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Ultra-light axion fields, motivated by string theory, form a large condensate (axion cloud)
around rotating black holes through superradiant instability. Several effects due to the axion
cloud, such as the spin-down of black holes and the emission of monochromatic gravita-
tional waves, open a new window to search for axions by astrophysical observations. When
the axion self-interaction is considered, the evolution of clouds is altered significantly, and
an explosive phenomenon called a bosenova can happen. Thus, it is necessary to under-
stand the precise evolution of self-interacting clouds for the detection of axions by astro-
physical observations. In this paper, we propose a new method to track the whole process
of the growth of self-interacting axion clouds employing the adiabatic approximation. We
emphasize that our method relies neither on the non-relativistic approximation nor on per-
turbative treatment of the self-interaction, which is often used in the literature. Our main
finding is that the evolution of clouds in the strongly self-interacting regime depends on
the strength of the gravitational coupling between the axion and the black hole. For a large
coupling, the cloud evolves into a quasi-stationary state where the superradiant energy gain
is balanced with the energy dissipation to infinity by the self-interaction. On the other hand,
when one decreases the size of the coupling, clouds become unstable at some energy, which
would be interpreted as the onset of a bosenova.
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1. Introduction
The axion forms a class of the most motivated particles beyond the standard model. It has the
potential to solve the strong CP problem [1–7] and could be a candidate for dark matter [8–11].
In addition, it can be naturally derived from sting theory [12]. An interesting point is that string
theory predicts a plenitude of axions in our Universe and the Compton wavelength of axions
is comparable to the astrophysical scale. This opens the possibility of observing axions through
astrophysical phenomena [13]. In this paper, we focus on the phenomena related to black hole
(BH) physics.

Let us consider an axion field around a spinning BH. Since the axion has small but non-
zero mass μ, it is bounded by the gravitational potential of the BH. At the same time, the
axion extracts energy and angular momentum from the BH by superradiance (see Ref. [14]
for the details of superradiance). This indicates the existence of an instability, known as the
superradiant instability [15–17]. The timescale of instability can be much smaller than the age
of the Universe when the Compton wavelength of the axion is comparable to the size of the
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BH. Thus, an axion with a mass comparable to the astrophysical scale forms a large condensate
around the BH by the superradiant instability. We refer to this condensate as an axion cloud in
this paper.

The axion cloud will induce several phenomena that can be observed [18]. One is the spin-
down of the BH, owing to the angular momentum extraction by the axion cloud. Thus, the
presence of an axion with a corresponding mass excludes highly spinning BHs and predicts a
characteristic distribution of the BH mass and spin [19–23]. Other phenomena are the emission
of characteristic gravitational waves from the cloud associated with a level transition similar to
photon emission in a hydrogen atom or the pair annihilation of axions [24–28] as well as the
modification of the gravitational wave form from binary BHs [29–34].

If one includes the self-interaction of the axion more dramatic phenomena can happen. In
general, the axion has a nonlinear potential induced by non-perturbative quantum effects and
the leading-order interaction is typically attractive. Therefore, when a cloud grows to a large
amplitude, the attractive force due to the self-interaction might induce a collapse of the cloud.
This collapse is called a bosenova and a burst of gravitational waves is expected to be generated
during the collapse [18,35,36]. Besides the bosenova, the self-interaction can cause the energy
loss of the cloud through several channels [18,37,38]. These effects have the potential to termi-
nate the superradiant instability and prevent the occurrence of the bosenova.

For the future detection of axion clouds through observations, one must know the precise
evolution of the cloud including the self-interaction. In the literature only few works take into
account the effect of self-interaction extensively. One is the work on numerical simulations
[35,36], which suggests the occurrence of bosenovae. However, the previous dynamical simula-
tions are not satisfactory due to the ambiguity in the choice of the initial condition. Because of
the large discrepancy between the dynamical and instability timescales, it is hard to perform a
long-term simulation starting with a small amplitude of the cloud where the linear approxima-
tion is valid. For this reason, it was necessary to give a naive guess about the initial condition for
the numerical simulation, which is, in fact, simply given by scaling the solution of the linearized
equation in the previous works. Since the cloud starts with a very small amplitude1 and changes
shape by the effect of self-interaction as it grows, it is difficult to justify the usage of a linearized
solution with a large amplitude as the initial condition to simulate a realistic situation.

Other works [18,37,38] treat the self-interaction perturbatively, and often adopt the non-
relativistic approximation (GμM � 1; M is the BH mass and c = � = 1). When the self-
interaction becomes important, the perturbative treatment breaks down [38]. Therefore, the
evolution of clouds in the strongly self-interacting regime, where bosenovae may occur, can-
not be investigated using perturbation theory. Furthermore, the non-relativistic approximation
cannot treat the most interesting parameter region where the instability timescale is maximized
(GμM ∼ 1). To summarize, neither dynamical simulations nor perturbative treatment are sat-
isfactory.

To overcome this situation, we develop a new method to track the evolution of clouds starting
with a single superradiant mode, without relying on either perturbative or non-relativistic treat-
ment. Our basic strategy is to use the fact that the evolution of clouds is very slow compared
to the dynamical timescale, even if the perturbation theory breaks down [38]. Then, one can
approximate the cloud by a stationary configuration with a given amplitude within a timescale

1If we assume that the cloud started with an amplitude around the mass of the axion, then the mass
of the cloud is around ∼ 10−76M/(GμM )4(μ/10−10 eV)2.
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much shorter than that of the superradiant instability. After obtaining a sequence of solutions
parametrized by the cloud amplitude, the time evolution of the amplitude is determined by the
energy balance argument. Our method reveals that the final fate of the cloud basically depends
on the strength of the gravitational coupling between the axion and the BH, GμM. For a large
coupling (GμM � 0.32), the final state of the cloud becomes quasi-stationary, where the en-
ergy gain by the superradiance is balanced with the energy dissipation to infinity induced by
the self-interaction. For a small coupling (GμM � 0.32), the onset of the dynamical instability
is suggested. This instability can be expected to lead to the ignition of a bosenova. In addition,
our calculation gives the deformation of the cloud by self-interaction, which turns out to be
significantly large.

This paper is organized as follows. In Section 2, we review the superradiant instability of
axions around rotating BHs. In Section 3, we present a method to track the adiabatic evolution
of a self-interacting axion field around a rotating BH. In Section 4 we show the result of the
numerical calculations. In Section 5, we present a toy model of the axion cloud, which explains
the behavior of the cloud numerically obtained in Section 4. In Section 6, we summarize our
results and briefly comment on the effects that we have not taken into account. In the rest of
this paper, we take units c = G = � = 1, unless otherwise stated.

2. Axion cloud around a black hole
In this section, we review how axion clouds are formed around Kerr black holes by the super-
radiant instability. For further details on the superradiant instability, see Ref. [14].

In the rest of this paper, we consider an axion field φ whose action is given by

S = F 2
a

∫
d4x

√−g
{
−1

2
gμν∂μφ∂νφ − V (φ)

}
, (1)

where V(φ) is the potential of the axion induced by some quantum effects. In this paper, we
employ

V (φ) = μ2(1 − cos φ), (2)

which is the well known potential for the QCD axion [39]. Note that we normalize φ by the
decay constant Fa to make φ non-dimensional. Here, gμν is the Kerr metric specified by

ds2 = −
(

1 − 2Mr
ρ2

)
dt2 − 4aMr sin2

θ

ρ2
dt dϕ

+
[

(r2 + a2) sin2
θ + 2Mr

ρ2
a2 sin4

θ

]
dϕ2 + ρ2

	
dr2 + ρ2dθ2, (3)

with

	 = r2 − 2Mr + a2, ρ2 = r2 + a2 cos2 θ, (4)

in the Boyer–Lindquist (BL) coordinates. Solutions to 	 = 0 give the location of the event
horizon r+ = M + √

M2 − a2 and that of the Cauchy horizon r− = M − √
M2 − a2. For the

action (1), the equation of motion for the axion field is

�gφ − V ′(φ) = 0, (5)

where �g is the d’Alembertian on the Kerr metric.
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Fig. 1. The real part of the radial mode function Rlmω with principal quantum number n = 0, 1, 2 and l =
m = 1. Mode functions are normalized for their peak amplitude as unity. We take the spin of the central
black hole as a/M = 0.99 and the mass of the axion as μM = 0.42, which gives the maximum growth
rate. Here, r∗ is defined as dr∗ = (r2 + a2)dr/	.

When the amplitude of the axion field is small, we can ignore the higher-order terms in the
axion potential (2) and thus approximate the potential as

V (φ) ∼ 1
2
μ2φ2. (6)

Then, the equation of motion takes a linearized form:

(�g − μ2)φ = 0, (7)

which can be solved by the separation of variables [40]. Taking the ansatz

φ = Re[e−i(ωt−mϕ)Slmω(θ )Rlmω(r)], (8)

Eq. (7) is decomposed into two ordinary differential equations:

1
sin θ

d
dθ

(
sin θ

dSlmω

dθ

)
+

[
c2(ω) cos2 θ − m2

sin2
θ

]
Slmω = −�lm(ω)Slmω, (9)

and
d
dr

(
	

dRlmω

dr

)
+

[
K2(ω)

	
− μ2r2 − λlm(ω)

]
Rlmω = 0, (10)

where

c2(ω) = a2(ω2 − μ2), K (ω) = (r2 + a2)ω − am,

λlm(ω) = −2amω + a2ω2 + �lm(ω). (11)

The solution to Eq. (10) with the ingoing boundary condition at the event horizon and expo-
nential fall-off at infinity is very similar to the wave function of the hydrogen atom [16,17] (see
Fig. 1 for the configuration). Solutions are labeled by (ω, l, m), and ω takes discrete values, la-
beled by n, as in the case of the energy levels of hydrogen atom. When the cloud is less massive,
the initial frequency ω is supposed to satisfy

ωR < μ, (12)
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|ω|2
ωR

< m
H , (13)

ωI > 0, (14)

with ωR = Re[ω], ωI = Im[ω], and 
H = a/2Mr+. The third condition implies the presence of
instability, which is expected when the first and second conditions are satisfied. The first condi-
tion means that axions are bounded by the gravitational potential, while the second condition
is the superradiance condition, which states that the axion field is extracting the energy and the
angular momentum from the BH. Thus, the trapped axions around the BH keep extracting the
energy from the BH by the superradiance. This clearly indicates the growth of the cloud, which
is called the superradiant instability.

Owing to the superradiant instability, the condensate of axions, i.e., an axion cloud, is spon-
taneously formed and grows. The growth rate of the cloud can be calculated by the matched
asymptotic expansion [16] for the axion mass with μM � 1 and by the WKB method for μM
� 1 [15,18], or by the numerical calculation with the continued fraction method [17,36]. The
numerical results show that the growth rate takes the maximum at l = m = 1, a/M ∼ 1, μM ∼
0.42 with MωI ∼ 1.5 × 10−7. The timescale for this growth is around 1 minute for a solar-mass
BH. This is much shorter than the age of the Universe, and hence axion clouds can become
very heavy and dense.

3. Adiabatic evolution of a self-interacting axion cloud
In the preceding section, we saw that the superradiant instability is fast enough for the axion
cloud to grow to be so dense that the self-interaction of the axion cannot be neglected. One of
the most interesting possibilities caused by the self-interaction is the bosenova, which is the col-
lapse of clouds accompanied by strong gravitational wave emission. The numerical simulation
in Ref. [36] and perturbative calculation in Ref. [38] support the occurrence of the bosenova.
However, it is still unclear whether the bosenova actually happens or not, since neither method
can track the evolution of clouds starting with a small amplitude (φ � μ/Fa) till the onset of
the bosenova with a large amplitude (φ ∼ 1). In the following, we directly solve the nonlinear
equation of motion for the axion (5) without truncating the potential to study the long-term
evolution of an axion cloud. Below, we assume that the cloud starts with a state occupying only
one single superradiant mode with (l, m, ω) = (l0, m0, ω0), for simplicity.

Our strategy is to use the fact that the cloud grows adiabatically, even when the cloud be-
comes so dense that the perturbative treatment of the self-interaction is not valid any more
[38]. Here, “adiabatic” means that the growth rate of the cloud is much smaller than the dy-
namical timescale of the cloud, i.e.,

ωI � ωR. (15)

During the adiabatic evolution, the shape and the amplitude of the axion field only gradually
change in time. Thus, the axion field configuration on a short timescale is almost stationary
with an approximately fixed amplitude A0. Since it is likely that the symmetry of configura-
tion is preserved under the adiabatic evolution, we assume that the configuration of the axion
field with an arbitrary amplitude A0 can be approximated by that with an approximate helical
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symmetry as

φ(A0) =
∞∑

n=1

∞∑
l≥nm0

e−in(ω0(A0 )t−m0ϕ)R̃nl (r; A0)Ylnm0 (cos θ ) + c.c. (16)

Here, c.c. denotes the complex conjugate and Ylm(x) is defined as

Ylm(x) ≡ Nm
l Pm

l (x), (17)

with

Nm
l =

√
(l − m)!(2l + 1)

2(l + m)!
, (18)

where Pm
l (x) is the associated Legendre polynomial. We understand that Ylm(x) is normalized

to satisfy ∫ 1

−1
dxYlm(x)Yl ′m(x) = δl l ′ . (19)

Here, we define A0 as a parameter that specifies the amplitude of the fundamental mode at a
large radius, i.e.,

R̃1l0 (r; A0) → A0
e−

√
μ2−ω2

0r

r/M

( r
M

)−M
μ2−2ω2

0√
μ2−ω2

0 (1 + O(r−1)), (r → ∞). (20)

Notice that the fundamental frequency of the configuration, ω0 = ω0(A0), also depends on the
amplitude A0.

Substituting the ansatz (16) into the equation of motion (5) and neglecting the time derivative
of the amplitude parameter A0, we obtain

d
dr

(
	

dR̃nl

dr

)
+

[
n2(ω0(r2 + a2) − am0)2

	
− μ2r2 + 2an2ω0m0 − a2n2ω2

0 − l (l + 1)

+ a2(n2ω2
0 − μ2)

1 − 2l (l + 1) + 2n2m2
0

3 − 4l (l + 1)

]
R̃nl

+ a2(n2ω2
0 − μ2)

(
(l − 1 − nm0)(l − nm0)

(2l − 3)(2l − 1)

Nnm0
l−2

Nnm0
l

R̃nl−2

+ (l + 2 + nm0)(l + 1 + nm0)
(2l + 3)(2l + 5)

Nnm0
l+2

Nnm0
l

R̃nl+2

)

+
∫ 2π

0

dϕ

2π

∫ 1

−1
dx Ylnm0 (x)e−inm0ϕ (r2 + a2x2)V ′(φ) = 0. (21)

We impose the ingoing boundary condition at the event horizon and the outgoing boundary
condition at infinity. Since the nonlinear terms fall off sufficiently fast for r → ∞ and for r →
r+, the asymptotic solutions satisfying these boundary conditions can be derived by neglecting
the nonlinear terms, which are given by

R̃nl → A(in)
nl

(
r − r−

M

)in 2Mr−
r+−r− (ω0−m a

2Mr− )−(1−2nMω0i)−iM
μ2−2n2ω2

0√
n2ω2

0−μ2

×ei
√

n2ω2
0−μ2(r−r− )

(
r − r+

M

)−in 2Mr+
r+−r− (ω0−m
H )

, (r → r+), (22)
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R̃nl → A(out)
nl

e+i
√

n2ω2
0−μ2r

r/M

( r
M

)−iM
μ2−2n2ω2

0√
n2ω2

0−μ2

(
1 + a1

r/M
+ a2

(r/M )2
+ · · ·

)
, (r → ∞).

(23)

The coefficients a1, a2, … are analytically determined order by order, and we calculate up to a7.
Since Eq. (16) is valid only for a short period, much shorter than the growth timescale �

ω−1
0I , it cannot be a globally valid solution. To obtain a solution global in time, we demand

that the amplitude A0 slowly vary in time, in such a way that the one-parameter family of
solutions {φ(A0)}A0 is swept to satisfy the energy balance. Namely, the time dependence of A0

is determined by

dE (A0)
dA0

dA0

dt
= −Ftot(A0). (24)

Here, E(A0) and Ftot(φ(A0)) are, respectively, the energy and the net energy flux of the quasi-
stationary configuration (16) with a given amplitude A0. Using the energy–momentum tensor
Tμν(A0) of the axion configuration (16), we obtain

E (A0) =
∫

dr d cos θ dϕ (r2 + a2 cos2 θ )
√

gttTμν (A0)ξμ

(t)n
ν
(t), (25)

Ftot(A0) = FH (A0) + F∞(A0), (26)

FH (A0) =
∫

d cos θdϕ 2Mr+Tμν (A0)ξμ

(t)l
ν |r=r+, (27)

F∞(A0) =
∫

d cos θdϕ (r2 + a2 cos2 θ )
√

grrTμν (A0)ξμ

(t)n
ν
(r)|r→∞. (28)

Here, ξ
μ

(t) = (1, 0, 0, 0) and lμ = 1
2 (1, 	/(r2 + a2), 0, a/(r2 + a2)) in the BL coordinates [41]. In

addition, nμ

(t) and nμ

(r) are unit vectors normal to the t = constant and r = constant surfaces,
respectively. The explicit expressions are given by

√
gttTμνξ

ν
(t)n

ν
(t) = T t

t = (r2 + a2)2 − 	a2 sin2
θ

2ρ2	
(∂tφ(A0))2 + 	 − a2 sin2

θ

2ρ2	 sin2
θ

(∂ϕφ(A0))2

+ 	

2ρ2
(∂rφ(A0))2 + 1

2ρ2
(∂θφ(A0))2 + V (φ(A0)), (29)

Tμνξ
μ

(t)l
ν |r=r+ = (∂tφ(A0) + 
H∂ϕφ(A0))∂tφ(A0), (30)

(r2 + a2 cos2 θ )
√

gttTμνξ
μ

(t)n
ν
(r)|r→∞ = (r − r+)(r − r−)∂rφ(A0)∂tφ(A0). (31)

The angular momentum of the cloud Jcl(A0) can be calculated similarly to the energy of the
cloud as

Jcl(A0) =
∫

dr d cos θ dϕ (r2 + a2 cos2 θ )
√

gttTμν (A0)ξμ

(ϕ)n
ν
(t), (32)

where ξ
μ

(ϕ) = (0, 0, 0, 1). When the nonlinearity is small, this expression can be approximated
as

Jcl(A0) ∼ m0

ω0R(A0)
Ecl(A0). (33)
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Fig. 2. (Left) Dependence of the energy E(A0) on the amplitude A0. The black, red, and blue curves
correspond to the cases with the potential given in Eqs. (34), (35), and (36), respectively. (Right) Depen-
dence of the total flux Ftot(A0) on the energy E. In the same way as the left panel, the black, red, and
blue curves correspond to the respective choices of the potential.

4. Numerical result
Here, we present numerical results obtained by the method explained in the previous section.
We obtain a sequence of solutions of Eq. (21) by gradually increasing the amplitude A0 starting
with a small value, where the linear approximation is a good approximation. Below, we focus
on the fastest-growing mode with l0 = m0 = 1. The numerical calculation is performed with
Mathematica. Details of our numerical calculation method are explained in Appendix A.

4.1 The evolution of a cloud for the fastest-growing parameter set
First, we show the result with a/M = 0.99 and μM = 0.42, which gives a growth rate quite
close to the maximum value [17]. In this subsection, we consider the following three different
potentials:

V (φ) = μ2
(

1
2
φ2 − 1

4!
φ4

)
, (34)

V (φ) = μ2
(

1
2
φ2 − 1

4!
φ4 + 1

6!
φ6

)
, (35)

V (φ) = μ2(1 − cos φ), (36)

to see the influence of the higher-order terms of the potential on the evolution.
In Fig. 2, we show how the energy E and the total flux Ftot depend on the amplitude A0.

As one can see from the left panel of Fig. 2, the energy with an attractive φ4 interaction (34)
takes a maximum, dE/dA0 = 0, at A0 ∼ 3. The appearance of a maximum corresponds to
the presence of a neutral perturbation at this amplitude, which would indicate the onset of
dynamical instability [42]. Namely, the axion cloud with the attractive φ4 potential will become
unstable at this amplitude. By contrast, the clouds with the potential (35) or (36) never become
unstable. This is because the repulsive interaction from the higher-order terms in the cosine-type
potential stabilizes the cloud.

As the amplitude of the cloud becomes larger, the energy flux to infinity increases, and even-
tually it balances with the energy gain due to the superradiance (right panel of Fig. 2). Since
the cloud with the potential (35) and (36) is stable throughout the evolution, as the final state
a quasi-stationary state would be realized. This saturation occurs at A0 ∼ 12 or E/M ∼ 1.8 ×
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Fig. 3. The red and blue dotted curves, respectively, show the configuration of the nonlinear quasi-
stationary cloud with the cosine potential (36) and that of the linear cloud (8) on the equatorial plane.
In both cases the energy is fixed to E/M = 1768(Fa/Mpl)2, where the growth of the amplitude due to
the superradiance saturates. Here, we explicitly write M2

pl = G−1 = 1 to make it clear that Fa should be
counted in Planck units.

Fig. 4. (Left) The red curve and the blue dotted straight line show the nonlinear (cosine-type potential
(36)) and the linear time evolutions of the amplitude A0, respectively. The horizontal axis is the nor-
malized time ω

(0)
I t, where ω

(0)
I is the growth rate in the linearized model, not the imaginary part of the

frequency ω0. (Right) The inverse timescale of the cloud evolution Ȧ0/A0, normalized by ω
(0)
I . Again,

the horizontal axis is the normalized time, ω
(0)
I t.

103(Fa/Mpl)2, which is only 0.1% of the BH mass if we choose the decay constant to be the
GUT scale, Fa ∼ 1016 GeV. In Fig. 3, we show the configuration of the axion cloud in this
quasi-stationary state and the linear configuration given by Eq. (8) with n = 0. We normalize
the linear configuration to have the same energy as the nonlinear quasi-stationary state. We
observe that the nonlinear quasi-stationary state is more compact than the configuration of
the linear solution. This is a consequence of the attractive force originating from the leading
φ4 interaction term in the cosine-type potential.

Now we know the dependences of the energy and the energy flux on the amplitude, we
can calculate the time evolution of the amplitude via Eq. (24). In the left panel of Fig. 4,
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Fig. 5. Red solid (blue dotted) curve corresponds to the time evolution of the growth rate defined by
Ȧp/Ap (Ė/2E) divided by the growth rate determined by the imaginary part of the frequency, ω0I. Here
we emphasize that ω0 is the fundamental frequency of the nonlinear configuration, which is different
from the frequency in the linearized model, ω(0).

we show the time evolution of the amplitude. We observe that the growth is accelerated in
the early time. After the amplitude becomes large enough, the energy emission to infinity bal-
ances with the superradiant growth, and the evolution of the amplitude terminates. The ac-
celeration is due to the attractive nature of the leading interaction term ∝φ4 in the cosine-
type potential. In the right panel of Fig. 4, we show the timescale of the cloud evolution. The
growth rate of a nonlinear cloud becomes about 100 times larger than the original growth rate.
Nevertheless, the original growth rate is much smaller than the dynamical timescale by 10−7.
Hence, the growth rate even after the cloud becomes nonlinear is still much smaller than the
inverse of the dynamical timescale. This confirms the validity of the adiabatic evolution as-
sumed in our scheme and thus that of the sequence of quasi-stationary states obtained by our
calculation.

To further check the consistency of our calculation scheme, we show the growth rate of
the peak amplitude and that of the energy. In Fig. 5, we show the time evolution of these
growth rates divided by the imaginary part of the frequency ω0I. The deviation of these ra-
tios from unity remains at most O(1). In other words, the difference between the growth rates
defined in different ways is O(ω0I ), which is tiny. This difference represents the error due to
our naive ansatz on the time dependence of each mode. As we have confirmed that the error
when we substitute the solution with the time-dependent magnitude A0(t) into the equation of
motion is suppressed by ω0I, we can conclude that the higher-order correction to amend this
error is tiny. It is interesting to point out that the growth rate determined by the time evo-
lution of the energy, Ė/2E , remains very close to ω0I, even when the configuration becomes
nonlinear.
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Table 1. The parameters a/M and μM that we have calculated. The corresponding frequency ω0R and the
growth rate ω0I of the superradiant mode derived by the linearized equation of motion are also shown.

(a/M, μM) Mω0R Mω0I

(0.99,0.42) 0.4088 1.504 × 10−7

(0.99,0.29) 0.2867 2.154 × 10−8

(0.9,0.29) 0.2867 1.543 × 10−8

(0.99,0.15) 0.1496 1.837 × 10−10

(0.9,0.15) 0.1496 1.737 × 10−10

(0.7,0.15) 0.1496 1.154 × 10−10

Fig. 6. (Left) Dependence of the energy divided by (Fa/Mpl)2 on the amplitude A0 for the μM = 0.29
case. The red and blue curves correspond to the a/M = 0.99 and a/M = 0.9 cases, respectively. (Right)
The same figure but with μM = 0.15. The red, blue, and black curves correspond to the a/M = 0.99, a/M
= 0.9, and a/M = 0.7 cases, respectively.

4.2 Dependence on the axion mass and black hole spin
Next, we change the axion mass μM and the BH spin a/M to see the effect of the variation of
these parameters on the evolution. The parameter sets that we present in this paper are shown
in Table 1. In the following, we fix the potential of the axion to the cosine-type one (36).

We start by looking at the dependence of the energy on the amplitude A0, as in the previous
subsection. Figure 6 shows the dependence of the energy on the amplitude A0 for μM = 0.29
(left) and μM = 0.15 (right). We observe that there exists a local maximum regardless of the
value of a/M. Thus, if μM is not so large, we find that the cloud always becomes unstable for
any spin. The difference between the case with μM = 0.42 and the case with μM = 0.29 or 0.15
will be qualitatively explained by the toy model presented in the next section.

If the growth of the cloud saturates before the cloud becomes unstable, the instability will
not happen. In Fig. 7, we compare the energy flux from the horizon and that to infinity for
each set of parameters (μM = 0.29 on the left and μM = 0.15 on the right), to see whether the
dissipation to infinity terminates the growth or not. We find that the flux to infinity is largely
suppressed, compared to the flux from the horizon, even when the energy of the cloud is large
enough for the instability to occur. This is because, in the small-μM limit, the wavelength of
the outgoing wave of the axion with m = 3 is around ∼1/3μ, which is much smaller than the
size of the cloud ∼M/(Mμ)2. Therefore, the dissipation to infinity is not efficient and cannot
terminate the growth of the cloud before the onset of instability.
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Fig. 7. (Left) Dependence of the energy flux at the horizon (upper panel) and infinity (lower panel) on the
energy E for μM = 0.29. Red and blue curves correspond to the a/M = 0.99 and 0.9 cases, respectively.
The energy flux is normalized by (Fa/Mpl)2. (Right) The same graphs but with μM = 0.15. The red, blue,
and black curves correspond to the a/M = 0.99, a/M = 0.9, and a/M = 0.7 cases, respectively.

5. A toy model of the axion cloud
In this section, we give a toy model describing the qualitative behavior of the axion cloud seen
in our numerical calculations. Our model is a simplified version of the effective theory proposed
in Ref. [35]. In this model, we adopt the non-relativistic approximation, which keeps the leading
terms in the expansion with respect to μM and neglects the spin of the BH, assuming the form
of the axion field as

φ = 1√
2μ

(ψe−iμt + ψ∗e+iμt ), (37)

and demanding that the characteristic length scale of the function ψ is much longer than the
Compton wavelength of the axion μ−1.

We take our starting point to be the action (1) with the potential (2). Under the non-relativistic
approximation, the action takes the form of

SNR = F 2
a

∫
dt d3x

(
i
2

(ψ∗ψ̇ − ψψ̇∗) − 1
2μ

|∂iψ |2 + μM
r

|ψ |2 + μ2
∑
n=2

(−1/2)n

(n!)2

|ψ |2n

μn

)
.

(38)

From this non-relativistic action, we read the potential energy of the cloud as

V =
∫

d3x

(
1

2μ
|∂iψ |2 − μM

r
|ψ |2 − μ2

∑
n=2

(−1/2)n

(n!)2

|ψ |2n

μn

)
. (39)
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Fig. 8. Left (right) panel shows the dependence of the potential V/μN|σ=σeq for a fixed N∗ on rp, for μM
= 0.15 (0.42). Each curve corresponds to a different value of N∗.

From our numerical calculation, we know that the configuration of the cloud is well approxi-
mated by a single spherical harmonics. Thus, we take an ansatz

ψ = Ape− (r−rp )2

4σ2 Yl0m0 (x)e+im0ϕ, (40)

for the cloud configuration. This wave function is characterized by the peak amplitude Ap, the
position of the peak radius rp, and the radial extension of the cloud σ . We plug the ansatz (40)
into Eq. (39) and, setting l0 = m0 = 1, we obtain

V
N

= r2
p + 3σ 2

8μσ 2
(
r2

p + σ 2
) + 1

μ
(
r2

p + σ 2
) − μMrp

r2
p + σ 2

−μ2

(
N∗

160π
√

2πμ4σ
(
r2

p + σ 2
) − 3N2

∗
17 920π3μ7σ 2

(
r2

p + σ 2
)2 + · · ·

)
. (41)

Here, N is the particle number in the cloud defined by

N =
∫

d3x |ψ |2 ∼ 2π
√

2πσ
(
r2

p + σ 2)A2
p, (42)

where we ignore the inner cutoff of the radial integration and define the dimensionless quantity
N∗ ≡ μ2N.2The radial integrations in Eq. (39) are also approximated as in Eq. (42).

The configuration of the cloud for a given particle number N is determined by the extremum
of the potential (41), i.e.,

∂rpV = ∂σV = 0. (43)

Eliminating N∗ from these equations and solving for σ , we obtain

σ 2 = σ 2
eq ≡ 1

6μ2M

(
−2rp + μ2Mr2

p + rp

√
4 + 2μ2Mrp + μ4M2r2

p

)
. (44)

Here, σ eq denotes the radial width of the equilibrium configuration. After substituting σ eq, we
can regard the potential as a function of a single variable rp. Figure 8 shows the behavior of
V/N|σ=σeq with μM = 0.15 (left) and 0.42 (right) as a function of N∗. The value of rp at the
extremum as a function of N∗ for various μM is shown in Fig. 9. We also show how the total

2Since we have scaled the axion field φ by the decay constant Fa, the correct particle number is given by
F 2

a N. Here, we have defined N∗ by multiplying N by μ2 instead of F 2
a to eliminate Fa from the potential,

for simplicity.
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Fig. 9. Left (right) panel shows the value of rp at the extremum of the potential V/N|σ=σeq as a function
of N∗ for μM = 0.15 (0.42).

Fig. 10. Left (right) panel shows the dependence of the total energy Etot of the equilibrium configuration
on the peak amplitude Ap for μM = 0.15 (0.42).

energy of equilibrium configuration

Etot = μN + V |σ=σeq (45)

depends on Ap in Fig. 10.
We first study the case with μM = 0.15. For small N∗( � 900), there is only one extremum

made by the Newtonian potential and the angular momentum barrier. As the cloud grows by
the superradiant instability, N∗ becomes larger and rp decreases because of the attractive nature
of the leading term ∝φ4 in the self-interaction. For 900 � N∗ � 1650, three extremum points,
two stable and one unstable, appear. The outer stable point corresponds to the extremum in the
small-N∗ regime. The appearance of the inner stable point is due to the self-interaction. If we
increase N∗ beyond ∼1650, the outer stable point disappears and only the inner stable point
remains. Therefore, the cloud residing at the outer stable point jumps to the inner stable point
at N∗ ∼ 1650. This is a clear indication of the onset of phase transition. Comparing the left
panel of Fig. 10 to the right panel of Fig. 6, the pattern of the instability is identical in both
the numerical calculation and this toy model. Since the cloud jumps to the inner stable point
when the potential barrier disappears, the phase transition can be violent and may cause an
explosive phenomenon such as a bosenova. However, the dynamics of and the state after the
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Fig. 11. (Left) Red, blue, and black curves show the position of the peak of the fundamental mode R̃11

as a function of the energy E for μM = 0.31, 0.33, and 0.35, respectively. The spin of the central BH
is fixed to a/M = 0.99. Different configurations with a given E can exist only for the μM = 0.31 case.
(Right) Red, blue, and black curves show the energy of the configuration at the extremum as a function
of the peak amplitude of the fundamental mode R̃11 for μM = 0.31, 0.33, and 0.35, respectively. A local
maximum in this plot appears only for the μM = 0.31 case.

phase transition cannot be studied by our method and, to clarify what really happens after the
onset of the instability, dynamical simulations are necessary.

Now, we study the behavior of the μM = 0.42 case. In this case there is only one extremum
for any value of N∗. This is because the Newtonian potential becomes deeper and the radius
where the gravitational force and the centrifugal force balance gets smaller as μM increases.
Then, it becomes closer to the radius where the secondary minimum due to the self-interaction
appears, and finally the range of amplitude in which two local minima coexist disappears. Since
no phase transition occurs, the energy flux to infinity, which is not included in this toy model,
balances with the superradiant growth at some N∗, and the growth terminates there. This agrees
with our numerical calculation in Section 4.1.

Our toy model suggests that there exists a critical gravitational coupling μcM, above which
no phase transition occurs. In the case just below this critical value, the phase transition might
be very mild, even though it is a first-order phase transition.

To determine the critical value, μcM, we further calculate the evolution of axion clouds for
various values of μM with the method presented in Section 3. In Fig. 11 we give the same plots
as in Figs. 9 (left panel) and 10 (right panel) but with μM = 0.31, 0.33, and 0.35 for a/M = 0.99.
From these figures, we find that the critical value is around μcM ∼ 0.32.

6. Summary and discussion
In this paper, we have numerically examined the effect of self-interaction on the evolution of
an axion cloud, under the assumption that the evolution is adiabatic. Our main focus was to
establish a method to track the consistent evolution of clouds, starting with a very small am-
plitude to a large amplitude such that we can transfer the data of the field configuration to
a fully dynamical simulation as appropriate initial data. In this paper we have restricted our
attention to the case in which only the l = 1, m = 1 fundamental superradiant mode is ini-
tially occupied by the axion cloud. We first investigated the case with the axion mass μM =
0.42 and the central BH spin a/M = 0.99, which realizes the growth rate around the maxi-
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mum. We found that the cloud with an attractive self-interaction ∝φ4 only becomes unsta-
ble at a certain energy. On the other hand, we found that, when we include the higher-order
terms in the cosine-type potential, no instabilities occur and the cloud settles into a quasi-
stationary state, where the energy dissipation to infinity balances with the energy gain due to
the superradiance. This is because the cloud remains stable throughout the evolution owing
to the repulsive force from the higher-order terms in the cosine-type potential, and the en-
ergy dissipation to infinity eventually becomes sufficiently large as the amplitude of the cloud
increases.

Moreover, we investigated how the evolution of clouds depends on the parameters (μM,
a/M). We found that, for a large μM, clouds evolve into a quasi-stationary state as we obtained
in the μM = 0.42 case. As we decrease the value μM, there appears a critical value at which
the cloud becomes unstable. From our calculation, the instability occurs when E/M ∼ 3 ×
102/(GμM)2(Fa/Mpl)2.3 Also, we found that the BH spin does not have any significant influence
on whether or not the instability occurs. The main role of the BH spin is to control the existence
of the superradiance and the superradiant instability timescale.

Next, we constructed a toy model describing the behavior of the cloud found by our numerical
calculation. We approximate the cloud to be a Gaussian distribution characterized by only three
parameters, the peak amplitude Ap, the radial position of the peak rp, and the radial extension
of the cloud σ . For a large μM, there exists only one equilibrium configuration throughout
the evolution. This means that the cloud is stable throughout the evolution. By contrast, three
distinct equilibrium configurations, two stable and one unstable, can exist for a small μM in a
certain energy range. Therefore, a sudden change between two stable equilibria, i.e., a first-order
phase transition, can happen as one increases the energy. We interpret this phase transition
in our toy model as the onset of instability suggested from our numerical calculation by the
appearance of the peak in the cloud energy as a function of the cloud amplitude. With the aid
of this toy model, we can confidently conclude that no occurrence of bosenovae is expected
for a large μM. Further numerical calculation showed that the critical gravitational coupling is
around μcM ∼ 0.32.

Since our calculation relies on the adiabatic approximation, we cannot tell what happens af-
ter the onset of the instability. To clarify the fate of the instability, dynamical simulations are
necessary. Moreover, we have not confirmed the dynamical stability of the quasi-stationary
configurations for a large μM. Thus, it might be too early to conclude that the cloud evolves to
a quasi-stationary state for a large μM. These issues can also be clarified by dynamical simula-
tions.

It should be noted that we have ignored saturation mechanisms other than the axion emis-
sion to infinity, such as the spin-down of the BH [18] and the energy dissipation due to the
existence of multiple superradiant modes [37]. If another saturation mechanism works before
the onset of instability, we cannot expect an explosive phenomenon to happen. We can as-
sess whether the spin-down of the BH can be effective or not by looking at the angular mo-
mentum of the cloud. Let us first analyze the unstable case, i.e., μM � 0.32. For the μM
= 0.29 case, the angular momentum of the cloud at around the maximum of the energy

3Here, we have assumed that the energy at the onset of the instability scales on gravitational coupling
as ∝(GμM)−2, which is motivated by the estimation of the energy when the bosenova happens using the
non-relativistic approximation [18,37].
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is

Jcl/JBH ∼ 1.1 × 104(Fa/Mpl)2(1/(a/M )). (46)

This is around 10−2 of that of the central BH for the GUT scale decay constant Fa/Mpl ∼ 10−3,
which is small enough to neglect the spin-down of the BH. For a smaller decay constant, this
fraction is even smaller. Therefore, the saturation of the superradiance condition (13) due to
the spin-down of the central BH is not very likely before the instability sets in.

On the other hand, for μM = 0.15, the angular momentum of the cloud when the instability
sets in is roughly given by

Jcl/JBH ∼ 9 × 104(Fa/Mpl)2(1/(a/M )). (47)

Thus, the change of the BH spin is around 	(a/M) ∼ 0.1 for the GUT scale decay constant,
which means that the spin-down of the BH cannot always be neglected for a small μM. When
the initial BH spin is close to the value for the saturation of the superradiance condition (e.g.,
a/M ∼ 0.55 for the μM = 0.15 case), the growth of clouds due to superradiance would termi-
nate before the instability sets in. By contrast, for a large spin (a/M ∼ 0.9) that gives a larger
growth rate, the saturation of the superradiance condition will not occur before the instability
sets in, even if we consider the spin-down of the BH. To summarize, as long as one consid-
ers a large BH spin a/M � 0.9, the spin-down of the BH does not prevent the ignition of the
instability.

For the saturation case, μM � 0.32, the evolution of the cloud is not so affected as in the
μM = 0.29 case. The angular momentum of the nonlinear quasi-stationary configuration is
smaller than Eq. (46) (e.g., Jcl/JBH ∼ 4.5 × 103(Fa/Mpl)2(0.99/(a/M)) for μM = 0.42). There-
fore, BH spin-down can be neglected for the GUT scale decay constant before the saturation
due to self-interaction occurs. Thus, the cloud first settles to a nonlinear configuration as shown
in Fig. 3. Then, the angular momentum of the central BH is extracted by the superradiance on
a longer timescale. As the BH spin gets smaller, the energy flux from the horizon gets smaller.
To satisfy the balance of the total energy flow, the cloud expands to reduce the energy flux to
infinity. In this manner, the BH spin-down proceeds as long as the superradiance condition is
satisfied. During the process of BH spin-down, the cloud maintains the quasi-stationary con-
figuration. After the saturation of the superradiance condition, the cloud gradually dissipates
the energy to infinity by self-interaction. To qualitatively predict the final value of the BH spin,
further numerical calculation taking into account the time evolution of BH mass and spin is
necessary.

The effect of multiple modes also cannot be studied within our formalism as it is, since
the presence of the second superradiant mode breaks the helical symmetry. Since the per-
turbative calculation suggests that the dissipation due to multiple modes works efficiently in
the strongly nonlinear regime (especially for the relativistic cloud) [38], precise calculation
without relying on perturbative analysis is necessary to tell whether dissipation may termi-
nate the growth before the instability occurs or not. In the preceding studies, for instance,
the deformation of the cloud due to self-interaction was not taken into account. Since the
strengths of the mode coupling between different modes are determined by the size of the
overlap between the modes, the deformation of the cloud might have a significant impact
on the rate of dissipation. Related to this point, the gravitational wave emission from the
cloud has to be reinvestigated. Because the radial extension of the cloud shrinks owing to
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the self-interaction, it becomes comparable to the wavelength of relevant gravitational waves.
Thus, the energy flux carried out by gravitational waves can be enhanced compared with the
naive estimate based on the linearized model. These points will be further discussed in future
work.
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Appendix A. Details of the numerical calculation
Here, we briefly summarize our calculation scheme to solve Eq. (21) under the bound-
ary conditions (22) and (23). We truncate the infinite summation in Eq. (16) at lmax = 5,
nmax = 5. We confirm that truncating l and n at these values does not change the results
much, as presented in Appendix B. Since we start with l0 = 1, m0 = 1 and the poten-
tials (Eqs. (34)–(36)) are even functions of φ, we only need to consider modes with odd l,
m. Thus, only modes with (l, m) = (1, 1), (3, 1), (5, 1), (3, 3), (5, 3), (5, 5) appear in our
calculation.

Our task is to determine the frequency ω0 and the amplitudes of modes at the horizon and
at a large radius. For a given amplitude of the fundamental mode at a large r, we determine
the remaining 12 complex parameters (ω0 and the remaining complex amplitudes) by match-
ing the mode functions, obtained by solving the equations from r∗ = rmin with the boundary
condition (23) and those from r∗ = rmax with the boundary condition (22), at r∗ = rmatch. In
our calculation we take rmin = −100M, rmax = 100M, and rmatch = 5M. We obtain the 12 pa-
rameters by starting with a small amplitude (A0 = 10−3) and gradually increase the ampli-
tude. To obtain a new solution, we solve a set of linearized equations expanded around an
approximate solution guessed by the extrapolation from the previous steps. Then, to keep the
precision of the solution, we iteratively solve a set of linearized equations expanded around
the improved approximate solution, until the convergence is confirmed. When we perform the
integration of nonlinear terms over the angular coordinates in Eq. (21), we use the orthog-
onal collocation method. We discretize the θ direction by 16 points and the ϕ direction by
31 points.

Appendix B. Justification of the truncation of l and n
In this appendix, we show the result of the same calculation for μM = 0.42, a/M = 0.99 but
including the additional (l, m) = (7, 1) and (7,3) modes. These two modes are enough to jus-
tify the truncation at lmax = 5 and nmax = 5, since modes with m ≥ 5 are suppressed com-
pared with m = 1, 3 modes (see, e.g., Fig. B3). Here, we fix the potential of the axion as
Eq. (2).

Figure B1 shows how the total flux Ftot depends on the energy E. We confirm
that the total flux differs by a factor of ∼1.3 when the amplitude is large. This
is because the flux to infinity becomes larger due to the additional radiative mode
(l, m) = (7, 3).
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Fig. B1. Dependence of the total flux Ftot(A0) on the energy E. The red solid curve is the same as the
blue solid curve in the right panel of Fig. 2. The blue dotted curve corresponds to the calculation with
additional higher multipole modes (l, m) = (7, 1) and (7,3).

Fig. B2. Each curve shows the real part of (r∗/M )R̃lm near infinity. The red solid curve, blue dotted curve,
black dashed curve, and purple dash–dotted curve correspond to the (l, m) = (3, 3), (5, 3), (5, 5), and
(7,3) modes, respectively.

To see the contribution of each mode on the flux to infinity, we show the behavior of mode
functions at A0 = 11 with m ≥ 3 near infinity in Fig. B2. From the figure, we observe that the
(l, m) = (5, 3) mode gives the largest contribution, contrary to the naively expected dominance
of the (l, m) = (3, 3) mode. The fact that the higher-l mode gives the dominant contribution is
very similar to the gravitational radiation from the axion cloud [24]. The next most dominant
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Fig. B3. Each panel shows the real part of the mode function R̃lm at amplitude A0 = 11. From top left to
bottom right, R̃11, R̃31, R̃51, R̃33, R̃53, and R̃55 are plotted, respectively. The red solid curve is calculated
with six modes (l, m) = (1, 1), (3, 1), (5, 1), (3, 3), (5, 3), and (5,5), while the blue dashed curve is calculated
by adding two more modes (l, m) = (7, 1) and (7,3).

mode is the (l, m) = (3, 3) mode, and the (7,3) mode is further suppressed but not completely
negligible to determine the saturation configuration. However, the configuration of the main
body of the cloud is not greatly affected by the inclusion of the (l, m) = (7, 3) mode, as shown
in Fig. B3. Therefore the energy flux through (l, m) = (7, 3) can be computed from the lin-
earized equation from the configuration obtained by neglecting the (l, m) = (7, 3) mode, as
shown in Fig. B4. Moreover, we confirm that the (l, m) = (5, 5) mode gives a much smaller con-
tribution than the m = 3 modes. Thus, the inclusion of higher-m modes does not change our
results.
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Fig. B4. Dependence of the total flux Ftot(A0) on the energy E. The red solid and blue dashed lines
correspond to the respective lines in the right panel of Fig. B1. The newly added black line corresponds to
the total flux calculated by solving the linearized equation from the configuration neglecting the higher-l,
m modes.
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