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Abstract. In this paper, by analyzing the characteristics of the simulated annealing algorithm

(SA) and the real double-chain coding target gradient quantum genetic algorithm (DCQGA),

the real double-chain coding target gradient quantum genetic simulated annealing algorithm

(DCQGSAA) is proposed. Because the performance of LSSVR is extraordinarily sensitive to

its key parameters, the proposed algorithm is used to optimize these parameters, then a hybrid

non-parametric prediction model is put forward. This model is used in fault prediction of liquid

rocket engine thrust. The simulation results show that the proposed model is effective for small

samples and multi-dimensional fault prediction.

1. Introduction
At present, artificial neural networks have been widely applied in the field of engineering [1-3]. The
effect of artificial neural networks in practical applications is affected subject to the number of

samples. The support vector machine (SVM) [4-5] is born to solve the disadvantages of neural

networks, so it has obtained widespread applications [6]. However, the performance of SVM is very

sensitive  to  its  key  parameters.  In  [7-10],  variant  intelligent  algorithms  are  used  to  optimize  these
parameters. In [10], the genetic simulated annealing algorithm (GSAA) is introduced. In [7], DCQGA

is proposed. In this paper, the real double-chain coding target gradient quantum genetic simulated

annealing algorithm (DCQGSAA) is proposed based on DCQGA and GSAA. Then DCQGSAA is
applied for optimizing the parameters of LSSVR, and a hybrid model is proposed. This model is used

in the failure prediction of liquid rocket engine thrust. The prediction results show that this model

works well.

2. DCQGSAA Algorithm
In [7], the DCQGA Algorithm is presented.

The  idea  of  DCQGSAA is  that:  in  each  loop  of  DCQGSAA,  DCQGA is  first  implemented,  then  so

does GSAA.

3. The Proposed Model
The performance of LSSVR is associated with the type of kernel function, the corresponding kernel

parameters, and the penalty item coefficient C. In this paper, the radial basis function (RBF) is
selected as the kernel function. The expression of RBF is defined as:
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where � is  the  width  of  RBF.  The  above  proposed  DCQGSAA  algorithm  is  used  to  optimize  the

parameters of LSSVR, and the flowchart of this model is shown in Figure 1.
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Figure 1. The flowchart of the proposed model

4. Application
The thrust of a liquid rocket engine is an important factor. It is closely related to the oxidant flow m· o,

the combustion flow m· f, the pressure of the combustion chamber pc, the sampling time t, and other

factors. There exists a high complexity and non-linearity between these parameters and the thrust, and

this relationship can be summarized as the function F = f(m· o, m· f, pc, t, …). Therefore, the proposed
model can be used to establish the failure prediction model of liquid rocket engine thrust.

The training and testing samples of  the model  from the firing test  data,  shown in Table 1 [8],  are

scaled. From Table 1, the number of samples is 25, and the sampling time is 0.1 s. In this study, the
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first  13  rows  are  used  of  the  table  as  training  samples  for  modelling,  and  the  rest  12  rows  are  for

testing samples to validate the effect of prediction.

Table 1. The table of firing test data

Sampling
Time

t (s)

Combustion flow

(m· f)

Oxidant flow

(m· o)

Pressure of
combustion chamber

(pc)

Thrust

(F)

0.0 0.3179 0.4011 0.0098 0.0000

0.1 0.3931 0.4661 0.0559 0.0496

0.2 0.5780 0.5339 0.2238 0.1418

0.3 0.6532 0.5935 0.4643 0.3262

0.4 0.6012 0.5658 0.6170 0.4113

0.5 0.6012 0.5572 0.7049 0.4681

0.6 0.6763 0.6374 0.7832 0.5674

0.7 0.7746 0.6721 0.8447 0.6596

0.8 0.8555 0.8238 0.8951 0.7730

0.9 0.9017 0.8753 0.9301 0.8440

1.0 0.9306 0.9149 0.9580 0.8865

1.1 0.9526 0.9420 0.9790 0.9163

1.2 0.9665 0.9593 0.9874 0.9362

1.3 0.9769 0.9702 0.9930 0.9504

1.4 0.9827 0.9810 0.9944 0.9574

1.5 0.9884 0.9864 0.9951 0.9716

1.6 0.9442 0.9919 0.9972 0.9787

1.7 0.9965 0.9957 0.9986 0.9858

1.8 0.9977 0.9973 1.0000 0.9929

1.9 0.9988 0.9995 1.0000 0.9986

2.0 1.0000 1.0000 1.0000 1.0000

2.1 1.0000 1.0000 1.0000 1.0000

2.2 1.0000 1.0000 1.0000 1.0000

2.3 1.0000 1.0000 1.0000 1.0000

2.4 1.0000 1.0000 1.0000 1.0000

In  this  experiment,  the  parameters  of  DCQGSAA  are  set  as  follows:  the  population  size  20,  the

number of iterations 100, the mutation probability 0.05, the step size of rotation angle 0.001*pi, the

initial temperature t0=f(pg)/ln5 and the annealing constant 0.7. In [9-10], the ranges of �2 and C are set
as [0.01, 1000] and [0.01, 10000], respectively. First, the training samples are used to train LSSVR;

then, the test samples are input to the trained LSSVR to obtain the predicted values of themself; the

negative  value  of  the  root  mean  squared  error  between  the  predicted  values  of  the  test  samples  and

their  true  values,  -RMSE,  is  used  as  the  fitness  function  of  DCQGSAA.  The  key  parameters  of
LSSVR are globally optimized to obtain the best �2 and best C; then the LSSVR uses the best �2 and

best C to train the training samples and obtain the fitted values. At the same time, the consumption

time in this training process is recorded; furthermore, the testing samples are input into the trained
LSSVR  with  these  best  parameters  to  obtain  the  forecasted  values.  The  fitted  curve  of  the  training

samples, the forecasted curve of the testing samples, and the varying curve of the fitness function are

obtained, respectively. The prediction results on the testing samples are given in Table 2.
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Figure 2. The fitted curve of the training samples

0 2 4 6 8 10 12
0.95

0.96

0.97

0.98

0.99

1

1.01

The series of samples

Th
ru

st
F

Real value
The predicted value by
DCQGSAA-LS-SVM

Figure 3. The predicted curve of the testing samples
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Figure 4. The changing curve of the fitness function
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From Figure 2, it can be seen that the optimized LSSVR can better fit the training samples. From

Figure 3, it shows that the optimized LSSVR can also better predict the values of the testing samples.

From Figure 4, it can be seen that the fitness function has gone to the stable value of -0.004232 after
26 iterations. All these indicate that the proposed model has good generalization performance.

Table 2. The prediction results of the testing samples

No.
True

value

The predicted value

of the proposed model

The predicted value of

LSSVR [8]

1 0.9504 0.9570 0.9595

2 0.9574 0.9681 0.9694

3 0.9716 0.9759 0.9745

4 0.9787 0.9748 0.9835

5 0.9858 0.9899 0.9885

6 0.9929 0.9941 0.9931

7 0.9986 0.9970 0.9976

8 1.0000 0.9988 1.0013

9 1.0000 0.9997 1.0024

10 1.0000 1.0002 1.0024

11 1.0000 1.0001 1.0024

12 1.0000 0.9995 1.0024

The average relative

error (%)
0.2977% 0.37%

The time of training

(s)

0 (the simulation result

using MATLAB)
0.0006

5. Conclusion
In this  paper,  DCQGSAA is  proposed combined with the advantages of  DCQGA and SA. Then it  is

used to optimize the key parameters of LSSVR, and the hybrid non-parametric prediction model is

built. This model is applied to predict the thrust of a liquid rocket engine. The simulation results show
that this model is productive for fault prediction on small samples and high dimensions.
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