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Summary

The exact or approximate solutions of the
Schrodinger, Dirac, and Klein–Gordon equa-
tions can be solved using either analyti-
cal or numerical techniques. The impor-
tance of these equations in nuclear and par-
ticle physics, statistical physics, solid-state
physics, quantum field theory, and molec-
ular physics has piqued the interest of re-
searchers in finding solutions for a variety
of potentials in both relativistic and non-
relativistic regions. To solve the various po-
tentials, a variety of strategies are available.
The plinth of the study we are acquainted with
depends on 4 pillars namely Equations, Po-
tentials, Methodology, and applications in ar-
eas of physics or chemistry. These methods
are the Nikiforov-Uvarov (NU) method [1],
Parametric Nikiforov-Uvarov (pNU) method
[2], Supersymmetric quantum mechanics
(SUSYQM) [3], Proper Quantization Rule
method (PQR) [4], Asymptotic Iterations
Methods (AIM) [5]. In our study, we pro-
pose six types of different potentials such as
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(5) Extended Hulthen Yukawa with Inverse
Square and Columb term plus Ring Shape po-
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r2 .[11] We were able to
solve the Schrodinger equation and the D-
dimensional Klein-Gordon equation for the
SCKP, HSCKP, EHYIC-RSP, MYKP, ARP-
CYP, and LIMYP. We calculate the bound
state energy eigenvalues and corresponding
normalized wave functions using the extended
N-U method, PQR method, SUSYQM meth-
ods, and AIM method. By adjusting the po-
tential parameters of the SCKP, HSCKP, and
MYKP, we deduced potentials and their en-
ergy eigenvalues such as screen Kratzer po-
tential, the standard Kratzer potential, gen-
eralized Yukawa potential, screened Coulomb
potential or Yukawa potential and Coulomb
potential, inversely quadraticYukawa poten-
tial, Hellmann potential, generalized cosine
Yukawa potential, and Hulthén potential. Ob-
tained the energy spectrum for SCKP and
MYKP under the effect of the magnetic field
and Aharanov–Bohm flux field via the pNU
method we also derive a series expansion
method for MYKP and findings are consis-
tent with the pNU method. We obtained
various properties of the SCKP such as ther-
modynamical properties (partition function,
vibrational mean energy, vibrational mean
free energy, vibrational specific heat capacity,
and vibrational entropy. We obtained rota-
tional–vibrational energy for a few heteroge-
neous and homogeneous diatomic molecules
in three dimensions. The numerical results
obtained for LiH, HCl, NO, and I2, O2 di-
atomic molecules are in very good agreement
with the results previously obtained by oth-
ers. For Linear plus modified Yukawa poten-



tial we obtain Heavy-Heavy and Heavy-Light
flavor mesons for the K-G equation via the NU
method. LIMYP has successfully calculated
the mass spectra of Heavy-Heavy and Heavy-
Light flavor mesons. We have successfully
calculated the mass spectra of all heavy-light
mesons (HLMs) combination sets utilizing the
combined potential framework, where the po-
tential was used to derive the energy eigen-
value using the linear plus modified Yukawa
potential. The mass spectra data has a high
degree of similarity compared to experimental
data that is currently known, as well as the
minimum percentage error compared to other
theoretical study data. This study has demon-
strated the significance of non-relativistic cor-
rection in a proposed model for accurate spec-
troscopic parameter prediction for the cs̄, cq̄,
bs̄, bq̄ mesons. To quantify this HLM precisely
in the future, more experimental work will be
required. A forthcoming experimental facility
P̄ANDA and other experimental facilities like
BABAR, Belle, and LHCb will be in a special
position for that. The potential also utilized
in this study can also be useful in nuclear par-
ticle physics (decay properties for heavy-heavy
and heavy-light mesons), atomic and molecu-
lar physics, hot and dense QCD media, etc.

Results and Discussion
We present numerical results and graph-

ical presentations of the SCKP. Graphi-
cal representations of the effective poten-
tial, energy spectra, and thermodynamical
properties with respect to various parame-
ters. Using the different methods, we obtain
the eigenspectrum and momentum for time-
independent and time-dependent Hulth’en-
screened cosine Kratzer potentials. Also, we
proposed and solved the extended Hulthen-
Yukawa with inverse square and Coulombic
term plus ring shape potential (EHYICRSP).
The Schrödinger equation has been solved
in two dimensions for the modified Yukawa-
Kratzer potential (MYKP) under the influ-
ence of the magnetic field and the Aharanov-
Bohm flux field (external fields). We pro-

posed attractive radial potential plus class
of Yukawa potential and obtained the rota-
tional vibrational partition function from the
energy eigenvalues using the asymptotic iter-
ation method . The bound state solution of
the K-G equation has been successfully used
to determine the mass spectra of cc̄, bb̄, bc̄ and
cs̄, cq̄, bs̄, bq̄ for states ranging from 1S, 2S,
1P , 2P , 3S, 4S, 1D, 2D, and 1F by using
energy eigen value which includes linear plus
modified Yukawa potential, which finds good
co-relation of mass spectra with the experi-
mental data as well as some recent research.
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