
3.22.813

Communication

Bekenstein Bound and Non-
Commutative Canonical Variables

Fabio Scardigli

Special Issue
The Quantum & The Gravity

Edited by

Dr. Giulio Francesco Aldi , Dr. Luca Buoninfante, Dr. Giuseppe Gaetano Luciano,

Dr. Luciano Petruzziello and Dr. Luca Smaldone

https://doi.org/10.3390/universe8120645

https://www.mdpi.com/journal/universe
https://www.scopus.com/sourceid/21100903488
https://www.mdpi.com/journal/universe/stats
https://www.mdpi.com/journal/universe/special_issues/Quantum_Gravity_2021
https://www.mdpi.com
https://doi.org/10.3390/universe8120645


Citation: Scardigli, F. Bekenstein

Bound and Non-Commutative

Canonical Variables. Universe 2022, 8,

645. https://doi.org/10.3390/

universe8120645

Academic Editors: Giulio Francesco

Aldi, Luca Smaldone and Douglas

Singleton

Received: 20 March 2022

Accepted: 30 November 2022

Published: 5 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

universe

Communication

Bekenstein Bound and Non-Commutative Canonical Variables

Fabio Scardigli 1,2

1 Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy;

fabio@phys.ntu.edu.tw
2 Department of Applied Mathematics, University of Waterloo, Waterloo, ON N2L 3G1, Canada

Abstract: A universal upper limit on the entropy contained in a localized quantum system of a

given size and total energy is expressed by the so-called Bekenstein bound. In a previous paper

[Buoninfante, L. et al. 2022], on the basis of general thermodynamic arguments, and in regimes where

the equipartition theorem still holds, the Bekenstein bound has been proved practically equivalent

to the Heisenberg uncertainty relation. The smooth transition between the Bekenstein bound and

the holographic bound suggests a new pair of canonical non-commutative variables, which could be

thought to hold in strong gravity regimes.
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1. Introduction

A universal upper bound on the entropy S of a localized quantum system

S ≤ 2πkB RE

h̄c
, (1)

where E is the total energy of the system and R =
√

A/4π its size, with A being the area
of the minimal enclosing spherical surface, was proposed by Bekenstein [1] in 1981. This
result arrived at the end of a whirlwind decade of investigations, which started with the
puzzling proposal of Bekenstein himself about the entropy of a black hole [2–4], then the
formulation of black-hole thermodynamics [5], and had its apex with Hawking’s famous
discovery of thermal radiation from black holes [6]. We note that, from the classical point
of view, the entropy of a system is, in principle, unbounded from above. In fact, for h̄ → 0,
one obtains S ≤ ∞. Therefore, the upper bound on the entropy has a clear quantum origin.

Even though Equation (1) was initially obtained via gedanken experiments involving
black holes, namely, in strong-gravity regimes, such inequality does not display the Newton
constant GN . Therefore, the gravitational self—the interaction of the system—seems to
be completely neglected. However, Schwarzschild black holes exactly saturate inequal-
ity (1), with an entropy given by S = kB AH/(2ℓp)2, where AH is the horizon area and

ℓp =
√

h̄GN/c3 the Planck length.
Many arguments [7–11] have been made in favour of Equation (1), although also

several counterexamples have been devised, thereby enriching a lively debate which is still
ongoing [12–18]. During the years, several steps forward have, then, led to the formulation
of the holographic principle [19–21], and the covariant [22] and causal [23] entropy bounds.
In addition, in 2008, finally, Casini obtained a QFT rigorous proof of the Bekenstein bound
in flat spacetime [24]. Of course, the ideas of Bekenstein have had a significant influence on
(quantum) information theory, and the reader can easily check for examples in Refs. [25–27].
Various entropy bounds have also revealed many connections with cosmology [23,28–31],
perturbative unitarity [32] and the Pauli principle [33].

In this paper, we are primarily interested in bringing to light the connections that
such an entropy bound has with HUP. To this end, we show how general thermodynamic
arguments allow to derive Bekenstein inequality (1) directly from HUP, and also how the
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reverse implication is true (at least for relativistic particles). The elementary and general
nature of the present derivation helps to clarify why the Bekenstein bound has such a wide
range of validity.

In the next section, we summarize the main lines of this derivation, following the
footsteps of Ref. [34]. Successively, we will discuss the smooth transition between the
Bekenstein bound and the Holographic bound, and the ensuing connection of the latter
with non-commutative variables.

2. HUP and Bekenstein Bound

Consider a generic isolated quantum system localized inside a finite region of size
R. From general thermodynamics, we know that the relation between the energy E, the
entropy S, the volume V of the system, and its temperature T is given by

1

T
=

(

∂S

∂E

)

V

. (2)

Of course, relation (2) requires the differentiability of the function S(E, V). In addi-
tion, we explicitly exclude (hypothetical) systems with a negative (unphysical) temper-
ature. In what follows, we make two very general assumptions on the above isolated
quantum system

(i) The system is in a regime where the equipartition theorem holds, namely, on average,
the energy µ of each component of the system is approximately given by

µ ≃ kB T . (3)

(ii) As our system is quantum, the momentum p of each component should satisfy the de
Broglie relation

p =
h̄

λ
, (4)

where λ denotes the corresponding wavelength.

Note that this second condition can only be defined for intrinsically quantum particles.
In addition, as we know, Equation (4) is essentially equivalent to the Heisenberg relation
between the momentum and position uncertainties.

It is also well-known that, although the equipartition theorem is a classical statement,
it also holds true for a large majority of physical quantum systems in regimes close to
classicality. In other words, Maxwell–Boltzmann statistics are a good approximation of
quantum statistics in most of the systems in semiclassical regimes. For example, a gas of
bosons at low frequencies or high temperatures is well-described by the standard Maxwell–
Boltzmann statistics.

Now, from any quantum statistics distribution formula, we infer that the more a quan-
tum system will be close to classicality, the more the energy kB T will satisfy the condition

kBT &
h̄c

λ
= pc. (5)

In addition, as our system is localized inside a volume of radius R, the inequality
λ . 2R must hold true, so that from Equations (2) and (5), we infer

∂S

∂E
=

1

T
.

kBλ

h̄c
.

2kBR

h̄c
, (6)

where it is understood that the derivative is taken at constant volume.
Now, in general, R and E can be regarded as independent variables; therefore, we can

easily integrate the above relation with the condition1 S(E = 0) = 0, so obtaining
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S .
2αkB RE

h̄c
. (7)

A “calibration factor” α has been inserted in order to account for the approximations
so far performed. This factor cannot be exactly fixed by our thermodynamic argument,
however, it was obtained in Ref. [34] by means of consistency arguments, and resulted as
α = π.

Remarkably, the above considerations and the connected bound (7) also remain valid
when R and E are related via an equation of state. In fact, for a general and physically
plausible radius–energy relation of the form R = R(E), with R(E) being a monotonically
non-decreasing function of E, one can prove that the inequality (7) is still satisfied (see the
Appendix for the proof).

We would like to stress that our result (7) has been derived on the basis of quite general
hypotheses. In addition, we have not assumed any particular behavior of the entropy as a
function of the energy and/or the number of the elementary constituents. Less complete
attempts to trace the Bekenstein bound back to HUP can be found in Refs. [35,36].

It is important to also stress that the opposite implication, namely, a derivation of HUP
from the Bekenstein bound, can be obtained, at least for relativistic particles [34], as also
partially outlined in Ref. [37].

In fact, supposing that R is the size of the wavepacket describing a particle of rest
mass m, and supposing that such a particle is almost relativistic, i.e., p ≃ E/c, then the
inequality (1) can be swiftly recast in the form

R p ≃ RE

c
≥ h̄

2

S

πkB
&

h̄

2
, (8)

which is valid for any system such that S & O(kB).
2 The calibration factor to be inserted

again equals π, and, as before, cannot be determined with this heuristic approach.
By identifying the uncertainties in the position and in the momentum of our particle,

respectively, as ∆x ≃ R and ∆px ≃ p, (since the direction of motion of our particle is
unknown a priori), then the Bekenstein inequality (8) can be immediately read as

∆x∆px &
h̄

2
, (9)

which is the standard HUP for the particle in question. Together with the implication
previously shown, the latter argument highlights a full physical consistency between the
Bekenstein bound and Heisenberg uncertainty principle. Finally, it is interesting to note
that this part of the argument suggests how to identify the canonical variables appearing in
the Bekenstein inequality. This leads to the considerations of the next section.

3. Non-Commutative Variables

In the previous section, we proved a substantial equivalence between the Bekenstein
bound and the Heisenberg uncertainty principle. Both principles are known to work well
for systems in which gravity is negligible or weak. On the other hand, it is possible to relate
the Bekenstein bound with the holographic bound via the inequality [30]

SBB ≤ 2πkBER

h̄c
=

2πkBGN ER

GN h̄c

=
1

4
kB

(4πRgR)

ℓ2
p

≤ 1

4
kB

(4πR2)

ℓ2
p

= SHB (10)

where Rg = 2GN E/c4 is the gravitational radius associated with the energy E. The latter
inequality holds because for a generic physical system Rg ≤ R holds always, namely, the
gravitational radius lies well inside the physical size of the system for any non-collapsed
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object. The equality Rg = R holds only if the object is inside its own gravitational radius,
namely, it is itself a black hole. In this case, the two bounds coincide and are saturated.

Due to its equivalence with HUP, we see that in the expression of the Bekenstein bound
a pair of non-commuting canonical variables can be identified, namely, (E/c, R), which for
weak-gravity or “light” systems coincide with the usual non-commuting canonical pair
(p, R). The above sequence (10) of inequalities suggests that, as the energy of the system
contained in the region R grows (namely, Rg grows), then the analytic expression of the
Bekenstein bound naturally tends to become the analytic expression of the holographic
bound. Therefore, we can reasonably wonder if the pair of non-commuting canonical
variables (p, R) ∼ (E/c, R) naturally goes to identify another pair of non-commuting
canonical variables, i.e., (R, R) or (t, R), this time more properly useful for the description of
highly massive and gravitating systems. In other words, the expression of the holographic
bound, SHB ∼ R2, may suggest a different pair of dynamical non-commuting canonical
variables (Ri, Rk), to be used in strong-gravity or quantum-gravity situations (e.g., black
holes), where holography becomes crucial.

For example, having in mind a Schwarzschild geometry, we can imagine that the
correct spacelike local coordinates to be used on the surface of the event horizon are
actually non-commutative variables, satisfying a commutation relation such as

[Rθ̂, R sin θφ̂] = R2 sin θ

[

θ̂

sin θ
, φ̂

]

= ih̄ , (11)

which would be nothing else than a particular case of the general commutator between
two non-commutative coordinates (see, e.g., Refs. [38,39])

[x̂j, x̂k] = ih̄Θjk . (12)

Of course, the status of a proposal such as (11) can be qualified, at the moment, just
as an educated guess, based solely on taking seriously the strong analogy between the
variables acting, on one hand, in the Bekenstein bound and in HUP expression, and, on the
other hand, the variables entering the analytic expression of the holographic bound.

We believe, however, that such a guess can have potentially rich consequences, worthy
of being fully explored in future, more complete works.

4. Concluding Remarks

In this paper, we presented arguments in favour of a full consistency between the
Heisenberg uncertainty principle and the Bekenstein bound on the entropy of a localized
system with a given size and total energy, in particular in regimes where the equipartition
theorem still holds. A comparison of such a result with the holographic bound has paved
the way for an educated guess on the non-commuting nature of the canonical variables
to be used in the description of systems where gravity is strong. Future works are being
prepared to study the viability and coherence of this proposal.

Appendix

In this appendix, we show that our derivation of the inequality (7) holds for any
monotonically non-decreasing function R = R(E). Let R(ε) and g(R) be two positive,
monotonically non-decreasing functions, respectively, of ε (with 0 ≤ ε ≤ E) and of R. By
introducing the partial derivative S′(ε) := ∂S/∂ε, the inequality (6) can be written in the
compact form

S′(ε) . g(R(ε)) . (13)

We can now integrate the above inequality with the usual condition S(ε = 0) = 0 and obtain

S(E) =
∫ E

0
dε S′(ε) .

∫ E

0
dε g(R(ε)) ≤ E g(R(E)) , (14)
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where we used the fact that, also, g(R(ε)) is a monotonically non-decreasing function of ε
as it is a composition of two monotonically non-decreasing functions. Therefore, we proved
that S(E) . E g(R(E)), which resumes the inequality (7).

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

Notes

1 For completeness, we emphasize that the ansatz S(E = 0) = 0 contains the hidden assumption of a unique ground state.
2 For instance, an electron can be in two possible states (spin up and spin down) and, therefore, its entropy is given by

S = kB log 2 ∼ O(kB).
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