of staus. The reason is that from the momentum of 150 GeV/c the muons passed the
minimum ionisation point, while the heavier staus are approaching to this point [42].

In brief, the distributions in figures 5.11 and 5.12 show that the ability to identify
the staus with VELO alone is very limited at this point. However, using this deposited
energy in the VELO together with other sub-detector outputs will improve the situation.
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Figure 5.11.: ∆E deposited by the staus of 124 GeV/c2 mass and the muons is plotted as a
function of momentum (a). Projection of histogram (a) on the ∆E axis (b).
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Figure 5.12.: ∆E deposited by the staus of 309 GeV/c2 mass and the muons is plotted as a
function of momentum (a). Projection of histogram (a) on the ∆E axis (b).

Calibration of the deposited energy in the VELO:

We now compare the ∆E deposition in the VELO from the real data and from the
simulation: the purpose of this comparison is to "calibrate" the Monte Carlo response,
i.e. to obtain a MC response which approaches as much as possible the real data. Two
samples of muon tracks from MC and data are used. The tracks are ensured to come
from Z0, γ∗ → µ+µ− decays with a mass window 80 < MZ0,γ∗ < 100 GeV/c2 and have
the required good quality. Then, they are selected in the kinetic range of our analysis
(PT > 50 GeV/c). The data and MC samples show a compatibility of the momentum
and transverse momentum distributions (figures 5.13 and 5.14).
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Figure 5.13.: Distributions of the momentum (a) and transverse momentum (b) of muon
tracks from MC11 and 2011 data.
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Figure 5.14.: Distributions of the momentum (a) and transverse momentum (b) of muon
tracks from MC12 and 2012 data.

• For MC11 and 2011 data: The distributions of ∆E in VELO from MC11 and
2011 data are presented in figure 5.15(a). The shapes of the two distributions are not
very different, but the MC values are higher than the data values. To make these two
distributions compatible, the MC11 distribution was scaled by a factor of 0.93. The
result after the scaling is shown in figure 5.15(b). We see in figure 5.15(b) that the width
of the data distribution is still larger than that of the MC distribution. To make the two
distributions more compatible, the MC values are re-generated by the convolution of the
scaled MC values, i.e. the distribution in figure 5.15(b), and a Gaussian function. The
Gaussian function has a mean which is the scaled MC value and a standard deviation
which is the square root of the quadratic difference between two widths of the two
distributions in figure 5.15(b). The result of the convolution is presented in figure 5.15(c).
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Figure 5.15.: In (a): distributions of ∆E in VELO from MC11 and 2011 data. In (b): the
MC distribution was scaled by a factor of 0.93. In (c): the MC distribution was
re-generated by a convolution of the scaled MC distribution with a Gaussian.

• For MC12 and 2012 data: Figure 5.16(a) shows two distributions of ∆E for MC12
and 2012 data. The shapes look more compatible than for 2011. However, the MC
distribution is now lower than the data’s one. The MC distribution was scaled by a
factor of 1.058 and the result of this scale is presented in figure 5.16(b). Finally, to make
two widths more compatible, a convolution is done as for the 2011 case. The result is
shown in the last figure 5.16(c).

These calibrations are applied to the MC muons and the MC staus.
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Figure 5.16.: In (a): distributions of ∆E in VELO from MC12 and 2012 data. In (b): the
MC distribution was scaled by a factor of 1.058. In (c): the MC distribution was
re-generated by a convolution of the scaled MC distribution with a Gaussian.
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5.2.6. Deposited energies in the calorimeters

The staus and muons do not leave much of their energies in the calorimeters, contrary
to electrons or photons in ECAL, and pions or kaons or protons or neutrons in HCAL.
However, in such thick detectors, there is a difference between the amount of energy
deposited by the muons and the staus. As mentioned before, staus possess a heavy mass,
it is therefore hard for them to radiate. Their deposited energies in the calorimeters
result from ionisation and the atom excitation only. For muons, the radiation can occur
in these thick detectors. Hence, the total energy depositions of staus in ECAL and HCAL
are expected to be lower than that of muons [43].

Figures 5.17 and 5.18 show the distributions of the total deposited energies of staus
and muons in ECAL and HCAL, respectively. The left bi-parametric distributions show
the deposited energies as a function of the transverse momentum, the right histograms
are the projections onto the deposited energy axis. The staus used in these figures
have a mass of 124 GeV/c2. Clearly, the energy deposition distributions of muons are
higher than that of staus, as expected. A large fraction of tracks have no deposition
in calorimeters (the first bins of figures 5.17(b) and 5.18(b)) because these depositions
are lower than the readout thresholds in the calorimeters. In particular, this fraction is
higher when the polar angles of tracks become smaller.

These total deposited energies in ECAL and HCAL will be used in the analysis by
the Neural Network to classify staus and muons.

 (MeV/c)TP
0 50 100 150 200 250 300 350 400 450

310×

E
 
(
M
e
V
)

∆

0

1000

2000

3000

4000

5000

6000

staus (signal)

muons (bgr)

(a)

E (MeV)∆
0 500 1000 1500 2000 2500 3000

e
n
t
r
i
e
s

0

1000

2000

3000

4000

5000

6000

7000

8000

staus (signal)

muons (bgr)

(b)

Figure 5.17.: The left figure (a) shows the deposited energies in ECAL as a function of the
transverse momentum (PT), the right histogram (b) is the projection on the
deposited energy’s axis. The staus used here have a mass of 124 GeV/c2.
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Figure 5.18.: The left figure (a) shows the deposited energies in HCAL as a function of the
transverse momentum (PT), the right histogram (b) is the projection on the
deposited energy’s axis. The staus used here have a mass of 124 GeV/c2.

Calibration of the deposited energies in the calorimeters:

Here again, as for the VELO, we "calibrate" the response of the calorimeters in order to
have adequate sub-detector responses to train the Neural Network.

We use again the same samples of Z0, γ∗ → µ+µ− from MC and data that we have
used for the calibration of the VELO; the muon tracks are selected with the same cuts
as for the calibration of the VELO. The distributions of the total deposited energies in
ECAL and HCAL by the selected muon tracks are shown in figures 5.19 and 5.21 for
MC11 and 2011 data; and the corresponding histograms for MC12 and 2012 data in
figures 5.20 and 5.22.

All the left figures show the distributions before calibrations. The MC distributions
are always higher than the ones in data. To make them compatible, the MC distributions
have to be shifted downwards. The results after shifting are shown in the right figures.
The shifting factors are listed in table 5.5. These calibration factors are applied to the
MC muons and MC staus.

ECAL HCAL
MC11 0.80 0.85
MC12 0.79 0.84

Table 5.5.: The factors have been used to scale the MC distributions of the total deposited
energies in the calorimeters.
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Although slight differences still exist between the "calibrated" MC distributions and
the data, we find that these calibrated responses of the calorimeters are acceptable for
the training of the Neural Network.
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Figure 5.19.: (a): Original distributions of the total deposited energies of muons from MC11
and 2011 data in ECAL. (b): the MC11 distribution was scaled by a factor of
0.80.
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Figure 5.20.: (a): Original distributions of the total deposited energies of muons from MC12
and 2012 data in ECAL. (b): the MC12 distribution was scaled by a factor of
0.79.
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Figure 5.21.: (a): Original distributions of the total deposited energies of muons from MC11
and 2011 data in HCAL. (b): the MC11 distribution was scaled by a factor of
0.85.
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Figure 5.22.: (a): Original distributions of the total deposited energies of muons from MC12
and 2012 data in HCAL. (b): the MC12 distribution was scaled by a factor of
0.84.

Cuts on the deposited energies in calorimeters:

Muons and staus have small energy depositions in the calorimeters; on the contrary, the
hadrons deposit a huge amount of energy. Therefore, the ratio between the sum of the
total deposited energies of a track in the ECAL and HCAL and its momentum will be
small for muons and staus, while this ratio is expected to be large for hadrons, i.e. pions
and kaons. Indeed, figure 5.23(a) shows the distributions of this ratio for MC muon and
stau tracks. The values are close to zero for staus, and a little bit higher for muons.
In contrast, figure 5.23(b) shows that this ratio is large for the muons from the mis-ID
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sources. The mis-ID sources are the pions and kaons that have enough energy to escape
the calorimeters or decay into a muon in flight, and then are mis-identified as muons by
the muon chambers. Figure 5.23(b) uses the mis-ID source generated by a "ParticleGun".
The first bin corresponds to tracks which travel in the outer board of the calorimeters
and do not give enough signals in the detectors.

The distributions in figure 5.23 show that this ratio (EECAL+EHCAL)/P might provide
a strong cut to reject the mis-ID background, as well as a part of muon background. We
fix this cut to be (EECAL + EHCAL)/P < 0.01.

)/PHCAL+ E
ECAL

(E
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

e
n
t
r
i
e
s

0

500

1000

1500

2000

2500

3000

3500

staus (signal)

muons (bgr)

(a)

)/PHCAL+ E
ECAL

(E
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

e
n
t
r
i
e
s

0

50

100

150

200

250

300

350

mis-ID

(b)

Figure 5.23.: Figure (a): the distributions of the ratio between the sum of the total deposited
energies of the muon and stau tracks in the ECAL and HCAL and their momen-
tum; the mass of stau is 124 GeV/c2. Figure (b): the same variable for muons
from the mis-ID source. Note the different scales on the horizontal axes.

5.2.7. Response of the RICHs

In this section, we will look at the response of RICHs to the muons and staus and
"calibrate" the response of this detector to muons. Since the staus are very much
heavier than muons, the Cherenkov momentum thresholds are very different for these
two particles. The thresholds in the three radiators of the LHCb’s RICHs for muons and
staus are given in table 5.6.

The momentum thresholds in the above table indicate that most of the staus cannot
radiate in the two gas radiators; a part of them can do it in the aerogel, but the velocity
resolution in aerogel is very limited [44], [24]. The staus are therefore identified as
"below-threshold particles" by RICHs.

In contrast, the muons have the ability to radiate in all of the three radiators. However,
the RICHs of LHCb have been designed to distinguish between pions and kaons mainly; it
is also difficult to distinguish muons from pions because of their close masses. Moreover,
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with the momenta above 100 GeV/c, the radiation angles are saturated (see figure
4.14). Consequently, the muons may be mis-identified as one of the other basic particles
(e, π,K, p) or a below-threshold particle. Figure 5.24 shows the particle identification
(PID) given by RICHs for the true muons and the staus simulated by MC11, where the
"PID" corresponding to the identified particles listed in table 5.7.

P (µ) P (τ̃) (GeV/c)
Radiator n βthresh (GeV/c) 124 154 185 216 247 278 309

Aerogel 1.03 0.97087 0.441 502 623 749 875 1’000 1’126 1’252
C4F10 1.0014 0.99850 1.93 2’261 2’808 3’373 3’939 4’504 5’069 5’069
CF4 1.0005 0.99950 3.34 3’919 4’868 5’848 6’827 7’807 8’787 9’767

Table 5.6.: The thresholds of momentum to generate Cherenkov light for muons and staus in
the RICH radiators.

RICH PIDs -1 0 1 2 3 4 5
particles unknown e µ π K p below threshold

Table 5.7.: The PIDs corresponding to the identified particles by RICHs.

The treatment of the information given by RICH detectors has been developed in
section 4.3.1. We have seen that a difference in the log-likelihood value (DLL) is assign
for each track. As this variable is a change in the overall event log-likelihood when
the hypotheses of the track is changed, for instance, from pion to electron, or muon,
etc... or the below threshold particle hypothesis. The delta log-likelihood for the below
threshold particle hypothesis (DLLbt) can extended down to value like -150 in figure 5.25.
The small peak near zero is attributed to muons being identifed as "below threshold"
particles.The staus will certainly not leave any Cherenkov signal and correspond to a
positive DLLbt. Clearly, this variable gives a powerful mean to separate staus and muons.
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Figure 5.24.: Particle identification (PID) given by RICHs for the muons and staus simulated
in MC11. The staus in figure (a) and (b) have the masses of 124 GeV/c2 and of
309 GeV/c2, respectively.
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Figure 5.25.: Distribution of the delta log-likelihood for the below threshold particle hypothesis
that the RICHs give to the muon and stau tracks simulated by MC11. The two
figures (a) and (b) use staus of 124 and 309 GeV/c2 masses, respectively.

Calibration of the DLLbt variable:

We will use the delta log-likelihood for the below threshold particle hypothesis as an input
to the Neural Network, therefore the DLLbt distribution from MC must be compatible
with the corresponding distribution from real data. Unfortunately, the distributions of
this variable in MC11 and 2011 data are different as shown in figure 5.26(a). In this
figure, the good quality muon tracks of P > 150 GeV/c and PT > 50 GeV/c and selected
from the Z0 peak (80 < MZ0 < 100 GeV/c2) are used. To make the DLLbt distribution
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from MC similar to the one from the real data, we proceed as follows: we fill a three
dimension histogram (P, η,DLLbt) by using the tracks from data. For a MC muon track,
whose momentum (P ) and pseudo-rapidity (η) are known, the content of the (P, η) cell
in the 3D histogram is projected onto the DLLbt variable and the new value of DLLbt
for the MC track is chosen randomly from this projected distribution. In the case where
the content of the (P, η) cell is zero because of the poor statistics, the original DLLbt
value of the MC track is kept. The result of this calibration for MC11 muons is shown in
figure 5.26(b). We can see now a good agreement between the two distributions from
MC11 and 2011 data. The calibration will be applied for the MC muons used in the
neural network. For MC staus, we have to rely on the original MC response since there
is no real data to calibrate this variable for staus.

This calibration method is also applied to the MC12 muons.

Entries  3429
Mean   -25.41
RMS     27.47

-150 -100 -50 0 50
0

20

40

60

80

100

120

140

160

180

Entries  3429
Mean   -25.41
RMS     27.47

Entries  3429
Mean   -42.83
RMS     32.39

Entries  3429
Mean   -42.83
RMS     32.39

data 2011

MC11

(a)

Entries  3429
Mean   -25.65
RMS     29.08

-150 -100 -50 0 50
0

20

40

60

80

100

120

140

160

180

Entries  3429
Mean   -25.65
RMS     29.08

Entries  3429
Mean   -25.41
RMS     27.47

Entries  3429
Mean   -25.41
RMS     27.47

data 2011

MC11 calibrated

(b)

Figure 5.26.: In (a): the original distributions of the delta log-likelihood for the below-threshold
particle hypothesis from muon tracks in MC11 and 2011 data. In (b): the MC11
distribution was generated again to make it similar to the one in data.

5.2.8. Impact parameter

The staus that we study and muons from Z0, γ∗ decays are produced at the primary
vertex, they should therefore have a smaller impact parameter (IP) than the muons
from the decays of heavy quarks, or from the misidentified sources or from the decay
Z0, γ∗− > τ+τ−. We have selected tracks having PT larger than 50 GeV/c from five
samples and compared their IP values. These sources are:

- staus

- muons from Z0, γ∗

- muons from Z0, γ∗− > τ+τ−, where the taus decay into muons.
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- muons from top quark decays via the W ± bosons.

- mis-identified muons

The first four sources come from MC and the last one is from the data.

Figure 5.27(a) shows the impact parameter of the stau tracks and the muon tracks
from Z0, γ∗ decays with respect to the best primary vertex reconstructed in the event,
figure 5.27(b) shows the IP distributions from the three other background sources: decays
of the top quarks, misidentified hadrons and decays Z0, γ∗− > τ+τ−. While the impact
parameter values of stau and muon pairs (figure 5.27(a)) are close to zero, the ones for
the other backgrounds (figure 5.27(b)) extend to larger values. An impact parameter less
than 50 µm has been required to select the stau tracks.
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Figure 5.27.: Impact parameter of stau tracks (mτ̃ = 124 GeV/c2) and muon tracks from Z0, γ∗

decays with respect to the best primary vertex in figure (a). The distributions
for other backgrounds in figure (b).

5.2.9. Asymmetry in transverse momentum

The two staus in a pair are expected to have nearly equal transverse momenta. To
express this property, the asymmetry of the transverse momenta of the two particles in
the pair is defined:

P asym
T =

| P+
T − P

−
T |

P+
T + P−T

(5.1)

where P+
T , P

−
T are the transverse momenta of the particles in a pair. This asymmetry

for stau and muon pairs are shown in figure 5.28. In these figures, the pairs are selected
by the Z02MuMu stripping line and have an invariant mass Mpair > 100 GeV/c2, the
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tracks are insured to be of good quality and have PT > 50 GeV/c. The distributions
show that a cut P asym

T < 0.4 can be applied for the stau selection.
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Figure 5.28.: The asymmetry in transverse momentum of the two particles in the stau and
muon pairs. The staus used in figures (a) and (b) have the masses of 124 and
309 GeV/c2 respectively.

5.2.10. Pair isolation

While the stau tracks and the muon tracks from Z0, γ∗ decays are quite isolated, the
muons from the mis-ID source or from heavy quark decays are surrounded by other
charged particles. In general, the particles which accompany the muons and staus have a
small PT. Therefore to quantify an isolation, we consider the asymmetry between the
transverse momentum (PT) of the considered track and the scalar sum (ΣPT) of the
transverse momenta of all charged particles in a cone surrounding this considered track.
The transverse momentum of the considered track is excluded from this sum.

Itrack =
PT − ΣPT

PT + ΣPT
(5.2)

The cone is defined by:

R =
√

(ηtrack − ηparticle)2 + (φtrack − φparticle)2 < 0.5 (5.3)

where (ηtrack, φtrack) are the coordinates of the considered track in spherical coordinates,
(ηparticle, φparticle) are the coordinates of any other charged particle. Then, the isolation
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of a pair can be defined according to [45]:

I =

√
(Itrack1 − 1)2 + (Itrack2 − 1)2

8
(5.4)

The factor of 8 in the denominator is to normalise the value of I from 0 to 1.

Figure 5.29(a) shows the pair isolation distribution of the muon pairs from Z0, γ∗

decays and of the stau pairs with a mass of 124 GeV/c2. These distributions tend to
zero and this shows that the stau pairs and the muon pairs from Z0, γ∗ decays are quite
isolated. Figure 5.29(b) shows the asymmetry I for the muon pairs from the decays
Z0, γ∗ → τ+τ− and from the top quark pairs. The muon pairs from these backgrounds
are also quite isolated as we have required the muons to have a high PT, greater than 50
GeV/c. This would not be the case if this condition on PT had not been fulfilled. We
will ask I < 0.1 to select the stau pairs. However we do not expect that a cut on this
variable strongly rejects the backgrounds.
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Figure 5.29.: The pair isolation of the stau pairs (mτ̃ = 124 GeV) and the muon pairs from
Z0, γ∗ decays in figure (a). The distributions of the same variable for the other
backgrounds.

5.3. Selection and efficiencies

In the previous sections, we have considered the variables describing the stau pairs and
their muon background. We will now summarize the cuts on these variables. They are:
1. The track is a long track.
2. The track is identified as muon track by the muon chambers with the variable
IsMuon = 1.
3. The track has a chi-square per degree of freedom χ2/dof < 3.
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4. The relative momentum resolution of the track satisfies σP/P < 0.1.
5. At least one muon of the pair has to fire the trigger on single muon of high PT (L0,
HLT1, HLT2).
6. The pseudo-rapidity of each track in the pair is in the range 2.07 < η < 4.38.
7. The cuts on the momentum of the track vary with the masses of staus and are listed
in table 5.8.

mτ̃ (GeV/c2) 124 154 185 216 247 278 309
P (GeV/c) at 7 TeV 150 200 200 250 300 300 400
P (GeV/c) at 8 TeV 150 200 200 250 300 350 400

Table 5.8.: Cuts on the momentum of the track to select the staus.

8. The transverse momentum of the track satisfies PT > 50 GeV/c.
9. The sum of the energy depositions in HCAL and ECAL divided by the track momentum
(EECAL + EHCAL)/P < 0.01.
10. The impact parameter of the track with respect to the best primary vertex in the
event must be IP < 50 µm.
11. The asymmmetry of the PT of the two tracks in a pair is P asym

T < 0.4.
12. The variable "pair isolation" is I < 0.1.
13. The invariant mass of the pair must be Mpair > 100 GeV/c2.

By applying the above cuts, we obtain the selection efficiencies for muon and stau
pairs listed in tables 5.9 and 5.10. The selection efficiency is defined as the ratio between
the number of pairs passing the selection cuts and the number of pairs generated in the
LHCb acceptance.

Now we can estimate the expected number of pairs that we can select from the data
with the formula:

n = L× ε×A×σ (5.5)

where n is the expected number of the pairs, L is the integrated luminosity, ε is the
selection efficiency, A is the acceptance factor and σ is the cross section for the pair
production.

The LHCb experiment has collected data corresponding to integrated luminosities of
1.01 fb−1 and 2.1 fb−1 in 2011 and 2012, respectively. Using the equation 5.5 and the
values of the cross sections (tables 5.2, 5.4), the acceptance factor (table 5.3) and the
selection efficiencies (tables 5.9, 5.10), we compute the expected number of stau and
muon pairs for these luminosities. The results are presented in table 5.11.
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mτ̃ (GeV/c2) 124 154 185 216 247 278 309
Efficiency (ε) (%)for stau 37.63 36.29 33.48 30.04 26.51 23.06 19.84
Efficiency (ε) (%)for muon 23.11 23.08 23.08 21.85 19.20 19.20 12.73

Table 5.9.: Selection efficiencies for muon and stau pairs using the selection cuts. These values
are for MC11.

mτ̃ (GeV/c2) 124 154 185 216 247 278 309
Efficiency (ε) (%)for stau 37.21 35.76 31.12 30.01 26.84 23.65 20.57
Efficiency (ε) (%)for muon 24.26 24.24 24.24 23.21 20.83 17.80 14.72

Table 5.10.: Selection efficiencies for muon and stau pairs using the selection cuts. These
values are for MC12.

L = 1.01 fb−1 at 7 TeV L = 2.1 fb−1 at 8 TeV
mτ̃ (GeV/c2)

muon pairs staus pairs muon pairs staus pairs
124 248.8 0.572 632.3 1.670
154 248.4 0.181 631.8 0.559
185 248.4 0.064 631.8 0.191
216 235.2 0.024 605.0 0.081
247 206.7 0.010 542.9 0.038
278 206.7 0.004 464.0 0.015
309 137.0 0.002 383.7 0.007

Table 5.11.: Expected number of selected stau and muon pairs.



98 Monte-Carlo

5.4. Other backgrounds

The other background sources which may occur in our search are:

• Decays Z0, γ∗ → ττ where both taus decay leptonically to muons and neutrinos.
This decay is estimated by MC to contribute 0.017 events to the number of events
selected in 1 fb−1 at 7 TeV collisions.

• Decays of the top quark pairs into b quarks and W bosons. These decays can
contribute to the background when both W bosons decay to muons ans neutrinos.
This background may contribute 0.13 events to the number of events selected in 1
fb−1 at 7 TeV collisions. This estimation is done by MC.

• Pions and kaons may be mis-identified as muons if they decay in flight or they have
enough energy to escape the calorimeters and are identified as muons by the muon
chambers. To estimate this background, the minimum bias 2011 data were used.
The good quality tracks with IsMuon = 1 and PT > 50 GeV/c were selected.

The minimum bias (MB) events are mostly dominated by hadrons and the muons
constitute an extremely small fraction, therefore we consider the fraction of all long
tracks that are identified as muons in these MB events as an upper limit on the
probability of hadron mis-identification. And we see that this upper limit on the
probability for one track (pion or kaon) of PT > 50 GeV/c to be mis-identified as
muons is about 7.8× 10−5. In the minimum bias 2011 data, we found no events
with two good quality tracks identified as muons with opposite charges.

In conclusion, the contribution of these backgrounds in our analysis are very tiny with
respect to the contribution from Z0, γ∗ → µ+µ−. Therefore, the above backgrounds
are neglected and we conclude that the main source background to the stau search is
Z0, γ∗ → µ+µ−.



Chapter 6.

Analysis of the Monte Carlo data by
Neural Network

In the previous chapter, we have defined the cuts to select the stau pairs. Definitely the
muon pairs of high energies will also pass these cuts. We have also considered the signals
deposited by staus and muons in the sub-detectors (VELO, ECAL, HCAL and RICHs)
and calibrated these signals to get their responses from MC similar to the ones from
the data. In this chapter, we will use these signals to separate the selected stau tracks
from the muon tracks with a Neural Network (NN) [46]. This will be presented in section
6.1. In section 6.2, we will present two ways to define a region for the stau signal and
estimate the expected numbers of stau pairs and muon pairs in this region.

The analysis presented in this chapter will use the Monte Carlo simulated data. The
result from the real data will be shown in chapter 7.

6.1. Analysis of individual tracks

We will use a Neural Network to distinguish the stau tracks from muons tracks. The
Neural Network is one of the methods based on machine learning techniques which are
used to analyse the data. Here, the variables from MC events will be used to train and
test the NN. Then, the trained NN will be used to classify the data. To analyse the
tracks, we use four variables as inputs of the NN. These are:

- the average energy deposition in a VELO sensor

- the total energy deposition in the ECAL

- the total energy deposition in the HCAL

- the delta log-likelihood value for below-threshold particle hypothesis (DLLbt) given
by the RICHs

The distributions of the four variables are shown in figure 6.1. In this figure, we use
the muon and stau tracks simulated by MC11 and the staus have a mass of 124 GeV/c2.
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All muon and stau tracks are selected by the selection cuts corresponding to the case of
124 GeV/c2 stau mass. These variables were calibrated.
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Figure 6.1.: The four variables of the stau and muon tracks used as inputs of the NN.

The training and testing samples have the same number of events. The stau is the
signal source and the muon is the background source.

In the output, the NN gives to each track an NN response. In our analysis, we use the
NN twice to distinguish the individual tracks and the pairs. To avoid confusion, the NN
which distinguishes the individual tracks will be called the first NN and its output will be
denoted by NN1. The NN which distinguishes the pairs will be called the second NN and
its output will be denoted by NN2. Figures 6.2(a) and 6.2(b) present the NN1 responses
for the muon tracks and the stau tracks of 124 and 309 GeV/c2 masses, respectively. We
see that the NN1 responses are mainly peaked at 1 for signals and at 0 for backgrounds.
This NN1 response for the individual tracks will be used in the next analysis step, that
is the analysis of the pairs.
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Figure 6.2.: NN1 responses for MC muon tracks and MC stau tracks. Figure (a) shows the
NN1 response for the staus of 124 GeV/c2 mass and figure (b) is for the staus of
309 GeV/c2 mass. The vertical scale is logarithmic.

6.2. Selection of the stau pairs

6.2.1. Selection based on the pair significance

Using the results of the classification for the individual tracks in the previous section, we
compute the product of the two NN1 responses for the two tracks in a pair. This product
can be considered as a "significance for each pair", and we called it pair significance. This
pair significance is presented in figures 6.3(a) and 6.3(b) for the muon pairs and the stau
pairs corresponding to the 124 and 309 GeV/c2 masses, respectively. We can see that
this pair significance gives quite separated results for the muon and stau pairs reflecting
a kind of pattern rather than just random distribution and allowing us to characterize
this product as a "significance".

We will apply a cut on the pair significance to separate the stau pairs and muon pairs.
The region higher than the cut will be called stau region. And the cut is chosen so that
95% of the stau pairs are kept in the stau region. Table 6.1 gives the cuts corresponding
to the different masses of staus. The fractions (R) of the muon pairs staying in the stau
region are shown in table 6.2.

mτ̃ (GeV/c2) 124 154 185 216 247 278 309
MC11 0.57602 0.55754 0.53046 0.54970 0.55054 0.49818 0.65834
MC12 0.73058 0.71966 0.70454 0.69950 0.69026 0.73058 0.77510

Table 6.1.: Cuts on the pair significance to separate the stau pairs and the muon pairs.
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Figure 6.3.: The pair significance of the muon pairs and the stau pairs with the masses of 124
GeV/c2 (a) and 309 GeV/c2 (b).

mτ̃ (GeV/c2) 124 154 185 216 247 278 309
MC11 (× 10−5) 5.6 7.1 7.5 4.2 9.0 9.5 2.4
MC12 (× 10−5) 1.7 1.7 1.7 2.5 0.8 1.4 0.6

Table 6.2.: Fraction (R) of the muon pairs staying in the stau region.

Finally, the expected numbers of the stau pairs and of the muon pairs falling into the
stau region are computed by the formula:

nexp = n×R (6.1)

where nexp is the expected number of pairs in the stau region, n is the expected number
of pairs passing the selection cuts and computed with equation 5.5, R is the fraction of
surviving muon pairs in the stau region given in table 6.2 and R is equal 95% for the
stau pairs. The expected numbers are presented in table 6.3.
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L = 1.01 fb−1 L = 2.1 fb−1

mτ̃ (GeV/c2) stau pairs muon pairs stau pairs muon pairs
124 0.543 0.014 1.587 0.011
154 0.172 0.018 0.531 0.011
185 0.061 0.019 0.181 0.011
216 0.023 0.010 0.077 0.015
247 0.010 0.019 0.036 0.004
278 0.004 0.020 0.014 0.007
309 0.002 0.003 0.007 0.002

Table 6.3.: Expected numbers of the stau pairs and the muon pairs in the stau region for the
luminosities of 1.01 and 2.1 fb−1.

6.2.2. Selection based on the pair significance and invariant
mass of the pairs

In this section, we present another selection for the stau pairs based on the pair significance
and incorporating the invariant mass of the pairs.

The invariant mass for the muon pairs and the stau pairs is shown in figure 6.4.
Although we calculate the invariant mass of the stau pairs by assuming the mass of
each stau to be that of a muon, we still see a difference between the invariant mass
distributions of the stau pairs and the muon pairs. The true masses of the staus in figures
6.4(a) and 6.4(b) are 124 and 309 GeV/c2, respectively. We see that higher is the true
mass of the staus, more does the invariant mass distribution extend towards high values.
This gives a hint to distinguish the stau pairs from the muon pairs more efficiently.

We now use the pair significance that we consider in section 6.2.1 and the invariant
mass as two inputs for a new classifying NN analysis (the NN2). The ouput of the second
NN is shown in figure 6.5. The original masses of the staus used in this figure are 124
GeV/c2 (a) and 309 GeV/c2 (b). We can observe that the NN2 responses are largely
grouped toward the value 1 for the stau pairs, whereas the muon pair responses are
grouped around the value 0.

This second NN analysis is only aimed to provide a cut on NN2 to separate stau and
muon pairs. To set this cut, we will estimate the significance (S/

√
S +B) versus the NN2

response, where S and B are the integrals of the signal (stau) and the background (muon)
from the NN2 value to the right edge in the histograms of figure 6.5. The significances
corresponding to the two histograms in figure 6.5 are drawn in figure 6.6. The cuts then
are defined basing on these significances. In general, the cut will be chosen at the NN2
value where the significance gets to a maximum. In our case, the significance lines exhibit
plateaux, instead of peaks. Instead of choosing the cut at the center of the plateau, we
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chose a NN2 response of 0.8 to reduce more background. The cuts are pointed out by
the magenta arrows in figure 6.6 and by the green lines in figure 6.5. This cut is applied
to analysis for all the stau masses (124÷ 309 GeV/c2).
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Figure 6.4.: Invariant mass of the muon pairs and the stau pairs with the original masses of
124 GeV/c2 (a) and 309 GeV/c2 (b).
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Figure 6.5.: NN2 responses for stau and muon pairs. The original masses of the staus in (a)
and (b) are 124 GeV/c2 (a) and 309 GeV/c2, respectively.
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Figure 6.6.: Significance S/
√
S +B versus the NN2 response. Figures (a) and (b) correspond

to the histograms 6.5(a) and 6.5(b), respectively.

We now draw the bi-parametric histogram of the pair significance and the invariant
mass in figure 6.7. The stau pairs and the muon pairs are displayed by red and blue,
respectively. The cut of 0.8 on NN2 is now corresponding to the green line. In this
method, we also call the region above the green line stau region.
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Figure 6.7.: The green boundary separates the stau and the muon regions in the bi-parametric
histogram of the pair significance and the invariant mass. Figures (a) and (b)
correspond to the staus of 124 and 309 GeV/c2 masses, respectively.

After having defined the stau region boundary, we can compute the fraction (R) of
surviving stau and muon pairs remaining in the stau region. Table 6.4 lists these fractions
for muon and stau pairs estimated by MC11 and MC12. For the stau pairs, this fraction
is very high, while it is very tiny for the muon pairs. This is a convenience for our search.
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MC11 MC12
mτ̃ (GeV/c2) stau pairs (%) muon pairs (%) stau pairs (%) muon pairs (%)

124 99.21 0.035 99.359 0.025
154 99.10 0.034 99.365 0.023
185 99.20 0.029 99.406 0.020
216 99.15 0.020 99.378 0.021
247 99.16 0.013 99.405 0.022
278 99.17 0.018 99.445 0.013
309 99.43 0.011 99.506 0.019

Table 6.4.: Fraction (R) of surviving stau and muon pairs in the stau region.

For the integrated luminosities of 1.01 fb−1 and 2.1 fb−1, the number of the stau pairs
and of the muon pairs expected to be observed in the stau region are presented in table
6.5.

L = 1.01 fb−1 L = 2.1 fb−1

mτ̃ (GeV/c2) stau pairs muon pairs stau pairs muon pairs
124 0.567 0.087 1.660 0.158
154 0.179 0.084 0.555 0.145
185 0.063 0.072 0.190 0.126
216 0.024 0.047 0.080 0.127
247 0.010 0.027 0.038 0.119
278 0.004 0.037 0.015 0.060
309 0.002 0.015 0.007 0.070

Table 6.5.: Expected numbers of the stau pairs and the muon pairs in the stau region for the
luminosities of 1.01 and 2.1 fb−1.

The methods presented in section 6.2.1 and in this section give the expected numbers of
the stau pairs and the muon pairs, which are comparable. These methods can cross-check
each other.

In conclusion, in chapters 5 and 6, we have simulated the stau pairs and their
backgrounds in the LHCb detector; we have defined the selection cuts to select the stau
pairs. By analysing the stau and muon pairs by the neural network, we have evaluated
the expected numbers of signal and background that could be observed in the data
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collected in 2011 and 2012. In the last chapter of this thesis, we will apply to the selection
to the data.
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Chapter 7.

Results

In this chapter, the analysis procedure outlined in the previous chapters will be applied:
we will first pass the events through the selection cuts, then classify the selected events
using the NN trained by the MC events. We will also have a look at the two events
observed in the stau region. The systematic errors will then be discussed. Finally, the
limit on the cross section for stau pair production will be presented.

The data we used have been selected by the Z02MuMu stripping line, the stripping
was of the version 17 for the 2011 data and 20 for the 2012 data.

7.1. Selection

Applying the cuts defined in section 5.3, we get the numbers of pairs from the 2011
and 2012 data that are, respectively, listed in tables 7.1 and 7.2. We remind that the
selection cuts depend on the mass of the stau. The selected numbers are smaller than
the ones expected by MC (table 5.11), but they are compatible by taking account of the
uncertainties.

The data analysis is presented in the case of the stau of 124 GeV/c2 mass with the NN
trained for this stau mass. Before analysing these data, we present in figures 7.1 and 7.2
the distributions of the kinetic variables of the pairs selected by the cuts corresponding
to staus of 124 GeV/c2 mass.

mτ̃ (GeV/c2) 124 154 185 216 247 278 309
Selected events 206 206 206 196 178 178 116

Table 7.1.: The numbers of pairs selected by the cuts in the 2011 data.
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mτ̃ (GeV/c2) 124 154 185 216 247 278 309
Selected events 609 609 609 587 532 446 380

Table 7.2.: The numbers of pairs selected by the cuts in the 2012 data.

Entries  412

Mean   6.183e+05

RMS    3.03e+05

P (MeV/c)
200 400 600 800 1000 1200 1400 1600 1800 2000 2200

310×

e
n
t
r
i
e
s

0

2

4

6

8

10

12

14

16

18

20 Entries  412

Mean   6.183e+05

RMS    3.03e+05

(a)

Entries  412

Mean   6.555e+04

RMS    2.168e+04

 (MeV/c)TP
50 100 150 200 250

310×

e
n
t
r
i
e
s

0

10

20

30

40

50

60
Entries  412

Mean   6.555e+04

RMS    2.168e+04

(b)

Figure 7.1.: P and PT of the tracks of the pairs selected in the 2011 data by the selection
cuts corresponding to staus of 124 GeV/c2 mass.
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Figure 7.2.: P and PT of the tracks of the pairs selected in the 2012 data by the selection
cuts corresponding to staus of 124 GeV/c2 mass.
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7.2. Analysis of the tracks with Neural Network

In this section, we present the classification of the tracks according to the NN. The input
variables to the first Neural Network, i.e. the signals deposited by the tracks in the
sub-detectors, are drawn in figures 7.3 and 7.4 for the 2011 and 2012 data, respectively.
These are: the average energy deposition in a VELO sensor, the total energy deposition
in the ECAL , the total energy deposition in the HCAL and the delta log-likelihood value
for below-threshold particle hypothesis (DLLbt) given by the RICHs. The high value of
the first bin in the ECAL response is due to the fact that the tracks have an amount of
energy depositions smaller than the readout thresholds of the calorimeters.
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Figure 7.3.: The input variables to the first NN. The tracks are selected from the 2011 data
and the selection cuts correspond to staus of the 124 GeV/c2 mass.
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Figure 7.4.: The input variables to the first NN. The tracks are selected from the 2012 data
and the selection cuts correspond to staus of the 124 GeV/c2 mass.

In the first step, we will use the NN1 trained with the calibrated MC responses to
classify the selected tracks. The NN1 classification is presented in figure 7.5 for the tracks
of the 2011 and 2012 data. The distributions peak at zero, showing that most of the
tracks are muons.
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Figure 7.5.: NN1 classification for tracks selected according to criteria defined for stau mass
of 124 GeV/c2.

7.3. Selection of the stau pairs

7.3.1. Selection based on the pair significance

In this section, we present the selection based on the pair significance (see section 6.2.1).
The NN1 responses for the tracks in section 7.2 are employed to compute the pair
significance, which is shown in figure 7.6. After applying the cuts on the pair significance
(table 6.1), we found no event. This is compatible with the expected number of the
background.
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Figure 7.6.: Pair significance of the pairs selected from the 2011 data (a) and 2012 data (b)
with the selection cuts corresponding to the case of the 124 GeV/c2 mass.
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7.3.2. Selection based on the pair significance and the invariant
mass of the pairs

In this section, we present the selection based on the pair significance and the invariant
mass of the pairs (see section 6.2.2) for the data. The pair significance was shown in
figure 7.6. The invariant mass of the pair is presented in figures 7.7. We remind that the
invariant mass is calculated assuming the mass of each particle to be that of a muon.
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Figure 7.7.: Invariant mass of the pairs selected from the 2011 data (a) and the 2012 data (b)
with the selection cuts corresponding to the case of the 124 GeV/c2 mass.

To classify the data we input the variables shown in figures 7.6 and 7.7, into a second
trained NN; we obtain the NN2 classification displayed in figures 7.8(a) and 7.9(a) for
2011 and 2012 data, respectively. The NN2 response peaks at zero, corresponding to the
value of muon pairs.

In section 6.2.2, we defined a cut at 0.8 on the NN2 response to identify the region
for the stau pair. In the case of the 124 GeV/c2 stau mass, we observe one event in this
region in the 2011 data sample and one event in 2012 data sample. These two events
are both at a NN2 of 1, satisfying the hypothesis of being a stau pairs. In figures 7.8
and 7.9, these two events are displayed in magenta. Figures 7.8(b) and 7.9(b) draw the
bi-parametric histograms of the pair significance and the invariant mass of the selected
pairs.

The analysis process is the same for all other masses of the staus. The numbers of
the observed pairs in the stau region corresponding to all the stau masses are listed in
table 7.3 for the 2011 and 2012 data. The event observed in 2011 data is the same one in
the analysis for four masses of stau, from 124 to 216 GeV/c2. Similarly, we got the same
event in 2012 data corresponding to the stau masses from 124 to 247 GeV/c2. For the
other higher masses of stau, these events were discarded by the cut on the momentum of
the tracks. In the next sections, we will have a detailed look at these events.
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Figure 7.8.: NN2 response for the pairs selected by the cuts corresponding to the staus of 124
GeV/c2 mass in the 2011 data.
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Figure 7.9.: NN2 response for the pairs selected by the cuts corresponding to the staus of 124
GeV/c2 mass in the 2012 data.

mτ̃ (GeV/c2) 124 154 185 216 247 278 309
2011 data 1 1 1 1 0 0 0
2012 data 1 1 1 1 1 0 0

Table 7.3.: The number of pairs observed in the stau region from 2011 and 2012 data.
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Event surviving in the 2011 data

In this section, we examine the event observed in the 2011 data, displayed in the LHCb
detector in figure 7.10. The two tracks of the pair are in magenta. Tracks with PT < 1
GeV/c are not displayed. The negative and positive charges are, respectively, above and
below the beam line in this figure. They are quite symmetric with respect to the beam
line and straight due to their high momenta. Except the lack of signal from the negative
track in the TT station, the signals in the all other sub-detectors are fully reconstructed:
the interaction points in the VELO, TT and OT are displayed by the star markers, the
energy depositions in ECAL and HCAL are respectively shown by red and blue columns,
the interaction points in the muon chambers are marked by the green points and in
the RICHs they are identified as below threshold particle. The information about the
two tracks are presented in table 7.4. The track reconstruction parameters, σP/P and
χ2/ndof, show that they are of very good quality. The pair significance of this pair is
around 0.51 and assuming the muon mass its invariant mass is 104 GeV/c2.

The negative track The positive track
P (GeV/c) 257.18 383.15
PT (GeV/c) 50.34 52.21
∆E in ECAL (MeV) 388.67 706.32
∆E in HCAL (MeV) 1952.77 1526.03
∆E in VELO (MIP) 1.13 1.03
RICH PID 5 5
DLLbt 34.27 20.23
η 2.32 2.68
σP/P 0.027 0.012
χ2/ndof 1.25 1.05

Table 7.4.: Reconstructed information from the candidate event from the 2011 data in the
LHCb detector.
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We now have a more detailed look at the geometry of the tracks with respect to the
primary vertices (PVs) in this event. Figure 7.11 shows the positions of the two tracks of
the pair and the reconstructed primary vertices. The PVs are displayed by the steel blue
balls in figure (a) and the steel blue points in figure (b); the two tracks are in magenta.
Table 7.5 presents the number of tracks, the coordinates and the chi-squared of the PVs.
The two tracks belong to the primary vertex of the key number 0 and they have a closest
approach distance of 1.4 µm.

Key Number of tracks x (mm) y (mm) z(mm) χ2

0 45 0.427 -0.001 -56.38 0.358
1 10 0.486 -0.166 -23.696 0.497

Table 7.5.: Primary vertices reconstructed in the event observed from the 2011 data.

Figure 7.11.: Primary vertices reconstructed in the event observed from the 2011 data.
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For a full view of the reconstructed track segments in the VELO detector, see figure
7.12. The two tracks of the observed pair are in magenta. The vertical lines are the
VELO sensors.

Figure 7.12.: The VELO track segments of the event observed from the 2011 data.

Event surviving in the 2012 data

In the same way as in previous section, we now have a detailed look at the event observed
inthe 2012 data. The global view of this event in the LHCb detector is displayed in
figure 7.13. The tracks of the selected pair are also drawn in magenta. The tracks of
the negative and positive charges are respectively below and above the beam line in
the figure. The two tracks of the pair are not symmetric with respect to the beam line.
These tracks are very straight due to their very high momenta. The negative track
possesses a momentum (1032 GeV/c) much higher then the positive track (332 GeV/c).
The interaction points of the tracks in the sub-detectors are displayed in the same way
as for the event of the 2011 data. Their detailed information is listed in table 7.6.

The negative track has no energy depositions in the ECAL and HCAL. This can be
explained as follows: this track makes an angle of 56 mrad with respect to the beam line,
this means that it is in the inner region of the calorimeters and has an energy deposition
smaller than the readout thresholds of the calorimeters.
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The negative track The positive track
P (GeV/c) 1032.7 332.3
PT (GeV/c) 58.3 50.3
∆E in ECAL (MeV) 0 535
∆E in HCAL (MeV) 0 1617
∆E in VELO (MIP) 1.08 0.83
RICH PID 5 5
DLLbt 19.74 18.49
η 3.57 2.58
σP/P 0.025 0.01
χ2/ndof 0.87 1.04

Table 7.6.: Recontructed information of the observed event from the 2012 data in the LHCb
detector.

Similar to the event of the 2011 data, we examine the geometry of the tracks with
respect to the primary vertices in this event. The two tracks and the reconstructed
primary vertices are displayed in figure 7.14. The two tracks are still shown in magenta,
while the PVs are presented by the green balls in figure (a) and the green points in figure
(b). Two PVs were reconstructed in this event and their information is listed in table 7.7.
The observed pair belongs to the primary vertex having the key number 1 and they have
a closest approach distance of 0.3 µm.

Key Number of tracks x (mm) y (mm) z(mm) χ2

0 18 0.652 0.035 58.807 0.996
1 18 0.621 0.103 86.562 0.465

Table 7.7.: Primary vertices reconstructed in the event observed from the 2012 data.

We also present the track segments reconstructed in the VELO detector in figure 7.15
with four muon tracks displayed in magenta, where the two tracks of the observed pair
are the outermost ones.
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Figure 7.14.: Primary vertices reconstructed in the event observed from the 2012 data.

Figure 7.15.: The VELO track segments of the event observed from the 2012 data.
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The invariant mass of the pair is 121 GeV/c2 assuming the muon mass and its pair
significance is around 0.54.

While the selection method based on the pair significance gives no observed event,
this second method found two events, which is much higher than the total expected
numbers of stau pairs and muon pairs, except the case of the 124 GeV/c2 staus. Even
though the NN2 responses for these two events peak at 1, the pair significance and the
invariant mass of the pair are quite low. Moreover, the most sensitive criterion for the
separation of muons and staus, namely the DLLbt, lie around 20, except for the negative
track of the 2011 event. Such a value does not allow us to unambiguously claim that
stau pairs have been observed. In section 7.5, we will compute the upper limits for both
cases with two observed event and without observed event.

7.4. Systematics

The expected numbers of observed events predicted by the Monte Carlo for staus and
muons are affected by systematic uncertainties. In this section, we will consider the
different sources of these uncertainties.

Luminosity

The LHCb experiment uses two methods to measure the luminosity. One method is
the "van der Meer scan", the other one is a method based on the high resolution of the
VELO detector [47]. Both methods are in good agreement and can give a precision of
3.5% in the absolute luminosity measurement. The datasets of 2011 and 2012 used in
this analysis correspond to the integrated luminosities of 1.01 ± 0.035 fb−1 and of 2.1
± 0.105 fb−1, respectively. The uncertainties on the integrated luminosities are 3.5% for
the 2011 dataset and 5% for the 2012 dataset.

Cross section

The cross section for stau pair production is computed by the Prospino2.1 programme
(see section 5.1). The uncertainties on the cross section come from the uncertainties on
the parton distribution function (PDF), on the energy scale and on the strong coupling.

• Uncertainty on the energy scale: Prospino sets the re-normalisation and factorization
scales (Q) as the mass of the participating particles to compute the cross-section. This
arbitrary choice leads to an uncertainty on the calculated cross section. To estimate
this uncertainty, the scale is varied between Q/2 and 2*Q. Then, the uncertainty will be
taken as the differences between the cross sections corresponding to the scales of Q/2
and Q, Q and 2*Q. Therefore, this is an asymmetric uncertainty (δs,up and δs,down).
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• Uncertainty from PDF : In Prospino2.1, we use the parton distribution function
CTEQ6.6. To estimate the uncertainty from this PDF, one calculates the cross section
with the 44 different PDFs which correspond to the 22 variations (up and down) of the
CTEQ6.6 in the range of the uncertainties coming from the experimental errors. Then
one calculates the uncertainties by:

δPDF,up =

√√√√ 22∑
i=1

(max[σ+ − σ0, σ− − σ0])2 (7.1)

δPDF,down =

√√√√ 22∑
i=1

(max[σ0 − σ+, σ0 − σ−])2 (7.2)

where σ+ is the cross section corresponding to the up variation, σ− corresponds to the
down variation and σ0 the central value without variation.

• Uncertainty from the strong coupling : This uncertainty is estimated by varying the
strong coupling αs in the uncertainty range of one sigma (up and down).

Finally, the uncertainties on the cross section [48] are:

δup =
√
δ2
s,up + δ2

PDF,up + δ2
αs,up (7.3)

δdown =
√
δ2
s,down + δ2

PDF,down + δ2
αs,down (7.4)

The relative uncertainties in percent on the the cross section for stau pair production are
listed in table 7.8.

mτ̃ (GeV/c2) σ (pb) in
√
s = 7 TeV σ (pb) in

√
s = 8 TeV

124 0.016900 (pb) +5.0(%)
−4.4(%) 0.02120 (pb) +3.8(%)

−4.8(%)

154 0.007190 +6.1
−4.6 0.00920 +5.6

−4.3

185 0.003440 +6.6
−4.9 0.00450 +5.9

−4.7

216 0.001790 +6.8
−5.3 0.00239 +6.7

−4.8

247 0.000988 +7.5
−5.8 0.00135 +7.1

−5.4

278 0.000572 +7.6
−6.2 0.00080 +7.0

−5.9

309 0.000344 +8.6
−6.0 0.00049 +7.9

−5.9

Table 7.8.: Cross section of the stau pair production at pp collisions at
√
s = 7 and 8 TeV.

The systematic uncertainties (%) are relative ones.



Results 125

The systematic errors on the cross section of Z0, γ∗ → µ+µ− were discussed in section
5.2.2. The total relative systematic error is the sum in quadrature of the errors on the
PDF and on the theory. The values are listed in table 7.9.

σ (pb)
at
√
s = 7 TeV 1.065 +7.6

−6.3

at
√
s = 8 TeV 1.24 +8.9

−6.7

Table 7.9.: Cross section of the decay Z, γ∗ → µ+µ− in pp collisions at
√
s = 7 and 8 TeV.

The systematic uncertainties (%) are relative ones.

Selection cuts:

The simulation and reconstruction by MC might be not perfect to describe the data.
This will make the efficiencies predicted by MC different from those of the data when
we apply the selection cuts, resulting in an uncertainty in the expected number of the
stau pair candidates, as well as the expected number of the muon pairs, and hence in the
upper limits of the production cross section of stau pairs.

In section 5.3, we used thirteen cuts to select the stau pairs, where the first four of
them choose a good muon track, the fifth one is the cut on trigger and the remaining
additional cuts are to reduce the muon background. Here, we will consider the uncertainty
contributions from the muon tracking, the trigger and the additional cuts separately.

• Muon tracking : We will here compare the muon tracking efficiencies from MC and
data for the tracks of PT > 50 GeV/c. In section 5.3, to select a good muon track, we
used four cuts: long track, IsMuon = 1, χ2/dof < 3 and σP/P < 0.1. For both MC
and data, we use the samples of Z0, γ∗ → µ+µ− with a mass window 80 < Mµµ < 100
GeV/c2, then we count the number of tracks having PT > 50 GeV/c and the fraction of
these tracks passing the above cuts. This fraction is considered as the muon tracking
efficiency. This is applied for the positive and negative tracks separately. The muon
tracking efficiency for a pair will be the product of the ones for the minus track and the
plus track. The efficiencies are given in table 7.10. The difference between the efficiencies
for the pair given by the MC and data will be considered as the uncertainty on the
muon tracking efficiency for the pair predicted by MC. Table 7.10 shows that the MC
reconstructs the tracks more efficiently than the data. However, the uncertainties will be
taken in both directions. This uncertainty is ± 6.7% for MC11 and ± 22% for MC12.

• Trigger : In our selection, we demanded at least one track of the pair to fire the
trigger on single muon of high PT. In order to estimate the difference between the trigger
efficiencies from MC and data, we choose the muon pairs which are selected by the
Z02MuMu stripping line, have an invariant mass Mpair > 100 GeV/c2 and PT > 50
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εµ− εµ+ εµ− × εµ+
MC11 0.997 0.996 0.993

Data 2011 0.961 0.964 0.926
MC12 0.999 0.998 0.997

Data 2012 0.881 0.882 0.777

Table 7.10.: Efficiencies of the muon tracking.

GeV/c for each track and ask the tracks to have good quality according to the four
criteria given in the previous paragraph. Then, we count the fraction of the pairs which
satisfy the above trigger cut. These fractions given by MC and data are listed in table
7.11. The systematic uncertainty on the trigger can be taken as the difference between
the fractions given by MC and data. The values in table 7.11 show that the trigger
described by MC is a little less efficient than the data. Symmetric uncertainties will be
taken. The uncertainty is therefore ± 1.5% for the MC11 trigger and ± 3% for MC12
trigger.

MC11 Data 2011 MC12 Data 2012
εtrig 0.915 0.929 0.901 0.928

Table 7.11.: Efficiencies of the trigger cut.

We would like to comment here that the data sample we used in the estimation of
this uncertainty might contain the stau pair candidates. However, since we have seen in
the previous sections that the data is dominated by the muon pairs from Z0, γ∗ and that
there is only one stau pair candidate, the estimation is therfore correct.

• Additional cuts : As we mentioned above, any imperfection in the description of the
data by MC will lead to an imprecision on the selection efficiencies predicted by MC
when we apply the cuts on the variables. Here we will estimate the difference between the
efficiencies for the MC and data due to the additional cuts, i.e. the last eight cuts listed
in section 5.3. We use two samples: one is MC and another is data. The two samples
contain the pairs with an invariant massMpair > 100 GeV/c2 and PT > 50 GeV/c for each
track. The tracks are of good quality and the pairs pass the trigger cut. Then, we count
the fraction of these pairs which satisfy the additional cuts. The fractions given by the
MC and data samples are different and are given in table 7.12. The difference between
these fractions given by the MC and data will be taken as the uncertainty due to the
additional cuts. They are ± 27.8% for MC11 and ± 20% for MC12. In this estimation,
the statistics from the data sample was limited, but we will still accept these results.
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MC11 Data 2011 MC12 Data 2012
εadd 0.219 0.280 0.249 0.296

Table 7.12.: The differences between the efficiencies when the additional cuts are apllied.

The uncertainties on the muon tracking, the trigger and the additional cuts contribute
to the total uncertainty on the selection efficiencies for the muon pairs that we described
in section 5.3. We take the sum of these uncertainties in quadrature as in table 7.13.
This estimation is done with the selection cuts corresponding to the stau of 124 GeV/c2

mass. For the selection cuts corresponding to the other stau masses, only the cut on the
momentum is changed. Therefore, the uncertainties obtained in table 7.13 can be used
in the remaining cases as a good estimate.

MC11 MC12
muon tracking 6.7 22.0
trigger 1.5 3
additional cuts 27.8 20.0
total 28.6 29.8

Table 7.13.: Total uncertainty (%) on the selection efficiencies for the muon pairs.

For the stau pairs, there is no data sample to evaluate the uncertainty on their
selection. However, the selection efficiencies for stau pairs are not immune from such an
uncertainty. We have seen in chapter 5 that among the variables on which we impose
a cut, only the distributions of P (see figures 5.9 and 5.10) and (EECAL + EHCAL)/P
(see figure 5.23(a)) for the staus and muons are quite different, the others are not very
different. Therefore, we will use the uncertainties on the muon pairs for the staus as a
good estimate.

Neural Network

• Even though we tried to calibrate the energy depositions of the particles in ECAL and
HCAL, these depositions in MC and data are not in perfect agreement. This can be seen
in figures 5.19, 5.20, 5.21, 5.22, in particular because of the peaks and the first bin of the
histograms. This disagreement certainly brings a systematic error on the percentages
(R) of the stau and muon pairs falling in the stau region given by the Neural Network
when we apply the cut on NN2 (see section 6.2).

To estimate this error for muon pairs, we generated again the energy deposition in
ECAL for the MC muons that we used to train the NN using the energy deposition
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distribution from the data. All other variables used as inputs to the first NN were
kept the same as before. Then, we trained the NN again with this re-generated energy
deposition in ECAL. The difference between the efficiencies due to the cut of 0.8 on NN2
that we get before and after re-generating the energy deposition in ECAL is considered
as the systematic error on the muon percentage falling in the stau region. We did the
same for the energy deposition in HCAL of the MC muons.

These errors are estimated for the muon background only. For the MC staus, there is
no sample from data to compare to.

• We have seen in figures 6.5 and 6.3 the low statistics for the muon pairs at high
values of the NN2 response and of the pair significance, respectively. This also leads to
an error on the percentage of the muon pairs falling into the stau region. To estimate the
size of this error, we take the difference between the percentages given by the training
and testing samples. These two samples come from a larger sample and have the same
statistics. This error can be neglected for the staus since its statistics are large enough
in the stau region.

The total error on the percentage of the muon pairs in the stau region due to the
NN is now the sum in quadrature of the errors due to the energy depositions in ECAL,
HCAL and due to low statistics. These errors are 18.8% and 31.0% for the MC11 and
MC12, respectively. The estimation of the errors were achieved using the staus of 124
GeV/c2 mass, and the result will be used for all the remaining cases of staus.

Total systematic uncertainties:

Finally, we compute the total systematic uncertainty by taking the sum in quadrature
of all components. For the stau pairs, the contributions come from the luminosity, the
cross section and the selection cuts. The values estimated for the 2011 and 2012 data are
presented in tables 7.14 and 7.15, respectively.

mτ̃ (GeV/c2) 124 154 185 216 247 278 309
systematic uncertainty (%) +29.2

−29.1
+29.4
−29.2

+29.6
−29.2

+29.6
−29.3

+29.8
−29.4

+29.8
−29.5

+30.1
−29.4

Table 7.14.: The total uncertainties on the expected number of the stau pairs in the stau
region estimated for 2011 data.

For the muon background, the total systematic uncertainty comes from the uncer-
tainties on the luminosity, the cross section, the selection cuts and the neural network.
These total uncertainties are shown in table 7.16.
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mτ̃ (GeV/c2) 124 154 185 216 247 278 309
systematic uncertainty (%) +30.5

−30.6
+30.7
−30.5

+30.8
−30.6

+30.9
−30.6

+31.0
−30.7

+31.0
−30.8

+31.2
−30.9

Table 7.15.: The total uncertainties on the expected number of the stau pairs in the stau
region estimated for 2012 data.

2011 data 2012 data
Total uncertainty (%) +35.2

−34.9
+43.2
−42.9

Table 7.16.: The total uncertainties on the expected numbers of the muon pairs estimated for
2011 and 2012 data.

7.5. Limit on cross section

We have observed two candidate events: one in the 2011 data and another in the 2012
data. One can compute the upper limits using the observed number (nobs) and the
expected number of backgrounds (b). These limits are the observed upper limit which
corresponds to nobs and the expected limit which shows the sensitivity of the experiment.

The systematic uncertainty affects the estimation of the upper limits. To incorporate
the systematic uncertainty on the background in the calculation of the upper limits, we
will use the profile likelihood method [49], [50], [53]. This method is a generalization of
the Feldman-Cousins approach (F-C) [51]. The likelihood function is now defined as:

L = P (nobs|µ+ b)×G(b0|b;σb) (7.5)

where P (nobs|µ+ b) is the probability density function of a Poisson process with µ being
the parameter of interest, i.e. the number of signal events in our computation. G(b0|b;σb)
is a Gaussian constraint, which expresses the systematic uncertainty on the background.
The parameter b0 is called the global observable.

The upper limits on the cross section at a certain confidence level (CL) are then
calculated by dividing the corresponding parameter of interest (µ) by the stau pair
"acceptance", which is defined as L× ε×A×R, the parameters L, ε, A and R being
those of the considered stau.

The calculation is achieved using RooStats [52], [53], which is implemented within the
ROOT program [54].

In our analysis, we have used two method to select the stau pairs and these two
methods give two different results: the selection method based on the pair significance
gives no observed event, the selection method based on the pair significance and the
invariant mass of pair gives two observed events. We will compute the observed upper
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limit and expected upper limit at 95%CL on the cross section for the stau pair production
at
√
s = 7 and 8 TeV for both cases.

Limits in the case where no event has been observed

The observed upper limits and the expected upper limits are presented in tables 7.17 and
7.18. The figures 7.16 and 7.17 draw these limits and the predictions from the theory at
NLO. The bands of one and two sigmas on the expected upper limits are also drawn in
these figures. Without any observed event, the observed upper limits are always lower
than the expected upper limits.

Mass NLO prediction (pb) Observed limit (pb) Expected limit(pb)
124 0.0169 0.0746 0.0815
154 0.00719 0.1000 0.1090
185 0.00344 0.1341 0.1458
216 0.00179 0.1739 0.2063
247 0.000988 0.2615 0.2817
278 0.000572 0.3678 0.3965
309 0.000344 0.4441 0.5205

Table 7.17.: Cross section for stau pair production at
√
s = 7 TeV as predicted by theory at

the NLO and the upper limits in the case where no event has been observed.

Mass NLO prediction (pb) Observed limit (pb) Expected limit(pb)
124 0.0212 0.0481 0.0534
154 0.0092 0.0601 0.0668
185 0.0045 0.0747 0.0830
216 0.00239 0.0955 0.1018
247 0.00135 0.1083 0.1395
278 0.0008 0.1742 0.1968
309 0.00049 0.2240 0.2741

Table 7.18.: Cross section for stau pair production at
√
s = 8 TeV as predicted by theory at

the NLO and the upper limits in the case where no event has been observed.
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Figure 7.16.: Upper limits on the cross section for stau pair production in the pp collisions at√
s = 7 TeV (no event observed).
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Figure 7.17.: Upper limits on the cross section for stau pair production in the pp collisions at√
s = 8 TeV (no event observed).
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Limits with two observed events

The observed upper limits and the expected upper limits are presented in tables 7.19 and
7.20. Similarly, the figures 7.18 and 7.19 shown these limits and the predictions from the
theory at NLO. The bands of one and two sigmas on the expected upper limits are also
drawn in these figures. We see that the upper limits at

√
s = 8 TeV are smaller than the

corresponding ones at
√
s = 7 TeV because the stau pair acceptance at 8 TeV is higher

than the one at 7 TeV. We also see in these figures that the observed upper limits are
smaller than the expected upper limits in the cases where no event has been observed,
i.e. for stau masses from 247 to 309 GeV/2. The fact that the observed and expected
upper limits increase with the stau mass is due to a decrease of the stau pair acceptances
as we go to higher masses.

Mass NLO prediction (pb) Observed limit (pb) Expected limit(pb)
124 0.0169 0.142 0.083
154 0.00719 0.189 0.108
185 0.00344 0.259 0.147
216 0.00179 0.356 0.205
247 0.000988 0.238 0.269
278 0.000572 0.356 0.385
309 0.000344 0.370 0.489

Table 7.19.: The cross section for stau pair production at
√
s = 7 TeV predicted by theory at

the NLO and the upper limits.

Mass NLO prediction (pb) Observed limit (pb) Expected limit(pb)
124 0.0212 0.091 0.055
154 0.0092 0.119 0.068
185 0.0045 0.148 0.085
216 0.00239 0.185 0.103
247 0.00135 0.242 0.146
278 0.0008 0.175 0.194
309 0.00049 0.235 0.267

Table 7.20.: The cross section for stau pair production at
√
s = 8 TeV predicted by theory at

the NLO and the upper limits.
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Figure 7.18.: The upper limits on the cross section of the stau pair production in the pp
collisions at

√
s = 7 TeV
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Figure 7.19.: The upper limits on the cross section of the stau pair production in the pp
collisions at

√
s = 8 TeV.

We now compare our results to the ones of the D∅ and ATLAS experiments which
were published in [55] and [56] (see figure 7.20).

The upper limits on the cross section of stau pair production at 95%CL of the D0
experiment are set by using 1.1 fb−1 of data collected in pp̄ collisions at

√
s = 1.96
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TeV [55]. We have 1 fb−1 of data at 7 TeV and 2 fb−1 of data at 8 TeV, but our signal
acceptance is smaller. D∅ observed one event, corresponding to stau mass from 100
to 300 GeV/c2, and its expected background numbers are around 2 events [55]; while
depending on the used methods we observed no event or one event and our expected
background numbers are always less than 0.2. Therefore our limits are higher than the
ones from D∅.

The ATLAS experiment gave upper limits which are much lower than ours and
D∅’ones [56]. The ATLAS experiment has a much higher potential in the stau search
than the LHCb and D∅ experiments with a detector with an acceptance that is much
higher than ours and a high luminosity. ATLAS used the data corresponding to a
luminosity of 4.7 fb−1 (see figure 7.20(b)).

(a) (b)

Figure 7.20.: (a): the upper limits on the cross section of the stau pair production in the pp̄
collisions at

√
s = 1.96 TeV from the D∅ experiment [55]. (b): the upper limits

on the cross section of the stau pair production in the pp collisions at
√
s = 7

TeV from the ATLAS experiment [56].



Conclusions and Outlook

Through this PhD thesis, we have undertaken a search for heavy and long-lived staus in
the LHCb detector at

√
s = 7 and 8 TeV.

• In our study, the muon pairs from decays Z0, γ∗ → µ+µ− are the main background to
stau pairs as they are both long-lived and have the same electromagnetic interactions
in matter. We have simulated the muon pairs and stau pairs of seven different masses
ranging from 124 to 309 GeV/c2, in order to examine their characteristics in the detector.
Based on the results of the Monte Carlo, we have defined a set of selection cuts for the
stau pairs. Definitely, the muon pairs at high energies will also pass these cuts and they
are much more abundant than the staus due to the difference between their production
cross sections in pp collisions.

• To distinguish the stau pairs from the muon pairs, we employed their properties in the
sub-detectors:

+ The difference in the masses of the staus and of the muons leads to a difference
between the energies they leave by ionisation and excitation of the atoms in the
silicon sensors of the VELO sub-detector.

+ The muons can radiate at high momentum, while the staus cannot because of their
heavy mass. Hence, the total energy depositions of the staus in the thick detectors,
ECAL and HCAL, are probably smaller than those of the muons.

+ The momentum thresholds to trigger the Cherenkov effect in the RICH detectors
for the staus are much higher than for the muons.

• Based on the different responses of the sub-detectors (VELO, ECAL, HCAL and RICH),
we established the method to classify the stau and muon pairs with two steps:

+ Analysis of the individual tracks: we used the MC responses from the four above
mentioned sub-detectors to train a Neural Network. Then, the trained Neural
Network was used to classify the tracks of the pairs selected from data. This
method requires that the responses described by Monte Carlo agree with those in
the data. To guarantee this agreement, the MC responses have been calibrated.

+ Selection of the stau pairs: two methods were used. The first one is to put a cut
on the product of the two NN responses for the two tracks, the so-called "pair
significance". The second one is to use the pair significance and the invariant mass
of the pairs from MC events to train a second Neural Network, then a cut is applied
on the output of the second Neural Network. The cuts in the two methods define a
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region of signal, where we can evaluate the expected numbers of stau and muon
pairs.

• The above methods have been applied to the data collected by the LHCb experiment at√
s = 7 TeV and

√
s = 8 TeV. The integrated luminosities for these two years of running

were 1.01 fb−1 and 2.1 fb−1. No significant excess of signal has been observed.

• Furthermore, we calculated the upper limits at 95% CL on cross section for stau pair
production in pp collisions at

√
s = 7 and 8 TeV by using the profile likelihood method.

In the future, when the LHC reaches higher energies, the cross section for stau pair
production in pp collisions will increase. This will offer the possibility of getting more
positive signal. It also allows us to study the higher masses of the staus.
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