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Abstract

In this thesis we investigate the effects of an isospin asymmetry on inhomogeneous
chiral symmetry breaking phases, which are characterized by spatially modulated quark-
antiquark condensates. In order to determine the relevance of such phases for the phase
diagram of strong-interaction matter, a two-flavor Nambu-Jona-Lasinio model is used
to study the properties of the ground state of the system. Confirming the presence
of inhomogeneous chiral symmetry breaking in isospin-asymmetric matter for a simple
Chiral Density Wave, we generalize the modulation of the quark-antiquark pairs to
more complicated shapes and study the effects of different degrees of flavor-mixing on
the inhomogeneous phase at non-zero isospin asymmetry. Then, we investigate the
occurrence of crystalline chiral symmetry breaking phases in charge-neutral matter, from
which we determine the influence of crystalline phases on a quark star by calculating
mass-radius sequences. Finally, our model is extended through color-superconducting
phases and we study the interplay of these phases with inhomogeneous chiral-symmetry
breaking at non-vanishing isospin asymmetry, before we discuss our findings.

Zusammenfassung

In dieser Arbeit betrachten wir das Phasendiagram stark-wechselwirkender Materie
bei nichtverschwindender Isospin-Asymmetrie und untersuchen im Rahmen eines Zwei-
Flavor-Nambu—Jona-Lasinio Modells die Relevanz von inhomogenenen Phasen, in denen
der chirale Ordnungsparameter raumlich variiert. Zuerst zeigen wir fiir eine einfache
Chiral Density Wave-Modulation der Quark-Antiquark—Paare, dass inhomogene chiral-
gebrochene Phasen in isospin-asymmetrischer Materie auftreten konnen. Im néchsten
Schritt verallgemeinern wir die raumliche Modulation der Ordnungsparameter auf kom-
pliziertere Formen und untersuchen im Detail den Einfluss des Flavor-Mixing-Grades
auf die inhomogene Phase. Dabei konzentrieren wir uns auf eindimensionale raumliche
Modulationen des Ordnungsarameters und analysieren zusatzlich die Auswirkungen der
Forderung nach elektrischer Ladungsneutralitat auf die inhomogenen chiral gebrochenen
Phasen. Als Anwendung bestimmen wir daraus Masse-Radius—Beziehungen fiir einen
Quark-Stern. Zuletzt erweiteren wir unser Modell um farbsupraleitende Phasen und
studieren das Zusammenspiel zwischen solchen Phasen und inhomogen chiral-gebrochenen
Phasen bei endlichen Werten der Isospin-Asymmetrie. Abschliefend diskutieren und in-
terpretieren wir unsere Ergebnisse.
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1. Introduction

To understand “whatever holds the world together in its inmost folds” [I], one needs
to study the properties of the four fundamental interactions in nature: gravitation,
the electromagnetic, the weak and the strong interaction. Besides gravity, this was
accomplished in terms of the standard model of particle physics. In the following we
focus on Quantum Chromodynamics (QCD), which is believed to be the fundamental
theory describing the strong interaction within the standard model. It consists of quarks
and spin 1 bosons, called gluons, and is a gauge theory based on the SU(3) color group.
From a theoretical point, due to complicated non-perturbative processes at low energies,
it is so far not completely understood and one commonly tries to solve it by numerical
ab-initio methods, although they are in general restricted in their application. Another
helpful tool are effective models, which describe only few aspects of the theory and allow
to understand certain aspects of QCD in a simpler way. In particular, our focus is on
chiral symmetry breaking, where this symmetry is a global symmetry of QCD on the
Lagrangian level. Through the breaking of the symmetry in the ground state of QCD
in vacuum this allows to explain the dynamical mass generation by non-perturbative
phenomena.

The phase structure of strong-interaction matter is still largely unknown and many
investigations are dedicated to map out the actual phase structure. Here we will provide
only an overview of the features of QCD, while the details are presented later. Until
recently the phase diagram of strong interaction was believed to basically consist of two
regions: one region at low temperatures and density with a confined and chirally bro-
ken phase and one at high densities and temperatures with deconfinement and chiral
restoration. It was established in [2] that at least for vanishing density the deconfinement
and chiral phase transition coincide. In analogy to solid state physics or more promi-
nently the phase diagram of water, one may ask if crystalline structures are present in
the phase diagram of strong-interaction matter. For the appearance of such inhomoge-
neous phases, fermions may condense into pairs with non-zero net momentum — which
is not possible for purely homogeneous phases, where condensing fermion pairs need to
have vanishing net momentum. This non-zero momentum dependence of inhomogeneous
phases leads to a non-trivial spatial dependence of the condensates in position space.
For chiral symmetry breaking the condensates consist of quarks and antiquarks and their
spatial dependencies have so far not intensively been discussed. Only recently it gained
increased attention again, although the concept of crystalline order-parameters was for
example investigated by Overhauser in 1960 in the context of density waves in nuclear
matter [3] or for crystalline phases in “ordinary” superconductivity by Fulde and Ferrell
[4] as well as by Larkin and Ovchinnikov [5]. For color-superconductivity, model calcu-
lations confirmed that crystalline phases may be the ground state of strong-interaction



Chapter 1

matter (e.g. [0, [7], for a review see also [8] and [9]) when (isospin) non-degenerate
quark flavors are considered. In particular, only for a finite difference between the Fermi
surfaces of different quark flavors, leading to a pairing stress for the quark-quark pairs,
inhomogeneous color-superconducting phases are eventually energetically favored over
homogeneous phases (see also [10]).

In contrast for chiral symmetry breaking it was found that even for degenerate quark
flavors, inhomogeneous phases can appear. Here, a baryon-chemical potential leads to a
pairing stress for the chiral condensates until at some point the condensation becomes
energetically disfavored, leading to chiral restoration. Allowing for crystalline order-
parameters may stabilize chiral-symmetry breaking phases against the pairing stress in
comparison to constant-in-space order-parameters. Model results suggest for this case
that the characteristic length-scale of the crystalline structure is directly related to the
baryon-chemical potential.

Realistic descriptions of astrophysical situations or heavy-ion collision experiments
require non-vanishing baryon-chemical potential and non-zero differences between the
chemical potentials for different quark flavors at the same time. This is for example
relevant in the context of astrophysical environments, where electric charge-neutrality
for quark matter in [S-equilibrium is necessary. This requires an imbalance between
the quark chemical potentials for different flavors, characterized by an isospin-chemical
potential. Also for experiments exploring the QCD phase diagram, model calculations
with non-zero chemical potentials could provide pre- and postdictions for experimental
observations that allow in turn to deepen the knowledge about the QCD phase structure
at non-zero densities. Another interesting application within effective models would be
to study the simultaneous appearance of inhomogeneous chiral-symmetry breaking and
inhomogeneous color-superconducting phase, which implies an isospin imbalance and a
non-zero baryon-chemical potential at the same time.

In this thesis the main goal is to extend the analysis of inhomogeneous chiral con-
densates to non-degenerate quark flavors. Since characteristic properties of the crystal
lattice depend on the quark chemical potentials, it is an interesting question to study
how inhomogeneous phases are affected when non-degenerate quark flavors are allowed.
For this we concentrate on the formation of crystalline structures for chiral-symmetry
breaking within a Nambu-Jona-Lasinio model. In contrast to former investigations
we consider explicitly non-degenerate quark flavors, allowing for non-zero baryon- and
isospin-chemical potentials and use a generalized four-fermion interaction, which allows
to control the degree of flavor mixing explicitly. In particular, we investigate if and
how different shapes for the modulation of the order-parameters are changing the phase
structure, which was not possible before for isospin-symmetric strong-interaction matter
where the spatial modulation of the order-parameters is identical for both quark flavors.

Since the generalized interaction of our model allows to change the degree of flavor
mixing, a discussion about the influence of different degrees of flavor mixing on inhomo-
geneous chiral-symmetry breaking phases will also be given in this work. As a special
case a realistic degree of flavor mixing is used in our approach to obtain a more realistic
description of the model’s phase structure at non-zero isospin-chemical potentials and
allowing for inhomogeneous chiral symmetry breaking.
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As an application for the resulting model phase structure at non-vanishing isospin
imbalance, we consider charge-neutral quark matter in S-equilibrium, while we allow
for crystalline phases. Since the core of compact stars may consist of quark matter at
finite densities, inhomogeneous phases might be the energetically favored ground state
there. To investigate this we apply our equation of state for charge-neutral matter
to determine the mass-radius sequence for pure quark stars. Although concentrating
on stars consisting purely of quark matter is too simplistic in comparison to realistic
conditions for neutron stars, this nevertheless allows to gain insight about the influence
of crystalline chiral-symmetry breaking to a realistic description.

Since there may be an interplay between color-superconductivity and chiral symmetry
breaking, we study the effects of such a scenario for a simple modulation of the effective
quarks masses and assume the quark-quark pairs associated with color superconductiv-
ity to be constant-in-space. Within this we investigate which pairing pattern is realized
in the ground state and further determine the effects of an isospin-asymmetry on the
system; previous investigations showed for isospin-symmetric matter already the rele-
vance of phases where both quark-antiquark and quark-quark pairs are simultaneously
present [I1]. As expected quark-antiquark and quark-quark condensates are affected
in different ways by an isospin-asymmetry. The resulting phase structure depends on
the exact value of the isospin-chemical potential and a phase diagram is presented for
vanishing temperatures.

This thesis is organized as follows: In chapter [2| we review the basics of QCD, which
is the theory our model is based on. Then the details of the Nambu—Jona-Lasinio model
are explained in chapter [3| while in chapter [f] we present the formalism and resulting
phase structure for allowing spatially-modulated order-parameters in isospin-asymmetric
matter for chiral-symmetry breaking. After this we present in chapter 5| possible applica-
tions of our results, like the phase structure for electric charge-neutral quark matter and
derive mass-radius sequences for pure quark stars. In chapter [6| we study the interplay of
chiral symmetry breaking and color superconductivity and present the phase structure
at vanishing temperature for this configuration. Finally, we summarize our results and
give an outlook on future developments in chapter






2. Quantum Chromodynamics

Quantum Chromodynamics is a quantum field theory (QFT) incorporating quarks and
gluons as the fundamental degrees of freedom. The quarks come in six different flavors,
have spin 1/2 and carry fractional electric and baryonic charge. Gluons are characterized
by carrying momentum, spin and a color degree of freedom.

QCD is a non-abelian SU(3) gauge theory constrained by renormalizability, local gauge
symmetry, locality and Poincaré invariance. Its Lagrangian is defined up to gauge-fixing
terms (with implicitly summing over same indices and using natural units for the ongoing
discourse) by

- A 1 a 12
Lacp = (v Dy —m) ¢ — ZFWFQL ; (2.1)
where 1) denotes a fermionic quark field with four Dirac-, Ny = 6 flavor- and N, = 3
(fundamenta][[) color-degrees of freedom. m is the (diagonal) current quark mass matrix
with dimension Ny x Ny, describing the bare masses of the quarks generated by the
electroweak interaction. The covariant derivative

A,
D,=0,—- 'Lg?AM (2.2)

represents the minimal coupling of the quarks to the gluon field Af, with A* being the
a-th generator of SU(3) (the so called Gell-Mann matrices) and the gluon field strength
tensor is given by

Fi, = 0,A, — 0,A; + gf“bcAZAf,. (2.3)

Here, f¢ are the (totally anti-symmetric) structure constants of the SU(3) gauge group
defined by

(A%, Y] = g fobepe (2.4)

with [-, -] being the commutator and g denotes the (unrenormalized) coupling constant
of QCD (related to ay by ¢g? = 4may).

!The elements of the SU(3) gauge group of QCD are the set of unitary 3 x 3 matrices with determinant
one and correspondingly eight (different) generators. In the fundamental representation we may
represent the generators of the gauge group as a set of eight trace-less and hermitian 3 x 3 matrices
where we refer to the rows and columns of these matrices by using so called fundamental indices,
ranging from 1 to 3. In contrast, the adjoint indices enumerate the generators, ranging from 1 to
8. Quarks are in the fundamental representation of the SU.(3) color group, while gluons transform
under the adjoint representation.

11
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Figure 2.1.: The running coupling of QCD «; as a function of the energy scale @ (taken
from [12]). The points which are shown, were determined from different
methods (for details cf. the reference).

The field strength tensor describes the kinetics of the gluons and the interaction of
the gluons with each other. This is in contrast to QED possible in QCD due to the
non-abelian nature of the gauge group (mirrored by the last term in Eq. ) and the
gluons themselves carry color. Thus a 2-gluon term, but as well a 3-gluon and a 4-gluon
vertex are contained in the theory.

Besides that QCD also features other interesting properties. For example, the La-
grangian of QCD has only one parameter besides the quark masses; namely, the di-
mensionless coupling ¢, which is actually not 'constant’ but scale-dependent, as can be
seen in Fig. . This quantity scales as ¢(Q) o log™" (Q) with the characteristic mo-
mentum transfer () of the process considered and for () — oo the so called asymptotic
freedom shows up, which means that the coupling vanishes at large momentum transfers
resp. short distances. The coupling constant rises strongly in the opposite limit at low
energies resp. large distances, rendering a perturbative treatment of QCD impossible
and complicating theoretical approaches. In this low energy regime also confinement
prevents the appearance of colored objects: trying to separate two quarks over large
distances requires large amounts of energy such that new quark pairs can be created
out of the vacuum, forming new hadrons with the initial quarks. Since these hadrons
are color-singlets, no colored objects are observable in QCD, which is also supported
by experimental evidence and is known as confinement. In general QCD is so far not
completely understood and many ongoing investigations are dedicated to gain insight
on the properties of this theory.

2.1. Symmetries and properties

Of great importance are the symmetries of QCD since they allow to obtain significant
information, restrictions and insights on the theory. In this section we will focus on the —
for us — most important symmetries and review the connected properties and phenomena.

12
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The QCD Lagrangian Eq. (2.1 is invariant under SU.(3) gauge transformations, which
is evident from the transformation laws of the different parts

U(x) = Uz)y(z) (2.5)
E, — U(2)F, U (2) (2.6)
D, — U(x)D,U'(x) (2.7)
gAu(x) = U(z) (9Au(x) — i0,) UT(x) (2.8)
under those local gauge transformations of the form
U(z) =exp {i@a(x) ;} (2.9)

that are unitary with ©,(x) € R being a rotation angle in color space.
Furthermore the QCD Lagrangian in the (theoretical) limit of massless quarks m = 0
is invariant under global SUy (Ny) x SU4(Ny) transformations, which are defined by

SUy(Ny): ¥ — exp (%Hﬂa)w (2.10)
and
SUA(Ny): ¢ — exp (%éa’}/57'a)1/). (2.11)

Here 7% are unitary Ny x Ny matrices acting on flavor spaceﬂ and ~; is the fifth Dirac
matrix. Only for the case of massless quarks, this is an exact symmetry. However,
especially in the light quark sector with up and down quarks, the symmetry turns out to
be a rather good approximation because of the small bare quark masses m, ¢ < Aqcp,
where Aqcp is a characteristic scale of QCD.

Concentrating on the chiral limit, defined by considering massless quark flavors with
my = 0, the QCD Lagrangian is invariant under combined global SUy (Ny) and SU 4(Ny)
transformation (cf. Eq. and Eq. ) In particular for Ny = 2 quark flavors, the
Lagrangian is invariant under combined global SUy (2) and SU 4(2) transformations and
this symmetry is isomorphic to SUL(2) x SUg(2), where L/R indicates the chirality. This
combined symmetry is also called the chiral symmetry and corresponds to independent
SU(2) flavor rotations of the doublets (ur,dr) and (ug,dgr). For a small difference
between the non-vanishing quark masses m, — my # 0, the chiral symmetry turns out
to be still a very good approximation. In general the chiral condensate (%) is not
invariant under SU4(2) transformations and therefore serves as an associated order-
parameter, indicating the breaking ({(¢1)) # 0) or restoration ({(¢1)) = 0) of the chiral
symmetry. Since experimentally degenerate chiral partners are not observed, one thus
concludes that the symmetry must be spontaneously broken in nature.

2For Ny = 2 the unitary 2 x 2 matrices are the Pauli matrices.

13
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The ground state of QCD in the chiral limit (at vanishing density) indeed breaks the
chiral symmetry spontaneously and three massless Goldstone pseudoscalar bosons are
generated, since the vacuum is symmetric under SUy (Ny) x Uy (1) transformations and
the symmetry group of the QCD Lagrangian SUy (Ny) x SU4(Ns) x Uy (1) is larger.
On the other hand, for sufficiently high temperatures a perturbative treatment of QCD
as a gas of free quarks and gluons should become valid, due to asymptotic freedom of
QCD. In this regime chiral symmetry is not spontaneously broken any more. Therefore
one expects a transition from the region of broken chiral symmetry to a region with a
chirally symmetric ground state at some critical temperature 7,.. For two light quark
flavors in the chiral limit, the transition can be either first or second order (see e. g. [13]
and references therein). In contrast, for “real” QCD (with Ny = 2 + 1 flavors) the
transition from broken to restored chiral symmetry at vanishing chemical potential was
found to be of a rapid crossover-type and happens around a critical temperaturdﬂ of
T. ~ 155 MeV [14], [15], 16].

In general massless Nambu—Goldstone bosons appear due to the spontaneous breaking
of a continuous global symmetry [I7, [I8]. For the chiral symmetry in the light quark
sector, the associated pseudoscalar bosons are the pions. These are however no real
Goldstone but pseudo Goldstone bosons, since the chiral symmetry is only an approx-
imate symmetry and thus the pions become massive, but still their masses are small
compared to the scale of the strong interaction or to the masses of other hadrons.

For N; = 3 flavors one would expect due to the spontaneous breaking of Uy, (3) x Ug(3)
to Uy (3) nine Goldstone bosons. Indeed all pions, kaons and the eta in the pseudoscalar
octet are light and correspond to Goldstone bosons. However, the 1’ mass is not small
as the others, as expected for a Goldstone boson. This was puzzling since the 7’ mass
is associated with the U4(1) symmetry. To solve this puzzle, one finally realized that
there exists an axial anomaly that does not render the mass of the 1’ small [19] —
as one would (naively) expect from the spontaneous breaking of the U, (1) symmetry.
In particular, the Uy (1) symmetry is violated on the quantum level, while quantizing
QCD where the symmetry becomes explicitly broken by the axial anomaly. Assuming
that the semi-classical limit is a good approximate description of QCD, instantons play a
crucial role. They are semi-classical objects present due to the tunneling between infinite
numbers of topologically distinct vacuum configurations, where each vacuum is defined
by a parameter . Instantons can be regarded as effective vertices for quarks, mediating
a SUL(Ny) x SUg(Ny) symmetric interaction, which breaks the U4 (1) symmetry [20].

For finite temperatures the thermodynamics of QCD is accessible by first-principle
lattice methods, where a discretized space-time is used to simulate the action of QCD.
In general one is restricted by these approaches to vanishing chemical potentials, but
there exist few cases that allow to explore QCD in certain limits. This is possible, for
example for Ny = 2 and the special case of a pure isospin chemical potential characterized

3Since the crossover-transition is rapid, it is still meaningful to associate a critical temperature with
it.

14
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Figure 2.2.: Sketch of the QCD phase diagram (taken from [13]).

by (see e. g. [21])

—— (212
Moy + ptg =0 (2.13)

where p1,, 4 are the quark chemical potentials. However the major drawback of this
powerful ab-initio approach of simulating full QCD, is in general the limitation to zero
baryon densities, because of the sign problem due to non-vanishing chemical potentials.

Due to the conceptual problem or the lack of other first-principle results for this region
of interest, most predictions of QCD for finite, non-zero densitiesﬁ are based on effective
models. For the models used, one concentrates on sharing important symmetries and as-
pects with QCD, which allow to make predictions for non-zero densities from the models
while not considering the full underlying theory. Since there are many different models
available with different predictions concerning the chiral phase transition, the nature of
the phase transition is still under debate. Most model results suggest that for two quark
flavors in the chiral limit the chiral phase transition is of second-order for sufficiently
small baryon chemical potential, which is in accordance with lattice simulations at van-
ishing chemical potential and universality arguments. For intermediate densities and
low temperatures many models predict a discontinuous jump of the chiral condensates
from a region with broken chiral symmetry to a region with restored symmetry through
a first-order phase transition. Within these models it was mostly assumed so far that
(1)) is constant in space, but also more “exotic” phases, like color-superconducting ones
are possible and need to be considered for a sophisticated description.

As already mentioned in the introduction, recently different predictions for interme-
diate densities, like Dyson-Schwinger studies [22] or qualitative arguments based on the
study of QCD in the limit of a large number of colors [23], suggest that this assumption
may be too restrictive and they confirmed the relevance of spatially modulated chiral
condensates. This is also supported by the findings in effective quark models [24] 25|, 26].

Complementary to that, from a weak coupling analysis, it is expected that for low
temperatures and very high densities the ground state of QCD should become color-

40ften non-zero baryon chemical potential and non-zero densities are used equivalently, although non-
zero baryon chemical potential not always implies non-zero density. Hence, here we distinguish
between non-zero densities and chemical potential explicitly.

15
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Figure 2.3.: Phase diagram from Dyson-Schwinger equations, when focusing on interme-
diate densities and allowing for crystalline condensates (taken from [22]).

superconducting. For intermediate densities it is however not clear, how exactly the
ground state of QCD matter looks like. Current experiments have so far not proved to
be very helpful to reveal details of the phase structure for this region. Future facilities like
FAIR in Darmstadt and NICA at JINR [27] may explore the region at low temperatures
and intermediate densities, which is of special interest for us, but also from compact
stars, properties of cold and dense quark matter may be inferred.

The phase structure of QCD is in any case believed to be very rich and a large variety
of predictions for the phase diagrams are available. The first conjecture goes back to
Cabibbo and Parisi in 1975 [28]. They identified two regions in the temperature T-
baryon density ng plane, where quarks are confined or unconfined. In the following
decades the picture of possible phases evolved and for example regions with broken or
restored chiral symmetry were predicted in the QCD phase diagram. A typical sketch
of the phase diagram in the pug — T-plane is shown in Fig.[2.2] where the chiral phase
transition coincides with the confinement-deconfinement transition and there is a first-
order phase transition for low temperatures going up to a critical point. First, the
possible existence of a QCD critical point was pointed out in 1989 within an effective
model [29] and it is still not clear, if a critical point exists in QCD or not. At zero
temperature the phase transition is located around baryon densities of about a few times
nuclear matter density. For large baryon chemical potentials QCD matter is believed to
be color-superconducting and is in the color-flavor locked (CFL) phase (see e. g. [30] for
details). Focusing on the intermediate density regions, more recent results indicate a
richer and potentially more complicated phase structure for the chiral symmetric resp.
broken region, as seen in Fig. Around the former first-order phase transition, the
region in the QCD phase diagram may be characterized by the formation of crystalline
structures, which has mostly been neglected so far. Therefore we will investigate the
occurrence of such structures in the context of an effective model of QCD, which will be
presented in the following chapter in detail.

16



3. Nambu—Jona-Lasinio model

Since in QCD non-zero baryon chemical potential poses a severe conceptual or compu-
tational problem for ab-initio methods, mostly effective models are used to explore the
intermediate density region. Here we will make use of a Nambu-Jona-Lasinio (NJL)
model, as an effective model of strong-interaction matter with point-like four-fermion
interactions (see e. g. [31], B2, 33, [34] for a review) and concentrate on the breaking and
restoration of the chiral symmetry.

Originally developed to describe field-theoretically properties of nucleons by Nambu
and Jona-Lasinio [35, [36], it was after the formulation of QCD reinterpreted to incor-
porate quark degrees of freedoms instead of nucleons by extending the model through
e.g. additional quantum numbers like color. In this model only quarks are the fun-
damental degrees of freedom and interact locally via n-point vertices. The interaction
can be modeled to share the relevant global symmetries with QCD. For us the most
important symmetry will be the chiral symmetry. The NJL model is not able to repro-
duce the running of the coupling or to have confinement, because of the lack of gluonic
degrees of freedom in the model. To model the latter it is however possible to extend
the NJL model by the Polyakov loop (see e. g. [37]), which serves as an approximate
order parameter for confinement. Because the NJL model may share all (or most of)
the symmetries of QCD, while being computationally much simpler, it allows to inves-
tigate non-perturbative effects of QCD in the low-energy regime and long wavelength
limit and to clarify the relevant degrees of freedom. For example, since interactions of
the NJL model are attractive in the quark-antiquark channel, the NJL model exhibits
spontaneous symmetry breaking for small densities and temperatures, through which
the quarks acquire a large effective mass.

For completeness we mention that recently it was recognized that the chiral phase
transition of the NJL model is of a liquid-gas transition type, while it is not clear at
present what kind of phase transition the QCD transition should be (see e. g. [38,139,40]).

3.1. The model

In this section we will introduce the details of our NJL model, where the focus is on
chirally-invariant four-fermion interactions, that are non-renormalizable. Specifically,
here we employ the two-flavor Nambu—Jona-Lasinio model in 3 4+ 1 dimensions, defined
by the Lagrangian [29, [41]

L=Lo+La+ Ly, (3.1)

17



3.2. Mean-field Lagrangian Chapter 3

consisting of a free Dirac-part
Ly = ¢(id — )y

with @ = 7#0, and the current mass matrix /i = diag (m,, m,) containing the bare quark
masses of up and down quarks. The two interaction parts, describing the four-fermion
interaction, are given by

La= G ((B0)" + (576)" + (i) + (dins)) (3:2)
Ly =G ((90) = (970)" = (dins0)” + (ins70)”) (33)

and are a linear combination of scalar (¢ ';1) and pseudoscalar (v iysI';1)) terms.
I'y € {1,7} is here an operator and 7% denotes the Pauli matrices, both acting in the
Ny = 2-dimensional flavor space. Here the index a runs from 1 to 3. By this, the scalar
and pseudoscalar terms have contributions from iso-singlet and iso-triplett parts. In our
formalism, the field ¢ denotes a 4N;N.-Dirac spinor, representing the quarks in our
model and we will only consider N, = 3 color-degrees of freedom. Furthermore 7, are
the Dirac matrices and GG; and G5 are dimensionful couplings.

The two interaction parts L4 and Lp share an SUL(2) x SU(2) x U(1) symmetry.
The Lagrangian £ 4 given by Eq. is invariant under U 4(1) transformations, whereas
Lp explicitly breaks this symmetry. The two coupling constants G; > 0 and Gy > 0
allow to control, if or how strongly the U4(1) symmetry is broken or — in other words —
if or how strong the up- and down-quarks are coupled and interact with each other, as
will become clear later on. The second interaction term Eq. is also called 't Hooft
interaction, since it is of an instanton interaction-type [42, 20]. For the special case
G1 = G5 = G/2 the interaction considered, reduces to the commonly used standard
interaction in NJL models

Li = G ((B0)" + (Bir*r0)") (3.4)

As the couplings are dimensionful with the unit of an inverse energy squared, the NJL
model is non-renormalizable (at least for 3+1 dimension, as we consider it), which is
due to the nature of the point-like four-fermion interaction. The model therefore needs
to be regularized to render quantities finite.

3.2. Mean-field Lagrangian

To proceed, we need to derive an explicit expression for the thermodynamic potential
from which we can determine all thermodynamically relevant quantities. This will be
done in the so called Hartee approximation, which is equivalent to substituting the field
bilinears in our model with mean fields and neglecting second-order fluctuations around
the expectation values of these classical fields. For this approximation the resulting
mean-field Lagrangian becomes easier, allowing us to integrate the fields out.
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Chapter 3 3.2. Mean-field Lagrangian

Writing the free part of the Lagrangian Eq. (3.1]) in terms of the up and down-quark
spinors u and d with ¢ = (u,d)T yields

Lo =u (id —my) u+d (id — ma) d (3.5)
and analogously we arrive for the interaction parts Eq. and Eq. at
L4 =26, ( (@)’ + (dd)” + (aiys)’ + (disd)”
+2 (ad) (du) + 2 (@ivsd) (dirsu) )
as well as
L = 4G ((au) (dd) — (ad) (du) — (givsu) (diysd) + (diysd) (diysu)) - (3.7)

Linearizing around the expectation values of the condensates, yields in a mean-field
approximation
Lyp =t (i — my, + 4Gy (au) + 4G1ivs (Giysu) + 4G> (dd) — 4Gaivs (diysd)) u+

d (i@ — ma + 4G (dd) + 4G1irs (divsd) + 4G5 (au) — 4Gaivs (Tiysu)) d

26y ({au)? + (dd)” + (wivsu)” + (divsd)” ) — 4Gy ((ud) (du) + (dinsu) (iisd)) -
4G, ((dd) (au) + (divsu) (uivsd)) + 4G ((ad) (du) + (Givsu) (divsd)) ,

(3.8)
where quadratical fluctuations were neglected.
Furthermore restricting our analysis to flavor-diagonal condensates
(ul'w) and (dI'd), (3.9)

where I' is an arbitrary operator and assuming vanishing flavor-non-diagonal conden-
sates

(JTRY =0, fhe {ud}, f#h (3.10)
the mean-field Lagrangian Eq. (3.8)) simplifies to

»CMF =1U (1@ — My, + 4G1 <ﬂu) + 4Gli’}/5 <’Lji’}/5u> + 4G2 <CZd> — 4Ggi’75 <6?175d>> U+
d (1@ —mg + 4G, <Jd> + 4G1ivs <cfi75d> + 4G, (uu) — 4Gsivys (ﬂi'yg,u)) d+
2Gy () + (dd)” + (@iysu) + (dinsd)” ) — 4G ({dd) (i) {ainsu) (dinsd))
(3.11)

In particular Eq. (3.10) means that the possibility of charged pion condensation is ne-
glected, which is related to the non-vanishing expectation values (@iysd) and (divsu).
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3.2. Mean-field Lagrangian Chapter 3

Since the focus is on inhomogeneous chiral symmetry breaking, we retain an explicit
spatial dependence of the mean fields and follow the formalism reviewed in [43], gener-
alizing it to isospin-asymmetric matter. By defining

Su(Z) = (au) and Sy(Z) = (dd) (3.12)
for the scalar and
P,(Z) = (wiysu) and  Py() = (diysd) (3.13)
for the pseudoscalar mean fields, the Lagrangian Eq. then formally has the form
Lyr = Y Ls+ Loona (3.14)
f=u,d

with
L;= f{za — my + [(AGLS(T) + 4G25,(F)) + is (4G Py (F) — 4G Py(2)) ] }f (3.15)

and
Leond = —2G1 (Su(Z)? 4+ S4(2)* + Pu()* + P4(2)?) (3.16)
4G (Su(T)S4(T) — Pu(T)Pa(T))
At this point it is useful to rewrite the mean-field Lagrangian as
Lyw = pS™HE)Y + Leona, (3.17)
where S™1 denotes the inverse propagator and is given in our approximation by
S (z) = diag; (S, (), S; ' (2)) (3.18)

in flavor space. One component of the inverse propagator reads
S;l(x) =i —my+4|G15;(Z) + GoSp(Z) + 175 (G1Pp(Z) — GoPy()) (3.19)

and contains a linear combination of condensates associated with both flavors.
From these expressions, it turns out to be practical to introduce

My (#) = my — 4[ (G1S4() + GaSp(E)) + ins (G1 Py(F) — GoPa()) ], (3.20)

as the mass function of one quark flavor, which can, after a rearrangement of the terms,
also be expressed as

Then Eq. shows that G5 indeed controls the degree of flavor mixing, as for G, =0
the mass of one flavor solely depends on the scalar and pseudoscalar condensates of
the same flavor. In contrast this is not true for Gy # 0, where the condensates of the
other flavor also contribute to the mass. For G;/Gs < 1 the thermodynamic potential
is unbound from below, as detailed in Appendix [A.T]

As already mentioned, Eq. reduces for equal couplings Gy = G5 to the standard
NJL Lagrangian, where both quark flavors are maximally coupled.
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Chapter 3 3.3. Thermodynamic potential

3.3. Thermodynamic potential

To determine the thermodynamically favored ground state of the system, the grand
potential per unit volume needs to be evaluated. In this section we will derive an
expression for the thermodynamic potential associated with the model Lagrangian while
not specifying an exact ansatz for the modulation of the condensates which will be done
for several shapes of the modulation later. Since we are interested in the phase structure
of the model this will be done for vanishing as well as for non-vanishing temperatures
and densities.
After introducing a chemical potential matrix £ in flavor space

i = diag (fus ). (3.22)

with the quark chemical potential iy of flavor f on the diagonal, we can formally evaluate
the grand potential per unit volume (2, since in contrast to the original Lagrangian the
mean-field Lagrangian is bilinear in the quark fields. Namely, the grand potential per
volume V' at a given temperature 7' reads in the path-integral formulation

Our(T, 1) = —; log (/ DYD exp (/[o,;]xv d*zg (Lur +E[WO¢)) >, (3.23)

d

where the integral in the exponent is performed in Euclidean space-time xp = (7, %)
with imaginary time 7 = it.
Performing the path integral in Eq. (3.23) by using

log / DYDi exp ( /[0 " Vd4:cE (Lur +Em%)) (3.24)

= logdet S~ (z) + / d*zp Leona

[0,%]xV

for the Grassmann-valued fields 1, ¢ and the inverse propagator S~' incorporating the
chemical potential matrix i, results in

T S T
QMF(T, {Mf}) = —VTI‘ (log (#)) — V/[O 1] Vd4ZL’E Econd (325)

= —%Tr <log (S ($)>> + %/K]’%}XV d*rp (G1 [Su(f)z +Sd(lf)2 + Pu(f)2 —|—Pd(f)2}

T

+ 2G5 [Su(Z)S4(T) — Pu(Z)Pu(E)])

for the mean-field thermodynamic potential, where the trace (indicated by Tr) runs over
[0, 7] x V and the color-, flavor- and Dirac-degrees of freedom.
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3.3. Thermodynamic potential Chapter 3

Making the flavor structure explicit, by inserting Eq. (3.14)) in Eq. (3.23)), yields

(T {r 35 {55} {Pr}) (3.26)

Sz
= —% Z tr <log (%)) + %/M]XV d*zp (G1[Su(T)? + Sa(T)?

f=u,d
+ P(Z)?* 4+ Py(2)?] + 2G5 [Su(2)Sa(T) — Pu(Z) Pa(T)] ),

where the trace does not include flavor degrees of freedom any more.

Here we used the notation {u¢}, {S;} and {P;} to indicate the dependence of the
thermodynamic potential on the two quark chemical potentials resp. the scalar and
pseudoscalar condensates per flavor. Instead, we could also rewrite the dependence of
the thermodynamic potential as

e (T, {s i (S} AP} = Qe (T, {psy {My}), (3.27)

since M ¢ is a linear combination of the scalar and pseudoscalar condensates. In general
the notation on the r. h.s. of Eq. will be our preferred method to indicate the
dependence of the thermodynamic potential on the quark condensates resp. mean-fields.
Furthermore we will suppress from now on the subscript of the thermodynamic potential
Qur = Q.

At this point we are not really able to evaluate the thermodynamic potential and
to determine the condensates or quark masses self-consistently. It turns out that the
practical evaluation of the inverse propagator, entering the thermodynamic potential, is
still very difficult and thus we proceed further with simplifying the expression for Qyp.
By separating the time derivative of the inverse propagator S ~}(z) according to

S7Ha) =19 o — (H(T) — ) (3.28)

we can identify an effective mean-field Dirac Hamiltonian

H(7) = diag; (Hu(7), Ha(7)) (3.29)
with components
_, . i ~ _, wz@ M f
Hy(E) = —in®y0, + NI (3) = ( iy _;;(a)) (3.30)

in flavor space, where we introduced an effective quark mass
M (&) = my — 4[G1 (S5(F) + iP(®) + Ga (Su(®) — iP(@)]  (331)

and used the chiral representation for gamma matrices in Eq. to explicit the
Dirac structure. Here, the mean-field Hamiltonian is hermitian and its components
are time-independent, so that the Hamiltonian can in principle be diagonalized. The
time-component of the functional trace of Eq. can then be evaluated by summing

22



Chapter 3 3.3. Thermodynamic potential

Matsubara frequencies. For this, it is convenient to switch to momentum space and
expand the fields and the condensates as a Fourier series. Doing this for a system with
finite volume V' yields

1 )
Y(x) = W %; Yy, €xp (—ip,x) (3.32)

— % Z Z%n exp (—i (W, T — Py, - T)),

Wn ﬁn

and

1 _ ‘
) = W pzn Y, exp (ip,) (3.33)

- % SOSTG,, exp (i (wr — B - 3)

with 7 € [0,7]. Here we assumed anti-periodic boundary conditions for the time-
direction and expanded the fields with respect to 4-momenta p,, given by

= (3)
" P

with discrete Matsubara frequencies w, and spatial three-momenta p,. For static con-
densates we analogously obtain with &, = (0, k)"

M (%) = Z M,fn exp (—ik,z) = Z Mgn exp <1En : a?’) (3.34)
kn i

and the inverse propagator in momentum space reads (cf. Appendix for details)

<S;1>p p - ’yo anéﬁnaﬁm - 705; ’ ﬁndﬁnvﬁm - ,70 Z M]{n 6ﬁnvﬁm+’;n + H’féﬁnvﬁm 5Wmvwn7
"wn En
(3.35)
which is diagonal in the Matsubara frequencies. This, in turn, also determines the
component of the mean-field Hamiltonian in momentum space, where an element is
given by

o _ﬁm : 5éﬁm,ﬁn M;r
(Hf)ﬁm,;ﬁn - ( Mf_ ﬁm . 6-’513‘7”717" ? (336)
where we defined
M;F - Z Mt;; 5ﬁm7ﬁn+§k7 (337)
k

qk
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3.3. Thermodynamic potential Chapter 3

which are specific for a chosen ansatz of the modulation of the quark masses or conden-
sates.
Then the thermodynamic potential can be formally expressed as

QT {pr ks {My}) = Qiin + Qeona » (3.39)

where the condensate part is given by

Qo — é / @ (G [Su(@) + Su(@) + Pu(@) + Pu(@)?] (3.40)
£ 965 [S.(2)Suld) — PUBPAT)]).

The part Qy, is given by

ka - Z kay (341)
f=u,d

with Q{;n being the kinetic contribution of flavor f
TN, . .
ol = — v 2 <log <? (iwy, — Hy + /q))) . (3.42)

Here, the trace in color space was already performed and we are left with a sum over
Matsubara frequencies and a trace over Dirac and three-momentum space.

Since the inverse propagator is diagonal in the Matsubara frequencies and as already
mentioned the mean-field Hamiltonian is in principle diagonalizable, the sum over these
wy’s can be evaluated (see e.g. [44]) and finally gives

|Ex, — p |Ex, — pyl
A = — VZ{ g + Tlog (L+exp (=25 ) || +const.  (343)

Here we introduced A; as a label for the eigenstates of the Hamiltonian per flavor,
E),, are the associated eigenvalues of H; and the kinetic part is only determined up
to a temperature-independent constant, which we will omit in the following. Further

rewriting Eq. (3.43)), yields

T Ey, —
Qf = _VNCZIOg (2 cosh (/\mej) . (3.44)
Af

Now the problem of calculating the thermodynamic potential is reduced to determin-
ing the eigenvalue spectrum of the mean-field Hamiltonian H; for a given ansatz for the
mass functions M(Z) or the condensates S;(Z) and Py(Z), which we will discuss in de-
tail in the next chapter, where different ansatze for the mass- or condensate-modulations
will be evaluated.
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—— = - aea - + - P

Figure 3.1.: Diagrammatic representation of the gap-equation. Solid lines denote the
full propagator and dashed ones the bare propagator for quarks in the NJL
model.

3.4. Self-consistency and gap equations

At this stage, we are in principle ready to calculate the thermodynamic potential for a
given ansatz My (or Sy and Py), but we need to determine the variational parameters
associated to the ansatz, that enter the thermodynamic potential. In the following we
will show, how to determine these parameters self-consistently in our model.

As already mentioned, chiral symmetry can be spontaneously broken in the NJL
model due to the — in the scalar and pseudoscalar channel attractive — four-fermion
quark-antiquark interaction (cf. Eq. (3.1))). By this symmetry breaking, large constituent
quark (fermion) masses are generated and the system develops a gap in the spectrum.
Energetically it is favorable for the system to display a gap in the excitation spectrum,
because this leads to an overall lower energy of the system for sufficiently low tempera-
tures T' < T and chemical potentials 1y < p§ by lowering the negative energy branch of
the dispersion relations for massive quarks. This effect, present in the form of Eq. ,
is counteracted by the condensate part Eq. and the overall favored value of the
gap is determined by the relative weights of the two terms.

In general the quasi-particles obtain dynamically their effective masses through the
interaction with the background mean-field condensates, as schematically depicted in
Fig.[3.1] which is also analogous to the BCS theory for superconductivity.

In order to determine the thermodynamically favored shape of the mass functions
{M;} we must find the minimum of the thermodynamic potential with respect to the
masses. This can be done directly by searching the minimum of the grand potential or
in terms of the gap-equations, where the problem of solving self-consistently the gap-
equations can be mapped to finding roots. In particular, to determine the yet unknown
mean-fields {M;} we address a system of coupled equations

OUT. 1)) 1 515
O{ My}
from which the energetically favored shape of the mass functions can be determined. By
rewriting the mass functions My in terms of their Fourier coefficients, one easily sees
that there are infinitely many coupled equations with an in-general complicated matrix
structure, which need to be solved to determine {A/;}.
Through the relation Eq. also {Sy} and {Pf} can be determined by solving the
gap-equations. In analogy to the stationary constraints Eq. , the condensates can
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be obtained from a set of equations

0T {us) 1, 516
0{Sy, Pr}
which needs to be solved together with Eq. self-consistently to obtain the ener-
getically favored shape of the condensates.
Since the gap equations exhibit a rather complicated structure, we mainly minimize
the thermodynamic potential to determine the preferred value of the variational param-
eters.

3.5. Regularization

In general the thermodynamic potential Eq. is quartically divergent due to the
summation over all single particle energies including contributions from the vacuum
state of the model. Since the NJL model is not renormalizable, we need to regularize
the diverging terms in the thermodynamic potential. Unlike in renormalizable models
a regularization scheme in the NJL model ultimately affects the details of the model.
There exists no unique procedure to regularize model quantities (for an overview see
[32]) and results will depend on the regularization scheme employed (for more details
also see the appendix . Furthermore the NJL model, as an effective low-energy
model of QCD, is in general only applicable up to a certain energy scale, which is set by
the cutoff parameter of the regularization scheme.

Also the proper choice of the regularization scheme is important when allowing for
crystalline order-parameters, since otherwise unphysical or unwanted artifacts can occur,
like the violation of the Silver-Blaze property through the regularized thermodynamic
potential.

In the following the details of the regularization procedure will be presented. In order
to prevent unwanted artifacts we follow [26] (and partly [7]) and use a covariant regu-
larization scheme for our model. For this we need to identify the vacuum contributions
in the thermodynamic potential and apply our regularization scheme only to these, as
we will show in this section.

To start with regularizing the thermodynamic potential, we use that the energy spec-
trum of the quarks is symmetric around Zerﬂ and the kinetic part of the thermodynamic

potential Eq. (3.43) can be rewritten as (see Appendix for details)

1 Ey, + py
of = v > |Ey, + T (1 + exp (—fT (3.47)
E)‘f>0

By —
+ T In (1+exp (—/\fTuf))],

I This is at least true for the modulations we consider throughout this work, if not otherwise stated.
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where we only sum over the positive eigenenergies Fy,. This allows to identify the
divergent vacuum contributions by writing

1
Qlj(cin = v Z [anc(E)\f) + wmed(EAf; T, Mf)] , (3.48)

E>‘f >0
with the vacuum and medium contributions given by
wva(:(E) =K (349)

and
E E—
Wied (BT, 1) = T In (1 + exp <—%)) +Tln (1 + exp (—%)) . (3.50)

Only the vacuum term Eq. (3.49) generates the quartic divergencies. To remove those,
we choose a Pauli-Villars regularization scheme (see [32] and Appendix for details)
where wy,.(F) is replaced by

wWiae(E) = wpy(E) = Y ¢;/E? + jA? (3.51)

with coefficients ¢; fulfilling 3 ;¢ = 0 and a regulator cutoff A. In order to remove
the divergencies completely we further have to require that ). c;(E* + jA?) = 0 and
Zj ¢;j(E* + jA*)? = 0.

The medium term Eq. is finite and thus does not need to be regularized. If one
regularizes this part also, the correct Stefan-Boltzmann limit for the grand potential will
not be obtained. The thermodynamic potential in its regularized form is given by

AT sk (M) =~ 3 | 30 o)) + ctealBr T ag)] |+ Qua

f=u,d E>‘f>0

(3.52)

where Qconq is given by Eq. . Here, the final task before evaluating €2 is to determine
the so far unknown model parameters (A, G1, G2) at given bare quark masses {m}.
To do so, we fix the parameters by fitting our model results to vacuum phenomenology
for a given homogeneous, constant-in-space quark mass in vacuum M,,.. Parametrizing
the two couplings GG; and G5 in terms of a ’'common’ coupling G and a parameter

a € [0;0.5 as

Gl = (1 — OZ) G, G2 =aG (353)

2In general a may range from —oo to 0o, but as we have seen before, for G;/Go < 1 the thermodynamic
potential is unbound from below. This condition translates for our parameterization to a range of
a € (0.5;1].
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we can obtain the parameters (A, G, «) instead of (A, G1,Gs). Inserting Eq. (3.53)) in
Eq. (3.15) and Eq. (3.16)) yields

£y =f{id — [mg — 4G ((8;(2) + i Py(#) (3.54)
— a[(85(@) — $u(@) + i (P() + Pu@)] ) | } 1
and
Leond = — QG{ [S2(Z) + S2(F) + P2(¥) + P2(#)] (3.55)
— o [(Su(@) = Sul@)? + (Pu(®) + Pu())?] }.

Then for the special case of S, (Z) = S4(Z) and P,(Z¥) = —P,(Z), which is the usual
condition realized in isospin-symmetric matter, the mean-field Lagrangian and conse-
quently the thermodynamic potential is independent of «, from which the remaining
model parameters G and A are determined using standard procedures (cf. Appendix
for details). The remaining parameter « is (if not otherwise mentioned) treated as
a free parameter and allows to control — in analogy to the former discussion — the degree
of flavor mixing. The case of maximal coupling of up and down quarks corresponds to
a = 0.5, while we have a = 0 for uncoupled quark flavors.

In the following we restrict our calculations to the chiral limit m; = 0 and, if not
indicated otherwise, use a Pauli-Villars regularization scheme where we require a vacuum
quark mass of My,. = 300 MeV and the pion decay constant (in the chiral limit) to be
fr = 88 MeV, yielding A = 757.05 MeV and GA? = 6.002 in our regularization scheme
for npy = 3 regulators.
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As seen in the previous chapter, the evaluation of the thermodynamic potential essen-
tially reduces to the determination of the eigenvalue spectrum of the model by diago-
nalizing the Hamiltonian H. However, this is a very demanding task when allowing for
arbitrary spatial dependencies of the mean fields and thus simplifications are required.
Here, our aim is to investigate periodic modulations of the order-parameter in our model,
since then the approach turns out to be more tractable. As a starting point, we con-
sider constant-in-space order parameters and derive the thermodynamic potential for
this ansatz.
For convenience we introduce a flavor-averaged chemical potential

=3 ot ) (4.1)

and an isospin-chemical potential
o1 = Hu = fld; (4.2)

which allow to parameterize the up and down quark chemical potentials as

Hr

Mo = [+ 9 (4.3)
_p
/mzﬂ—éi (4.4)

Note that the difference between the two flavor chemical potentials can also be expressed
as [y — fg = 20p. In the literature also pu; = (py — pa)/2 is used, which differs by a
factor of two from our definition Eq. .

Although in astrophysical situations u; usually takes negative values due to the re-
quirement of electric charge neutrality (see e. g. [45]), here we will only consider non-
negative values of the isospin-chemical potential p; > 0 for the following discussions.
Changing the sign of p; only interchanges the roles of up and down quarks and therefore
this presents no restriction (if m, = my), since only the two different quark chemical
potentials differentiate up from down quarks from each other (for m, = my).

For simplicity we restrict our calculations to the chiral limit m, = my = 0. We are
aware that charged pion condensation sets in as soon as p; > m,, which in the chiral
limit would correspond to pi; > 0. Here, however, the limit m; = 0 will only be regarded
as a useful approximation to evaluate the thermodynamic potential and we assume that
charged pions do not condense below the physical pion mass.
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4.1. Constant-in-space condensates

The simplest case, where chiral symmetry breaking occurs in our framework, is when
the chiral condensate is spatially constant. This well-known case will be our starting
point to obtain and compare results for inhomogeneous phases in the chiral limit.

For homogeneous condensates

Sp(%) = Sy, Py(¥) = Py (4.5)
the Fourier-expanded masses Eq. (3.34) contains only the zeroth coefficient

M,{n = MJ 0%, 0 (4.6)
= (—4G[((1 = a)S; + aSy) +i75 (1 — a) Py — aPy)]) 6 4 |

and the eigenvalues of the Hamiltonian H; can be easily determined, since it is diagonal
in momentum space. A generic element on the diagonal reads

(Hp)pp= (17 5+ 2°M] ) (4.7)

and is a 4 X 4 block in momentum space whose eigenvalues are twice degenerate and are

given by
2
By, (5) = £/ + (MJ) . (4.8)

All eigenstates of the Hamiltonian can be labeled by a momentum component p, which
will in general not be possible any more for inhomogeneous chiral condensates.
For this ansatz the (unregularized) thermodynamic potential Eq. (3.39) reads

QT {pr 1 {Se AP} = —N‘C/T >, D log (2 cosh (%>>

f=ud Ex,(p) (4.9)
+2G((1 — ) [S2+ S5+ P} + Pj] +2a[SuSa — PuPJ)),
which can be rewritten as
QT {ps}; {Sr 1 APr}) =
d3p PP+ My — i
— 2N \/P2+ MPA+T1 1 —
Cfgd/ @2m) | VP P s | e T
’ (4.10)

\/P? + Mg* + iy

T

+Tlog | 1+exp | —

+2G((1 — @) [S2+ S5+ P? 4+ PJ] +2a[SuSa — PuPy) ),
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by switching from the energy summation to a momentum integral. Here we replaced
M{ with M ¢ for better readability.

By changing the integration variable from momentum to energy £ = (p* + Mf)l/ 2 the
thermodynamic potential can also be expressed in terms of an effective density of states
per flavor p(E) as

AT Aps b S} AP} = =N > /OO dE ps(E) (wvac(E) + wied (E; T, puy))
f=u,d”0
+2G((1 — ) [S2+ S5+ PP+ PJ] +2a[SuSa — P.PJ)),
(4.11)

which is possible since an analytical expression for the eigenvalues of the mean-field
Hamiltonian is known. Formally the effective density of states can be determined from
its definition

ps(E) = %ZME—EM), (4.12)

which in particular reads here

1
hom .
PP (E) = B\ E* — M}O(E — My), (4.13)

where the Heaviside theta function is present due to the gap of magnitude My in the
energy spectrum (for details see also Appendix .

For isospin-symmetric matter y, = pq = & the masses My are independent of o and
become equal M, = M, = M, consequently the effective densities of state are also not
dependent on the parameter o and the two kinetic parts are degenerate. This allows to
perform the sum over the two flavors in Eq. trivially; resulting in a factor Ny for
the thermodynamic potential

2

> M
Q(T, y; S, P) = —N,N; / dE p"™(E) [wyac(E) + wmea(E; T, )] +toaa (A1)
0

where 72ph°"(E) = E(E? — M?)Y/2 ©(E — M).

The self-consistently obtained values for M at different chemical potentials are shown
for the isospin-symmetric case and zero temperature in Fig. on the left. For suffi-
ciently small p < p. we find that a chirally broken state, indicated by a large effective
mass M, is energetically favored over the restored phase (with M = 0) in our model.
The transition from the homogeneous phase with M # 0 to the restored phase with
M = 0 is discontinuous, i. e. of first order, at "= 0 (while restricting to homogeneous
condensates), as can also be seen from the relative differences of the free energies in
Fig.[4]] on the right, where the homogeneous phase crosses at i = p. the restored
phase. For our special choice of model-parameters in the Pauli-Villars regularization
scheme, the critical chemical potential is larger than the vacuum quark mass, namely
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Figure 4.1.: (Left): FEffective mass of up (solid blue) and down (dashed red) quarks
against the quark chemical potential pu, = g = i at T = 0 for constant-
in-space condensates. (Right): Thermodynamic potential relative to the
thermodynamic potential of the restored phase against the average quark
chemical potential at 7' = 0 and p, = pug = p for solutions with constant-
in-space mass (solid) and vanishing mass (dashed).

te > My = 300 MeV. Thus for > M., the effective mass begins to decrease and
then drops to zero at i > u.. By allowing non-zero temperatures the nature of the
phase transition from the homogeneous chirally broken to the restored phase changes
to second order above a critical temperature 7" > Trop. In particular, at the so called
tricritical point the order of the phase transition changes. This is evident in Fig. |4.2
where two distinct regions can be identified in the i — T-plane; one with spontaneous
broken chiral symmetry and one with restored chiral symmetry connected by a phase
transition of first order (for T < Tpcp) resp. second order above T' > Trrep.

At non-vanishing isospin-chemical potential a richer phase structure emerges, since an
additional dependence on the degree of flavor mixing « is present. Dependent on the
value of a one flavor could, for instance, have major influence on the mass function of the
other flavor (see the definition Eq. (3.31])). For zero temperature and fixed iy the effects
of varying « are illustrated in Fig.[4.3] At a = 0 both mass functions are only sensitive
to their respective flavor chemical potential and are completely independent on the other
flavor. Hence, when plotted against i this results in a trivial shift by £u;/2 along the
fi-axis with two separate first-order phase transitions, while when plotted against the
respective flavor-chemical potential the order parameter of the flavor looks identical to
the one of the other flavor.

On the other hand even for small ae = 0.05 the effect of one flavor on the other flavor’s
mass is non-negligible, as can be seen in the middle panel of Fig.|4.3] where still two
first-order phase transitions are present, but not as strong as in the decoupled-flavor
case. Increasing the degree of flavor mixing further results at some o > «. in the joining
of the two phase-transitions, as can be seen in Fig. for « = 0.5. Focusing only on
down quarks now (which have for p; > 0 the smaller chemical potential than up quarks),
the corresponding i — p;-phase diagram allows to discuss the influence of the up quarks
on the down quarks at 7" = 0, as can be seen in Fig. |4.4] Below a critical isospin chemical
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Figure 4.2.: Phase diagram at u, = pug = 1 for homogeneous condensates. The region
with spontaneous broken chiral symmetry is indicated by ySB. Both re-
gions are connected through a phase transition, which is of first-order (solid
blue) below the critical point (red dot) and turns second-order (dashed blue)
above.

Table 4.1.: Phases and corresponding order parameters for homogeneous condensates.
For the pseudoscalar condensates Py without loss of generality one always
can assume Py = 0 due to the chiral symmetry.

Phase Amplitudes
(r,7) Sy =5,=0
(r,h) Su=0, Sg#0
(h,?“) Su#(), Sd—O
(h, ) Sus Sa # 0

potential p§ the position of the down quark phase transition coincides with the phase
transition for maximally coupled quarks, while for @ = 0 it agrees just for u; = 0.

For a = 0 the phase structure in the g — T-plane is shown in Fig.[£.5] The phase
transitions of up and down quarks do not coincide for any temperature and chemical
potential except for u; = 0, while several regions with different realizations of chiral
symmetry exists. For an overview, we list all combinations in Tab. 4.}, which do not
necessarily need to be realized. The different realizations of the chiral symmetry are de-
noted by (K, kq), where the first column refers to up and the second one to down quarks
and sy can label homogeneous breaking (h) or the restoration (r) of chiral symmetry.
For small values of the flavor-averaged chemical potentials at fixed temperature both
quarks have a large dynamically created mass, while after the phase transition of up
quarks only the down quark condensates break chiral symmetry. The chiral symmetry
of down quarks subsequently also gets restored for increasing chemical potential. The
whole phase structure at o = 0 can again be mapped to the phase structure of o = 0.5
at p; = 0, shown in Fig. 1.2 by applying a trivial shift of £0u along the j-axis.

Concentrating on a realistic degree of flavor mixing, which was found to be in the range
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Figure 4.3.: Effective mass of up (solid blue) and down (dashed red) quarks against the
average quark chemical potential at T'= 0 and p; = 60 MeV for a constant-
in-space chiral condensate at varying degree of flavor-mixing: a) o = 0, b)
a = 0.05 and ¢) a = 0.5.

a =~ 0.1—0.2 [41], we choose av = 0.2 for our purposes as a realistic degree of flavor mixing.
For this degree of flavor mixing the temperature dependence of the mass functions is
shown in Fig. for two fixed values of the isospin-chemical potential. There the second-
order phase transition for small enough i (at fixed uy) is easily recognized since the
mass functions continuously approach zero with increasing temperature. This 'melting’
of the condensates happens for larger chemical potentials instead in a discontinuous way
and the phase transition to the chirally restored phase is of first order. Although the
magnitudes of the mass modulations are different at non-zero p; — as can be seen from
the figure — the phase transition of up and down quarks happen at the same chemical
potential i and the same temperature 7. In the i — T-plane this is also true and
both phase-transition lines coincide. The general behavior can be seen for the quarks
in Fig.[4.7 for up quarks at & = 0.1 and o = 0.2 the phase transition would happen
at the same line as for down quarks at the particular value of p;. It was found by
Frank et al. [4I] for a three-momentum cutoff regularization that in general already for
relatively small values of o both phase-transition lines coincide, which is confirmed by
our calculations.

4.2. Spatially-varying order-parameters

Turning now to the investigation of the occurrence of spatially modulated phases in
isospin-asymmetric matter, where an imbalance between the quark occupation numbers
is present, we are faced with the diagonalization of the mean-field Hamiltonian for spa-
tially modulated condensates. This is a highly non-trivial task. In particular, when
evaluating the Hamiltonian in momentum space one has is in general to deal with in-
finitely many momenta connected through the chiral condensates, which in principle
require to diagonalize an infinite matrix with a continuous set of elements. To circum-
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Figure 4.4.: Phase structure for down quarks at 7" = 0 for homogeneous quark masses.
The lines indicate the phase boundary of down quarks for given «a. Left of
these lines chiral symmetry is homogeneously broken, while to the right it
is restored.

vent this very complicated task, we assume periodic structures in coordinate space for
the condensates, which allows to follow the formalism developed in Refs. [7, 26, 46].
There, a phase structure similar to the depicted phase diagram of QCD in Fig. [2.3| was
found, as can be seen in Fig. 4.8 where a ground state with a spatially modulated
order-parameter is seen in the p — T-plane. In this section we aim at generalizing the
approach for crystalline structures to account for non-zero isospin-chemical potentials,
allow a generalized quark-antiquark interaction and study the resulting phase structure.

In particular we require for applying the formalism, the condensate functions to be
periodic, i. e. for @; with ¢« = 1,2, 3 being linear independent vectors

Si(@) =S¢+ a;), Pi&)=PrT+a;) (4.15)
or on the level of the quark masses
M (%) = My(Z + a;) (4.16)

holds. With this, the momenta lzn of the Fourier decomposition form a reciprocal lattice
(RL) and fulfill the condition (k, -@;)/(27) € Z. From Eq. (3.36) and (3.37) one can sec,
that Fourier modes with ¢ # 0 couple unequal momenta and the Hamiltonian becomes
non-diagonal in momentum space, as then also the inverse propagator Eq. is. Since
the condensates are non-uniform in space and thus carry non-vanishing momentum, it
is possible for the quarks to change their momenta by scattering off the condensates.

Due to the restriction of allowed momenta the set of lzn’s becomes discrete but still
infinite. Using Bloch’s theorem, all momenta can be decomposed as

where g, belongs to the RL and k,, is an element of the Brillouin zone (BZ). Momenta 7,
and p,, are only coupled if k,, = k, and therefore the effective mean-field Hamiltonian
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Figure 4.5.: Phase structure of up (blue) and down (red) quarks for « = 0 at u; =
60 MeV and homogeneous quark masses. Solid lines indicate a first-order
phase transition, while dashed lines represent second-order transitions.

Eq. (3.30) can be written as a direct product in terms of blocks associated with the
momentum k,, = k,,, = k in the BZ as

Hp=> Hyk). (4.18)

keBZ

Since now the Hamiltonian is block-diagonal, the kinetic part of the thermodynamic
potential Eq. (3.43]) becomes

d3k E Ey (k) —
Qliin: Ne )3 Z( arh +Tlog <1+exp (‘M)));

(4.19)

where s here labels eigenstates of H (k k) and B, ; (k) are the corresponding eigenvalues.
Here we were able to transform the sum over all eigenvalues of Hy with a continuous

set of eigenvalues into a discrete set of eigenvalues of Hy(k ) times an integration over
momentum space, rendering the numerical evaluation of the mean-field Hamiltonian and
its eigenvalue spectrum in principle straightforward. Exploiting the fact that the energy
spectrum is symmetric around zero again, the kinetic part can be rewritten further as

E,\f(E) + T'log (1 + exp (—W)) (4.20)

+ T'log (1 + exp (—W)) ]
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Figure 4.6.: Mass amplitudes M of up (solid) and down (dashed) quarks for three flavor-
averaged chemical potentials: it = 170 MeV (red), i = 250 MeV (blue) and
f = 300 MeV (green) at zero temperature, o = 0.2 and two values of p; for
constant-in-space condensates.

The condensate part is given by

Qeond :? P [ (8@ + 543 + P + Pu3)?) (4.21)

\%

4.3. Chiral Density Wave

To have a well-defined starting point, we need to specify the characteristic shape of the
modulations of the condensates or mass functions. The simplest periodic ansatz for the
spatial modulation of the order-parameters corresponds to a single plane wave for the
modulation of the quark masses given by

M(Z) = Aexp (iV°7°7 - ), (4.22)

which is also equivalent to limiting the number of Fourier coefficient in the Fourier
transformed version of Eq. to one (while identifying M; = A). Here A and
¢ are variational parameters of the ansatz, characterizing the amplitude and the wave
vector of the modulation. Specifically for this ansatz, the up and down quarks have same
amplitudes and equal wave-vectors, which is often called the (Dual) Chiral Density Wave
(CDW) [25].
As an alternative, but equivalent formulation, the CDW can also be written in terms
of a sinusoidal modulation of the scalar and pseudoscalar condensate functions given by
. A oA PR AL
Sy(@) =~ 2z cos (i 7). Pyl@) =~ sin (7). (4.23)
Here we have to require the flavor-dependent wave vectors ¢y to reproduce Eq. ,
to be of the same magnitude |q,| = |g4| = |¢] = ¢ but opposite sign ¢, = —¢z = ¢. The
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Figure 4.7.: Phase structure for & = 0.2 (blue) and o = 0.1 (red) at u; = 60 MeV and
homogeneous quark masses. Here the transitions for up and down quarks
coincide. Solid lines indicate a first-order phase transition, while dashed
lines represent second-order transitions between the regions with broken
chiral symmetry (xSB) and chiral restoration.

minus sign arises as a consequence of the isovector nature of the pseudoscalar interaction

used in Eq. (3.1), which can also be seen by rewriting Eq. (4.22)) as
M (%) = A (cos (7 %) + iy’ sin (7 7)) (4.24)

where the presence of 73 enforces ¢, = —q; = .
The associated effective Hamiltonian (in position space) for the CDW ansatz can be

obtained from Eq. (4.22)) (together with Eq. (3.29))) and is given by
H(Z) = —ir"y' + " Aexp (V77 - T). (4.25)

The eigenvalue spectrum needs to be determined for the evaluation of the thermody-
namic potential and then, in turn, the variational parameters of this ansatz (A, q) can
be determined from minimizing €.

A big advantage of this approach is, that it is still possible to obtain an analytical
expression for the eigenvalue spectrum [47]. For this we consider local chiral rotations
per flavor to eliminate the spatial dependence from H; , from which the eigenvalues can
be easily determined (see Appendix for a detailed discussion)

Ef? = 2 4+ A2 fi A2+ (5-@)° 4.26
=P AT P+ Q" (4.26)

The kinetic part of the thermodynamic potential is given by

Ef —
A = =N, Z/ E’+Tlog (1 + exp (—TW» (4.27)
{==+

EE
+ Tlog (1 +exp (-%))]
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Figure 4.8.: Phase diagram of the NJL model for isopin-symmetric matter, when allowing
for crystalline structures (taken from [26]). The shaded area indicates where
an inhomogeneous phase is energetically favored.

and can be written in terms of an effective density of states

e £ (e (539
+\/<E+g)2—A20<E——+A>0<E+—— A)
g g a )]

as

T

E
+ T'log (1 + exp (—%))]

The condensate part can be obtained by inserting Eq. (4.23)) into Eq. (3.40) and is
explicitly given by

e} E -
O = _Nc/ dE p”"V(E) [E + T'log (1 + exp (— Mf)) (4.29)
0

A2

Qeond = el (4.30)
For isospin-symmetric matter the amplitude A and the wave number ¢ are shown in
the left panel of Fig. First, a homogeneous phase with ¢ = 0 is favored, then at
intermediate values of i the amplitude has smaller values and at the same time the wave
number becomes non-zero, indicating the favorisation of the inhomogeneous phase. The
phase transition from the homogeneous broken to the inhomogeneous phase is of first
order and there the amplitude drops in a discontinuous way. The onset of the spatially
modulated phase is located at smaller values of i than the critical chemical potential

for homogeneous condensates only. The wave number jumps at the onset from zero to
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Figure 4.9.: Variational parameters allowing for a CDW at T" = 0 against the flavor-
averaged chemical potential . (Left): Amplitude (solid blue) and wave
number (dashed red) at u; = 0. (Right): Amplitude at p; = 0 (solid blue),
pr = 20MeV (long-dashed red), u; = 60 MeV (dashed green), u; = 100 MeV
(dotted orange) and py = 120 MeV (dash-dotted purple).

a non-zero value and grows when the chemical potential is increased. In particular, it
is found that the wave number is approximately proportional to the chemical potential
it. For even larger ji, the amplitude A continuously approaches zero in a second-order
phase transition and the inhomogeneous chiral symmetry-breaking solution becomes
disfavored against the restored phase with intact chiral symmetry. The phase diagram
in the t — T-plane is similar to the one in Fig. and is shown together with the phase
diagrams at non-zero p; in the upper left panel of Fig. [L.11] The chiral phase boundary
for homogeneous condensates only, is completely covered by the inhomogeneous region.
For large temperatures the phase boundaries of the CDW region meet in a critical point,
marking the upper end of the inhomogeneous region along the temperature axis.

For the CDW the thermodynamic potential is the same for every degree of flavor-
mixing, even in isospin-asymmetric matter, since the kinetic part Eq. and the
condensate part Eq. are independent of the degree of flavor mixing « for this type
of modulation. Thus, the CDW solutions are relevant for all degrees of flavor mixing,
but not necessarily the most favored one, as we will see later.

The results at T' = 0 for isospin-asymmetric matter are shown in the right panel of
Fig.[4.9 One sees that the transition from the homogeneous phase with ¢ = 0 to the
inhomogeneous phase with ¢ # 0 is still of first order and the amplitude drops there too.
For increasing puy, the onset and the upper end of the inhomogeneous window shift along
the pi-axis to lower values. Because the upper critical chemical potential fi.o is shifted
to smaller values more rapidly than the lower one fi. 1, the size of the inhomogeneous
window is effectively decreasing for increasing ;. The spatially modulated phase is
connected to the restored phase via a second-order phase-transition and for increasing f
the CDW amplitude is continuously approaching zero, as in isospin-symmetric matter.

Energetically the CDW is favored at T = 0 and fixed i below a critical isospin
chemical potential ;§, as can be seen for i = 320 MeV in Fig.[£.10] At small p; the
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Figure 4.10.: Thermodynamic potential for a CDW modulation (solid red) relative to the

thermodynamic potential of the restored phase (blue) against the isospin-
chemical potential pu; at zero temperature and i = 320 MeV.

CDW solution has a larger pressure than the restored phase, but for increasing p; the
difference between the two pressures continuously gets smaller, until the CDW solution
reaches a critical isospin chemical potential and vanishes.

As can be seen for four values of u; in Fig. the inhomogeneous phases in the
it — T-plane exist around intermediate chemical potentials resp. densities and low tem-
peratures. For p; # 0, although the inhomogeneous region in the ;i — T-plane shrinks
for increasing isospin-chemical potential, an inhomogeneous chiral-symmetry breaking
phase is present in the phase diagram. Like for u; = 0, the phase transition at p; # 0
from the homogeneous to the inhomogeneous phase is of first-order and from the inho-
mogeneous to the restored phase is of second order. At a critical temperature T, the
boundaries of the inhomogeneous phase coincide and above an inhomogeneous solution
is not favored any more.

Since we have seen that the amplitude of the modulation depends on the chemical
potential and the values of the wave vector are approximately proportional to the chem-
ical potential, it is clear that providing the same wave vector for up and down quarks or
equal amplitudes may present a severe restriction in isospin-asymmetric matter, because
of the two flavors favoring different wave vectors or amplitudes. Therefore, as a next
step, we need to check if inhomogeneous solutions with different amplitudes and unequal
wave vectors can occur and if they are more favored than the CDW.

4.4. Plane-wave modulation for the quark masses

To relax the requirement of equal amplitudes and wave vectors for the two flavors, we
study now a plane wave modulation of the mass functions according to

My (%) = Agexp (i0°G; - ©), (4.31)

where the up and down quark masses are allowed to have different amplitudes Ay and
wave vectors. For simplicity we will refer to this ansatz as the “mass ansatz”. By
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Figure 4.11.: Phase structure allowing for a CDW modulation in the p — T-plane for
four values of the isospin-chemical potential. In the shaded region an in-
homogeneous region is favored. To the left (right) of the inhomogeneous
phases, homogeneous broken (restored) solutions are favored. For reference
the chiral phase boundaries of homogeneous matter are also shown (dashed
lines).

enforcing the amplitudes and the wave vectors of up and down quarks to be equal by
requiring A, = Ay = A and ¢, = —¢; = ¢, we recover the CDW given in Eq.
from the mass ansatz.

The condensate functions can be determined for this ansatz by rewriting the mass
functions

M;(%) = —AG (X;(2) + 7°Y; (7)), (4.32)

in terms of a real and imaginary part. The condensates are given (see Appendix for
a derivation) by

Se(Z) = m [(1—a)Ajcos (G - T) — alpcos (g, - T)], (4.33)
and
Py(i) = m [(1— a)Assin (@7 + alpsin (@, -7)]. (4.34)

42



Chapter 4 4.4. Plane-wave modulation for the quark masses

In analogy to the former section, the eigenvalue spectrum can be still determined by
applying local chiral rotations (see Appendix for a detailed discussion) to eliminate
the space-dependence of ‘H. In contrast to the CDW case, this needs to be done on the
level of the flavor components of the mean-field Hamiltonian

Hyp(T) = =iy + 7 Agexp (7 - T). (4.35)

After applying the chiral rotation, the eigenvalues associated with flavor f can be
easily determined and they are given by

~2
q - =
BFP = A+ L\ [N+ (7 ) (4.36)

These eigenvalues can be encoded in a flavor-dependent density of states

e =gl (E- ) a0 (e-g o)

+\/(E+%f)2—A;9(E—%f+Af>9(E+%f—Af)

P ) m (- Y w6 (Y s )],

from which we can generalize the kinetic part Eq. (4.27)) of the CDW grand potential to
account for the mass ansatz according to

o E .
of = —NC/O dE p™ (E) {E + Tlog (1 +exp (— T“f)) (4.38)

E
+ T'log (1 + exp (— ;“f>)]

To arrive at an expression for the condensate part, we insert Eqn. (4.33]) and (4.34))
in Eq. (3.40)), which yields

1

QCOII = S At s 4 A~ N
178GV (1 —20)

/V i [(1 ) (A2 4 A2) — 20, Ay cos (7 + @) - ;a] |
(4.39)

Since here ¢, = —qy or ¢, # —qqy is possible, we need to distinguish between these two
cases in the condensate part. For the first case ¢, = —qy, the integration over the sum in
Eq. can be performed trivially, because the summands have no space-dependence.
The condensate part for this case then reads

1 1
G 1 -2«

Qeond = [(1—a) (A2 + A7) — 20A,A4] - (4.40)
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For ¢, # ¢y in contrast, we need to integrate over the oscillating cosine function. Since
we integrate over a Wigner-Seitz Cel]EL this basically amounts to integrate the function
over one period, so that in the end the integral over the cosine vanishes. Then, the
condensate part is given for ¢, # —g; by

1 1
Qcond = @ 1- 24 [(1
and we have in general for the condensate part of the mass ansatz

3G T—2a | (1 -a) (A% + A2, 7. # i

Considering different amplitudes, the thermodynamic potential does depend on the
degree of flavor mixing. In particular for this case, the a-dependence is present solely
in the condensate part Eq. , which for o = 0.5 diverges, unless A, = Ay and
Gu = —qy. In order to allow to investigate the mass ansatz and not only the CDW
case, we will limit ourselves to a # 0.5 first, but later take the limit av — 1/2 for the
condensate part (see also Appendix for details).

Since the kinetic part of the thermodynamic potential is independent of «, the flavor
mixing of the two flavors happens solely through the condensate part. Inspecting the
two expressions for the condensate part, we note that for 0 < o < 0.5 the condensate
part Eq. ( - is energetically favored over Eq. (4.41). The condensate part prefers
Ju = —q4, while the kinetic part favors wave-numbers |gy| of the order py — irrelevant
of the direction of ¢y. Then, the decision if equal or unequal wave vectors are favored
during the minimization of the grand potential, depends only on the relative weight of
the kinetic against the condensate part of the thermodynamic potential.

In the following the variational parameters of the ansatz are determined for different
degrees of flavor mixing and the resulting phase structure is studied. We start with
completely decoupled quark flavors, since this allows to perform the study at p; # 0 in
a well-defined way; namely, the results for isospin-symmetric matter can be related to
wr # 0, as it was the case for homogeneous condensates. In analogy to former results
we distinguish between different phases, dependent on which of the order-parameter is
zero or non-zero. These are listed for inhomogeneous chiral-symmetry breaking phases
in Tab. Besides the indication whether chiral symmetry is homogeneously broken
(h) or restored (r), we need to introduce a third label to show that the chiral symmetry
for this flavor is inhomogeneously broken (7). In the following we discuss the dependence
of flavor mixing for the mass ansatz and analyze if unequal amplitudes or wave vectors
are favored.

— ) (A2 + A7)] (4.41)

Qoond = (4.42)

4.4.1. Completely decoupled quark flavors

For @ = 0 both quark flavors are completely decoupled and the two cases Eq. ({4.40))
and Eq. (4.41) for the condensate part become equivalent. As a consequence, visible

1A Wigner-Seitz cell is a primitive cell in the crystalline lattice formed by the condensates. From this
unit cell the entire direct space can be constructed and corresponds to the first Brillouin zone in
reciprocal space.
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Table 4.2.: Phases and corresponding order parameters for a plane wave modulation.

Phase Amplitudes Wave numbers
(r,7) A, =A;=0 —

(T,h) AUIO, Ad%o qd:O
(r,1) A,=0, A;#0 qa # 0
(h,?“) AU#O, Adzo qu:O
(i,?”) Au%& Ag=0 qu#o
(hsh) Ay, Ag#0 Gu=qa="0
(Z,h) Au, Ad#O qu#O, qd:O
(h,1) Ay, Ag#0 Gu=0, qa#0
(iv Z) Am Acl 7é 0 Qu; 9d 7£ 0

in Fig.[.12) at T = 0 and several values of u;, the up and down quark amplitudes
can also here be mapped to the result at u; = 0 by applying a trivial shift of +p;/2
when plotted against fi, as already seen for the amplitudes in the homogeneous case.
In particular, since the thermodynamic potential separates into two independent parts
associated with the respective quark flavor, unequal amplitudes and wave vectors become
always preferred at puy # 0 for the inhomogeneous phases in this scenario.

For p; = 0 we recover the CDW phase structure in the i — T-plane, which is not
surprising since for isospin-symmetric matter up and down quarks are degenerate and
they prefer to have the same amplitudes and wave vectors.

In Fig. the i — T phase structure for a = 0 is shown. In general we find that
the phase boundaries of up and down quarks are simply shifted with respect to each
other, when plotted against the averaged chemical potential. For small values of u;
the inhomogeneous phases associated with up and down quarks partially overlap in
a coexistence region. Increasing the isospin-asymmetry, leads to a shrinking of the
size of the coexistence region until it vanishes at p; ~ 38 MeV and then two separate
inhomogeneous regions with no overlap are present in the phase diagram. In contrast to
the CDW case, inhomogeneous phases are present in a larger region of the phase diagram
for u; # 0 (and unequal wave vectors for up and down quarks are present at the same
time). At fixed temperatures the inhomogeneous phases extend in the i — u;-plane
to arbitrarily large isospin-chemical potentials as seen in Fig. for T' = 0, although
we should be aware that charged pion condensation should become relevant at some
point, which we however do no include in the present approach. For the completely
decoupled case, the existence of inhomogeneous regions up to arbitrarily large p;’s can
be interpreted as that the up and down quarks are allowed to have their preferred values
of A and ¢ in the inhomogeneous phase, while they are not affected by the other flavor.
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Figure 4.12.: Amplitudes when allowing for a plane wave modulation of the masses at
T = 0 against the flavor-averaged chemical potential i at py = 0 (blue),
pr = 20MeV (red), u;y = 60 MeV (green) and p; = 100 MeV (orange) for
up quarks (dashed) and down quarks (solid) at a = 0.

4.4.2. Small degree of flavor mixing

In general, the inhomogeneous solutions can have equal or unequal periodicities, where
the periodicity of flavor f is defined by

Ly =2/l (4.43)

As a first step, we discuss the phase structure at small degrees of flavor mixing, when
enforcing equal periodicities (corresponding to |q,| = |qa| = ¢) while we still aim at
investigating if unequal periodicities are favored or not in the end. For this setup, we
determine (A,, A4, q) by addressing the extremal condition of the grand potential. In
general we may expect that the influence of one flavor on the other is rather small but
non-negligible, as we have already found for purely homogeneous condensates.

In Fig. the variational parameters (A,, A4, q) are shown at T = 0 and fixed
isospin-chemical potential for a = 0.01, where equal magnitude of the wave vectors,
but opposite sign was assumed. Again we recognize the influence of one flavor on the
other, that is depicted for u; = 20 MeV in the left panel of the figure. There, first both
quark flavors prefer homogeneous solutions and the up quarks’ amplitude undergoes a
significant drop for increasing fi while the amplitude of the down quarks is only weakly
affected by the phase transition of the up quarks. In a second jump, the amplitude of
the up quarks rises again and at the same time the down quarks’ amplitude drops. Both
flavors become inhomogeneous, indicated by the wave number ¢ becoming non-zero,
until both amplitudes continuously approach zero. For pu; = 60 MeV (right panel in the
figure) the transition to inhomogeneous quark matter is shifted to larger values of the
averaged chemical potential and the influence of the down quarks’ phase transition on
the up quarks is barely visible in the amplitudes. Also the value of A, does not become
larger in the inhomogeneous phase. In contrast to o = 0 we never find solutions like
(7,7) or (r,7), where one flavor is completely chirally restored while the other flavor is
not.
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Figure 4.13.: Phase structure allowing for a plane-wave modulation of the mass functions
in the i —T-plane for four values of the isospin-chemical potential at o = 0.
In the shaded region an inhomogeneous solution for the up (blue) or down
(red) quarks is favored over a homogeneous solution. To the left (right) of
the inhomogeneous phases, homogeneous broken (restored) solutions are

favored.

Next we allow for unequal periodicities in our framework, i. e. ¢, # q4. There we need
to determine the set (A,, Ay, qu,qq) as the variational parameters for our ansatz. In
particular, we want to clarify if enforcing equal wave numbers is too restrictive.

Before, we turn to very small degrees of flavor mixing, where unequal periodicities
L, # L, are favored for a large enough isospin-asymmetry. This is illustrated in Fig. [4.16],
where the amplitudes and wave numbers for each flavor are shown for fixed isospin-
chemical potential and o = 0.0001 at zero temperature. For a = 0.0001 the two quark
flavor amplitudes do not fall on top of each other around the onset of the inhomogeneous
phases, even if we plot them against the respective quark chemical potential. There A,
and A, differ at the lower end of the inhomogeneous window (evaluated at the same
quark chemical potential with u; # 0) and the difference is of the order of approximately
one MeV. This is due to the influence of one flavor on the others amplitude. Also the
amplitude of one flavor jumps when the phase transition of the other flavor happens, but
since this effect is very small due to the tiny amount of flavor mixing, this is not visible
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Figure 4.14.: Phase structure allowing for plane-wave modulations of the quark masses
in the fi—pr-plane at T'= 0 for & = 0. In the shaded region inhomogeneous
solutions are favored over a homogeneous solution.

in the figure. For larger flavor-averaged chemical potentials the difference between the
two quark flavors becomes smaller at fixed puy and thus the two amplitudes fall on top
at the upper end of the inhomogeneous window, when plotted against fi¢.

Studying further the possibility of unequal periodicities, the thermodynamic potentials
of different types of solutions at T' = 0 and g = 320 MeV are shown for o = 0.01 in
Fig.|4.17, Here we allow restored, homogeneous and inhomogeneous solutions. For
clarity, we do not show the CDW solution in the following figures, which is always
present and is independent of «.

One can see from the figure, that inhomogeneous solutions with equal periodicities
are favored for small values of the isospin-chemical potential. At small y;, the thermo-
dynamic potential for a solution with unequal periodicities is larger than the one for
equal periodicities, which is mainly due to the lack of the term proportional to A,A, in
the condensate part Eq. . For non-zero values of p; the kinetic part prefers wave-
numbers of the order of 1y and an inhomogeneous phase with unequal periodicities may
be energetically favored over the inhomogeneous phase with equal periodicities. The
details depend on the actual degree of flavor mixing and in particular on the relative
weight of the kinetic and condensate part of the grand potential. For non-zero flavor-
mixing, the inhomogeneous phase becomes disfavored at very large values of y; against
a homogeneous solution and there is a first-order phase transition from the spatially
modulated to the spatially homogeneous phase.

Already at relatively small degrees of flavor mixing, unequal periodicities become
more and more disfavored against the other types of phases. For a = 0.03, T'= 0 and
it = 320 MeV the inhomogeneous solution with unequal periodicities is always disfavored
against the inhomogeneous phase with equal periodicities resp. against the homogeneous
broken solution, as illustrated in Fig.[f.18 Around p; = 0 there exists no favored
inhomogeneous solution with ¢, # —¢; until for large enough isospin-imbalance there is
a second order phase transition from the restored phase to an inhomogeneous solution
with unequal periodicities.
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Figure 4.15.: Amplitudes of up (solid blue) and down (dotted red) quarks for a plane
wave modulation with ¢, = —¢; and |g,| = |g4| = ¢ (dashed green) against
the averaged chemical potential for o = 0.01 at T" = 0 for two isospin-
chemical potentials: p; = 20 MeV (left) and pu; = 60 MeV (right).

4.4.3. Maximally coupled quark flavors

Turning now to maximally coupled quark flavors, we are also interested in the question,
if unequal periodicities can occur for this case.

For our chosen ansatz one can see that the condensate part of the thermodynamic
potential Eq. does diverge at a« = 0.5, unless A, = Ay and ¢, = —¢y. This is
precisely, what we required for the CDW case. Thus at o = 0.5 no unequal periodicities
are possible for the plane-wave modulations specified by Eq. and we obtain the
same phase structure as in section [4.3] It may present a first hint, that the plane-wave
ansatz we have chosen is too restrictive to allow the emergence of unequal periodicities
at a = 0.5.

4.4.4. Realistic degree of flavor mixing

For a realistic degree of flavor mixing unequal periodicities are not energetically favored
over a large parameter range, although an inhomogeneous phase is present.

For i = 320MeV, T = 0 and varying isospin imbalance this is evident in Fig.[£.19]
where no solutions with unequal periodicities are present. For comparison, we show the
CDW case in this figure. Clearly, an inhomogeneous phase with 'unrestricted’ amplitudes
and ¢, = —qy is the preferred ground state against the CDW-case, the homogeneous
broken or restored phase, except for u; = 0 where the CDW and the general solution are
identical. The curvature of the free energy of the inhomogeneous phase first is positive
along the pr-axis, but then the slope alters its sign for relatively large p;, indicating
that the inhomogeneous phase with A, # A, and ¢, = —¢; becomes more favored again
when the two quark flavors get more non-degenerate.

For a fixed value of the isospin chemical potential, the amplitudes of the two quark
flavors are depicted in Fig.[4.20] If the temperature is vanishing and small average
chemical potentials are considered, the two amplitudes are identical until they split due
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Figure 4.16.: Amplitudes A, 4 of up (solid blue) and down (dotted red) quarks and
wave numbers ¢, (dashed green) and ¢, (dotted orange) against the flavor-
averaged chemical potential at 7" = 0 and u;y = 20 MeV for a = 0.0001 and
a plane-wave modulation of the quark masses.

to the isospin-chemical potential. For increasing values of ji the splitting between the
two amplitudes gets larger, until the quark flavors undergo a transition from the homo-
geneous to the inhomogeneous phase, where the two quantities still do not agree, but
the difference becomes smaller when approaching the upper end of the inhomogeneous
window and vanishes exactly there. The same behavior can be observed, when the tem-
perature is increased at fixed fi. Over the whole temperature range, the amplitudes of
the different quark flavors do not coincide except when the two amplitudes become zero
in a second order phase transition. The wave number ¢ is for both cases monotonously
increasing, which is already the case in isospin-symmetric matter.

In the i — T plane at fixed p; the phase structure linked to up and down quarks is
shown in Fig.|4.21] Here the size of the inhomogeneous region is for this realistic degree
of flavor mixing larger than for the CDWEL which might allow to detect inhomogeneous
phases in future experiments or in natural environments with a large imbalance more
easily. For larger p; the lower end of the inhomogeneous window shifts to larger values
of t while at the same time also the upper end shifts to lower values. This is not the case
for the CDW, where the lower end moves to lower ji for increasing isospin-imbalance
and the inhomogeneous region extends to lower maximal temperatures if the asymmetry
becomes larger. Since the shifts occur more rapidly when p; is increasing than for
inhomogeneous phases at o = 0.2, the CDW window effectively shrinks faster.

To summarize the main results of this section, we have seen that for a realistic degree
of flavor mixing and a plane-wave modulation for the quark masses, unequal periodicities
in the inhomogeneous phase are energetically disfavored against inhomogeneous phases
with equal wave vectors but different signs. In contrast for no flavor mixing, unequal
periodicities naturally arise at p; # 0 and are the energetically preferred ground state.

2At T = 0 the inhomogeneous window extends along the ji-window and its size is given by Aji(u; =
60 MeV) = 28.3 MeV versus Afi(pu; = 80 MeV) = 32.1 MeV for p; = 80 MeV.
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Figure 4.17.: Thermodynamic potential for different plane wave modulations relative to
the restored phase against the isospin chemical potential at 7" = 0 and
i = 320 MeV for a = 0.01.
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Figure 4.18.: Thermodynamic potential for different plane wave modulations relative to

the restored phase against the isospin chemical potential at 7' = 0 and
it = 320 MeV for a = 0.03.

For a maximal amount of flavor mixing however, no inhomogeneous phase with unequal
periodicities at all can occur for the given ansatz.

4.5. One-dimensional spatial modulation of the
condensates

So far we have only discussed the simplest possible shape of the modulation for the
quark masses, when requiring periodic condensates. We have seen that inhomogeneous
phases allowing for unequal amplitudes in the two quark mass functions are favored over
spatially-modulated order-parameters with enforced equal amplitudes (except special
cases like @ = 0.5). On the other hand allowing for unequal periodicities ¢, # —@u

o1



4.5. One-dimensional spatial modulation of the condensates

Chapter 4

Q — Qg [MeV/fm?]

(49| Av=ragu=—i

0 20

40

60 80

wur [MeV]

100 120

Figure 4.19.: Thermodynamic potential for different plane wave modulations relative to
the restored phase against the isospin chemical potential at T" = 0 and

i = 320 MeV for a = 0.2.
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Figure 4.20.: Amplitudes of up (solid blue) and down (dotted red) quarks and the wave-
number ¢ (dashed green) for a plane wave modulation of the quark masses
at o = 0.2, an isospin-chemical potential of ;; = 60 MeV and as functions
of flavor-averaged chemical potentials at 7' = 0 (left) and temperatures at
f = 320 MeV (right).
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Figure 4.21.: Phase structure allowing for a plane-wave modulation of the quark masses
in the 1 — T-plane at puy = 60MeV (left) and p; = 80MeV (right) at
a = 0.2. In the shaded region an inhomogeneous solution is favored over a
homogeneous solution. For reference the phase transition of purely homo-
geneous quark matter is also indicated (dashed black).

resulted in the favorisation of such types of phases only for very small degrees of flavor-
mixing, but not at a realistic degree of flavor mixing.

At this point we want to extend our approach to a more general setup. This can
be done in multiple directions: we could, for example, consider modulations of the
condensate instead of the mass functions or allow a general structure for the order-
parameters. For these general structures, the evaluation of the thermodynamic potential
is still extremely challenging since the numerical implementation turns out to be rather
complicated. However, by limiting ourselves to lower-dimensional modulations of the
order-parameters and assuming periodicity, the evaluation of the grand potential for
a more general shape of the modulation becomes feasible. Therefore we pursue this
direction for the ongoing discussion, while specifying the shape of condensate instead of
the mass functions will be discussed in the next section.

Since for isospin-symmetric matter it was found that one-dimensional modulations
are favored over two-dimensional modulations [48], we restrict our analysis to one-
dimensional modulations, although it may be interesting to investigate higher-dimensional
modulations with unequal periodicities in isospin-asymmetric matter.

In particular, when restricting to such one-dimensional modulations, it was shown for
the isospin-symmetric case that the analytically known solutions from the 141 dimen-
sional Gross-Neveu model can be mapped to our 3+1 dimensional NJL model and these
results from the lower-dimensional model can be used to construct solutions for our
higher-dimensional model [26]. With this, the task of determining the eigenvalue spec-
trum of the Hamiltonian can be dimensionally reduced [26] and thus simplified. In the
following we discuss the details of the simplifications and extend it to isospin-asymmetric
matter.
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4.5.1. Boosted eigenvalues

For modulations of the masses or condensates in only one or two spatial directions, the
system is translationally invariant in the transverse direction along which the conden-
sates are spatially constant. Then the problem of determining the eigenvalue spectrum
can be performed on a dimensionally-reduced Hamiltonian [26]. By assuming that the
condensates, entering the Hamiltonian, vary only in dj dimensions and in turn do not
depend on the remaining d, = 3 — d|| transverse coordinates, the quark momenta trans-
verse to the modulation-direction are conserved. The Hamiltonian formally commutes
then with the transverse momentum operator, which means we can choose a frame where
p1 = 0 and solve the dimensionally reduced eigenvalue problem. In the following, this
will be shown explicitly for a modulation in one spatial direction.

The momentum integration in the thermodynamic potential factorizes for this kind of
modulation according to [20]

d’pi 1 Er(pL) — py
Qf = —N, — g T'log |2cosh | ————— 4.44
kin C/ (27T)2 ‘/” T Og|: COS < T ’ ( )

in a part along the direction of the modulation pj and perpendicular to it. Here V) is
the 1-dimensional “volume” of the unit cell along the direction of the one-dimensional
modulation.

More importantly, the diagonalization of a dimensionally-reduced Hamiltonian be-
comes possible instead of diagonalizing the full Hamiltonian. Here, we follow [26] and
furthermore assume without loss of generality that the condensates vary only along the
z-direction and do not depend on the transverse coordinates in the x — y-plane. For
convenience we label these coordinates as p;, instead of p’;. Formally due to the trans-
lational invariance, the Hamiltonian commutes with the transverse momentum operator

[Hf7 ﬁ:cy] =0 (4.45)

and we may find common eigenfunctions of both operators, enabling us to consider only
the simpler problem of determining the eigenvalues of H ¢ (i, -) at Py, = 0. With this,
the eigenvalue problem we have to solve, reads

Hf wffvﬁzyzo =€ wﬁf,ﬁzy:(J? (4.46)

where ¢, 5,0 are the simultaneous eigenfunctions of H; and p,, with eigenvalues evalu-
ated at p,, = 0. Here, the transverse momenta do not enter the mean-field Hamiltonian
and thus it is effectively dimensionally reduced. Then we have indeed simplified the
complicated task of calculating the eigenvalue spectrum and we need to diagonalize in
coordinate space

(4.47)
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Since the kinetic part of the thermodynamic potential contains only the eigenvalues
of the full Hamiltonian, we need to relate the eigenvalues of the dimensionally reduced
Hamiltonian to those of the full Hamiltonian. This will be accomplished by boosting
the system to (in general) non-zero values of py,. The full energy eigenvalues are then

related by
E(pay) = sign(ey) /€7 + P2, (4.48)

to the eigenvalues €; of the dimensionally reduced Hamiltonian. Now we are able to
construct the full eigenvalue spectrum from the subspace spanned by the wave functions
at vanishing transverse momentum, i. e. by the set {1, ,,-0}. The kinetic part of the
thermodynamic potential can be written as

N, [ dp E(Pay) — 1 E(Pay) — 1
Qf. _ ' Ty [ \Pzy f T1 1 PPy f
kin ‘/H (27_(_)2 Z ( 92 + og + exXp — T ;

Ef (ﬁzy)

(4.49)
where E¢(pyy) is given by Eq. (4.48)).

4.5.2. Solitonic solutions

The Hamiltonian Eq. (4.47)) can be further rewritten by applying an unitary transfor-
mation, bringing it in a block diagonal form [20]

/ Hia (M (2)) )
- . , 4.50
= (M (2)") 430
where one block on the diagonal is given by
/ _ _iaz Mf(’z)
ity = (05 M) (4.51)

These blocks are formally identical to the Hamiltonian of the Gross-Neveu model (for
isospin-symmetric matter) in 1+ 1 dimensions, and the quasi-particle spectrum is known
(see e. g. [49, 50, 511, 52, B3]). If we focus on real ansétze for the quark masses, the
eigenvalue spectrum can be expressed in terms of the quark masses given by

sn (Apz|vy) en (Agz|vy)

Mf(Z) = Afo dn(Afz]yf) (452)
— 1—v ?
(1+m)< Vl_y>sn Af(1+m)'(l+w1_yf>

where sn, cn and dn are Jacobi elliptic functions. In the second row of Eq. (4.52)),
the mass function was rewritten (see e. g. the published version of [26] for details) in
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terms of a single Jacobi elliptic function. Here A and v are the variational parameters,
characterizing the shape of the modulation. By tuning the elliptic modulus v € [0;1] a
single kink solution at ¥ = 1 can gradually be connected to a sinusoidal modulation at
v = 0. Also here M,(z) = My(z) and v, = v, holds for isospin-symmetric matter, as we
will see below.

Writing the thermodynamic potential in terms of the density of states is possible since
the eigenvalue spectrum is analytically known and explicitly the density of states is given
by [26]

pltons () — QiA { (VoA — ){ (§|D)+(IE<)((Z))—1)F(9~|D)}

O(E — ViA)O(A; — E) {E(a) n (IE;((Z)) . 1>K(D)}

L O(E — A)) [E(G!ﬁ) + (1E<<(Z)> . 1)F(9[ﬁ) + \/(E _ Aé)A(}:E _ Mf)} }

(4.53)

where E is the elliptic integral of second kind and F is the incomplete and K the
complete elliptic integral of first kind. For brevity we also introduced 7 =1 —v, 6 =
arcsin (E/(v/DA)) and 6 = arcsin (A/E). The period of the modulation is given by

Lf = 4K(l/f)/Af (454)

and is related to the wave number by ¢ = 27 /L;.
For simplicity we restrict ourselves to equal variational parameters

A, =0ANg=A, v,=vg=v (4.55)

for both flavors. The thermodynamic potential is then given by

d*p,
Qljtcm(T M7 MI)A V N / dEf / 12/ Psol X

fzu:d( ! 4 Tlog (1+exp (-M)))

(4.56)

with the definitions used from Eq. (4 and pelitons — psolitons = 5 1 The condensate
part is given by

I p
Qcond = ZLC;'_L/O dz |M(Z)| s (457)

where we exploited that M,(z) = My(z) = M(z) and L, = Ly = L holds due to our
restriction to equal amplitudes and elliptic moduli.
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Figure 4.22.: Results after minimization of () allowing for a solitonic modulation with
equal amplitudes and periodicities at zero temperature. (Left): Variational
parameters for p; = 60 MeV. (Right): Spatially-averaged quark mass at
pr = 0 (solid blue), uy = 20 MeV (dashed red), uy = 60 MeV (short-dashed
green) and py = 120 MeV (dotted orange).

At the onset of the inhomogeneous phase and at zero temperature, the elliptic mod-
ulus starts to decrease monotonously from unity and A begins to shrink, as shown in
Fig.[4.22] From this one could also calculate the amplitude of the modulation directly,
but here we show the spatially-averaged quark mas /(M(z2))? instead. It begins
to drop rapidly, when an inhomogeneous solitonic solution becomes favored over the
homogeneous broken or restored phase. For increasing ji the spatially-averaged mass
approaches zero and also v becomes zero. If the isospin-chemical potential is increased,
the size of the inhomogeneous window shrinks and the value of the spatially-averaged
quark masses decreases, as seen before for the CDW. At larger u; the elliptic modulus
and A become smaller; the wave number ¢ at fixed p; is continuously rising with f,
starting from zero as seen in the left panel of the figure.

Comparing the free energies of different types of spatial modulations, we find that the
inhomogeneous phase with a solitonic modulation is energetically favored earlier at fixed
T and p; over the homogeneous broken solution than for the CDW, i.e.

et < P
as can be seen in Fig.4.23|at 7" = 0 and o = 0.5. From the free energies shown there
it is also evident that the order of the phase transition at the onset changes between
a solitonic and a plane-wave modulation. Namely, it is of second order for the solitons
and thus it connects smoothly the homogeneous broken solution to the restored phase
through two second order phase transitions. For increasing j; the difference in the free
energies between the solitonic solution, the CDW and the restored phase gets smaller,
until it vanishes at or above a critical isospin-chemical potential p; > pr.. For T' = 0
this is shown in Fig. [£.24] where the inhomogeneous phase extends along the p;-axis up
to uf(T = 0) ~ 241 MeV.

3This quantity also can be interpreted to characterize the amplitude of the solitonic modulation.
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Figure 4.23.: Thermodynamic potential relative to the grand potential of the restored
phase for the energetically favored phase against the flavor-averaged chemi-
cal potential at 7' = 0 and a = 0.5 for u; = 0MeV (red) and p; = 120 MeV
(blue), where we allowed different types of modulations to appear: a soli-
tonic solution with A, = Ay and v, = v, (solid), a CDW solutions
(dashed) and a solution with homogeneous chiral symmetry-breaking order-
parameter (dotted) and the restored solution (solid green).
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Figure 4.24.: Phase diagram in the pi — p-plane at 7' = 0 for solitonic modulations
with equal amplitudes and moduli. In the shaded area an inhomogeneous
solution is favored and for reference the chiral phase boundary of purely
homogeneous matter is also shown (dashed).
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Turning now to the phase structure in the i — T-plane at fixed py, the inhomogeneous
region is basically unaltered in its size when compared to the one of the CDW case
(cf. Fig. for the CDW case), which is the reason it is not shown here separately.
This is not surprising, since we have seen that the onset of the inhomogeneous region
allowing for solitonic modulations, shifts only slightly to smaller flavor-averaged chemical
potentials in comparison to the CDW, while the upper end is unaltered for the two kinds
of modulations. This fact is also supported by a Ginzburg-Landau analysis at vanishing
isospin-asymmetry [54, [55].

At this point we also should point out that it is still unclear at present, if solitonic
modulations at non-vanishing isospin chemical potential are self-consistent solutions —
as it is the case for pu; = 0.

4.6. Plane-wave ansatz for the condensates

If we specify a mass modulation by prescribing the shape of the quark masses M (7)
as we have done in the previous sections, the resulting condensate functions can be
determined straightforwardly (see Appendix for details). For a = 0.5 no unequal
periodicities are possible, since the condensate part of the thermodynamic potential
would otherwise diverge.

An interesting question we have not addressed so far very intensively is, if we also can
specify the modulation of the condensates instead of the modulation of the quark masses;
mainly we have only specified the modulation of the quark masses, but have not looked at
the resulting spatial modulation of the condensate functions. Our interest in this section
is, what changes if we reverse this procedure and instead start from the modulation of the
condensates. Instead of simple shapes for the quark masses and complicated functional
dependencies for the condensate functions, we then have more complicated modulations
for the quark masses, but simple ones for the condensate functions. In the following we
will present results for this kind of specifying ansatze for the modulations of the order
parameters.

For equal amplitudes and equal wave numbers both ansatze turn out to be the same
and the results for the thermodynamic potential after determining self-consistently the
variational parameters are (within numerical errors) the same. Also if we require only
equal periodicities, both ansitze can be related to each other.

4.6.1. Plane-wave ansatz for the condensate functions

Making the following ansatz for the condensates (which we call the “condensate ansatz”)

— A — —

S1() = 7 cos (7 - 7). (4.58)
. Ay o

Py(Z) = —4—5 sin (gf - ©) (4.59)

complicates the determination of the quark energy spectrum significantly but is not
restricted at a = 0.5, as we will see later. The associated quark mass function can be
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obtained by inserting Eq. (4.58)) and Eq. (4.59) in Eq. (3.20) from which
M(Z) = (1 — a)Ajexp (i7°q; - T) + alpexp (—17°q, - T) (4.60)

follows. The mass function is a superposition of two plane waves, for which no chiral
transformation of the form Eq. can remove the space dependence completely and
thus no analytical expression for the eigenenergies is known. Therefore we need to
diagonalize the mean-field Hamiltonian numerically. For this, we insert Eq. in

Eq. (3.36) and arrive at

(s = (4.61)

( _ﬁm : 5557717ﬁ71 |:(1 - Oé)Af(Spm Pn-i-Qf + aAhépmapn Qh:|> .
(1= ) Afo5,., 5u-a; + D05, 5t ) P * O O

Since only quark momenta differing by ¢, or ¢y are coupled through the interaction with
the condensates, as can be seen by the off-diagonal elements in Eq. , the mean-
field Hamiltonian can still be brought in a block-diagonal form by applying standard
procedures [7, 48] due to the lattice symmetry of the problem and then the numerical
diagonalization in principle becomes feasible. However, to achieve better computability,
we restrict the wave vectors to be (without loss of generality) aligned along the z-
direction, which enables us to make use of the boost symmetry of the problem introduced
in section[4.5.1] In particular, following our requirement of periodicity for the condensate
resp. mass functions, we assume that the one-dimensional modulation has an overall
period of length L. This can be realized by choosing the wave number as an integer
number of a fundamental wave number ¢,

Gu = My g, qa = Nq (g, (462)

with n,,ny € Z and ¢ = 2w/L. As a consequence of our choice for g, and g, also
the ratio of the wave numbers R = ¢,/qq becomes a rational number. Since any real
number can be approximated by rational numbers to arbitrary accuracy, this is not a
severe restriction in principle. Our practical calculations will of course be limited to
comparing a finite number of ratios. Furthermore we assume for the evaluation of the
thermodynamic potential, that the greatest common divisor (ged) of n,, and ng is unity,
which is possible without loss of generality since any gcd unequal to 1 can be reabsorbed
by re-scaling q.

The BZ is then defined by the momentum interval [0, ¢] in z-direction while the BZ is
still infinite in the z- and y-direction. The spacing between the components of Eq.
is equal to ¢ because of Eq. . Together with p, = k., 4+ ¢ the mean-field Hamiltonian
can then be numerically diagonalized. In particular, since the modulation Eq.
is one-dimensional this allows to use a dimensionally reduced Hamiltonian H;p. The
thermodynamic potential is given by

d’p, E; —
of, = TN/ py/ 5 > log <QCosh (fz—T”f)) (4.63)
Bz «T
Ey¢1p(k)

60



Chapter 4 4.6. Plane-wave ansatz for the condensates

where Ef1p(k) are the eigenvalues associated with the block H;p(k) and k € BZ. The
cigenvalues Fy of H are related to the eigenvalue spectrum of the dimensionally reduced

Hamiltonian by Eq. (4.48).

The condensate part of the thermodynamic potential can be determined from Eq. (|3.40))

by inserting the condensate ansétze Eq. (4.58) and Eq. (4.59)). In analogy to section
we need to distinguish between different cases for the wave-vectors. Formally we have

1
Q. = / @ (1 - a) (A2 + A2) +20A,Agcos (G, +q0) E.2))  (4.64)
GV ),

which gives after the integration over the Wigner-Seitz cell

0. - w6 [(1— ) (A2 + A7) + 20A,0d), G = —a
T (1-a) (A2 + A, else.

In contrast to making an ansatz for the shape of the mass modulation, here the
condensate part favors unequal periodicities. Already small differences between ¢, and
qq lead to the lowering of the free energy through the condensate part and thus unequal
periodicities become favored by .,.q. For the kinetic part this is not obvious any more
like for the case of a simple plane-wave mass modulation.

Comparing Eq. and Eq. with Eq. and Eq. for ¢, = —qy, one
finds that the amplitudes of the plane-wave modulation for the condensates and for the
quark masses are linked to each other by

~ 1

Ap= 1 -2«
where A s refers to the amplitude of flavor f for the condensate ansatz and A to the
amplitude of the mass ansatz.

For the practical implementation of the condensate ansatz, we need to numerically
determine the eigenvalue spectrum of the Hamiltonian. At a = 0 we reproduce the
results of sec.[£.4.1 which is not surprising since also for prescribing the shape of the
condensates the thermodynamic potential separates in two independent parts associated
with the quark flavors. Furthermore for this setup, we can determine ¢, and g, directly
and do not need to approximate it by using Eq. . The result is shown for uy =
20 MeV in Fig.[4.25] Also for ¢, = —g, the minimization of the thermodynamic potential
with respect to the variational parameters yield the same results like for the ansatz of
the quark masses and we are able to numerically confirm the relation Eq. within
numerical errors.

As a first step, we set one ¢y to zero, which will be ¢, = 0 for our discussion. With
this we are able to reduce the complexity of diagonalizing the Hamiltonian and turn to
a realistic degree of flavor-mixing o = 0.2. We can map the Hamiltonian to the one of
a CDW with large bare quark masses, where one element for up quarks in momentum
space is given by

(4.65)

(1 —a) Ay —aly], (4.66)

(M) -~ = —Pm * G Of ((1 = a) Aubp,, utan + @Dadp,, 5,)
ompn— \ (1 = a) Audp,, pu—g. + @Dadp, 5.) P - G 0z, 5 :
(4.67)
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Figure 4.25.: Wave-numbers ¢, (solid blue) and ¢; (dashed red) for a = 0, pu; = 20 MeV
and at T' = 0.

and for down quarks it reads

(Hy)o = ( i+ G O (1 — @) Aady, 5 +aAuaﬁmﬁﬁn_%)) |
P\ ((1 = ) Aadp,, 5, + D3, 5, 4.) P * G O

(4.68)

By inspecting the diagonal entries with p,, = p,,, one recognizes that for up quarks a\,
is at the same position as a bare quark mass term m, would be. Analogously we find
that the expression (1—a)A, occurs at the same position as mg would. This suggest that
the resulting modulations for up quarks happen around aA; with amplitude (1 — «)A,
and around (1 — «)A,; with magnitude aA, for down quarks. However, numerically
determining the variational parameters yields no (h, ) solution. In a next step, we thus
allow both ¢’s to be non-zero at o = 0.2 and investigate the occurrence of (4, 4) solutions.

Then we need to probe different ratios (here only n,/ng € {—1,5/4,4/3,2,5} due to
numerical tractability) to calculate the favored ground state and afterwards determine
which solutions at a fixed ratio is energetically preferred. For isospin-symmetric matter
we find that always a ratio of unity is favored throughout the i — 7" plane. The ther-
modynamic potential for this case is shown in the left panel of Fig.[£.26] There only an
inhomogeneous solution with equal periodicities (but opposite sign in the wave-vectors)
emerges. For intermediate values of the baryon chemical potential i the system energet-
ically favors an inhomogeneous ground state, while at lower i1 the inhomogeneous phase
is disfavored against a homogeneous solution.

If py at fixed f is altered, a sequence of different ratios n, /ng is energetically favored.
At small values of the isospin-asymmetry, phases with equal periodicities are most fa-
vored, while gradually for increasing p1; phases with unequal periodicities become more
and more favored against the inhomogeneous solution with equal periodicities. For ratios
near unity the thermodynamic potential is slightly higher than the one for a phase with
equal periodicities, i.e. Q(T, fi, f1)|n, fngz—1 > UL, i, po1) |y jng=—1 for small pur, which is
not the case any more, when we change p; to higher values. Larger ratios are disfavored
at small p; and while keeping a ratio with a large value fixed, there is a second-order
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Figure 4.26.: (Left): Thermodynamic potential (relative to the restored phase) at T =
pr = 0 for a plane-wave modulation of the condensates (solid blue). For
comparison, also the homogeneous solution is shown (dashed red). (Right):
Thermodynamic potential (relative to the restored phase) at T'= 0, o = 0.2
and i = 320MeV for a plane-wave modulation of the condensates with
ny/ng = 5 (solid blue) and n,/ng = 5/4 (solid green). For comparison,
also the CDW solution is shown (dashed red).

phase-transition from the restored to the inhomogeneous phase at non-zero u; as can
be seen for n,/ng = 5 in the right panel of Fig. . At very large uy even this phase
becomes disfavored against a homogeneous chiral-symmetry breaking phase (which oc-
curs at gy &~ 200 MeV and is thus not shown in the figure). The phase transition from
the inhomogeneous to this homogeneous phase is first order. It seems plausible that
the energetically favored ratio grows with increasing p;. For the ratio n,/ng = 5/4,
which is also present in the figure, an (i, )-solution is found, which becomes the most
favored solution in some interval at intermediate values of u;. Subsequently also other
ratios become favored, if the isospin-chemical potential is increased. At least for the
ratios we considered, the growing of the energetically favored value of n,/ng is within
numerical errorsﬁ supported by our calculations, since first the phase with n,/ng = —1
is energetically preferred, then the ratio 5/4 follows and for large 1y a ratio with a large
value of 5 is energetically favored.

For n,/nq = 4/3 the amplitudes at i = 320 MeV are shown in Fig|4.27] For this,
we find that even at p; = 0 different amplitudes emerge, although the condensate mod-
ulation for this ratio is not the most favored phase there. Together with the unequal
periodicities, the resulting mass function is a beat of two frequencies and different mag-
nitudes in position space. In general, it seems at a # 0 that simple modulations of
the condensates are more preferred in comparison to simple modulations of the quark
masses.

Comparing the free energies for the condensate and the mass ansatz shows that de-

4The relative error is below or equal to 1071% in our numerical setup for the thermodynamic potential,
from which the most favored set of variational parameters at fixed ratio n,/ng was determined and
the pressures of the solutions compared.
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Figure 4.27.: Amplitudes A, (blue solid) and A, (dashed red) for the condensate ansatz
at T =0, i =320MeV, o = 0.2 and n,/ng = 4/3.

pendent on the ratios n,/ng the condensate ansatz can be favored over the mass ansatz
at o = 0.2 and thus stabilizes the inhomogeneous phase.

At fixed pu; = 50MeV and a = 0.2, we determine the most favored value of the con-
sidered ratios by choosing the solution with the highest pressure, as shown in Fig.[4.28
We find for three values of i, that relative large ratios n,/ns = 2 seem to be in general
favored. For i = 320 MeV a phase with n,/ng = 4/3 is favored. Clearly here a solution
with equal periodicities is energetically not the most preferred solution.

For a = 0.5, we calculate the most favored ratio n,/ng in the whole i — T-plane for a
set n,/ng € {—1,4/3,2,5}, from which we determine the energetically preferred solution
at given values of T', ji, ;. The resulting 1 — T" phase diagram for p; = 60 MeV is shown
in Fig.[4.29, There we find that different ratios are again favored throughout different
regions of the phase diagram. Moreover, allowing for unequal periodicities stabilizes the
inhomogeneous phase considerably when compared to the phase structure of crystalline
phases at u; = 0, i.e. the thermodynamic potential relative to the restored phase has
larger negative values than for the isospin-symmetric case. In contrast to a = 0.2 the
order of the favored ratios along the fi-axis is different; first, large values are favored until
the inhomogeneous phase ends at n,/n; = 4/3 before the ratio actually reaches unity.
The regions associated with different periodicities are almost parallel to the temperature
axis for a large range, and bend for high temperatures for large ratios to lower p, while
for higher i the boundary shows an s-shape.

To summarize our findings, we note that at least for a = 0.5, a = 0.2 the condensate
ansatz is favored over the CDW or the mass ansatz and it seems to also hold for finite
temperature, which we only checked for @ = 0.5. It is still an interesting question, to
investigate if more complicated shapes of the modulation are favored. For a realistic
degree and maximally coupled quark flavors, we have confirmed that the occurrence of
a beat in the quark masses may stabilize the system considerably.
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Figure 4.28.: Thermodynamic potential (relative to the restores phase) when allowing
for the condensate ansatz at T' = 0, u;y = 50 MeV, a = 0.2 and different

ratios n,/ng.
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Figure 4.29.: Phase diagram in the g — 7" plane for p; = 60 MeV. The shaded areas
indicate the regions where an inhomogeneous solution for the condensate
ansatz is favored over a homogeneous solution. The different colors corre-
spond to different values of the energetically most favored ratio n,/ng, as

indicated by the label.
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5. Compact stellar matter

One interesting possibility, where our work may have significant impact, is the physics
of compact stars. Although it is currently not fully clear if quark matter persists in
compact stars, eventually inhomogeneous chiral symmetry-breaking condensates could
have influence on astrophysical observables and thus enabling access to the QCD phase
structure. Mandatory for this is electric charge-neutrality of the neutron star, from
which the requirement of non-zero isospin chemical potentials arises, since the electric
charge of up and down quarks are not the same.

First investigations at o = 0 however found no significant influence of crystalline
chiral-symmetry breaking phases on mass-radius relations of neutron stars [56], 57], which
is also confirmed by our calculations and fully consistent with our expectations. In par-
ticular, since the energy difference of inhomogeneous chiral symmetry-breaking phases
compared to homogeneous chiral symmetry-breaking phases is rather small, no signifi-
cant influence on the maximum stellar radius or mass is present.

In the following we study different degrees of flavor-mixing on compact star properties.
First, we study the phase structure for electric charge-neutral matter when allowing for
a spatial modulation of the order-parameters. Then, we derive an equation of state for
quark matter and use it as an input for mass-radius calculations for quark stars.

5.1. Electric charge neutrality

Since compact stars need to have vanishing net electric charge and be in beta equilibrium,
the isospin-chemical potential is no longer an independent external parameter but is fixed
by the conditions of requiring charge-neutrality. To describe such a situation, we need
to introduce leptons in our model, which we will do by considering a homogeneous gas
of massless electrons. Additionally we require quark matter to be in S-equilibrium with
electrons, satisfying the process

d=u+e +7,. (5.1)

For the neutrinos we assume that they leave the system as soon as they are created. Then
we have baryon number conservation, a conserved electric charge and in principle three
color charges, which however play no role in our setup; thus our system is characterized
by two conserved charges: the net quark number and the overall electric charge. The
chemical potentials for the quarks and electrons are then given in terms of a quark
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number chemical potential and an electric charge chemical potential by

2
1
fe = —pq- (5.4)

The electric charge chemical potential is related by pg = pr to the isospin-chemical
potential introduced earlier, while i = p + pg/6 # p.

The thermodynamic potential Eq. needs to be extended by the contribution of
the electrons to

Qiot (T, 100) = ein (T, 1, 110) + Qeond + Qe(T 110), (5.5)
where
Qu(T, g = —pe) = — u4+2W2T2u2+7—7T4T4 (5.6)
e\t e ¢ 1272 \Ie " 15 ' '

To ensure global electric charge neutrality in compact stellar matter also the number
densities need to be determined, which are given on mean-field level by

na(z) = (ay’a), (5.7)

where « are the spinors for the a-th species.

In general the number densities can also be spatially varying for inhomogeneous chi-
ral condensates, except for the CDW and the plane-wave case where the densities are
constant-in-space. For the CDW case it was shown that although the chiral condensates
are modulated, the number density stays constant in space (see e. g. [47, 58, [46]) and
does not follow the modulation of the quark masses M(z). The same reasoning also
applies to the plane-wave modulation of the mass functions of section [4.4] as we will
argue below.

The spatially averaged number densities of the up and down quarks can be derived
from inserting the corresponding spinors u and d in Eq. and yield

. aQtot (T7 Ly MQ)

ne(T, p, o) = (ne(2)) = . 5.8
s Q) = (ns(2)) oy (5.8)
Analogously the number density for the electrons are obtained from
_ (T, nq)
ne(T, pg) = ————. 5.9
(T ) = =5, (59)

Although the requirement of local charge neutrality would be possible, here we require
our strong-interaction matter to be only globally charge neutral and therefore we can
use the spatially-averaged densities instead of the fully space-dependent densities. The
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requirement of electric charge neutrality translates to the vanishing of the overall net
electric-charge density

_ !
nQ(T, 11, pg) =0 (5.10)
yielding the condition

0 (T, 1 1)
g

2_ 1_ B |
= gnu(T“U/, :U’Q) - gnd(TJ M?MQ) - TL6<T, MQ) = 07 (512>

(T, 1. i) = (5.11)

from which we can determine pg self-consistently at fixed (77, ). From now on we will
not distinguish for simplicity between the spatially averaged number densities n and n,
but always mean the spatially-averaged number densities.

5.1.1. Constant-in-space condensates

The number densities for homogeneous condensates are shown in the left panel of Fig.
at vanishing temperature and zero isospin imbalance. When chiral symmetry is broken,
also the density is zero, until it rises slowly at p > M,,.. Subsequently the density jumps
at the phase transition to large values and the density is the same as an ideal massless
Fermi gas. In general the density for a Fermi gas for particles with mass M at T'= 0
with Ny x N, degenerate species is given by

N¢N,
NFermi gas (,u, M) - 3;_2

(> = M*)2O(u—M). (5.13)
Here, a non-zero effective quark mass qualitatively suppresses at fixed p large densities,
i.e. large masses counteract large densities.

Because of that and the fact that in the homogeneous phase the masses are for non-
vanishing flavor mixing in general smaller around the phase transition than for isospin-
symmetric matter, we expect the overall number densities n to be larger at u; # 0
than for isospin-symmetric matter. For non-zero isospin chemical potentials the number
densities at 7' = 0 and maximal degree of flavor mixing are shown in the right panel
of Fig.[5.1] In comparison to the isospin-symmetric case, the individual contribution to
the overall density of the two flavors changes. For the restored phase, both flavors are
decoupled and the number densities are independent of each other, as can be seen from
the figure.

The number densities for different degrees of flavor mixing are shown in Fig.[5.2]
The jump from the region with broken to restored chiral symmetry is also present at
a # 0.5 although it can be weaker, depending on the degree of flavor mixing and ;. For
completely decoupled quark flavors, the overall number density n jumps at the phase
transition of the up quarks and jumps again while the down quarks undergo a phase
transition — mirroring the fact that both densities 1, 4 depend explicitly only on the
respective flavor mass My and chemical potential p.

69



5.1. Electric charge neutrality Chapter 5

1.2 — 1.2 : :
pr = 0 MeV R pr = 30 MeV
1t SR 1t
— 08} -" 1 08}
I i
£ 06| I & o6l /
> 3 -
£ 04 / S04l e =T
02 | | 0.2 Lo
0 - I L L 0 ‘_4 L L
270 280 290 300 310 320 330 340 350 260 280 300 320 340
i [MeV) i [MeV]

Figure 5.1.: Number densities 7y of up (solid blue) and down (dashed red) quarks
against the flavor-averaged chemical potential at vanishing temperature for
constant-in-space condensates, @ = 0.5 and at two values of the isospin
chemical potential. For reference also the number density of an ideal mass-
less Fermi gas at p; = 30 MeV (small dotted lines) and the total averaged
number density n = n, + ng at u;y = 0 (dotted green) are shown.

Evaluating the condition Eq. , allows to determine p; self-consistently and we
then get the variational parameters ({M}) at given (T, i, pig). The result is shown in
Fig. 5.3 where at vanishing temperature the isospin-chemical potential is first zero, then
drops slowly before the phase transition and finally becomes of the order of &~ —100 MeV
and is getting more negative for increasing u. The quark mass does only differ slightly
around the phase transition when compared to the results in isospin-symmetric matter
for = 0.2.

5.1.2. Spatially-varying condensates

For spatially-varying condensates, we focus first on the simple case of plane-wave mod-
ulations of the quark masses. To show that also for the case of plane-wave modulations
of the mass functions the number densities are constant-in-space, let us modify the basic
arguments used by the authors of ref. [46] to prove that the number density also for our
case of non-degenerate flavors are spatially constant: considering chiral transformations
of the form f = exp(—iv°qs20/2)f’ on the (space-dependent) spinor of flavor f with
2o being a constant, one recognizes that the number densities are invariant under such
transformations

(P = ([Frew (<" La)] 1 [ew (<L) 1)) = (F2°F). (5.19)

since 7° anti-commutes with v°. For the mass functions, the chiral transformation how-
ever leads to a phase shift resp. to a translation by z; in the direction of the modulation,
showing that the number densities cannot be spatially varying, like reasoned for the
CDW case by Carignano et al. [46] and hence also the number densities for the plane-
wave case are constant in space. Then we can evaluate Eq. with using only the
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Figure 5.2.: Number densities ny of up (solid blue) and down (dashed red) quarks for
charge neutral quark matter in [-equilibrium against the flavor-averaged
chemical potential and vanishing temperature for constant-in-space conden-
sates and two different degrees of flavor mixing.

much simpler constant-in-space densities. For more complicated types of modulation
this will in general not work, but this will be anyhow out of scope of the thesis (and we
require g = 0 here).

Exemplary for a realistic degree of flavor mixing the number densities of up and down
quarks are shown in Fig.[5.4 at T = 0, where again the suppression of the number
densities due to large quark masses is seen. Around the first-order phase transition in
the inhomogeneous phase the density is always smaller than for purely homogeneous
condensates (as indicated by the dashed line). An asymmetry between the two quark
flavor does not change this, but shifts the two number densities n, and ny for fixed pu;
along the y-axis apart from each other.

For a plane wave modulation of the quark masses, the self-consistently obtained
isospin-chemical potential does not differ much from the homogeneous results. The
resulting mass function at the self-consistently determined value of the isospin-chemical
potential at zero temperature is shown in Fig.[5.5] for the special case of a chiral density
wave and in Fig. for a case where the amplitudes of the quark masses were allowed
to be different. For small chemical potentials the result is a solution with homoge-
neous chiral condensates in charge-neutral matter, while for intermediate values of the
averaged chemical potential inhomogeneous chiral symmetry breaking still occurs, but
only in a smaller p-window than for pu; = 0. The onset of the inhomogeneous phase in
charge-neutral matter is slightly shifted to lower p-values, which is also seen in strong-
interaction matter with non-zero electrical net charge, when considering p; # 0. For
a realistic degree of flavor-mixing, the inhomogeneous window at 7" = 0 is larger than
for a CDW wave (cf. Figs. and , although the absolute numbers do not differ
much. Before the phase transition, both amplitudes agree with each other and after-
wards the amplitudes are not equal any more in the inhomogeneous phase. These effects
are due to the self-consistently tuned values of y; and are the same as we have seen for
inhomogeneous chiral condensates in isospin-asymmetric matter (with fixed p;).
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Figure 5.3.: Isospin-chemical potential 1y = pg (left) and the quark mass M,, = My = M
(right) at T'= 0, o = 0.5 as a function of the quark-number chemical poten-
tial p for charge-neutral matter in S-equilibrium, allowing for homogeneous
condensates.

In the phase diagram of charge-neutral matter, regions with inhomogeneous chiral
symmetry breaking are still found and coexist with areas where chiral symmetry is
homogeneously broken or it becomes restored. For a chiral density wave, the phase
structure is depicted on the left in Fig.[5.7, where it can be seen that the inhomogeneous
region is smaller than for the case pu; = 0. Especially for large temperatures the in-
homogeneous phase in charge-neutral matter becomes energetically disfavored and thus
extends to lower temperatures than in electrically charged quark matter at p; = 0.

5.2. Mass-radius relation

In this section we will consider the mass-radius relation of a pure quark star to show
the influence of our equation of state on astrophysical observables. For this we need
to have quark matter to be electric charge neutral and we will allow inhomogeneous
chiral symmetry breaking condensates. Being aware that a compact star with solely
two-flavor quark matter is not a realistic setup, our aim here is to study the influence of
inhomogeneous phases on the quark level, for which a pure quark star is sufficient.

The equation of state (EoS) is required to solve the relation between the quark stars’
mass and radius from the TOV equations. It provides a relation between state variables
and typically links the pressure p to the energy density €. To derive this relation one has
to incorporate the microscopic details of the underlying theory by using a thermodynamic
description for matter in equilibrium. For a grand canonical ensemble the internal energy
density is related to the pressure, temperature T', entropy density s, chemical potentials
1; and number densities n; by

6:—p—|—Ts—|—Z,ui n;. (5.15)
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Figure 5.4.: Number densities of up (left) and down quarks (right) for different values
of uy at T'=10, a = 0.2 and a plane wave modulation of the quark masses.
For reference also the results for homogeneous chiral condensates are shown

(gray).

The pressure can be obtained from the thermodynamic potential as

p=—(Q—0Q) (5.16)

where () is the thermodynamic potential in vacuum. The entropy density can be derived
from the grand potential by

o

= (5.17)

S =

In the following we assume that the energy density is constant-in-space and want to

apply our equation of state to determine the structure of a spherical, non-rotating star.

From the Einstein equations of general relativity, one can derive differential equations,

specifying the radial gradient of the star’s mass Mg, and pressure p. This is accom-

plished by the Tolman-Oppenheimer-Volkoff (TOV) equation, which is explicitly given
by [59, 60]

dp G (p+e) [Mga(r) + 4mr’p]

= 5.18
dr r(r — 2G Mgar (1)) ( )
with M. (r) being the star’s mass enclosed in a sphere with radius r, given by
Mgiar (1) = 47T/ dr’ %e (5.19)
0

and G denotes Newton’s gravitational constant. To solve this differential equations, we
use a numerical Runge-Kutta method.

The star’s radius R is determined by the value of the radial coordinate, where the
pressure vanishes, i. e. p(r = R) = 0. To determine an actual trajectory in the M, (r =
R) — R plane, we start by solving Eq. from the core of the star to the surface.
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Figure 5.5.: Isospin-chemical potential p; = pg (left) and amplitude M (blue solid)
on the right panel for a chiral density wave at T = 0 for electrical charge-
neutral matter. For reference the amplitude of a CDW at u; = 0 is also

shown (red thin line).
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Figure 5.6.: Amplitudes of up (red dashed) and down (blue solid) quarks at 7' = 0 for
charge neutral matter at a = 0.2 and a plane-wave modulation of the quark

masses.

In general we expect that there exists a maximal mass for a given equation of state.
Since recently two Mg, = 2Mg,, neutron stars were experimentally observed [61] 62],
this poses severe limitations to realistic equation of states. Furthermore, since we are
dealing with cold and dense compact star matter, we restrict ourselves to vanishing

temperatures.

5.2.1. Homogeneous condensates

For isospin-symmetric, homogeneous matter the EoS and the quark stars’ masses and
radii are shown in Fig.[5.8, The maximal mass is around 1.92 Msg,, at around R =
11.25km. Clearly our EoS does not meet the required mass of two solar masses, which is
however not surprising since we consider only neutron stars made of pure quark matter.
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Figure 5.7.: Phase diagram for charge-neutral matter. In the shaded region a chiral
density wave for the modulation of the quark masses is energetically favored
over the homogeneous phase (to the left of the inhomogeneous region) and
over the restored phase (to the right of the inhomogeneous phase).

It is conceivable that by allowing for nuclear matter we may reproduce mass-radius
relations satisfying the two solar mass limit. Due to our choice of parameters, the quark
matter is not self-bound, which therefore allows for large radii at low masses for quark
stars.

In the following we first investigate the effects of an isospin-imbalance on mass-radius
sequences before we turn to charge-neutral matter. For isospin-asymmetric matter,
the quark star can have a larger mass, since the EoS gets stiffer. Smaller degrees of
flavor mixing also stabilize the star, as can be seen in Fig.[5.9, where different o’s at
various values of u; are shown. At a = 0.5 the stiffening has small effects on the
mass-radius relation of the quark star, while for &« = 0 the maximal mass rises, being
above M. = 1.95 Mg,,. At the same time the position of the maximum of the M — R
trajectory shifts to larger radii. For a realistic degree of flavor mixing o = 0.2 the
corresponding trajectories in the M — R-plane and the effects of an isospin-chemical
potential are visible in the right panel of Fig. Again at low masses an increasing
isospin-chemical potential shifts the star’s radius to larger values. The peaks of the
curves shift slightly to larger masses for non-vanishing isospin imbalance.

By considering charge-neutral quark matter, the maximum obtainable mass is around
Myiar = 1.93 Mgy, the maximum gets shifted to large radii and mainly the behavior
at small star masses is affected by the self-consistently obtained p; required for charge
neutrality, as can be seen in Fig.[5.10]

As already mentioned, one should also include nuclear matter in this discussion, but
this is not in the scope of the thesis.

5.2.2. Inhomogeneous condensates

Allowing for inhomogeneous condensates instead of purely homogeneous ones, changes
the EoS mainly around the former first-order phase transition. In total the effects on
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Figure 5.8.: (Left): Equation of state P(e), which enters the TOV equation. (Right):
Mass-radius relation for a pure quark star. Here, we neglect the charge-
neutrality constraint, i. e. consider isospin-symmetric matter p; = 0 and
limit ourselves to homogeneous condensates at T = 0.

the thermodynamics quantities are Smallﬂ. Therefore the anticipated effects for spatially
varying condensates on the mass-radius relation are expected to also be small.

In the following we will concentrate on the simple ansatz of a plane-wave modulation
of the quark masses and again consider only vanishing temperatures.

The pressure for isospin-symmetric matter for homogeneous and inhomogeneous con-
densates differs only around the phase transition and for high densities. Consequently
also the EoS entering the TOV equation has only small variations compared to the ho-
mogeneous one and the resulting M — R sequence is shown in Fig. [5.11 Compared to the
sequence for homogeneous matter, the mass-radius relation does not differ much for crys-
talline condensates and the maximal mass is not distinguishable between homogeneous
and inhomogeneous condensates, which was already found in [57].

For isospin-asymmetric matter at a realistic degree of flavor mixing the EoS becomes
softer for inhomogeneous condensates (cf. Fig.[5.12] right panel) for higher densities in
comparison to homogeneous condensates, while at small number densities the EoS with
crystalline phases is stiffer. Thus when allowing for crystalline phases, (slightly) smaller
star masses can be reached than for purely homogeneous chiral condensates, since the
pressure of the quarks cannot support larger star masses and radii. This is shown in
Fig.|5.13| where the mass radius sequence at o = 0.2 and pu; = 20 MeV can be seen for
homogeneous and inhomogeneous phases. In general there are two counteracting effects
for non-zero isospin chemical potentials: first, a realistic degree of flavor mixing shifts
the whole mass-radius sequence to larger radii, while the basic shapes stays nearly the
same. Second, when allowing for inhomogeneous condensates the masses and radii of the
quark star are shifted down again. The effects due to different shapes of the modulation
on the mass-radius sequences is very small and is shown for one configuration in the

IThe pressure, for example, changes on the sub-percent or percent level when comparing solutions with
homogeneous condensates to solutions with inhomogeneous condensates for all kinds of modulations
we considered.
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Figure 5.9.: (Left): Mass-radius relation at p; = 10 MeV (blue) and pu; = 20 MeV (red)
for & = 0 (dashed) and a = 0.5 (solid). (Right): Mass-radius relation at
pr = 2MeV (solid blue), puy = 10MeV (dashed red) and p; = 20 MeV
(dotted green) for @ = 0.2. For both M — R-relations a pure quark star
was assumed and only homogeneous condensates evaluated at T' = 0 were
considered.

right panel of Fig.[5.13] For the CDW modulation the maximal star mass is smaller but
situated at larger radii than for a plane-wave modulation with different amplitudes of
the flavors. At the lower end of the curve in the M — R plane, the CDW has in contrast
smaller masses at the same radius than the solution with A, # Ay.

The effects of u; are also visible in Fig.[5.14] where a non-zero isospin-chemical po-
tential shifts the mass-radius sequences to larger radii. The maxima of these sequences
occur at larger radii in comparison to smaller p;, while also the maximal attainable
mass also grows with increasing p;. For self-consistently determined values of puj, the
mass-radius sequence is shown in the right panel of the figure. We find that also for
this configuration, the maximal star’s mass is still comparable to the one for isospin-
symmetric quark matter or even to purely homogeneous quark matter at p; = 0. The
maximum of the M — R-curve is only weakly dependent on the exact values of p; or the
shape of the modulation for which the EoS enters the TOV calculations.

The difference between inhomogeneous and homogeneous chiral condensates in the
experimentally observable area in the M — R-plane is very small and thus the deter-
mination of clear signatures for inhomogeneous chiral symmetry breaking in compact
stellar objects seems currently not possible from this relation. This was already known
for isospin-symmetric matter, but for isospin-asymmetric quark matter the occurrence
of crystalline chiral condensates together with a non-maximal degree of flavor mixing
could enable future experiments to find evidence of it.

On the other hand it is clear that our model is not able to realistically describe compact
stellar matter, since at the densities realized in the interior of compact stars also color-
superconductivity should affect the phase structure of strong-interaction matter (see
e.g. [63]) or magnetic fields can play an important role (see e. g. [64]).

Since we only model a quark star, the next step would be to additionally account
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Figure 5.10.: Mass-radius relation for an electric charge-neutral quark star with homo-
geneous chiral-symmetry breaking condensates at & = 0.2 and 7' = 0. For
reference also the solution for charged quark matter at p; = 0 is shown
(dashed red).

for nuclear matter, which could for example result in a neutron star with a possible
inhomogeneous quark core. Then, also the interplay of superconductivity with chiral
symmetry breaking should be studied, where also interesting effects might arise for
mass-radius sequences, if charge-neutral matter is considered. Even more important are
transport properties, which should be influenced more strongly by inhomogeneous chiral
symmetry breaking phases.
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Figure 5.11.: Mass-radius sequence for a quark star for a plane-wave modulation of the
chiral condensates in isospin-symmetric matter at 7' = 0. For reference
also the sequence for purely homogeneous condensates is shown (dashed

red).
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Figure 5.12.: (Left): Equation of state ¢(p) for different values of u; at 7= 0, a = 0.2
and a plane wave modulation of the quark masses. For reference also
the results for homogeneous chiral condensates are shown (gray). (Right):
Pressure against the number density n = n, + ng at 7= 0, a = 0.2 and
pr = 20MeV for constant-in-space and modulated chiral condensates.
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Figure 5.14.: Mass-radius sequence at T = 0, a« = 0.2 for a plane-wave modulation of

the quark masses at different values of pr: (left): isospin-symmetric mat-
ter (solid blue), u; = 20 MeV (dashed red), pu; = 40 MeV (dotted green)
and p; = 60 MeV (dash-dotted purple). (Right): For self-consistently de-
termined value of p; for charge neutral matter. For reference also the
solution for py = 0 is shown (dashed red).
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6. Interplay with color
superconductivity

Besides the occurrence of crystalline chiral symmetry breaking through quark-antiquark
pairs at low temperatures and intermediate densities, also color superconductivity may
be present in the region of interest. In general, according to the Cooper theorem,
fermionic systems form pairs of fermions at no free energy cost in the vicinity of the
highly degenerate surface of the Fermi sphere if an attractive interaction is present. In
turn this leads to an instability in the normal state, favoring the state with the condensed
pairs. Since for QCD there are attractive interaction-channels, the ground state of QCD
may be color-superconducting [65] 66, 67, [68], i. e. forming condensates of fermion pairs.
In particular, the pairs formed are (naively speaking) consisting of two quarks and are
called diquarks. Since quarks have many degrees of freedom, different pairing patterns
for color-superconductivity can occur (see e.g. [63] for a review), but most prominently
a gap in the single-particle spectrum develops for color-superconductivity.

Currently it is not clear from first-principle calculations which phase is actually favored
in the intermediate density and temperature region, but at asymptotically high densities
and three colors quark matter is expected to be deconfined and forms a homogeneous
color-superconductor.

The condensation at equal Fermi spheres for isospin-symmetric matter does not cost
any energy, which is not the case any more, if the Fermi momenta of the fermions are
unequal. Then, there is a possibility for an adaption process of the Fermi spheres to
become equal and then form again diquark condensates. This process is naturally limited
by the energy gain through condensation that needs to compensate the energy required
to adapt the Fermi spheres [69, [70] [71].

For crystalline color-superconducting phases the system tolerates larger asymmetries
between the Fermi spheres (see e. g. [§] for a review, or e. g.ref. [7]) and the quark-quark
pairs do not have vanishing overall momentum. Then, crystalline color-superconducting
phases can be favored in asymmetric matter over the homogeneous color-superconducting
or restored phase.

Since chiral symmetry breaking and color-superconductivity are affected in different
ways by an asymmetry between the quark chemical potentials and can appear at the same
baryon density range, it is an interesting question to study which phase structure is actu-
ally realized when the interplay of chiral symmetry breaking and color-superconductivity
is allowed. Namely, on the one hand color-superconductivity sets in as soon as the num-
ber density of the system becomes non-zero, the Fermi spheres are equal and the pairing
occurs, but on the other hand chiral symmetry breaking may suppress a non-zero num-
ber density. Thus the phase structure strongly depends on the relative weight of the two
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different phenomena and detailed (numerical) calculations are required to map out the
actual phase structure.

It was already found that a coexistence phase with simultaneously occurring crystalline
quark-antiquark pairs and homogeneous quark-quark pairs is favored over the homoge-
neous phases [72, [I1]. For simplicity the investigation was restricted to a chiral density
wave modulation for the chiral condensates and a homogeneous color-superconducting
condensate at uy = 0. For non-zero asymmetry, the possibility of a coexistence phase
with simultaneous chiral symmetry-breaking and color-superconductivity was studied
in our framework in Ref. [I0]. In the following we will present the results (at non-zero
isospin-chemical potential) for an interplay of a CDW modulationE] of the chiral con-
densates and a constant-in-space diquark gap and detail the phase structure at zero
temperature, which should be for example relevant for compact stars.

6.1. Extension of the model

To account for the diquark pairing the model Lagrangian, Eq. (3.1) is extended by an
additional term

Lo=H Y  (dbinsCrdad’) (T Cismiar)) | (6.1)

A=257

where H is another dimensionful coupling constant, A4 are Gell-Mann matrices in color
space (with color index A) and C' = iv?y" denotes the charge conjugation operator. In
particular, we focus for this quark-quark interaction on scalar condensates of the form

S04 = <¢TC”Y57'2>\A¢>- (6'2)

Since for Ny = 2 the diquark condensates sy (with A = 2,5,7) form a vector in color-
space, that can always be rotated by global SU(3)-color transformations, we focus on
the s99 direction and introduce the 2SC condensate

S22 = <¢TC’Y57'2>\21/1>7 (6-3)

which consists of red and green up and down quarks, while blue quarks remain unpaired.
The gap associated with this 2SC condensate is defined as

A=-2H S99, (64)

For simplicity we assume this condensate to be spatially constant, as in [I1] and consider
also for simplicity a chiral density wave for the modulation of the chiral condensates

My (%) = M exp (i’ - ©), (6.5)

with ¢, = —gy like in sec.[4.3] For brevity, ¢ will denote the magnitude of ¢, and gy,
while both have opposite sign.

IFor a generalized modulation of the chiral condensates, see [10].
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When dealing with diquark condensates, the Nambu-Gor’kov (NG) formalism turns
out to be useful and simplifies the approach considerably. For this we assume that ¢
and ¢ = CyT are formally independent fields and introduce the bispinors

to rewrite the Lagrangian as
Here, V is a field-independent term and the inverse propagator S~! is given by
1= i — M(Z) + in° AvsTag
Slx:(la Rt I 6.8
@) —A*ysmady 1 — M(Z) — ir° (6:8)

Note that in contrast to Eq. (3.18]) the inverse propagator is not diagonal in flavor space
in presence of the 2SC condensate. But as before we can separate the inverse propagator
in momentum space according to

Sp_yi,pn = 70 (prm - Hp'nupn) 5me7wpn (69)
with w, being Matsubara frequencies. For static condensates the inverse propagator
is diagonal in these frequencies and the Matsubara sum can be performed analytically,
yielding

Qpin = — XA: [M\ + 2T Log (1 + exp <—%)>} : (6.10)

where the trace has been expressed as a sum over the eigenvalues {A} of the Hamiltonian
‘H in Nambu-Gor’kov, Dirac, color, flavor and momentum space.

The remaining problem of diagonalizing the Hamiltonian turns out to be rather te-
dious. To simplify the determination of the eigenvalues, we first remove the non-trivial
Dirac structure in the off-diagonals of the Hamiltonian in momentum space by applying

a transformation
U= (1 ) (6 11)
W075 '

to the Hamiltonian H as

My, 5 = (UTHU) . (6.12)
The resulting Hamiltonian (in momentum space) is given by
H. = ((70]3” Opmn = 11055 + M 05 5 10) 12X, 5,
P PUCTA ~(V°Py, 05 i T 11050 50 + M S5 040)
(6.13)
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from which we need to remove the space dependence (in position space) on the diagonal
elements by applying chiral transformations, as shown before. As a complication these
transformations need to be generalized to account for the NG structure by writing in
position space

with U, (Z) = exp (—iv°¢- Z/2) acting on the NG components. Since no non-trivial
dependence is induced by these transformations for the off-diagonal terms, we can fur-

thermore use energy projectors of the form A;t = (1£1°(yp' —~* 5% +M)/ex)/2, with
e+ known from Eq. (4.26)), to arrive at

(€5 — )05, 5. AY3T2A205,, 5,
P AN ey Y (e ) [

Psin — (€ T 1)05,,.5,.  AV5T2 X205,
AN*y519 X005, 50 (€ + [)050 5 -
(6.15)

Here the method of applying energy projectors is exact, since the Hamiltonian has no
explicit space-dependence anymore. For more complicated modulations, like a sinusoidal
modulation or space-dependence of the diquark condensates this would not be the case,
since an explicit spatial dependence would still be present in the Hamiltonian. Note that
we reordered lines and columns in Eq. to make the diagonal structure obvious.
The blocks are related to the NG structure and we have also a two-fold spin degeneracy
of the problem. Due to the energy projectors, blocks associated with the eigenvalues with
negative or positive signs but same magnitude can be identified, which correspond to the
quarks and antiquarks of one flavor. In the end it is therefore sufficient to diagonalize
only one block, which will be, without loss of generality, the block of particles (and not
the antiparticles).

Due to the fact that only red and green quarks participate in the pairing but blue
quarks do not, the Hamiltonian can be further decomposed in color and flavor space into
two separate blocks. Then, the diagonalization of the Hamiltonian becomes feasible and
we obtain the positive eigenvalues for the two quark flavors

Ny = (e — )+ 1A -2 (6.16)
My = e — )+ AR+ 2 (6.17)
ﬁzei—ﬂ—% (6.18)
M=e— i+ % (6.19)
where
ei:\/ﬁ2+M2+§i\/M2q‘2+(c7-ﬁ)2. (6.20)
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These are formally the same eigenvalues derived in [I1]. To obtain the corresponding
antiquark energies, it is sufficient to invert the sign of ji in Eqs. - and for
|A| — 0 we naturally recover the thermodynamic potential of the CDW.

Since also here the thermodynamic potential is formally divergent, we use a Pauli-
Villars-like scheme by replacing e by its regularized form according to

ex— Y ik + A2 (6.21)
J

in the above eigenvalues.
The condensate part of the thermodynamic potential reads

AQ
Qeond = —/d3 V= 4G+| | (6.22)

The diquark coupling H is treated as a free parameter and will be parameterized in
terms of the coupling G.

6.2. Results

Already for a pure CDW in our setupE] it is well known that the inhomogeneous so-
lution first becomes disfavored against the restored phase for increasing densities, as
exemplary seen in the previous chapters. At even higher chemical potentials then an
inhomogeneous solution becomes favored again [73], which is also called the 'continent’.
The continent seems to extend to infinitely high densities and temperatures. Currently
it is not clear if the phase with spatially-modulated order-parameters really extend to
infinitely high densities, although there are clear hints for that [74] but also results
suggesting the opposite [75]. Anyhow, restricting our discussion to g < 550 MeV is
sufficient for our purposes and both references agree on the appearance of such an in-
homogeneous continent in this range. Furthermore the exact phase structure allowing
for spatially-modulated order-parameters of chiral symmetry at intermediate values of
the chemical potential depends also on the exact regularization parameters in our Pauli-
Villars scheme. In particular, the inhomogeneous solution at intermediate densities is
connected to the continent at high densities when requiring M, = 330 MeV and no
restored solution is found for low temperatures between the “first” inhomogeneous re-
gion and the continent. For T'= 0, u;y = 0 and H = 0 this is shown in Fig. (again
for m = 0), where the inhomogeneous chiral-symmetry breaking phase is always favored
over the restored phase as soon as i > [i..

This may not be true as soon as color-superconducting phases are considered. Since it
is expected that 2SC condensation plays an important role for this region of intermediate
to large densities, we allow color-superconducting phases as a next step in our system.
A priori it is not clear which type of phase is favored in this region and the detailed

2Still for the parameter set of Mya. = 300 MeV given in Tab. for our model.
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Figure 6.1.: Energetically favored values of the amplitude M (solid blue), the wave-
number ¢ (dashed green) for inhomogeneous chiral condensates and the
diquark gap A (dotted orange) for T' = 0, My, = 330MeV, p; = 0 and
H=0.

structure needs to be calculated numerically. Before coming to studying the simultane-
ous appearance of the color-superconducting and chiral-symmetry breaking phases, the
properties of homogeneous 25C condensation only are investigated.

An asymmetry between the two quark chemical potentials does not only affect chiral-
symmetry breaking phases but also has influence on the quark-quark condensates by
disfavoring this BCS pairing mechanism and eventually leading to the breakup of the
diquark condensate once it surpasses a critical value. In Fig. this is visible at fixed [
and H = 0.5G (which will be our standard value for the diquark coupling if not stated
otherwise), where the gap A drops to zero at a critical u; ~ 1.42 Ag with Ag being the
gap at uy = 0. In the weak coupling limit this critical value has been calculated by
Chandrasekhar and Clogston and is given by p; = v/2A [69, [71] which is also known
as the Chandrasekhar-Clogston limit (CC limit) and we expect the critical value of the
isospin-chemical potential for our calculations to be of this order. Indirectly the breakup
of diquark condensation for y1; > u§ is also present in the right panel of Fig.[6.2] since
i fixes the value of Ay and thus in turn determines the critical value p§. Thus at
increasing 1 and fixed p; the gap Ay reaches large enough values so that the isospin-
chemical potential is below the CC limit and the gap A becomes non-zero. Although the
free energy associated with the color-superconducting condensates changes with altering
pr at fixed i, the value of the order-parameter needs to remain unchanged below 1§ [70].
For two different values of p; this is also present in Fig. [6.2] where the 2SC solution with
a larger asymmetry between the quark chemical potentials becomes favored at larger
increasing values of ji.

As seen in Fig. [6.3], allowing for the simultaneous appearance of color-superconducting
and chiral symmetry-breaking condensates in isospin-symmetric matter replaces the in-
homogeneous chiral symmetry breaking phase at intermediate densities by a phase where
both a crystalline chiral condensate and a nonzero diquark gap occur. The onset of
this coexistence phase is first-order and occurs at a slightly lower chemical potential
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Figure 6.2.: Diquark gap A at T = 0, My, = 330MeV for a 2SC phase only (with
M = 0). (Left): For i = 330 MeV against u; and (right): at various p
against the flavor-averaged chemical potential. For the left panel the isospin
chemical potential on the x-axis was rescaled with Ag = A(u; = 0) and the
CC limit is indicated by the vertical line.

compared to the case with no or with only diquark condensation. Furthermore the in-
homogeneous chiral-symmetry breaking solution does not extend up to large chemical
potentials anymore and instead the amplitude of the chiral condensate decreases to zero.
There the system undergoes a second-order transition from the coexistence phase to a
pure 2SC phase by the 'melting’ of the chiral condensate, i. e. the amplitude of the chiral
condensate smoothly reaches zero and the diquark gap does not jump. In the absence
of a non-zero chiral condensate the 2SC gap is slightly larger than in the coexistence
phase, as can be seen in the right panel of Fig.[6.3] where the gap in the coexistence
phase smoothly approaches the pure 2SC result for increasing p. By allowing such a
coexistence phase, the inhomogeneous continent does not extend to very large densi-
ties and is replaced by a homogeneous 2SC phase. Under the assumption of no mixing
of chiral-symmetry breaking and color-superconducting phases this was already found
earlier [76].

At moderate values of the isospin-chemical potential the coexistence phase shrinks
marginally as p; grows. This is due to the pairing stress caused by uy # 0, on which the
phases react differently. The variational parameters can be seen in Fig.[6.4] at vanishing
temperature. Basically the values of the diquark gap A remains unchanged for low
iy and the amplitude M gets slightly smaller when comparing the results for pu; = 0,
pr =40 MeV and p; = 80 MeV. The size of the coexistence region shrinks for increasing
w1y and the onset of a pure 2SC phase, replacing the coexistence phase, shifts down to
lower values of ji. For even higher values of the isospin-asymmetry, the homogeneous
chiral-symmetry breaking, the CDW and the pure 2SC solutions emerge besides the
restored phase with A = M = 0, but no coexistence region exists.

The free energies of the different phases can be seen in Fig. 6.5 There the free energies
are shown at four values of p;, which allows to discuss the influence of iy on the different
pairing mechanisms. One recognizes that the thermodynamic potential for a CDW with
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Figure 6.3.: (Left): Energetically favored values of the amplitude M (solid blue), the
wave-number ¢ (dashed green) for inhomogeneous chiral condensates and the
diquark gap A (dotted orange); (Right): Value of the diquark gap without
(solid blue) and with (dashed red) inhomogeneous chiral symmetry breaking
condensates at T'= 0, My, = 330MeV, pu; =0 and H =0.5G.

no color-superconductivity is only mildly affected by the increasing isospin-chemical
potential, which we already found before. The free energy of the phase with only 2SC
condensation is in contrast strongly influenced by an isospin-asymmetry and eventually
the phase disappears at fixed i1 for sufficiently large values of uy, as can be seen for
pr = 100 MeV in the lower right panel of the figure. At the same time also no coexistence
phase is found any more. This does not happen at smaller values of p;, where the
coexistence phase is in some interval more favored than the pure 25SC or CDW phase,
but also shrinks for increasing py. The value of the diquark gap remains unchanged for
sufficiently low 7, while the amplitude of the CDW gets slightly smaller. In general the
phase structure remains almost unaltered for p; = 40 MeV and p; = 80 MeV, as can
also be seen in Fig.[6.4] for vanishing temperatures. There, a coexistence phase is still
present in some interval and gets replaced by a pure 2SC phase for larger /.

If the isospin-chemical potential is increased further, the phase structure changes.
Namely, there are different type of phase transitions possible, dependent on the value of
fi. Exemplary for i = 330 MeV this can be seen very well at 7' = 0 in Fig.[6.6], where
one observes the occurrence of a coexistence phase up to the critical isospin chemical
potential u§ = v/2A, ~ 90MeV. Interestingly the gap in the coexistence phase has a
weak dependence on p; and grows by ~ 2 MeV from p; = 0 to u$, which does not occur if
a pure 25C solution is considered where A stays constant, as expected for homogeneous
25C condensates [70].

The phase structure at 7' = 0 in the i — pu; plane is shown in Fig.[6.7] For low p,
a phase with homogeneous chiral symmetry breaking and no color superconductivity is
favored over the other condensation patterns. The coexistence phase is adjacent to the
homogeneous chiral-symmetry breaking phase and exists in a range of i =~ 324—341 MeV
at ur = 0 and extends up to intermediate values of the isospin-chemical potentials. For
higher p;’s the coexistence phase is disfavored against a phase with inhomogeneous
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Figure 6.4.: Energetically favored values of the amplitude M (solid blue), the wave-
number ¢ (dashed green) for inhomogeneous chiral condensates and the di-
quark gap A (dotted orange) at T'= 0, M, = 330 MeV and H = 0.5G for
pr = 40MeV (left) and py = 80 MeV (right).

chiral-symmetry breaking and no color superconductivity. Also the pure 2SC phase is
disfavored there. For higher i the coexistence phase undergoes a second order phase
transition to the pure 2SC phase for low puy, while for large values of u; the diquark
gap in the coexistence phase jumps discontinuously and one arrives at a purely inho-
mogeneous chiral symmetry breaking phase with no 2SC condensates. For large values
of pr (close to the value where charged pion condensation should set in) and large x
also the inhomogeneous chiral symmetry breaking phase becomes disfavored against the
asymmetry in the occupation numbers and the system reaches the restored phase with
M=A=0.

Although we restricted our analysis to homogeneous diquark condensates, it is in-
teresting that also for our simplified ansatz, the inhomogeneous continent disappears
and a coexistence region where inhomogeneous chiral symmetry breaking and a nonzero
homogeneous 2SC gap are simultaneously present, appears. It seems that for suffi-
ciently high densities and low p; the pure 25C phase is always favored over the chi-
ral symmetry-breaking phase. The size of the coexistence and 2SC region depends on
the strength of the diquark coupling, and for larger values such as H = 3/4G the
pure 25C phase becomes thermodynamically favored over all inhomogeneous solutions,
since the 2SC phase alone is by large numbers favored over a large interval over chi-
ral symmetry-breaking phases. Only for vanishing or small chemical potentials, chiral
symmetry-breaking phases are still energetically favored over 2SC phases. Since there,
inhomogeneous condensation is not favored over homogeneous condensation for chiral
symmetry breaking, no coexistence phase can emerge there.

In general one would expect that the real ground state of dense matter for large isospin-
asymmetries is a coexistence phase where both the chiral condensate and the diquark
gap are spatially modulated. This will be clearly out of the scope of this thesis and
further investigations are needed. Furthermore it is known that if the chiral condensate
becomes inhomogeneous, a spatial dependence on the density of the system may be
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Figure 6.5.: Thermodynamic potential relative to the restored phase as a function of the
average quark chemical potential at T'= 0 and H = G/2 for homogeneous
chiral condensates (dashed red), inhomogeneous chiral condensates (solid
blue), only diquark condensation (dotted orange) and the coexistence phase
with simultaneous inhomogeneous chiral symmetry breaking and homoge-
neous color-superconductivity (dash-dotted purple) at pu; = 0 (top left),
pur = 40MeV (top right), p; = 80 MeV (bottom left) and p; = 100 MeV

(bottom right).

induced and in turn this allows to form color-superconducting islands in the (space-
dependent) regions of high density of the system. A first, simple step would be to
generalize the results to non-zero temperatures and study the phase structure. Another
possible extension would be to investigate the influence of the coexistence phase on the

properties of compact stellar matter.
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denote first-order phase transitions, while dashed red lines indicate second-
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and “pure 2SC” labels a domain where M =0, A # 0.
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7. Conclusions

In this work we have investigated inhomogeneous phases in isospin-asymmetric matter
within the NJL model.

First, we developed a framework for allowing spatially modulated order-parameters
associated with chiral symmetry breaking in our model, extending the existing formal-
ism for inhomogeneous phases to isospin-asymmetric matter and allowing a more general
interaction, that permits to control the degree of flavor mixing between up and down
quarks. On the mean-field level we were able to derive an explicit expression for the
grand potential for different shapes of the modulation of the chiral condensates. Because
of the required diagonalization of an effective Hamiltonian, we assumed a crystalline
structure for the order-parameters, namely periodicity and time-independence for the
condensates, which then, together with limiting to simple types of modulations and /
or lower-dimensional modulations, allowed us to determine the energy spectrum of the
system from the Hamiltonian. For simplicity this was mainly done for plane-wave mod-
ulations. With this, the favored ground state of the system was determined numerically
by addressing the stationary constraint of the grand potential.

We confirmed earlier results [25] 26, 55 [73] indicating that inhomogeneous chiral-
symmetry breaking phases does occur in isospin-symmetric matter, but also found that
such crystalline phases occur in isospin-asymmetric matter, where also a region with
inhomogeneous chiral condensates emerges at low temperatures. Exemplarily we con-
firmed that solitonic modulations are energetically favored against our simple plane-wave
modulations, but it turned out that these changes have only mild influence on the phase
structure in our model; a fact, which has been already known for isospin-symmetric
matter. Thus we still used our simple ansatz in specifying the modulation of the quark
masses or condensates, but aimed to gain insight in a more generic phase structure.

While for isospin-symmetric matter the degree of flavor mixing does not affect the
phase structure of the model, it has significant influence on the phase structure if the
two quark flavors become non-degenerate. For completely decoupled quark flavors two
separate inhomogeneous phases associated with up and down quarks are found, where
the phase structure of our two-flavor model can be mapped to the phase structure of a
one-flavor model. Here, the detailed phase structure is almost independent of the exact
shape of the modulation and the connection to a one-flavor model is a generic feature
of the grand potential, which separates in two independent parts for no flavor-mixing.
From this it was found that unequal wave-vectors or equivalently unequal periodicities
per quark flavor are energetically favored, while in contrast enforcing equal periodicities
for the flavor-dependent quark masses at very small degrees of flavor mixing resulted
in the phase to be disfavored against the homogeneous or restored phase. In this sense
allowing for unequal periodicities can energetically stabilize the inhomogeneous phase in
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isospin-asymmetric matter and the wave number is also here approximately proportional
to the respective quark flavor chemical potential, which was first found for p; = 0.

For non-vanishing degrees of flavor-mixing and non-zero isospin-chemical potentials
there were two possible ansatze for the plane-wave modulation available. On the one
hand we could make the plane-wave ansatz for the modulation of the quark masses per
flavor or on the other hand impose a plane wave for the modulations of the up and down
quark condensates, which then together specify the particular modulation of the quark
mass. Since the two quark flavors are non-degenerate, the resulting thermodynamic
potential is in general different for the two cases and we were able to study different
characteristics of the system linked to the two ansatze.

By focusing on the plane-wave modulations on the quark mass-level, we found that
the inhomogeneous region at fixed isospin-chemical potential is smallest for a maximal
degree of flavor mixing. There, only plane waves with equal amplitudes and wave num-
bers are possible, which is in isospin-symmetric matter commonly known as the CDW,
where we also adopted this term for non-zero isospin-asymmetries. The resulting phase
structure is very similar to the one in isospin-symmetric matter, where an ’inhomo-
geneous island” emerges around the usual chiral restoration transition of homogeneous
chiral condensates. For the CDW in isospin-asymmetric matter, the dependence on the
degree of flavor mixing dropped out and therefore this type of solution may occur in-
dependently on the degree of flavor-mixing at p; # 0. By allowing different amplitudes
for the modulation of the quark masses, an explicit dependence on a was introduced
and such inhomogeneous phases were found to be energetically more favored than the
CDW. For very small degrees of flavor mixing, non-equal periodicities are energetically
favored over inhomogeneous phases with equal periodicities, but already at relatively
small degrees of flavor mixing they become disfavored against inhomogeneous phases
with equal wave-vectors and disappear when approaching a maximal degree of flavor-
mixing. Especially for an assumed realistic degree of flavor-mixing, no inhomogeneous
phase with unequal periodicities is favored.

To check if the disappearance of unequal periodicities at a realistic degree of flavor-
mixing is attributed to our particular choice of ansatz, we turned to specify ansétze on
the level of the chiral condensates. By this, also inhomogeneous phases with unequal
periodicities could be favored at a realistic degree of flavor-mixing. In particular, we
showed that for large enough values of the isospin-chemical potential modulations of the
condensates with unequal periodicities are more favored than modulations of the quark
masses. Already for small differences between the periodicities of up and down quarks,
an energy gain caused by the condensate part was observed. Furthermore, the overall
energy gain enabled the inhomogeneous phase to be more stable against the effects of
the additional pairing stress caused by g, — pug # 0 and thus could possibly provide
observable consequences. To determine the phase structure, we were actually limited by
the need of numerical calculations, since the Hamiltonian needed to be diagonalized by
brute-force methods. In combination with our formalism, we therefore considered only
rational ratios for the ratio of the two wave-numbers. We confirmed that different ratios
are energetically favored in different regions of the parameter range. Also for a maximal
degree of flavor-mixing it is found that specifying the condensate modulations rather
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than the mass modulations allows to stabilize the inhomogeneous phase. In general the
pressure differences between the two types of ansitze is up to a few MeV/fm®, which
is however small if compared to the restored phase’s or homogeneous phase’s (absolute)
pressures.

Naturally an isospin-asymmetry arises for compact stars due to the requirement of
charge neutrality. Therefore we studied the possibility of inhomogeneous phases in
charge-neutral matter. To allow a 'realistic’ description, we needed to additionally intro-
duce electrons as the only leptons present in our system and required the isospin-chemical
potential to be self-consistently determined from the grand potential. We found that
inhomogeneous phases occur also for electrically charge-neutral matter, even when a
CDW modulation is considered for the grand potential. In comparison to inhomoge-
neous phases at p; = 0, the inhomogeneous region for matter with vanishing net-charge
is smaller in the p — T-plane. At the self-consistently determined value of p; the differ-
ences in the pressure for a modulation on the mass or condensate level is only up to 10
% and thus we considered for simplicity only the mass ansatz for charge-neutral matter.

In a next step, the equation of state was determined for charge-neutral inhomoge-
neous matter at various degrees of flavor-mixing to serve as an input for mass-radius
sequence calculations for compact stars. We were able to show that visible differences
in mass-radius sequences of pure quark stars are present, if charge-neutral matter is
compared to electrically charged matter at u; = 0. However, the difference between
only homogeneous and spatially modulated phases for mass-radius sequences is weakly
observable for chiral-symmetry breaking and thus such static astrophysical observables
may not allow to distinguish if homogeneous or inhomogeneous phases are realized in
neutron stars. Especially since the determination of the stars’ radii is currently a very
hard task and only mass measurements are sufficiently precise, our results do not help
to constrain quark matter properties from astrophysical observations. Since we only
considered configurations, where the star is completely made out of quarks, it is also not
surprising that our model does not reproduce observations of two-solar mass neutron
stars. To allow a more realistic description, it would be good to also account for nu-
clear matter with electric net-charge zero and consider a hybrid configuration of nuclear
and quark matter for the neutron star. Studying transport properties, like the cooling
of the neutron star, might also allow insight on the properties of neutron star matter
and could possibly allow to investigate the effects of inhomogeneous phases on compact
stellar matter.

Currently there is no common agreement on how the QQCD phase structure looks like
at intermediate densities. On the one hand crystalline chiral condensates may be the
favored ground state in this region, but on the other hand also color-superconductivity
should become important for non-zero densities and low temperatures. Therefore as a
final step we also introduced color-superconducting phases to our two-flavor model and
considered a 2SC phase besides inhomogeneous chiral-symmetry breaking. For numeri-
cal reasons we allowed only a CDW solution for the modulation of the quark masses for
chiral-symmetry breaking and considered only a homogeneous 2SC condensate. In this
configuration we confirmed the relevance of a phase at zero temperature, where chiral-
symmetry breaking and color-superconducting condensates coexist. For intermediate
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densities the inhomogeneous continent, which occurs if one focuses on chiral symme-
try breaking condensates only, disappears and the inclusion of color-superconductivity
renders the purely chiral-symmetry breaking phase disfavored against phases with color-
superconducting condensates. For larger baryon densities chiral-symmetry breaking gets
disfavored and a purely 2SC phase persists. For non-zero isospin-asymmetries, the de-
tails of the phase structure depend on the relative weight of the couplings associated
with color-superconductivity and chiral-symmetry breaking. Since both phases react
differently to the pairing stress caused by p; # 0, it was interesting to study the
phase structure at various values of the isospin-chemical potential. Up to intermedi-
ate isospin-densities at vanishing temperatures, we found that the phase structure is
basically unaltered compared to the isospin-symmetric case. For vanishing baryon den-
sities a homogeneous chiral-symmetry breaking phase is favored, then a transition to
the coexistence phase follows at increasing baryon density and finally we arrive at a
2SC phase for even higher values of the flavor-averaged chemical potential. At large
values of the isospin-chemical potential, the coexistence phase at intermediate baryon
number densities and the 2SC phase cease to exist, since the color-superconducting
phases cannot account any more for the pairing stress through a BCS-like pairing. Since
the inhomogeneous chiral-symmetry breaking phase is more stable against the effects
of the isospin-asymmetry, it exists up to larger asymmetries and then becomes energet-
ically disfavored. Of course, the analysis performed, serves only as a first step, since
it is known that inhomogeneous phases can also occur for color-superconductivity but
this was neglected here. It is however known that these types of condensation are less
prone to an isospin-asymmetry than the spatially constant ones. It is thus conceivable
that the most favored type of the coexistence phase is one, where inhomogeneous color-
superconducting and chiral-symmetry breaking phases are allowed at the same time.
This investigation would however require more work to do and was clearly out of the
scope of this work. Another possibility is to study more complicated modulations of
the chiral condensates, which might imply spatially modulated number densities. Then,
color-superconductivity might occur in a narrow peak region with high densities, while
adjacent to that region only chiral-symmetry breaking is energetically favored. At least
for solitonic modulations this should be straight-forward in our formalism, but requires
more intensive numerical analyses.

Although being favored in mean-field approximation, it is worth noting that strictly
speaking modulations of the order parameters in one dimension are unstable at finite
temperature, since the modulations are destroyed by thermal fluctuations [77]. Recent
calculations also have addressed the effects of the mean-field approximation and the ques-
tion how the regularization affects the results [7§] by studying inhomogeneous phases in
a two-flavor chiral quark-meson model. Going to account for the Dirac-sea contributions
of the quarks, it is found that inhomogeneous phases still occur. In general it is also not
clear, if the solutions in our model are self-consistent ones in isospin-asymmetric matter
and deserves further work to be done.

The extension of our calculations is possible in many ways. First, instead of assum-
ing a simple plane-wave modulation for the quark masses or the condensate functions,
studying more complicated shapes for the order-parameters of chiral symmetry could
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be possible to generalize our results in isospin-asymmetric matter. As a next step, one
could allow for two-dimensional modulations and analyze the phase structure of inho-
mogeneous chiral symmetry breaking in isospin-asymmetric matter. On the other hand
considering more complicated modulations, together with the requirement of only lo-
cally charge neutrality, could lead to interesting consequence, like for example that the
leptons set a characteristic length scale of the system by coupling through the Coulomb
interaction with the spatially modulated quark phase. Also charged-pion condensation,
which we have neglected so far, is relevant for a non-zero isospin-asymmetry. Even for
this type of condensation, the emergence of crystalline phases could be a valid option and
the simultaneous appearance of inhomogeneous chiral-symmetry breaking phases and in-
homogeneous charged-pion condensation is worth investigating. On the other hand it is
also very interesting to study the interplay of inhomogeneous chiral symmetry breaking
and inhomogeneous color-superconductivity, since it was shown for each phase that they
are present in isospin-asymmetric matter, but so far the simultaneous occurrence was
never explicitly considered.
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A. Thermodynamic of the NJL model

A.1l. Thermodynamic potential for G;/G; < 1

Here we will show that for G1/G3 < 1 the thermodynamic potential is unbounded from
below, since the term Eq. entering the grand potential is in turn not bounded
from below. Concentrating on the vacuum for now, where we can safely neglect the
pseudo-scalar condensates — and assuming that the condensates as physical quantities
are real, we get

G1 (Su(@)* + Sa(T)) +2G2 (Su(2)Sul(T)) = G4 ((5 (7)* + Sa(7)?) + 2% (Su(f)sd(f)))
e ((sm + S5 + (1 - (%)) st)
-G ((Su(f) + g—fsd(f))Q + (G%C;%G%) Sd(:i’)2>
The first term
(Su(f) + %Sd(f)>2 >0 (A.1)

is always larger than or equal zero. The second term is, dependent on the ratio of G; to
G5, smaller, equal or larger than zero; namely

G? — G%) <0, for G <Gy
L 2 ) 5,2 7 - . A2
( G (%) >0, for G;>G, (4.2)

Together, Eqgs. (A.1) and (A.2)) show that Leonq is unbounded from below for G < Gy
resp. for G1/Go < 1, if the condensates are sent to large values. The same is true for
non-zero temperatures or non-vanishing densities.

A.2. Matsubara formalism

For finite-temperature field theory it is common to perform the Matsubara summation,
where one sums over discrete imaginary frequencies, the so called Matsubara frequencies
(see e.g. [44] for details). Essentially the summation can be replaced by a contour
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A.2. Matsubara formalism Appendix

integral in the complex plane. For example during the derivation of the thermodynamic
potentials, one often encounters expressions like

TZlog <°" + ‘"”2> (A.3)

with fermionic Matsubara frequencies given by w,, = (2n+1)7T. To solve this we rewrite
the logarithm

Z log (“ “3) Z /2/T2 2n1+ e + o8 (1+(2n 4 17°7)

(A.4)

and interchange the order of summation and integration

- w? + 2? /T & 1 9 9
Zlog( T? ) / Z u+ ( 2n+1)27r2dqu Zlog L (20 4+ 1)),

. (A.5)

Applying the residue summation formula for the first part of Eq. (A.5) yields after using
the third binomial formula

; 2n +1)272 471r2 2 (n — Lﬁ>1<n B M) (A.6)

— n=-—00

1T <cot (#) — cot (#))

(1) < )

Inserting this into Eq. (A.5)), we arrive at

2 /72 -
G ) a3 )G

n=—oo
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Appendix A.3. Separating vacuum and medium contributions

and after integration with respect to u we obtain
_l +2log { 1+ exp l2| +1—2log (1 +exp (1)) + i log (14 (2n + 1)*7?)
T T

n=—oo

ol g (exp(| ') (Hexp (_%))) +1—2log (1 +exp (1))

+ i log (14 (2n + 1)*7?)

n=—oo

:ETH—QIOg <1+e p< |« |)) (1—210g(1—|—exp(1))+ Z 1Og(1~|—(2n+1)27r2)),

T (A.10)

(A.9)

With this the overall expression is given by

TZlog (“’ T ) — |z + 2T log (1+eXp (—%)) (A.11)

A.3. Separating vacuum and medium contributions

To derive an expression for the vacuum and medium parts of the thermodynamic poten-
tial, we start with the r.h.s. of Eq. by inserting eigenvalues of the form +e — puy
for the quarks and antiquarks of flavor f, where the exact form of the eigenvalues is not
specified but we require the €’s to be symmetric around zero. Depending on the values
of € and yi; in the expression (which occurs in Q/, )

;(|$|+2Tln (1+exp( i ‘))) A1)
:;{|E_M|+|e+w|+2T {ln(l%—exp(—‘e}'uf’))+ln(1+€Xp(_‘E—;ﬂf|)>]}

we need to distinguish between the cases
2(uf—|—Tln<1—i—eXp(—%>>—|—T1n<1—|—exp< E+W>)>, € < iy
2(6+T1n<1+exp<—%>)—|—T1n<1—|—exp( +“f)>), €> iy

for the integrand. Explicitly this yields

5 e (rom (2 (oo (5] v
con o442}
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A.4. Regularization Appendix

which can be rearranged to give

2920 {—2(e+uf)+2Tlog (exp (%) <1+eXp (G_T“f» (1+eXp (H_TW)))}
=4y {6+T1n <1+exp <—E+T“f>) +TIhn <1+exp <—€_T“f>>}, (A.15)

for which we made use of the assumption of € to be symmetric around zero. Since now
no medium dependence is present for the first term in Eq. , but for the other
terms, we can identify the vacuum and medium parts from this result as wyac(€) = €
and wimed(€) = T(In (1 4+ exp (—(e + pf)/T)) + TIn (1 + exp (—(e — pg)/T))), as already
quoted in Eq. and Eq. (3.50).

A.4. Regularization

Here we will show, how to regularize the quartically divergent thermodynamic potential
of our model by presenting different regularization schemes.

A.4.1. Three-momentum cutoff

An often used regularization scheme is the O(3) cutoff scheme, where the restriction of
momenta fulfilling |p] < A is imposed on the integration over quark momenta in the
thermodynamic potential, i.e.

/ (3;];3 Tlog (2 cosh (W)) . /ﬂSA (;ijr]))3 Tlog (2 cosh (W))
(A.16)

It turns out that this scheme violates Lorentz-symmetry and is not well suited if one
deals with inhomogeneous condensates, since the quark momenta are not fixed and the
eigenstates of the mean-field Hamiltonian cannot be labeled by a single momentum;
thus a O(3) cutoff would suppress the coupling of momenta p,, and p,, with a difference
larger than the cutoff; potentially leading to cutoff artifacts, like shown in the context
of spatially-varying condensates in color-superconducting quark matter [7].

A.4.2. Pauli-Villars regularization

To circumvent (obvious) regularization artifacts in our region of interest, we choose a
Pauli-Villars regularization scheme [79] which we apply to the vacuum contributions of
the thermodynamic potential. The basic idea of both authors was to introduce heavy,
unphysical masses in the (inverse) propagator to overcome divergent terms by adding
enough counter terms, so that together the original function and the function with the
added regulator masses cancel the divergences.
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In particular, following the arguments of reference [7] for a suited regularization in the
context of inhomogeneous condensates we need to modify the approach slightly. Going
back to the thermodynamic potential and replacing the logarithm in the thermodynamic
potential Eq. by its Schwinger proper-time representation yields

log A — — /0 h dT—T F(7) exp (—rA) (A7)

with a blocking function f(7) which serves as a regulator.
Specifying this function also defines the details of the regularization scheme. For the
sake of performing the Matsubara sum analytically we use

f(T) =co+crexp (=17A%) + coexp (=27A%) + ... + cppy exp (—npyTA?).  (AL18)

The coefficients ¢; are determined by the conditions ) ; ¢; = 0 and >~ ¢;(M?+jA?) = 0,
where we have a freedom to choose cg.
For the following discussion, we proceed with our discussion for npy = 3. Inserting

Eq. (A.18) into Eq. (A.17) yields with ¢ =1 = —c¢3,¢1 = —cy = =3
log A — log A — 3log (A + 1A2) + 3log (A + 2A2) — log (A + 3A2)7 (A.19)

from which we can carry out the summation over Matsubara frequencies as usual. The
regularized version of the kinetic part of the thermodynamic potential then readd]]

npyv E o
Wi (T pg) < > { (Z ¢;Ez,; + Tlog (1 + exp (—AJ‘TW)) (A.20)
E‘Af 7=0
Ex, +
+ T'log (1 + exp (——AfT M))) }
By, ;= \/Ex, +jA? (A.21)

and we assumed that the spectrum is symmetric around zero. Here F), are the eigenval-
ues of the mean-field Hamiltonian #H;. If we had allowed for an explicit pi-dependence of
the eigenenergies, i. e. considering H; — uy instead, then unphysical regularization arti-
facts would have been picked up in the thermodynamic potential due to the regulariza-
tion procedure which violate the Silver-Blaze propertyﬂ. Since we also cannot reproduce
the correct Stefan-Boltzmann limit if we also regularize temperature-dependent parts of
Eq. , we only regularize the first term that encodes the vacuum contributions.

Also it should be noted, that we replace the free energies in our regularization scheme
instead of the masses, as originally done by Pauli and Villars.

with

!Formally all eigenvalues in the expression for the kinetic part would be regularized, but for reasons
becoming clear later only the vacuum contributions are regularized.

2In general observables “derived” from the unregularized NJL model respect this property, which does
not hold if this regularization scheme is used.
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Table A.1.: Model parameters in the Pauli-Villars regularization scheme obtained by
fitting to vacuum phenomenology for given quark masses.

npy Mg [MeV] A [MeV]  GA?
3 300 757.048 6.00214
330 728.368  6.5994

Fitting of parameters

To fix (G, A) within the Pauli-Villars regularization scheme, we fit the parameters to
match vacuum phenomenology in our mean-field model. We require to reproduce the
pion decay constant in the chiral limit f, = 88 MeV [80] and require a fixed value of
the quark mass in vacuum of M,,. instead of the conventionally used chiral condensate.
This is necessary, since covariant regularization schemes like the Pauli-Villars one, yield
rather small, unphysical values of the quark mass (M. ~ 200 MeV) if a realistic value
of the chiral condensate is used to determine the model parameters (see [26] for a discus-
sion). Thus the fitting procedure is reversed and we determine the model parameters by
prescribing the vacuum quark mass. From this, the coupling G and A and also indirectly
the value of the quark condensate is accessible.

In particular, for fixed constituent quark mass in vacuum M,,. we determine the Pauli-
Villars cutoff A from fitting it to reproduce the pion decay constant in our regularization
scheme, which is given by [32]

NCM'?&C o— M\?ac + ]A2
j= vac

In a next step the coupling GG is determined at known A and fixed M,,. from the gap
equation in vacuum [32]

2 _
Mo = =2 GNeN; (i) (A.23)
with
. 3 M ne o . M2, + jA?
<¢w> - A2 CGj (M\?ac +jA2) lOg <M—2j) (A24)
j=0 vac

for given M,,. and A.
Mainly we will use npy = 3 Pauli-Villars regulators and require a quark mass of
My, = 300 MeV in vacuum, yielding the parameters given in Tab.[A.]]
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B. Inhomogeneous condensates

B.1. Local chiral transformations for a CDW-like
modulation

To remove any spatial dependence from the effective mean-field Hamiltonian for a CDW-
like modulation of the quark masses, we rewrite the Dirac equation

Hyp(Z) = Erp(7) (B.1)

in terms of a rotated field ¢ () = Uy(Z)¢'(Z), where Uy(Z) is the unitary, local chiral
transformation (see also [47, 1] 58]) given by

Uf(f)—exp( 75q2f :15’) (B.2)

Inserting the rotated field in Eq. yields
HyUp ()¢ (7) = EpUp(2)¢'(7) = Up(2) Ep (7). (B.3)
which gives after multiplying the expression with U T( 7) from the left
UNZYH U (2)¢ () = Epg (2). (B.4)
With this, we can identify the rotated mean-field Hamiltonian as
(&) = UHD)HUy (D), (B.5)

which reads explicitly

—

H} (7) = Hlf = exp (175q—f . 5:’) [— V%90, + ’yOAf exp (175(]} . f)] exp (_175% 37)

2
(B.6)
. 0 0.if 9 sAf - 0
= —iy"v'0; — iy y 5t <P —iy 5T +7 Ay (B.7)
= —in"y'0; ="' g +77Ay. (B.8)

2

To determine the eigenvalues of the Hamiltonian, we first make a standard plane-wave
ansatz for the fields, like e. g. in [58],

/(%) = ¢ (p) exp (—ip'w,) (B.9)
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B.1. Local chiral transformations for a CDW-like modulation Appendix

which gives

C ey .y .
Hpo' (T) = (—wov 9 — °y'° 2f + WOAf> ¢ (p) exp (—iphz,) (B.10)
i i i q .
= (707 p' ="y 755f + ’YOAf) ¢ () exp (—iphzy). (B.11)

Identifying the first part as the Hamiltonian in momentum space, for which the eigen-
values are needed, the diagonalization is straightforward and the eigenvalues are given
by

Ejfz =P+ A?c j: \/quf + (p- qf (B.12)

The corresponding density of states can be identified by inserting the eigenvalues Eq. (B.12])
in the kinetic part of the thermodynamic potential

B
{1 T In (1 +exp ( fT“f)) (B.13)

E? +
+T In <1+exp (— fT'uf))]

;o _
ka -

by introducing a delta function as

d3 ) E_
- N P . /s
Qkin__NCs:i/W/o dE5(Ef—E) [E—l—TlIl (1+6Xp (— - ))

+T In (1 + exp (—M>)}
T
which should agree with

Qimé—/ dE ps(E) lEJrTln <1+exp <—¥)>+Tln(1+exp (——E;“f))l.
0

(B.14)

Comparing both expressions shows, that for the density of states

_ K
E)—NC;/(QW)35(EJC E) (B.15)

holds. Next, by inserting the eigenvalues Eq. in Eq. , the expression can be
evaluated further to obtain an explicit expression for p;. For a CDW-like modulation of
the quark masses our derived expression is formally identical to the one in [26] and can
be evaluated (by identifying @ = ¢y and A = Ay) to yield the expression Eq. (4.28).
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B.2. Condensate functions from mass functions

B.2. Condensate functions from mass functions

In the following we show how to derive an expression for the condensate functions, if a
shape for the modulation of the quark masses was specified.

Interpreting Eq. (4.22)) as a linear combination Eq. (4.32) with real (X ;) and imaginary
(Yy) part, the condensates S;(%) and Py(Z) and X¢(Z) and Y;(Z) can be related to each

other; first, we identify X (%) and Y;(Z) using Eq. (3.20) as

X (@) = (1 — o) Sp(@) + aSi(2), (B.16)
V(@) = (1 — @) Ps(&) — aPy(@). (B.17)

Since the scalar and pseudoscalar part decouple, this can also be written as a block-
diagonal matrix

Xy l-a « 0 0 Sy
Xn| a l1l—a 0 0 Sh
Yi | 0 0 l—a -« Pr |’ (B.18)
Y. 0 0 —a l—« b,

where we dropped the space dependence of the functions for brevity. To determine the
actual shape of Sy and Py in dependence on X and Y} we invert the matrix (which is
possible for o # 0.5) in Eq. (B.18) and obtain by multiplying out

Sy l-a -« 0 0 Xy
Jb;l; :1—12a _oa 16a 1Ea 2 ' )}i; (B.19)
b, 0 0 « 1—«a Y,
an expression for the condensate functions
Sy(#) = 75 (1= )X, (#) — 0%, (7)) (B.20)
PH(#) = - _12a (1= a)Y;(F) + Y3 (). (B.21)

For a = 0.5 these expressions diverge, which is also the reason to restrict ourselves to
0 < a < 0.5 in the first step. However, by doing so we are still able to evaluate the
thermodynamic potential and only after arriving at an expression for €2 discuss the limit
a — 0.5.
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