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B- and D-meson leptonic decay constants from four-flavor lattice QCD
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We calculate the leptonic decay constants of heavy-light pseudoscalar mesons with charm and bottom
quarks in lattice quantum chromodynamics on four-flavor QCD gauge-field configurations with dynamical u,
d, s, and ¢ quarks. We analyze over twenty isospin-symmetric ensembles with six lattice spacings down to
a =~ (0.03 fmand several values of the light-quark mass down to the physical Value% (m, + my). We employ the
highly-improved staggered-quark (HISQ) action for the sea and valence quarks; on the finest lattice spacings,
discretization errors are sufficiently small that we can calculate the B-meson decay constants with the HISQ
action for the first time directly at the physical b-quark mass. We obtain the most precise determinations to-date
of the D- and B-meson decay constants and their ratios, fp+ = 212.7(0.6) MeV, fp = 249.9(0.4) MeV,
fp./fp+ = 1.1749(16), fp+ = 189.4(1.4) MeV, fp =230.7(1.3) MeV, fg /fp+ = 1.2180(47), where
the errors include statistical and all systematic uncertainties. Our results for the B-meson decay constants are
three times more precise than the previous best lattice-QCD calculations, and bring the QCD errors in the
standard model predictions for the rare leptonic decays B(B,—u*pu~)=3.64(11)x10~°, B(B®—»utu~)=
1.00(3)x1071%, and B(B° - uu~)/B(B, = u*pu~) = 0.0273(9) to well below other sources of
uncertainty. As a byproduct of our analysis, we also update our previously published results for the light-
quark-mass ratios and the scale-setting quantities f',4, M 45, and R 4. We obtain the most precise lattice-QCD

determination to date of the ratio fx+/f,+ = 1.1950( 7}%) MeV.
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I. INTRODUCTION

Leptonic decays of B and D mesons are important probes
of heavy-to-light quark flavor-changing interactions. The
charged-current decays H™ —» ¢*v, (H= D",D,, B";
¢ =e, u, ) proceed at tree level in the standard model
via the axial-vector current A, = styﬂq, where Q is the
heavy charm or bottom quark and ¢ is the light quark in the
pseudoscalar meson. When combined with a nonperturba-
tive lattice-QCD calculation of the decay constant fy+, an
experimental measurement of the leptonic decay width
allows the determination of the corresponding Cabibbo-
Kobayashi-Maskawa (CKM) quark-mixing matrix element
|Vo,|- Because the decays H — ¢¢~ (H = D°, B°, B))
proceed via a flavor-changing-neutral-current interaction,
and are forbidden at tree level in the standard model, these
processes may be especially sensitive to (tree-level) con-
tributions of new heavy particles. Both the standard model
and new-physics predictions for the rare-decay branching
ratios depend upon the decay constants f .

Leptonic B-meson decays, in particular, make possible
several interesting tests of the standard model and prom-
ising new-physics searches. The determination of |V |
from BT — 'y, decay can play an important role in
resolving the 2 — 3¢ tension between the values of |V ;]
obtained from inclusive and exclusive semileptonic B-
meson decays (see the recent reviews [1,2] and references
therein). Alternatively, the decay B™ — 77v,, because of
the large z-lepton mass, may receive observable contribu-
tions from new heavy particles such as charged Higgs
bosons or leptoquarks [3,4]. The branching ratios for B —
¢ and B, — £¢~ can be enhanced with respect to the
standard model rates in new-physics scenarios with tree-
level flavor-changing-neutral currents, such as in fourth-
generation models [5,6].

Lattice-QCD calculations of the B-meson decay constants
are especially timely given the wealth of leptonic B-decay
measurements from the B-factories and, more recently, by
hadron-collider experiments at the LHC. The branching
ratio for the charged-current decay B™ — 7tv, has been
measured by the BABAR and Belle experiments to about
20% precision [7-10]. The rare decay B, — u"u~ has now
been independently observed by the ATLAS, CMS, and
LHCb experiments with errors on the measured branching
ratio ranging from around 20%—-100% [11-13]; these works
have also set limits on the process B® — u*u~. Precise
determinations of fp+, fpo, and fp are needed to interpret
these results. Such determinations are also necessary to fully
exploit coming measurements by Belle II [14], which will
begin running at the Super-KEKDb facility next year, as well
as future measurements by ATLAS, CMS, and LHCb after
the LHC luminosity and detector upgrades [15], which are
planned for 2023-2025.

Several independent three- and four-flavor calculations
of heavy-light-meson decay constants using different lattice

actions are available [16-28], with uncertainties ranging
from ~0.5%-5% and ~2%-8% for the D and B
systems, respectively. The most precise results for f and
fp, have been obtained by us [23], and for fz by the
HPQCD Collaboration [17], in both cases using improved
staggered sea quarks and the ‘“highly-improved staggered
quark” (HISQ) action [29] for the valence light and heavy
quarks. The HISQ action makes possible this high precision
because it has both small discretization errors, even
at relatively large lattice spacings, and an absolutely-
normalized axial current. Our previous calculation [23] of
the D(;-meson decay constants employed physical-mass
light and charm quarks and gauge-field configurations with
lattice spacings down to a = 0.06 fm; the dominant con-
tribution to the errors on f, and fp came from the
continuum extrapolation. HPQCD’s calculation of fz with
the HISQ action for the b quark employed five three-flavor
ensembles of gauge-field configurations from the MILC
Collaboration [30-32] with lattice spacings as fine as
a =~ 0.045 fm, enabling them to simulate with heavy-quark
masses close to the physical bottom-quark mass. The
statistical errors dominate in their calculation due to the
comparatively small number of configurations per ensemble
(roughly 200 on their finest up to 600 on their coarsest).
Other important sources of uncertainty are from the extrapo-
lation in heavy-quark mass up to m,;, and from the extrapo-
lation to zero lattice spacing.

In this paper, we present a new calculation of the leptonic
decay constants of heavy-light mesons containing bottom
and charm quarks that improves upon prior works in several
ways. As in our previous calculation of f, and f, [23], we
employ the four-flavor QCD gauge-field configurations
generated by the MILC Collaboration with HISQ up, down,
strange, and charm quarks [33]; we also use the HISQ
action for the light and heavy valence quarks. We now
employ three new ensembles with finer lattice spacings of
a~0.042 and a ~ 0.03 fm, and also increase statistics on
the @ = 0.06 fm ensemble with physical-mass light quarks.
Altogether, we analyze 24 ensembles, most of which have
approximately 1000 configurations. We also calculate the
B*- and B%-meson decay constant with HISQ b quarks on
the HISQ ensembles for the first time.

We fit our lattice data for the heavy-light meson decay
constants to a functional form that combines information on
the heavy-quark mass dependence from heavy-quark
effective theory, on the light-quark mass dependence from
chiral perturbation theory, and on discretization effects
from Symanzik effective theory. This allows us to exploit
our wide range of simulation parameters by including
multiple lattice spacings and heavy- and light-quark mass
values in a single effective-field-theory (EFT) fit. We
present results for all charged and neutral heavy-light
pseudoscalar-meson decay constants, as well as the SU(3)-
breaking decay-constant ratios and the differences between
the charged decay constants and the decay constants in the
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isospin-symmetric (m, = m,) limit. In addition, we pro-
vide the correlations between our decay-constant results to
facilitate their use in other phenomenological studies
beyond this work. Preliminary reports of this analysis have
been presented in Refs. [34,35].

This paper is organized as follows. First, Sec. I presents
relevant details of the lattice actions, simulation parameters,
and methodology of our calculation, including a discussion
of how we deal with nonequilibrated topological charge.
Next, we describe our two-point correlator fits used to
obtain the heavy-light-meson decay amplitudes in Sec. III.
In Sec. IV, we determine the lattice spacings and light-quark
masses on the ensembles employed in this calculation,
which are parametric inputs to the decay-constant analysis,
and also to a determination of heavy-quark masses in a
companion paper [36]. Physical quark-mass ratios and the
light decay constant ratio fx+/f,+ are obtained as a by-
product. We then calculate the physical B- and D-meson
decay-constant values in Sec. V by fitting our lattice decay-
amplitude data at multiple values of the light- and heavy-
quark masses and lattice spacing to a function based on
effective field theories, and interpolating to the physical light-,
charm-, and bottom-quark masses and extrapolating to the
continuum limit. In Sec. VI, we estimate the systematic
uncertainties in the decay constants not included in the EFT
fit, and provide complete error budgets. We present our final
results for the B- and D-meson leptonic decay constants with
total errors and discuss the impact of our results for deter-
minations of CKM matrix elements and tests of the standard
model in Sec. VIL Final results for light-quark mass ratios,
fk+/fr and the scale-setting quantities f 4, and M 4, are
also presented. Finally, in Sec. VIII, we conclude with an
outlook to future work. Two Appendices provide useful
information about (improved) staggered fermions when the
bare lattice quark mass amy=<1. Appendix A discusses the
radius of convergence of the expansion in am,, while
Appendix B derives the normalization factor for staggered
bilinears. Appendix C provides the correlation and covariance
matrices between our B- and D-meson decay constant results.

II. SIMULATION PARAMETERS
AND METHODS

In this paper, we use the MILC Collaboration’s ensem-
bles of QCD gauge-field configurations with four flavors of
dynamical quarks. This simulation program is described in
detail in Ref. [33], and since then it has been extended to
smaller lattice spacings. Here we provide information on
our current calculation, and also document the new
ensembles. First, in Sec. II A, we summarize the parameters
of the actions and two-point correlation functions used in
the analysis presented below. Three ensembles with
approximate lattice spacings 0.042 and 0.03 fm are new
since Ref. [33], while some of the older ensembles have
been extended. In Sec. II B, we update the discussion in
Ref. [33] on possible effects from using different

algorithms in different parts of the simulation. Finally, in
Sec. IIC, we discuss effects of poor sampling of the
distribution of topological charge and how to compensate
for these effects.

A. Simulation parameters

The gauge action [37] is one-loop Symanzik [38] and
tadpole [39] improved, using the plaquette to determine the
tadpole quantity u,. The fermion action is the HISQ action
introduced by the HPQCD collaboration [29]. The ensembles
all have an isospin-symmetric sea. A single staggered-
fermion field yields four species, known as tastes, in the
continuum limit [40]. To adjust the number of species in the
sea, we take the fourth (square) root of the quark determinant
for the strange and charm (up and down) sea [41]. In addition
to the perturbative arguments [40,42], this procedure passes
several nonperturbative tests [43—55], providing confidence
that continuum QCD is obtained as a — 0.

Table I summarizes the ensembles used in this work. In this
table, we identify the ensembles by the approximate lattice
spacing a and the ratio of light sea-quark (1)) to strange sea-
quark mass (m}). The exact lattice spacing and physical
strange-quark mass (1) are outputs of our decay-constant
analysis and can be found in Table IX in Sec. V. The six lattice
spacings range from approximately 0.15 fm to 0.03 fm, and
the sea has light sea-quark masses 0.2m), 0.1m), and
approximately physical. In most ensembles, m/, is chosen
close to the physical strange-quark mass, but sometimes it is
deliberately chosen far from physical to provide useful
information about the sea-quark-mass dependence. In all
ensembles, the charm-quark mass is chosen close to its
physical value. In Table I, # = 10/ ¢? is the gauge coupling, T
and L are the lattice temporal and spatial extents, and M, is
the mass of the taste-Goldstone sea pion.

For each ensemble, the light, strange, and charm sea-
quark masses are estimated either from short tuning runs or
from tuned masses on nearby ensembles. These values are
always found to be slightly in error once higher statistics
become available, so it is necessary to adjust for this small
sea-quark-mass mistuning a posteriori, as we do in the
fitting procedure described in Sec. V.

We compute pseudoscalar correlators for several valence-
quark masses on each ensemble. In almost all cases, we use
light valence-quark masses of 0.1m}, 0.2m/, 0.3m’, 0.4m’,
0.6m/;, 0.8m/; and 1.0m’;,, where the prime distinguishes the
strange sea-quark mass from the post-production, better-
tuned mass. To save computer time, however, for the finest
ensemble with a ~0.03 fm and m) = m//5, we only use
valence-quark masses greater than or equal to the light sea-
quark mass 0.2m7. For the physical quark-mass ensembles
and the ensembles with a ~ 0.06 and 0.042 fm, we use
lighter valence-quark masses, usually going down to the
estimated physical light-quark mass. The wide range of
valence-quark masses on the ensembles with a > 0.042 fm
are used to determine the light-quark-mass dependence,
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TABLE L.

Ensembles used in this calculation. The notation and symbols are discussed in the text. In the first column the approximate

lattice spacings are mnemonic only; the precise values are tabulated in Table IX. The second column is used as a key to identify the
ensembles at a given approximate lattice spacing. A dagger (1) on am’, flags ensembles for which the simulation strange-quark mass is
deliberately chosen far from the physical value. The M, and L values are different from those listed in Table I of Ref. [23], because those
values assumed a mass-dependent scale setting scheme.

~a (fm) Key p am) am’, am, (L/a)> (T/a) L (fm) M, MeV) M,L Ny
0.15 my/5 5.80 0.013 0.065 0.838 163 48 2.45 305 3.8 1020
0.15 m/10 5.80 0.0064 0.064 0.828 243 48 3.67 214 4.0 1000
0.15 physical 5.80 0.00235 0.0647 0.831 323 48 4.89 131 3.3 1000
0.12 mg/5 6.00 0.0102 0.0509 0.635 243 64 2.93 305 4.5 1040
0.12 unphysA  6.00 0.0102 0.03054" 0.635 243 64 2.93 304 4.5 1020
0.12 small 6.00 0.00507 0.0507 0.628 243 64 2.93 218 3.2 1020
0.12 mg/10 6.00 0.00507 0.0507 0.628 323 64 3.91 217 4.3 1000
0.12 large 6.00 0.00507 0.0507 0.628 403 64 4.89 216 54 1028
0.12 unphysB  6.00 0.01275 0.01275% 0.640 243 64 2.93 337 5.0 1020
0.12 unphysC  6.00 0.00507 0.0304" 0.628 323 64 3.91 215 43 1020
0.12 unphysD  6.00 0.00507 0.022815"  0.628 323 64 391 214 4.2 1020
0.12 unphysE  6.00 0.00507 0.012675° 0.628 323 64 3.91 214 4.2 1020
0.12 unphysF  6.00 0.00507 0.00507f 0.628 323 64 3.91 213 4.2 1020
0.12 unphysG ~ 6.00  0.0088725  0.022815F 0.628 323 64 3.91 282 5.6 1020
0.12 physical 6.00 0.00184 0.0507 0.628 483 64 5.87 132 3.9 999
0.09 my/5 6.30 0.0074 0.037 0.440 323 96 2.81 316 4.5 1005
0.09 mg/10 6.30 0.00363 0.0363 0.430 483 96 4.22 221 4.7 999
0.09 physical 6.30 0.0012 0.0363 0.432 643 96 5.62 129 3.7 484
0.06 mg/5 6.72 0.0048 0.024 0.286 483 144 2.72 329 4.5 1016
0.06 my/10 6.72 0.0024 0.024 0.286 643 144 3.62 234 4.3 572
0.06 physical 6.72 0.0008 0.022 0.260 96° 192 5.44 135 3.7 842
0.042 m/5 7.00 0.00316 0.0158 0.188 643 192 2.73 315 4.3 1167
0.042 physical 7.00 0.000569 0.01555 0.1827 1443 288 6.13 134 4.2 420
0.03 m/5 7.28 0.00223 0.01115 0.1316 96° 288 3.09 309 4.8 724

while the 0.03 fm ensemble helps guide the continuum limit.
This strategy saves computer time, since light-quark propa-
gators on these lattices are expensive, the cost being
approximately proportional to 1/am,. In all cases, we
compute valence heavy-quark propagators with masses of
1.0m. and 0.9m.,, to allow interpolation or extrapolation to
the physical charm-quark mass. Finally, on six of the
ensembles we use valence-quark masses heavier than charm
to allow us to extrapolate, and on the finest lattices
interpolate, to the b-quark mass. Table II shows the lightest
valence-quark mass used on each ensemble in units of the
strange sea-quark mass, and also the heavy-quark masses
used on each ensemble.

On each configuration, we compute quark propagators
from four or six evenly-spaced source time slices. We change
the location of the first source time slice from configuration
to configuration, shifting by an amount approximately equal
to half the spacing between source time slices but incom-
mensurate with the lattice size, so that all possible source
locations are used. Table II also shows the number of source
time slices used on each ensemble.

B. RHMC and RHMD algorithms

The coarser ensembles were all generated using the rational
hybrid Monte Carlo (RHMC) algorithm [56-65], but some of
the finer ensembles were generated with a mixture of the
RHMC and the rational hybrid molecular dynamics
(RHMD) [32,33,56-64] algorithms. The two most recently
generated ensembles, one with a ~ 0.042 fm and physical
light-quark mass and another with a ~ 0.03 fm and m) =
m/,/5, were generated entirely with the RHMD algorithm.
The considerations behind these choices, and the effects of
using the RHMD algorithm, are discussed in detail in
Ref. [33]. Since the preparation of Ref. [33], three of the
ensembles have been enlarged, which enables us to update
the comparison of the RHMC and RHMD algorithms in
that work.

Table III shows the differences in the plaquettes between
the parts of the ensembles generated with RHMC and
RHMD algorithms for the ensembles where both algo-
rithms were used. The numbers of configurations used in
this comparison differ from those in Table I because
heavier-than-charm correlators were only run on parts of
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TABLE II. Valence-quark masses used in each ensemble. The first two columns identify the ensemble. The third column gives the
lightest valence-quark mass in units of the sea strange-quark mass. (The full set of light valence-quark masses is listed in the text.) The
fourth column shows the heavy valence-quark masses in units of the sea charm-quark mass. The last column shows the number of
configurations and the number of source time slices used on each.

~a (fm) Key mmin/m,,v mh/mlc Nconf X Nsrc
0.15 m,/5 0.1 {0.9.1.0} 1020 x 4
0.15 m,/10 0.1 {0.9,1.0} 1000 x 4
0.15 Physical 0.037 {0.9,1.0} 1000 x 4
0.12 m,/5 0.1 {0.9.1.0} 1040 x 4
0.12 UnphysA 0.1 {0.9,1.0} 1020 x 4
0.12 Small 0.1 {0.9,1.0} 1020 x 4
0.12 m/10 0.1 {0.9,1.0} 1000 x 4
0.12 Large 0.1 {0.9,1.0} 1028 x 4
0.12 UnphysB 0.1 {0.9,1.0} 1020 x 4
0.12 UnphysC 0.1 {0.9.1.0} 1020 x 4
0.12 UnphysD 0.1 {0.9,1.0} 1020 x 4
0.12 UnphysE 0.1 {0.9,1.0} 1020 x 4
0.12 UnphysF 0.1 {0.9,1.0} 1020 x 4
0.12 UnphysG 0.1 {0.9,1.0} 1020 x 4
0.12 Physical 0.037 {0.9,1.0} 999 x 4
0.09 mg/5 0.1 {0.9,1.0} 1005 x 4
0.09 m,/10 0.1 {0.9,1.0} 999 x 4
0.09 Physical 0.033 {0.9,1.0,1.5,2.0,2.5,3.0} 484 x 4
0.06 mg/5 0.05 {0.9,1.0} 1016 x 4
0.06 m/10 0.05 {0.9,1.0,2.0,3.0,4.0} 572 x 4
0.06 Physical 0.036 {0.9,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5} 842 x 6
0.042 mg/5 0.036 {0.9,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5} 1167 x 6
0.042 Physical 0.037 {0.9,1.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0} 420 x 6
0.03 m,/5 0.2 {0.9,1.0,1.5,2.0,2.5,3.0.3.5,4.0,4.5,5.0} 724 % 4

the first two ensembles listed, and the third ensemble was
extended slightly after this comparison was done. In
addition, the plaquette was measured after every trajectory,
giving 2-3 times larger statistics than used in our decay-
constant calculation. Motivated by the expectation that
using an approximate integration procedure amounts to
simulating with a slightly different action, we can estimate
the importance of these shifts by asking how much the bare
coupling or, equivalently, the lattice spacing would need to
be adjusted to change the average plaquette by this amount.
From looking at the plaquette at a couple of lattice

TABLE IIL

spacings, we find Aln(a)/Aplaq~ —4.2, which leads to
the corresponding values of Aa/a given in the final column
of Table III. Clearly, these differences are quite small.
In fact, they are negligible, because in the analysis reported
below we use f, to set the scale, and the fractional error on
the current value for f, from the Particle Data Group
(PDG) [66,67] is about 150 x 1072.

The new a =0.042 fm physical-mass ensemble has
the largest physical volume of the four-flavor MILC
ensembles, with a spatial size of about 6 fm, while the
new a=0.03 fm ensemble with m)/m} =1/5 has the

Results for the plaquette from the RHMC and RHMD algorithms. The first two columns give the approximate lattice

spacing and the ratio of the light- to strange sea-quark masses. The third and fourth columns give the time-step sizes used with the
RHMC and RHMD algorithms, respectively, while the fifth and sixth columns give the simulation time multiplied by the acceptance rate
for the two algorithms; the “effective time units,” which is the molecular dynamics time multiplied by the acceptance rate, indicates the
amount of data used in each measurement. The seventh column is the difference in the plaquette, A(plaq), from the two algorithms. and
the last column the fractional change in the lattice spacing, Aa/a, needed to create such a difference in the plaquette.

RHMC RHMD RHMC RHMD
~a (fm) m}/m Time step Effective time units A(plaq) Aa/a
0.09 1/27 0.0115 0.0133 1339 2962 -3.0(5) x 107> 13 x 1073
0.06 1/10 0.0141 0.0143 2703 2180 —1.2(5) x 1073 5% 1073
0.06 1/27 0.0100 0.0125 288 3432 —1.1(4) x 107> 5% 1073
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smallest lattice spacing. When the physical volume is made
larger, more low-momentum (long-distance) modes are
added to the system. Based on these considerations, we
do not expect this added physics to be very sensitive to the
molecular dynamics step size. On the other front, the lattice
spacing is made smaller by making f larger. If the ultraviolet
gauge modes are viewed as free fields, the coefficient of the
gauge fields in the molecular-dynamics Hamiltonian is
proportional to f while the coefficient of the conjugate
momenta added for the molecular-dynamics time evolution
is held fixed. Thus, the frequency of the modes in molecular
dynamics time is proportional to /2. Strictly speaking, if
we wish to keep the fractional error fixed while increasing /3,
we should reduce the step size as #~!/2. That dependence is
very weak—the square root of Ina. It turns out that this
scaling is more or less what was chosen empirically in going
from a ~ 0.09 fm to 0.042 fm. The step size was decreased
from 0.0133 to 0.0125, or by about 6%, as # was increased
from 6.3 to 7.0, corresponding to #'/? changing by 5%.

C. Correction for nonequilibrated topological charge

Because QCD simulations use approximately continuous
update algorithms, the topological charge Q evolves more
and more slowly as the lattice spacing becomes smaller. In
our finest ensembles, the evolution has slowed so much that
the distribution of Q has not been sampled properly. Time
histories of the topological charge in many of the HISQ
ensembles can be found in Ref. [68]. In Fig. 1, we show one
case, a ~0.06 fm and physical m/, where the topological
charge is well equilibrated, and a second case, a~
0.042 fm and m) = m( /5, where its distribution is clearly
not well sampled.

As first discussed in Ref. [69], one can study the
Q-dependence of observables in chiral perturbation theory
(yPT). Bernard and Toussaint [68] recently extended this
approach to heavy-light decay constants in the context of

0.004[
~ r a=0.06 fm m,=phys
3 :
> o.ooo WM
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—-0.004f———— ——— ‘

0.001
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FIG. 1. Simulation time history of the topological charge in two
cases. The upper panel is for the physical quark mass run at
a ~ 0.06 fm, and shows a case where the distribution of Q is well
sampled. The three sections of the trace correspond to three
separate runs with the same parameters. The lower panel, for the
mj = m/5 run at a~0.042 fm, shows a case where the time
history is not well sampled, and where we will apply the
correction factors discussed in Ref. [68].

heavy-meson yPT. We use their results to adjust the raw
decay-constant results to account at lowest order for the
incomplete sampling of Q in the small-a ensembles. The
amount of the adjustment is smaller than our statistical errors,
but not negligible in comparison to other systematic effects.
We summarize here the key results that allow us to make
this adjustment. Let @y = fy /My _be the heavy-light
decay constant, in the normalization suitable for heavy
quarks. Let B denote either the meson mass M, the decay
constant f, or the combination ®. In a finite volume V at
fixed Q, the masses and decay constants obey [69,70].

1
B =B
|Q'V +2)(TV

p(1-2) vovr). 2

xrV

where on the right-hand side B is the infinite-volume value,
properly averaged over Q, B” is its second derivative with
respect to the vacuum angle 0, evaluated at @ = 0, and y is
the topological susceptibility

(Q%)
XT = T (2.2)
in a fully-sampled, large-volume ensemble. For three sea
quarks with masses m, = my; = m; and m,, light-meson
yPT for the valence-meson mass and decay constant
gives [68,70]

2.2
v myms 1
My = =My 2(m; +2my)* mem,’ (23)
s x!ty
= _fxy mlzm? (m B my)2 g (2-4)

4(m; +2my)*  mim?

where subscripts x and y denote flavor, and the meson mass
and decay constant are at @ = 0. A similar calculation in
heavy-meson yPT gives [68]

2 2
1
A %_ (2.5)
x *4(m,+2m) m?2
mzm2 1 m;m
M/ = -2By}, —*——-2B /1’ S 2.6
. o7 (m; +2my)>m 0 +2m,’ (2:6)

where m, is the mass of the light valence quark, and B, 4,,
and 1} are low energy constants, which are estimated in a
companion paper on heavy-light meson masses [36]. These
are the appropriate results even with 2 4+ 1 4 1 flavors of
sea quark, because the charmed sea quark decouples from
the chiral theory. Although the dependence of masses and
decay constants are usually small compared to our stat-
istical errors, we have been able to resolve them in some
of our well-equilibrated ensembles and confirm, within
limited statistics, that our data agree with these formulas
[68,71].
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Knowing the dependence of masses and decay constants
on the average 02, one can correct the simulation results to
account for the difference of the simulation average
(O%)ample» and the correct (Q*). The lowest order yPT
result for the topological susceptibility is [72]

22 RS
RV VERRVE :

ss,1

(2.7)

where the effect of staggered taste-violations has been
included at leading order by using the taste-singlet meson
masses [73,74], indicated by “I.” The correction to the
decay constants is then given by

_ (1

2}( TV
with y; from Eq. (2.7).

MILC has calculated <Q2>Smp1e on all ensembles listed in
Table I. For more details, see Ref. [68]. For three of the
finest ensembles, namely those at a ~ 0.042 and 0.03 fm,
the simulation time histories of QO show that it is not well
equilibrated. In the analysis below, we use Eq. (2.8) with
(O?)sample calculated by MILC to adjust the decay-constant
data. The adjusted data are used in our central fit, and we
take 100% of the difference between fit results with the
adjusted data and with the unadjusted data as the systematic
error in our results from incomplete equilibration of the
topological charge.

Seorrected = sample

<Q2>sam le
—7)”‘/1’ > (2.8)

III. TWO-POINT CORRELATOR FITS

Our procedures for calculating pseudoscalar meson
correlators and for finding masses and amplitudes from
these correlators are the same as those used in our earlier
computation of charm-meson decay constants in Ref. [23].
Our analysis includes new and extended ensembles, how-
ever, so the fit ranges and the number of states employed
have been updated.

We compute quark propagators with both “Coulomb-
wall” and “random-wall” sources, using four source time
slices per gauge-field configuration in most cases, but six
source time slices on the 0.042 fm m/5 ensemble and the
0.06 and 0.042 fm physical quark mass ensembles. The
pseudoscalar decay constant is obtained from the amplitude
of a correlator of a single-point pion operator, |[M~!(x, y)|?,
where M is the lattice fermion matrix /) + m. The random-
wall source consists of a randomly oriented unit vector in
color space at each spatial lattice point at the source time.
When averaged over sources, contributions to the correlator
where the quark and antiquark are on different spatial
points average to zero, so the average correlator is just the
point-to-point correlator multiplied by the spatial size of the
lattice, and the improved statistics from averaging over all
the spatial source points more than makes up for the noise

introduced from contributions with the quark and antiquark
at different spatial points. We use three random source
vectors at each source time slice.

For the Coulomb-wall source we fix to the lattice
Coulomb gauge, and then use a source in a fixed direction
in color space at each spatial lattice point. We use three
such vectors, chosen to lie along the three coordinate axes
in color space. The Coulomb-wall source is effectively
smeared over the whole spatial slice, which we expect to
suppress the overlap with excited hadrons, allowing us to
use smaller distances in our fits. The Coulomb-wall
correlators also have smaller statistical errors. We fit the
correlators from the Coulomb-wall and random-wall
sources simultaneously with different amplitudes for each
source but common masses. The ground-state amplitude
from the random-wall source gives the decay constant, but
the Coulomb-wall source helps in accurately fixing the
ground state mass, which in turn improves the determi-
nation of the random-wall amplitude. Figure 2 shows an
example of heavy-light pseudoscalar correlators from the
a =~ 0.042 fm physical quark-mass ensemble for the light-
charm and strange-charm masses, showing the smaller
excited state contamination in the Coulomb-wall correlator.

In all cases the sink operator is point-like, with quark and
antiquark propagators contracted at each lattice sites. We
sum the correlators over all spatial slices to project onto
zero three-momentum.

The source time slices are equally spaced throughout the
lattice. The location of the first source time slice varies from
configuration to configuration by adding an increment
close to one half the source separation, but such that all
source slices are eventually used. For example, on the a ~
0.042 fm physical quark-mass ensemble, where we use six
source time slices with a separation ¢/a = 48, the location
of the first source time slice on the Nth configuration is
19N mod 48, or a shift of 19 slices between successive
configurations. Meson masses and decay constants are
obtained from fitting to these correlators. For the light-light
mesons, we include contributions from the ground state and
one opposite parity state in the fit function, taking a large
enough minimum distance to suppress excited states. This
procedure works well for the light-light pseudoscalars, for
which broken chiral symmetry makes the ground state mass
much lighter than all the excited state masses.

Because the heavy-light correlators are noisier than the
light-light correlators, and the gap in mass between the
ground state and excited states is smaller, we include
smaller distances and more states in the two-point corre-
lator fits. The fits that yield the central values employed in
the subsequent EFT analysis include three states with
negative parity (pseudoscalars) and two states with the
opposite parity, corresponding to the oscillations in ¢ seen
in Fig. 2. We refer to these as “3 + 2” state fits. For these
fits, the minimum distances and fit ranges used vary with
the heavy-quark mass. However, they are kept constant in
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FIG. 2. Pseudoscalar correlators for the D (top left), D, (top right), B (bottom left), and B, (bottom right) mesons on the a = 0.042 fm
physical-quark-mass ensemble. Here the valence charm-quark mass is equal to the sea charm-quark mass, and the bottom-quark mass is
equal to 4.5 times the charm-quark mass. The red octagons are the random-wall source correlator and the blue squares the Coulomb-wall
correlator. Both correlators have been rescaled by eMo” where M, is the ground-state mass; the random-wall correlators have also been
multiplied by an arbitrary factor to make the vertical scale convenient. The vertical lines show the fit ranges used in the 3 + 2 state fits in
our analysis. The D- and D -meson fits have p-values 0.66 and 0.71 respectively, while the B- and B;-meson fits have p-values 0.29 and
0.40 respectively. (The oscillatory behavior in ¢ comes from the positive parity states in the correlator.)

physical units across all ensembles with different sea-quark
masses and lattice spacings, subject to being truncated to an
integer in lattice units. In these fits, the mass gaps are
constrained with Gaussian priors [75], but the amplitudes
are left unconstrained. Table IV shows the constraints on
the mass gaps used in the heavy-light correlator fits.
Although we use loose priors for the lower splittings,
tighter priors are needed for the higher splittings to ensure
stable fits.

Figure 3 shows the masses of the five fitted states as a
function of the minimum distance included in the fit on the
a =~ 0.042 fm (left) and 0.06 fm (right) physical quark-mass

TABLE IV. Bayesian prior constraints on the mass splittings
used in our heavy-light correlator fits. Here M|, is the ground-
state mass, M, and M, are the first and second same-parity
excited-state masses, and M6 and M are the ground and first
excited-state opposite-parity masses.

My—M, M, -M, M -M, M),-M,
N states (MCV) (MeV) MeV) (MeV)
3+2 400 +£200 700 £ 200 700 £ 70 700 £ 60
2+1 400 +£200 700 £ 200
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(top) Masses for all 3 + 2 states in light-charm fits on the a = 0.042 fm (left) and 0.06 fm (right) physical quark-mass

ensembles versus the minimum distance used for the random-wall correlator. (bottom) Same as top panels but for light-heavy fits where
the heavy-quark mass is three times the charm quark mass. The vertical and horizontal ranges in all plots are matched in physical units.
The vertical lines show the minimum distance in the random wall source correlators used in our analysis. The inserts show the ground-
state mass with an expanded vertical scale. The size of the symbol is proportional to the p-value of the fit, with a p-value of 0.5

corresponding to the size of the label text.

ensembles. In this plot, the size of the symbols is propor-
tional to the quality of the fit p. We compute the p values of
our fits using the augmented y? that includes both data and
prior contributions, and counting the degrees of freedom as
the number of data points minus the number of uncon-
strained fit parameters. Thus it provides a measure of the
compatibility of the fit result with both the data and the
prior constraints. At small t#,;, the p-value is poor, and
more states would be required to get a good fit. At
intermediate distances, the masses are mostly determined
by the data, while at the largest distances the fit simply
returns the prior central values and errors for excited-state
and opposite-parity masses. We also perform heavy-light

fits using 2 + 1 states with larger minimum distances as a
check, and use the difference between results of the 3 + 2
state fits and 2 4- 1 state fits to estimate systematic errors
coming from excited state contamination. Based on studies
like Fig. 3 on every ensemble, we choose the minimum
distances f,,;,/a so that f;, is as close as possible to the
minimum distances given in Table V. As seen in this table,
we use a slightly smaller t,;,/a for the Coulomb wall
source since these correlators have smaller excited state
contamination than the random wall source correlators.
We expect the p values to be approximately uniformly
distributed, with possible systematic deviations from uni-
formity coming from artificially loose or tight priors on the
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TABLE V. Minimum distances used in our two-point correlator
fits. Here “light” quarks include masses up to m, and “heavy”
quarks masses beginning at m., and the two numbers in the
second column are the number of pseudoscalar and opposite-
parity states included in the fit. The “+” indicates that this
minimum distance is actually taken to depend weakly on the
heavy quark mass, with the quoted distance the one used for the
D, correlator.

Meson N gtates Random wall Coulomb wall
Light-light 1+1 2.3 fm 2.1 fm
Heavy-light 3+2 0.77 fm 0.68 fm
Heavy-light 241 1.13* fm 1.01 fm
Heavy-heavy 342 0.80 fm 0.68 fm
Heavy-heavy 241 1.40 fm 1.28 fm

mass gaps, and, more importantly, neglecting effects of
autocorrelations on the covariance matrix of the correlator
at different distances. Figure 4 shows the distribution of p
values for our full set of correlator fits using the fit ranges
and number of states in Table V. It is approximately
uniform from O to 1, indicating that we have not introduced
any systematic bias in our fits from the choice of fit ranges
or number of states. Because the p-values from correlators
with different valence-quark masses in the same ensemble
are strongly correlated, the statistical fluctuations in

this histogram are larger than the expectation 1/v/N for
independent data.

In order to subsequently fit the decay constants and
masses obtained from these two-point correlator fits to an
EFT function of the quark masses and lattice spacing, we
need an estimate of the covariance matrix between these
data. (Here the heavy-light decay constant is to be under-
stood as @.) To distinguish this covariance matrix from the

100 — —

count
|
[

O ol ol 0 ol 0 ol ol
0.0 0.2 0.4 0.6 0.8 1.0
p—value

FIG. 4. Distribution of p values for our preferred two-point
correlator fits in Table V.

matrix of covariances of the correlators at different dis-
tances used in the two-point fits, in this section we refer to
matrices of covariances of masses M and decay constants ®
as “M® covariance matrices.” In the M® covariance
matrix, all of the amplitudes and decay constants for
different sets of valence quark masses are correlated, while
those from different ensembles are uncorrelated. Thus, the
M® covariance matrix is a large block-diagonal matrix,
with each block corresponding to a single ensemble.

To obtain each block of the M® covariance
matrix, we use a single-elimination jackknife procedure,
omitting one configuration at a time from the two-point fits.
This approach does not account for autocorrelations.
Unfortunately, however, it is not practical to eliminate large
enough blocks in the jackknife to suppress the autocorre-
lations, since we need a number of jackknife blocks that is
large compared to the dimension of the block of the M®
covariance matrix for that ensemble. We therefore use an
approximate procedure. We first compute the block of the
M® covariance matrix from the single-elimination jack-
knife, and then compute the dimensionless correlation
matrix by rescaling rows and columns so that the diagonal
elements are one. Next we compute the diagonal elements of
the M® covariance matrix (that is, the variances of the
masses and decay constants) using a block size large enough
to reasonably well suppress the effects of autocorrelation,
and rescale the rows and columns of the M® covariance
matrix to set its diagonal elements equal to the variances
obtained from blocking. On all ensembles with a 2 0.09 fm,
we blocked the configurations by four; we used larger block
sizes of up to 24 configurations on ensembles with finer
lattice spacings to account for the longer autocorrelation
times. This approach uses the single-elimination jackknife
to determine the (dimensionless) correlations of all the
masses and decay constants, and the blocked jackknife,
which accounts for autocorrelations between gauge-field
configurations, to determine the variances of each mass or
decay constant.

The M® covariance matrix used in the EFT fit affects
the p-value of the fit and the central values obtained for the
decay constants at the physical quark masses and in the
continuum limit. The statistical errors on the masses and
decay constants in the M® covariance matrix range from
0.005% to 0.12% and 0.04% to 1.4%, respectively. The
statistical errors quoted on the physical, continuum-limit
decay constants are, however, obtained by an overall jack-
knife procedure, where we repeat the entire fitting chain 20
times, each time omitting 1/20 of the configurations from
each ensemble.

IV. LATTICE SPACING AND
QUARK-MASS TUNING

Tuning the masses of the light and charm quarks and the
determination of the lattice spacings follow the procedure
described in detail in Ref. [23]. In this procedure, we use
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the meson masses and decay constants in the physical
quark mass ensembles (with a small correction for mis-
tuned light quark mass), extrapolated to the continuum, to
find the u, d, s, and ¢ quark masses used in subsequent
steps, and the lattice spacings of each ensemble. For setting
the overall scale we use the pion decay constant f,. We also
compute an intermediate scale f 4, the decay constant of a
fictitious pseudoscalar meson with degenerate valence
quark with mass m,, = 0.4m,. To obtain f 4 and the
associated meson mass M 4, we draw quadratic functions
in the valence-quark mass through the decay-constant and
meson-mass data with degenerate valence quarks at 0.3, 0.4
and 0.6 times m/, and evaluate these quadratic functions at
0.4 times the tuned strange quark mass m,. The quantity
f pas 1s convenient since it has small statistical errors and
can be computed without light valence quark mass corre-
lators. This feature is essential for the 0.03 fm ensemble
where the lightest valence quark mass is m//5, so an
extrapolation to f, on this ensemble would have large
errors.

An initial value for the charm quark mass comes from
matching the D, mass. With this m, and the light quark
masses, we evaluate the masses of the D° and D* mesons.
The difference between them, 2.6 MeV, can be considered
to be the part of the D*-D° mass difference coming from
the difference in the up and down quark masses. In Sec. VI,
this quantity is denoted C(m,; — m,) and used to estimate
the electromagnetic contribution to the mass splitting.

As discussed in Sec. II, the main new aspects of this
work are the addition of three new ensembles and the
increased statistics on some of the others. We also make
some minor updates of the input parameters. The value of
[z used to set the scale, has been updated to 130.50 £
0.13 MeV following the PDG [66,67], and the experimen-
tal neutral kaon and charmed meson masses have also seen
slight changes.

In contrast with Ref. [23], we now use the strong
coupling ay at scale ¢ = 2.0/a obtained from Ref. [76]
in our central fit, and use ar, inferred from taste splittings,
in an alternative fit to estimate systematic errors.

We also update the quantities (Mio)” and ¢, which
describe electromagnetic effects, to reflect the most recent
results from the MILC Collaboration [77-79]. The quantity
(M%(O)Y is the electromagnetic contribution to the squared
mass of the neutral kaon. The quantity ¢’ captures higher-
order corrections to Dashen’s theorem:

(Migs = M) = (M3, = M)
(Mii - Mio)expt .

—

(4.1)

We use ¢’ rather than the closely related quantity e defined
in Ref. [80] as

TABLE VI. Experimental inputs to our tuning procedure (left
side) [66], and the meson masses after adjusting for electromag-
netic effects (right side).

Experimental inputs

frr =130.50(1) 1 (3) V,ua(13) gy MeV
M =134.9770MeV

M, =139.5706 MeV

Mo =497.611(13) MeV

My =493.677(16)MeV

Myo—My- =3.934(20) MeV

M, =1968.28(10) MeV

M, =5366.89(19) MeV

QCD masses

(M) =134.977MeV

(M )P =497.567MeV
(M +)P =491.405MeV

(M, )P =1967.02MeV
(M, )P =5367.11 MeV

(M- = M)’ — (M. = ML)
(1‘42i _ MZO)expt

€ (4.2)

Because the experimental pion splitting is largely due to
electromagnetism, ¢ and ¢ are close in size. The difference
is estimated in Refs. [80,81] to be

e—¢ =e¢, =0.04(2), (4.3)
which is used to find €.
In this paper, we use [79]
8
¢ =074 (0, (4.4)
—11 syst
(Méo)y = 44<3)stat(25)syst MeV?>. (4'5)

Our adjusted kaon masses, or “QCD masses,” are then
found from

(M%(+)QCD = M?ﬁ - (I+ 61)(M,2,+ - M,Z,O) - (Mioyv
(4.6)

(M%) = M2, — (M3,)". (4.7)
These quantities are used to match pure QCD to the more
fundamental QCD + QED. Consequently, any pure QCD
calculation will have uncertainties coming from the par-
ticular scheme for separating electromagnetic and isospin
effects. Our scheme is the one introduced for u and d
quarks in Ref. [82] and extended naturally to the s quark
using the fact that mass renormalization for staggered
quarks is multiplicative [79]. As an estimate of the change
that would result from the use of a different, but still
reasonable, scheme, MILC compares to a scheme where the
EM mass renormalization is calculated perturbatively (at
one loop). While the resulting scheme dependence of ¢’ is
small, +0.038 [79], that of (Mio)y is ~420 MeV?, much
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larger than the errors in this quantity in a fixed scheme,
although still small compared to M2,."

Table VI summarizes the experimental masses that we
use, and also the “QCD masses” where we have made the
adjustments for electromagnetic effects described above,
and the adjustments for the heavy meson masses from
Eq. (6.1) in Sec. VL

We extrapolate the scale-setting quantities f 4, and M 4,
and the quark-mass ratios m, /my, m;/m;, and m./mg on
the physical quark-mass ensembles to the continuum using
a quadratic function in a,a?. The fit of m,/m, including all
lattice spacings is poor, with p = 0.01, because discretiza-
tion errors from the charm quark are large at our coarsest
lattice spacing. The m./my fit improves substantially to
p = 0.8 when the a~0.15 fm data are omitted. In an
analysis of the heavy-light-meson masses in Ref. [36], we
encounter similar problems when including data from the
a =~ 0.15 fm ensembles. We therefore omit the a ~ 0.15 fm
ensembles from our central continuum extrapolations here,
in Ref. [36], and in the EFT analysis of the heavy-light
decay constants in Sec. V. For estimating systematic errors
from our choice of continuum extrapolation of scale-setting
quantities, we also consider a fit quadratic in a,a” including
all five physical quark-mass ensembles (as was done in
Ref. [23]), a fit linear in a,a’* omitting the 0.15 fm
ensemble, a fit linear in a,a’ omitting both the 0.15 fm
and 0.12 fm ensembles, and a fit using a, inferred from
taste violations.

Figure 5 shows these extrapolations for the intermediate
scale f 4. In this fit, as in the other quantities discussed in
this section, the central fit, shown in red, is at one end of the
various extrapolations to a = 0. We therefore assign a one-
sided systematic error from continuum extrapolations equal
to the difference between this continuum extrapolation and
the furthest of our alternative fits.

We assign five distinct systematic uncertainties to scale-
setting quantities and quark-mass ratios stemming from
electromagnetic effects, and tabulate them in Table VII.
The first of these, labeled “K*-K? splitting,” is obtained by
shifting ¢’ by the lower error bar, —0.11, in Eq. (4.4), and
the error in the other direction is obtained by scaling by
—8/11. Varying the result for (Mio)y in Eq. (4.5) by its
total error gives the second error, labeled “K0 mass.” The
uncertainty labeled “K-mass scheme” is an estimate of the
variation that would be produced by matching QCD +
QED to pure QCD in an alternative reasonable scheme.
This is not taken to be a systematic error in our results,
since we work in a fixed, well-defined, scheme. However,
when using our results in a setting that does not take into
account the subtleties of the EM scheme, one may wish to
incorporate the estimate of scheme-dependence as an

'A preliminary value for (M§0)7 was reported in Ref. [83].
That result did not yet take into account EM quark-mass
renormalization and is thus not reliable.

158
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FIG. 5. Continuum extrapolations for f,4, on the physical
quark mass ensembles. Our central fit, shown in red, is quadratic
in a,a® excluding the 0.15 fm data. Alternative fits used for
estimating systematic error are shown in blue. These include a
quadratic fit including all the data, a linear fit including data up to
0.12 fm, and a linear fit including data up to 0.09 fm. The large
error bar on the central fit line shows the statistical error on this fit
at 0.15 fm, the point that is not included in this fit.

additional uncertainty. The two remaining electromagnetic
uncertainties, which are discussed in more detail in Sec. VI,
arise from electromagnetic effects on the relevant heavy-
light meson masses. In fact, only the EM effect on the mass
of the D, used to fix the charm quark mass, is needed here.
From the estimates in Sec. VI, this effect is about 1.3 MeV,
which is subtracted from the experimental D, mass before
tuning the charm-quark mass, and 100% of the resulting
shift is included in our systematic error estimates in the
column labeled “H , mass.” Scheme dependence arises again
in the EM contribution to the D mass, and we estimate it at
4.2 MeV in Sec. VI. The resulting uncertainty is listed in the
column labeled “H  -mass scheme.” The three uncertainties
that do not arise from the choice of scheme, namely K*-K°
splitting, K° mass, and H, mass, are summed in quadrature
to give the error labeled “Electromagnetic corrections” in the
full error budget, Table VIII.

Another systematic error comes from possible incom-
plete adjustments for the effects of incorrect sampling of the
distribution of the topological charge. Using the corrections
found in Ref. [68] and described in Sec. I C, we adjust the
meson masses and decay constants on the 0.042 and
0.03 fm ensembles to compensate for the incorrect average
of the squared topological charge. We conservatively take
100% of the effects of this adjustment as a systematic error
coming from poor sampling of the topological charge
distribution.
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TABLE VIIL

Electromagnetic errors on, and estimates of scheme dependence of scale-setting parameters, quark mass ratios, and, for

convenience, the phenomenologically interesting ratio fg+/f.+, and the ratio of the kaon to pion decay constants in the isospin

symmetric limit, fg/f.

Error (%) fp4s Mp4s fp4s/Mp4s mu/md ms/ml mc/ms fl(*/fn’r fK/fn
KeOping OmE MR gEoamomm o omm gm g
K mass 0.0014 0.006 0.003 0.000 0.011 0.012 0.001 0.007
K-mass scheme 0.027 0.093 0.065 0.691 0.188 0.205 0.025 0.025
H,-mass scheme e e e e . 0.365 . .
TABLE VIII. Error budgets in per cent for scale-setting parameters, quark mass ratios, fx+/f,+, and fx/f .

Error (%) fp4s Mp4s fp4s/Mp4s mu/md ms/ml mc/ms fK'/fﬂ+ fK/fn
Statistics 0.072 0.033 0.080 1.20 0.17 0.12 0.13 0.10
Continuum extrapolation ‘?j‘??%% +g§?2 _03 ;;(5)8 +%691; +09 §%41 _oa %72 +_03 i;1)140 +_(§)r 51)024
Electromagnetic corrections 0004 Zoo12 20011 ias —0.024 S0 —0.007 —0.003
Topological-charge distribution 0.001 0.000 0.001 0.040 0.061 0.001 0.012 0.012
Finite-volume corrections 0.011 0.001 0.009 0.081 0.059 0.002 0.021 0.016
SfzpDG 0.075 0.001 0.075 0.010 0.004 0.051 0.023 0.024
AM g 0.000 0.000 0.000 0.283 0.000 0.000 0.001 0.000

Corrections for finite spatial volume are estimated by the
same procedure as in Ref. [23], where our central fit includes
adjustments calculated in NLO staggered chiral perturbation
theory, and an associated systematic error is taken to be the
difference between this adjustment and using nonstaggered
finite-volume chiral perturbation theory, at NNLO for M,
and f,, and NLO for Mg and fy. These estimates are
considerably smaller than in Ref. [23] because we have now
dropped from the central fit the coarsest ensembles, with
a ~ 0.15 fm, which dominate the earlier estimate. The taste-
splittings at the next coarsest lattice spacing, a = 0.12 fm,
are about a factor of 2 smaller than at a ~ 0.15 fm [33], so
the difference between staggered and nonstaggered chiral
perturbation theory is correspondingly reduced when the
a =~ 0.15 fm data are dropped.

Finally, we propagate the uncertainty in the PDG value
of f,. The main effect is an overall scale error in
dimensionful quantities. Because the decay constants
depend on quark masses, an indirect effect also arises,
leading to an uncertainty on dimensionless ratios, and a
reduction in the uncertainty on dimensionful quantities,
compared to the direct scale error. For the ratio m,,/m, the
experimental uncertainty in Mgo — Mg+ is also included.

Table VIII shows the error budgets for the outputs of the
scale-setting and quark-mass-ratio analysis, which are used
in the subsequent fitting of the heavy-light results. The
central values for these quantities are listed in Sec. VII B.

V. EFFECTIVE-FIELD-THEORY ANALYSIS

In this section, we discuss how we combine the lattice
data for the meson masses and decay constants described
in the previous sections to obtain continuum-limit,

physical-quark-mass results. There are two crucial features
of our data set. First, as discussed in Sec. I, the range of
parameters is broader than that commonly encountered in
lattice-QCD calculations. Figure 6 shows the lattice spacings
and pion masses of the ensembles used in our analysis.
The lattice spacing spans the range 0.03fm Sa<s
0.15fm, while the light sea-quark mass lies between

300

M, (MeV)

200

" @ e

RN R2 2
SRF & S N &
Q0 N N N &
NSEN Q & N

~a? (fm?)

FIG. 6. Distribution of four-flavor QCD gauge-field ensembles
used in this work. Ensembles that are new with respect our
previous analysis [23] are indicated with black outlines. Ensem-
bles with unphysical strange-quark masses are shown as gold
disks with orange outlines. The area of each disk is proportional
to the statistical sample size N y,r X Ng.. The physical, con-
tinuum limit is located at (¢ = 0, M, ~ 135 MeV).
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FIG. 7. Valence heavy-quark masses vs lattice-spacings of

ensembles used in this calculation, in units of the simulation charm
sea-quark mass. Symbol shapes indicate the value of the light sea-
quark masses, with diamonds, squares, and circles corresponding to
m) = mj/5, m;/10, and physical, respectively. The symbol area is
proportional to the statistical sample size. The black (gray) hyper-
bola shows am,;, = 0.9 (am,, = n/2). The horizontal dashed lines
indicate the physical bottom and charm masses.

2(my, +my) S mj<0.2m,. With the HISQ action, it is
possible to simulate physical charm and bottom quarks with
controlled discretization errors. Figure 7 shows the range of
valence heavy-quark masses used in our analysis. On the
coarsest a = (.15 and 0.12 fm ensembles, we have only two
values m;, = 0.9m.. and m.; on our finest a ~ 0.042 and
0.03 fm ensembles, however, we have several heavy-quark
masses between 0.9m!, < m,, < 5m.,, reaching just above the
physical b-quark mass. Second, as discussed in Sec. III, we
have large statistical sample sizes, with about 4,000 samples
on most ensembles and large lattice volumes; the resulting
errors on the decay constants range from 0.04% to 1.4%.
Because of the breadth and precision of the data set, it is
a challenge to find a theoretically well-motivated functional
form that is sophisticated enough to describe the whole data
set. We therefore rely on several EFTs to parameterize the
dependence of our data on each of the independent
variables just described: Symanzik effective field theory
for lattice spacing dependence [38], chiral perturbation
theory for light- and strange-quark mass dependence, and
heavy-quark effective theory for the heavy-quark mass
dependence. These EFTs are linked together within
heavy-meson rooted all-staggered chiral perturbation theory
(HMrASyPT) [84]. Here we use the one-loop HMrASyPT
expression to describe the nonanalytic behavior of the
interaction between pion (and other pseudo-Goldstone
bosons) and the heavy-light meson, and supplement it with
higher-order analytic functions in the light- and heavy-quark
masses and lattice spacing to enable a good correlated fit.
Even with these additional terms, however, the extrapo-
lation @ — 0 and the interpolation m,; — m, oblige us to

restrict the range of am;,. In practice, we are able to obtain a
good correlated fit of our data with heavy-quark masses
amy <0.9. Note, however, that our final fit function
describes even the data with am;, > 0.9 quite well.

The rest of this section is organized as follows. In
Sec. VA, we construct an EFT-based fit function with
enough parameters (60) to describe the data as a function of
the light- and heavy-quark masses and lattice spacing. For
convenience, the complete final expression is written out in
Sec. VB. Next, Sec. VC explains how we convert our
decay-constant data from lattice units to “p4s units” and,
eventually, to MeV. Finally, we describe how the fit works
in practice and present our final fit used to obtain the decay-
constant central values and errors in Sec. V D.

A. Effective-field-theory fit function for
heavy-light decay constants

Recall that H, denotes a generic heavy-light pseudoscalar
meson composed of a light valence quark x and a heavy
valence antiquark 4, with masses m, and m,, respectively.
The decay constant and mass of H, are fy and My ,
respectively. In heavy-quark physics, the conventional decéy
constant is defined and normalized as @y = fy \/M—Hr .

We start with massless light quarks, with ®, and M,
denoting the decay constant and the meson mass in this
limit. We parametrize @, as

3 A A 2
<I>0:C<1>0[1+k1( HQET)+k2( HQET) +} (5.1)

where @, is the matrix element of the HQET current in the
infinite-mass limit, Agopr is a physical scale for HQET
effects that we set to 800 MeV in this analysis, and the
Wilson coefficient C arises from matching the QCD current
and the HQET current [85,86] at scale m,:

: 8
C=las(my)]ro/ o {1 +%’:’1) (—§+2y—ﬁ‘o—%) +O(a%)} :

(5.2)

with yy = —4, y, = —254/9 — 567 /27 + 20n./9, By =
(11=2n;/3) and p; = (102 —28n/3) with n, =4 in
our simulations. The Wilson coefficient is usually defined
to depend on the renormalization scale p of the HQET
current, with the renormalization scale (and scheme)
dependence canceling between the Wilson coefficient
and the HQET matrix element. We have moved this scale
dependence2 out of C into the matrix element ®,, thereby
making ®, a renormalization-group invariant quantity.
Consequently, C depends only on the matching scale m;,.

The u dependence in the usual Wilson coefficient comes from
the exponential of the integral of the anomalous dimension of the
HQET current, and therefore may be factored out.
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As mentioned in Sec. II, we use m), m}, and m to

denote the simulation masses of the light (up-down),
strange and charm quarks, respectively; without the primes
m; =1 (m, + m,), my, and m, denote the correctly tuned
masses of the corresponding quarks.

We now discuss the dependence of @y _on the deviation
of m/. from m,. The charm quark can be integrated out for
processes that occur at energies well below its mass. By
decoupling [87], the effect of a heavy (enough) sea quark
on low-energy quantities occurs only through the change it
produces in the effective value of Agep in the low-energy

(three-flavor) theory [88]. We use AgéD(m’c) to denote the

effective value of Agcp when the charm quark with mass

ml. is integrated out. At leading order in weak-coupling

perturbation theory, one obtains [[86] Eq. (1.114)]

Noting that ®, has mass-dimension 3/2, we take into
account the effects of the mistuned mass m.. by assuming

m!, ~ m, and replacing
Sml\ (ml\3/27
()7 o

where 6m|. = m,. —m,, and k| is a new fit parameter to
describe higher-order effects.

Within the framework of HMrASyPT [84], Eq. (5.1) can
be extended to include the light-quark mass dependence
and taste-breaking discretization errors of a generic H,
meson. This provides a suitable fit function to perform a
combined EFT fit to lattice data at multiple lattice spacings
and various valence- and sea-quark masses. The fit function
that we use in this analysis has the following schematic

- o 3
D DOy 1+—=K
0 — o( +27k1

Ageo(m) () 53
3 fr— —_— . .
AE)%D (mc ) Me form
|
3 A
®,; = Cd, [1 + kg QBT k2<
x MH

s

(4

A 2 A 3
HQET | © ky HQET
My, My,

Sml\ (ml\3/27
(1 +—= k’ ) (—L> X (1 + 6@ o + 5¢N”L0.analytic)7

(5.5)

where M is the mass of a pseudoscalar meson with physical sea-quark masses, physical valence strange-quark mass and
heavy-quark mass m;,. In the last parentheses, 6@y o contains the next-to-leading order (NLO) staggered chiral nonanalytic
and analytic terms, and 6®@yuy o gnaryic cONtains higher order analytic terms in the valence and sea-quark masses. For an

isospin-symmetric sea with m, = m,; = m;, we have [84]

0Oy =
jeM§2.x)

111 s L] d p.
_16ﬂ2f22{168252f(m8"5)+3 2 g R

+ (MV > ,jz (R AT: i?)e (md)] + [V A])}

‘E/\A/l('h) Xy
1 392 ) 1 9 k2 ,25). () \
16 1272 Z‘] me— A +5Sx) § Z ) 2 [R] (MI SHp )J(m]’A )]
T f jEM;Z’X) mX,
+ (225, RIS 1) (my. A7) + [vﬁA])} b L% 4 x) 4 Lo, 4~ Loxs, (5.6)
My sy s\&Xy s Ko T 5 Laks, .
EMS)(

where the indices S and E run over sea-quark flavors and
meson tastes, respectively; A* is the lowest-order hyperfine
splitting; 85, is the flavor splitting between a heavy-light
meson with light quark of flavor S and one of flavor x; &, and
&, are taste-breaking hairpin parameters; and g,, is the H-H*-n

coupling. Definitions of the residue functions RE."’k]

masses in the residues, and the chiral functions # and J at

, the sets of

|
infinite and finite volumes are given in Ref. [84] and
references therein. At tree-level in HMrASyPT, the squared
pion mass is linear in the sum of quark masses, M2~
By(m, + m,) + a*Az, where By is a low-energy constant
(LEC) and the splitting a>Ap = 0 for the taste-pseudoscalar
pion. We exploit this relation to define dimensionless quark
masses and a measure of the taste-symmetry breaking as
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2M7, m, .
T 16m% 2 m (57)
z "vpas

X

2 _
16222 a*A, (5.8)

XA =

where ¢ denotes the valence or sea light quark® and a?A is the
mean-squared pion taste splitting. The x,s and x5 are natural
variables of HMrASyPT; the LECs L, L., and L, are
therefore expected to be of order 1. The taste splittings have
been determined to ~1-10% precision [33] and are used as
input to Eq. (5.6).

Because we have very precise data and approximately 500
data points, NLO HMrASyPT is not adequate to describe
fully the quark-mass dependence, in particular for masses
near m,. We therefore include all mass-dependent analytic
terms at next-to-next-to-leading order (NNLO) and next-to-
next-to-next-to-leading order (NNNLO) by defining

SPN10 analytic = §1X% + 42 (2X; + %)X, + g3 (2x;, + x,)*
+q4 (207 +3)
+45x3 + q6(2x1+x,)23 + q7(2x, 4 x,)2x,
+q5(2x7 +x7)x,
+ 4o (22,4 x,) 4 q10(2x; 4 x,) (2x7 +x3)
+411(2%] +x7) + q1ax3. (5.9)

The terms that depend upon the light valence-quark mass are
needed to describe our wide range of correlated data with
x; < x, < x,. The terms without x, are expected to be less
important for obtaining a good fit because most of the
ensembles have similar strange sea-quark masses, and
because the ensembles are statistically independent, but
we include them to make it a systematic approximation at the
level of analytic terms. We also include a quartic term g,x%,
again to describe our wide range of valence-quark masses.
The staggered chiral form in Eq. (5.6) is given at fixed
heavy-quark mass my, or equivalently at fixed My . As
discussed above, the LECs in Eq. (5.6) encode the effects of
short-distance physics, and the dependence can be para-
metrized as expansions in inverse powers of the meson mass
My and powers of the lattice spacing of each ensemble. To
take the effects at scale My _into account, we replace

A A A A 2
L,—>L,+ L;c (% - %) + L;/ <—[\];I[QET _ AI;QET> ’
H Dy H, D,

(5.10)

and similarly for L, and ¢,. We do not introduce any
corrections to L, because it is suppressed by a factor of

*For simplicity, we drop the primes on the simulation x,s in
this section.

a2a® at the finest lattice spacings where the heavy-quark
mass dependence could be important. (At coarsest lattice
spacings we only have valence heavy-quark masses near
charm and thus the variation due to the valence heavy-quark
masses is less important.) We also add a 1/Mycorrection

term (but not 1/M %t-) to the four analytic terms at NNLO:

Anopr A
, QET _ /\HQET
ql g ql + q,( MHl? MDl‘ >9

(5.11)
fori=1,2,3,4.

Meson-mass dependence also appears implicitly through
the hyperfine splitting A* and the flavor splitting dg, in
Eq. (5.6). To fix the heavy-mass dependence of A*, which
first appears at order 1/m;, we use

A A 2
A* = A, —HQET BA*< HQET) . (5.12)
My My,

with A+« and B, fixed by demanding that A* reproduce the
experimental values of the hyperfine splitting in the D and
B systems. Similarly, we determine g, by writing

A
5Sx:A5+Bﬁﬂv

i (5.13)

s

and fixing A5 and B from the known flavor splittings in the
D and B systems.

To enable a description of our data with a wide range of
lattice spacings from 0.03 fm < a < 0.15 fm, we incorpo-
rate lattice artifacts into the fit function as follows. Taste-
breaking discretization errors in masses of light mesons,
which affect the decay constants of heavy-light mesons at
one-loop in yPT, are already included in the staggered
chiral form in Eq. (5.6). In addition to these NLO effects,
various discretization errors in the LECs must be taken into
account. In Appendix B, we use HQET to study heavy-
quark discretization effects at the tree level [89,90]. At the
leading order, tree-level heavy-quark discretization errors
are eliminated via a normalization factor, and at the next
order in HQET discretization errors start at order xj and
a,x7, where x;, = 2amy,/n. For these and generic lattice
artifacts, we replace in Eq. (5.5)

Dy = D[l + cia,(ah)? + cy(ah)* + c3(an)®

+ ag(cyx? + csxf + cexd)], (5.14)
where A is the scale of generic discretization effects,
set to 600 MeV in this analysis. A factor of «; is included
in the ¢; and ¢, terms because the HISQ action is tree-level
improved to order a? [91], so the leading generic discre-
tization errors start at order a,(aA)? or a,(am;)?. In
addition, a factor of a; is included in the c5 and ¢4 terms
because of the tree-level normalization factor. For k; and k,
in Eq. (5.5), we likewise replace
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ki = ki [14clag(al)> +ch(aN)* + chxd +ag(chxd +chxt)].
(5.15)

ky = ky[1 + cllag(al)? + chax). (5.16)
No factor of a; is included in the ¢} term, because k,
parametrizes effects at NLO in HQET.

Let us return to the parameters L., L¢, and g, found in
0@y 0. Owing to the Naik improvement term, it is enough
to introduce corrections of order a,(aA)? and (aA)*.
Similarly, we add a,(aA)? corrections to the NNLO
analytic terms in Eq. (5.9). Finally, to incorporate effects
of heavy-quark discretization errors, we include

A
“HQRT X2 (5.17)
My

corrections to L, L,, and g,, as explained in Appendix B.

Our final EFT fit function has 60 fit parameters. With
reasonable prior constraints on the large number of param-
eters describing discretization effects [three parameters at
NLO in SyPT (6, &), L,); 16 parameters for generic
discretization effects in powers of (aA); 10 parameters for
the heavy-quark discretization], the uncertainties from the
continuum extrapolation are propagated to the statistical
error reported by the fit. We test this expectation in Sec. VI
by looking at the stability of the results to changes in the
widths of the prior constraints, the number of fit param-
eters, and the data included in the fit.

B. Summary formula

In summary, letting F be our fit function from Sec. V A,
and letting blue (arXiv) denote fit parameters, we have

F = C&)O(l + 7<1Wh + %QW% + k3w2)
3 oml\ (ml\3/?7
14+ =k, o) (2
<(remai) ()

4
X |:1 =+ 5q)NLO + Z(q, + q:"’_Vh + Qiasy)x%
i=1

11
+ Z q;%; + qlzxi] (5.18)
Jj=5
where y = (dA)z, wy, = AHQET/MH:9 v_vh =

Anger(My' — Mp'), and the indices i and j correspond
to the labels of the terms in Eq. (5.9). The chiral logarithm
term 6@y o is given by Eq. (5.6) with the replacements
L,— L,L, — L, andg, — §,. It depends upon the LECs
f, L, 6y, and &,; the hyperfine splitting A*; and the taste-
independent flavor splitting ds,. The breved quantities
include terms that allow for the yPT parameters @, k|,
ky, L., Ly, and g, to have heavy-quark mass and lattice-
spacing dependence:

D) = D[l + ca,y + 2% + ¢3)°

+ a,(cyxt + csxp + cex9)] (5.19a)

ky = ki[1 + clagy + chy? + chxh + ay(chxd + cixd)],

(5.19b)

ky = k(1 + gy + chagxl), (5.19¢)

Ly = L+ Lywy, + Liw; + Lia,y + L{y* + LY wyax;,
(5.19d)

L,=L,+Lw, + Lg’v"vi + Llay+ L'y + Lg”wha‘,xi,
(5.19%)

v /1" 2

Jr = Gp + gﬁtwh + ggw% + g;rasy + gZyZ + 9z WpAg Xy,
(5.19f)

Thus, there are a total of 60 fit parameters. Of these f is
constrained by expectations from yPT, g, is constrained by
the results of other lattice-QCD calculations, and &}, and &),
are constrained by MILC’s light-pseudoscalar-meson
xPT fits.

C. Setting the lattice scale for the EFT analysis

We set the lattice scale with a two-step procedure that
combines the pion decay constant with the so-called p4s
method, in a way similar to Ref. [23]. In the first step of the
procedure, we use the PDG value of f,, f.ppg =
130.50(13) MeV [66,67], to set the overall scale and to
determine tuned quark masses for each physical-mass
ensemble. Then, as described in Sec. IV, we calculate
M 4 and f 4, which are the mass and decay constant of a
pseudoscalar meson with both valence-quark masses equal
to m 4, = 0.4m,, and with physical sea-quark masses. The
continuum-extrapolated values of f 45, R a5 = fpas/M pas,
and quark mass ratios are then used as inputs to the second
step of the procedure, which we refer to as the p4s method.
In the p4s method, we find am,, and af 4, on a given
physical-mass ensemble by adjusting the valence-quark
mass am, until (af,)/(aM,) takes the same value as
the continuum-limit ratio R 4, just determined. In the p4s
method, we use a mass-independent scale setting, in
which all ensembles at the same f as a physical-mass
ensemble have, by definition, the same lattice spacing a =
(afp4s)/fp4s and amp4s'

To determine am 4, and af 4 accurately, the data must
be adjusted for mistunings in the sea-quark masses. To
make these adjustments, we use the derivatives with respect
to quark masses, which were calculated in our earlier work
and listed in Table VII of Ref. [23]. We then iterate,
computing amp,, and af 4, readjusting the data, and
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TABLE IX. Lattice spacing a and am; (in lattice units) in the p4s mass-independent scale-setting scheme. The error associated with
[=ppc 1s a multiplicative error for all values of f; the relative error is about 0.15% for lattice spacing a and about 0.3% for am,. The
uncertainty labeled “EM scheme” is an additional uncertainty that can be incorporated when these results are used without attention to

the EM scheme dependence.

B a (fm) amg

5.8 0.15293(26) 1 (19)5y5t(23) 1, 1 (07 scheme 0.06852(24)44(22) 5y5t(20) 1, 1 [05] i schieme
6.0 0.12224(16 )45 (15) 555t (18) £, - [05]Em scheme 0'05296(15)stat(17)syst(15)f oo |04 EM scheme
6.3 0.08785 (17 ) o (11) 555t (13) £ 0. [04]Emt scheme 0.03627(14) 41, (12) 4y (10) £, [02]pt scheme
6.72 0.05662(13)151(07) 355 (08) . _[03]ent scheme 0.02176(10), (07455 (06) ;. [01]pt scheme
7.0 0. 04259(05)§1at(05)9y§ ( 6))‘,, PDG [OZ}EM scheme 001564(04)§tal (Os)sysl(04)f PDG [OI]EM scheme
7.28 0. 03215(14)slat(28)syst(05)f,,mg [OI}EM scheme 0'01129(lo)stat(lg)syst(03)f,,PDG [OI]EM scheme

repeating the entire process until the values of am,,, and
af a5 converge within their statistical errors. The results for
the lattice spacing a and am; = 2.5am,,,, are listed in
Table IX. For the smallest lattice spacing, a ~ 0.03 fm,
where we do not have an approximately physical-mass
ensemble, we rely on the derivatives to determine a and
amg from data on the m)/m} = 0.2 ensemble, leading to
larger relative systematic errors at f = 7.28.

D. Effective-field-theory fit to heavy-light decay
constants

In Sec. VA, we have constructed an EFT fit function that
contains 60 fit parameters. We use this function to perform
a combined, correlated fit to the partially-quenched data at
the five lattice spacings, from a ~ 0.12 fm to ~0.03 fm,
and at several values of the light sea-quark masses. The
sixth lattice spacing, a = 0.15 fm, is used in a check of
the estimate of discretization errors, but not included in the
base fit used to obtain our central values and statistical
errors. At the coarsest lattice spacings, we have data with
only two different values for the valence heavy-quark mass:
my, = m.. and m; = 0.9m... Recall that m.. is the simulation
value of sea charm-quark mass of the ensembles, and is
itself not precisely equal to the physical charm mass m,
because of tuning errors. At the finest lattice spacings, we
have a wide range of valence heavy-quark masses from
near charm to bottom. We include all data with
0.9m!. < m;, < 5m.,, subject to condition am;, < 0.9, which
is chosen to avoid large lattice artifacts. Note that our
analysis includes an a =~ 0.03 fm, m)/m} = 0.2, ensemble
for which am,, = 0.6, and thus no extrapolation from lighter
heavy-quark masses is needed, although a chiral extrapo-
lation to physical light-quark masses is required.

We use a constrained fitting procedure [75] with priors
set as follows. For the LEC g, of the D system, we use the
prior g, = 0.53 £ 0.08, which is based on lattice-QCD
calculations [92-94]. For 1/f? in Eq. (5.6), our prior is

L1 1y (11
F§<_%+f_%<> (_%_f_%)’

(5.20)

where we set f, = 130.5 MeV and fx = 156 MeV. For
the taste-breaking hairpin parameters, we use priors of
8,/A = —0.88 +-0.09 and &}, /A = 0.46 + 0.23, which are
taken from chiral fits to light pseudoscalar mesons [95].
The fits of Ref. [95] have been performed at a ~ 0.12 fm,
where ensembles with unphysical strange quark masses are
available (see Table I). We take advantage of the fact that
both the taste splittings and the hairpin parameters scale
like @2a® at NLO in the chiral expansion, so their ratio
remains constant as a changes. For @, we use an extremely
wide prior of 0 & 1000 in p4s units. The rest of the fit
parameters are normalized to be of order 1, and for them we
choose a prior of 0 &= 1.5. We discuss this choice in Sec. VI
and argue that it is conservative. Finally, for a, we use the
coupling ay at scale ¢ = 2.0/a, obtained from Ref. [76].

Altogether we have 492 lattice data points in the base fit
and 60 parameters in the EFT fit function. The fit has a
correlated y3,,, /dof = 466/432, giving p = 0.12. Figure 8
shows a snapshot of the decay constants for physical-mass
ensembles, plotted versus the corresponding heavy-strange
meson masses My _at three lattice spacings. The continuum
extrapolation is also shown. The valence light mass m, is
tuned either to m, (upper points) or to m, (lower points).
Data points with open symbols that are at the right of the
dashed vertical line of the corresponding color are omitted
from the fit because they have am; > 0.9. The fact that the
fit lines agree well with the omitted points is evidence that
we have not overfit the data. In the continuum extrapola-
tion, the masses of sea quarks are set to the correctly-tuned,
physical quark masses m;, m,, and m,., while at nonzero
lattice spacing the masses of the sea quarks take the
simulated values.

The width of the fit lines in Fig. 8 shows the statistical
error coming from the fit, which is only part of the total
statistical error, since it does not include the statistical
errors in the inputs of the quark masses and the lattice scale.
To determine the total statistical error of each output
quantity, we divide the full data set into 20 jackknife
resamples. The complete calculation, including the deter-
mination of the inputs, is performed on each resample, and
the error is computed as usual from the variations over the
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FIG. 8. Decay constants plotted in units of f 4, vs the heavy-

strange meson mass for physical-mass ensembles at three lattice
spacings, and continuum extrapolation. For each color there are
two sets of data and fit lines: one with valence light mass m, =
my (higher one), and one with m, = m,,. The dashed vertical lines
indicate the cut am,;, = 0.9 for each lattice spacing, and data
points (with open symbols) to the right of the dashed vertical line
of the corresponding color are omitted from the fit. The width of
the fit lines shows the statistical error coming from the fit. The
solid vertical lines indicate the D and B systems, where My =
Mp, and My = My, respectively.

resamples. (For convenience, we kept the covariance matrix
fixed to that from the full data set, rather than recomputing
it for each resample.) The same procedure is performed to
find the total statistical error of a and am, at each lattice
spacing.

The fit function Eq. (5.5), evaluated at a =0 and
physical sea-quark masses, yields a parameterization of

the decay-constant data as a function of the heavy-strange
meson mass My and the valence light-quark mass m,. We
ignore isospin violation in the sea, taking the light sea-
quark masses to be degenerate with the average u/d-quark
mass. Because the HMrASyPT expression for the heavy-
light meson decay amplitude is symmetric under the
interchange m, <> my, the leading contributions from
isospin-breaking in the sea sector are of O((my; — m,)?),
and are expected to be smaller than the NNLO terms in the
chiral expansion. We can check numerically the effect of
sea isospin-breaking using our data by evaluating the fit
function with physical up and down sea-quark masses. The
resulting shifts in the decay constants are less than about
0.02% for the B system and 0.015% for the D system,
which are consistent with power-counting expectations and
are negligible compared to other uncertainties. We obtain
the physical charged and neutral B- and D-meson decay
constants by setting m, to either m,,, m, or my, and My to
the experimental values Mjp = 5366.82(22) MeV and
Mp = 1968.27(10) MeV [66], respectively, along with
a prescription to subtract electromagnetic effects from the
masses, as discussed below.

VI. SYSTEMATIC ERROR BUDGETS

Figure 9 shows the stability of our final results for fp+,
fp,» fp+ and fp under variations in the data set and the fit
models. In our base fit, we use the decay constants obtained
from the (3 + 2)-state fit to two-point correlators. To
investigate the error arising from excited-state contamina-
tion, we perform a fit to the decay-constant data obtained
from the (2 4 1)-state fit to two-point correlators. There is
some evidence for such contamination, contributing a
systematic error that is comparable to the statistical errors
for the B system. We take the difference between the results

base (60 param) e T T T T =
I
(2+‘|) 7: —.—15 : >—.—<: >:—.—< : :»—.—1 : ° |
with0.15fm—: —.— ! : —.— : —e : —— | ° i
no0.0Sfm—E —.— E —— E—-—< | E — E ° i
44param—: - : —.— : —— E : — e ! ° ]
47paramf: —.— L : | - ° i
I
50 param f: —— E : — E : —— : —a— ! ° i
61param|' —=— ! | —— e | — . 1
44 param/ Wide |-, . : - D Do o ,
. | ! 1 1 1 1 1 1
47 param/ Wide |1 —8—— | e o —— ] 1
I
60 param/ 47-Wide | ——m—— | . BN | . . ]
I I I I I
2x priorst! _r—m— : ! >—l—:—< | e A — L e 1
212.4 213.0 2494 250.0 188.5  190.5 229.5  231.5 1.0 1.1 1.2
fo+ fo, [+ [, XAt/ dof

FIG. 9. Stability plot showing the sensitivity to different choices of lattice data and fit models. (See the text for description.) The error
bars show only the statistical errors, the gray error bands correspond to the statistical error of the base fit, and the green dashed lines

correspond to total errors.
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FIG. 10. Left: distribution of fit posteriors in a fit with 44 parameters and essentially no prior constraints (prior widths of 100). Right:
distribution of fit posteriors in the base fit for parameters constrained with priors 0 & 1.5. In each plot the solid and dashed red curves

show Gaussian distributions with width 1 and 1.5, respectively.

from the two types of correlator fits as an estimate of the
systematic error due to excited states. For consistency, we
do so both for the D system as well as the B system, even
though there is little evidence for such contamination for
the D system. It is reasonable that the B correlators suffer
from larger excited state effects, because, as seen in Fig. 3,
the fits to correlators with heavier quarks tend to have
smaller p values at fixed T';,, as well as larger errors in the
ground state mass.

Figure 9 also shows a test of the systematic error in the
continuum extrapolation from repeating the fit after either
adding in the coarsest (@ = 0.15 fm) ensembles or omitting
the finest (a ~ 0.03 fm) ensemble. The differences with the
base fit are well within the statistical errors, providing
support for our earlier assertion that the continuum-
extrapolation errors are already included in our estimate
of the statistical uncertainty of our fit.

In our base fit, constrained Bayesian curve fitting [75]
is employed to incorporate systematic errors in the con-
tinuum extrapolation. If the prior values have been
chosen in a reasonable way, and if we have sufficiently
many parameters in the fit, central values and error bars of
final quantities should not change when more parameters
are included in the fit. The error bars are then expected
to capture the systematic errors in the continuum
extrapolation.

To test the priors chosen for discretization effects, we
repeat the analysis with different numbers of discretization
parameters. The result of this test is shown in Fig. 9. The
base fit has 60 parameters. We show results from alternative
fits with 44, 47, 50, and 61 parameters. The fit with 50
parameters is constructed from our base EFT fit function by
removing 10 terms that describe higher-order discretization
effects in powers of (aA)?: specifically, the (aA)® correc-
tion to ®; the (aA)* corrections to k;, L, L, and g,; and
the (aA\)? corrections to k, and the NNLO analytic terms in
Eq. (5.9). In the fit with 47 parameters, three additional
terms describing higher-order heavy-quark discretization
effects are removed: we set to zero ¢}, ¢5 and ¢} in
Egs. (5.15) and (5.16). The fit with 44 parameters is then

obtained by removing, from the 47-parameter fit, the
a,(aM)? corrections to L, L, and g,. Finally, we consider
a fit function with 61 parameters, which is constructed from
our base EFT fit function by adding a term asxfl to
Eq. (5.14), which is the most important term at the next
order in our expansion variables.

The 44-parameter fit shows a significant deviation from
the base fit for fp+, but already with 47 parameters the
deviations of all quantities are small: the errors are
essentially unchanged from those of the base fit, and the
central values change by no more than half the error bars.
Differences between the base fit and the 61-parameter fit
are not visible at all. In the context of constrained Bayesian
curve fitting [75], these findings suggests that the posterior
uncertainty captures most or all of the systematic error of
the continuum extrapolation.

The priors may be further tested by monitoring the
posteriors in various fits. Figure 10 (left) shows the
distribution of posterior central values for essentially
unconstrained fit parameters (priors 0 & 100) in the 44-
parameter fit.* The distribution is compared to Gaussian
distributions with widths of 1 and 1.5. Note that the width-1
Gaussian is already fairly consistent with the distribution,
but there may be some indication of excess in the tails. On
the other hand, the width-1.5 Gaussian clearly encompasses
the posterior distribution. Thus the natural size of these
parameters is indeed of order unity, and a prior of 0 + 1.5
seems to be a conservative assumption for any additional
parameters in other fits that are not well constrained by
data. Figure 10 (right) shows the corresponding distribution
of posterior central values for the 55 parameters in the base
fit that are constrained with priors 0 = 1.5. The comparison
with the width-1.5 Gaussian indicates that the parameters
are not being unnaturally constrained by the Bayesian
priors.

*The quantities &), &), g, 1/f and ®,, which are set by
external considerations rather than power counting, have the
same priors as in the base fit.
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In the Bayesian approach, prior information about fit
parameters is explicitly put into the fit. A non-Bayesian
alternative is to limit the number of fit parameters to those
constrained by the data with no external information about
what sizes of the parameters are expected. External
information nevertheless enters implicitly by assuming that
the parameters omitted from the fit are all exactly zero. We
apply this alternative approach to test whether there are
additional systematic errors in the continuum extrapolation
due to the choice of fit function that are not captured by the
Bayesian analysis. Figure 9 shows two fits with fewer
parameters than the base fit, which may then be determined
by the data, with essentially no Bayesian constraint.* The
fits are labeled “44 param/Wide” and “47 param/Wide.”
They have the same parameter sets as the 44-parameter and
47-parameter fits discussed above, but now with very wide
priors, 0+ 100. (The 44 param/Wide fit yields Fig. 10
(left).) We also include a fit, “60 param/47-Wide” with the
same parameters as the base fit, but with the 47 parameters
that can be determined by the data alone now essentially
unconstrained by priors and priors of 0+ 1 for the
remaining 13 parameters. These three new fits have p
values larger than 0.05, so we consider them to be
acceptable alternatives. Comparing these fits with the
base fit, we find that the central values vary a bit more
than we would expect from the Bayesian analysis. In
particular, f+ in the 44-param/Wide fit and fp in the
60 param/47-Wide fit differ from the base fit by slightly
more than the error bar of the base fit (indicated by the gray
band). We take a conservative approach and take the largest
of these differences for each quantity as an additional
systematic error due to the choice of fit model.

A final fit in Fig. 9, labeled “2 X priors,” starts with the
base fit and doubles, to 0 £ 3, the prior widths of the 55
parameters constrained by power counting arguments. The
results of this fit are very similar to those from the
60 param/47-Wide fit. In the Bayesian context, it is to
be expected that weakening the prior information in the
base fit results in an increase in the resulting errors.
However, the shifts in the central values for the B system
are large enough that the inclusion of the fit model error
discussed in the previous paragraph seems prudent.

Tables X and XI give representative error budgets for the
decay constants and their ratios in the D and B systems,
respectively. The error listed as “statistics and EFT fit” is
determined by a jackknife procedure (described at the end
of Sec. VD) in which we repeat, on data resamples, the
EFT fit and its extrapolation to the continuum and
interpolation to physical quark masses. It includes statis-
tical errors in the inputs as well as those from the fit itself.
As explained above, it also includes much of the systematic
error associated with the continuum extrapolation. The
small errors from the chiral interpolation are likewise
captured by our Bayesian procedure, which includes all
analytic chiral terms at NNLO and NNNLO.

TABLE X. Representative error budgets for decay constants of
the D system, estimated as described in the text. Error budgets for
fpo and the isospin-limit value f, are similar to that for f+ with
one exception. The uncertainty from the topological-charge
correction is larger for lighter valence-quark masses: 0.09%
(0.07%) for fpo (fp)-

Error (%) Sp+ fDA fD.\. [fp+
Statistics and EFT fit 0.12  0.11 0.05
Two-point correlator fits 0.09  0.05 0.04
Fit model 0.16  0.07 0.09

Scale-setting quantities and tuned ~ 0.08  0.04 0.05
quark masses

Finite-volume corrections 0.02 0.01 0.01
Electromagnetic corrections 0.01 0.01 0.01
Topological charge distribution 0.05 0.00 0.05
frpDG 0.11  0.08 0.03
TABLE XI. Representative error budgets for decay constants of

the B system, estimated as described in the text. Error budgets for
fp+ and the isospin-limit value f are similar to that for fz0 with
one exception. The uncertainty from the topological-charge
correction is larger for lighter valence-quark masses: 0.11%
(0.08%) for fg+ (fp).

Error (%) Sr fBJ fo/fBO
Statistics and EFT fit 0.39 0.36 0.24
Two-point correlator fits 0.39 0.22 0.17
Fit model 034 0.39 0.08

Scale-setting quantities and tuned 0.10 0.06 0.05
quark masses

Finite-volume corrections 0.03 0.01 0.02
Electromagnetic corrections 0.02 0.02 0.01
Topological charge distribution 0.07 0.00 0.07
SfrpDG 0.14 0.11 0.04

The error labeled “two-point correlator fits” in Tables X
and XI is an estimate of the contamination due to excited
states. It is determined by comparison of the results from
the base, (3 + 2)-state, fits and those from (2 + 1)-state fits.

The error we associate with the choice of fitting function,
is labeled “Fit model” in each table. As explained above, it
comes from comparing the results of different non-Bayesian
(essentially unconstrained) fits to those from the base fit.
While the differences are not so large that they necessarily
invalidate the Bayesian error analysis, they are large enough
that we are inclined to be conservative and include them as a
separate source of error. Since the fit model controls the
continuum extrapolation, this error may be interpreted as an
estimate of those continuum extrapolation errors not com-
pletely captured by our Bayesian analysis.

The fourth line in each table, labeled “scale-setting
quantities and tuned quark masses,” gives the systematic
error associated with the continuum extrapolations of
f pas» Rpas, and the tuned quark masses. As described in
Sec. 1V, the central values of these input quantities to the
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heavy-light analysis come from a quadratic fit in a,a” to the
ensembles with a <0.12 fm. We repeat the heavy-light
analysis with the inputs instead determined by three
alternatives: a quadratic fit including all the data, a linear
fit including data up to 0.12 fm, and a linear fit including
data up to 0.09 fm. The errors shown in Tables X and XI are
obtained by taking the largest difference between the base
values and the results from each of the three alternatives.

The error labeled “finite-volume corrections” gives our
estimate of residual finite volume errors, those finite
volume effects not included in our chiral fitting forms.
The errors associated with light-quark and scale-setting
inputs are estimated in the same way as those associated
with continuum extrapolation errors of those quantities,
using the input finite-volume errors from Table VIII. To
determine the corresponding finite-volume errors arising
directly in the heavy-light analysis, we omit the finite-
volume corrections at NLO in yPT from the EFT fits, and
then repeat the fits. We take 0.3 of the differences between
the results of the two fits as estimates of the residual finite-
volume errors coming from omitted higher-order terms in
¥PT. We consider the factor 0.3 to be conservative because
higher order corrections in SU(3) yPT are typically less
than that; for example, fr/f, — 1 ~ 0.2. We then add the
finite volume errors from the heavy-quark analysis in
quadrature with those from the inputs to get the values
shown in Tables X and XI. This is reasonable because we
do not know the correlations between the effects of finite
volume errors on the light-light and heavy-light quantities.
For example, the ratios between heavy-light and light-light
decay constants, which enter through our scale-setting
procedure, are likely to be less-dependent on volume than
either decay constant alone. In any case, if we instead
assumed 100% correlation between the light-light and
heavy-light finite volume errors, it would make little
difference in the total systematic error.

We note that the finite-volume errors in Table VIII are
considerably smaller than in earlier drafts of this paper. The
previous version was inconsistent, in that it took the input
estimate of light-quark finite volume errors from a com-
parison of fits including the data at a =~ 0.15 fm, while our
central fit drops that lattice spacing. As discussed in
Sec. IV, keeping the a = 0.15 fm data gives an overestimate
of finite-volume effects due to staggered taste splittings that
predominantly affect that lattice spacing.

Despite the fact that the decay constants are by definition
pure QCD matrix elements of the axial current, there are
electromagnetic uncertainties in the values that the meson
masses (used primarily to fix the physical quark masses)
would have in a pure QCD world.” The estimated

>Electromagnetic effects of course also contribute directly to
the leptonic weak decays. We include an estimate of these effects
when we relate the decay constants to experimental decay rates to
extract CKM matrix elements in Sec. VIL

TABLE XII. Error contributions to, and estimates of scheme
dependence of, the decay constants from electromagnetic effects.
The sources of uncertainty are described in the text.

Error (%) fDo fD* st fB* fB“ fo
K*-KO splitting ~ 0.02  0.00 0.0l 0.02 000 0.01
K° mass 0.00 0.00 0.00 0.00 0.00 0.00
H, mass 0.05 0.01 0.01 004 002 0.02

K-mass scheme 0.03 0.03 0.05 0.04 0.03 0.06
Hg-mass scheme 0.07 0.07 0.07 0.05 0.05 0.04

systematic error labeled “electromagnetic corrections” in
Tables X and XI accounts for the two sources of this
uncertainty. First, there are electromagnetic errors in the
tuned values we use for the light-quark masses that arise
from errors in the determinations of the electromagnetic
contributions to pion and kaon masses. These correspond to
the “K+-K? splitting” and “K° mass,” and errors described
in Sec. IV. We vary the values of the tuned light-quark
masses by these two EM uncertainties in Table VII to
obtain the corresponding uncertainties on the decay con-
stants in Table XII. In this work, we choose a specific
scheme [79,82] for the electromagnetic contribution to the
neutral kaon masses; other works, e.g., the FLAG report
[80], choose other schemes. Changing the scheme so that
(M3,)" goes from +44 MeV? to +461 MeV? changes the
listed quantities by the percentages in row “K-mass
scheme.”

There are also electromagnetic effects in the heavy-light
meson masses, which affect our calculation both directly, in
the meson-mass value we use to convert from a @ value to a
decay constant f = ®/ VM, and indirectly, through the
tuned values of the heavy-quark masses. To estimate the
resulting electromagnetic errors on the decay constants, we
first need to relate the experimental values of the heavy-
light meson masses to QCD-only values. For this, we use
the phenomenological formula [16,96,97]

MP = M3 + Aeyey + Be2 + Clm, —my),  (6.1)

where e, and ¢;, are charges of the valence light and heavy
quarks, respectively, and we have added a term propor-
tional to (m, —m;) to account for the mass difference
between u and d quarks. Physical contributions propor-
tional to e%, which come from effects such as the EM
correction to the heavy quark’s chromomagnetic moment,
are suppressed by 1/m;, and are therefore dropped from
this simple model. There are also prescription (scheme)
dependent EM contributions to the heavy quark mass
renormalization, which are proportional to e%mh; our
choice of scheme is to drop them entirely. To estimate
the parameters A and B, we use the experimental D°-, D*-,
BT- and B’—meson masses in Eq. (6.1), which gives
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TABLE XIII.

Results for @ in the SU(2) and the SU(3) chiral limits. Here m, = m) = 0 and the strange sea mass is either m = m; (in

the SU(2) case) or m) =0 (in the SU(3) case). The uncertainty labeled “EM scheme” is an additional uncertainty that can be
incorporated when these results are used without attention to the EM scheme dependence.

SU(3
D system CI)O ® = 8133(67)stal(93)sys1(12) 2.PDG [IS]EM scheme M6V3/2
SU(2
(DO ) = 8976(12)stat(24)syst(1 1)_f,,_pDG [17]EM scheme Mev3/2
B system q)SUG) =1 1717(205)stat ( 181 )syst 21)]",,.,,[)0 [1 l]EM scheme MCV3/2
SU(2
('I)O ) = 13461 (57)slal (73)syst(20)f,,_pm~, [1 3]EM scheme M6V3/2

21
MO — MO = 1475 MeV = 3A-3B+ C(my —m,),

D+ Do =
(6.2)
1,1
MY — M = —0.31 MeV = JA+3B- C(myg —m,).
(6.3)

Taking C(my; — m,) = 2.6 MeV as described in Sec. IV,
we then obtain A = 4.44 MeV and B = 2.4 MeV.

Using Eq. (6.1), we estimate that the electromagnetic
contribution to the D -meson mass to be about 1.3 MeV,
which is substantially smaller than the result, 5.5(6) MeV,
found for this shift in Ref. [98]. We emphasize that we do
not add any terms in Eq. (6.1) proportional to e;m,,. Such
terms, which can explain the difference between results of
Ref. [98] and Eq. (6.1), can be absorbed into the heavy-
quark mass and do not contribute to electromagnetic mass
splittings for the heavy-light mesons. Consequently, these
terms only affect the tuned heavy-quark masses, which
inevitably depend on the scheme used for matching a pure
QCD calculation onto real-world measurements, which
include electromagnetism.

We take the difference between results obtained with and
without the electromagnetic shift from Eq. (6.1) as an
estimate of the uncertainty in applying our phenomeno-
logical model. This error includes effects of neglecting
mass-dependent corrections to the parameters A and B. We
tabulate this error in the row labeled “H, mass.” We also
estimate the effect of the scheme dependence of the heavy
quark mass, which we call “H -mass scheme,” by taking
the difference between the electromagnetic contributions to
the D, meson mass obtained from Eq. (6.1) and the scheme
of Ref. [98], which includes the heavy-quark self-energy.
We do not have corresponding information for the B,
meson, so we take the D, shift and simply assume that it is
dominated by a mass renormalization term proportional to
e?m,. Because m.e? ~ m,e2, this leads to the same shift,
4.2 MeV, for both D and B;.

The individual electromagnetic EM uncertainties on the
decay constants discussed above are tabulated in Table XII.
Because we have no information about correlations
between the various EM errors, we add the K-K? splitting,
K° mass, and H, mass error in quadrature to obtain the total

“electromagnetic corrections” entries given in Tables X and
XI. Even if there were strong correlations between the EM
errors, this would make little difference to the total
systematic errors of the heavy-light decay constants,
because these errors are subdominant, as can be seen in
Tables X and XI.

The error labeled “topological-charge distribution”
accounts for the nonequilibration of topological charge
in our finest ensembles. Before our EFT fit, we adjust the
lattice data to compensate for effects of nonequilibration of
topological charge as discussed in Sec. II C. We conserva-
tively estimate the uncertainty in our treatment of effects of
nonequilibration of topological charge by taking the full
difference between the final results of the analyses with and
without adjustments.

The last “f, ppg”~ error included in Tables X and X1 is the
uncertainty due to the error in the PDG average for the
charged-pion decay constant, f - = 130.50(13) MeV [67],
which is the physical scale that is used to determine f .

All errors in Tables X and XI should be added in
quadrature to obtain the total uncertainties. In the following
section, when we quote our final results for the physical
decay constants, we separate the errors into “statistical”
errors, which are the ones listed as “statistics and EFT fit,”
“systematic” errors, which are those due to the systematics
of our calculation (rows 2-6 in the tables, added in
quadrature), and, finally, the errors due to the PDG value
of f,, which is external to our calculation.

As a byproduct of our EFT analysis, we can also obtain
the decay amplitudes @ for the D and B systems in both
the SU(2) and the SU(3) limits, which are reported in
Table XIII.

VII. RESULTS AND PHENOMENOLOGICAL
IMPACT

We now present our final results for the heavy-light
meson decay constants with total errors and then discuss
some of their phenomenological implications.

A. B- and D-meson decay constants

Our final results for the physical leptonic decay constants
of the D and B systems including all sources of systematic
uncertainty discussed in the previous section are
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fDO =21 1'6(0'3)stat(0'5)syst(0'2)f,,vaG [OZ]EM scheme MeV’
(7.1)

fDJr = 212'7(0‘3)stat(0'4)syst<0'2)f,[vPDG [Oz]EM scheme MeV,
(7.2)

D, — = 249. 9(0 S)Gtat(0'2)syst(0'2>f,,<pDG [OZ]EM scheme MeV,
(7.3)

fpr = 189'4(0'8)sta1(l'l)syst(os)f,,mg [OHEM scheme MeV,
(7.4)

fB” = 190'5(0'8)stat(1'0) (03) [O'I]EM scheme MeV,

(7.5)

syst SrppG

[02] EM scheme MeV.
(7.6)

fBJr = 2307(08)stdt(10)5y5t(02)

SzppG

These results are obtained in a specific scheme for match-
ing QCD + QED to pure QCD via the light and heavy
meson masses tabulated in Table VI. When using our
results in a setting that does not take into account the
subtleties of the EM scheme, one may wish to also include
the last quantities, in brackets, which are obtained by
adding in quadrature the fourth and fifth rows in Table XII,
as rough estimates of scheme dependence.

Most recent lattice-QCD calculations of heavy-light
meson decay constants work, however, in the isospin-
symmetric limit. To enable comparison with these results,
we also present results for the B- and D-meson decay
constants evaluated with the light valence-quark mass fixed
to the average u/d-quark mass:

fp= 212'1(0'3)Stat(0'4)5}’5[(0'2)](.”‘1)1‘)0 {O'Z]EM scheme M€V,
(7.7)
fs= 190-0(0'8)stat(1'0)syst(0‘3)f,,<PDG [O'I]EM scheme MeV.

(7.8)

Figures 11 and 12 compare our decay-constant results
with previous three- and four-flavor lattice-QCD calcula-
tions [16-28]. They agree with the lattice-QCD averages
from the Particle Data Group [67]:

Fpeppg = 211.9(1.1) MeV, (7.9)
fp,ppG = 249.0(1.2) MeV, (7.10)
fatpoG = 187.1(4.2) MeV, (7.11)
Fs0ppG = 190.9(4.1) MeV, (7.12)

u,d, s, c sea
Fermilab/MILC 18

ETM 14
Fermilab/MILC 14

u,d, s sea
RBC/UKQCD 17

La YQCD 14

ad HPQCD 12

Fermilab/MILC 11 (Clover ¢)
Al HPQCD 10

205 215 225 235 245 255 265 275
For (MeV) fo, (MeV)

FIG. 11. Comparison of our D-meson decay-constant results
(magenta bursts) with previous three- and four-flavor lattice-
QCD calculations [16,18,20,23-25,27]. The vertical gray bands
show the total uncertainties from Eqgs. (7.2) and (7.3). The
asymmetric errors on the RBC/UKQCD 17 results have been
symmetrized.

fBS,PDG = 2272(34) MCV, (713)

where we note that the D ;) averages are dominated by our
earlier result in Ref. [23].

For the D-meson decay constants, the uncertainties in
Eqgs. (7.2)—(7.3) are about 2.5 times smaller than from our
previous analysis. The improvement stems primarily from
the inclusion of finer ensembles with a ~ 0.042 fm and
0.03 fm, which reduce the distance of the continuum
extrapolation.

For B-meson decay constants, the uncertainties in
Egs. (7.4)—(7.6) are approximately three times smaller than
from the previous best calculations from HPQCD [17,21].

u,d, s, c sea

% b Fermilab/MILC 18
fFo— o HPQCD 17 (pseudoscalar current)
|o —e ETM 16
o] —e— HPQCD 13 (NRQCD b)
u,d, s sea

RBC/UKQCD 14

R HPQCD 12 (NRQCD b)
HPQCD 11 (HISQ b)
Fermilab/MILC 11 (Clover b)

A A

17o 180 IQo 200 210 220 230 245 255
fe+ (MeV) fB. (MeV)

FIG. 12. Comparison of B-meson decay-constant results
(magenta bursts) with previous three- and four-flavor lattice-
QCD calculations [17-19,21,22,26,28]. The vertical gray bands
show the total uncertainties from Egs. (7.4) and (7.6).
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For fp, HPQCD’s most precise determination was
obtained with the HISQ action for b quarks [17]. The
substantial improvement in our result comes from a
combination of higher statistics and the ensemble with
a =~ 0.03 fm, which eliminates the need to extrapolate to the
bottom-quark mass from lighter quark masses, and also
shortens the continuum extrapolation. For fg+ and fgo,
HPQCD has employed only NRQCD b quarks [21]. Thus,
our results for these quantities are the first obtained with the
HISQ action for the b quarks. With HISQ, the dominant
errors in HPQCD’s calculation—from operator matching
and relativistic corrections to the current—simply do
not arise.

Because the statistical and several systematic errors are
correlated between the decay constants in Egs. (7.2)—(7.6),
we can obtain combinations of decay constants with even
greater precision. Our results for the decay-constant ratios are

fDS/fDJr = 1'1749(06)stat(14)syst(04)fﬂ<pDG [03]EM scheme»
(7.14)

fB,\,/fB+ = ]'2180(33)stat(33)syst(05)f,,.pDG [03]EM scheme*
(7.15)

fB’Jr /fBO = 1'2109(29)stat(zs)syst(oé")f,,‘mg [03]EM scheme
(7.16)

fBi\, /fDA. = 0'9233(25)stat(42)syst(02)f,,.pr)c [OS]EM scheme*
(7. 17)

The light quarks in the D" and D mesons have identical
charges, so the deviation of f, /fp+ from unity quantifies
the degree of SU(3)-flavor breaking in the D system.
Similarly, the ratio fp /fp, characterizes the size of
SU(3)-breaking in the B-meson system. Both yield values
of about 20%, which is consistent with power-counting
expectations of (m; — my)/Aqcp-

For the differences due to strong isospin breaking (i.e.,
m, # my) we find

for—fp= 0'58(01)stat(07)syst(00)f,,.p[)g [OI]EM scheme MeV,
(7.18)

for—fpo=11 1(03)stat(15)syst(00)f,,ipm [OI]EM scheme MeV,

(7.19)
fB _fBJr = 0'53(05)stat(07)syst(Oo)f,LPDG [OO} EM scheme MCV,
(7.20)
fpo—fpr =11 1(Og)stat(13)syst(00)f,,qpm [OHEM scheme MeV.
(7.21)

These results can be employed to correct other lattice-QCD
results obtained in the isospin limit, which will be essential
once other calculations reach subpercent precision. For fp,
the isospin-breaking correction is larger than our total
uncertainty in Eq. (7.2), while for f+ it is comparable to
the total error in Eq. (7.4). We find a smaller isospin
correction to the B-meson decay constant than obtained
by HPQCD in Ref. [21], (f5 = f5* )upocp = 1.9(5) MeV,°
by more than 26. HPQCD’s estimate was obtained, however,
by setting both the valence- and sea-quark masses in fz+ to
m, because the analysis only included unitary data. Hence
their value includes effects both from valence isospin break-
ing and from reducing the average light sea-quark mass;
when we follow this prescription, we obtain a similarly-large
shift of about 1.6(2) MeV. On the other hand, our results for
the isospin corrections to both f, and fj agree with
calculations using Borelized sum rules [99,100].

Tables XV and XVI in Appendix C provide the corre-
lation and covariance matrices, respectively, between the B-
and D-meson decay constants in Egs. (7.1)—(7.8). They can
be used to compute any combination of our results with the
correct uncertainties.

B. Quark-mass ratios, fx/f ., and
scale-setting quantities

In Sec. IV, we analyze the ensembles with physical light-
quark masses to obtain several input parameters for the EFT
fit of heavy-light meson decay constants. We obtain for the
mass and decay constant of a fictitious pseudoscalar-meson
with degenerate valence-quark masses 0.4m,:

( lz)f,LpDG [4] EM scheme MGV,

syst

+2
fp4s = 15398(11)stat< 12)

(7.22)
+17
Mp4s =433. 12( 14)stat 6 (4)f,,QPDG [40} EM scheme M€V,
- syst
(7.23)

+1
4 ) <3)f 7.PDG [2] EM scheme
syst

fp4s/Mp4s = 03555(3)stat<

(7.24)

where the last quantity, in brackets, is an additional
uncertainty when these results are used without attention
to EM scheme dependence. These quantities are used to set
the scale in our analysis.

®The correlated uncertainties were provided by HPQCD
(private communication).
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u,d, s, c sea
Fx— Fermilab/MILC 18
et MILC 16
ETM 14
u,d, s sea
oA BMW 16
A MILC 09
u, d sea
RM123 13

0.35 0.4 0.45 0.5 0.55
My /Mg

FIG. 13. Comparison of m,/m, in Eq. (7.25) (magenta burst)
with previous unquenched lattice-QCD calculations [101-105].

We obtain for the ratios of quark masses:

+114

mu/md = 04556(55)stat( ) (13)AMK [SZ]EM scheme?
syst

(7.25)

+70
mg/m; = 27.178(47) e (

) (1 )f,,»PDG [5 1}EM scheme
syst

(7.26)

+14

me/mg = 11'773(14)stat< 57

> (6) f2PDG [49} EM scheme»
syst
(7.27)

where m; is the average u/d-quark mass. The errors on the
quark-mass ratios in Egs. (7.25)—(7.27) are smaller than

u, d, s‘7 c sea
F Fermilab/MILC 18
—e— ETM 14
o Fermilab/MILC 14
u,d, s sea
— A RBC/UKQCD 14
—A— BMW 10
A MILC 09
u, d sea
‘ ETM 10
26 27 28
ms/my

FIG. 14. Comparison of m,/m; in Eq. (7.26) (magenta
burst) with previous unquenched lattice-QCD calculations
[23,101,103,106-108].

from our previous analysis in Ref. [23] because the finer
lattice spacings employed here reduce the continuum-
extrapolation error. Figures 13 and 14 compare our results
for m,/my; and mg/m,;, respectively, with previous
unquenched lattice-QCD calculations. The difference in
our value for m,/m, relative to Ref. [23] mostly comes
from three changes, which all push the value in the same
direction. In order of size, these are the addition of the
0.042 fm physical-quark-mass ensemble, removing the
0.15 fm ensembles from our central fits, and adding more
data on the 0.06 fm physical-quark-mass ensembles. An
even more precise value for m./m, is reported in a
companion paper on the determination of quark masses
from heavy-light meson masses [36].

Finally, we obtain the ratio of charged pion to kaon decay
constants. We also give the ratio in the isospin symmetric
limit, and the difference between the two:

+4
fl(*/f;fr = 1'1950(15)stat(_ > (3)f,,_pDG B]EM scheme>
syst
(7.28)
+3
f[_(/fﬂ = 1'1980(12)stat( 14> (3)f,[>pDG [3}EM scheme»
- syst
(7.29)
f]_(/fﬂ_fl(+/f7l+
+31

= 0.00305 (SO)M(

> (2)f”>pDG,AMK [3]EM scheme
-12 syst

(7.30)

which are again more precise than our previous determi-
nation in Ref. [23] because of the shorter continuum
extrapolation. Our results agree with previous three- and

u,d, s, c sea ‘
=g Fermilab/MILC 18

ETM 14

|of Fermilab/MILC 14
ol HPQCD 13

u,d, s sea

N RBC/UKQCD 14
MILC 10

2 BMW 10
a HPQCD 07

1.16 1.18 1.2
fKJf/ffrJr

FIG. 15. Comparison of fg+/f,+ in Eq. (7.28) (magenta burst)
with previous three- and four-flavor lattice-QCD calculations
[23,25,108-112].
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four-flavor lattice-QCD calculations (see Fig. 15), and with
the 2016 FLAG averages [80].

C. CKM matrix elements

We now combine our decay-constant results with exper-
imental measurements of the Dt -meson leptonic decay
rates to obtain values for the CKM matrix elements |V |
and |V | within the standard model.

The products of decay constants times CKM factors
from the Particle Data Group [67],

(D |V ed)expr = 45.91(1.05) MeV,  (7.31)

(FoiIVesDey = 250.9(4.0) MeV,  (7.32)

are obtained by averaging the experimentally-measured
decay rates into electron and muon final states. The value
for fp+|Ve4| in Eq. (7.31) includes the correction from
structure-dependent bremsstrahlung effects that lowers the
D" — u'u, rate by ~1% [113,114]. Other electroweak
corrections, however, are not accounted for in the PDG
averages shown above. The electroweak contributions to
leptonic pion and kaon decays are estimated to be about one
or two percent [115,116], and the uncertainties in these
corrections lead to ~0.1% uncertainties in |V |/|V 4| and
|V us|. Now that the errors on f, and f/, are well below half
a percent, electroweak corrections must also be included
when extracting |V 4| and |V.,| from leptonic D-meson
decays.

We take the estimate of the electroweak corrections to
the leptonic DJ; -meson decay rates from our earlier work
[23], which includes all contributions that are included for
pion and kaon decays. We first adjust the experimental
decay rates quoted in the PDG by the known long- and
short-distance electroweak corrections [117,118]. The for-
mer lowers the D"~ and D,-meson leptonic decay rates by
about 2.5%, while the latter increases them by about 1.8%,
such that the net effect is a slight decrease in the rates by
less than a percent. We then include a 0.6% uncertainty to
account for unknown electromagnetic corrections that
depend upon the mesons’ structure. This estimate is based
on calculations of the structure-dependent electromagnetic
corrections to pion and kaon decays [115,119,120], but
allowing for much larger coefficients than for the light
pseudoscalar mesons.

With these assumptions, and taking our D*- and D;-
meson decay-constant results from Eqgs. (7.2) and (7.3), we
obtain for the CKM matrix elements

|Vcd|SM‘fD = 02151(6)f0 (49)expt(6)EM’ (733)

Veslsmp,, = 1:000(2), (16)expr(3)em» (7.34)

where “EM” denotes the error due to unknown structure-
dependent electromagnetic corrections. In both cases, the
lattice-QCD uncertainties from the decay constants are an
order of magnitude smaller than those from experiment.
Further, the electromagnetic errors are only a rough
estimate, and need to be put on a more robust and
quantitative footing by a direct calculation of the hadronic
structure-dependent effects.

The CKM matrix elements |V 4| and |V | can also be
obtained from semileptonic D' — z°%/*v and D' —
K%¢*v decays. Recently the ETM Collaboration published
the first four-flavor lattice-QCD determination of the vector
and scalar form factors for these processes [121].
Combining their form factors over the full range of
momentum transfer with experimental measurements of
the decay rates yields for the CKM elements [122]

|Vealpor = 0.2341(74), (7.35)

|Veslpsx = 0.970(33), (7.36)
where the errors are primarily from the theoretical uncer-
tainties on the form factors. Although our result for |V .| in
Eq. (7.34) agrees with this determination, our result for
|V.q| in Eq. (7.33) is about 2.1¢ lower than the above value
from semileptonic decays. We note, however, that combin-
ing f27(0)|V.4| = 0.1425(19) from the Heavy Flavor
Averaging Group [1] with f27(0) = 0.666(29) from the
most precise three-flavor lattice-QCD calculations by
HPQCD [123] leads to a lower value of |V 4|p_, =
0.2140(97) that agrees with our result.

Our results for |V,,| and |V ;| make possible a test of the
unitarity of the second row of the CKM matrix. Taking
|V eblincisexas = 41.40(77) x 1073 from a weighted average
of determinations from inclusive and exclusive semilep-
tonic B decays [124—-129], we obtain for the sum of squares
of the CKM elements

|Vcd|2 + |Vcs|2 + |Vcb|2 - 10:0049(2)W¢d|(32)w (0>|V(b"

(7.37)

L‘S‘

which is compatible with three-generation CKM unitarity
within 1.56. The precision on the above test is only at the
few-percent level, and is limited by the experimental error
on the leptonic decay widths for Dy — uv, and D; — v,.
We can also update the determination of the ratio of
CKM elements |V,,/V,,| from leptonic pion and kaon
decays. Combining our result for fg+/f,+ in Eq. (7.28)
with the experimental rates and estimated radiative-correc-
tion factor from the Particle Data Group [67], we obtain

|Vus/Vud|SM = 02310(4)f,</f,, (2>expt(2)EM’ (738)

where we have averaged the upper and lower errors from
our decay-constant ratio.
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D. Branching ratios for B, - p*p~

The rare leptonic decays B — u*u~ and B, — utu~
proceed via flavor-changing-neutral-current interactions
and are therefore promising new-physics search channels.
In the B,-meson system, the difference between decay
widths of the light and heavy mass eigenstates is large,
AT’ /T, ~0.1 [1], and leads to a difference between the
CP-averaged and time-averaged branching ratios. Because
only the heavy B, eigenstate can decay to u™u~ pairs in the
standard model, to a very good approximation [130], the
two quantities are related simply as B(B; — ptpu™ gy =
7y T(By = u 1™ )gy» where 7_is the lifetime of the heavy
mass eigenstate, and the bar denotes time averaging. The
relative width difference AT';/T’; ~0.001 is 100 times
smaller in the B’-meson system, so B(B; — utu~) =
B(By = p*p).

The LHCb and CMS experiments reported the first
observation of B; — u"u~ decay in 2014 [11]. This
observation was subsequently confirmed by the ATLAS
experiment [12], and LHCb has since improved upon their
initial measurement using a larger data set [13]. The most
recent results for the B, — utu~ time-integrated branching
fraction are marginally compatible:

_ +1.1
10° x B(B, = p" 1) xmpas = o.9< os > (7.39)
_ +0.3
100 B8, = 1 Dy =3006) (T ). (.40

with the LHCb measurement being about 1.8¢ larger. The
LHCb and CMS experiments also reported 3¢ evidence for
the decay B — u*yu~, which is suppressed in the standard
model relative to B; — u"u~ by the CKM factor
|Via/ Vs> ~0.04. The significance, however, has sub-
sequently weakened, and ATLAS and LHCb most recently
only presented upper limits of [12,13]

B(B® = ptp ) amas < 34 x 10710, (7.41)

B(B® = ptp )pen s < 42x 10710, (7.42)
at 95% confidence level.

Here we update the theoretical predictions for the standard
model branching ratios using our results for the neutral B°-
and B;-meson decay constants. We employ the formulas in
Egs. (6) and (7) of Ref. [130], which provide the branching
ratios in terms of the decay constants, relevant CKM elements,
and a few other parametric inputs. Using the CKM elements
and other inputs listed in Table XIV, and fgo, f , and their
ratio from Egs. (7.5)—(7.6) and (7.16), we obtain

B(Bs - /’t+ﬂ_)SM = 3'64(4)f33_ (S)CKM(7)0ther X 10_9’
(7.43)

TABLE XIV. Numerical inputs used to calculate B, — urp
branching ratios. The strong coupling (in the MS scheme) is a
weighted average of three- and four-flavor lattice-QCD results
[76,131-135]. The B-meson lifetimes are from the Heavy Flavor
Averaging Group’s Summer 2017 averages [1,136]. The CKM
matrix elements are from the CKMfitter group’s global unitarity-
triangle analysis including results through ICHEP 2016 [137],
where we have symmetrized the errors on |V V| and |V,V ],
and used the Wolfenstein parameters {1 = 0.22510(28),
p = 0.1600(74),7 = 0.3500(62)}, A = 0.8341(20) rather than
the simple ratio to obtain |V,,/V | with a reduced uncertainty.

My pore = 173.1(6) GeV [66]
7, = 1.518(4) ps

IViV,,| = 40.9(4) x 1073
V,a/Vis| = 0.2085(18)

as(my) =0.1186(4)
7y, = 1.619(9) ps
V5, V| = 8.56(9) x 107

BB -yt gy = 1.00(1)f80 (2)crm (2) gther X 10710,
(7.44)

) =0.0273(2) I, (5)cxm(7) others
SM
(7.45)

where the errors are from the decay constants, CKM matrix
elements, and the quadrature sum of all other contributions,
respectively. Because B(B, — p*u~) is proportional to the
square of the decay constant, our three-fold improvement in
the uncertainty on the B-meson decay constants reduces the
error contributions from the decay constants by almost a factor
of two, such that they are now well below the other sources of
uncertainty.

VIII. SUMMARY AND OUTLOOK

In this paper, we have presented the most precise lattice-
QCD calculations to-date of the leptonic decay constants of
heavy-light pseudoscalar mesons with charm and bottom
quarks. We use highly improved staggered quarks with
finer lattice spacings than ever before, which enables us for
the first time to work with the HISQ action directly at the
physical b-quark mass. As shown in Figs. 11 and 12, our
results agree with previous three- and four-flavor lattice-
QCD determinations using different actions for the light,
charm, and bottom quarks. The errors on our D-meson decay
constants in Egs. (7.1)—(7.3) are about 2.5 times smaller than
those from our earlier analysis [23]. The error reduction is
primarily due to the use of finer lattice spacings, which
reduces the continuum-extrapolation uncertainty. Our B-
meson decay constants in Egs. (7.4)—(7.6) are about three
times more precise than the previous best lattice-QCD
calculations by HPQCD [17,21]. Here the improvement
again stems from the use of finer lattice spacings, which
enable us to employ the HISQ action directly at the physical
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my;, with controlled heavy-quark discretization errors,
thereby eliminating the need to extrapolate to the bottom-
quark mass from lighter heavy valence-quark masses or to
use an effective action such as NRQCD with its uncertainties
from omitted higher-order corrections in a; or 1/m,,.

Our results for the charged D*- and D,-meson decay
constants can be combined with the experimental leptonic
decay rates for D(t) — [y, [67] to yield the CKM matrix
elements

‘Vcd| =0.2151 (6)fD (49)expt(6)EM’

|VCS| = 1000(2)fDX (16)expt(3)EM'

(8.1a)

(8.1b)

We note, however, that the uncertainties due to unknown
hadronic structure-dependent electromagnetic corrections
are only rough estimates based on the analogous contri-
butions for pion and kaon decay constants (see Sec. VII C),
and need to be calculated directly for the D system. The
determinations of |V 4| and |V | from leptonic D decays in
Eq. (8.1) enable us to test the unitarity of the second row of
the CKM matrix at the few-percent level, and are compat-
ible with three-generation CKM unitarity within 1.5¢. The
significance of this test of the standard model is presently
limited by the experimental errors on the corresponding
leptonic decay widths [67]. Recently the BES-III
Experiment published its first measurements of B(D{ —
utv,) and B(D — 77v,) [138], and presented a prelimi-
nary measurement of B(D" — zTv,) [139]; these results
are statistics-limited, and will improve with additional
running. The forthcoming Belle II Experiment will also

measure the leptonic D(t)—meson decay rates, and antici-

pates obtaining sufficient precision to determine the CKM
element |V 4| with an error below about 2% [140].

The neutral B,- and B%-meson decay constants are
parametric inputs to the standard model rates for the rare
decays B, — utyu~ and B° — u*u~, respectively. Using
our results for fp and fp, we obtain the predictions

B(By—ptum) = 3.64(4);, (8)ckm(Tomer X 1077, (8.2)

B(B® - p*u)= 1.00(1) 7, (2)cxm (2) other X 1071, (8.3)
where the largest contributions to the errors are from the
CKM elements |V | and |V |, respectively. The theoretical
uncertainty on B(B, — utu~) in Eq. (8.2) is more than ten
times smaller than recent experimental measurements [11—
13], while the prediction for B(B® — u*u~) in Eq. (8.3) is
half an order of magnitude below present experimental
limits [12,13].

The high-luminosity LHC combined with upgraded
ATLAS, CMS, and LHCb detectors should make pos-
sible significant improvements on these measurements
in the next decade. In particular, given standard model

expectations, the LHCb experiment anticipates determining
B(B; — utyu~) to about 5% and the ratio B(B® — u*u~)/
B(BS — uu~) to the order of 40% by the end of the
HL-LHC era [15]. Our results for fz and fgo can also be
used to improve the standard model predictions for the B y)-
meson branching ratios to electron-positron or z-lepton
pairs, which are of O(107%) and O(107'3), respectively
[130]. The LHCb experiment recently placed the first direct
limit on B(B; — 7"77) < 6.8 x 1073 [141], and will con-
tinue to improve this measurement with additional running.
Further, the decay rates B(B; — e*e™) and B(B® — e*e™)
can be substantially enhanced in new-physics scenarios in
which the Wilson coefficients of the relevant four-fermion
operators are independent of the flavor of the decaying B,
meson and the final-state leptons [142]. In this case, the
latter process could be observable by the LHCb and Belle II
Experiments, providing unambiguous evidence for new
physics.

Our result for fz+ can be combined with the exper-
imental average for B(B* — ttv,) [7-10,67] to yield the
CKM matrix element

Vil = 4‘07(3).fs+ (37) expt X 1073 (8.4)
with an about 10% uncertainty stemming predominantly
from the error on the measured decay width. Within this
large uncertainty, Eq. (8.4) agrees with the determinations
of |V,,| from both inclusive [143—147] and exclusive
[148-151] semileptonic B-meson decays. The Belle II
Experiment expects, however, to collect enough data by
2024 to measure B(B" — 7v,) with a precision of 3-5%
[14], which will make possible a competitive determination
of |V | from leptonic decays. The decay Bt — 77, also
probes extensions of the standard model with particles that
couple preferentially to heavy fermions. Using fp+ from
this work and taking 103|V,,,| = 3.72(16) from our recent
lattice-QCD calculation of the B — #£v form factor [152],
we obtain for the standard model branching ratio
B(BT—1ty,)= 8'76(13)fn+ (75)y,(2)

x 1075, (8.5)

other
in agreement with the experimental average 10*B(B* —
) = 1.06(20) [7-10,67].

Given the current and projected experimental uncertain-
ties on the D - and B(;)-meson leptonic decay rates, better
lattice-QCD calculations of the decay constants are not
needed in the near future. Nevertheless, there are still
opportunities for improvement. So far, D- and B-decay
constant calculations include neither isospin nor electro-
magnetic effects from first principles. Isospin effects can be
addressed straightforwardly with 1 + 1 + 1 4 1 ensembles
being generated for problems such as the anomalous
magnetic moment of the muon [153]. The inclusion of
electromagnetism in lattice-QCD simulations is more
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challenging, but calculations of the light-hadron spectrum
and light-quark masses within quenched QED are avail-
able [104,105,154], and ensembles with dynamical photons
[155] to be generated for other quantities can again be
employed to calculate heavy-light meson decay constants.
In addition, higher-order electroweak effects are presently
ignored when relating experimental measurements of
charged leptonic decays to standard model calculations.
Effective-field-theory techniques can be used to separate
effects at the electroweak and QCD scales from long-range
radiation from charged particles. Further lattice-QCD
calculations are needed to fit in with this scale separation.
For leptonic pion and kaon decays, these effects are
relevant and being studied [156,157]. Even if not immedi-
ately crucial for leptonic D and B decays, they are relevant
for semileptonic D and B (as well as K and 7) decays; see,
e.g., the comparison of QED and QCD uncertainties in
Ref. [124].

The next step in our B-physics program is to extend the
use of HISQ b quarks on the same gauge-field configu-
rations employed in this work to target other hadronic
matrix elements needed for phenomenology. The analysis
of ensembles with physical-mass pions and very fine lattice
spacings will address two of the most important sources of
systematic uncertainty in our recent calculations of the B —
7n(K)¢v and B — n(K)¢*¢~ semileptonic form factors
[152,158,159] and of the neutral B-mixing matrix elements
[160] by eliminating the chiral-extrapolation uncertainty
and reducing continuum-extrapolation and heavy-quark
discretization errors. When combined with anticipated
future measurements, this will enable us to determine more
precisely the CKM matrix elements |V,,| and |V,
which are parametric inputs to standard model and new-
physics predictions. These advances will also make pos-
sible more sensitive searches for b — d(s) flavor-changing
neutral currents, charged Higgs particles, and other exten-
sions of the standard model that would give rise to new
sources of flavor and CP violation in the B-meson sector.
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APPENDIX A: TREE-LEVEL CALCULATIONS
OF HEAVY QUARKS WITH HISQ ACTION

The HISQ action for one flavor can be written as

S= zxjw(x){zﬂ:yﬂ [aA,, —%cﬁAf}] + amo}y/(x), (A1)

where (suppressing the gauge field) aA,w(x) =
Tw(x + pa) —y(x — fia)], my is the bare mass, and N =
1 + € is the coefficient of the Naik improvement term [91].
The correction € is needed to improve the dispersion
relation when mgya=<£1 [29]. The notation ¢ is used in
Ref. [29]; in Appendix B, however, 1 + € appears, so we
use N for brevity.

We are interested in heavy quarks with mass much larger
than their typical momentum. Then, the energy can be
expanded as

2

E@p)=m + 2 1.

o (A2)

where m; and m, are called the rest and kinetic masses,
respectively. At nonzero lattice spacing, these two masses
are no longer identical. The parameter € in the HISQ action
is supposed to be tuned such that the kinetic mass of a
quark equals its rest mass, i.e.,

E*(p) — E(0)?
ﬂ:]imwz 1. (A3)
my p—0 P
This condition yields
4 -2v/1+3X

= 274— -1, (A4)

sinh*(am,)

2am;
= AS
sinh(2am;,) (A3)

With this exact expression for €, we have am, = am, to all
orders in amy, at the tree level.

The Taylor expansion of €, in Eq. (A4), about the origin
reads

e =2 (am 4 2 (am ) = 20 (amy )
153607 . 604604227 0
3942200 ‘™) ~ 33051008000 ")
2175452933 B
* 122682624000 ™)
1398976049
~ 720066182400 (@) (A6)

The radius of convergence of this series is z/2, which
is set by the singularities in the complex plane from the
inverse power of sinh(2am,;) in the exact expression.
Equation (A6) can be rewritten as

€ =—1.67x + 1.78x} — 1.63x% + 1.44x%

— 1.28x)0 + 1.16x)2 = 1.07x}* + - - -, (A7)

where x;, =2am;/n. (The coefficients have been
rounded to two significant figures.) This expansion
converges inside the unit disc in the complex x;-plane,
centered at the origin. One sees that many of the first
several coefficients of this power series are of order 1,
and in this sense, x; can be considered to be a natural
expansion parameter.

The bare mass m in the quark action is related to its tree-
level pole mass by

1++V143X

amg = sinh(am,) 3 ,

(A8)
with X as in Eq. (AS). As with ¢, the Taylor expansion of
my breaks down at am; = x/2, and m has a natural series
expansion in powers of x;,.

APPENDIX B: NORMALIZATION OF
STAGGERED BILINEARS WHEN am <1

From Ref. [89] for massive Wilson fermions, it
follows that when amy=<1 a bilinear can lose the
conventional normalization. In this Appendix, we derive
the factor needed to restore this normalization for the
pseudoscalar density of (improved) staggered fermions.
To this end, we also need to think of HQET as a theory
of cutoff effects, applied directly to lattice gauge
theory [90].

The starting point is the time evolution of the fermion
propagator at zero momentum. Using the residue theorem
(6 is real, small, and positive),

C(O,x4) = /(ﬂJﬂS)/adp4e”ﬁh_l.7~/4g4+m0
—(n=8)/a 27 52+ m?
1 o I +yy » 1 F7,
= —e¢ el | 22— 74 inxg|/a = T 74
¢ { 3 +e 5

Ch (B1)
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where the upper (lower) sign in front of y, is for x, > 0
(x4 < 0), and

1
aS4(p) = sinap, <1 + gNsinzam), (B2)
3 . 1 . 2
aSh = sinham, | 1 —gNsmh am, |, (B3)

- 1
Ch = cosham, <1 - ENSinhzaml) (B4)

The rest mass m, is obtained from the bare mass m, via

Equation (B1) consists of an unwanted normalization
factor, the exponential fall-off in Euclidean time, and
(correctly normalized) Dirac matrices for two species:
the one with the factor e~7%l/¢ is the time doubler.
States with energy near the cutoff are omitted, and
one should bear in mind that other doublers with
energy m; can be found in other corners of the spatial
Brioullin zone. None of these staggered features is
important here.

The first factor implies that the external line factors for
zero-momentum fermion and antifermion states are

y(x)|q(€,0)) = Ch™"2u(&, 0)e=m, (B6)

#(x)]g(€,0)) = Ch™'/?B(&, 0)em, (B7)
when the fermion states are normalized to

(q(&.p)lq(&.p)) = 27)°5(p’ —p)5¢,  (BY)

and similarly for single-antiquark states.

With naive or staggered fermions, the pseudoscalar
density appearing in the Ward identity of the exact remnant
of chiral symmetry is the local one:

Pe(x) = i (x)ir’y,(x) (B9)
using the notation of the naive formulation. Let us consider
two matrix elements of the pseudoscalar density, namely
when the x quark is nonrelativistic or ultrarelativistic. To
the order needed, one finds

(01P1(0)qx(£+.0)31 (£4. 0))

= Chy,"*Ch"*w] . (B10)
<0|Phx(0)|Qx(§xﬁpx)zlh(§hvph)>
_ o 12t |4 (6 Px)(-py) )
(2Chh) Wﬂfh 1 72’/”0’, We. + O(p ),
(B11)

for the nonrelativistic and ultrarelativistic cases, respec-
tively, where wzsh and wg_are two-component spinors, and
P =p./|p,|- Similar results hold for other local bilinear
currents.

These tree-level calculations reveal two important fea-
tures about the heavy-quark discretization effects. First,
depending on whether the x quark is a nonrelativistic or
ultrarelativistic, matrix elements should be multiplied by a
factor

z,, = Ch/*Ch”, (B12)

h.

z, =Ch/*? (B13)

to remove tree-level mass-dependent discretization effects
at the leading order in |p,,|/m,.” Second, the next order
in the HQET expansion requires an additional correction
(as is the case with Wilson fermions [89,90]) to ensure
the correct normalization of this term. It is, however,
proportional to

1 1 _l—mOh/mlh

(B14)
Moy My Mop

The numerator’s leading discretization errors are of order
x} and a,x?, owing to the tree-level Naik improvement
term, and the dimensions are balanced, in a heavy-light
meson, by Apger or m,. As in Appendix A, x, =
2amy;, /7 is the natural expansion parameter for organ-
izing heavy-quark discretization errors.

To arrive at the decay constant, the pseudoscalar
density must be multiplied by the sum of the quark
masses. From the axial Ward identity, the combination
mog, + mg, 1is natural. This quantity would, however,
introduce heavy-quark discretization effects that can be
avoided by using m;, + m;, instead. With this choice
and Eq. (B13) for normalizing ®j , all heavy-quark
discretization errors are suppressed by either a; or
AHQET/MH’V or both.

APPENDIX C: COVARIANCE MATRIX FOR
DECAY CONSTANTS

Tables XV and XVI provide the correlation and covari-
ance matrices for our decay-constant results, respectively,
to enable future phenomenological studies.

"For a light quark (m, < 2Aqcp), C~hx deviates from 1 by
effects as small or smaller than other discretization effects. In
particular Ch, = 1 + O(a?m?2) for the unimproved action with
N =0 and C~h_x =1+ O(a*m?) for the improved actions with
N=1lorN=1+e
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TABLE XV. Correlation matrix between the D- and B-meson decay constants in Egs. (7.1)—(7.8); entries are symmetric across the

diagonal.

fpo fp fp+ fb, e /B S0 B,
fpo 1
o 0.99034256 1
fp 0.96489064 0.99179205 1
fp, 0.85584800 0.89529969 0.91276762 1
[+ 0.41698224 0.42111777 0.41595657 0.39194646 1
fr 0.43374664 0.44096880 0.43740528 0.41993616 0.99827684 1
fro 0.45049520 0.45971393 0.45703271 0.44373556 0.99419014 0.99877397 1
S, 0.54139865 0.56564796 0.57288800 0.58902865 0.85069938 0.87357307 0.89060925 1
TABLE XVI. Covariance matrix between the D- and B-meson decay constants in Egs. (7.1)—(7.8); entries are symmetric across the
diagonal and are in MeV?.

fD° fp S+ fDi\. Sfr I8 fBO st

fpo 0.34779867
o 0.33313370 0.32534065
fp+ 0.32265640 0.32076578 0.32151147
S, 0.21136370 0.21384909 0.21673461 0.17536366
fBr 0.33422198 0.32645717 0.32055289 0.22307455 1.84717041
fB 0.33822862 0.33257324 0.32793859 0.23252162 1.79396823 1.74831843
[ 0.34428780 0.33980076 0.33582501 0.24080281 1.75101736 1.71137428 1.67932607
S, 0.42932416 0.43383002 0.43678947 0.33167323 1.55465419 1.55315110 1.55188280 1.80804153
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Correction: Minor typographical errors related to an exponent in
the standard model prediction and the ratio of a rare leptonic
decay have been fixed in the abstract and Eqgs. (7.44), (7.45), and
(8.3). Related terminology has been fixed in the paragraph
containing Eq. (8.3).

Second Correction: The value of |V,;/V,| in Table XIV was
incorrect and has been fixed, which led to a revision to Eq. (7.45)
and a related term in the abstract. Equations (8.1a) and (8.1b) also
contained errors and have been fixed. A Wolfenstein parameter
was missing in the caption to Table XIV and has been inserted.
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