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INTRODUCTION

The fundamental goal of the physical sciences is to understand the laws that govern
physical phenomena. This process inherently involves a continuous interplay between
theoretical models and physical observations, forming a feedback loop that continu-
ously refines both. By comparing observational data with model predictions, model
validity can be tested, areas of improvements can be identified, and their faithfulness
to reality can be improved. Conversely, theoretical models can guide observational
strategies by predicting phenomena that have yet to be observed, hence focusing the
attention to specific phenomena or conditions that may yield new insights.

A key ingredient of this scientific process is statistics. Statistics is a rigorous
mathematical language that enables formal statements about what events are pos-
sible under physical laws, thus bridging the gap between physics models and obser-
vational data. Statistics is today at the very heart of the scientific process, and not
just an optional nuisance. Guided by statistical formulation, given some parameters
that describe a physical system, implied predictions or consequences of a physical
model can be computed, allowing for the systematic exploration of the model’s im-
plications. Predictions can be either deterministic or intrinsically stochastic, e.g. due
to the randomness of the physical processes, the measurement processes, or incom-
plete information. In order to refine theoretical models, it is essential to perform
the inverse process: starting with the effects to discover the causes, inferring from
a set of observations the causal factors that produced them. This task, known as
solving an inverse problem [8, 9], involves mapping back observational data to infer
the underlying model parameters that are not directly observable.

In astrophysics, this iterative cycle between prediction and inference is partic-
ularly challenging due to the complex nature of the systems under study. In this
field, countless statistical methods have been developed over the years, and although
rarely in the spotlight, they ultimately determine what is accepted as scientifically
established truth. Since an inefficient or incorrect use of statistical data analysis may
lead to weaker or entirely wrong conclusions, it is thus of the utmost importance to
identify where and how progress is possible in order to advance the field.



1. Introduction

1.1 Astrophysical data analysis challenges

We are at the dawn of a data-driven era in astrophysics and cosmology. As we can
see from Figure 1.1, that shows the minimum volume of data per year expected to be
produced by a range of recent and upcoming surveys and experiments, the coming
decade will see transformative science conducted by observatories, based both on the
ground (e.g. Rubin-LSST [10], ELT [11]), and space-based missions (e.g. JWST [12],
Euclid [13]). Crucially, this wealth of data promises unprecedented high-precision
measurements of the growth of structure and geometry of the universe, opening new
windows to dark matter [14, 15], dark energy [16, 17], neutrino physics [18, 19], and
inflationary cosmology [20, 21].

Given the unprecedented size and detail of these data, connecting theoretical
models with this wealth of high-precision observations presents significant challenges,
and the scientific return of many upcoming observations is expected to be limited
by the efficiency of our statistical inference tools [22, 23]. First, information must
be optimally extracted from the data to avoid discarding valuable insights. Second,
uncertainties must be correctly treated and thoroughly propagated to ensure accu-
rate scientific statements. Moreover, fully exploiting this data for scientific purposes
will require increasingly complex physical models, which bring along higher compu-
tational costs, as well as a larger number of uncertain parameters, including those
characterizing signal and background systematics. Hence, the need for principled
and scalable statistical analyses has never been more critical (for recent reviews on
statistical analysis developments in cosmology and astrophysics see Refs. [24-26]).

To get a glimpse of the types of challenges astrophysical data analysis is cur-
rently facing, we will now discuss on a high-level some exemplary problems. The
selected topics cover only a small part of the current astrophysical statistical analysis
challenges, and reflect the works presented in this thesis.

Strong gravitational lensing Gravitational lensing [27], the phenomenon where
light-rays from a distant source bend due to the presence of an intervening massive
object (the lens), has significantly advanced various fields of physics. Significant
findings include, e.g., discovering and analysing some of the most distant galaxies in
the universe [e.g. 28-30], determining the dark matter content within galaxy clusters
and understanding its distribution on both galactic and sub-galactic scales [e.g. 31-35],
detecting individual light dark matter halos [e.g. 36-38], and measuring the Hubble
constant [e.g. 39, 40]. Crucial to many of these studies is the capability to accurately
invert the physical predictive model for the source and lens. Hence, it includes dealing
with very large number of degenerate parameters: for instance, variations in the source
morphology (e.g., parametrized by a pixel grid, with O(pixels) parameters [e.g. 41]),
substructure population (e.g., tenth of thousands of parameters for a cold dark matter



Astrophysical data analysis challenges

1.1.

‘[c2] 'Jog ut g1 @anS1q Jo worjonpoidal e o1k woljded pue a3y o], "PlY
oYY JO SOSUL[[RYD SISATRUR ®)RD 9ININJ PUL JUSLIND 9Y) JO MOIAIDAO [RISUSS B OAL3 0) POPUOIUI ST j0[d 91} ‘DAI}RDIIPUL SIR SO}Rp
1IR)S PUR dWIN[OA BJRD 9} 0] 1R} 910N ‘ASo[omsod pur sorsAydorjse Ul s£oaIns pue sjuomiodxe Surmoodn pur juelInd jo
afuel e 10J sejhqeiad ur 1esk 1od ejep JO SWN[OA PajoadXe WINWIIUIW S} I0J S9)RWIISS SNOI smoys ordels oy T, :T'T oIns1q

oye(] JIelg pojoodxy

sopo1edonsy
SOABA\ [RUOTIR)IARIY) [N
D110USRWOIINO[Y [

F¢0T

2]
=
=

£,0T

1 1
L L L L L L L L L L L L
Q Q N N N S S S S N N S
N & & &L W g SC © ¥ ® © & 52
) I X) [y é Y ') 'S K -NSM
- g
5 E ¢ ©» ® < 5
TRt B " 1 BT O LB -
@ 2z = = = g =5 W R B~ o
25 £ 2 - Z 5 ZZ M % 23 ]
S £ 35 ) £y o = E-NL z -0 O
° £g E = g 5 =
55 2 v.la. o =)
Nz g 5 Z -
..m vOMv = |OOHO
5 £ =
i 5 E
= Q
: : 3 g Ty
= = ® b=
o w = [©]
wn =] = —
5 =S [
o E Fe0T 3
. o g
£ —
g
g &
< o
=
(g
D
2,



1. Introduction

population [e.g. 1]), and main lens mass distribution. Moreover, it involves solving a
mixture of parameter inference, object detection, and image reconstruction problem.

Cosmology Recent and upcoming large-scale structure surveys will measure galaxy
distributions with unprecedented precision, improving our understanding of cosmoge-
nesis, neutrino physics, and dark energy [e.g. 10, 42]. These surveys compare cosmo-
logical models to data, starting with a model of the universe’s initial conditions — an
isotropic density field with small Gaussian perturbations. This field evolved through
gravitational processes into today’s structures, catalogued in redshift space [43]. By
modeling early universe processes and understanding the evolution of perturbations
influenced by dark matter and dark energy, large-scale structure surveys provide direct
constraints on the initial density field and its evolution [44]. Mapping back today’s
structures to constraint the initial density field requires developing advanced cosmo-
logical simulators, and accounting for non-linear transformations, mixing of spatial
structure, and noise, all while exploring a multi-million-dimensional parameter space
at the field level.

Point-source in sky maps A striking example of how having higher-resolution
data calls for more complex models that need to account for more objects, hence more
parameters, hence harder inference, is given by the evolution of y-ray observations
in the galactic plane. Starting with SAS-2 satellite (1972-1073), 6 y-ray sources and
the diffuse emission were identified [45, 46]. Two decades later, with EGRET (1991-
2000), it was possible to identify up to 188 7-ray sources, extended point sources,
and resolve gas emission [47]. With Fermi-LAT [48], we have now more than 6600
~-ray sources, highly resolved gas maps, many extended sources, the detection of the
Fermi bubbles [49], and an unidentified component, the so called GeV excess [50]. A
physical model to describe this type of data can require, e.g., O(10*) parameters for
the resolved point sources alone. Moreover, some of its components have an unclear
uncertainty quantification (e.g. the gas maps). For this type of data, the statistical
analysis can be thought of as a mixture of source detection and image analysis, and
requires self-consistent measurement of point-source population parameters based on
both detected and undetected objects.

The common thread behind these physical systems and their statistical challenges
is that they are formally representable by large models, with the adjective “large”
describing three different properties at the same time: their complexity (in terms
of number of components and potentially intricate interactions between them), their
volume (in terms of observational data), and the computational resources (in terms
of power, memory, and time) needed to solve them. In recent years, new classes of
scalable, fast, and computational-efficient inference algorithms have been enabled by
breakthroughs in machine learning [51], which could play a major role in the successful
analysis of these types of astrophysical data.

4



1.2. The emergence of the simulation-based inference paradigm

1.2 The emergence of the simulation-based infer-
ence paradigm

Over the years, in order to draw scientific conclusions, an abundance of statistical tools
and physics simulation codes have been developed within the community.! In partic-
ular, physics simulators have always served as powerful predictive devices, mapping
model parameters into realized data by reproducing numerically the underlying natu-
ral phenomenon of interest. Recently, remarkable progress in computing technologies
and programming languages have made it possible to express increasingly detailed
and complex physical models through high-fidelity computer simulators. However,
while simulators excel at predicting system behaviors, they are poorly suited for sta-
tistical inference and for solving inverse problems. Broadly speaking, to evaluate the
likelihood of a data realization implicitly defined through a computer simulator one
must solve an inverse problem that involves integrating all possible code paths, for
all possible simulator configurations, that could have potentially led to the observed
data realization. Clearly, as the fidelity and detail of modern computer simulations
increase, computing this quantity becomes exceedingly difficult, if not entirely in-
tractable or computationally infeasible [52].

Fortunately, recent advances in deep learning [53] and differentiable program-
ming [54] have led to the emergence and proliferation of a simulation-based inference
paradigm that can effectively tackle the above challenges. By leveraging the power of
neural networks, these new methods can approximate the complex relationships within
simulators, allowing for efficient solutions to inverse problems that were previously
beyond reach [52]. This paradigm shift in statistical analysis has led to the prolifer-
ation of tools for simulation-based inference [e.g. 55-58] and to their application to
various problems in gravitational waves astronomy [e.g. 59-66], strong gravitational
lensing analysis [e.g. 1, 5, 67—71], cosmological probes [e.g. 3, 55, 72-82], and many
other astrophysical problems [e.g. 4, 83-92].

We will see more in depth in Chapter 2 the technical details of the various
simulation-based inference algorithms, showing how they can improve the quality of
insight we can gain from simulations, maximizing information extraction from data,
and providing robust uncertainty quantification for scientific statements. In the next
introductory section, we will focus on providing the context and motivation for this
paradigm shift, comparing it to the likelihood-based paradigm, and highlighting how
it can help in tackling some of the challenges discussed previously in Section 1.1.

LAn extensive list of the tools used in astrophysics, cosmology, and high energy physics can be
found here: https://github.com/nikosarcevic/HEP-ASTRO-COSMO.
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1. Introduction

1.3 To likelihood-base or to simulation-base?

Ultimately, we are interested in inferring the probability distribution of model pa-
rameters © for a given observation xy. In a Bayesian inference context, the posterior
distribution for model parameters ® follows from Bayes’ theorem

p(z | ©)

pO|w) =

p(©), (1.1)
where p(z | ©) is the likelihood of the data x for given parameters ® € RP, p(@®)
is the prior probability distribution over the parameters, and p(x) is the evidence
of the data. As evident from Equation (1.1), the Bayesian framework needs both a
formalization of the modeling assumptions, encoded by the likelihood, and a prior
knowledge associated with each learnable parameter of the model, encoded by the
prior.

Given this Bayesian setup, statistical inference is performed within the context
of a probabilistic model p(x | @), that can be in principle accessed by two different
routes. On one hand, likelihood-based inference (LBI) algorithms rely on likelihood
evaluations, single scalars that quantify closeness to the observation xy. On the other
hand, SBI algorithms do not explicitly calculate the likelihood function, but instead
rely on samples from a stochastic simulator that implicitly maps model parameters
® to data x.

Likelihood-based methods

The main LBI tools to solve inverse problems for modern astrophysical and cosmo-
logical data analysis have been sampling-based inference methods, like Markov-chain
Monte Carlo (MCMC) [93, 94] and nested sampling [95-97] techniques. However,
it is especially challenging to ensure these methods convergence in high dimensional
parameter spaces (the time needed to reach convergence scales poorly with the dimen-
sionality of the explored parameter space), for multi-modal posteriors, and curving
degeneracies. More modern methods are taking up these challenges, including Gibbs
samplers [98] (that rely on conditional distributions), and slice-sampling techniques
[99, 100]. For example, the new generation nested sampler PolyChord [100], based
on slice-sampling, has at worst a O(D?) scaling, whereas Multinest [96] has an ex-
ponential scaling that emerges at high dimensions (see Figure 4 in Ref. [100]).

As the dimensionality grows, sampling from the typical set of the posterior dis-
tribution becomes exponentially difficult [101]. Therefore, it is useful to resort to
gradient-based algorithms, as they are able to concentrate the sampling in high pos-
terior mass regions, despite the large number of model parameters, provided one has
efficient access to accurate derivatives of the likelihood function with respect to the

6



1.3. To likelihood-base or to simulation-base?

model parameters [101]. The most popular gradient-based method among physicist is
Hamiltonian Monte Carlo (HMC) [102, 103], which is built on the formalism of Hamil-
tonian dynamics (as the name implies). Widely used in cosmology, it is of particular
notice the application of Ref. [44]: dynamical large-scale structure inference from
galaxy redshift surveys, where the parameter space is the 3D initial matter density
field, of order O(107) voxels. This impressive result has been achieved with significant
computational resources and by carefully tuning the so called “mass matrix” of the
HMC, which is not always possible.

Lastly, it is worth mentioning variational inference (VI), which, differently from
the previously mentioned LBI methods, allows for the approximation of extremely
high-dimensional Bayesian posteriors with simple proposal distributions by solving an
optimization problem [104, 105]. As for HMC, VI’s efficient implementation requires
gradients from an end-to-end differentiable physical simulator [e.g. 106-108]. This
can be achieved with little extra effort through auto-differentiation libraries that are
standard in deep learning packages [e.g. 109, 110]. Notably, VI has already been
successfully applied in various astrophysical contexts [41, 111-114]. Of particular
notice is Ref. [111], where they jointly optimize parameters for 188 x 10° stars and
galaxies using tera-scale datasets. We will come back to VI in Section 2.1.2, in order
to compare it in details with its direct SBI counterpart.

Simulation-based methods

Differently from LBI methods, SBI entirely relies on samples from a stochastic sim-
ulator that maps model parameters ® to data x. This mapping is equivalent to
sampling from the model distribution & ~ p(x | ®), which is effectively an implicit
representation of the likelihood. As a result, in this setting one just needs a compu-
tational code that generates random samples from p(x | @), that can be later used
by a SBI algorithm. For the purpose of this thesis, a simulator/forward model is a
computer program that takes as input a vector of parameters ® € R”, samples a
series of internal states or latent variables, and finally produces a data vector x as
output (usually our observable). Programs that involve random samplings and are
interpreted as statistical models are known as probabilistic programs, and simula-
tors are an example [52]. In principle, using simulators allows for the simultaneous
inclusion of all relevant processes that can affect the data, regardless of whether a
full probabilistic description is tractable or not, as long as they can be efficiently
programmed. In this context, intractability means one of two things: a closed-form
expression of the likelihood distribution is not available, or even if available it is com-
putationally too expensive, e.g., in the worst case, it scales exponentially with the
number of parameters [115, 116].

A more detailed exploration of the various SBI algorithms is presented in Chap-

7



1. Introduction

Ly, € RT
Likelihood evaluation —— Likelihood-based
Ly, (®) =p(xo | O) e inference (LBI)
~° |
Model Observation Prior
p(z | ©) xg p(®)

. > |

Likelihood sampling —— Simulation-based
c~px[©) . inference (SBI)
S}

Figure 1.2: Likelihood-based inference algorithms rely on the evaluated likelihood
L., (©), which is a single scalar that quantifies closeness to the observation xg.
Stmulation-based inference algorithms learn a function that can be evaluated on many
different observations xg, determining their optimal distance measures case by case.
Diagram credits: Christoph Weniger.

ter 2, we will now focus on the main high-level differences between LBI and SBI,
drawing from the literature to highlight SBI advancements over LBI methods.

Comparison: SBI vs. LBI

The main differences between SBI and LBI methods are summarized in Figure 1.2.
In both cases, we start with a data model, p(x | @), which describes the probability
of data x given parameters @. In the LBI case, the strategy is a detailed analysis
of the likelihood function given an observation xg, Lg,(©) = p(xo | ©). To this
end, simplifying, the LBI algorithm will suggest points ® where the likelihood will
be evaluated, and try to focus on regions with high density. On the other hand,
SBI techniques do not require a tractable (see above) likelihood-density p(zg | ©)
at a specific observation x(. Instead, they rely on synthetic data samples from the
likelihood function & ~ p(x | ©), for a range of model parameters © that are in the
simplest case drawn from the parameter priors, @ ~ p(®), or in more complex cases
from generative models [e.g. 6].

While in principle the two frameworks converge to the same answer, when applied
several practical differences emerge. We will highlight now two of the most striking
disparities, but others will surface in the next chapter when the discussion becomes
more technical.



1.3. To likelihood-base or to simulation-base?
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Figure 1.3: Simplified comparison of likelihood-based and simulation-based algorithms
in the space of number of required simulations versus number of model parameters.
Each work addresses different physics applications, each with its own set of challenges
and variations, employing diverse types of analysis to solve them. Therefore, each
reported scatter point is unique and achieve the reported scaling thanks to different
properties of the various SBI and LBI algorithms employed in the specific study.

Recyclable inference. As highlighted in Figure 1.2, the analyzed observation xg
enters the statistical framework of LBI and SBI at different stages. In particular,
LBI algorithms perform inference for a fixed observation xg, and must rerun from
scratch for any another observation. It is thus computationally costly to perform new
analysis and statistical test on the obtained results. On the other hand, we will see
that SBI algorithms effectively learn an estimate of the probability density function
that can be used to perform “online” inference on any new data (as long as they
stem from the same prior support). In this case, there is no need to rerun the whole
pipeline for different observations, but just to re-evaluate the learned function on new
data.? Furthermore, statistical consistency tests can be performed rather quickly and
efficiently. This aspect will be explored in Section 2.3.

Breaking the curse of dimensionality. When using likelihood-based techniques,
in order to solve one inference problem, like obtaining samples for a marginal posterior
of interest, one has to solve all of them (joint posterior estimate). The computational
overhead of generating joint samples as an intermediate step of marginal inference
can be enormous, and can quickly turn an apparently easy inference task, like the
measurement of a single physical parameter, into a big challenge. These cases are
not uncommon, and, when possible, require problem specific care. For instance, it is

2This property is not fully preserved in case of sequential SBI algorithms, as they prioritize
achieving other types of benefits (this will be illustrated in Chapter 2).
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1. Introduction

common in several scenarios to analytically perform parts of the marginal integrals
to reduce the parameter space in clever ways: e.g., in cosmic microwave background
analysis by analytically marginalizing over power spectra amplitudes [117], or in pro-
cedure for characterizing the contribution of unresolved point sources by integrating
over their positions [118], or in strong gravitational lensing analysis by marginalizing
over the background source galaxy [119].

On the other hand, one key aspect of SBI algorithms in general is their ability
to directly estimate marginal posteriors, instead of having to first estimate the joint
posterior over all parameter space, and then marginalize out nuisance parameters.
A clear example of this property can be found in Ref. [120], where both SBI and
and a nested sampler are used to sample from an “eggbox” posterior with D = 14
dimensions with over 10* modes: the nested sample requires at least 107 samples,
whereas SBI needs three order of magnitude less samples to directly estimate the
1-dimensional and 2-dimensional marginal posteriors for the 14 parameters [Figure 2
in 120].

A second illustrative example of this property can be found in Ref. [78]. Analyz-
ing cosmic microwave background data, they used SBI to directly estimate marginal
posteriors for the six cosmological parameters of interest, while directly marginaliz-
ing over the thirteen varying nuisance parameters present in the analysis. The SBI
analysis required only 3 x 103 simulations, while to obtain the same results using
MCMC with the Planck likelihood required 5 x 10% simulations (since the MCMC
must sample all the nineteen parameters).

This, and many other comparative analysis of SBI and LBI methods, can be
found in Figure 1.3. The figure is meant as a very simplified comparison of LBI
and SBI algorithms in the space of number of required simulations (or computational
time to run the analysis) versus number of model parameters. Each work addresses
different physics applications, each with its own set of challenges and variations,
employing diverse types of analysis to solve them. Therefore, each reported scatter
point is unique and achieves the reported scaling thanks to different properties of
the various SBI and LBI algorithms employed in the specific study. The main take-
away message from the plot is that, in general, SBI techniques are extremely scalable
and simulation efficient with respect to LBI as a function of model parameters. One
of the main reasons, except for the fast evaluation time of neural networks, is their
possibility to directly estimate marginal probabilities. This effectively means that
we can use SBI algorithms to break down large problems into smaller ones, while
coherently accounting for the uncertainties coming from the rest of the parameter
space (as further detailed in Section 2.2.2). In the next chapter, we will get deeper
into the technical details of SBI and illustrate more reasons why these techniques
are promising for pushing the boundaries of the curse of dimensionality compared to
likelihood-based methods (Figure 1.4).
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Figure 1.4: Simplified comparison of likelihood-based and simulation-based algorithms
in the space of number of required simulations versus number of model parameters. In
general, the simulation requirements of likelihood-based techniques grows significantly
with the number of model parameters (curse of dimensionality). Instead, simulation-
based inference techniques can, in principle, directly focus on estimating marginal
posteriors for parameters of interest, independently of the total number of parameters.
This reduces the need for parameter reduction techniques and enables the comparison
of complex simulation results with complex data. The figure is adapted from Figure
4 in Ref. [121].
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1. Introduction

1.4 Outline

This thesis aims to contribute to the ongoing effort to transition towards simulation-
based inference techniques in astrophysics and cosmology, emphasizing some of the
tremendous opportunities that this transition brings. To this end, this thesis first
proposes a general simulation-based ecosystem for astrophysical data analysis (Chap-
ter 2). Then, it illustrate its capabilities through exemplary applications to three
challenging astrophysical problems, as motivated in Section 1.1:

Chapters 3 and 4: The analysis of strong gravitational lenses as a dark matter
probe.
Chapter 5: The reconstruction of cosmological initial conditions from late-

time density fields.

Chapter 6: The analysis of point-sources in sky-maps.

Overall, it aims to highlight the potential for fast, flexible, and testable simulation-
based algorithms to facilitate scientific discovery in astrophysics and cosmology, at
the dawn of their data-driven era, and forward.

12



SIMULATION-BASED
INFERENCE

The purpose of this chapter is to complement the introduction by laying the foun-
dations of the simulation-based statistical inference framework employed throughout
the rest of the thesis. First, we provide an overview of traditional and neural network-
based SBI implementations. Then, we focus on the specific algorithm that will be
employed in the following chapters of this thesis, truncated marginal neural ratio es-
timation. We will then compare it with the other core SBI algorithms, highlighting
advantages and pitfalls. Finally, we will outline this thesis specific contribution to the
SBI field for astrophysical data analysis.

2.1 The landscape of SBI

In this section, we describe the developments and landscape of SBI algorithms. We
begin in Section 2.1.1 by providing a brief overview of traditional implicit-likelihood
methods for posterior inference, approximate bayesian computation [122] and kernel
density estimation [123]. We then explain in Section 2.1.2 the different routes one
can use to vastly accelerate and scale this process using neural networks [52, 124].
A comparison of the various neural SBI algorithms with a discussion about their
drawbacks and advantages can be found later in Section 2.4.

2.1.1 Traditional SBI

The first implicit-likelihood ideas date back to the 1980s. Particularly relevant for the
initial development of this paradigm was statistician Donald Rubin’s discussion about
the use of frequency calculations for the interpretation of Bayesian statements [125].
Importantly, in these lectures he encouraged statisticians to not settle for analytically
tractable models only, but to instead consider computational methods to estimate the
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2. Simulation-based inference

posterior distribution of interest for a wider range of models. An outline of the most
well-known traditional SBI algorithm, approximate Bayesian computation (ABC),
can be already found in Rubin’s work [125, Section 3.1].

Approximate bayesian computation

It is worth exploring in more details the ABC algorithm, since it will serve us as the
classical analogue of the SBI technique mostly employed throughout this thesis (see
Section 2.2). For more detailed reviews see Refs. [122, 126, 127]. ABC is a rejection
sampling algorithm where, given a prior ® ~ p(@) proposed samples = ~ p(z | O)
from the forward model are compared to the target observed data xy with a hand-
crafted distance measure based on some low-dimensional summary statistics s(x), as
for example

(@, z0) = [|s(z) — s(zo)|| - (2.1)

Samples from the approximate posterior are drawn with rejection sampling using an
acceptance tolerance e such that samples satisfy d(x,x() < e. Hence the posterior

fd(wo,w)<e dzp(® | z)p(z)
fd(wo,w)<e d(l:p(il:)

paBc(® | z) = (2.2)

is guaranteed to converge to the true one for sufficiently informative summary statis-
tics s(x) and for € — 0, papc(© | x) =0 p(® | ). Whereas, when ¢ is non-zero,
the approximate posterior is guaranteed to be broader than the true one, leading to

conservative inference.

Interestingly, a physical implementation of ABC-rejection scheme for a single pa-
rameter and a single observation was already constructed by Francis Galton in the late
1800s [128, Figure 5]. The device is known today as the Galton board, and often used
to demonstrate the central limit theorem [129]. Since Rubin’s work, ABC has been
widely adopted in astrophysics and cosmology, including applications to, e.g., galaxy
demographics [130], galaxy—halo connection [131], intergalactic medium [132], exo-
planetary systems [133], luminosity functions [134], stellar initial mass function [135],
cosmology [136, 137], galaxy clustering [138], type Ia supernovae [139], gamma-ray
sky [140], and cosmic rays [141]. The quick adoption of ABC from the astrophysical
community has also been accompanied by the development of specialized softwares,
which have played an important role in the dissemination of the technique such as
CosmoABC [138], abcpmce [136], and astroABC [137].

Approximate frequentist computation

A second classical approach to SBI was also proposed in the 1980s by Diggle and
Gratton [123]. The approach was dubbed “approximate frequentist computation” by
the authors of Ref. [142] because of its similarities to ABC. Specifically, this method
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2.1. The landscape of SBI

is based on creating an approximate model for the likelihood by estimating the distri-
bution of low-dimensional summary statistics from samples drawn from the simulator
with histograms or kernel density estimation. The advantage over ABC is that it is
amortized, meaning that after the initial computational cost for the simulation and
density estimation phase, evaluating new data points becomes efficient. This property
makes kernel density estimation-based inference particularly well suited for problems
with many independent and identically distributed (i.i.d.) observations, a key rea-
son for its widespread use in particle physics measurements [143]. For example, this
approach was used for the discovery of the Higgs boson in a frequentist paradigm
[142].

Moving SBI forward

Despite their success and continuous progresses, there are some explicit disadvantages
of these classical SBI methods (of which the community is aware of [see e.g. 24]), that
makes them unsuitable for high-dimensional and complex data. First, they both
rely on low-dimensional summary statistics s(x) to compare simulations to the data,
which may not retain all the information available in the data. Second, they suffer
from the curse of dimensionality, with a required simulation budget that increases with
the dimensionality of the parameter space [e.g. 115]. In particular, the acceptance
rate of ABC’s rejection algorithm vanishes exponentially as the dimensionality of the
parameter space increases, thus significantly more simulation budget is needed to
reach convergence in high dimensions for e — 0.

These challenges are tackled in modern SBI algorithms thanks to advances in deep
learning [53] and automatic differentiation [54]. In particular, first, the development
of neural network’s architectures tailored to various data structures has been funda-
mental for the processing of significantly more complex data [53]. This allows for the
optimization of learned data features w.r.t. some custom loss, instead of relying on
hand-crafted summary statistics. Second, neural network-based algorithms are being
actively developed to estimate probability density distributions in high dimensions,
overcoming the curse of dimensionality [e.g. 144-146]. In the next section, we will
discuss the main neural network-based SBI algorithms.

2.1.2 Neural SBI

Moving beyond the classical SBI approaches, in recent years, a number of new neural
network-based SBI techniques have been proposed. We refer the reader to Ref. [52]
for a general review, to Ref. [124] for benchmarks of the various algorithms, and to
Ref. [147] for an exhaustive comparisons of all SBI methods currently available as well
as discussions about their challenges and pitfalls in the context of astrophysics and
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2. Simulation-based inference

cosmology.! The widespread adoption of these methods in astrophysics and cosmology
has also been driven by the development of specialized tools, such as, e.g., pydelfi
[55], sbi [56], swyft [57], and lampe [58].

In general, Bayes’ theorem (Equation (1.1)) hints at a few different approaches
for the implementation of neural SBI algorithms: neural posterior estimation (NPE)
which employs density estimation techniques to directly estimate the posterior p(© |
x) [146, 148]; neural likelihood estimation (NLE) which instead uses density estima-
tion to learn an approximation to the likelihood p(x | ©) [149, 150]; and neural ratio
estimation (NRE) which uses classifiers to approximate the likelihood-to-evidence or

posterior-to-prior ratio 2 gf‘mc;)) =£ 1(7((9(;)0) [120, 151-154]. In the following paragraphs,

we will describe their fundamental properties.

Neural posterior estimation

NPE is the most straightforward method [146, 148]. Tt introduces a density estimator
¢3FE(® | z), parametrized through the weights ®, which is trained to approximate
the posterior for parameters ® given data x,

5 PO z)~p(@ ). (2:3)

Specifically, we want to reduce the dissimilarity between the density estimator
gyPE(® | z) and the true posterior p(® | z) by minimizing w.r.t. the weights ®
the forward Kullback-Leibler (KL) divergence [155],

/d@p(@ | 2)In (%) (2.4)

>
[n p(©|z) ]
o~p®lz) | ¢ E(O]|x)

Dxwi(pllay™™)

(2.5)

As the expectation value is taken over samples from the true posterior distribution,
we cannot evaluate the above quantity. To overcome this limitation, one averages
over simulation data @ ~ p(x). The loss is now the expected forward KL divergence,
where we have exploited the fact that p(® | x)p(x) = p(x, ®), which we know how

to sample:
NPE p(© | z)
anpl) [Preu(pllae )] = 2.0~p(@,0) [ a3 "(© | w)} (26)
=— E ngy e O | x) + E lnp(@® | x) .
z,0~p(z,0) z,0~p(z,0)
expected entropy constant
(2.7)

L An extensive list of works that use neural SBI in astrophysics, cosmology, and high energy physics
can be found here: https://github.com/smsharma/awesome-neural-sbi.
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NPE loss function is then given by the negative log-probability
LNPE — E gy FO | z) . (2.8)

z,O~p(xz,0)
Application of this loss function requires that the density estimator is normalized
to one, [dO ¢5FF(O | ) = 1, which can be guaranteed by using specific network
architectures to parametrize qNPE. The most popular ones with this property are
normalizing flows, which transform tractable density functions into complex ones
through a sequence of invertible operations with tractable Jacobians [145, 156]. The
NPE algorithm has the advantage that it allows both for evaluation and sampling
of the estimated posterior from the normalizing flow. However, the pitfall is that it
requires an analytic form of the proposal prior from which training data was sampled,

which may not be always accessible (e.g. from cosmological simulations).

NPE has been widely used in astrophysics, e.g., for strong gravitational lensing
analysis [67-09], gravitational waves parameter estimation [59-61], gravitational wave
background reconstruction [62], cosmological parameter inference [72], X-ray spectral
fitting [83], exoplanetary atmospheric retrieval [84], galaxy spectra inference [85, 86],
galactic center ~-ray excess characterization [87, 88], among other applications.

Comparison with variational inference It is interesting to compare NPE with
its direct likelihood-based counterpart, variational inference (VI), already mentioned
in Section 1.3 (for a review see Ref. [105]). VI allows the approximation of extremely
high-dimensional Bayesian posteriors with simple proposal distributions by solving an
optimization problem. This is achieved by using a proposal distribution, the so-called
variational posterior, ¢3'(© | o), to approximate the true posterior p (® | zg) and
optimizing its parameters ® using gradient ascent [51, 157, 158]. VI’s optimization
objective is the reverse KL divergence

VI T
/d@ W' (© | x)In (q;(gal wo‘;)> (2.9)

O~qY (®|z0) p(©|z,)

Dx1(q3"Ip)

(2.10)

Similarly to the trick used for NPE, in order to avoid evaluating the inacces-
sible posterior p(® | x,), one exploits Bayes’ theorem and substitute p(®|x) =

p(x|®)p(®)/p(x), obtaining:

(e RECIED] :IJO)
Dk (g¥Y|p) = { 2.11
@l =, Bt (2.11)
RCIED }
= +Inp(xg) , 2.12
e""hpl(@‘wO) |: CE() ‘ @ ( ) q/_(t Ot) ( )

=—ELBO
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2. Simulation-based inference

where we have introduced the evidence lower bound (ELBO). Minimizing the reverse
KL divergence is thus equivalent to maximizing the ELBO, and the VI loss is

LV'= ELBO= E  [lnp(z0,©)—Ingy'(zo|©)] . (2.13)
O~gY (O|z0)

We can now comment upon the main differences between NPE and VI. First, in
NPE parameters are drawn from the model prior p(®) (see Equation (2.8)), whereas
in VI they are drawn from the variational posterior ¢3! (® | o) (see Equation (2.13)).
As a result, in the latter case, samples increasingly focus on regions with high data
likelihood p(x, | @), whereas in NPE there is no automatic focusing on regions with
high data likelihood. Second, for VI the posterior ¢3! (© | @) must cover all parame-
ters that the likelihood model is conditioned on, and omitting correlations (e.g. mean-
field approximation) gives a lower bound on parameter uncertainties. On the other
hand, in NPE, if we substitute ¢3' ©(© | ) with a low dimensional marginal, e.g.
qu E(@, | x), we automatically get marginal posterior estimates, without perform-
ing integrals explicitly. Hence, omitting correlations generates correctly marginalized
posteriors [159]. The ability to directly perform marginal inference is shared among
all other neural SBI algorithms, and it is one of the main differences with likelihood-
based algorithms.

Neural likelihood estimation

Another choice for neural SBI is to perform NLE [149, 150], where one trains an
estimator for the likelihood probability density of the data x given some model pa-
rameters O,

g5 (x| ©) = p(z | ©) . (2.14)

Following a similar reasoning as the one employed to derive NPE loss function, NLE
loss function is given by the negative log-likelihood

LNLE = . 1%@ o Ingi (x| O). (2.15)

Again, specialized network architectures as normalizing flows are typically employed

to guarantee that ¢§“F(z | ©) is a properly normalized density function.

As a general guideline, the choice between NPE or NLE for different physical
problems should consider the dimensionality of the data and parameter space, as
well as the complexity of learning likelihood or posterior distribution’s shape. In-
deed, neural networks are easier to train when using high-dimensional input to yield
low-dimensional output than vice versa. Thus, if the data is high-dimensional (e.g.,
images), then NPE may be a more suitable choice than NLE. Conversely, for high-
dimensional posterior inference (i.e., when the dimension of the parameter space is
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large), NLE often outperforms NPE, especially when there are strong parameter de-
generacies.

NLE has also been widely used in astrophysics, for gravitational waves param-
eter estimation [63] and cosmological parameter inference [55, 73-77], among other
applications.

Neural ratio estimation

Bayes’ theorem hints at a last quantity that can be estimated, the likelihood-to-
evidence or posterior-to-prior ratio

r(@;x) ~ p|©) = p® ) . (2.16)

p(z) p(©)
This quantity is approximated using binary classification via a supervised learning
task. In this case, the ratio does not need to be normalized, hence one is free to use
any neural network architecture.

We will explore in more details the NRE algorithm in a dedicated section, Sec-
tion 2.2.1, as in this thesis we will focus on this last method and its extensions. More-
over, a detailed comparison between NRE and its extension with the other neural SBI
algorithms is presented in Section 2.4.

NRE has also been widely used in astrophysics and cosmology, for gravitational
waves parameter estimation [64, 65], gravitational wave background reconstruction
[66], strong gravitational lensing analysis [1, 5, 70, 71], cosmology [3, 78, 79], stellar
streams analysis [89, 90], 21-cm power spectra [80], type Ia supernovae [81, 82], point
source detection [4], millisecond pulsars [91], astrometry [92], among other applica-
tions.

Active learning

There are a number of additional features that can be used on top of these core SBI
algorithms, either preceding or following the main inference step. Here, we further
refine the taxonomy of SBI algorithms based on whether they use some form of active
learning to guide the simulator towards parts of the parameter space that are most
relevant for a specific target observation xg. In particular, sequential SBI approaches
adaptively choose informative simulations by using sequentially refined proposal dis-
tributions for the model parameters. They have been reported to outperform and
be more simulation-efficient with respect to non-sequential ones across a number of
different benchmark tasks [124] and, e.g., in cosmology [78], in gravitational waves
astrophysics [64], and in strong lensing analysis [69]. Particularly impressive is the
recent result form Ref. [69], where they perform a sequential NPE analysis of strong
gravitational lenses, that would have taken 2000 times longer without the use of active
learning [Figure 5 in 69].
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The core intuition behind sequential SBI algorithms is the following: given a
single observation of interest, xy, sampling parameters from the entire prior space
to generate training data may not be efficient, since it leads to training data (x, ®)
that has significant variance compared to the target observation xy. Therefore, for a
fixed simulation budget, the training samples contain only limited information about
the posterior p(® | &y). The alternative proposed by sequential algorithms, in order
to increase simulation efficiency, is to draw parameters from an adaptive proposal
distribution p*)(®), resulting in training data that matches the observation of inter-
est more closely in each sequential round R. More details regarding various possible
implementations of sequential inference are given in Section 2.2.3.

In this section we have introduced the core neural SBI algorithms. After describing
in details the algorithm mostly employed in this thesis (Section 2.2), we will compare
it to the other ones in Section 2.4.

2.2 Truncated Marginal Neural Ratio Estimation

We will now focus our attention on the main SBI technique employed in this the-
sis, truncated marginal neural ratio estimation (TMNRE). We provide a pedagogical
introduction, and show that it forms the core of a fast, accurate and precise ap-
proach to solve general parameter inference problems in high-dimensional settings
[120, 160, 161]. The approach builds on three key simple ingredients. First, neural
ratio estimation (NRE). Second, focus on marginal inference (M). Third, active learn-
ing through prior truncation (T). We provide a technical description of them in the
following sections, emphasizing how they compose well together.

2.2.1 Neural Ratio Estimation: “classification is all you need”

Ratio estimation rephrases Bayesian posterior inference as a binary classification prob-
lem. Given an implicitly defined model ,® ~ p(x,®) = p(x | O)p(O), the idea
behind ratio estimation is to use a binary classifier to distinguish between data x and
parameter © pairs drawn from two classes labeled by the binary variable C:

p(x,® | C=1) =p(x,O) (2.17)
p(z,© | C'=0)=p(x)p(O). (2.18)

Concretely, these two distributions correspond respectively to drawing data and pa-
rameters jointly from the simulator, &, ® ~ p(x, ®), or to drawing data and param-
eters marginally, ¢, ©® ~ p(x)p(®), by sampling an unrelated set of parameters from
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2.2. Truncated Marginal Neural Ratio Estimation

the prior versus data from the simulator (this can be simply obtained by scrambling

the joint pairs).”

Sampling C' = 0 and C' = 1 with equal probability, the decision function for

the Bayes-optimal classifier [162] (i.e. the one that minimizes the Bayesian risk of
missclassification) is:

p(z,0)
(z.©) + p(x)p(©)
where we introduced the sigmoid function o(y) = 1/(1 + e ¥). Importantly, the

equivalence in Equation (2.19), often called the “likelihood ratio trick” [e.g. 70, 151],
shows how the Bayes-optimal classifier is related to the posterior-to-prior, likelihood-

p(C=1]z,0)= , = ollogr(©®;x)], (2.19)

to-evidence, or joint-to-marginal distribution ratio:

L _p®]2) p|0)  p@.0)
MO =Ty T s paw®) (2.20)

Thus, one can gain access to the posterior-to-prior ratio by training a classifier of
joint versus marginal pairs, which are easily obtainable with a forward simulator, and
subsequently use it for inference. In practice, as the first equality in Equation (2.20)
suggests, if the prior is tractable, r(©;x) gives direct access to the posterior density:
p(® | x) = r(O;x)p(O). Alternatively, one can use r(®;x) to weight prior samples,
enabling posterior sampling even when the prior cannot be expressed in closed-form.

Often, both the data and the parameters are typically high-dimensional objects
(e.g. strong lensing images and the parameters of a population of dark matter sub-
structures, or galaxy clustering measures and cosmological initial conditions param-
eters), and therefore neural network-based classifiers that are able to process this
complex data and be efficiently optimized are a necessary choice. As proposed by
Ref. [153], in NRE the classifier in Equation (2.19) is a neural network (NN), dg (x, ©),
that takes as input a parameters-data pair and produces an estimate of the ratio
#(®;x).® The network parameters ® are optimized via stochastic gradient descent
[51, 157, 158] to minimize the binary cross-entropy (BCE) [163]:

Llde(x,0)] = — /da:d@ {p(x, ®)log de(x, O)]

+p(x)p(©)log[1 — de(x, ©)]} .

(2.21)

Therefore, by training a neural network dg (x, ®) to estimate #(®;x) via this super-
vised classification task, we obtain an estimate of the posterior through (@ | x) =
7(©;x)p(O).

2Throughout this thesis we will refer to joint samples as positive training examples, and to
marginal samples as negative training examples.
3Throughout this chapter we will use the notation [J to indicate quantities estimated via NN.
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2.2.2 Marginalization: focus on the essentials

Joint posteriors are commonly a key component of a scientific workflow when ana-
lyzing real-world data, since access to joint posterior samples exhaustively solves a
given Bayesian parameter inference. However, when the number of parameters be-
comes large (e.g., hundreds for a cosmic shear joint analysis of three surveys [164],
thousands for strong gravitational lensing substructures [1, 5] or background source
reconstruction [41], or even millions for cosmological initial conditions [3, 44]), the
computational overhead of generating joint samples can be enormous. Furthermore,
the full joint posterior p(@® | x) is usually only an intermediate step, and not the goal
by itself: in many cases, scientific insight is based on a low-dimensional marginaliza-
tion of the overly informative joint posterior over nuisance parameters.

Let us consider a model with a full joint distribution

p(z,0,m) =p(z | 6,n)p(0,n) , (2.22)

where we have split the set of all model parameters ® = {8, } € R” into parameters
of interest @ € R? (which we want to infer) and nuisance parameters n € RP—¢
(which we want to marginalize over). Formally, the marginal posterior is obtained by
integrating the joint posterior over all nuisance parameters

pwlw%=/an&n|@- (2.23)

Given the general NRE setup, the extension to estimating marginal posteriors
is straightforward: parameters to be marginalized over must be sampled, but not
presented to the ratio estimator [120]. Hence, marginalization over nuisance variables
is done implicitly, since the data will incorporate the variance from the nuisance
parameters, but the inference procedure estimates only the marginal likelihood-to-
evidence ratio.

In more detail, if 7 is not passed to the ratio estimator, the loss function becomes

‘C[d'~1> (iL‘, 0)] = /dwdedn {p(az, 07 77) IOg de (:B, 0’ 77)

+p(x)p(6,n)log[1 — da(z,0,1)]} (2.24)
=— /dm dO {p(x,0)logds(x,0)
+p(x)p(0)log [1 — da(,0)]} , (2.25)

where we have integrated over 1 to obtain the second equality, proving our statement.
As a result, the binary classifier trained on (x, 8) pairs effectively learns an estimate
of the marginal likelihood-to-evidence ratios

BGL Iy W (SES

7(x;0) = (0) p(n). (2.26)
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Figure 2.1: In simulation-based setting it is possible to directly estimate the marginal
posterior of interest, instead of solving the problem for the full joint posterior at once,
which can be computationally infeasible for complex models. Here we highlight some
of the possible types of marginals that can be directly inferred in SBI for this mock
high-dimensional parameter space.
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2. Simulation-based inference

We can then use the marginal ratio #(x,0) to evaluate the marginal posterior for
the parameters of interest directly or obtain samples otherwise, with significantly
less computational cost. The possibility to directly access marginal posteriors can be
easily obtained for NLE and NPE density estimators as well [55, 165].

As touched upon in Section 1.3, this way of approaching the problem determines
the scalability of SBI algorithms with parameter space dimensionality. One can then
focus on improving the model realism (i.e. complexifying the simulator) without fun-
damentally altering the inference process (i.e. same ratio estimator training), since
there is no need to estimate a full-joint posterior. Effectively, this means that we can
use SBI algorithms to break down large problems into smaller ones, while coherently
accounting for the uncertainties coming from the rest of the parameter space. An ex-
emplification of this process is illustrated in Figure 2.1, where instead of solving the
inference problem for the whole parameter space, one can focus on lower-dimensional
projections of the correlations.

It is important to note that, when making the simulator more complex by adding
parameters, if all of them contribute equally to the data variance, the implicit data
distribution will become noise-dominated. Thus, when referring to scaling to arbitrary
number of variables, the data variance is implicitly kept fixed. This limit remains
a challenge for likelihood-based methods, but is tractable in the simulation-based
frameworks.

2.2.3 Truncation: zoom-in for high precision

The ratio estimators discussed so far are fully amortized: that is, they attempt to
learn r(0;x) over the whole range of the prior p(@). In principle, it is useful to be
able to analyze any possible observation with the same network. In practice, when
the posterior p(@ | xg) for a particular observation x( is much narrower than the
prior, training an accurate ratio estimator, and general density estimators, requires a
massive amount of training data. Hence, for a given limited simulation budget and
network bandwidth, amortized inference typically comes at the expense of reduced
posterior precision. In order to fully exploit available information in the data with
limited computational resources, we instead focus on the problem of targeted learning
of the posterior for a specific observation of interest @y through sequential inference.
In a nutshell, sequential inference approaches adaptively choose informative simula-
tions by using sequentially refined proposal distributions for the model parameters, as
briefly mentioned in Section 2.1. In this way, the relevant parameter space is sampled
more densely and the network can learn better in that region.

The classification of sequential SBI algorithms can be sifted based on how they
acquire new, informative simulations. In particular, the sequential techniques adopted
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2.2. Truncated Marginal Neural Ratio Estimation

in Refs. [146, 148, 149, 153, 166, 167] draw new simulations for the next round from
the approzimate posteriors learned in each round. However, this approach suffers
from two limitations. First, several frequently used diagnostic tools for SBI depend
on performing inference across multiple observations (e.g. expected coverage tests, see
Section 2.3). In this setting, to perform these tests, one would have to generate new
simulations and network retraining for each observation, which is often prohibitively
expensive. Second, marginal posterior estimation is in general affected by the proposal
distribution, since one implicitly integrates over it. As a result, this approach is
unsuitable for learning multiple marginal posteriors simultaneously over a number of
sequential rounds, since sampling from the marginal for a particular parameter may

hinder learning the marginals for other parameters (for a possible workaround see
Ref. [55]).

To overcome the limitations of this sequential scheme, Ref. [160] proposed a
hard-likelihood prior truncation scheme, applicable to NRE, that composes well with
marginalisation and is locally amortised.* This prior truncation scheme iteratively
discards in rounds R low likelihood(-to-evidence) regions, where the current approxi-
mate likelihood-to-evidence ratio evaluated for the target observation is below a user
defined threshold e. Concretely, this means keeping the region of parameter space
defined by

Y = {6 cR: #F)(B;z) > ¢}, (2.27)

and discarding its complement.® Such truncated priors constrained to the parameter
region FéR) can be defined as:
1

pr(0) = I (0)p(0) (225)

Here, I (0) is an indicator function, which is one for 6 € I and zero otherwise,

1 for el

2.2
0 otherwise (2.29)

Hp(a) = {
Furthermore, V = [d@1Ir(0)p(0) is a normalizing constant that can be interpreted
as the mass of the truncated prior.

The prior truncation scheme thus defines a series of nested indicator functions
Iry whose regions have the property ro->r® 5r® 5 ... 5176 where I'©)
defines the support of the full initial prior, and I'*®) is the final stable truncated
prior. We illustrate this truncation procedure for a simple 1-dimensional scenario in
Figure 2.2.

4With locally amortised inference we refer to an inference that can be repeated several times,
without retraining, with distinct observations that live in the support of the truncated prior.

5Similar truncated proposals have also been introduced in Ref. [168] in the context of NPE, where
the condition is instead on the current estimated posterior, e.g. p()(8 | ) > .
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— p(9)
— p(@|x)

B

Figure 2.2: Illustration of sequential inference for a 1-dimensional posterior. First, we

—

learn an approximation to the posterior p(@ | ) from the full initial prior p(@). Then,
we restrict the prior in the region where the parameter 0 is likely to have generated
. In the next inference round, the truncated prior pr(6) will be used to generate
targeted simulations, sampling the parameter space more densely in the region of
interest, so that the network can learn better in that region.

Importantly, since this sequential scheme does not modify the shape of the prior
proposal distribution, but only restricts its support, the inference is still locally amor-
tised in the constrained proposal distribution region, thus allowing for the possibility
of tests that rely on performing inference across multiple observations (in the I' sup-
port). Moreover, it is also possible to use the same training data generated for a round
to efficiently train arbitrary marginal posteriors for any set of model parameters.

Training targeted ratio estimators is achieved by replacing the full prior with
a truncated prior p%R)(B), where the parameters are restricted to a region I' where
they are likely to have generated xy. Since parameters from the complement of I" are
unlikely to have generated x, training a ratio estimator with data generated from the
truncated prior as opposed to the full prior has little impact on the posterior learned
by our ratio estimators. Indeed, only those regions where p(xo | €) is sufficiently
negligible are removed, such that p(xo | @) — Ir(0) - p(x | @) remains an accurate
approximation for a given target observation xy. Indeed, too small values for the
threshold € are inefficient in focusing simulations, whereas too large values would cut
into the relevant part of the posterior. For generous enough T, i.e. an appropriate
threshold e, the posterior remains essentially unchanged far into its tails,

_ p@|0)pe®)  _ ple|6)p(6) - Ir(6) V!
Jd6p( | 6)pr(8) ~ [d0p(x | 6)p(6) -Ir(8)V !

zp(wll)(ao))p@:p(ﬂ|w).

pr(0 | =)

(2.30)

This whole scheme relies on the assumption that posterior estimate pr(0 | xg) is a
good approximation of p(0 | xy). An over-confident estimate would remove parameter
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2.2. Truncated Marginal Neural Ratio Estimation

ranges that are part of T(/Y)(@). In practice, this effect is not observed for a conserva-
tive choice of e. Moreover, one can test the convergence of the sequential scheme by
checking whether high probability regions of the estimated posteriors intersect with
the boundaries of the indicator function.

2.2.4 Information maximizing neural network

From a practical perspective, a given inference involves training several classifiers
(corresponding to the various marginal ratio estimators) in parallel. For complex
and high-dimensional data, it is generally useful to compress it before it is input into
the inference network through a so-called compression/summary/embedding network.
Hence, the inference neural network usually employed to perform TMNRE are gen-
erally split into two distinct components: an embedding network Cg(x) and binary
classification networks dg(x, 6).

The embedding network learns to compresses the potentially high-dimensional
data into a low-dimensional feature vector, estimating the best possible summary
statistics from the full input data, s = Cs(x). In principle, the compression net-
work can be any sufficiently expressive network, no specialized network architectures
are required. In practice, for faster convergence and better results specific inductive
biases of different network architectures should be exploited, e.g. for image data, con-
volutional neural networks are often appropriate. Throughout this thesis, we will see
various example of this (e.g. see Chapter 3). Furthermore, the compression network
output can be shared as input to all of the classification networks, or subdivided be-
tween the classifiers, in order for each compressed summary to be optimized for the
specific marginal estimator.

While the purpose of the embedding network is to efficiently summarize data, the
purpose of classifiers dg (s, ) is to learn the correlation between the data summary
s and the parameters of interest 8 in order to perform the actual ratio estimation.
Their inputs are the learned summaries of the observational data concatenated with
the parameters of interest for the targeted marginal. Usually, the classifiers are pa-
rameterized with fully connected layers and unless otherwise specified in this thesis
we will be using the ResNet [169] architecture as implemented in swyft [57].

The compression network and ratio inference are optimized simultaneously, in con-
trast to other algorithms in the literature, minimizing the BCE loss function (Equa-
tion (2.25)). The structure of a general network architecture can be expressed as:

de(s = Co(x),0) ~ de(x,0) = ollog#(0;x)] . (2.31)

It is interesting to understand why the approximately equal sign in Equa-
tion (2.31) holds and which features s are learned by the embedding network during
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2. Simulation-based inference

training, e.g. in comparison to the hand-crafted ones employed in ABC (Section 2.1).
Following Ref. [78], the BCE loss in Equation (2.25) can be written in terms of the
Jensen-Shannon divergence (JSD) as

Clda (. 0)] = 21082 — 2B, [Dy5(0(0 | 2)[0(0)] (232
which follows® directly from the definition of the JSD
1 1
Dys(pllg) = iDKL(p [ m) + iDKL(q | m), (2.33)

where m = (p + q)/2 and Dk, denotes the Kullback-Leibler divergence, Dxr, (p(z) |
q(z) = [ dzp(z)log (%)
We can now apply the same logic to our network with a compression step, an

information bottleneck, in Equation (2.31). The posterior is then conditioned on the
summary statistics s, and the loss function can be written as

Llde(s = Cy(x),0)] = 210g2 — 2E,(5) [Dys(p(0 | s = Cp(x))[p(0)] . (2.34)

Looking at Equation (2.34), assuming a fully converged classifier and the loss
as a function of the summary s, it becomes now evident that a data summary s
that minimizes the BCE loss has to mazimize the expected JSD between the data-
summary-based posterior and the prior for the parameters of interest 8. Therefore,
data summaries s that sufficiently describe data x for a parameter @ lead to posteriors
p(0 | ). On the other hand, inefficient data summaries will lead to wider posteriors
which are more similar to the prior, reducing the JSD, and increasing the value of
the loss function. Hence, it makes sense to expect that the data summaries that are
learned are the most informative to discriminate between samples from the posterior
and the prior, or, equivalently, to discriminate whether the likelihood-to-evidence
ratio is larger or smaller than one,

pe10) _pOls) oy (2.35)

p(s) p(0)

6In fact,
— 2B, (o) [Ds (p (8 | z) || p(6))]

— By | Dt (0 12) | 5 (61 2) +p(6))) + Dics (p(6) | 5 (08 2)+9(6) ) |

[ dwde plerp(6 | oy PO e pO)
/ g0 |y o HOLD o D

E
2

—p(z,0)
=- /dw dé {p(z, 0) log da (z,0) + p(z)p(8) log [1 — ds (x, 0)]}
=Llde(x,0)] —2In2,

where the third equation follows from Equation (2.19).
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Prior Simulator
® ~ p(©) z~plx|O)=p|6,n)
Truncated prior Observation Inference
0 ~ pr(0) g de(x,0) = o [log7(0; )]
Estimation

p(0 | o) = 7(0;20)p(0)

Figure 2.3: Truncated marginal neural ratio estimation. Parameters, both of
interest @ and nuisance 7, are sampled from the initial prior p(®), and mapped into
data x through a programmed simulator that effectively acts as in implicit likelihood.
Inference is performed by training binary classifiers dg (2, @) with marginal NRE to
learn the estimates of the ratios of interest #(0;x) (Sections 2.2.1 and 2.2.2). The
ratios are used to weight prior samples, enabling posterior sampling for any obser-
vation x. Focusing on a target observation xg, we can perform sequential inference
(Section 2.2.3) via prior truncation, by constraining the initial parameter space for
the inferred parameters to regions I'/)(8) that are most relevant for a specific target
observation xy. The procedure is repeated until convergence.

In this section we have introduced the technical details of the TMNRE algorithm,
and its key building blocks: NRE (Section 2.2.1), marginalization (Section 2.2.2), and
prior truncation (Section 2.2.3). We have also seen the general network architecture
that is usually employed within this algorithm (Section 2.2.4). A complete sketch
of the workflow of a TMNRE algorithm is illustrated in Figure 2.3. We will see in
Section 2.3 how to test its results.

2.3 Testing SBI: getting it right

TMNRE is a locally amortized technique, meaning that the ratio estimator are trained
to learn a function, that can then be evaluated to perform inference very quickly on
any number of data, thanks to the great evaluation speed of neural networks. This
opens up the possibility to perform consistency checks of the statistical properties
of the trained networks, within the constrained region over which they have been
trained, in each stage of truncation. These type of tests are generally infeasible for
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2. Simulation-based inference

likelihood-based methods, where the algorithms perform inference on a single fixed
observation and must rerun from scratch for another observation. In this likelihood-
based settings, it is hence computationally very costly to test coverage on simulated
data, and usually the statistical properties of the inference results are instead inferred
based on convergence criteria of the sampling chains [e.g. 170]. This difference is
illustrated in Figure 2.4.

Using local amortization, one can cheaply validate the Bayesian coverage prop-
erties of the approximate posteriors [78, 81, 171], and construct confidence regions
with exact frequentist coverage [81, 172, 173]. Here we focus on the former types of
tests, and use the ezpected coverage test that probes the empirical (i.e. determined
from analyses of simulated data @) Bayesian coverage properties of the estimated
posteriors p(0 | x).

An expected coverage test measures whether Bayesian credible regions of different
widths, €,(9|2) (1 — ), have achieved their 1 —« nominal coverage [78, 171]. In simple
words, it checks whether the true parameters 6 fall within the credible region, of the
estimated posterior p(0 | ) for a% of the randomly drawn observations « ~ p(x | 6):

1—-a= p(gg) []I [0 € Qﬁ(g‘w)(l — O()H (236)
— E E [H [0 S Qp(0|:c)(1 — Oz)” . (237)

P=P p(6) p(|x)

=l-«

In the limit where the estimator p(6 | &) approaches the correct one p(@ | x), one
trivially expect that 1 —a=1— &.

In case of a conservative estimator, the nominal credibility 1 — « is lower than the
empirical one 1 — &, and vice versa for an overconfident estimator. In general, in case
of a conservative coverage plot one should check if the estimator has fully converged.
On the other hand, in case of an overconfident coverage plot, one should check for
overfitting. In combination with visually checking the posteriors, this test supports
the accuracy of the posterior estimator and is also particularly useful when one does
not have access to the ground truth against which to compare the results.

Agreement between the nominal and empirically-measured expected coverage is
a necessary (but not sufficient) condition for the density/ratio estimator to be a
correct estimate of the posterior. Indeed, the expected coverage test checks for the
consistency of the posterior, not for its precision. For example, a not focused posterior
that resembles the prior leads to a diagonal plot with optimal coverage. Moreover,
it tests for the coverage averaged over parameter values 8 ~ p(6). As a result, some
parameter regions might be over- and other parameter regions under-covered.

Since we are mostly interested in small values of «, corresponding to posterior
regions with high mass, it is convenient to reparameterize « in terms of a new variable
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Figure 2.4: Testability: Contrary to LBI algorithms, many SBI methods, including
TMNRE, do not estimate just a single posterior, but all of them simultaneously. This
property is called “amortization” in the machine learning field [174]. Amortization
enables the user to efficiently test the reliability of the inference results, for example
with expected Bayesian coverage tests (rightmost panel). The left part of the figure
is inspired and adapted from Figure 4 in Ref. [78].

z, defined as 1 — 2o quantile of the standard normal distribution [78]. As a results,
z=1,2,3 have 1 —a = 0.6827,0.9545,0.9997, and correspond to the common 1o, 20,
30 regions. We show a mock example of such test in the right panel of in Figure 2.4
to illustrate its general behavior.

In Chapter 3, we will use empirical coverage plots in order to double-check and
confirm the convergence of our posterior estimators for strong lensing image analysis.
Closely related versions of this test and plots have appeared in the literature, e.g. in
Refs. [59, 64, 81]. Developing more tests in order to trust results generated by SBI
algorithms is very active and ongoing work [175, 176]. For example, it is worth
mentioning an alternative method of defining Bayesian credible regions using distances
to random points, which can, in certain circumstances, detect a systematic bias [176].

2.4 Neural SBI methods comparison

Each of the three core neural SBI algorithms described in Section 2.1.2 has its distinct
benefits and drawbacks. The most suitable choice between NPE, NLE, and NRE is
largely determined by the properties of the underlying problem, the dimensionality of
the data and of the parameter space, and the specific application. For a quantitative
comparison of the three algorithms on machine learning benchmarks, we refer the
reader to Ref. [124]. In this section, following discussions from Refs. [52, 78, 147], we
focus on describing qualitative similarities and differences between them.
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In general, NPE and NLE solve a density-estimation problem via an unsupervised
learning task, as there are no explicit labels. Instead, NRE solves a classification
problem via a supervised learning task, which is often simpler. Moreover, ratios can
be estimated with simple classification networks, which are often easier to train than
density estimation models (as normalizing flows). Hence, for higher-level inference,
learning an estimator for the likelihood-ratio function may often be more efficient.

Furthermore, density estimation becomes increasingly hard when the dimension
of the data is large, or the data distribution is highly complex [145]. This problem is
alleviated by compressing the data to some simple low-dimensional summary statistics
before performing inference with density estimators. For example, a compression
network, such as an Information Maximizing Neural Network [177], is often used.
The compression network is typically trained upfront before inference, with additional
simulation cost. On the other hand, as seen in Section 2.2.4, in NRE the compression
network and the ratio estimator are trained simultaneously.

One of the key advantages of NPE and NLE over NRE is the additional sampling
functionality from the surrogate model, which is not possible for NRE parameter-
ized via e.g. a multilayer perceptron (MLP). For NRE and NLE, one needs a way to
sample from the neural posterior after training. Still, likelihood(-to-evidence ratio)
evaluation is generally very fast thanks to the massive evaluation speed and paral-
lelization afforded by neural networks. Broadly, NPE models are better suited for
scenarios requiring repeated inference across multiple observations, as it can be pro-
hibitively expensive to run sampling chains for NRE and NLE for many test points.
On the other hand, for hierarchical likelihood sampling, NRE and NLE will be a more
effective choice.

Despite these initial differences, the three algorithms share many similarities.
First of all, when not using active learning, all three approaches are amortized: after
an upfront simulation and training phase, they can all be efficiently evaluated for arbi-
trary data and parameter points (in the prior support). Second, all three approaches
can use active learning, iteratively updating the proposal distribution to guide the
simulator parameters toward the relevant parameter region (Section 2.2.3).

It is also important to note that, while NPE directly targets the posterior, it
induces a prior dependence in the inference. On the other hand, NRE and NLE are
prior independent, allowing extra flexibility to change the prior during inference, and
the possibility to do frequentist inference or model comparisons.

While all approaches can directly target marginal posteriors [120, 160, 165, 178],
some extra care is required when combining marginalization and active learning if
there is a prior dependence in the inference. Indeed, marginal estimation will be in
general affected by the proposal distribution, since one implicitly integrates over it.
This generally cannot be undone after training (for a workaround where marginaliza-
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tion can be integrated into the compression step by constructing appropriate summary
statistics see, e.g., Ref. [178]).

Combining the insights from all algorithms, which are currently categorized as
distinct, is expected to lead to facilitate further advancements.

2.5 SBI applications in this thesis

In this first chapter, we have learned about the benefits of simulation-based analy-
sis for data inference, and particularly about the TMNRE algorithm. In the next
chapters, we will see its applications to various astrophysical problems: the analysis
of strong gravitational lenses as a dark matter probe (Chapter 3), how to scale it
to higher dimensional problems with more correlated parameter spaces (Chapter 4),
the reconstruction of cosmological initial conditions Chapter 5), and the analysis of a
population of point-sources in sky-maps (Chapter 6). The common thread between
all these applications is being formally representable by large and complex forward
models, with many moving parts, on a subpart of which we would like to perform
precise scientific inference while correctly propagating uncertainties from the others.
This is possible in a SBI framework.

In particular, we will see many of the several types of marginal posteriors that can
be directly inferred in simulation-based settings, and which answer specific inference
questions relevant for the application at hand. Some of the marginal quantities we
will encounter in the different chapters of this thesis are:

« posterior of a single parameter (Chapters 3, 4, and 6);

¢ 2-dimensional posteriors of parameter pairs (Chapters 3, 4, and 6);

¢ n-dimensional posteriors of parameters (Chapter 4);

« posterior probability of a pixel value for field reconstruction (Chapter 5);

 posterior probability of an object being present in a specific image region (Chap-
ter 6);

o posterior for the number of objects in an image (Chapter 3 and 6).

Moreover, prior truncation will be achieved by means of different strategies of
increasing complexity throughout all of these applications, depending on the their
specificities. The main strategies we will see are:

o 1-dimensional box truncation (Chapters 3, 4, and 6);
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o n-dimensional hard-likelihood truncation with nested sampling (Chapter 4);
« truncation with tempered likelihood (Chapter 5);

¢ object detection as prior truncation (Chapter 6).

A detailed contextualization and explanation of the technicalities of each strategy
will be given in the respective chapters.
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SIMULATION-BASED
INFERENCE FOR STRONG
GRAVITATIONAL LENSING

Precision analysis of galaxy-galaxy strong gravitational lensing images provides a
unique way of characterizing small-scale dark matter halos, and could allow us to
uncover the fundamental properties of dark matter’s constituents. Recently, gravita-
tional imaging techniques made it possible to detect a few heavy subhalos. However,
gravitational lenses contain numerous subhalos and line-of-sight halos, whose subtle
imprint is extremely difficult to detect individually. Existing methods for marginal-
izing over this large population of sub-threshold perturbers to infer population-level
parameters are typically computationally expensive, or require compressing observa-
tions into hand-crafted summary statistics, such as a power spectrum of residuals.

In this chapter, we present the first analysis pipeline to combine parametric lensing
models and a recently-developed neural simulation-based inference technique called
truncated marginal neural ratio estimation (TMNRE) to constrain the warm dark
matter halo mass function cutoff scale directly from multiple lensing images. Through
a proof-of-concept application to simulated data, we show that our approach enables
empirically testable inference of the dark matter cutoff mass through marginalization
over a large population of realistic perturbers that would be undetectable on their own,
and over lens and source parameters uncertainties. To obtain our results, we combine
the signal contained in a set of images with Hubble Space Telescope resolution. Our
results suggest that TMNRE can be a powerful approach to put tight constraints on
the mass of warm dark matter in the multi-keV regime, which will be relevant both
for existing lensing data and in the large sample of lenses that will be delivered by
near-future telescopes.

This chapter is based on work from [1].
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3. Simulation-based inference for strong gravitational lensing

3.1 Introduction

Dark matter puzzle. Over the past several decades, numerous astrophysical
probes including rotational curves of spiral galaxies [179], galaxy-cluster dynamics
[180], cosmic microwave background [181], gravitational lensing observations [182],
have established dark matter (DM) as one of the major components of the universe,
comprising about 85% of its mass. However, up to the present time, the fundamental
nature of DM is still one of the key unresolved puzzle in physics. For many years,
the cold dark matter (CDM) paradigm has been able to accurately reproduce vastly
disparate large-scale observations across all epochs. In this model, DM is massive,
neutral, non-relativistic, and collisionless [183].

Despite providing a stunning description of the observed distribution of matter on
large scales (> O(Mpc)), the agreement between CDM predictions and observations
at galactic and sub-galactic scales has been less clear. At present, there is continued
debate over whether the known abundance of dwarf galaxies and the density profiles of
low-mass galaxies are in tension with the predictions of ACDM (respectively dubbed
the missing satellites problem [184, 185] and the cusp-core problem [186], reviewed in
Ref. [187]). Solutions to these tensions include the impact of baryonic processes, such
as supernovae feedback and reionization processes [188], or alternative DM physics.

The latter approach requires an alteration of DM particle physics, such that large-
scale predictions remain unaffected, but the number of small-scale substructures is
suppressed. DM models which are warm instead of cold [189-191], collisional instead
of collisionless [192], or quantum on macroscopic scales rather than classical [193]
predict a diverse array of possible configurations of low-mass halos and could poten-
tially resolve these tensions [194]. Unfortunately, light DM halos are difficult to probe
as they are not expected to accumulate enough baryonic matter to form stars and
hence are truly dark [195, 196]. If DM has significant self-interactions, such halos
might be detectable by searching for the self-annihilation or decay products of DM
[197]. However, even if such interactions are not present, light halos can potentially
be probed through their irreducible gravitational effects. In this chapter we study
one such probe: galaxy-galaxy strong gravitational lensing.

Strong gravitational lensing as a dark matter probe. In strong gravitational
lensing, the gravitational field of a mass distribution acts as a lens by magnifying and
distorting the light flux coming from a background source [198]. This leads to multiple
magnified and distorted images of the source, as explained by general relativity. The
effect is sensitive only to how matter is distributed, regardless of its physical nature
(baryonic/DM), and thus provides a direct way of probing the distribution of DM at
small scales (see Ref. [199] for a recent review).
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Indeed, a perturber (i.e., a subhalo or line-of-sight (LOS) halo lying somewhere
between the observer and source) positioned near one of these images contributes ad-
ditional, much more localized distortions, on top of the main lens mass distribution.
By carefully analyzing the relationship between the multiple images of the source, the
distortions from dark perturbers can be disentangled from possible variations in the
source light. Thus, a population of dark perturbers can collectively cause perturba-
tions to images that can be detected statistically in order to constrain population-level
parameters, such as the suppression scale in the the low-mass end of the halo mass
function (HMF), which are dictated by the fundamental properties of DM. Therefore,
gravitational lensing provides a pristine probe of small-scale structures and can in
principle distinguish between DM scenarios.

Strong lensing image analysis. Various different methods have been suggested
to analyse the effects of small-scale structures on lensing images [200]. These methods
usually target two different types of lensing systems that differ in the lensed source:
quadruply-lensed quasars, and extended background galaxies that get lensed into
extended arcs or complete Einstein rings.

In the former case, the source is a nearly point-like quasar that is lensed into
four compact images ( “quads”). These images’ positions and flux ratios comprise the
summary statistics for these systems. The presence of a perturber near one of these
images would cause anomalies in the ratios of their fluxes relative to what would be
predicted assuming a smooth lens mass distribution. Evidence for flux ratio anomalies
due to perturbers was first found in Ref. [201]. Later, Ref. [31] derived a statistical
constraint on the substructure fraction in the lensing galaxies using a small sample
of seven lensed quasars. Ref. [202] showed that flux-ratio anomalies can also be used
to detect individual low-mass subhalos. Several studies derived upper limits on the
subhalo mass function [203], also including perturbations due to LOS halos [33, 204].
Further investigations pointed out the importance of correctly modeling baryonic
structure in the main lens, in order to avoid systematic errors while constraining DM
substructure abundance with flux-ratio anomalies [34, 205, 206].

Here we focus on gravitational imaging, which refers to the analysis of lenses with
extended arcs [119, 207, 208]. The observation in this case consists of a whole image.
On one hand, such images cover a larger area of the sky than the four point-like im-
ages in quads, potentially providing more sensitivity to detect perturbations due to
perturbers, in the form of percent-level variations in the shape of the predicted lensed
light based on a smooth lens model. On the other hand, extracting this information
requires modeling the source galaxy’s light, which generally has a complex morphol-
ogy. The gravitational imaging technique was first introduced in Ref. [209] and further
developed in Refs. [119, 208]. Its application to real data has so far yielded to several
detections of individual heavy (> 108Mg) perturbers using deep, high-resolution ob-
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servations in the optical from the Hubble Space Telescope (HST) and Keck Telescope
as well as in radio data from the Atacama Large Millimeter /sub-millimeter Array [36—
38, 210, 211]. Moreover, measurements and non-detections of individual perturbers in
samples of gravitational lens systems can be converted to constraints on the (sub)halo
mass function and thus dark matter’s properties [32, 212, 213].

Established gravitational imaging analyses, such as the method in Refs. [38, 119],
use likelihood-based inference to infer the properties of perturbers. The central math-
ematical object in such approaches is the likelihood, a probabilistic model p(x | ©)
for the data x given some parameters © for the lens, source, perturbers and possibly
other (hyper)parameters.! Likelihood-based tools, such as MCMC or nested sam-
pling [214], do not directly produce marginal posteriors but instead compute the joint
posterior p(© | xg), which must then be marginalized over.

The computational expense of sampling from the high-dimensional joint posterior
imposes restrictions on the realism of lensing models that can be analyzed. One such
restriction common to most analyses is to assume a particular form of the noise and
source model so that the source uncertainties can be excluded from the sampling and
marginalized over analytically [36-38, 119, 210]. This makes it difficult to explore
more complex source models described by e.g. generative machine learning methods
or noise artifacts like cosmic ray streaks that cannot be described by an analytic
likelihood.

An additional difficulty with likelihood-based analyses is that each run of MCMC
or nested sampling produces posterior samples for just a single observation. Directly
exploring the systematics, biases and other statistical properties of a particular lensing
model is thus extremely time-consuming, necessitating rerunning posterior sampling
many times for different input observations. This also makes analyses such as mapping
perturber measurement sensitivity costly. It is noteworthy that recently Ref. [215]
pushed to the limits how far one can feasibly go using likelihood-based analyses,
fitting 54 images with 5 different mass models.

Likelihood-based analyses also typically assume no more than two perturbers are
present in each image. Allowing for n perturbers would cause the joint posterior
to become highly multimodal, with approximately n! modes due to exact invariance
of the observation under relabeling of perturbers. In these frameworks, it is then
challenging to perform statistical inference of quantities such as the posterior for
substructure population-level parameter of interest, marginalizing over all source,
lens, and substructures parameters to get the marginal of interest.

Transdimensional Bayesian inference partially overcomes this traditional
likelihood-based methods’ challenge, by using transdimensional MCMC to infer the

1For example, the hyperparameters could include the pixel size for pixelated sources or strength
of source regularization.
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probabilities of different possible populations of perturbers, albeit at substantial com-
putational cost [216, 217].

An alternative strategy involves linearizing the gravitational potential via a Taylor
expansion of the lens equation. By employing a Taylor expansion, it becomes feasible
to capture all small-scales DM substructures without the need to parameterize them
directly in the likelihood function [119, 209, 218]. This technique is therefore able
to account for the full DM subhalo population (a part from the effects due to the
curl-component induced by multi-plane lensing effects).

Another viable approach to reduce the dimensionality of the problem and enable
inference of the collective effects of a large number of low-mass substructures at the
statistical level requires engineering summary statistics from first principles, such as
the convergence power spectrum (PS) for different subhalo populations [219-221],
and also for LOS populations [222]. However, this approach is not directly applicable
to observations, because we do not have access to the true displacement field from
the data. Building upon this, it is possible to relate the PS of the surface bright-
ness fluctuations in strong lens images to the lens potential fluctuations arising from
DM distribution that contribute to the convergence PS [223-225]. Another summary
statistic that has been employed is the residuals between the image and best-fit re-
construction excluding substructures, that is related to the (sub)halo mass function
parameters. In particular, this summary statistic has been successfully employed to
constrain the HMF suppression scale using ABC [226, 227], a likelihood-free inference
method based on a rejection algorithm, as seen in Section 2.1. This approach re-
duces the dimensionality of the problem and enable inference of the collective effects
of a large number of low-mass substructures at the statistical level. However, it is
unknown how much information such approach discards.

Another class of methods that has developed in recent years uses neural networks
to measure lens parameters [228-230], quantifying the structure of gravitational lens
potential [231], detect individual subhalos [232], distinguish different types of DM
substructure based on their lensing signatures [233], and classify whether each pixel
in an image contains a subhalo in a given mass bin [234, 235]. Still, these methods
need lots of data to amortize over all possible variations in lensing systems. In fact,
amortized methods learn the posterior for any data, generated by any parameter over
the whole range of the prior. But learning an amortized posterior is unnecessary if
only a small range of parameters are consistent with a target observation.

This work. In this work, we demonstrate that a SBI [52] method called truncated
marginal neural ratio estimation [120, 160], from here on TMNRE, can circumvent the
inference challenges discussed in the above paragraphs. In particular, we use strong
gravitational lensing to constrain warm dark matter (WDM) models [189, 191], which
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are well-motivated from a particle physics perspective (see e.g. sterile neutrinos [236]
and gravitinos [237]). In WDM models DM particles have non-negligible thermal
velocities that allow them to free-stream out of density perturbations, effectively
preventing small-scale structure formation. The scale at which this happens depends
on model parameters and is parametrised by the half-mode mass, My, in the HMF.
Therefore, one of the viable ways to discriminate between CDM and alternative WDM
models is to constrain the low-mass end of the HMF by probing small-scale DM halos
which are completely devoid of stars and truly dark, whose only signature is then
gravitational.

Here, we present the first analysis pipeline that combines parametric lensing mod-
els with recent TMNRE developments to infer the half-mode mass My, of the subhalo
HMF directly from images by combining a set of realistic simulated galaxy-galaxy
strong lenses. In fact, there are currently around a hundred strong lensing observa-
tions suitable for substructure inference, most of which come from the SLACS [238]
and BELLS [239] surveys. In the near future, new and future telescopes like JWST
[12], ELT [11], Euclid [13, 42], SKA [240], and LSST [241] will greatly increase the
quality of data suitable for gravitational imaging analyses as well as its quantity, from
O(100) to O(10°) images [242, 243]. It is then extremely important to be able to com-
bine the information coming from different observations in the statistical analysis.

As discussed in Chapter 2, SBI refers to a class of statistical inference methods
that use the output of a stochastic simulator that need not have a known likelihood.
In particular, NRE, first presented in Ref. [153], trains a neural network to map from
observations directly to marginal posteriors for a specified subset of model parameters
(e.g. the Einstein radius of a lens). This bypasses the requirement of likelihood-based
inference to sample the joint posterior. In contrast to methods like ABC, this also
removes the need to engineer summary statistics [227] as they are in effect learned
directly from the training data. Since NRE learns a marginal posterior function, it is
straightforward to check the statistical properties of the inference results for different
observations. TMNRE further extends NRE by focusing training data generation
in the regions of parameter space most relevant for analyzing a particular observa-
tion over a sequence of inference rounds. This substantially reduces the number of
simulations required to train the inference network as well as the required network
complexity. This truncation method applied to strong-lensing images was proposed
in Ref. [41] and used in Ref. [244] to learn marginal posterior approximations for in-
dividual subhalo parameters, marginalizing over lens and source uncertainties given
an observation.

Several other works have applied SBI to substructure lensing. In Ref. [71] a
likelihood-ratio estimation technique similar to TMNRE was employed to measure
density profile parameters of subhalos from images. Ref. [68] recently applied neural
posterior estimation to measure the subhalo HMF normalization in mock lensing
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images using real galaxy images as sources. Ref. [70] utilized a “likelihood-based”
SBI method requiring the simulator’s score? to measure the slope and normalization
of a subhalo HMF in simple mock images.

The present work complements these efforts in several ways. First, it demon-
strates that our hierarchical TMNRE approach is able to efficiently and accurately
infer the statistic of the HMF suppression scale given a set of HST resolution obser-
vation. Then, it illustrates the importance of combining the information coming from
different observations in the statistical analysis, especially in light of near-future data
delivery. Lastly, it shows that TMNRE enables statistical checks that would be ex-
tremely expensive with likelihood-based inference since they would require rerunning
the sampling machinery on numerous mock observations.

This chapter is organized as follows. In Section 3.2 we describe our strong lens-
ing model, which uses an analytic source and main lens in conjunction with a well-
motivated perturber model that accounts for both subhalos and LOS halos. In Sec-
tion 3.3 we briefly discuss the inference methodology based on TMNRE employed in
the statistical analysis. Then, we show our results for hierarchical inference of the halo
mass function suppression scale from an ensemble of lenses in Section 3.4. Finally, we
conclude in Section 3.6. This work will help form the basis for SBI-based analysis of
strong lensing images as a dark matter probe in existing and future lensing data.

3.2 Modeling strong lensing observations

Here we review how we model strong lensing images. We implement our lensing model
in PyTorch [109] so that we can leverage GPUs to rapidly generate large numbers of
observational data (a single-channel telescope image).

3.2.1 The physics of strong lensing

Before delving into modeling details, we briefly summarize the key points of the
physics of gravitational lensing, referring the reader to e.g. Ref. [27] for a more detailed
overview. In strong-lensing systems the mass distribution of a foreground galaxy
gravitationally lenses the light rays coming from a background source, resulting in
an arc-like image in the case of an extended galaxy source. We assume that mass
densities are low enough to treat the gravitational field of the matter in the image
plane in the Newtonian approximation of general relativity (GR). In this case the
metric is fully characterized by the lens’ gravitational potential . We also adopt the

2The score is the derivative of the log-likelihood for a given observation with respect to the model’s
parameters.
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thin lens approximation, which assumes all the lens mass lies in a single image plane
and all the source light is emitted from a source plane.

We will be using & = (&2,&y) and T = (z,y) as two-dimensional angular coor-
dinates in the image and source planes respectively, and use z to indicate distances
along the orthogonal dimension. Since the image plane covers a small angular patch
of the sky and the lensing deflections are small in the Newtonian limit, the coordinate
system can be treated as Cartesian.

The configuration, then, is determined by two fields: the distribution of surface
brightness in the source plane, 5(Z), and the distribution of mass in the image plane,
described by the projected potential:

GE /_Oo V(&) &y, 2)dz (3.1)

Under these assumptions, the source-plane coordinate to which a light ray through
the image plane traces back is given by the simple lens equation

—

F=E-ald). (3.2)
The displacement field & is determined by the projected potential:
3@ = D 2 VeV
N Ds 02 DL ’

where the gradient is taken in the image plane and should have dimensions of inverse

(3.3)

length, whence the introduction of the observer-lens angular diameter distance Dy,.
The expression also involves the angular diameter distances Dyg (from the lens to
the source), and Dg (from the observer to the source).® We illustrate in Figure 3.1
the geometry of the system.

From a computational standpoint it is more convenient to represent Equation (3.3)
as an integral. Using the Poisson equation V2W = 47Gp and setting appropriate
boundary conditions:

Lo E-¢ -,
[e@ =S ewd). (3.4)
where the integral is performed over the image plane, and where ¢ is the speed of

light and G is the gravitational constant.

Here ¥ is the projected (surface) mass density related to the 3D mass density p
by an integration along the coordinate perpendicular to the lens plane z:

2() = /OO P&z, &y, 2)dz, (3.5)

3We compute angular diameter distances with astropy [245, 246] using the flat cosmology from
Planck [247].
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observer

Figure 3.1: Thin lens geometry. The lensing mass M located at 5_7 bends the light
ray (thick line) emanating from the point Z, so that to the observer it looks like it
is coming from the direction of 5 . General relativity predicts the deflection angle
a' as viewed from the image plane based on the mass M and the impact parameter
b= E — E’ . It then has to be rescaled by %LSS to obtain the displacement field &
(as viewed by the observer) for use in Equation (3.2). Angles are all assumed to be

small enough that they can be used for Euclidean calculations. The dashed line is the
optical axis perpendicular to the planes and connects the origins of the coordinate
systems for each plane. The figure is a reproduction of Figure 2 in Ref. [41].

similarly to the expression for the projected potential.

The expression in Equation (3.4) can be simplified by introducing the convergence
k in terms of the critical surface density X,:

—

K(€) = ) D= i&
o Zcr ’ o 47TGDLDLS'

(3.6)

If Kk > 1, a lens can form multiple images [27, Section 2.6]. The threshold for this
to happen is set by the critical surface density, and it is evident from its expression
that for a fixed distance to the lens (Dy,) further away sources (Dg) are lensed more
easily, since they require smaller deflections.

Furthermore, it can be shown that the convergence k is related to the isotropic
part of the trace of the Jacobian of the lensing transformation through

dz 1- 0
7{ _ K _ ('71 Y2 ), (3.7)
d¢ 0 1-k& Y2 ™
where the second part is the shear (discussed more in details in Section 3.2.3). Another
important quantity is the inverse of the Jacobian’s determinant, the magnification

M=l L= [0 = (R3] (38)
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which is a measure of how much the solid angle spanned by the source is enlarged,
or equivalently, of how gravitational focusing directs a larger fraction of the energy
radiated by the source to the observer [248]. Thus, when the convergence x and the
shear v are equal or greater than unity, sources are strongly magnified, and we can use
the magnitude of the magnification to differentiate between strong from weak lensing
regimes.

While lensing does change the apparent solid angle of a source, it is worth noting
that it conserves energy, since it merely alters the trajectories of photons rather than
creating or destroying them. As a result, the surface brightness ﬂ(g) in the image
plane is equal to the surface brightness at the point to which it traces back in the

source plane (assuming one isolated source):

— —

B&) = B(E(S)) - (3.9)

Given the physics of strong lensing, in order to fully specify a strong-lensing
model we then need two main ingredients: the lens model, which describes the total
mass distribution of the lens, and the source model, which describes the surface
brightness profile of the background source. It is common to split the lens model into
a macroscopic smooth component (main lens and external shear) and a substructure?
component, due to subhalos and line-of-sight halos. Each lensing ingredient can be
directly superimposed by summing their respective displacement fields in the lens
plane:

Nsub Nlos
a= O_Zlens + O_Zext + g &sub,i + § O_Zlos,i- (310)
i=1 i=1

In the following sections, we will describe each component of the model we use to
simulate mock images of gravitational lenses: the source, the main lens, the dark
matter perturbers, and instrumental noise. The model and its priors are summarized
in Table 3.1.

3.2.2 Source model

To model the surface brightness of the source galaxy, we adopt the widely-used Sérsic
profile [251]. The surface brightness distribution is parameterized by

1/n
) —1] ¥, (3.11)

4Throughout this thesis, we use the terms ‘small-scale structures’, ‘substructures’, and ‘low-mass
halos’ when considering both subhalos of the main lens and line-of-sight halos.

R(Z)

Te

B(Z) = I, exp] —kn, <
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Parameter True value Prior Description
Main lens SPLE

0r "] U1.,2) Einstein radius
0,2 ] U(-0.2,0.2) lens center x axis
o,y "] U(-0.2,0.2) lens center y axis
aQ U(0.1,1.) axis ratio

¢y [rad] U(0, 2m) rotation angle
y 2.1 - slope

Zlens 0.5 - lens redshift
External shear

T U(—0.05,0.05) 15* component
Y2 U(—0.05,0.05) 224 component
Source Sérsic

I, U(0.,4.) surface intensity
re [] U(0.1,2.5) effective radius
zo ] U(-0.1,0.1) source center x axis
yo "] U(-0.1,0.1) source center y axis
qs U(0.1,1.) axis ratio

¢s [rad] U(0, 2m) position angle
n u (0 1,4.) index

Zsre 2 source redshift
Subhalos tNFW

7] €[-2.5,2.5] Usp(—2.5,2.5) position
maoo [Mg] € [107,1019]  [249] virial mass
€200 15. - concentration
T 6. - truncation
LOS halos projected tNF'W
1" €[-2.5,2.5] Up(—2.5,2.5) position
maoo [Mg] € [107,10%°]  [250] virial mass
2L0S € [0, zsrc] [250] LOS redshift
€200 15. - concentration
T 6. - truncation
WDM

Mpm [Mg)] log (107, 1019) half-mode mass

Table 3.1: Summary of model parameters used for the simulated images in this work.
When a prior distribution is not specified, the parameter is fixed to the true value.
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where I, is the surface intensity at the half-light radius r.. The radial parameter
r(¥) = y/r2 +rZ is the length of the elliptical radial coordinate vector

<r$) _ <\/q>s 0 ) ( cos ¢ sin¢3> (x —xo7s) (3.12)
Ty 0 1/\/gs) \—sing, cosdps y—yos/)’
which depends on the source’s position angle ¢, axis ratio ¢, and center of light
position (%o.s, Yo,s)-

The normalization k, is related to the index n by an implicit transcendental

equation in terms of the complete and lower incomplete gamma functions 2y(2n, k,,) =
I'(2n). We use the expansion in series from Ref. [252],

1, 4 " 46 " 131 _ 2194697 (3.13)
3 405n  25515m2  1148175n3  30690717750n* '

k,, =~ 2n —

valid over a wide range of indices, n > 0.36. For typical galaxies 1/2 < n < 10.

Therefore, our source model is parametrised by seven variables that we collect in
the vector Ngye = {Ie, e, 0,5, Y0,55 Iss Ps, n}. We fix the source’s redshift to zsource = 2.

3.2.3 Main lens model

We adopt the singular power law ellipsoid (SPLE) model for the main lens galaxy,
which is capable of modeling the gravitational potential of strong lenses to near the
percent level [253]. Furthermore, the SPLE model has been shown to be a more
adequate representation of the combined DM and baryon mass distribution in the
inner regions of galaxies, to which strong lensing is most sensitive [253]. The SPLE
deflection field can be expressed in closed-form as a complex field o = o, + iq,
[254, 255]:

. 9 1/2 0 =2
ey ()

-1 — 1— .
: 2F1 17 2 75 Fya_ QIEQMD .
2 2 1+aq

(3.14)

Here (r, ) are elliptical coordinates, related to the Cartesian coordinates { through
a transformation parametrized by the lens’ orientation ¢, axis ratio q; and position

(5}(,07 gy,O):
1/2 .
Y _ (a0 \[coser s @) (fm —gw,0>
(m) < 0 q11/2> (—sin¢1 cosdr) \& —&yo/ (3.15)

tan g = Ty, (3.16)

Tz

46



3.2. Modeling strong lensing observations

In the circular (¢ = 1) isothermal (v = 2) case this reduces to a = 0gei?, i.e. is an
isotropic constant, as is well-known. Since the hypergeometric function oF1, however,
is not implemented in PyTorch, we instead pretabulate its value as a function of ¢,
qi and v and interpolate at runtime, as described in Ref. [256]. This results in very
fast code with negligible output degradation.

The slope v has a complicated degeneracy with the size of the source [257, 258].
Roughly, larger v values cause the spatial scale of the source to increase [35, Section
3.3]. For simplicity we fix v = 2.1. In principle, inferring the slope is possible, but
it requires more training data and leads to increased uncertainties in both lens and
source parameters.

We also assume the lens galaxy’s light has been perfectly subtracted, and fix its
redshift to zjens = 0.5.

To account for the weak lensing due to large-scale structure located along the line
of sight to the source, we also include an external shear component, which is constant
across the image plane:

Sshear /& [ V1 Y2 g
arrer(g) = (72 %>£- (3.17)

Our main lens model thus has seven parameters: the SPLE parameters
(€2,0,€y,0, ?1, q1,05) and the external shear parameters (y1,y2), which we denote col-
lectively with mjeps.

3.2.4 Small-scale structures model

DM substructures can be divided into two categories: subhalos that orbit around the
main halo at the lens redshift, and LOS halos distributed between the source and
the observer. LOS halos are a more direct probe of free-streaming-induced small-
scale structure suppression, because they are less affected by baryonic processes and
environmental effects, such tidal stripping interactions with the main halo [259]. For
this reason and the fact that they are expected to be more abundant than subhalos
in a lensing system [259, 260], it is very important to model them as well, in order to
correctly estimate the collective effects of all substructures on the lensing image.

Density profile

To model the density profiles of small-scale DM halos we adopt the smoothly truncated
universal 3D mass density profile from Ref. [261]:

— Ps 1
Corfrs(L 41/ r)2 1+ (r/ry)?

piNEw (T) (3.18)
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Figure 3.2: Left panel: Convergence map for a CDM subhalo population in the
adopted mass range. The convergence map shows how the deflecting mass from all
the subhalo lenses is distributed. The full map size is 1 x 1 Mpc. We mark in red
the virial radius of the main lens halo, in blue its Einstein radius, and in orange the
5 x b arcsec lensing image area. Right panel: LOS halos distribution in redshift for
our source and lens redshifts configuration, zjens = 0.5 and zsource = 2.

Here r is the three-dimensional distance from the center of the halo, ps and rs are
respectively the scale density and scale radius that specify a Navarro-Frenk-White
(NFW) profile [262], and r; = 77, is the tidal truncation radius that depends on the
history of the subhalo. Typical values of the truncation scale 7 range from 4 — 10 for
spherically symmetric lenses [33, 224]; we fix 7 = 6 for simplicity. Compared to the
standard NFW form, which has an infinite total mass, the truncated NF'W contains
an additional truncation term that makes the profile decay as r—° for large radii,
resulting in a finite total mass given by:

2
m, = 4ﬂp5r§’(7_27-w[(T2 —Dlnt+7m — (12 +1)]. (3.19)

With a fixed truncation scale, the truncated NF'W profile is fully determined by the
same parameters that determine the NFW profile: the virial mass magosun” and the
concentration ¢ = rogg/rs of the halo. The latter measures how concentrated the
mass of a halo is and fixes the density normalization; in principle, it varies from one
subhalo to the next and shows dependencies on mass and redshift of the main halo.
Here, instead of adopting a concentration-mass relation, we fix cogp = 15 , which is
roughly the average value for perturbers in the mass range 107 — 101°Mg, [263, Figure

5We parameterize subhalos by what would be their mass up to the virial radius r2qp using the
untruncated profile, with the same central density ps and scale radius rs as the truncated one. This
is defined as the mass of the halo enclosed in a sphere where the untruncated halo’s average density
is 200 times the critical density.
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7]. We anticipate that accounting for scatter in the mass-concentration relation might
actually improve our ability to measure subhalos’ parameters as higher concentrations
lead to substantially stronger lensing signals [264]. The equations for calculating the
displacement field of a truncated NFW halo, given its mass and position, are fully
elaborated in Appendix A of Ref. [261].

To generate perturber populations, we must choose values for their density nor-
malizations and scale radii. Since simulation studies typically measure the halo mass
Mago,sub and the concentration ¢, it is more convenient to sample populations from
distributions over these parameters. These variables can then be mapped to the
parametrization above via

1 3m200 sub 13
s=— |77~ ) 3.20
Ts =% {47r 200pcr(zlens):| (3.20)
1 3
Ps = pcr(zlens) (321)

3log(1+c¢)—c/(1+¢)”

For simplicity, we model LOS halos using exactly the same profile even though they
typically have not undergone tidal stripping.

The parameters of an individual subhalo which are not fixed are thus ng., =
(Zsub» Ysubs M200,sub ), Where the first and second components are the projected position
of the subhalo. In the case of LOS halos, the parameter set also includes the redshift
Z10s- In the following sections, we will use arrows to denote vectors, e.g. 1magp sup iS an
ordered set of masses, one for each simulated subhalo, and bold letters with an arrow
to indicate arrays of vectors, e.g. Tsub = (Tsubs Ysubs M200,sub) is an ordered set of
positions and mass in the lens plane, one for each simulated subhalo, and equivalently
for LOS halos los = (@10ss Yloss Zloss M200,10s)- We collectively define the parameters
of the full population of perturbers, subhalos and LOS halos, as 7j,. In the next two
subsections, we describe how we sample these parameters.

Generating subhalos

We sample subhalo masses from the CDM mass function of Ref. [249]:

1 dnsub (m2007 Z)

= Apr(1+ 2)Y2m exp [—5 (m2°°)3] : (3.22)

mago  dlogmagg M
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3. Simulation-based inference for strong gravitational lensing

where M 0 is the mass of the main lensing halo and mogo the subhalo mass. The free
parameters in this function were fit to hydrodynamical cosmological simulations that
included baryons in Ref. [265]. In particular, we use the fits to EAGLE, which give
o = 0.85 (given in the text) and (Ays, B) = (2.4 x 107* My*"*,300) (extracted from
their figures). The expected number of subhalos in a given mass interval for the lens
halo system can be computed by integrating the mass function over that interval.

The spatial distribution of subhalos has been shown to follow an Einasto profile
[266]. However, since the virial radius of a typical main lens halo is much larger than
its Einstein radius, and hence, than the image plane, we approximate the distribution
to be uniform in the lensing image area. Still, we derive the total number of expected
subhalos within the image, Tsub, via the Einasto fit of Ref. [265]. We find that
on average Tg,p, = 4 subhalos fall within the lensing image area in our adopted
lensing configuration and mass range. Thereafter we generate the subhalo population
by sampling the number of subhalos from Poisson(ng,p), drawing their masses from
the subhalo mass function in Equation (3.22) and sampling their projected positions
uniformly over the lens plane. Since the vast majority of subhalos fall outside the lens
plane, we expect their lensing effect to be mostly degenerate with external shear, and
thus do not simulate them. In the left panel of Figure 3.2 we show the convergence
map for one realization of our subhalo population.

Generating line-of-sight halos

As described in Ref. [222], we first compute the average number of LOS halos in the
double-pyramid geometry connecting the observer, lens-plane and source. For each
simulation we sample the number of LOS halos from Poisson(7,s). We then sample
their redshifts and projected positions uniformly over the double-pyramid region and
draw their masses from the mass function in Ref. [250], assuming an overdensity with
respect to the critical density of the universe at the epoch of analysis of A = 200.

More in details, we infer the number of detectable LOS halos by integrating their
mass function in the mass range adopted for the analysis and within the double-cone

Zsrc M200,max dV
Nios = / / Njos mzoo, )dmzoo —dz. (3~23)

M200,min dZ

volume

On average we get njos = 260 LOS halos projected in our lens plane. Similarly to what
we do with the subhalo population, when generating simulated images, we draw the

6The total mass of the lens galaxy is described by the Einstein radius of the system, a very well-
constrained parameter in lensing inference analyses. For the purpose of describing subhalos, we need
to be able to map the measured properties of the lens (the Einstein radius 6g) onto the properties
of the host halo (the mass M). For simplicity, we compute the mass of the host halo transforming
the Einstein radius distance measure into a mass measure. We would like to point out a similar
approach from Ref. [70], where they relate the central velocity dispersion of a singular isothermal
ellipsoid lens mass distribution profile to the virial mass of the host halo.
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3.2. Modeling strong lensing observations

number of LOS halos from Poisson(7,s), we then sample their masses and redshift
from the halo mass function and sample their projected positions uniformly over the
lensing image area. As with subhalos, we ignore any LOS halos lying outside the
double pyramid volume. In right panel of Figure 3.2 we show the distribution of LOS
halos in redshift for our lens and source redshifts configuration.

To avoid expensive iterative ray-tracing through the lens planes of each LOS halo,
we project them as effective subhalos into the lens plane, using the relations derived
in Ref. [222] to rescale their scale radii and masses. Following Ref. [222], LOS halos
at comoving distance y can be treated as subhalos on the main-lens plane with an
effective projected mass density given by:

Yot (DL&;mago, s, T) = L(DLT; M200,eff, s effs T)- (3.24)

The effective scale radius rs .g and mass magg.cg are respectively

D
Ts,eff = = Ts, (325)
(x) Dy
and )
Yer,L Dy
mgoo’eﬁ‘ = f(X) ZC : (g(X)D > ma200- (326)
cr, X X

The piecewise functions f(x) and g(x) are:

fx) = { PP xsxn (3.27)
1-Bry XxX>xL

and
1 X < XL
g(x) = ; (3.28)
1- BLX X > XL
: i Ds . . :
with 8;; = DD where D; is the angular diameter distance from the observer to
74+ is

plane i, and D;; is the angular diameter distance from lens plane i to lens plane j,
and x is the comoving distance to the main-lens plane. We have also introduced the
critical surface density at plane i

2D,

Y = ——m
’ 47TGD,L Dis

(3.29)

It should be noted that effective convergence methods, like the one we adopt [222],
do not fully capture the subtleties and degeneracies of multi-plane lens analysis, by
disregarding how, when a DM small-scale halo is not in the lens plane, the lens mass
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3. Simulation-based inference for strong gravitational lensing

model can absorb its lensing signal [260, 264, 267]. The omission of this effect may
lead to an overestimate of the LOS halos contribution and needs to be addressed
before this technique can be safely used for the analysis of real data.

For LOS halos we adopt the same concentration and truncation scale values used
for subhalos.

3.2.5 Modeling free-streaming effects in WDM

In WDM models DM particles have non-negligible thermal velocities that allow them
to free-stream out of density perturbations, effectively preventing small-scale structure
formation. The free-streaming effects of WDM are well described in terms of the
half-mode wavelength Anp,, which corresponds to the scale at which the DM transfer
function falls to half the CDM transfer function. We can define the half-mode mass
as the mass contained within a radius of the half-mode wavelength:

Mhm

_ 47TQMpcrit ()\hm>3 (3 30)

3 2

where )y is the matter density parameter and pept is the critical density of the
universe. Following Ref. [268], the half-mode wavelength,

)—1/<2u>

)\hm = 271—04hm (2V/5 -1 5 (331)

is the scale below which the initial density perturbations are completely erased, with
v = 1.12 and, assuming that all DM is warm,

mwon s ~11 7 Qo \ P/ h 1.22h71M
ahmf().049( o ) <0.025> (07) pe. (3.32)

We then have a one-to-one mapping between the mass of the WDM particle and
the half-mode mass. For strong lensing, the half-mode mass can be thought of as an
effective cutoff mass below which the DM mass function is strongly suppressed. To
model this suppression in the WDM mass function we adopt for both subhalos and
LOS halos the functional form from Ref. [269]:

¥
M \?

IWDM._ (1 + (a h ) > : (3.33)

NncbM m200

with best fit parameters o = 4.2, § = 2.5, and v = 0.2 for subhalos, a = 2.3, 5 = 0.8,

and « = 1 for central halos.
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3. Simulation-based inference for strong gravitational lensing

Smoothing substructures

The observational signature of WDM is, thus, the absence of small-scale structures.
However, in the current parameterization, this is accompanied by the removal of the
corresponding mass enclosed in them, whereas in reality the mass will still be present
but will be diffused throughout the smooth main halo. This effect is manifested in a
correlation between the half-mode mass and the main-halo Einstein radius: suppress-
ing more substructures leads to an increase in the inferred Einstein radius since the
total mass of the system (within the image) is tightly constrained by the size of the
observed ring (or arcs).

We introduce a prescription for dealing with this degeneracy, which well captures
the physical reality of structure suppression due to free streaming. Halos that should
be suppressed are not present because the DM particles that should make them up
are freely streaming, and their mass is therefore more diluted throughout the main
halo. Therefore, rather than removing or adding substructures as a response to a
changing cutoff, we still sample substructures from the CDM mass function, but we
smooth the displacement field generated by halos that should be suppressed based on
the aforementioned prescription by Ref. [269] to hide their lensing signature. In other
words, each sampled small-scale halo has a probability equal to the ratio between the
WDM and the CDM HMF (Equation (3.33)) of not being smoothed.

We then effect the smoothing by convolving the deflection field of each individual
sub-/LOS halo with a radially-symmetric filter

Msmooth
focl—exp(—( ! ) ) (3.34)
Tsmooth

This filtering preserves the far-field lensing signature of the halo, which is only deter-
mined by its total mass. By default, we choose the smoothing scale to be equal to
the halo virial radius: Tsmooth = 7200, and the smoothing exponent ngmooth = 2.

In the top row of Figure 3.3 we visualize the convergence maps in the lens plane
for the same realization of LOS halos drawn from CDM distributions (panel 1), and
with different cutoff masses implemented with our smoothing scheme (panels 2-4). In
the bottom row, we show how we decide to smooth the lensing signature of certain
halos based on the ratio between the WDM and the CDM HMF (Equation (3.33)).

3.2.6 Instrumental effects

We generate mock data with comparable quality to HST observations. All images are
5" x 5" with 0.05” resolution (100X 100 pixels). In our simulations, we do not include a
point-spread function (PSF) for simplicity, but this component cannot be disregarded
in real data analysis. To account for the fact that each pixel in the image corresponds
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3.3. Methodology

to a finite collecting region in the sky, we generate our images at a resolution eight
times higher than the target resolution and downsample. In experiments we found
that neglecting this effect can have a significant impact on inference results. Lastly, we
add Gaussian and uncorrelated pixel noise to our observations such that the brightest

pixels are approximately 30 times the noise level (after downsampling), representative
of HST data.

3.3 Methodology

Constraining the fundamental properties of DM by characterizing the population of
DM halos in a strong lensing image is an extremely difficult problem since the signal we
are interested in has a sub-percent level influence on images dominated by statistical
noise. The problem is further complicated by the large differences between images of
different lensing systems.

Our ultimate goal is to compute the marginal posterior p(Mpy,|x) for a single

parameter of interest My, the half mode mass, given an observation @, for which we
have the generative model

p(a:ﬂ?srca TMens, ﬁp7 Mhm)

K . (3.35)
= p($|ﬂsrc, Mens; Mp» Mhm)p(nsrc)p(np ‘nlensa Mhm)p(nlens)p(Mhm) )

The first factor on the right-hand side is the simulator, while the other factors denote
the priors on the various source, lens, and DM substructures parameters as listed in
Table 3.1.

Therefore, in order to derive p(Mpm|®) we need to marginalize over all the nui-

sance parameters 17 = {Niens, Msres ﬁp}:

p(x[Mhm)
p(x)
This is a very high-dimensional and multi-modal integral, even for simple analytical

lens and source models, due to the large population of interchangeable substructures.
Therefore, it is intractable, which renders likelihood-based inference infeasible in this

[ dnp(m)p(x[Mum, 1)

p(Mhm|w) = p(Mhm) = p(m)

P(Mpm). (3.36)

case.

Instead, we approximate p(Myp,|x) using SBI with the TMNRE algorithm, pre-
sented in Section 2.2.

Formally, inferring the marginal posterior for the substructure population param-
eter of interest would require marginalizing over all the source, lens, and substructure
realizations compatible with all possible strong lensing images. However, sampling
lens and source parameters from their priors would require a very large amount of
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3. Simulation-based inference for strong gravitational lensing

training data and a more complex network architecture when using neural ratio esti-
mation. This has been attempted only in Ref. [70] to infer the slope and normalization
of the HMF. In order to reduce the complexity of the problem and fully exploit avail-
able information in the data with limited computational resources, we propose to
target one image at a time, focusing simulations and the network training on a spe-
cific observation of interest. Thanks to TMNRE, we implement this with a truncation
scheme.

TMNRE generates a sequence of likelihood-to-evidence ratio estimators on both
nuisance and parameters of interest for a specific observation x. In multiple inference
rounds, the proposal distribution for nuisance parameters is updated and constrained,
based on these ratio estimators, in order for the training data to match each round
more closely the observation of interest @ (this can be visually appreciated in Fig-
ure 3.7, which will be discussed in more details in Section 3.4.3).

The procedure for the truncation scheme is the following. In the first inference
round, we generate training data sampling the nuisance parameters from the initial
prior p(n). Then, in each round, we constrain the proposal distribution pr(n) for the
parameters we want to marginalize over to a region I' where the nuisance parameters
are more likely to have generated x based on the ratio estimator trained in that round.
In particular, we estimate the new region I' by very conservatively truncating the
previous proposal distribution pr(n) in the region where the ratio estimator exceeds
a predetermined threshold. We set the threshold hyperparameter to € = 107, which,
in case of a Gaussian posterior, corresponds to truncating at ~ 4.78 o [161]. We
obtain the final proposal distribution for our nuisance parameters when the region I'
does not change significantly anymore between rounds.

In this work we target with TMNRE a restricted set of the nuisance parameters
7: namely, those of the analytic smooth lens and source models, Mjens and Mg, while
leaving halo parameters, 7j, unconstrained.

To summarize, thanks to TMNRE, the overall analysis strategy splits into the
following steps:

1. Train an inference network to constrain the source and lens parameters, ng;c
and 7Mens, within ranges consistent with the observation. We then generate
targeted training data based on this constrained model.

2. Train an inference network to learn the marginal likelihood-to-evidence ratio
for our parameter of interest, the half mode mass My, on the targeted training
data.

Similarly to the reasoning behind the ABC rejection algorithm, which discards
sampled parameters values if the generated data is too different from the observed

56



3.4. FExperiment

data, we justify this approach by noting that parameters that do not produce obser-
vations similar to @ will not contribute to the integral in Equation (3.36). Restricting
the input parameters in this way immensely reduces the variability of simulated data,
which allows us to use simpler network architectures and fewer training examples in
the next step. As a result, the inference is now targeted to the specific observation
at hand rather than amortized over all the possible lens/source combinations from
the full prior. We would like to point out that the inference is still locally amortized
in the constrained proposal distribution region, and this enables empirical test of the
inference result (see Section 3.4.5).

3.4 Experiment

In this section, we show our results for hierarchical population parameters inference.
First, we describe the simulated data in Section 3.4.1 and the inference network
architecture in Section 3.4.2. We then show how we constrain the lens and source
parameters in Section 3.4.3. Next, we show our results for the HMF cutoff mass and
describe how we can combine the information from different strong lensing images in
Section 3.4.4. In the same section, we show our results on the DM mass inference.
Finally, we directly assess the statistical behavior of the trained neural networks in
Section 3.4.5.

3.4.1 Mock data generation

For this inference task we use our lensing simulator at its full capacity, by including
lens, source, substructures and different DM models that depend on the half-mode-
mass Mpm:

p(m | Tlsrcy Tens; ﬁp; Mhm) = N(SC | Obs('r]srcv Miens ﬁp: Mhm)a 0'2)- (337)

In Figure 3.4 we show a gallery of twenty mock strong-lensing images we use as
target observations. These mock observations have been generated with arbitrary lens
and source parameters drawn from the initial prior in Table 3.1. Their peak SNR is
~30, representative of HST data.

3.4.2 Neural network

For all tasks we use the same general ratio estimator architecture, as seen in Sec-
tion 2.2.4. It consists of an initial compression network Cg () that maps the 100 x 100
pixel images into a feature vector. This feature vector is concatenated to the param-
eters we want to infer (e.g. to Msc and Mens for tasks where they are constrained, and
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3. Simulation-based inference for strong gravitational lensing

Figure 3.4: We present a gallery of twenty mock strong-lensing images we use as target
observations. These mock observations have been generated with arbitrary lens and
source parameters drawn from the initial prior in Table 3.1. Their peak signal-to-
noise (SNR) is ~30, representative of HST data. We analyze these images by first
constraining their lens and source parameters proposal distribution in Section 3.4.3.
Then, we combine them in order to infer the cutoff mass scale in Section 3.4.4. For the
first one (upper left corner, framed in orange) of these images we show our results of
the first part of the pipeline (Section 3.4.3) in Figure 3.6, Figure 3.7, and Figure 3.8.
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CNN
LazyConv2d
LazyBatchNorm
LeakyRelu
LazyLinear

Sadmnjesq

Figure 3.5: Illustration of the embedding CNN architecture used in the first part of the
pipeline to constrain lens and source parameters. The observation & gets compressed
into features: estimates of the best possible data summary statistic, by the CNN.
In describing the CNN layers we follow PyTorch [109] convention. To create the
illustration we have used https://github.com/HarisIgbal88/PlotNeuralNet/.

Mpum). The vector is then passed to a binary classification network dg(a,0) which
outputs an estimate of the 1D marginal likelihood-to-evidence ratios for the parame-
ter of interest (with separate MLPs used to estimate the 1D ratios for .. and miens)-
For the embedding network, in both steps of the pipeline, we adopt a simple convo-
lutional neural network (CNN). In Figure 3.5 we show the CNN architecture used to
constrain lens and source parameters. The one used to estimate the cutoff mass has

a similar structure.

While we did not perform a full hyperparameter exploration, we found the batch-
norm layers to be crucial for stable training of the CNN used for the macromodel

ratio estimator.

3.4.3 Constraining lens and source parameters

We constrain lens and source parameters regions with TMNRE (Section 2.2) with
multiple sampling and training rounds.

In total, we perform six sampling and training rounds. In each round, we simulate
10° observations, of which 90% are used as the training dataset, and the remaining
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Figure 3.6: Constrained proposal distribution. Visualization of the sequential truncation of the lens and source proposal
distributions over the six rounds of training. The particular target is the first mock image (framed in orange in Figure 3.4),
whose parameters are depicted as black dashed horizontal lines.
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Round 2 Round 1 Round 0

Round 3

Round 4

Figure 3.7: Training data targeting the first mock observation (framed in orange
in Figure 3.4). In each row, we show five examples of training data for the first
five rounds. In the first round, we sample our data from the initial prior shown in
Table 3.1. For the following rounds, the lens and source parameters are sampled from
the constrained proposal distributions, obtained by evaluating the network trained
with the previous round dataset on our target observation (see Section 3.4.3). It
is evident that with each round the training data more closely resembles the target
image xg.
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Figure 3.8: Lens and source parameters posteriors. In solid blue we show the last round of constrained proposal distributions
for the first (upper left corner, framed in orange) target image in Figure 3.4. The dotted black lines correspond to the true lens
and source parameters values with which we have generated the target image. In orange, we show the estimated posteriors
for lens and source parameters in the last training round. Based on the predetermined threshold, the new bounding limits
I (dashed blue) do not change significantly from the previous constrained proposal distribution region, so it is not possible
to constrain the proposal distribution more and we stop the truncation procedure.
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10% as the validation dataset. Evaluations of the network on the mock target im-
age are used to truncate the training data proposal distribution after each round, so
that the region for lens and source parameters is targeted. The first training round
is performed on the dataset generated from the initial source and lens parameters
priors, shown in Table 3.1. In Figure 3.6 we show the initial prior and the following
constrained proposal distributions. It can be seen that after the first round just a few
of the parameters proposal distributions get truncated, e.g. the Einstein radius. By
having truncated these initial parameters, in the following rounds the other parame-
ters can be better learned by the network and so constrained. In Figure 3.7, we show
samples from the first five training datasets, which demonstrate that the constrained
regions are indeed the ones that are likely to produce data similar to the targeted
image x. After the sixth round of training, it is not possible anymore to truncate the
proposal distribution region based on the predetermined threshold, as seen in Fig-
ure 3.8. The truncation scheme has then efficiently identified the constrained region
for lens and source parameters consistent with the targeted observation. Using the
last constrained dataset, it is then easier in the second step of the pipeline to train a
marginal neural ratio estimator to perform the final inference on the cutoff mass.

We would like to stress that these constrained proposal distributions correctly
account for lens and source parameters uncertainties. In all our simulated data,
the substructure parameters 7j, are randomly sampled from their prior, in order
to account for the presence of substructures. This has the desirable outcome of
approximately accounting for the average effect that an additional mass component
has on the main lens parameters (e.g. inferring an unbiased Einstein radius) and
contributes to the source and lens uncertainties.

3.4.4 Dark matter inference

For the second step of the pipeline, we train an inference network to learn the cutoff
mass on the last constrained dataset.

From initial tests, we have found that features from a single image are very hard
to learn for the classifier, resulting in a very noisy ratio estimator. In order to reduce
the estimator uncertainty, we then train the cutoff mass classifier on a dataset X~ =
{x1,..,xn} of N different observations. For each observation, first, we constrain
its lens and source parameters as explained in Section 3.4.3. Then, we train the
cutoff classifier on the concatenation of the features coming from their embedding
networks, effectively learning 7(My,; XV). Note that the images in one dataset are
sampled with the same cutoff mass My,,,, but different lens, source, and substructures
realizations. In fact, our final goal is to apply the full pipeline to real data, which will
all have different source, lens, and substructures configurations, but will have encoded
the same DM properties.
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Figure 3.9: Top: Approximate posteriors for the half-mode mass derived from 10
different sets of 20 images. The dotted black line represents the true value of the half
mode mass with which we have generated the images (107, 108,10%,10'° My). Middle:
We show the approximate posterior resulting from the combination of the M = 10
different posteriors shown in the first column, as explained in the text (Section 3.4.4).
Bottom: Subhalo mass function constraints derived from the cutoff mass posterior
shown in the second column. The black solid line shows the CDM subhalo mass
function according to Equation (3.22), whereas the black dashed one shows the WDM
subhalo mass function according to Equation (3.33), given the true cutoff mass shown
in the label. The blue dashed line shows the mean of the WDM subhalo mass function
obtained by sampling 1000 samples from the cutoff mass posterior shown in the second
panel and using this value in Equation (3.33). We also show the central 68 and
95 percentiles as shaded bands. These plots show how uncertain the subhalo mass
function is under the assumption that it has the functional form in Equation (3.33)
with parameters from Ref. [269].
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In the first row of Figure 3.9 we show the results from the inference network on
ten test sets of lenses generated with a My, value of 107,108, 10% and 10'° M.
Each curve is the posterior obtained for a set of N = 20 lenses. Each of the mock
observations has lens and source parameters sampled from their own final constrained
proposal distribution, and different substructure population.

Now that we have reduced the estimator noise, it is straightforward to perform
inference on a group of sets of images by combining their ratios. Given a dataset
XN = {x,..,xy} of images, the combined ratio for multiple M datasets is simply
given by 7(Mpm; X2,) o Hﬁl 7(Mpm; X7V), where the proportionality is a ratio
of evidences, independent of the parameter value, so it only accounts for a proper
normalisation Ref. [70, 153]. In the second row of Figure 3.9 we show the results for

the combination of the M = 10 different posteriors shown in the first column.

In the third row we show a combined posterior for the WDM mass function from
200 images (M = 10 sets of N = 20 images). These plots show the uncertainty in
the subhalo mass function under the assumption that it has the functional form in
Equation (3.33) with parameters from Ref. [269].

These first results show that our method is sensitive to the low-mass end of the
HMF, and that we have unbiased results from combining just 10 sets of 20 obser-
vations, given that in the second panel of Figure 3.9 the true input value for the
half-mode mass My, is consistently contained within the estimated posterior. In Sec-
tion 3.4.5 we will show a more sophisticated method to assess the statistical behavior
of our inference results.

Furthermore, we can translate the constraints we obtain on the cutoff mass to
constraints on the WDM mass given the mapping between those two quantities defined
in Section 3.2.5. In Figure 3.10 we show our results for the WDM mass. Each column
corresponds to a different cutoff mass input value, so a different WDM mass. In the
first row, we plot five examples of the combined posterior density for log;; Mpm, of
M = 10 sets of N = 20 observations. In the second row, we show the corresponding
color-coded five examples for mwpy. In this case, we just transform the posterior
from the first row using the parameterization shown in Section 3.2.5, so we assume a
flat prior on log;y Mhm. Finally, in the last row, we show the WDM mass posterior
densities assuming a flat prior on the latter. The posteriors in the second and third
row are not actually the same because a flat prior log;, My, is different from a flat
prior on mwpM-

3.4.5 Credible interval testing

We would like to directly test and validate the statistical behavior of our inference
results by determining the expected coverage of the ratio estimator produced by the
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Figure 3.10: Top: We show five examples of combined posterior of M = 10 sets of
N = 20 observations in terms of the cutoff mass (as the second row in Figure 3.9).
The dotted black line represents the true input value of the half mode mass with
which we have generated the analyzed mock observations (107,10%,10% 10 M).
Middle: Same results as shown in the first column but for the WDM mass. The
dotted black line represents the true value of the WDM mass with which we have
generated the analyzed mock observations, given the mapping between DM cutoff
and DM mass in Section 3.2.5. The WDM mass posteriors assume a flat prior on the
cutoff mass. Bottom: Same results as shown in the first column but for the WDM
mass and assuming a flat prior on the latter. In the first plot of the row, we show for
the five examples the expected 95% credible lower limit on the WDM mass for the
highest value of our prior distribution.
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Figure 3.11: Empirical versus nominal expected coverage probabilities for the cutoff
mass inference network. In case the line lies above (below) the black dashed diagonal
line, the credible intervals are conservative (overconfident) and contain the true value
with a frequency higher (lower) than nominally expected. We show the empirical
(nominal) probabilities as horizontal (vertical) text.

network, as described in Section 2.3. The goal is to compare the nominal and empirical
expected coverage probabilities of estimated Bayesian credible intervals, which should
coincide for a well-calibrated estimator. For the statistical formalism and definition
of credible region and expected coverage probability, we refer the reader to Ref. [171].
In brief, an ideal estimator has matching empirical and nominal expected coverage,
a conservative one predicts lower credibility than empirically obtained, and an over-
confident one has higher nominal than empirical credibility. In plots like Figure 3.11,
the line for an ideal ratio estimator should perfectly align with the diagonal, whereas
for a conservative (overconfident) estimator, it will lie above (below) the diagonal. In
combination with visually checking the posteriors, this test supports the accuracy of
the posterior estimator and is also particularly useful when one does not have access
to the ground truth against which to compare the results. In Figure 3.11 we show the
empirical versus nominal expected coverage probabilities for the cutoff mass inference
network. We can see that the inference network for the half-mode mass has converged
with good expected coverage.
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3. Simulation-based inference for strong gravitational lensing

3.5 Discussion

In this section, we discuss the improvements to the model and inference question
which need to be addressed before we can safely apply our pipeline to the analysis of
real data.

First, we have neglected effects such as inadequate lens light subtraction and as-
sumed the lens light to be known (this will be accounted for in Chapter 4). Regarding
the noise model, we did not account for correlated pixel noise due to instrumen-
tal effects including the telescope’s PSF, multi-band observations, drizzling (e.g. see
Ref. [68]), and even complex noise with an unknown likelihood function.

In this work, we have employed an analytic parameterization (the Sérsic profile) as
a lensed source light distribution model, which is adequate to analyze low-resolution
images. However, to accurately model higher-fidelity lensing observations, such as
those from on-going (e.g. HST) and future (e.g. JWST, ELT, SKA) telescopes, more
complex source models need to be employed. Existing models, in order of complexity,
are regularized pixellation of the source plane (see, e.g., Refs. [41, 119, 270]), source
modeling through basis functions (e.g. shapelets [271] or wavelets [272]) attached to
the source plane, and deep learning approaches (see, e.g., Refs. [230, 273]). The ability
to accurately and precisely reconstruct the complex morphology of strong-lensing
sources is of the utmost importance, as to disentangle the source surface brightness
inhomogeneities from the percent-level fluctuations introduced by substructures in the
lens. We anticipate that using sources with more complex morphologies will result in
higher sensitivity to the DM cutoff mass, provided that it is possible to model these
sources. In fact, the residuals between the image of an extended source lensed by the
total lens potential (accounting for substructures), and that of the same source lensed
only by the main lens component are proportional to the gradient of that source
evaluated in the image plane [224, Equation 16].

Regarding WDM modeling, validation of our smoothing scheme (Equation 3.2.5)
is required to accurately account for DM free-streaming effects. Moreover, we should
account for uncertainties due to the assumed halo density profile by considering dif-
ferent DM distributions around galaxies (see, e.g., Ref. [274] for a review). We note
that, thanks to its flexibility, our pipeline can incorporate any arbitrary DM model,
as long as it specifies the form of the HMF and the density profiles of individual
substructures.

Finally, we would like to draw the reader’s attention on the fact that in our model-
ing we assume that the halo mass of the lens is known exactly from its Einstein radius
(see Equation 3.2.4). This is a strong assumption that has as a consequence the sep-
aration of substructure parameters 7j, and lens parameter miens once we marginalize
the posterior probability over the halo mass in Equation (3.35). In particular, the
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second inference question we have addressed in this work in Section 3.4.4, constrain-
ing the cutoff mass of the subhalo mass distribution, is then a simplified version of
the real one, which is to simultaneously determine the halo mass and subhalo mass
distribution of the lenses from real data (see, e.g., Ref. [226]).

While this work used simple mock lenses, TMNRE makes it possible to add realism
and parameters to a simulator without significantly altering the inference procedure,
or necessarily increasing the simulation budget [78]. It should therefore be straight-
forward to incorporate these various complexities we ignored in this work without
fundamentally modifying the inference pipeline.

3.6 Conclusions

Measuring the collective properties of DM halos on sub-galactic scales by means of
their gravitational effect is an important probe of the fundamental nature of DM.
One of such probes, strong gravitational lensing, has sparked much interest over the
last few years. Moreover, the development of fast and accurate techniques to extract
information from strong lensing images is well motivated by the wealth of new high-
resolution strong lensing observations that will become available in the near future.

In this work, we have presented the first step towards a new neural simulation
based inference pipeline (Chapter 2) to analyze present and future strong gravitational
lensing systems in order to constrain the cutoff in the DM HMF, and so the DM mass
(Section 3.4). To this end, we have used a recent machine learning development,
TMNRE, that makes it possible to target the analysis to a specific observation rather
than amortize over all possible variations in lensing systems, making inference more
efficient and precise. Thanks to TMNRE, we overcome the computational challenges
of traditional MCMC, nested sampling and trans-dimensional MCMC methods, by
directly learning the marginal posterior for the parameter of scientific-interest from
the observation. Moreover, TMNRE leverages neural networks to directly learn the
best summary statistic possible from the full input data, without having to compress
the observation into hand-crafted summary statistics, like for ABC frameworks. The
method is applicable to simulators with unknown likelihood functions and large or
even variable numbers of input parameters. Lastly, the resulting inference networks
can be poked and prodded to confirm they are statistically well-behaved. This work
is then a step forward towards making the analysis of strong lensing images for DM
science faster, more efficient, and more accurate.

Our key results can be summarized as follows:

TMNRE enables direct marginal inference. Thanks to marginalized inference,
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3. Simulation-based inference for strong gravitational lensing

the TMNRE based analysis is able to correctly propagate the lens and source pa-
rameters uncertainties, and account for the presence of a population of substructures,
when estimating the marginal posterior of interest.

TMNRE enables direct targeted inference. Thanks to our targeted approach,
we are able to correctly estimate the lens and source parameters uncertainties, and
use the final lens and source parameters truncated proposal distributions (see Sec-
tion 3.4.3) to generate a targeted training dataset in order to infer the DM cutoff.

TMNRE enables statistical checks. Since the inference networks learned by TM-
NRE are locally amortized over a range of potential observations, we were able to test
their statistical consistency. Our checks confirm that TMNRE on average produces
posteriors with the correct width (see e.g. Figure 3.11). Such tests would be ex-
tremely expensive with likelihood-based inference since they would require rerunning
the sampling machinery on numerous mock observations.

TMNRE enables hierarchical inference. We demonstrated that our framework
is able to statistically extract the DM cutoff mass signal from a population of small-
scale dark matter halos in the [107, 10'°] M mass range, by performing hierarchical
inference on up to 200 observations (Section 3.4.4 and Figure 3.9). A cutoff mass
posterior translates into a posterior on the WDM mass, given the mapping in Sec-
tion 3.2.5. What we find is an expected 95% credible lower limits around 6.5 keV in
the case of the scenario closest to CDM (see the bottom left panel in Figure 3.10),
given the adopted prior and the various assumptions discussed in Section 3.5.

In this work, we have demonstrated that, in principle, the DM cutoff mass signal
can be statistically extracted from a population of small-scale dark matter halos by
a neural network using TMNRE. A part from the possible framework improvements
discussed in Section 3.5, an interesting direction for further work is the use of TMNRE
for model comparison. While here our ratio estimators were trained to compute the
likelihood-to-evidence ratio, as pointed out in Ref. [153] it is possible to learn other
ratios of densities. In particular ratio estimators can be used to learn the Bayes
factor for assessing the strength of the evidence for different models. This could be
used to determine whether an image contains a perturber or not, and to map the
minimum-detectable perturber mass as a function of its position.

Overall, we believe using TMNRE to measure dark perturbers’ population pa-
rameters as described in this work provides a promising path towards uncovering the
identity of dark matter.
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SCALABLE SIMULATION-BASED
INFERENCE

In recent years, there has been a remarkable development of SBI algorithms, and they
have now been applied across a wide range of astrophysical and cosmological analyses.
There are a number of key advantages to these methods, centered around the ability
to perform scalable statistical inference without an explicit likelihood. In this chap-
ter, we propose two technical building blocks to a specific sequential SBI algorithm,
TMNRE. In particular, first we develop autoregressive ratio estimation with the aim
to robustly estimate correlated high-dimensional posteriors. Secondly, we propose a
slice-based nested sampling algorithm to efficiently draw both posterior samples and
constrained prior samples from ratio estimators, the latter being instrumental for se-
quential inference. To validate our implementation, we carry out inference tasks on
three concrete examples: a toy model of a multi-dimensional Gaussian, the analysis
of a stellar stream mock observation, and finally, a proof-of-concept application to
substructure searches in strong gravitational lensing.

This chapter is based on work from [2].

4.1 Introduction

Our understanding of the universe has the potential to be revolutionized by the expo-
nentially growing influx of high quality data from current and upcoming astrophysical
or cosmological surveys [275]. Data from current and near-future facilities (e.g. Eu-
clid [42], JWST [12], Rubin-LSST [10], ELT [276], Gaia [277], SKA [278], CTA [279])
will exceed the peta- and exa-byte threshold. Given this status, it is crucial for the
community to develop innovative data analysis pipelines, statistical algorithms, data
compression techniques, and search pipelines. These will need to handle not only the
escalating amount of data, but also its increasing resolution, which directly translates
into growing model complexity.
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In general, to obtain information about physical models from the data, one has to
solve the “inverse problem”, i.e. given an observation, the goal is to infer the param-
eters of a specific model (or set of models) that are most likely to have generated it.
The main tools to solve inverse problems for modern astrophysical and cosmological
data analysis have been sampling-based inference methods like MCMC [93, 94] and
nested sampling [95, 96, 100] techniques. However, these methods often rely on ap-
proximate likelihoods, and the time needed to reach convergence scales poorly with
the dimensionality of the explored parameter space. More modern methods are tak-
ing up this latter challenge, including gradient-based algorithms such as Hamiltonian
Monte-Carlo [280], or slice-sampling techniques [99, 100].

Novel techniques in the field of SBI are starting to overcome these challenges (for
a recent review see Ref. [52]), and have recently gained significant popularity due to
a number of appealing features (see e.g. Refs. [5, 55, 59, 64, 67, 70, 78, 81, 90, 281—
284] for examples of method development and applications across cosmology and
astroparticle physics). First of all, SBI methods do not require an explicit model
of the data likelihood, but instead access its information implicitly via a stochastic
simulator, which maps input parameters to data. Secondly, SBI techniques are able
to directly target marginal posteriors for the parameters of interest [55, 165], which
typically improves scalability with the dimensionality of the parameter space. This
is because an arbitrarily large number of nuisance parameters can be included whilst
targeting the same set of parameters of interest.' Lastly, sequential SBI approaches
that continuously use the acquired inference knowledge to guide the simulator into
the relevant part of the parameter space through active learning, have been shown to
be particularly simulation efficient [124].

Whilst there are a wide range of SBI algorithms (we refer the reader to Section 2.1
for a broad overview), the main focus of this work will be TMNRE [120, 160]. This
is a sequential implementation of the general neural ratio estimation technique [153]
that composes well with marginalisation. In essence, neural ratio estimation trains a
neural network to approximate the posterior-to-prior ratio by solving a binary clas-
sification problem (for more details see Section 2.2.1). TMNRE has been shown to
be successful in a number of different physics applications, such as cosmic microwave
background analyses [78], strong lensing image analysis [1, 5], supernovae Ia cosmol-
ogy [81], gravitational wave parameter inference [64, 65], along with other applications
[4, 80, 90, 285].

So far, TMNRE applications have focused on estimating low-dimensional (d < 2)
marginal posteriors for the parameters of interest. This choice was motivated by the

11t is important to note that if all parameters contribute equally to the data variance, the implicit
data distribution will become noise-dominated. Thus, when referring to scaling to arbitrary number
of variables, the data variance is implicitly kept fixed. This limit remains a challenge for sampling-
based methods, but is tractable in the SBI framework.
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fact that directly targeting these low-dimensional marginal posteriors alleviates sam-
pling problems associated with high dimensionality, whilst still maintaining much of
the information relevant for scientific conclusions. Nevertheless, there are situations
when focusing on low-dimensional marginal posterior estimates makes TMNRE in-
herently inefficient, for example when the marginals of interest are highly correlated
(or multi-modal). In these cases it is therefore necessary to produce accurate high-
dimensional joint estimates to account for these correlations, since higher-dimensional
structure can be obscured by low-dimensional projections. This limitation becomes
especially relevant for the sequential aspect of the algorithm, which cannot lever-
age the information regarding the correlations while guiding the simulations. How-
ever, the necessity for high-dimensional joint estimates clashes with one know failure
mode of density ratio estimators, the so called “density-chasm problem”, described
in Ref. [286]. In essence, density ratio estimators can fail whenever the gap (in the
sense of Ref. [286]) between the two densities is large, since the binary classifier can
obtain almost perfect accuracy with a relatively poor estimate of the density ratio.
This problem is exacerbated in high-dimensions.

The present work is a step forward towards addressing these competing limita-
tions. Here, we propose two new building blocks of the TMNRE framework: an au-
toregressive implementation of neural ratio estimation for scalable, high-dimensional
(marginal) posterior inference, and a slice-based nested sampling algorithm to effi-
ciently draw not only posterior samples, but also constrained prior samples. The
latter set of samples, as was discussed in Section 2.2.3, are necessary for TMNRE’s
implementation of active learning.

In recent years, autoregressive models have shown great potential in scaling to
high-dimensional distribution estimation problems, see e.g. Refs. [287-289]. The term
“autoregressive” originates from the time-series modeling literature, where it refers to
the practice of using previous time-step observations to predict the value at the current
time step. Autoregressive models function in a similar fashion by decomposing a d-
dimensional joint density into a product of d 1-dimensional conditional distributions,
as in Equation (4.1). An autoregressive model is then defined by the parameterization
of all d conditionals.

We introduce the slice sampling component because neural ratio estimators do
not come with sampling functionalities. In general, to sample from the estimated
(marginal) posterior, we require Monte Carlo sampling algorithms, especially in high
dimensions. Moreover, we are interested in obtaining constrained prior samples for
the purposes of active learning. In this context, whilst nested sampling was primarily
born as a general purpose integration algorithm in high-dimensions, it has primarily
been applied to perform Bayesian inference, in particular to estimate the Bayesian
evidence and the posterior. Interestingly, at the heart of nested sampling algorithms
resides also the problem of constrained prior sampling [97]. Motivated by the success
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of slice-based nested samplers [99, 100], we implement a custom slice sampler to draw
both posterior and constrained prior samples.

The structure of this chapter is as follows. We introduce this work’s main con-
tribution: autoregressive neural ratio estimation and prior truncation through slice-
based nested sampling, in Section 4.2. In Section 4.3, we present results on a toy
example, and applications to stellar streams and substructure parameter inference in
strong gravitational lensing images, which initially motivated the development of the
presented tools. Finally, we provide some discussion regarding possible limitations
and outlook, concluding in Section 4.4.

Code. We release a publicly available implementation of the autoregressive ratio
estimator model in the TMNRE package swyft?, and an implementation of the slice-
based nested sampler in torchns®.

4.2 Methodology

Up to now, applications of TMNRE have typically focused on estimating low-
dimensional (d < 2) marginal posteriors. On the other hand, whilst correlations
between two parameters can always be estimated by training an appropriate ratio
estimator, doing this for all pairwise combinations of a large number of parameters
becomes quickly infeasible. Furthermore, even if it were done, two-dimensional corre-
lations do not provide any information about higher order correlations since they are
just projections. In certain scenarios, this might be crucial for calibrating the quality
and accuracy of the inference methods and strongly motivates the development of
techniques able to robustly estimate higher-dimensional posterior distributions.

As discussed in Section 4.1, however, there are challenges related to both the es-
timation of high-dimensional ratios and subsequently sampling from them. Here, we
propose two new building blocks of the TMNRE framework to address these issues:
autoregressive NRE for scalable, multi-dimensional (marginal) posterior estimation,
and slice sampling to efficiently sample from a multi-dimensional posterior and trun-

cated prior.*

2https://github.com/undark-lab/swyft

Shttps://github.com/undark-1lab/torchns

4This work has been informed by private communications surrounding a complementary paper in
preparation [290].
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4.2. Methodology

4.2.1 Autoregressive Neural Ratio Estimation

Across the various SBI techniques, autoregressive models have been developed in
the context of density estimation algorithms, NPE [288, 289] and NLE [149], and
have been shown to be among the best performing density estimators [124]. They
have been successfully applied to the Dark Energy Survey and global 21cm signal
experiments [291], and for deep generative models for galaxy image simulations [292].

In a nutshell, autoregressive models turn the estimation of a d-dimensional joint
density into the estimation of d 1-dimensional conditional densities using the chain
rule of probability

d
p(O | x) =p(6y | ) [[p(0: | @61 1), (4.1)
i=2
where we have introduced the compact notation 61.;,_1 = {61,...,0,—1}. One can

thus define an autoregressive model simply by specifying a parameterization of all d
conditionals.

Within the NRE framework, it is also possible to perform conditional inference.
In this case, the binary classifier must be informed about the value of the parame-
ters we want to condition over. More specifically, in order to learn the conditional
posterior for parameter §; given parameter §; (with j # ¢), the binary classifier will
be shown as positive training example x, 6;,0; ~ p(x,0;,6;) and as negative training
examples x,0;,0; ~ p(x,0;)p(6;). We can then express the conditional ratio trained
on ({z,0;},0;) pairs as
p(ei ‘ z, ej)

p(6:) .
It is possible to condition more than one parameter ; on more than one variable §;
just by correctly passing to the classifier positive and negative training examples as
defined above.

r(0s;x,0;) = (4.2)

We can then use 1-dimensional versions of these ratio estimators, conditioned on
multiple variables, to implement autoregressive NRE. More in details, one way to
estimate our ratio of interest r(6; x), as defined in Equation (2.20), auto-regressively
is by considering the following components. The first quantity, A, estimates the ratio
between the joint posterior distribution and the independent marginal priors,

p(0 | x)
[T, p(6:)
91|:1: Hp& |:1:01, 1)

(4.3)

d
917 Hrawxglz 1)-
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The second component, B, models the dependencies between the model parameters,

__ p(O)
H?:1 p(0:)

d
p(0; | 01:i-1)
il_[Q p(0:) (4.4)

7‘(91'; 91:1'71) .

[
AE&

=2

Our key quantity of interest is then obtained as

p(0 | z)

r(im) = p(6)

— A/B . (4.5)

It is important to highlight the role of the B component in this algorithm. In the
case of sequential inference, even if the initial prior distributions from which parame-
ters are drawn are independent, the sequential proposal distribution will account for
non-trivial correlations between parameters in the constrained prior region (via the
condition in Equation (2.27)). It is therefore crucial to properly account for these
correlations between parameters through B since they will implicitly be present in
the training data.

Also note that in both the definitions of A and B, we have used the notation
introduced in Equation (4.2) for conditional ratios. An alternative formulation of an
autoregressive model for ratio estimation that uses a single network to model both
components is presented in Appendix 4.A.

The key advantage of autoregressive NRE lies in its ability to handle intricate
dependencies among variables by focusing on one parameter at a time. In “vanilla”
NRE, for high-dimensional parameter spaces, the discriminating power of the binary
classifier can be quickly saturated leading to a poor estimate of the joint density ra-
tio. Here, the full joint distribution is modeled through 1-dimensional conditional
ratios, leading to a more stable and accurate estimation of the full joint ratio. How-
ever, the presented autoregressive NRE method does inherit the generic drawbacks
of autoregressive models. Perhaps the most relevant is their sensitivity to the order
of the conditional probabilities, since in practice it is difficult to know which of the
factorially many orders is the most efficient in each case [289]. A possible solution
was presented in Ref. [293], that introduced an efficient procedure to simultaneously
train an autoregressive model for all possible orderings of the variables. We will study
this effect explicitly in the stellar streams example given in Section 4.3.2.
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4.2.2 Prior truncation strategies

The original prior truncation scheme proposed in the TMNRE formalism [160] is a
parameter-wise truncation based on 1-dimensional marginal ratio estimators. As a
result, the prior gets restricted to a truncation region that has the shape of a hyper-
rectangular box (“box” truncation),

1 - -
pr(0) = Z1(0r € T4 ™Y) - x1(0a € Ty~ )p(6). (4.6)

where we have introduced the indicator function I which is unity on the truncated
prior support Pgi and zero otherwise, and the normalizing constant Z which can be
interpreted as the fractional volume of the truncated prior.

One of the drawbacks of using this box truncation scheme is that it neglects
parameter correlations. For higher (d 2 2) dimensional marginal posteriors, this

results in the new constrained region usually containing significantly more probability
mass than is actually required (see e.g. Ref. [81]).

In this section, we propose a parameter block-wise truncation scheme (“corre-
lated” truncation) based on high-dimensional ratio estimators that accounts for cor-
relations between parameters. This correlated truncation region is defined through a
hard likelihood-to-evidence ratio constraint,

#7(0) = 16 € Ty (o), (4.7)
where FéRfl) is as defined in Equation (2.27). In Figure 4.1, we show a visual com-
parison of the two prior truncation strategies in a simple 2-dimensional parameter
space. However, following this approach brings about a new challenge that will be
addressed in the next section: how does one efficiently define the boundaries of I‘(GR)
and sample from within it?

4.2.3 Sampling from ratio estimators: posterior and con-
strained prior samples

As discussed in Section 4.1, NRE does not have sampling functionalities and Monte
Carlo-based sampling algorithms are used to obtain samples from the approximate
posterior.” Moreover, we are not only interested in posterior samples, but also in how
we can efficiently draw constrained prior samples from a region defined through a hard
likelihood-to-evidence ratio constraint. Here, we propose utilizing a slice-based nested
sampling algorithm, as an efficient method to sample both posterior samples and

51t is worth noting that this is somewhat contrary to NPE, where one can directly draw posterior
samples from the normalising flow.
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z2

z1 z1

Figure 4.1: Prior truncation strategies. We visualize in a 2-dimensional parameter
space a constrained prior region using hyper-rectangular boxes as defined in Equa-
tion (4.6) (red rectangle on the left), and a constrained prior region using hard iso-
likelihood-to-evidence ratio contours as defined in Equation (4.7) (red ellipse on the
right). Sampling from hyper-rectangular boxes is equivalent to uniform sampling,
whereas sampling from iso-likelihood-to-evidence ratio contours requires more sophis-
ticated sampling algorithms. In particular, we use a slice-based nested sampler as
explained in Section 4.2.3.

constrained prior samples from the ratio estimator. Importantly, constrained prior
samples can be obtained through the same nested sampling techniques. Our sampler
choice is strongly inspired by the success of slice-based nested samplers in efficiently
and reliably exploring high dimensional parameter spaces [100, 294]. Additionally,
slice sampling was proposed in Ref. [149] as a sampler for NLE.

First proposed in Ref. [95], nested sampling allows one to sample from high-
dimensional probability densities by evolving an ensemble of live points through a
high-dimensional parameter space. At the core of nested sampling algorithms is the
problem of constrained prior sampling within iso-likelihood contours [97]. This opens
up the possibility to re-use technology developed for nested sampling for the purpose
of sampling not only from the posterior, but also from the constrained prior region,
as defined in Equation (2.27) within iso-likelihood-to-evidence ratio contours.®

Typically, nested sampling algorithms start by drawing a collection of live points
from the prior. In the current context, one evolves them by discarding the point with
the lowest ratio, denoted with rui,, and replacing it with a new point subject to the
constrain r > ry,. The remaining live points are now uniformly distributed over a
compressed volume (as they are drawn from a constrained prior as in Equation (2.27)

61In traditional implementations the contours are defined by iso-likelihood levels, not iso-likelihood-
to-evidence ratio levels.
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with € = ryin).

The most challenging aspect of the nested sampling algorithm is drawing new
live points under the hard likelihood-to-evidence ratio condition r > 7yin. One pos-
sible reliable and efficient way to do so is through slice sampling, first introduced
in Ref. [99]. Starting from one randomly chosen live point, slice sampling builds a
chain of proposed live points by taking sequential 1-dimensional steps in a random
direction. The length of this chain controls the amount of correlation between the
new live point and the initial one (for further information see Ref. [295]).

In our slice sampling implementation, we use a number of different ploys to make
our sampling scheme more efficient for the purposes at hand. Firstly, instead of a
single chain, the user can define the number of slice sampling chains to draw new live
points that will be run in parallel. Secondly, the sampler is implemented such that it
allows vectorized evaluations of the natively GPU-based ratio estimator, which pro-
vides considerable computational speed-up. We also provide useful functionality to
compute the threshold e that defines the constrained prior region in Equation (2.27),
based on how much probability mass from the current approximate likelihood-to-
evidence ratio one wants the region to include. This is relevant for setting the con-
vergence criterion related to posterior mass that defines the iso-likelihood-to-ratio
contour, as in Equation (2.27). Importantly, inference errors caused by truncation
arise when not enough posterior mass is included in the truncated regions, resulting
in wrongly excluded parts of the parameter space of interest (for a detailed discussion
and test of the impact that overly tight complex truncation induces on inference, we
refer the reader to Appendix 6.10 of Ref. [168]). For sequential SBI applications,
we advise the user to conservatively choose the threshold e such that the truncated
prior encloses the highest probability density (HPD) region that contains at minimum
99.9% (i.e. 1 —1073) of the probability mass.

Network stability during sampling. During the sampling step, numerical issues
can arise because the slice sampler may evaluate the network outside of the current
truncation region I‘ng) when searching for new points. In order to detail the issue,
we recall our definition of B = p(8)/ Hle p(6;), which is zero outside of the support
of the joined distribution p(@). Formally, this is not a problem for the ratio A/B
(see Equation (4.5)), because that region coincides with the prior region that we
truncated away in our truncation procedure (i.e. regions of very low posterior mass).
In practice, during sampling, since the network in a given round R has not seen
training samples outside of the constrained prior 5)(8) (see Equation (4.7)), this
can lead to estimated values of our neural likelihood-to-evidence ratio A/B which are
much larger than the formal expectation (indeed B = 0 exactly outside this region).

We solve this stability issue with the following strategy, that has no impact within
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the truncation bounds F(GR), and therefore on the results. During the sampling step,

the following substitution is performed in the network

B — max(B, H}}ar)l B). (4.8)

Iy

Hence, B can be at minimum as small as the smallest value it can take inside the
truncation bound FéR). As a result, the substitution will never happen inside the
constrained region FéR) where the network was trained, and consequently will not
have any impact on the new truncation set FE,RH) € FéR). We further emphasize
that by construction, the truncation region should never expand throughout a round,
so this new substitution only plays the role of fixing the stability issues outside the
constrained prior.

To summarise, in this section we have presented the main contributions of this
work in the form of two new building blocks of the TMNRE framework: autoregres-
sive NRE and a slice-based nested sampler to sample posterior and constrained prior
samples from a ratio estimator. In the next section, we will apply these newly de-
veloped tools to a toy Gaussian example, as well as two astrophysical applications —
stellar streams and strong lensing.

4.3 Experiments

We first apply our newly developed tools to a toy multivariate Gaussian example. For
more realistic settings, we consider two astrophysics problems: stellar streams param-
eter inference and substructure parameter inference in strong gravitational lensing
observations.

4.3.1 Multivariate Gaussian: scalability

In this first application, we are interested in testing how the performance of “vanilla”
NRE and autoregressive NRE models scale with dimensionality and simulation bud-
get. To do so, we consider a d-dimensional Gaussian toy model with strong cor-
relations. The parameters # € R? are drawn from a multivariate normal prior
p(0) = N(0,Xg), with diagonal covariance matrix g = 0.1 ® I. The observations
x € R? are drawn from a multivariate normal likelihood p(x | 8) = N(0,X), with
fixed covariance 3, which has correlation scales of 0.1 for the off-diagonal entries, and
0.11 for the diagonal ones. As a reference, we use the analytic solution for the true
posterior given by Bayes’ theorem.
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Figure 4.2: Multivariate Gaussian toy example results. In the three panels we show
the KL divergence value between the analytical posterior distribution and the esti-
mated ones from the autoregressive (ANRE, in red) a non-autoregressive (NRE, in
blue) models. The metric is shown as a function of simulation budget in three dif-
ferent dimensionalities (d = 3,10,30). For our fixed network capacity, NRE is able
to perform as well as ANRE for high simulation budget in low-dimensional scenarios.
For higher-dimensionality, the quality of posterior samples obtained from the autore-
gressive model matches significantly more closely the one from the analytic solution
based on the KL divergence value.
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We test NRE and autoregressive NRE for dimensions d = 3,10,30 and for dif-
ferent simulation budgets of Nyimulations = 102,104, 10° training data examples. Each
conditional ratio in the autoregressive network is modeled with 4 ResNet [296] blocks
with 64 hidden features (implemented in swyft). The “vanilla” NRE network is in-
stead modeled with a single network whose number of ResNet blocks and parameters
is adjusted accordingly to match the total number of parameters in the autoregressive
model.

To compare the performance of the two models we consider the Kullback-Leibler
(KL) [155] divergence Dk, between the posterior estimated by each model and the
analytical solution. The KL divergence is a statistical distance that measures the
difference between two probability distributions; the closer it is to zero, the better
agreement there is. The mean and the covariance of the estimated posterior are com-
puted from the posterior samples of the two models, obtained with our slice-based
nested sampler. Our results are shown in Figure 4.2, where each point is the mean KL
divergence of 10 different observations. The error bar represents the standard devia-
tion of these values. In low-dimensional scenarios (d = 3), NRE is able to perform as
well as autoregressive NRE for high simulation budget. For higher-dimensionality, the
quality of posterior samples obtained from the autoregressive model matches signifi-
cantly more closely the one from the analytic solution for lower simulation budgets.
In Appendix 4.B, we show the comparison between the analytical posterior and the
estimated posterior with simulation budget Ngmulations = 10° from the two models
for one observation with d = 10.

4.3.2 Stellar streams: autoregressive variable ordering

Stellar streams are very old, dynamical objects in the Milky Way that form as the re-
sult of the tidal disruption of objects such as globular clusters or small dwarf galaxies
as they orbit the host. In principle, they can act as detailed tracers of the galactic po-
tential, the disruption history and physics of the star clusters, and even possible dark
substructures in the Milky Way (see e.g. Refs. [297-304] for examples of the exist-
ing analyses). On the other hand, robust analysis of these objects is challenging for a
number of reasons. Firstly, simulating the stream in full generality is computationally
challenging, so delicate modeling choices need to be made. Secondly, the statistical
properties of the resulting stream are difficult to write down explicitly in the form
of a likelihood, mainly due to complicated observational effects such as membership
probabilities in e.g. Gaia data [305, 306]. Combined with the general simulation ef-
ficiency that has been observed with neural ratio estimation, this strongly motivates
the application of SBI techniques to such a problem, something that has been studied
in detail in Ref. [90] (see also Ref. [89]).

In the current context, we will use the inference of stream model parameters in
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Figure 4.3: Stellar streams experiment results. Corner plot: The corner plot shows the
comparison between the inference results using different parameter ordering schemes
across those parameters that are constrained in the analysis (for the full set, see
Appendix 4.C). Order A (most constrained parameters to least constrained) is shown
with red contours, whilst Order B (least constrained to most) is shown in blue. We
see that Order A performs marginally better in terms of precision, although the
improvement is somewhat marginal. The true injected values are shown with black
dashed lines and dots. Upper right inset: This inset shows the training loss (see
Equation (2.21)) as a function of the number of training steps for the two orderings.
We see that Order A achieves a lower value of the loss, in line with the conclusions
from the corner plot. The validation loss for each case is shown with black dashed
lines.
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an identical set up to Ref. [90] to highlight a relevant aspect of the autoregressive
algorithm presented in this work. Specifically, we use the case study to highlight the
implications that varying the ordering of parameters in the conditional distributions
product found in Equation (4.3) has on inference performance. The intuition that we
wish to test is the following: we expect that the distribution p(6;|x) is most useful
to learn if §; is well constrained. Similarly, if 6; is not well constrained, then adding
conditional information e.g. in p(6;|x, 01.;_1) can add relevant information. With this
said, the expectation is that an approximately optimal ordering runs from 6, as the
most constrained parameter (relative to the prior), and 6, as the least constrained
parameter.

Given the analysis in Ref. [90], we have good expectations about the relative
constraining power of the streams analysis on various parameters. As such, we choose
two orderings: Order A which runs from most to least constrained, and Order B which
runs vice versa (see Appendix 4.C for details). We train an autoregressive estimator
in both cases to perform inference on all parameters of the model. The results of this
experiment are shown in Figure 4.3 in terms of the resulting posterior distributions, as
well as the training and validation loss curves for the neural network training process.

There are two things to note from Figure 4.3: firstly, the ordering of parameters
does have an effect on the training procedure, with the expectation laid out above
clearly realised. In other words, we see a plateauing of the optimal training and vali-
dation loss for Order B at a value that is clearly larger than the asymptotic value in
the case of Order A. In addition, broadly the overall quality of posterior inference on
parts of the model that are well measured is of higher quality with Order A. Together,
this suggests that the general intuition regarding parameter ordering in autoregres-
sive models holds here also. With that being said, however, we do observe that the
‘penalty’ for choosing a non-optimal ordering is not severe, at least in this case, and
high fidelity inference could be achieved by e.g. increasing the simulation budget (see
Appendix 4.C for an example), or following the prior truncation scheme described
above and iterating the simulation generation, training, and inference steps. To be
clear on this last point, this example is designed to demonstrate for fixed simulation
budget and fixed network architecture the impact of variable ordering. We expect in
this particular case that if the prior truncation scheme is followed, the posteriors will
continue to shrink and converge to the same answer. For high precision inference,
we advise that on convergence, an explicit test varying the ordering is carried out to
confirm that the posteriors do not shift by more than the desired sensitivity. For full
technical details regarding this example, see Ref. [90] or Appendix 4.C. Also in Ap-
pendix 4.C, we show two other random orderings to highlight the relative insensitivity
to this choice and build on the example in subsection 4.3.1.
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Figure 4.4: Strong gravitational lensing experiment results. Corner plot: The corner
plot shows the comparison between the macro-model parameter inference results using
the autoregressive NRE model (ANRE, red contours) and the non-autoregressive one
(NRE, blue contours). The true values are shown with black dashed lines and dots
and are shown in Table 4.D.1. Upper right inset: The inset shows the results for
subhalo parameter inference for our target mock observation.
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4.3.3 Strong gravitational lensing: correlated truncation

As described in Chapter 3, galaxy-galaxy strong gravitational lensing occurs when
the paths of light rays from a background galaxy are distorted by the mass of an
intervening lens galaxy before entering a telescope [27]. This leads to extremely
distorted ring-shaped images with multiple copies of the source. If a small-scale
dark matter halo is present in such a system, its distortions will be localized, mostly
impacting the image of the source along the nearest line of sight. As first proposed
in Ref [201], by carefully analyzing the relationship between the multiple images of
the source, the distortions due to a dark matter perturber can be disentangled from
possible variations in the source light and its properties can be measured.

In reality, substructure parameter inference in strong gravitational lensing systems
is a very challenging task for a number of reasons. In particular, the desired signal
manifests as percent level variations, lensing systems are remarkably complicated, and
the variance between images is high (i.e. observations are very diverse). A targeted
SBI approach to this “needle in a haystack” type of analysis is therefore well-motivated
and has been proven successful, see e.g. Refs. [5, 244].

For this application, we consider a lensing system with the following components:
source light, lens light, lens mass distribution, and external shear (which we collec-
tively call the macro-model); and one single subhalo. More details on the system and
noise model can be found in Appendix 4.D. The blending effect due to the overlap
of the light emitted by the lensed source and by the lens itself complicates the inter-
pretation and analysis of observed lensed systems, and makes it challenging to isolate
and study the properties of the lensed source. This blending effect can be mitigated
if multi-wavelength observations are available. Usually the lens light gets subtracted
assuming the best-fit value (see e.g. Ref. [37]). In this SBI application, we leave it free
to vary and infer its parameters at the same time as all other components, accounting
in the analysis for its uncertainties and the correlations it has with the rest of the
system components.

We perform inference on the simulated target observation shown in Figure 4.4,
generated with the parameters in Table 4.D.1. The first step in the analysis is to
reduce training data variance by constraining the macro-model parameters prior.
Starting from the full macro-model prior shown in Table 4.D.1, we use the proce-
dure described in Refs. [1, 5] and Chapter 3 to constrain it sequentially via TMNRE

7 is reached, we are not able to re-

rounds using box truncation. When convergence
duce any further the data variance displayed by the simulations via 1-dimensional

marginal posterior estimation and box truncation.

"We define the ratio estimator to be converged when, after two consecutive rounds in which we
double up the simulation budget, the constrained hyper-rectangular box prior has shrunk by less
than 10%.
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Figure 4.5: Prior truncation strategies. Left: With a parameter-wise truncation
strategy, each parameter gets individually constrained with boxes. Right: Using a
parameter block-wise truncation strategy, we divide the parameter space in blocks
(lensing macro-model parameters Op,acro and subhalo parameters Ogup,), depending
on what dominates the data variance, and which parameters are most correlated.
During sequential inference, we account for correlations between parameters in the
same block through correlated truncation.

As previously discussed in Section 4.2.2; a disadvantage of using hyper-rectangular
boxes lies in the fact that for high-dimensional and correlated parameter spaces the
constrained region contains more probability mass than required. We will now employ
a parameter block-wise correlated prior truncation strategy instead of box truncation,
as presented in Section 4.2.2. In Figure 4.5, we show a simple visualization of the two
prior truncation strategies for this specific application.

In order to learn the macro-model parameter correlations, especially the ones be-
tween lens light and source light, we model the joint posterior of the macro-model
parameters. We train two models to estimate the macro-model joint ratio: a “vanilla”
NRE model and the autoregressive NRE model presented in Section 4.2.1. We used
the same simulation budget and amount of network weights (for more details regard-
ing training and the employed neural network architecture, see Appendix 4.D). In
Figure 4.4, we compare the posterior samples obtained from the two models using
our slice-based nested sampler presented in Section 4.2.3. It is clear that, for this
application and simulation budget, autoregressive NRE performs significantly better
than NRE, which is not able to properly model the joint macro-model parameter
distribution.

We then sample correlated constrained prior samples with our slice-based nested
sampler. By modeling and exploiting the intricate correlations between lens light,
source light, and lens parameters, instead of using a parameter-wise truncation strat-
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Figure 4.6: Targeted training data. The simulations in the first row are drawn from
the full initial prior, described in Table 4.D.1. In the intermediate row, we show
simulations used for the last round of training of the 1-dimensional marginal ratio es-
timators, where the macro-model parameters were drawn from the most constrained
hyper-rectangular box prior. In the last row, the macro-model parameters were sam-
pled from the high-dimensional constrained prior with the slice-based nested sampler.
The images in the second and last row are plotted in the same color scale, whereas the
ones in the first row are allowed to vary for visualization purposes since they exhibit
a larger variance.

egy, we are able to achieve a much lower data variance. In Figure 4.6, we display
examples of training data. The simulations in the first row are drawn from the full
initial prior. In the intermediate row, we used macro-model parameters drawn us-
ing the box truncation scheme. Finally, the simulations presented in the last row
use the slice-based nested sampler to sample the macro-model parameters from the
high-dimensional constrained prior, using the autoregressive model.

Having reduced the macro-model parameters training data variance, we are then
able to focus on substructure parameter inference, for which the results are shown
in Figure 4.4. These results were obtained with two sequential rounds of inference
using a correlated truncation scheme, as first explained in Section 2.2.3. In contrast,
given the initial fixed simulation budget, we were not able to constrain the subhalo
parameter in our target observation with the data variance displayed by simulations
using only box truncation.

4.4 Discussion and conclusions

The motivation for the SBI method development presented in this work comes from
the data analysis and statistics challenges facing the fields of astrophysics and cosmol-
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ogy in light of high quality data from current and future experiments [10, 12, 42, 276—
279]. In this work, we have focused on one specific SBI algorithm, TMNRE, and
advanced its potential with the introduction of two new components:

a) Autoregressive NRE, presented in Section 4.2.1, estimates multi-dimensional
(marginal) posteriors by effectively computing d 1-dimensional conditional ra-
tios instead of a d-dimensional joint one (see Equation (4.1)). This way of
approaching high-dimensional distribution estimation through an autoregres-
sive scheme has been motivated by its proven scaling potential in other SBI
techniques [287-289]. We release a publicly available implementation of the
autoregressive model in the TMNRE package swyft®.

b) Our slice-based nested sampling implementation, presented in Section 4.2.3, of-
fers vectorized evaluations of the natively GPU-based ratio estimator and intro-
duces a convergence criterion related to posterior mass. The latter is essential
for sequential inference applications since it allows one to define the truncation
region in Equation (2.27). The sampler choice naturally comes from the reali-
sation that nested sampling techniques provide a tool to efficiently sample not
only from a multi-dimensional posterior, but also natively from a constrained
prior. Our slice sampler implementation is available in the package torchns®.

We have demonstrated their application in three case studies presented in Section 4.3.
Firstly, we tested the performance of the autoregressive ratio model against the non-
autoregressive one in a toy example. The main results, for different simulation budgets
and dimensionality, are presented in Figure 4.2. Secondly, we explored how variable
ordering impacts the autoregressive model in a stellar streams analysis. We have
found that a non-optimal variable ordering does have an impact, but does not severely
penalise the overall inference result in our specific application, as shown in Figure 4.3.
Lastly, we investigated the potential of a correlated truncation scheme in a proof-of-
concept application to substructure searches in a strong gravitational lensing image.
The main outcomes are exhibited in Figs. 4.4 and 4.6: in particular, given our fixed
simulation budget, the non-autoregressive model is not able to estimate the macro-
model parameter joint distribution, and only through correlated prior truncation are
we able to constrain the subhalo parameters.

Outlook. There are two aspects to consider as far as outlook is concerned for
our method development. The first concerns the known limitations of the autoregres-
sive modeling and the nested sampling techniques. The second is more general, and
considers the analysis settings in which this approach may be useful.

8https://github.com/undark-1lab/swyft
9Mmttps://github.com/undark-lab/torchns
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As discussed above, one of the potential limitations of autoregressive modeling is
its sensitivity to parameter orderings. Although we investigated this in the context of
stellar streams in Section 4.3.2; and found that the effect was minimal, it is possible
that this is model dependent. As such, to extend the method, it would be interesting to
develop techniques to derive an (approximately) optimal ordering of the parameters,
e.g. by estimating the strength of correlations between various parameter sets.

On the nested sampling side, known limitations include the fact that it becomes
very costly in terms of the required number of network evaluations for high dimen-
sional parameter spaces, say d 2 30 (for a discussion see, e.g., Ref. [295]). As such,
it will be interesting to further investigate methods that exploit gradient information
and scale better to high dimensions, such as the proximal nested sampling technique
proposed in Ref. [307]. Moreover, our current implementation of the slice sampler
does not include clustering detectors (see e.g. Ref. [308]), which makes it inefficient
for multi-modal posteriors.

More generally, we believe the method we have developed could be useful in the
following type of scenario: suppose that a part of the parameter space dominates the
data variance, but is not the one that we are ultimately most interested in performing
inference on. Using traditional methods, there are typically two approaches: a) solve
the full joint analysis problem for all parameters, but face significant computational
challenges, or b) analyse the nuisance parameters separately, and then fix them to
some form of best-fit value to use in the rest of the analysis, at the cost of neglecting
their uncertainties. For example, as briefly mentioned in Section 4.3.3, this is exactly
the scenario in standard strong gravitational lensing analyses where the lens light gets
subtracted assuming the best-fit value, before analysing the lensed emission.

With the method developed in this work, however, there is an alternative ap-
proach available. In particular, as explained in Section 2.2.3, the fact that prior
truncation composes well with marginalisation allows us to consistently combine dif-
ferent analysis strategies that target distinct parts, or “blocks”, of the model into a
coherent “inference assembly”. This exact procedure was exemplified in Section 4.3.3,
where we first reduced training data variance by truncating the lens and lensed source
parameters, and then performed sequential inference on our parameters of interest,
the ones pertaining the substructure.

In conclusion, this approach can be relevant for many different cosmological and
astrophysical applications, where the analysis would be carried out simultaneously on
different components of the systems, e.g. parameters of interest, foregrounds, back-
grounds, nuisance parameters, instrumentation parameters etc. Ultimately, this will
allow us to flexibly combine different inference strategies in order to draw coherent
and consistent conclusions based on the full model and all the data.
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Appendix

4.A Another formulation

The autoregressive model presented in Section 4.2.1 can be also written with a single
network that can estimate both components. In order to do this, we introduce an

auxiliary variable ¢ = —1,1. We then consider the ratio
p'(0i |z, c 01 1)
r(0;x,c,01.-1) = 4.9
( ri-1) p(6:) “9)
The distribution of our auxiliary model is now given by
0i,,c,01.i 1 ~p'(x,¢,0;,01.5-1) =p'(x | c,0i,601.-1)p(c)p(01.) , (4.10)
where we make use of the definitions p'(x | ¢ = —1,6;,01.;_1) = p(x) and p'(x | ¢ =

1,05,01.5-1) = p(x | 0;,01.i—1).

Once the above ratio estimator is trained, we can obtain the desired conditional
posterior-to-conditional prior ratio by using

p(0i | x,01.i-1) _ r(0;x,c=+1,011)
p(0; | 01:i-1) r(i e, c=—1,01,_1) ’

(4.11)

The advantage of this formulation is that it reduces the number of networks to
train by a factor of two, which should correspondingly reduce GPU memory require-
ments and training time. A potential downside of this approach is that the network
capacity has to be high enough in order to efficiently learn both posterior and prior
approximations at the same time. We will leave a quantitative comparison between
different methods and network architectures to future work.

4.B Multivariate Gaussian experiment

In Figure 4.B.1, we show the agreement between the analytical and estimated poste-
riors for the NRE and ANRE methods applied to the toy problem described in sub-
section 4.3.1. We see that across all 10 parameters the autoregressive model achieves
almost perfect agreement with the analytic result.

In order to check the impact of the autoregressive ordering in this Multivariate
Gaussian toy example we have conducted an additional test for 10 dimensions. For
this test, we use a likelihood with fixed covariance X, which has correlation scales of
0.1 for the off-diagonal entries, and varying diagonal correlation scales, ranging from
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4. Scalable simulation-based inference

Parameter True value Initial prior
tage [Myr] 3000 U(2583,3647)
Arel 1.405 4(0.13,2.00)
Amatch 1.846 U4(0.31,2.00)
&o 0.001 4(0.0001,0.01)
e 20.9 4(10.0, 30.0)
ry, [pC] 0.001 4(0.0001,0.01)
m [M] 3 4(1.0,20.0)
log(Msat /Mg) 4.05 U(3.3,4.5)
o, [km/s] 1.1 U(0.96,1.32)
z. [kpc] 11.8 U(117,119)
ye [kpc] 0.79 U(0.6,1.1)
zc [kpc] 6.4 U(6.32,6.54)
Vg, [km/s] 109.5 U(106.8,113.7)
Uy o [km/s] -254.5 U(—256,—-251)
Vz,c [km/s] -90.3 U(—93.3,-84.6)
Dnear 0.5 U4(0.34,0.72)

Table 4.B.1: True parameter values and priors used in the TMNRE inference round
for the stellar streams example. Note that our prior choices are taken from the final
round of inference of Ref. [90] so as to test the autoregressive model in a final round
of precision inference through active learning.

0.1 to 0.55 in 0.05 steps. We have run our autoregressive model for four different
variable orderings: from most constrained to least, from least constrained to most,
and two random orderings. The results shown in Figure 4.B.2 demonstrate that the
autoregressive ordering does not have an impact in this case.

4.C Stellar streams experiment

In this short appendix we present the technical details relevant for the stellar streams
experiment presented in Section 4.3.2. There are a number of things directly analo-
gous to the implementation described in Ref. [90]. In particular, we use the stellar
streams simulator, sstrax [108], developed in this reference, as well as the swyft-
based inference code albatross [309]. In addition, we consider the same set of model
parameters (described in Table 4.B.1 and in detail in Ref. [90]), the same injection
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Figure 4.B.1: Multivariate Gaussian toy example results. Corner plot highlighting
the agreement between the analytic and estimated posteriors for the d = 10 Gaussian
model described in subsection 4.3.1.
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Figure 4.B.2: Multivariate Gaussian toy example results. Corner plot highlighting
the agreement between the analytic and estimated posteriors for the d = 10 Gaussian
model described in subsection 4.3.1 and Appendix 4.B. For the estimated posteriors
we have used four different orderings, as described in Appendix 4.B.
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4.D. Gravitational lensing experiment

parameters to generate the observation, and the same binning/observation scheme.
The key difference with respect to this reference is in the inference network used. In
particular, we replace the 1-dimensional ratio estimation across all model parameters
with the autoregressive method described in this work to model their joint distribu-
tion. In terms of network training details, we use the Adam optimiser with an initial
learning rate of 107%. In addition, we use a batch size of 512 and a simulation budget
of 3 x 10° training examples. Finally, we use the following orderings (Order A and
Order B referenced in the main text) for training the autoregressive ratio estimator:
[Jm Ley Yes Zecy Vz,es Vy,cr VUzes tagev Pnear, >\re17 )\matcha 603 @, Th, ﬁl, log(Msat/MQ)]
(Order A), and [£, Amatch, Arel, &, Th, M, log(Msar/Mg), tage, Ov, Te, Yes Ze, Vae,
Uy.c, Us,c; Pnear] (Order B).

In Figure 4.C.1, we also show the results of a test with two additional random
orderings. Specifically, the orderings shown are [o, log(Msat/Mg), Arel, &0, Va.c, O,
Vz.ey My tages Thy Ley Ze, Pnears Amatchs Ye, VUy,c) (first random order) and [v; ¢, Pnear; M,
Ou, Uy,er O Ugc, tages Arel, Zey Amatchs Yes Loy €0, Thy 108(Msar /M@ )] (second random
order).

Furthermore, we performed an additional test in order to check when the loss for
order B reaches the one for order A in Figure 4.3 (see main text for definitions), by
gradually increasing the simulation budget. Figure 4.C.2 shows the loss for order B
as a function of epochs, for different sizes of training dataset, with the biggest one
(100% in the figure) containing 6 x 10° simulations. From Figure 4.C.2, we can see
that the loss for order B reaches a plateau value of -6.1 (the one of the loss for order A
in Figure 4.3 when training on 3 x 10° simulations) for approximately between 60% to
70% of the total 6 x 10° simulations, so roughly for 4 x 10° simulations. In this specific
example, this experimental check shows that a network trained with order B needs
25% more simulations to plateau at the same loss as one trained for order A. This
test further confirms our observation that the ‘penalty’ for choosing a non-optimal
ordering is not severe, and can be easily circumvented, for example as in this case,
by increasing the simulation budget. However, the important take away message is
that the simulation computational budget can be reduced by choosing an optimal
ordering.

4.D Gravitational lensing experiment

In this appendix we provide a more detailed account of the model adopted to generate
the strong lensing simulations, the training details, and the employed neural networks
to obtain the results presented in Section 4.3.3.
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Figure 4.C.1: Additional checks of the variable ordering conclusions given in Sec-
tion 4.3.2. Here, we overlay the results presented in the main text with inference
results given two other random orderings.
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Figure 4.C.2: Training loss for order B (see Figure 4.C.1 and Section 4.3.2 and Fig-
ure 4.3 in the main text) as a function of epochs for different simulation budgets, with
a maximum budget of 6 x 10° simulations. The validation loss for each case is shown
as a dashed line in the figure.
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4. Scalable simulation-based inference

4.D.1 Simulator

We use the simulator adopted in Refs. [1, 5, 244], and described in Section 3.2 to
generate strong lensing image observations. To model the lens light and the source
light flux we use a Sérsic profile [251], parameterized by seven variables: position,
position angle, axis ratio, index, effective radius, and surface intensity. We adopt a
singular power-law ellipsoid (SPLE) [253] for the main lens mass distribution, with a
total of six parameters: position on the lens plane, position angle, axis ratio, slope, and
Einstein radius. We consider two additional parameters to model the external shear.
In total, there are twenty-two macro-model parameters. To model the density profile
of the dark matter subhalo we adopt the smoothly truncated universal Navarro-Frenk-
White mass density profile from Ref. [261]. We fix the truncation radius to 7 = 6.
The subhalo is then described by three parameters: virial mass mgyp, and position on
the lens plane (Zgup, Ysub). We adopt the concentration-mass relation from Ref. [310].
We show each parameter prior and the value with which we have generated our mock
target observation in Table 4.D.1.

Given this model, we generate 100 x 100 pixel? images with a resolution of 0.05”
per pixel side, for a total field of view of 5” X 5” in an image. The instrumental effects
include a Gaussian PSF with a full width at half maximum of 0.05” and Gaussian
noise. We choose redshift zjens = 0.9 for the lens and zgource = 2 for the source.

4.D.2 Training details and neural networks

For all tasks we use the same general ratio estimator architecture. It consists of an
initial compression network that maps the high-dimensional lensing observation « into
a feature vector. This feature vector is concatenated to the parameters we want to
infer. The vector is then passed to swyft binary classifier which outputs an estimate
of the likelihood-to-evidence ratio. The compressor architecture for the macro-model
parameters is given in Table 4.D.2. This same compression is used when estimating
1-dimensional marginal ratio estimators, or the joint one with NRE or autoregressive
NRE, as explained in Section 4.3.3. The compressor architecture for the subhalo
parameters is given in Table 4.D.3.

We used the Adam optimizer with an initial learning rate of 10~3 for the macro-
model ratio estimator and 8 x 10~2 for the subhalo ratio estimator, and a batch size
of 64. The learning rate was reduced by a factor of 0.1 whenever the validation loss
plateaued for 2 epochs. Training was run until the validation loss stopped improving
for more than 5 epochs. The results shown in Figure 4.4 are obtained using 2 x 10°
training samples. To run the inference, we use the model weights obtained at the
lowest validation loss curve point.
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4.D. Gravitational lensing experiment

Component Parameter True value Initial prior
= Tsub [] -1.2 U(—2.5,2.5)
5:5 Ysub ['] 1 U(-2.5,2.5)
. logo Msub [Mo)] 9.5 U8, 11)

Tiens '] 0.1 U(-0.2,0.2)
Yiens ] 0.05 U(—0.2,0.2)
= Plens [°] 0.3 U(0,1.5)
& Glens 0.89 U(0.1,1)
gl 2 U(1.8,2.2)
Tein ] 15 U,2)
3 001 0.01 U(—0.05,0.05)
Z T2 002 U(—0.05,0.05)
Tiight [ ] 0.03 U(—0.1,0.1)
Yiight ] 0.02 U(—0.1,0.1)
= Piight [°] 0.3 U(0.,1.5)
2 Qlight 0.7 U(0.1,1)
5 n 1.58 U(0.1,4)
re ] 2.1 4(0.1,3)
I. 1.2 U(0,4)
Tere ['] 0.02 U(-0.2,0.2)
Ysre [] 0.08 U(—-0.2,0.2)
fo Psre [°] 0.7 Uu(0.,1.5)
?3 Gsre 0.8 U(0.1,1)
m% n 1.5 U(0.1,4)
re ] 1.4 4(0.1,3)
I. 2.5 U(0,4)

Table 4.D.1: True subhalo and macro-model parameter values and priors used in the
first TMNRE inference round in the strong gravitational lensing application. This
prior generates images with variance displayed in the first row of Figure 4.6.
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4. Scalable simulation-based inference

Conv2d(1, 4, 3, 2, 1, bias=True)
BatchNorm2d (4)
ReLU
Conv2d(4, 8, 5, 2, 1, bias=True)
BatchNorm2d(8)
ReLU
Conv2d(8, 16, 5, 2, 1, bias=True)
BatchNorm2d (16)
ReLU
Conv2d (16, 32, 5, 2, 1, bias=True)
BatchNorm2d(32)
ReLU
Flatten()
LazyLinear (256)

Table 4.D.2: The convolutional compression network used in the macro-model param-
eter ratio estimator. The notation is taken from PyTorch: the arguments to Conv2d
are the number of input channels, output channels, kernel size, stride and padding,
respectively. The horizontal lines highlight where the number of channels changes.
Note that we standardize the images before providing them to the convolutional net-
works.

image_size 100
n_channels 1
n_classes
s 1

Table 4.D.3: The details of the UNet network used in the subhalo. We use the im-
plementation from https://github.com/milesial/Pytorch-UNet, with arguments
given in the table. The UNet output is then sampled at the positions of the subhalo
contrastive examples to bring it to a lower dimensionality, and this feature vector is
passed to the binary classifier.
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SIMULATION-BASED
INFERENCE FOR
COSMOLOGICAL INITIAL
CONDITIONS

Reconstructing astrophysical and cosmological fields from observations is challenging.
It requires accounting for non-linear transformations, mixing of spatial structure, and
noise. In contrast, forward simulators that map fields to observations are readily
available for many applications. In this chapter, we present a versatile Bayesian
field reconstruction algorithm rooted in SBI and enhanced by autoregressive mod-
eling. The proposed technique is applicable to generic (non-differentiable) forward
simulators and allows sampling from the posterior for the underlying field. We show
first promising results on a proof-of-concept application: the recovery of cosmological
initial conditions from late-time density fields.

This chapter is based on work from [3].

5.1 Introduction

Recent developments in simulation-based machine learning are increasingly used
for tackling difficult astrophysical and cosmological data analysis challenges [e.g.,
1, 2, 4, 5, 55, 60, 64-66, 70, 73, 74, 76, 78, 80, 81, 87, 90, 178, 282, 285, 311-
318]. While SBI has primarily been employed to solve relatively low-dimensional
(< 50-dimensional) parameter estimation tasks [2, 55, 65], it has yet to cover higher-
dimensionality problems like image reconstruction, which are an essential component
in astrophysical and cosmological data analysis.

Here, we focus on the recovery of cosmological initial conditions from late-time
density fields. This task is a challenging test case for new algorithms thanks to the
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5. Simulation-based inference for cosmological initial conditions

non-linear, non-local mapping from the Gaussian target to the observation. Cosmic
inflation predicts the density in the early universe to be highly homogeneous, with
tiny density fluctuations that are extremely well described as a Gaussian random field.
These density perturbations then gradually grow over cosmic time due to gravity and
eventually collapse into the non-Gaussian “Cosmic Web” structure observed today
[43]. The reconstruction of the initial density field from late-time observations is
an ill-posed problem (the early-to-late mapping is not injective on small scales, [e.g.,
319]). Therefore, there is an entire distribution of possible initial conditions consistent
with a given late-time density field.

Our contribution. We frame the task of field reconstruction (or, viewed from a
non-physical point of view, image reconstruction) as a parameter inference problem.
We combine the power of SBI in solving parametric inverse problems together with
the scalability offered by autoregressive models. Autoregressive models have estab-
lished their versatility in tackling high-dimensional distribution estimation tasks by
breaking down the joint distribution into a product of conditionals [288, 289], and
have been successful in conditional image modeling [320]. Additionally, we employ a
Gibbs sampling algorithm based on exact data augmentation (GEDA) [321] to effi-
ciently sample image parameter posteriors. We will formulate our method in a generic
way to emphasize its applicability to a wide range of field/image reconstruction prob-
lems. Importantly, our approach accommodates arbitrary non-differentiable forward
simulators.

Related work. The problem of inferring cosmological initial conditions has been
studied since the late 1980s (see e.g. Refs. [322-327] for classical papers), for instance
by applying the least-action principle or using optimal transport. In the last decade,
Bayesian models have been formulated for this task [e.g., 44], many of which rely
on differentiable forward models [328, 329], in conjunction with Hamiltonian Monte
Carlo sampling. Recently, machine learning methods such as convolutional neural
networks [330, 331], variational inference [332], recurrent inference machines [333],
and score-based modeling [334] have also been explored in this context.

5.2 Methodology

We structure our methodology as follows. First, in Section 5.2.1, we set up the prob-
lem in terms of a simple hierarchical field simulator. We then introduce this work’s
main contribution: autoregressive gaussian likelihood estimation (Section 5.2.2) and
high-dimensional gaussian posterior sampling through GEDA (Section 5.2.3).
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5.2. Methodology

5.2.1 Problem setup
Let us assume we have a simple hierarchical simulator

p(2]6)p(6) (5.1)

is observed and @ € RV*Y are image parameters (pixel values).
Here, p(x|@) can include non-linear, non-local transformations and non-Gaussian
noise, and it is only implicitly defined through a forward simulator. We will discuss
how we can, for a given observation x,, estimate an approximate but computationally
efficient Gaussian likelihood that locally resembles p(x,|6) for a target observation

where ¢ € RV*N

x,. A fast surrogate can then be leveraged for downstream image analysis tasks.

5.2.2 Autoregressive gaussian likelihood estimation

Firstly, in order to obtain locally optimal data summaries s(x) for the image recon-
struction task, we use NRE to estimate the marginal, pixel-wise ratios’

p(si,0:)
p(si)p(6:)
We assume here that both the joint and marginal distributions can be approximated

as Gaussians, whereas the mapping s;(x) is an arbitrary learnable function (usually
a neural network). Means and covariances are estimated on-the-fly during training

F(si(x); 0:)

(5.2)

(similarly to batch normalization [335]) and are not represented as learnable param-
eters. Secondly, in order to obtain an estimate of the joint likelihood p(x|@), we
proceed as follows. We split the problem auto-regressively along the observation axis,
and we use NRE to estimate

p(z|6) _ p(s(z)|6) p(si|s1:i-1,6)
p() — p(s(x)) H p(sils1:i-1)

2

A p 317ZL70
17‘ (84513, 6;) H 00

2

~
i

where we have introduced l; = (L(s)); with L a (generally non-linear) autoregres-
sive function. Again, we assume that the individual functions p(s;,l;, 6;) are (three-
dimensional multivariate) Gaussians.

By rewriting the above components (for a complete derivation and definitions of
Qiike and b see Appendix 5.A), we can obtain the likelihood function in the so-called

1 In this work we use the following notation for ratio estimators #(a;b) = % = p;?x). If
necessary, multiple variables are comma separated, for example 7(a; b, c) = %.
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5. Simulation-based inference for cosmological initial conditions

information form,

1
Inp(x|0) = fiaTQhkee + b0 +C(s) . (5.4)

In this paper, we assume that the precision matrix Qe is diagonal. However, correla-
tions between data summaries s are accounted for through the autoregressive function
mentioned above; also, each component s;(x) of the data summary may depend on
all components of & and thus accounts for cross-pixel information.

To enhance the robustness of Bayesian approaches in data analysis, frequently
likelihood tempering techniques are employed that result in conservative estimates
[336, 337]. Tempering the likelihood amounts to raising it to a fractional power
v € [0,1], leading to progressively coarser posterior samples, with the extreme case of
~v =0 (v = 1) corresponding to samples drawn from the prior (posterior) distribution.

5.2.3 High-dimensional gaussian posterior sampling

In our Bayesian framework and assuming Gaussian distributions, we combine the
estimated likelihood with the known prior to derive the posterior in the information
form

1
lnp(a\ac) = _§0T (Qlike + Qprior) 0+ b0 + Cl(s) y (55)
—_—
onst

where we have assumed a zero-mean prior, consistent with the physical problem we
study in Section 5.3. We use the conjugate gradient (CG) algorithm? to compute the
maximum-a-posteriori (MAP) estimate @yap of the image parameters € by solving
the linear system Qpost@ = b. The surrogate Gaussian posterior distribution is then
given by p(@|z) = N(Onap, Q;Olst). Once we have the posterior distribution in the
above form, we simply have to sample from it. Various techniques have been presented
over time to tackle the problem of efficient sampling from a high-dimensional Gaussian
distribution (for a recent review, see Ref. [338]). To obtain the Gaussian posterior
samples, we use a Gibbs sampler based on the generalized exact data augmentation
algorithm (GEDA) [321]. GEDA solves the problem of high-dimensional Gaussian
sampling specifically for distributions whose precision matrix can be expressed as
Q = Qi + Q2 by exploiting specific properties of Q1 and Q2. Crucially, Qpost
satisfies these constraints.

In general, data augmentation approaches target precision matrices of the form
Q = Q1 + Q2, which naturally arise from the statistical model under investigation.
Taking advantage of potential specific structures of Q1 and Q2, data augmentation
strategies introduce one (or several) auxiliary variable w € R¢ such that the joint

2 We use a slightly modified implementation of the preconditioned CG algorithm from https:
//github.com/sbarratt/torch_cg.

104


https://github.com/sbarratt/torch_cg
https://github.com/sbarratt/torch_cg

5.3.  Experiment

distribution of the pair (u,8) yields simple conditional distributions, thus sampling
steps for a Gibbs sampler. One can recover the target distribution N(u,Q~1) via
marginalization of the auxiliary variable u, either exactly (as in exact data augmen-
tation schemes, like GEDA) or in an asymptotic regime.

In GEDA, as described in Ref. [321], the underlying assumption is that the pre-
cision matrix @ can be split as follows:

Q=0:+Q:
Q. =G'D.Gx, (5.6)
Q2 = U5D2U27

where G is arbitrary, D, is diagonal and positive definite, U, is unitary, and Dy is
diagonal. GEDA introduces two auxiliary variables, u; and wus, such that the joint
distribution is

p(0,u1,u2) xexp (—; [(9 _ N)TQ(G —p) + (u; — 0)TR(u; — 0)})
(5.7)
X exp (—;(’u,g — Gl’u,l)TDl(UQ — Glul)) 5

where R = w™'I; — Qq, and w is a positive hyper-parameter of the algorithm that
must obey 1 < w < 1/|Q1
singular value of Q1.

, meaning that 1/w should be larger than the largest

This joint distribution yields conditional Gaussian distributions with diagonal
covariance matrices for both w; and wy that can be sampled efficiently by a Gibbs
sampler with the following steps:

1. uy NN(uuz,Q;;) with piy, = Giu; and Q,, = Dy,
2. up ~ N(py,,Qyl) with o, =0 —w(Q10 — GT D 'uy) and Qu, = w1y,
3. ur ~ N(pu,, Q) with p=Q(Ru; +Qu)and Q =w ' I; + Q> .

(5.8)

In our setup the dimensionality is equivalent to the number of pixels d = N2, the
covariance matrix is Q = Qpost = Qlike + Qprior; and G1 = 1.

5.3 Experiment

To demonstrate the efficiency of our method, we apply it to the task of reconstructing
the initial conditions of the universe.

Forward model. In this proof-of-concept study, we consider the two-dimensional
case and assume Einstein—de Sitter cosmology (i.e. non-relativistic, collisionless matter
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Figure 5.1: Reconstruction of cosmological initial conditions in 2D. Top left: True initial density 8,. Bottom left: True
observation x,, i.e. the (logarithm of the) late-time density evolved from the initial conditions 8, corrupted by uncorrelated
Gaussian noise. Top center: Two samples drawn from the posterior p(@|x,). Bottom center: Observations computed from
the posterior samples shown above. Upper right: Maximum-a-posteriori probability (MAP) estimate @yap of the initial
conditions. Bottom right: Distribution of the reconstructed initial power spectrum.
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only). While our framework readily supports marginalizing over image parameters
such as the power spectra of the target fields, we use a fixed power-law power spectrum
for the initial density contrast 8 = &;,; € R'?8*128 which is the target of our inference.
As a forward model, we use second-order Lagrangian perturbation theory (2LPT, see
Refs. [339, 340] and Appendix 5.B) and evolve the initial density to a time when
non-linear structures have formed. The observation is then given by = log;,[1.1 +
Ofinal] + €, where dgpa) is the density contrast at final time, the logarithm is applied
element-wise, and we add € ~ N(0,02I) with ¢ = 0.15 as a simplistic model for
observational noise.

Training strategy. To obtain pixel-wise summaries s(x), we use a standard U-Net
[341]. In our current implementation, we use an autoregressive convolution [e.g., 320]
as the autoregressive function L. In our experiments, we observed that overly small
or large kernel sizes result in somewhat biased posteriors. Interestingly, we obtain
the best results with a physically motivated kernel size for the convolution, i.e. when
choosing it in such as way that the “radius of influence” of the autoregressive convo-
lution (i.e. roughly half the kernel size) matches the typical distance that particles (or
fluid elements) have traveled by the end time — a quantity known as displacement.
Specifically, the mean displacement in our case is ~ 5 pixels, so we take the kernel
size to be 11 x 11 pixels. While we find this choice to be optimal, slight bias still
occurs occasionally, potentially due to the spatial heterogeneity of the displacements.
Therefore, to be conservative, we use a tempered likelihood with v = 0.5, trading
some of the statistical constraining power of our method for increased unbiasedness.
The importance of the specific choice of L (and in particular its radius of influence)
indicates that a locally adaptive or multi-scale approach for L is a promising avenue
for future exploration. We train our model on 1000 (z, 8)-pairs for 15 epochs, which
only takes ~ 3 minutes on a laptop GPU for this experiment. Obtaining the MAP
estimate with the CG algorithm takes less than 3 seconds. To obtain posterior sam-
ples with GEDA, we perform 300 sampling steps, which takes < 1 second per sample
(and multiple samples can be drawn in batches).

Results. The left column of Figure 5.1 shows a target initial density contrast 6,
(top), together with a resulting noisy observation at late time x, (bottom). In the two
center panels, we plot samples drawn from the (tempered) posterior p(8|x, ), together
with an observation of each sample. The upper right panel shows the MAP estimate
Oviap. The initial density field is faithfully reconstructed on large scales whereas,
as expected, small-scale information remains unconstrained. Finally, the lower right
panel shows that the power spectra of the posterior samples are consistent with the
target field. The excellent agreement between reconstructed and true power spectra
on small scales is aided by the fact that the power spectrum (which is fixed in our

107



5. Simulation-based inference for cosmological initial conditions

example) directly enters the GEDA sampling (see Equation 5.6 in Section 5.2.3, where
the prior precision matrix Q5 is diagonalized by the Fourier transform, with the power
spectrum on the diagonal of Ds). We will present a detailed quantitative analysis of
the results obtained with our framework in a separate publication.

5.4 Discussion and conclusions

We have introduced a framework for Bayesian field/image reconstruction by combin-
ing SBI, autoregressive modeling, and a Gibbs sampling algorithm based on exact data
augmentation (GEDA). We presented promising results for a toy example related to
reconstructing the initial conditions of the universe. In view of its remarkable speed,
low simulation costs, and the fact that it works for general non-differentiable simula-
tors, we expect our method to be capable of handling significantly higher-dimensional
problems, including 3D cosmological simulations.

There are multiple promising avenues to be explored in future work. For
many applications—such as the reconstruction of cosmological initial conditions—
formulating the problem in Fourier space can be expected to produce significantly
tighter posteriors, as the input-to-output mapping is exactly invertible on large to in-
termediate scales, and the stochasticity of the reconstruction only affects small scales.
Alternatively, wavelets [e.g., 342] or other multiscale techniques could be exploited.
In this context (but also more generally), other choices for the autoregressive func-
tion L are worthwhile exploring, which could, for instance, implement the hierarchy
between the different scales. Another promising enhancement involves harnessing the
sequential aspect of SBI techniques. In principle, a viable strategy is to employ an
adaptive scheduler to control the value of v to draw new training samples for sequen-
tial inference rounds. Moreover, being SBI-based, our proposed method is capable of
marginalizing over cosmological parameters or, alternatively, infer them in addition
to the phases of the initial random field.

Let us also comment on the current limitations of our method: while the assump-
tion of Gaussianity for the prior is justified for reconstructing cosmological initial con-
ditions, using a Gaussian likelihood is an approximation whose justification depends
on the specific task at hand. We take cross-pixel information into account through
the summary statistics and an autoregressive function, but we currently model the
precision matrix of the likelihood as being diagonal. In addition, the susceptibility of
our framework to issues encountered in the context of autoregressive models such as
exposure bias [343] merits further investigation.

Finally, we remark that the forward model generating “observations” & does not
necessarily need to be a physical one, and our framework also holds great promise for
generic image reconstruction problems consisting in inferring one image from another.
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Appendix

5.A Derivation of the likelihood in the information
form

In this appendix we show how to derive the quadratic term Qe and the linear term
b of the likelihood in the information form (Equation 5.4) starting from Equation 5.3.
Having approximated p(s;,l;, ;) with a 3-dimensional Gaussian distribution, we can

write the log-likelihood as

N2 N?
Inp(s(x)|0) = In—F—"—F-—+ = In . e . 5.9
( ( )| ) Zz:; p(lﬂel) ; N(M(li,ei)?z(li,ei)) ( )

Let us consider just one element i and drop the index 4 for simplicity of notation.
Expanding the above expression for one component, we obtain

T —1
— Ms Ess Es Es — Hs —
1 j K 5 El 29 ; s L= ! Yu e ' I —
5 — ls 1 10 - |+ AU 1o So Soo 0 — 1o
0 — 1o Yos Lo oo 0 — pg - 7

" "
A ~o-( gl i)
==\ Q. @ Qp o
@ Qn Q
(5.10)

For a specific observation & we can compute s and therefore I, hence individual
components s and [ (where we have dropped the index i). We can then read off the
expression in Equation 5.10 the terms that depend on 6. We group the rest into an
irrelevant constant C(s). In this way, the quadratic term in 6 in Equation 5.10 is

1 .
—§Q9992 with Qg = Qée — ’9’9 .

Each Qg is a diagonal entry of Qe in Equation 5.4, while non-diagonal compo-
nents are 0 by construction. In principle, correlations between pixels in the data x
can be modeled and we plan to explore it in future work. The linear term in 6 in
Equation 5.10 is

b= [—(s— ps)Qp — (I — 1) Qro + 116Qp0] - (5.11)

Each component b composes the likelihood linear term b.
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5.B Second-order Lagrangian perturbation theory
(2LPT)

Second-order Lagrangian perturbation theory (2LPT) describes the cosmological dy-
namics of a cold, collisionless medium. It is based on a fluid description of the
Vlasov—Poisson system [e.g. 326] and therefore ceases to be valid as soon as particle
trajectories cross (so-called “shell-crossing”). Although the density fields we consider
herein are well in the post-shell-crossing regime, 2LPT still serves as a suitable forward
model for validating our image reconstruction method.

The central quantity in 2LPT is the displacement v(q,a) = p(q,a) — q, i.e. the
vector pointing from each Lagrangian (“initial”) position g to the associated Eulerian
position p(g, a) at scale-factor time a on the characteristic curve originating at g. LPT
expands the displacement as a Taylor series w.r.t. a, with a purely space-dependent
coefficient 1(™)(q) at the n-th order. For 2LPT, this yields

¥(g,a) = appV(q) + a*yP(q) , (5.12)

where
Pt = -V, (5.13a)
¢(2) - _%Vq A;1 [(841#11 d)o) (8q27q2¢>0) - (aQ1’q2¢0)2] ' (5'13b)

Here, ¢° is the initial gravitational potential, and the scale factor a simply acts as a
time variable and has no physical meaning in 2D. Note that we consider Einstein—de
Sitter cosmology (€2, = 1); for extensions to the ACDM case and higher-order LPT,
see e.g. Ref. [344] and references therein.

Given the 2LPT displacement %), the density contrast ¢ is given by

1+6@mﬂ»:/$mMm@—qfwmm»¥q, (5.14)

where ép is the Dirac d-distribution. In practice, we use cloud-in-cell interpolation
[e.g. 345] to compute the density contrast on a Cartesian grid. Finally, let us remark
that since we view the discrete density contrast as an N x N-dimensional image in
the main part of this work, we use the bold symbol § in that context.
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SIMULATION-BASED
INFERENCE FOR POINT
SOURCES

Statistical inference of population parameters of astrophysical sources is challenging.
It requires accounting for selection effects, which stem from the artificial separa-
tion between bright detected and dim undetected sources that is introduced by the
analysis pipeline itself. In this chapter, we show that these effects can be modeled
self-consistently in the context of sequential SBI. Our approach couples source de-
tection and catalog-based inference in a principled framework that derives from the
TMNRE algorithm. It relies on the realization that detection can be interpreted as
prior truncation. We outline the algorithm, and show first promising results.

This chapter is based on work from [4].

6.1 Introduction

Point sources detection is crucial for astronomical surveys, and is the cornerstone
for the compilation of source catalogues. Those source catalogues are then typically
the basis for the inference of physical parameters that describe the sources at the
population level. Upcoming astronomical facilities, such as the Square Kilometer
Array (SKA) [346] and the Cherenkov Telescope Array (CTA) [347] will deliver large
and complex datasets. In order to leverage their full potential, it is urgent to develop
robust and automated source detection and source population parameters inference
algorithms.

Machine learning is a particularly promising tool to address this big data chal-
lenge. Recent developments in deep learning and more generally automatic differ-
entiation frameworks [54] are increasingly used for tackling difficult astronomical
data analysis with the goal to extricate more information from the available data.
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6. Simulation-based inference for point sources

The capability of deep learning techniques of point sources detection and population
characterization has been demonstrated across different wavelengths surveys, e.g. in
~v-ray data [87, 348-350], radio data [351-354] and cosmic microwave background
data [355]. In particular simulation-based machine learning approaches can be highly
flexible, allowing to tailor developed pipelines to specific telescopes and science cases.
A range of SBI algorithms have been proposed in the literature (see Ref. [52] for
a review). An appealing feature is that they generally allow to directly estimate
marginal posteriors for parameters of interest [120]. Furthermore, sequential SBI
approaches [146, 149, 150] have been shown to be particularly simulation efficient.
Among those, TMNRE [120, 160] is a sequential SBI approach based on NRE [153],
which particularly well composes with marginalization.

Our contribution. Here, we present a strategy for how to use TMNRE to simul-
taneously perform source detection and population-level parameters inference. This
enables to self-consistently combine information from both detected and sub-threshold
sources, without being affected by detection biases. The key idea is to recast the tra-
ditional concept of source detection in terms of prior truncation. This will allow us to
distill information of bright sources directly into the simulation model. Our proposed
method is highly interpretable since it resembles components of traditional survey
analysis workflows.

6.2 Methodology

We structure our methodology as follows. First, we introduce the problem setup,
phrasing simulating point source maps in terms of a Bayesian hierarchical forward
model in Section 6.2.1. Secondly, in Section 6.2.2, we perform point sources detection
and estimate the point sources sensitivity function of our method. We then show how
to include our catalogue of detected point sources in the forward model, recasting
source detection as prior truncation, in Section 6.2.3. Lastly, we illustrate how to
self-consistently perform point sources population parameters inference, by combin-
ing information from both detected and sub-threshold sources, in Section 6.2.4. A
schematic overview of the inference framework is shown in Figure 6.1.

6.2.1 Problem setup

We consider here a simple Bayesian hierarchical source model,

N
p(2,5,0) = p(z | p(0) [ [ p(si 1 0) . (6.1)

i=1
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6.2. Methodology

Parameter Prior

Population parameters

number of point sources N U(10,500)
flux distribution parameter b U(1,3)
spatial distribution parameter h U(1,20)
Point source parameters
flux F log N (1, %)
position Q=(1,b) (N(0,20), N(0,h))

Table 1: Point source simulation model parameters and priors.

where x is the observed sky map, s; = (F;, ;) denotes the flux F; and position €;
of point source 4, and @ = {N, X, h} collects source population parameters, namely
the number of sources N, and the parameters ¥ and h that control the flux and
spatial distributions respectively. To generate an observation, first, we sample point
sources population parameters 8 = {N, ¥, h} from their priors, given in Table 1.
Then, for each point source, we draw its flux F' and position on the map Q = (I,b)
from the priors given in Table 1. We then generate a 128 x 128 pixels map. To model
instrumental effects, we add a PSF with Gaussian kernel standard deviation ¢ = 1.5
and Poisson noise, obtaining the final simulated map . We show examples of our
simulated maps in the top row of the right panel of Figure 6.2.

6.2.2 Source detection

For source detection we consider the following likelihood-to-evidence ratio,’

o p(L(F>Fy) =1, )
(U, Fyps ) = p(Hm(lei;th):l,Q) . (6.2)

Here, the denominator corresponds to the prior probability of having a source at
position  with a flux F' > F}j, that exceeds some threshold flux Fy,. The numerator
is the corresponding posterior. We model the source detection ratio estimator in
Equation (6.2) as an image-to-image neural network that solves a binary classification
problem in each image pixel. For simulated data, we call a simulated source s;
‘detected” when there is a corresponding compact region as function of 2 where the
detection significance is above threshold, 1 (2, Fyn; @) > 5. This effectively leads to a

I In the following sections we will use the notation 7(a;b | ¢) = %,

refer to conditioning on specific variables for all factors in the ratio definition. If necessary, multiple
variables are comma separated, for example r(a,b;c | d) = %. Training conditional ratios
is a straight-forward extension of NRE, as seen in Section 4.2.1.

where with ‘|” we
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6. Simulation-based inference for point sources

split between sources that are clearly identifiable and ‘sub-threshold’ sources that are
difficult to detect as individual instances. Below, we assign the detection label d; = 1
(d; = 0) to detected (undetected) sources.

In order to characterize the split between detected and sub-threshold sources, we
introduce a source-sensitivity function, S(F, (), which provides the probability that
a source with flux F' and at position €2 would be detected by the ratio estimator in
Equation (6.2). This function can be estimated by training the ratio estimator

ro(d; F,Q, x) = p(d| F.Q x) |p€é§2’w)

which is marginalised over all other sources and source parameters. By omitting the
dependence on the map, @, which is then effectively marginalized, the ratio estimator
can then simply be modeled as a R? — R MLP. The source-sensitivity function can

then be estimated as
B p(d=1]F,Q)
S(F,Q)=o0 <log <p(d —0F))) (6.4)

where we have introduced the sigmoid function o(y) = 1/(1 + e Y).

(6.3)

Once we know the sensitivity function S(F, ), we can make the concept of source
detection part of our model as follows. In a random realization, each source i will
be either detected, d; = 1 (with probability S(F;,€;)), or not detected, d; = 0 (with
probability 1 — S(F;,Q;)). To keep notation simple, we omit d; and instead group de-
tected and non-detected (sub-treshold) sources together in vectors with corresponding
subscripts, and write 8§ = (8get, Ssup)- Taking into consideration this split, our model
becomes

p(wvgdetvgsubve) = p(:l: | gdehgsub)p(gdet | g)p(gsub | 0)]?(0) . (65)

Importantly, although p(84et/sus | @) depends on the sensitivity function
S(F;, ), the distribution of all sources p(§ | 8) is the same as in Equation (6.1).

6.2.3 Detection as truncation

Finally, we introduce our truncation scheme. Truncating source priors in Equa-
tion (6.1) is difficult due to the the label switching problem (z is invariant under
relabeling sources). However, once specific sources are detected, they can be labeled
and ordered arbitrarily. Let us assume that Ng.; sources were detected by the ratio
estimator in Equation (6.2) in the regions R; with ¢ = 1,..., Ny for a given obser-
vation of reference x,. Our ansatz for the indicator function, which selects a specific

prior reglon, 1S
Naet

To, (Saet) = | ] T, (% € Ri)la, (Fi > Fun) - (6.6)

i=1
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6.2. Methodology

Our truncation strategy is now to focus on the parameter space where I[wo (§det) =
1 for our data of interest x,, in order to reduce training data variance. We can then
write our truncated model as

p(magdetv gsuln 07 Hmo (gdet))

L ~ . . ~ (6.7)
= p(m ‘ Sdetassub)p(sdet | 07]Im0 (Sdet))p(ssub | 0)p(0)p(ﬂmo (Sdet) | 0) ’

where detected sources p(Sge:) can be sampled only in the relevant parameter space
Ip, (8aget) =1.

6.2.4 Population parameters inference with truncation

Given some observation x,, we want to estimate the posterior p(@ | x,). Since the
truncation affects parameters Sg.; whose prior depends on population parameters 6,
the truncation volume is not a constant factor, and the procedure requires extra care.
We can estimate the posterior p(@ | ) by considering the ratio

p(g | 13) ~ p(a | waﬂmo(gdet) = 1)

0w ==y 0(0)
p(0 |z, 1z, (Sqet) = 1) p(O | Iz, (54e¢) = 1) (6.8)
201, (5aer) = 1) 2(6) '
=rg(8i2llay (Bact)=1)  =r(Bile, (Faet)=1)

The second step in Equation (6.8) corresponds to the truncation approximation.
It is exact (in the sense of leaving p(@ | x,) unaffected) in the limit where p(z, |
I, (Saet) = 0) — 0. It exploits the fact that I, (Sget) = 1 does not add information
beyond what is already known from x,. Training that ratio estimator directly with
TMNRE would be challenging since I, (84.¢) = 1 has very small support in the
training data. Instead, we split the ratio into two computationally feasible ratios
(this is in spirit similar to the telescoping ratio estimation approach presented in
Ref. [2806]).

The first ratio, r3(0; x | I, (84et) = 1), can be estimated by training a peak-count
network [356-358] on targeted data, that is truncated to I, (8get) = 1. The second
ratio can be estimated as

) s . N p(0 | Hmo( - | )
7(6; 1z, (Saer) = 1) = (0 Iz, (Saet) = 1)

_/dgdetp( i ¢]0) (Sdet)ﬂwo(sdet)

Saet) =1) _ p(la, (Sget)
)

psdet) p(]la:o(gdet):]-) (69)
- p(ﬂdet 0) — -
= dSget ——=—— et | Lo et) =1 )
[ e PR (s Lo, () = 1)
———
=74(84ct;0)
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6. Simulation-based inference for point sources

so it can be estimated by training a network on detected sources lists on un-
truncated training data. In practice, we generate weighted samples from the full
posterior p(@ | x) by sampling 0, Sget ~ p(0)p(Saet | Lw, (84er) = 1) with weights
w="13(0;2 | Iy, (Sget) = 1) - 7(0; 15, (Saet) = 1).

In the process, we trained four ratio estimation networks that are directly con-
nected with traditional source analysis pipeline components: (€2, Fy,; @) performs
source detection; ro(d; F, Q, x) is the source sensitivity function; r5(0; | Iy, (S4et) =
1) constraints 6 based on sub-threshold sources (because detected sources are assumed
to be fixed in the parameter space where I, (S4er) = 1); and r4(Sget; @) constraints
0 using the detected sources catalog. We show a schematic overview of the inference
framework used in this work in Figure 6.1.

6.3 Experiment

We apply the proposed methodology to the simulated target observation @, shown in
Figure 6.2.

Training strategy. We first train the source detection ratio estimator in Equa-
tion (6.2) on data simulated from the full model shown in Equation (6.1), and then
apply it to x, to obtain a detection map. From the detection map we derive a catalog
of detected sources Sj.¢, and define a truncated parameter space of interest, where
I, (84et) = 1. In order to make source detection part of our model, we train the sen-
sitivity ratio estimator in Equation (6.3) to estimate the sensitivity function S(F, ),
illustrated in Figure 6.3. We then generate targeted training data from our truncated
simulation model in Equation (6.7). We show samples from the full model and the
truncated one in Figure 6.2. Finally, we train two inference networks to capture in-
formation regarding population parameters from sub-threshold and detected sources,
as explained in Section 6.2. The four neural networks were trained on a NVIDIA
GeForce RTX 3080 Ti GPU, the total computational time cost to obtain the results
shown in Figure 6.4 is ~ 2 hours.

Results. We show the constraints on population parameters 8 from sub-threshold
sources, detected ones, and their combination in Figure 6.4. The different posteriors
are consistent with each other, indicating that the proposed inference framework
automatically accounts for detection biases. We see that different constraints are
dominated by different neural networks, e.g. the number N of point source is better
constrained by sub-threshold ones, whereas the spatial distribution parameter h by
detected ones. The weaker constraint on the flux parameter ¥ inferred from detected
sources is due to the fact that in Equation (6.9) we average over different detected
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6. Simulation-based inference for point sources

Target observation x,

Full model

Figure 6.2: Left: Observation of reference x,. Right: In the first row we show samples

Truncated model

from our full simulation model. In the second row we show targeted samples from the
truncated model. Targeted data are visually more close to x,, the main dissimilarities
are due to different sub-threshold sources and instrumental effects realizations.

Sensitivity function
I I I 1

Ey,

1.0 |

1F, Q)

p(d=

0.0F

1 |
1073 107! 10! 103

Figure 6.3: Point source sensitivity function S(F,{2) as a function of flux F. The
function characterizes the split between detected and sub-threshold sources by the
source detection network r1, providing the probability that a source with flux F' and
at position © would be detected by the ratio estimator in Equation (6.2).
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Point source population parameters inference

—— from sub-threshold sources: p(9|x,, Ly, (84et) = 1)

from detected sources: p(9|I, (Sger) = 1)
] from combined constraints: p(d|x,)

"""" true values
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Figure 6.4: Marginal posteriors inferred by TMNRE on target observation x, for
population parameters 6. We show constraints from sub-threshold sources (violet),
detected sources (orange), and combined results (yellow). In the 2D marginal pos-
terior we indicate the 68% and 95% credible regions with solid and dashed lines
respectively. For more details see Section 6.3.
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6. Simulation-based inference for point sources

sources realisations, always re-sampling the parameter ¥ (see Section 6.2.1 for the
hierarchical model details).

6.4 Discussion and conclusions

We have introduced a novel method to self-consistently perform point sources de-
tection and source population parameters inference using TMNRE. The key realiza-
tion underlying this methodology is that point source detection is equivalent to prior
truncation and essential to reduce training data variance. With this approach, we
can exploit information of detected as well as sub-threshold sources for population-
level parameter inference. Detection biases are automatically accounted for in our
approach. Exemplary results of our approach are presented in Figure 6.4, where
we show inference results on source population parameters from both detected point
sources and sub-threshold sources separately, as well as their combination.

Since the proposed method is essentially a specific implementation of TMNRE;,
we expect that it inherits its positive properties in terms of simulation-efficiency and
scalability [160]. A possible shortcoming of this approach is that multiple neural
networks need to be trained self-consistently, which on the other hand have a clear
interpretation in terms of traditional analysis pipeline components. A potential appli-
cation beyond those directly intended is to detectable and sub-threshold substructures
in strong gravitational lenses.
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CONCLUSIONS

Today, inference and statistics are crucial to the scientific process. Over a century ago,
Ernest Rutherford is reported to have said: “If you need statistics, you did the wrong
experiment” [359]. While this sentiment may have been somewhat valid in the past,
it no longer aligns with the current state of the scientific process. Modern research
often involves complex models designed to explain subtle phenomena within multidi-
mensional datasets. Additionally, the volume of data available to astrophysicists and
cosmologists has expanded dramatically over the past two decades and continues to
increase. Consequently, our statistical analysis tools must evolve in sophistication to
match this growth. Now, the primary constraint on our understanding of the universe
is not the volume of data we possess, but our capacity to analyze, interpret, and derive
meaningful insights from it [24].

Simulation-based inference techniques offer a qualitative shift in our approach to
statistical inference and a promising avenue to fully exploit the data potential. The
present work highlights several key benefits of this framework, and argues for its cen-
tral role in the modern physics data analysis toolkit. The significance of the three
applications presented in this thesis is underscored not only by the complexity of the
statistical inference challenges they tackle, but also by the critical scientific questions
they seek to resolve. Specifically, simulation-based inference can solve hierarchical
inference of dark matter substructure population parameters from a dataset of strong
lensing images, constraining dark matter nature, while fully accounting from the un-
certainties coming from all the building blocks of the model (i.e., lens, source, and
substructure population). It also can solve high-dimensional inference at the field-
level, providing a means to optimally extract information from upcoming cosmological
surveys. Lastly, simulation-based inference allows, for the first time to the authors’
knowledge, for self-consistent measurement of population parameters based on de-
tected and undetected objects in sky-maps, by making observational biases related to
the point source detection part of the model itself. These applications demonstrate
the versatility of simulation-based inference in tackling diverse and intricate problems,
setting the stage for its broader adoption and further innovation in future research.
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7. Conclusions

We are already witnessing a widespread adoption and advancement of simulation-
based inference techniques for cosmological and astrophysical data analysis. However,
these techniques have yet to realize their full potential, and numerous challenges
remain open. Key questions include: Can the selection of optimal neural networks
architectures be automatized? How to handle situations with high volume data?
What is the most efficient way to sample from constrained likelihood regions in very
high dimensions for sequential inference? How to reliably perform goodness-of-fit
tests and identify model misspecification? Crucially, the further development of these
techniques must be accompanied by the development of robust performance tests and
diagnostics. All these open threads, and possibly more, are active areas of research
within the community.

Our pursuit to develop powerful, fast, and robust analysis techniques is espe-
cially urgent because of the ever-increasing influx and quality of data from current
and forthcoming observatories. The potential for using these observations to uncover
new physics in the dark sector are therefore very bright. Now is absolutely an op-
portune time to explore innovative ways of maximizing the discovery potentials of
these datasets. While the approaches presented in this thesis are far from the only
interesting avenues for analyzing this wealth of data for new physics searches, they
represent concrete steps towards fully exploiting these measurements to refine our
understanding of physical laws.
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SUMMARY

The aim of physics is to uncover the underlying principles governing natural phenom-
ena. These laws are articulated through theoretical models, often in mathematical
terms (such as Newton’s law of gravitation), and must be tested against experimental
or observational evidence (for instance, measuring how long it takes for an apple to
fall). A crucial aspect of physics involves quantitatively comparing these theoretical
models with empirical data and measurements through statistical analysis.

The primary goal of this thesis is to enable new physics discoveries by addressing
the statistical and computational challenges that arise in the fields of astrophysics and
cosmology. Traditional methods in modern astrophysical data analysis are sampling-
based inference techniques like Markov-chain Monte Carlo and nested sampling meth-
ods. However, these approaches frequently rely on approximate likelihoods and suffer
from a significant drawback: the time required to achieve convergence scales poorly
with the dimensionality of the explored parameter space. To overcome these limita-
tions, this thesis contributes to develop and establish an alternative approach based
on novel simulation-based inference (SBI) techniques, that have seen a remarkable
development in recent years.

We began in Chapter 2 by outlining the landscape of SBI approaches, includ-
ing traditional ones, such as approximate Bayesian computation. We then detailed
the various neural SBI algorithms, neural posterior estimation and neural likelihood
estimation, and especially focused on truncated marginal neural ratio estimation (TM-
NRE), the main inference algorithm employed throughout this thesis. TMNRE builds
on three key ingredients: neural ratio estimation via classification, marginalization,
and prior truncation. We then emphasized its different advantages and pitfalls with
respect to the others SBI methods, and discussed testing strategies.

We first applied TMNRE in Chapter 3, to the analysis of strong lensing images
as a dark matter probe. Starting with an overview of strong lensing and its potential
to probe dark matter substructures, we discussed the modeling complexities involved,
including lens and source parameter uncertainties, and how to model populations
of substructures from different dark matter scenarios. We developed a SBI pipeline
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to infer the cutoff mass in the dark matter halo mass function directly from simu-
lated observations. Our results demonstrated that TMNRE enables precise marginal
and targeted inference, overcoming traditional computational challenges. We further
showed the application of hierarchical inference to extract the dark matter cutoff mass
signal from a dataset of lenses, paving the way for future advancements in dark matter
characterization using strong lensing observations.

We then extended the TMNRE framework in Chapter 4, where we proposed two
new technical building blocks. First we developed autoregressive ratio estimation
with the aim to robustly estimate correlated high-dimensional posteriors. Second,
we proposed a slice-based nested sampling algorithm to efficiently draw both poste-
rior samples and constrained prior samples from ratio estimators, the latter being
instrumental for sequential inference.

In Chapter 5, we tackled the inverse problem that goes from non-linear, non-
local mappings of late-time density fields to Gaussian cosmological initial condi-
tions. To this end, we employed autoregressive Gaussian likelihood estimation to
model the conditional dependencies between pixels in the density field. Posterior
sampling is achieved through a Gibbs sampling algorithm based on exact data aug-
mentation, ensuring efficient exploration of high-dimensional parameter spaces. The
proposed approach combines computational efficiency with applicability to generic,
non-differentiable forward simulators, making it suitable for broader astrophysical
and cosmological data analysis tasks.

Finally, in Chapter 6, we turned towards the problem of point source detection and
population parameters inference in sky-maps. We developed a highly interpretable
(since it resembles components of traditional survey analysis workflows) SBI frame-
work that allows, for the first time to the authors’ knowledge, to perform consistently
point source detection and population parameters inference, from both detected and
sub-threshold sources. This was possible by defining source detection as a novel and
high-dimensional form of prior truncation to incorporate detected sources into the
simulation model.

Overall, this thesis aimed to highlight the potential of SBI for astrophysical data
analysis, positioning this framework as an essential part of the modern physics data
analysis toolkit.
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Het doel van de natuurkunde is de onderliggende principes te onthullen die natuurlijke
fenomenen beheersen. Deze wetten worden uitgedrukt via theoretische modellen, vaak
in wiskundige termen (zoals de zwaartekrachtswet van Newton), en moeten worden
getoetst aan experimenteel of observationeel bewijs (bijvoorbeeld door te meten hoe
lang het duurt voordat een appel valt). Een cruciaal aspect van de natuurkunde is
het kwantitatief vergelijken van deze theoretische modellen met empirische gegevens
en metingen door middel van statistische analyse.

Het primaire doel van dit proefschrift is nieuwe natuurkundige ontdekkingen mo-
gelijk te maken door de statistische en computationele uitdagingen aan te pakken
die zich voordoen in de vakgebieden van de astrofysica en kosmologie. Traditionele
methoden in moderne astrofysische data-analyse zijn op steekproeven gebaseerde in-
ferentietechnieken zoals Markov-chain Monte Carlo en geneste sampling-methoden.
Deze strategieén vertrouwen echter vaak op benaderende likelihoods en hebben een
belangrijk nadeel: de tijd die nodig is om tot convergentie te komen, schaalt slecht
met de dimensionaliteit van de verkende parameterruimte. Om deze beperkingen te
overwinnen, draagt dit proefschrift bij aan de ontwikkeling en vestiging van een al-
ternatieve strategie op basis van nieuwe simulation-based inference (SBI) technieken,
die de afgelopen jaren een significante ontwikkeling hebben doorgemaakt.

We begonnen in Hoofdstuk 2 met het schetsen van het landschap van SBI-
strategieén, waaronder traditionele methoden zoals approximate Bayesian compu-
tation. Vervolgens hebben we de verschillende neurale SBI-algoritmen beschreven,
zoals neurale posterior schatting en neurale likelihood schatting, waarbij we ons met
name hebben gericht op truncated marginal neural ratio estimation (TMNRE), het
voornaamste inferentie-algoritme dat in dit proefschrift wordt gebruikt. TMNRE is
gebaseerd op drie belangrijke ingrediénten: neurale ratio schatting via classificatie,
marginalisatie, en prior-truncatie. We benadrukten vervolgens de verschillende vo-
ordelen en valkuilen ten opzichte van de andere SBI-methoden, en bespraken test-
strategieén.

We hebben TMNRE voor het eerst toegepast in Hoofdstuk 3, op de analyse van

155



Samenvatting

sterke-lensbeelden als probe voor donkere materie. Beginnend met een overzicht van
sterke-lenswerking en het potentieel ervan om substructuren van donkere materie te
onderzoeken, bespraken we de complexiteiten van de modellering die hierbij betrokken
zijn, waaronder onzekerheden in de lens- en bronparameters, en hoe populaties van
substructuren uit verschillende scenario’s voor donkere materie gemodelleerd kunnen
worden. We hebben een SBI-pijplijn ontwikkeld om de cutoff-massa in de massafunc-
tie van donkeremateriechalos rechtstreeks af te leiden uit gesimuleerde waarnemingen.
Onze resultaten toonden aan dat TMNRE nauwkeurige marginale en gerichte infer-
entie mogelijk maakt en daarmee traditionele computationele uitdagingen overwint.
We lieten verder zien hoe hiérarchische inferentie kan worden toegepast om de cutoff-
massa van donkere materie uit een dataset van lenzen te extraheren, wat de weg
vrijmaakt voor toekomstige verbeteringen in de karakterisering van donkere materie
met behulp van sterke-lenswaarnemingen.

Vervolgens hebben we het TMNRE-framework uitgebreid in Hoofdstuk 4, waar
we twee nieuwe technische bouwstenen voorstelden. Ten eerste ontwikkelden we au-
toregressieve ratio schatting met als doel om op robuuste wijze gecorreleerde hoog-
dimensionale posteriors te schatten. Ten tweede stelden we een op slices gebaseerd
genest sampling-algoritme voor om efficiént zowel posterior samples als beperkte prior
samples te genereren uit ratio-schatters, waarbij dit laatste instrumenteel is voor se-
quentiéle inferentie.

In Hoofdstuk 5 hebben we het inverse probleem aangepakt dat zich richt op de
overgang van niet-lineaire, niet-lokale beschrijvingen van dichtheidsvelden in het late
universum naar Gaussische kosmologische beginvoorwaarden. Hiervoor hebben we au-
toregressieve Gaussische likelihood-schatting gebruikt om de voorwaardelijke athanke-
lijkheden tussen pixels in het dichtheidsveld te modelleren. Posterior sampling wordt
uitgevoerd via een Gibbs-sampling-algoritme op basis van exacte data-augmentatie,
wat zorgt voor efficiénte verkenning van hoog-dimensionale parameterruimten. De
voorgestelde aanpak combineert computationele efficiéntie met toepasbaarheid op
generieke, niet-differentieerbare forward simulators, waardoor deze geschikt is voor
bredere astrofysische en kosmologische data-analysetaken.

Tot slot hebben we in Hoofdstuk 6 het probleem van puntbron-detectie en pop-
ulatieparameterinferentie in hemelkaarten behandeld. We ontwikkelden een goed
interpreteerbaar SBI-framework (omdat het lijkt op componenten van traditionele
survey-analyseworkflows) dat, voor zover de auteurs weten, voor het eerst consis-
tente puntbron-detectie en populatieparameterinferentie mogelijk maakt, zowel voor
gedetecteerde als sub-drempelbronnen. Dit werd mogelijk gemaakt door brondetec-
tie te definiéren als een nieuwe en hoog-dimensionale vorm van prior-truncatie om
gedetecteerde bronnen op te nemen in het simulatiemodel.

Over het geheel genomen was het doel van dit proefschrift om het potentieel van
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SBI voor astrofysische data-analyse te benadrukken, en dit framework te positioneren
als een essentieel onderdeel van de moderne toolkit voor natuurkundige data-analyse.

Vertaald door Dion Noordhuis.
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