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Off central heavy ion collisions are known
to generate magnetic fields that change the
isotropic properties of the transport coeffi-
cients [1] of the fireball medium. Cold and
dense neutron stars (NS) have been long an-
tipicated to contain a magnetized quark mat-
ter (QM) core [2]. Electrical conductivity
σ [3] is one of the transport coefficients whose
anisotropic property and it’s implications have
been studied in this work. Electrical conduc-
tivities συ , υ ∈ {‖,⊥} in relaxation time
approximation (RTA) [4] is given by
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where the Fermi-Dirac distribution in the
µ >> T limit has been approximated as Heav-
iside theta function Θ(µ − ωl) where µ is the
baryon chemical potential , τc is the relaxation
time, τB = ωl

eB , ωl =
√
k2z +m2 + 2leB is

the Landau quantized energy, l is the Lan-
dau level, B is the external magnetic field

and lmax ≤ µ2−m2

2eB . Alternatively one can
use Kubo formulas [5] for συ which can be
calculated by taking the derivative of the
static limit of the spectral function of currents
Jµ(x), given by ρµν(q) which for a U(1) gauge
theory is given by
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that is evaluated on the Schwinger-Keldysh
contour [1, 3]. Landau quantization is intro-
duced at the level of the propagator [6] which
keeps the magnetic field dependent transport
profile, a fundamental property of the fluid.
By computing συ from Kubo formulas [3] and
employing the µ >> T approximation of dis-
tribution function we arrive at
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where Γ is the thermal decay width related
with τc by Γ = τ−1c and ml =

√
m2 + 2leB.

The origin of the anisotropic behaviour is con-
nected with the background magnetic field.
This in turn changes the relaxation times
which we call effective relaxation time of the
fluid. From Eq.(1) and Eqs.(3-4) we extract
the effective relaxation times as follows

τ‖c = τc , Γ = (τ‖c )−1

τ⊥c = τc/(1 +
τ2c
τ2B

) ,

(Γ⊥)−1 = Γ/(Γ2 + (µ−
√
µ2 ± 2eB)2)(5)
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FIG. 1: Γeff vs eB at µ = 0.4, 0.5 GeV

where τc is the relaxation time in the absence

of background magnetic field, τ
‖
c and τ⊥c are

the effective relaxation times in the presence
of background magnetic field, Γ⊥ is the effec-
tive decay width magnetized medium, Γ is the
decay width in thermal vacuum. From Eq.(5)
we get

Γ⊥ = Γeff =
Γ2 + (µ−

√
µ2 ± 2eB)2

Γ
(6)

where we have taken Γ⊥ to be the effective de-
cay width Γeff , that tells us about the change
in decay width with µ and eB. To illustrate
the effect of magnetic field that it has on nu-
cleons in NS, magnetars and other compact
stars we have plotted in Fig.(1) Γ⊥ vs eB at
Γ = 0.1 GeV and µ = 0.5 GeV where we see
that with increase in strength of magnetic field
the decay width of fermions increases. We also
note that with increase in µ, Γeff shows a
decrease compared to lower values of µ. For
µ2 >> 2eB, Γeff can be approximated as
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Γ
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which shows that Γ⊥ undergoes a lesser de-
viation at high µ. A systematic study of de-
cay processes occuring in compact stars taking
into account Yukawa type interaction will be
discussed in the future.
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