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Abstract

Predictions are made for the effects of anomalous couplings in the processes of W-pair
and ZZ production. Analytical expressions for the differential cross-sections are derived
in both cases and numerical results are presented. The analytical results for W-pair
production were implemented into the Fortran program GENTLE, while the ZZ production
results are available in the stand-alone program ZAC. The numerical results are compared
with the Standard Model predictions. For W-pair production radiative corrections are
considered by using the structure function approach for the description of initial state
radiation.

Effects of an anomalous magnetic moment a, of the 7 lepton to the final state ra-
diation in the process of 7-pair production at LEP1 are examined. This process allows
to determine experimental limits for the anomalous magnetic moment of the 7. As a
result we find that contributions linear in a,, which were believed to be small, cannot be
neglegted at the present limits.

Keywords:
W-pair production, ZZ production, anomalous couplings, anomalous magnetic moment
of the 7-lepton



Zusammenfassung

Die Auswirkungen von anomalen Kopplungen bei den Prozessen der W-Paar- und
der ZZ-Erzeugung werden untersucht. Analytische Ausdriicke fiir die differentiellen
Wirkungsquerschnitte werden fiir beide Prozesse abgeleitet und numerische Ergebnisse
werden prasentiert. Die analytischen Ergebnisse zur W-Paarerzeugung wurden in das
Fortranprogramm GENTLE eingebaut, wiahrend die Ergebnisse zur Z Z-Erzeugung in einem
separaten Program ZAC zur Verfiigung stehen. Die numerischen Resultate werden mit den
Vorhersagen des Standard Modells verglichen. Bei der W-Paarerzeugung sind Strahlungs-
korrekturen durch den Strukturfunktionszugang im Rahmen der Anfangszustandsabstrah-
lung beriicksichtig worden.

Die Auswirkungen eines anomalen magnetischen Momentes a, des 7-Leptons auf die
Endzustandsabstrahlung im Prozess der 7-Paarproduktion bei LEP1 wurden untersucht.
Dieser Prozess erlaubt die Bestimmung des experimentellen Limits fiir das anomale mag-
netische Moment a,. Als ein Ergebnis erhalten wir, dass Beitrdage, die linear in a, sind
und als klein angesehen wurden, bei den heutigen Limits nicht mehr vernachlassigt werden
konnen.

Schlagworter:
W-Paar-Erzeugung, ZZ-Erzeugung, anomale Kopplungen, anomales magnetisches Mo-
ment des 7-Leptons
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Chapter 1

Introduction

1.1 Motivation

The Standard Model of electroweak interactions [1-3] represents the basic theory in par-
ticle physics. So far, no significant deviation from it could be found in any high energy
physics experiment. Precision measurements at electron-positron colliders like the LEP
collider at CERN and the SLC at SLAC were able to confirm the underlying symme-
tries in e*e~—annihilation processes at the Z resonance down to the per mil level'. At
such high accuracies the quantum corrections can be seen. In addition, experiments at
hadron-hadron and hadron-lepton colliders are supporting the theory and do not give any
evidence for an inexactness of the Standard Model. Likewise, low energy experiments are
in a fantastic agreement with the theory.

The exposed position of the Standard Model as the basis for all predictions requires
permanent search for limitations. The goal is to increase the precision of already measured
values and perform experiments in untested regions of the parameter space, for example at
higher center-of-mass energies. Cross-checks between experiments using different methods
to measure the same physical quantities must be performed to investigate the reliability
of the Standard Model.

At the Z peak the couplings between the Z boson and fermions have been measured
with an unmatched accuracy from the process

ete” = Z = frf (). (1.1)

With O(107) observed Z events the mass My, the width T'z, the weak mixing angle sin® 6,,
in the on-shell scheme and the number of light neutrino types N, are known to be [4]:

M, = (91.1882+ 0.0022) GeV, (1.2)
Tz = (2.49524 0.0026) GeV, (1.3)
sin?6, = 0.22302 = 0.00040 (1.4)

L«At the end of eleven years of running, LEP will be remembered as the machine that put the theory
describing particle behavior - the Standard Model - on solid ground. Precision measurements made by
the four LEP experiments have confirmed the Standard Model to an extraordinary degree of precision.
They have also demonstrated conclusively that three and only three families of matter particles exist.”
from http://press.web.cern.ch/Press/Releases00/PR14.00ELEPstop.html



N, = 2.994+0.012. (1.5)

In addition, data allow for the investigation of the decay modes of produced particles.

The center-of-mass energy at the LEP collider had been increasing in the last years
from about 91 GeV to more than 200 GeV. At energies above the production threshold
of W boson pairs the creation of four fermions is studied:

ete” — WHTW ™ — 4f. (1.6)

In these processes the mass of the W bosons, their width, and their gauge couplings are
examined. The experiments could prove for the first time that the predicted non-abelian
coupling between a Z boson and two W bosons exists. The measurement of the W-mass

my = (80.419 + 0.056) GeV (1.7)

is in a perfect agreement with the results for the Z-mass in (1.2) and the weak mixing
angle in (1.4).
At even higher center-of-mass energies the process

ete”™ = Z7 — Af (1.8)

can be examined. To this process an anomalous ZZ Z-vertex would contribute and limits
to it can be found. In addition, (1.8) is an irreducible background process for the Higgs

boson radiation process
ete” — ZH — Af (1.9)

and should be precisely studied. Although process (1.9) might be used to discover the
Higgs boson?, it is also used to get a lower Higgs mass limit. It is (for the Standard Model

Higgs) [4]:
my > 95.3 GeV, CL = 95%. (1.10)

Despite of its extremely successful history the Standard Model is not regarded as the
theory of everything. Its large number of free parameters gives the impression that there
should be a more systematic theory beyond it. Further, the Standard Model fails in the
attempt to include gravitation into the one theory together with other three forces. These
flaws and the still undiscovered Higgs boson motivate the search for physical processes
beyond the Standard Model.

In addition, there might be a slight indication for physics beyond the Standard Model.
There is some evidence from neutrino physics that the neutrinos might have a small mass
[5] and because they do not have electrical charge it might be that there are completely
new phenomena in this sector. As an example, neutrinos might be Majorana particles
instead of Dirac particles or maybe a mixture of both. However, up to now there is no
confirmation of a behavior which is contrary to the Standard Model prediction except of
the small neutrino mass.

2“LEP was scheduled to close at the end of September 2000 but tantalising signs of possible new
physics led to LEP’s run being extended until 2 November. At the end of this extra period, the four LEP
experiments had produced a number of collisions compatible with the production of Higgs particles with
a mass of around 115 GeV. These events were also compatible with other known processes.” also from
http://press.web.cern.ch/Press/Releases00/PR14.00ELEPstop.html



1.2 Structure

The comparisons of achieved and expected experimental results with the theoretical ex-
pectations have to rely on predictions which need to be precise enough. In this thesis
some of these theoretical predictions are presented and extensions to the Standard Model
are considered in the form of anomalous couplings.

A short overview over the particle content of the Standard Model and its symmetries
and interaction lagrangian is given in chapter 2. Possible extensions, like supersymmetry,
are also shortly discussed and the principles of anomalous couplings and effective theories
are introduced for the YWW and ZWW vertices. It is shown that higher dimensional
operators in effective theories contribute to anomalous couplings. The differences between
linear and nonlinear realizations of the gauge symmetries are also demonstrated.

In chapter 3 we apply the method of anomalous couplings to the 7777~ vertex and
investigate the effects of an anomalous magnetic moment of the 7 lepton in the process
of equation (1.1). It is studied how energy spectra and angular distributions of the final
state radiation in 7 pair production at LEP are influenced by the magnetic moment. The
Fortran program Anotau was written to allow for these examinations. Predictions for
various distributions of observables in the scattering process ete™ — Z — 777y are
presented.

The main part of this work follows in chapter 4, where the process ete™ — 4f via W
pair production, as in equation (1.6), is discussed. Analytic expressions for the differential
cross-sections are presented for the signal diagrams and the CC11 background class. The
achieved expressions were implemented into the Fortran program GENTLE to give numerical
predictions for the angular cross-section. In addition to the Standard Model results also
the effects of non-standard YWW and ZWW couplings are determined for the complete
CC11 class and presented in section 4.3. Especially in the search for anomalous triple
gauge boson couplings this class plays an important role since its final states offer the most
complete kinematical information. Numerical calculations using the analytical results give
a feeling for potential deviations from the Standard Model due to the anomalous couplings
and may guide the search for them.

Radiative corrections to the W pair production process are considered for initial state
radiation (ISR). For the angular cross-section the structure function approach as described
in section 4.4 is used.

Anomalous contributions can also show up in new vertices which are not present in
the Standard Model, like for example in vZZ or ZZZ vertices. These vertices would
contribute to the process in equation (1.8) and can be studied in ZZ production. They
become measurable at center-of-mass energies above the production threshold of two
Z bosons. How the signature of anomalous vZZ and ZZZ vertices in ZZ production
processes at LEP2 might look like is discussed in chapter 5, where analytical results and
the numerical results from the program ZAC are presented.

The more technical parts of this work can be found in the appendices. The Feynman
rules used for the calculations are presented in appendix A. A detailed description of the



phase space variables and their construction is given in appendix B. Appendix C contains
a derivation of the magnetic dipole moment and of the electric quadrupole moment of
the W boson. Also the magnetic dipole moment of leptons is derived there. A brief
introduction into the FORTRAN program GENTLE v. 2.02 can be found in appendix D.
Newly implemented features are also described in this appendix. An extensive use was
made of the FORM package [6] for analytic manipulation of formulae in order to derive the
results presented in this thesis. Finally, a sample FORM file as used in the calculation in
chapter 4 is explained in detail.
Throughout this thesis, natural units (¢ = A = 1) are used.



Chapter 2

Standard Model of Electroweak
Interactions and Beyond

The Standard Model is a theory based on quantized fields and its goal is the description
of the interactions between all known elementary particles. For references are suggested
e.g. the standard text books [7—12]. Particles are described by scalar, spinor, or vector
fields and appear in this form in the scalar Lagrange function. Fermions, represented by
spinor fields, can interact with each other via intermediate gauge bosons, represented by
vector fields. Couplings between the particles are constructed by locally gauge invariant
products of more than two particle fields in the Lagrangian. The only scalar field is the
Higgs boson.

The Standard Model will be discussed in this chapter by mentioning some important
parts of its history in section 2.1 and presenting its particle content in section 2.2. Further,
potential extensions are mentioned in section 2.3 and at the end of this chapter there is
a brief introduction to anomalous couplings.

2.1 Towards a Standard Model — Historical Overview

The Standard Model was constructed to unify the electromagnetic and the weak interac-
tion. Also the strong interaction (QCD) can be included in a consistent way. However,
until now the electroweak and strong interactions are described independently from each
other. Their unification is left to future in a so-called GUT (Grand Unified Theory).

Electromagnetism was discovered centuries ago. On a macroscopic level it was first
described mathematically by Maxwell in 1864 [13]. Later, in 1927 Dirac managed to
express the force between charged point particles and photons in a quantized way [14].
Using his theory Dirac could explain the phenomenological factor g = 2 in the magnetic
moment of the electron [15]. QED was further strengthened after Schwinger calculated
the radiative one-loop correction to the magnetic moment of the electron [16], which was
in very good agreement with the measured data. Nowadays, QED is the best verified
theory.

The weak interaction represents the second branch of the Standard Model. Its history
started with the discovery of (-decay by Becquerel in 1896 [17]. A theory explaining



the [-decay was invented by Fermi in 1934 [18]. One year later Yukawa published a
meson theory and invented the idea of intermediate bosons for the strong and the weak
interactions [19]. Doing this he was the first who assigned separate coupling constants
to these two forces. At that time, the electron, the proton, and the neutron made up
the set of known elementary particles' and (3-decay was the only known aspect of weak
interactions.

The muon, discovered in 1937 in cosmic rays [24,25], was first believed to be the meson
that was predicted by Yukawa, but soon discrepancies were noticed. This problem was
solved in 1947 when the charged m-mesons [26] and the strange particles [27] were discov-
ered. The long lifetime of particles with strangeness made it impossible to assume that
they decay in a strong interaction. Nishijima and Gell-Mann introduced independently
a new quantum number “strangeness”, which is conserved in electromagnetic and strong
interactions but violated by the weak force. This could explain the long lifetime of the
new particles, but another oddity remained. The K mesons decayed into different final
states and some of them seemed to have the “wrong” parity. The solution was either that
two particles with almost the same mass but different parity existed or that parity was
violated. Yang and Lee proposed experiments to test parity conservation. Indeed, in the
famous Wu experiment [28] parity violation was detected in 1957. The vector currents had
to be given up for the weak interaction and had to be replaced by vector and axial-vector
currents [29, 30].

In 1960 Glashow picked up an idea of Schwinger to unify electromagnetic and weak
interactions [3]. He used a Yang-Mills theory [31] with a non-abelian local gauge symme-
try and proposed an additional neutral vector boson. He considered mixing between the
photon and the additional neutral boson, but he could not explain the boson masses, since
explicit masses for bosons break the desired gauge symmetries. Nambu and Jona-Lasinio
showed how to produce boson masses with the mechanism of spontaneous symmetry
breaking [32,33]. The problem with massless Goldstone bosons [34] produced by a spon-
taneous breaking of symmetries could be solved by Higgs in 1964 [35-37] with an idea
which is now called the Higgs mechanism. The Goldstone bosons are just absorbed by
the additional degrees of freedom of the massive gauge bosons.

In 1967 Weinberg and, independently, Salam suggested models to describe the elec-
troweak theory [1,2]. This model became later the Standard Model, but it was not much
noticed before 't Hooft and Veltman managed to prove its renormalizability four years
later [38—42]. In Weinberg’s model the left-handed electron and its neutrino, respectively
the left-handed muon and the corresponding neutrino were collected in weak iso-doublets.
Although it was not realized immediately, the same kind of doublet can be constructed
with the up and down quarks, which where introduced by Gell-Mann [43,44] with his
“eight-fold way” and Zweig [45] as the constituents of hadrons.

The violation of strangeness could be explained by the assumption of a mixing between
the down and the strange quark. The size of the mixing was parameterized by the Cabbibo
angle. Unfortunately, the mixing would also lead to a flavor change in neutral current
processes, which was not observed. This puzzle could be solved by the so-called GIM

'Pauli had already postulated the neutrino [20] to explain the non-conservation of energy and an-
gular momentum in the (G-decay. However, this particle was discovered only in 1956 by F. Reines and
C. L. Cowan [21-23]. They used a nuclear reactor as a neutrino source.



mechanism invented by Glashow, Iliopoulous and Maiani in 1970 [46]. They introduced
an additional quark: the charm quark. After summing the flavor changing neutral currents
over the up-type quarks their effects canceled each other in tree level processes. Not much
later, the charm quark was discovered in the production of J/¢ mesons and, soon after
that, mesons with open charm were produced [47-50]. With the known particles two
so-called particle families (or generations) could be formed. Each of them contained a
neutrino, a charged lepton, and two quarks.

A first experimental consolidation of the Standard Model was given by the discovery
of neutral currents in neutrino-scattering experiments at CERN in 1973 [51,52]. In 1973
Kobayashi and Maskawa [53] assumed the existence of a third family in order to explain
the violation of CP symmetry discovered in 1964 by Cronin and Fitch [54]. The 2 x 2
Cabbibo mixing matrix would be extended to a 3 x3 Cabbibo-Kobayashi-Maskawa (CKM)
matrix and instead of only one free mixing angle there are three angles and one phase
needed to construct the most general unitary matrix. A non-vanishing phase in the CKM
matrix would introduce CP violation into the Standard Model Lagrangian in a natural
way.

Three years later in 1976 the 7 lepton was discovered by Perl et al. [55,56]. It was the
first particle of the announced third generation. Shortly after that followed the discovery
of the b-quark in 1977 [57]. And only some years ago the last missing quark of the
third family the, top quark, was found at Fermilab [58] after its mass was predicted by
the analysis of radiative corrections to the LEP measurements at the Z resonance. The
T-neutrino was directly observed recently in the DONUT experiment at Fermilab [59].

Two important experimental confirmations of the Standard Model could be achieved
before the discovery of the top quark. In 1978 the mixing between the neutral gauge
bosons in the Weinberg-Salam model was verified by the observation of the interference
between weak and electromagnetic interactions in the scattering of polarized electrons on
deuterium. And maybe the most important observation was the direct production of W
and Z bosons in the UA1 and UA2 experiments at CERN [60,61]. Experimental data
from LEP indicates that the number of light neutrinos is three. This may lead to the
assumption that all fermion families are discovered and that only the Higgs boson remains
to be discovered in the Standard Model. We will come back to this in section 2.3.

2.2 The Particle Content of the Standard Model

In this section we present the particles of the Standard Model and their description by
fields in a Lagrangian. Not only the physical particles like e.g. leptons, but also the
unphysical particles like the Faddeev-Popov ghosts are introduced.

The Standard Model Lagrangian can be split up in parts to pronounce the different
sectors of the model:

L = ﬁermion + Zgauge + ZHiggs + ZYuk + ag/ﬂg.f. + ag/ﬂFP (21)

In the following, the various sectors will be described.



2.2.1 Fermions

The fermions are described by Zermion- This part of the Lagrangian contains the kinematic
terms of the fermions and their interactions with the gauge fields. The interactions are
introduced as minimal couplings via covariant derivatives:

ZFermion = 1 Z EZLDwZ_'_z Z ZZRDZE

i=e,u,T i=e,u,T
iYL Y i YD TrDdg (2.2)
i=u,c,t i=u,d,c,s,t,b

Here, 1, denotes a doublet of left-handed leptons:

v = ( i )L, (2.3)

(i), ¢

The right-handed singlet fields are denoted by %, for leptons and g, for quarks. The fields
u, in equation (2.2) are used for up-type quarks and the fields d, represent down-type
quarks. The primes indicate that the down-type fields are not eigenstates of the mass
matrix. They are a linear combination of the mass eigenstates and constitute the partners
of the up-type quarks in the fundamental representation of the weak interaction.

The connection between the physical fields d, and the unphysical fields d;, is given by
the Cabbibo-Kobayashi-Maskawa matrix [53]:

or quarks:

d d
s' = VCKM S (25)
b b

The unitary matrix Veogy can be parameterized by three angles, which are generalized
Cabbibo angles, and a phase. The hyper-charge Yy of the fermions is chosen in a way
that the Gell-Mann-Nishijima relation [62]

Q=1+ Y7W (2.6)
holds. In equation (2.6) @ stands for the electric charge and I3 represents the third
component of the weak isospin. The hyper-charge and other quantum numbers are given
for all fermions in table 2.1.

We assume the neutrinos to be massless. This has the consequence that the lepton
families do not mix and a mixing matrix similar to (2.5) is not needed for leptons. How-
ever, recent data suggest that neutrinos do mix [5]. This would imply masses for neutrinos
and a mixing matrix as in equation (2.5) would be needed. The effects of the tiny neutrino
masses are small and we will neglect them completely.



Families Qs I3 Yw
1 2 3
Leptons < Ve ) < Vn ) ( T ) 0 +% -
e /. iy T ), -1 -3 —1
€Rr MR TR -1 0 —2
u c t —i—% +% +%
Quarks dJ, s ), v ), - é —3 +§
UR CRr tR ‘f‘g 0 ‘|‘§
d Sp b -3 0 -3

Table 2.1: The fermions of the Standard Model.

The covariant derivatives D, in equation (2.2) are defined by:

9
Dt = ( ST Wy ti YWB>¢IL, (2.7)
D,li, = ((?MJrz%YWB)l’R, (2.8)
D q _ g—» Y B gSGa q 2
WL = 5 W, +1 5 YW +1 Y, (2.9)
D.dy = (a +z2YWB 442 G“A) ' (2.10)

In the last two equations the parameter a runs from 1 to 8 and corresponds to the sum
over all gluons. The Pauli matrices are denoted by 7 and A, are the Gell-Mann matrices.
The constants g, ¢', and g, represent the coupling constants for the SU(2)y, the U(1)y
gauge symmetries and the strong interaction, respectively. The gauge boson fields are
given by VT/M, B, and Gj.

Equation (2.2) defines the kinematics and the gauge couplings of the fermions in the
Standard Model with the covariant derivatives defined in (2.7) — (2.10). The coupling
between fermions and the Higgs boson will be treated in section 2.2.3.

2.2.2 Gauge Fields

The kinematics of the gauge fields introduced in the equations (2.7) — (2.10) is described
in ZLyauge- It is given by:

1 - > 1

ggauge = _ZWMV - WH — ZB BMV — ZGZVGMV (211)
with the field-strength tensors
Wi, = 0W,—0,W,— ge’"Wiwp, (2.12)



B,, = 9,B,—0,B,, (2.13)
G, = 9,G2—0,G% — g f*GLGe, (2.14)

where fo¢ are the structure constants of the group SU(3). The indices i, j, k represent
the numbers 1, 2, 3 and the letters a, b, ¢ represent the numbers 1 to 8.
Note that there are no mass terms in equation (2.11). An explicit mass term, like

ZLrnass = My B*B, (2.15)

would violate the gauge symmetry and has to be omitted.

With the expressions (2.2) and (2.11) all interactions of the already discovered ele-
mentary particles can be described. However, so far the theory contains only massless
particles, since mass terms like

L = metbpg + hoc., (2.16)

or the term in (2.15) are not invariant under the gauge transformations. A violation of
the invariance would spoil the renormalizability of the theory.

2.2.3 Higgs sector

To keep the renormalizability of the Standard Model and introduce masses for the gauge
bosons the SU(2);, x U(l)y gauge symmetries must be broken spontaneously. This is
achieved by the Higgs mechanism. The ansatz for the locally gauge invariant Lagrangian
density of the Higgs sector reads:

2
Ltz = (D"0)' Dt + 17016 — A (¢19) ", (2.17)
where p? and )\ are positive constants. The covariant derivative is:

!
Db = <aﬂ + i%?- W, + i%YWBﬂ> é. (2.18)
The field ¢ is a complex doublet transforming under the group SU(2);, x U(1)y with the
hyper-charge Yy (#) = 1. Using the Gell-Mann-Nishijima relation (2.6) it follows that the
upper component of ¢ has the electric charge ) = +1, while the lower component is a
neutral field with @) = 0. This suggests the notation

¢=<§) (2.19)

for the Higgs doublet. The covariant derivative in (2.18) leads to a coupling to the gauge
fields W;L and B,. There is no coupling to the gluon fields G, since the Higgs field is
a singlet under the SU(3) transformation. The minimum of the Higgs boson potential
P2 (BTP) — \(®T®)? is

(9)° =+ (2.20)



with v = {/p?/A. Tt is the vacuum expectation value of the quantized Higgs field. Using
gauge invariance of equation (2.17) under SU(2) x U(1) rotations the vacuum expectation
value can be chosen in a way that the only non-vanishing term is real and contained in
the neutral part of the doublet. This condition leads to:

<¢>:(\//%>:<v/[i/§>' (2.21)

The non-symmetrical choice of the phase in (2.21) is a global gauge fixing and breaks the
gauge symmetry spontaneously. Although the symmetry disappeared, some of its features
are still present and ensure the renormalizability of the Standard Model. The physical
Higgs field should have a vacuum expectation value which is zero. This can be achieved
by the field substitution:

¢= ( (v f;+ix) ) (2.22)

The field h represents the Higgs boson and the fields x, ¢+, and ¢~ = (¢*)! are the

Goldstone boson fields. The latter are unphysical degrees of freedom and can be absorbed

by the gauge boson fields with an appropriate choice of the gauge, the unitary gauge.
Then the Higgs doublet has the form

¢ = ( %(UOJF h) ) : (2.23)

When we introduce the vacuum expectation value v of the Higgs doublet in (2.17), we get
mass terms for the gauge bosons. The expression relevant for the gauge boson masses is:

v? 2 1 12
EQ‘WM_ZWM

‘ 2

2
+(¢'B, — gW?) ] . (2.24)
The charged W bosons are constructed from the fields W' and W? by

— Wj:FiWi
g V2

The identification of the right-hand-side of equation (2.25) with the corresponding term
in (2.24) leads to the mass term

(2.25)

2,2
%WJFW‘, (2.26)

which yields a mass for the W* bosons
my = %. (2.27)

By measuring g and my, the parameter v is also known. Its value is

v~ 246 GeV. (2.28)
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In equation (2.24) it is obvious that the third component of the Wu mixes with the
field B,,. With the definition of the orthogonal combinations

_ gW} —g'b,
and ; -
_'_
A, =T (2.30)

VR

a mass term for the Z boson appears with

mz =1/9%+ g”v/2. (2.31)

The photon does not get a mass term and remains massless.
By the mixing of the photon and the Z boson a new parameter is introduced: the
weak mixing angle [3]. It is defined by

!

tan fy = L. (2.32)
g

Using the weak mixing angle and the W mass, we can express the Z boson mass:
mw

= . 2.33
mz cos Oy ( )

This relation is valid at tree-level and is changed by radiative corrections.
Equation (2.17) contains also a mass term for the Higgs boson:

mH:¢§L (2.34)

The parameter A cannot be determined so far and therefore the Higgs mass is still uncon-
strained.

Also the fermions get their masses from couplings to the Higgs boson. The Yukawa
coupling is:

i Ve T U
> T gb(e)L T ¢6<dl>L
er U UR c
s (Y al o () () e ()
TR L tr " L
/() e y)
T L b L
o( )
T \" T
| ¥ | C qsf(c,) +he, (2.35)
Vr "
¢’f(’i)
b L



where Cj, C;, and C, denote 3 x 3 matrices. The two-dimensional antisymmetric tensor
is denoted as e. In the Standard Model the second term in (2.35) couples the up-type
components of the left-handed quark doublets to the vacuum expectation value in the
Higgs doublet. The neutrinos are assumed to be massless and no coupling between them
and the Higgs fields is introduced. Using unitary transformations it is possible to trans-
form the matrices Cj, Cy, and C, without changing the physical content. The result is
just a rotation in the fermion fields, which is without observable effects, since the rotated
fermions have the same quantum numbers.

The invariance under the unitary transformations allows to diagonalize the matrices
Cp and Cj. The matrix C; cannot be diagonalized at the same time as Cj, since they are
multiplied by the same quark fields from the right side. With the unitary matrix V', C,
can be written as:

Cd 0 0
C,=V| 0 ¢ 0 |V (2.36)
0 0 Cp

The matrix V' is the Cabbibo-Kobayashi-Maskawa matrix introduced in (2.5).

Note that the vacuum expectation value of the doublet ¢ produces fermion masses in
(2.35) which are proportional to the elements of the diagonalized matrices C;, Cy, and
C,. The matrix elements are not predictable and have to be put in by hand using the
experimentally known masses.

2.2.4 Gauge Fixing and Ghosts

The quantization of the Standard Model cannot be performed without fixing a gauge.
The calculation of boson propagators requires additional terms in the Lagrangian. These
terms, the gauge fixing terms, break the gauge symmetry, but they have no influence on
observables. The physical content of the theory remains the same. For the photon we
choose the R, gauge [63]:

K7 —% (0*A,) . (2.37)

The term in equation (2.37) fixes the gauge with the parameterization £,. The same kind
of gauge fixing term can be used for the gluons:

Lo = —%G CZAN (2.38)

For practical reasons the 't Hooft-Feynman gauge with &y = 1 and &z = 1 is often
used for the massive gauge bosons?:

2
Liw = —bw W, — iTW gt (2.39)
&w
and R
Lyir = _&z 0z, — 22y (2.40)
2 &

2 Another common choice for the gauge is the unitary gauge with ¢ = oco.
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In (2.39) and (2.40) the Goldstone boson fields appear again. The gauge fixing is chosen
in a way that there is no mixing between the gauge boson and the Higgs boson fields.
However, it introduces unphysical longitudinal degrees of freedom into the theory. In the
non-abelian groups a coupling between the physical and the unphysical degrees of freedom
leads to a mixing among them. This problem can be solved by introducing additional
fields to cancel contributions from unphysical states. The new terms are the Faddeev-
Popov ghosts [64]. These ghost fields behave like scalar fermions and there occurrence in
loops allows for cancellations with the other unphysical contributions.

The Lagrangian of the Faddeev-Popov ghosts depends on the gauge fixing terms. In
the Feynman gauge (£ = 1) for electroweak interactions they are:

Lrp. = -0 (8“6’” + m%V) n" + igewnt OH (Z,ﬂf’) — dent O (A,er)
— g7 0" (W+ (nzew — 77A3W))
—+ C%/V — s%/V + + 9. _+ ;
—mwT' |g—5—nz¢" —ena¢” + 0" (h+ix)
26W 2

+ (77+ —n Wt =W ,i— —i)
— T (00 +m%) nz — igewii 0" (MW — 0~ W)

(g _ g ... g
— myTy, (—577 ¢t — 577% + —anh)

2c
—N40"0,na + ien 0" (77+le — n_W:) , (2.41)
and for the gluons:
XF.P. = _ﬁaa“auna + igsﬁaaﬂfachznc- (2'42)

The fields 7y describe the Faddeev-Popov ghosts. The indices a, b, and ¢ are used for the
gauge group SU(3), with the structure constants f%. In equation (2.41) the abbrevia-
tions:

cw = cosby (2.43)
Sw = sin9W (244)

are used.

The Standard Model, as presented in this chapter, is complete in the sense that it
describes all known particles and interactions except gravitation. Its renormalizability
and consistency are ensured by gauge symmetries, which are not explicitly broken.

However, despite the great success of the Standard Model some features remain un-
satisfactory. Up to now, there is no experimental evidence for the Higgs mechanism as
the origin of spontaneously symmetry breaking. Another point is the large number of
parameters, which cannot be predicted but have to be experimentally determined.

2.3 Theories beyond the Standard Model

Neither in high-energy nor in low-energy experiments a significant deviation from the
Standard Model predictions has been detected. Nevertheless, some still unsolved prob-
lems, e.g. the failing attempts to include gravitation in a consistent way, indicate that
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the Standard Model might have to be extended. Furthermore, the fact that the Higgs
boson is still undiscovered provides some space for speculations about the mechanism of
symmetry breaking.

Due to these reasons a bunch of theories beyond the Standard Model exists. It is
impossible to mention them all and I will not give more than a small excerpt of them
here.

The most prominent and popular theories beyond the Standard Model are supersym-
metry [65,66] and string theory [67,68]. In the supersymmetric approach a new symmetry
between fermions and bosons is introduced and all fermions in the Standard Model get
supersymmetric sfermions as partners. The sfermions obey Bose statistics and are bosons.
Similarly the Standard Model bosons get fermions, the bosinos, as supersymmetric part-
ners. In the supersymmetric models a more extended Higgs sector is needed than in the
Standard Model. At least two Higgs doublets are necessary to keep the theory anomaly
free [69-71]. The two doublets are equivalent to eight real particle fields of which three
can be absorbed by the longitudinal modes of the massive gauge bosons. This leaves five
Higgs bosons and they should appear as physical particles. There are several reasons
why supersymmetry is an attractive extension to the Standard Model. Some of them will
become clear in the following discussion.

One of the major goals of particle physics is to explain many or even all phenomena
by the simplest possible theory and the smallest possible amount of parameters. This
motivates the search for a Grand Unified Theory (GUT), see e.g. refs. [72,73]. After
the unification of the electromagnetic and the weak interactions into a SU(2), x U(1)y
gauge symmetry it is desired to incorporate also the strong interaction. By examining the
running of the various coupling constants of the three gauge groups it becomes apparent
that they do not meet at the same point in the Standard Model. In supersymmetric
models this becomes possible.

A somehow natural extension in particle physics is to change the “size” of particles.
Instead of only point-like particles also one-dimensional strings or objects with even higher
dimension can be assumed. This approach is used in the theory of strings and superstrings,
see e.g. [67,68]. There is a hope that it will be possible to incorporate gravity into the
theory of elementary particles. However, usual string theories are embedded in a ten or
eleven-dimensional space and the problem how to compactify the higher dimensions in a
unique way is still unsolved.

In supersymmetry and grand unified theories it is usually assumed that with increasing
energy more and more symmetries will appear. In contrast to this hypothesis the opposite
might be true. The observed symmetries might be just the low energy behavior of a more
complicated world at much higher energies [74].

Since the Standard Model Higgs boson has not yet been discovered, there is still
some room for new physics in this sector. One idea to produce particle masses without
destroying the gauge symmetries is called Technicolor [75-82]. Here, a strong QCD-
like interaction is assumed, which creates condensates and in this way substitutes the
Higgs boson. Most Technicolor models predict measurable resonances at energies that
are already ruled out. However, some “post-modern” models, see e.g. ref. [83], are still
alive.

It is not surprising that all of these models change the experimental observables in
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their specific way. Model dependent calculations must be performed in the comparison
of theoretical predictions and experimental measurements. In the next section I will
present a model-independent method of calculating cross-sections and other observables.
Anomalous couplings are used to mimic the potential effects of new physics and a given
model predicts the size of the anomalous parameters. When the anomalous parameters
are measured well enough it will be possible to disentangle various theories.

2.4 Anomalous Triple Gauge Boson Couplings

In this section the most general form of the Lagrangian describing the VIWW*W ™~ coupling
with V = v, Z is presented. It is demonstrated that the requirement of invariance under
various symmetries can be used to reduce the number of unknown parameters. With the
assumption that the scale of new physics is far above the accessible energies the number
of parameters can be further reduced in two different scenarios of effective theories.

Let us consider the most general Lagrangian £2"° that describes vertices with two

gen
W bosons and one neutral boson that is invariant under Lorentz transformations [84-86]:
- cpano — v —v — v A v _
L2 = gyww |gf VEWa W = WEW™) + ey W, W, V™ m—%vvw W,ew
+i9Y €upe (OPW MW — W H(PW )V + igy W, W,[(9*V” + " VH)
Ry oo vpo S‘V - vpa,
— S W W, eV — WWWW'i_“VE "PVos| - (2.45)

As in (2.25) the fields W* denote the W boson, while V# represents the photon or Z
boson field. The abbreviations W, = 0,W, — d,W, and V,, = 9,,V,, — 0, V,, are used.
The fourteen parameters gY, kv, Ay, g7, g¥, v, and Ay are not restricted by Lorentz
invariance. The Standard Model, however, predicts the precise structure of VIWWW ver-
tices and delivers therefore fourteen couplings without a direct measurement. With the
normalization conditions g,ww = e and gzww = ecot the Standard Model couplings
are:
g =ky =1, (2.46)

and

By measuring the couplings in (2.46) and (2.47) the Standard Model can be tested.
Unfortunately, the measurement of all fourteen coupling constants requires a huge num-
ber of observed events and it is therefore for practical purposes desirable to reduce the
number of parameters. One strategy is to assume that the vertex factor (2.45) is invari-
ant under certain symmetry transformations, like C (charge transformation), P (parity
transformation) or their product CP.

Assuming invariance under CP transformations leads to the shorter Lagrangian:

M = gvww [QYV“(WM_VWJFV —WALW™) + sy W, W,V (2.48)
A
g VI WPW g5 e (W)W = WH@PW )V
w
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The six anomalous parameters g} , &y, and v disappear, because the according operators
do not have the correct behavior under the symmetry transformations. The coupling
proportional to g violates both C and P but is invariant under CP transformations.
With the stricter assumption that C and P should be conserved separately also g¥ can
be eliminated.

In the case of electromagnetic interactions also gauge symmetry should be conserved.
This demand leads to g/ = 1 and g = 0, and only the two parameters x, and A, will
give anomalous contributions to the yWW vertex.

Using all these assumptions we end up with six anomalous couplings, which is still
too many for present data. A further reduction of the number of couplings is possible by
examining how physics beyond the Standard Model may look like.

Since no deviations from the Standard Model predictions were measured up to date
we can expect that existing deviations are small if any. This implies that new physics can
be described by effective theories in the presently accessible energy range. In an effective
approach new terms are added to the Standard Model Lagrangian in a specific way. These
new terms can contain all possible operators that keep a required symmetry invariant.
The additional Lagrangian is written as a power series:

1 1
Sn =52 a0 + 53 a0 .. (2.49)

where (’)Z(N) denotes an operator of mass dimension /N. The large parameter A is the
mass scale of the new physics. The typical contribution of the operators is expected to
be of the order of az(N)(\/E/A)N"*, where s is the squared center-of-mass energy. If we
assume that new physics behaves “natural”, the parameters ozz(N) will be of order one.
With this requirement the contributions from operators with a higher N will be smaller
than others as long as the condition A > /s is valid. In such a case an expansion in the
mass dimension is valid. However, the expansion will break down when /s reaches the
scale A.3

If the expansion in (2.49) cannot be limited by a maximal value for N, any interaction
term in (2.45) can be rendered to be SU(2), x U(1)y gauge invariant by adding interactions
with additional gauge bosons, additional would-be Goldstone bosons, and the Higgs boson
[87-91]. However, in a low energy approximation, where we consider only operators with
N < Nnax, a gauge-invariant parameterization of the triple-gauge boson coupling can be
used to constrain the form of (2.45). In the following, we will assume that operators with
mass dimension larger than six can be neglected. Further we presume that lepton number
and baryon number are conserved. Then all operators with mass dimension five vanish.
Still; more than eighty operators with mass dimension six remain [92-95]. However, not
all of them will contribute to a particular process.

Using the SU(2); x U(1)y gauge-symmetry as a guideline there exist two possible
scenarios. If the Higgs boson is light, a linear realization of the symmetry is used. A
heavy Higgs or no Higgs boson at all will require a nonlinear realization of the symmetry.

3A well-known example of such a behavior is the Fermi theory of the weak decays. At low energies
(v/s << M) the decay can be treated as a four-particle interaction. In the region of the Z peak,
however, this approach fails and the weak boson propagators must be considered.
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As the low energy degrees of freedom with direct interactions with the new physics we
consider the SU(2); x U(1)y gauge bosons and the would-be Goldstone bosons, which
contribute to the degrees of freedom of the massive gauge bosons. The two possible
scenarios will be discussed in the following.

2.4.1 Linear Realization

For the construction of gauge invariant operators the Higgs doublet field ¢, the covariant
derivatives D, and the field strength tensors WW = Wy — gW, x W, and B,, can be
used. With these building blocks eleven CP conserving operators with mass dimension
six can be constructed [88-90,92,94,95]. Four of these operators have strict constraints
due to low energy data, since they contribute to well measured gauge boson propagators.
Four other operators describe anomalous Higgs couplings and are neglected in the present
analysis. These operators can only be constrained by measuring the couplings between
Higgs and gauge bosons.
The three remaining operators are [86]:

(W, < WP,

(2.50)
where the coupling constants g and ¢’ correspond to the SU(2); and U(1)y gauge groups.
The operators in (2.50) describe interactions between three gauge bosons, interactions
between four gauge bosons, and interactions between Higgs bosons and gauge bosons.
Note that the factors 1/A? appearing in (2.49) are here included in the parameters ;.

After setting the Higgs field to its vacuum expectation value we get the contributions
to the anomalous gauge boson couplings. The relations of ags, aws, and ay to the
anomalous couplings are then given by:

LTGC = g B2 (D &)1 B (D, <I>)+zg Y (D,®) 7™ (D,®) +
mW miy miy

2
(0%
AgZ = 2V Aky === (DAkz — Agl) = awg+as,, A\, = Az = aw. (2.51)

ck sW
With the chosen symmetry requirements we managed to reduce the set of anomalous
couplings from fourteen parameters to three. However, we are not completely model
independent anymore and it should be stressed that if the condition A > s is not fulfilled
the relations in (2.51) will not be valid anymore.

2.4.2 Nonlinear Realization

If the Higgs boson is too heavy or if it is not present at all, a nonlinear realization is used
to construct an effective Lagrangian. The Higgs doublet ¢ should be expressed by the
unitary and dimensionless matrix U:

=

U=e“7r, (2.52)

with the would-be Goldstone bosons denoted as w; and v is the vacuum expectation value
of the Higgs field as introduced in (2.20).
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Using the “naive dimensional analysis” of ref. [96] the dependence of the scale of new
physics Ayp can be determined and the operators can be compared with contributions
from the linear realization. The dependence is given by:

O(Axe) o< Mp g 1o (2.53)

NP ANP
where d is the number of derivatives and w gives the number of gauge fields in the operator.
Applying (2.53) on the anomalous couplings in (2.45) it appears that the parameters Ag}’
and ky are suppressed by a power 1/A% , and effectively of the dimension six. This means
that they can be produced by operators of the dimension six as in the case of the linear
realization. The term VAW, F PW,, producing the anomalous coupling proportional to Ay
is of the “naive” dimension eight and for large Axp expected to be much smaller than the
couplings Ag! and ky.
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Chapter 3

The Anomalous Magnetic Moment
of the 7 Lepton

Dirac’s famous prediction p = e/2m [15] for the magnetic moment of spin 3 point-like
particles was a great success of his theory. This result and the calculation of the one-
loop correction to pu by Schwinger [16] were convincing arguments for QED. Today, the
magnetic moments of the two light leptons e~ and p~ are among the best measured
physical quantities and are determined with the spin-precession method to be [97]:

h
e = (1.001159652193:|:0.000000000010)26 , (3.1)
Mme
h
by = (1.0011659230i0.0000000084)26—. (3.2)
my

These values are in a very good agreement with the theoretical predictions.

To measure the magnetic moment of the 7 lepton the spin-precession method cannot
be applied, since the 7 lifetime is to short. However, the value of the magnetic moment is
of some interest, since a difference to the theoretical prediction would indicate new physics
in form of new particles or a composite 7. The proton and the neutron are nice examples,
where the magnetic dipole moments differ strongly from the theoretical prediction by
Dirac because of their compositeness.

In this chapter we discuss measurements of the magnetic dipole moment of the 7 lepton
and derive analytical predictions for its determination in the e™e -annihilation processes
at LEP. For other aspects in 7 physics, please refer to recent overviews [98-101] and the
references therein.

Let us start with flashing briefly the basics on magnetic dipole moments of leptons.
A more detailed discussion of equation (3.3) and the derivation of equation (3.4) can be
found in appendix C.1. The general form for the matrix element of the electromagnetic
current of a lepton is of the form

: _ t v
jﬂ = eu(pla sl) 7ﬂF1(q2) + %Uﬂ quQ(q2) + 750'H qF3 U(p, 8)7 (33)

with ¢ = p’ —p and o = § [y#,7"].
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Figure 3.1: The two Feynman diagrams contributing to final state radiation in T pair
production.

The functions F; and F3 contribute to the magnetic moment of the lepton

= S [R(0) + F(0)], (3.4)

while F5 generates the electric dipole moment
d, = eF3(0), (3.5)

which should vanish as long as CP symmetry is valid. A derivation of equation (3.4) is
given in appendix C.1. For spin % particles, F1(0) = 1. The anomalous magnetic moment
is defined as

a = — 1= Fy(0). (3.6)

Without radiative corrections F5(0) disappears for point-like spin % particles. Including
radiative corrections the theoretical prediction in the Standard Model is [102]:

at™ = 0.001177. (3.7)

The first measurements of the form factor F»(q? > 0) were performed in the process of
7 pair production with an intermediate photon. This was done in the e™e™ annihilation
experiments at PETRA [103]. The obtained limit was F5(¢*> > 0) < 0.02 (95% CL) in the
range of (5 — 37 GeV)? for ¢°.

Another possibility to get limits to Fy(m%) is to measure the Z777~ vertex and as-
suming SU(2); x U(1)y symmetry. This model dependent analysis was done by Escribano
and Massé and they got the limit —0.04 < F'(m%) < 0.06 [104].

A way to measure the parameter F5(0) is to look at final state radiation in the process
of 7 pair production. The corresponding Feynman diagrams are shown in figure 3.1. In
figure 3.1 also the particle momenta are defined. The observed photons are on-shell, which
implies ¢*> = 0. The measured F5(0) is not exactly equivalent to the anomalous magnetic
moment, since one of the 7 leptons is off-shell.

Final state radiation was first applied to restrict the anomalous magnetic moment in
an analysis by Grifols and Méndez [105]. They used the effect of an anomalous term on
the Z decay width in their calculation and evaluated the expression

T[2° = 75779] = To + Tano, (3.8)
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r no — X
% 10247m2 sin? By cos? Oy

(v® 4 a®) — %(v2 —a?)|. (3.9)

The Standard Model contribution is denoted with Ty and v = 1 — 4sin® 65}, a = 1 are
the common abbreviations for the coupling constants. Grifols and Méndez got the limit
la;| < 0.11 (95% CL). Note that terms linear in a, are neglected in equation (3.9). This
is justified for large values of a,, since linear terms always appear together with a spin
flip, which is proportional to m? /m?%. However, the actual size of the linear term can only
be determined in an explicit calculation as presented in section 3.1.

Recent measurements at LEP, using final state radiation and the linear terms in a, as
discussed in section 3.1, give the best limit to the magnetic dipole moment [106,107]. It

is currently [97,107]:
fir

eh/2m,

This limit is about five times bigger than the theoretical prediction.

—0.052 < < 0.058. (3.10)

3.1 Analytical Predictions

For the Standard Model process we assume all known corrections, like initial state radia-
tion and interferences between initial state and final state radiation, to be taken already
into account. Their effects are proportional to the presumably small value of a, = F5 and
can be safely neglected. The contributions of the photon exchange diagram is suppressed
by the denominator in the s-channel propagator and is not considered here. Figure 3.1
shows the two remaining diagrams, used in this calculation.

To perform a precise determination of a, it is useful to look at more than the total
cross-section, e.g. to examine distributions. The parameters of physical relevance are the
production angle of the photon cosf,, and the photon energy E,. For an experimental
cut cosf, the angle between photon and 7 lepton, is important. This cut is treated in
section 3.2, where numerical results are presented.

The matrix elements were evaluated applying the Feynman rules given in appendix
A and checked using the program CompHEP [108,109] with modified Feynman rules. The
analytical integrations over the phase space, described in appendix B.3, were performed
using FORM [6]. The integrals over the production angle of the 7 leptons were done first.
The only non-polynomial contribution in cosf; and ¢; came from the denominators of
the 7 propagators:

t, =2pmq = 5(1 —2')(1 - B cos by), (3.11)

t =g = 3(1 — 2)(1+ B coshy), (3.12)

where z’ is related to the photon energy given by:

2 2F

s NCR
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and the velocity of the 7 leptons in their center-of-mass system:

4m?2

B =4/1— gj’sT (3.14)
is used.
The integrals of these propagators are:
2 '
%_/1 d cos 01?—2; = ﬁ, (3.15)
1/ 1 1 1+45 1 s
5 / d cos 015 = Fs(1 = ) In T ﬂ’s(l ey In m (3.16)

Note that the approximation in equation (3.16) is only used for integrations over z'.
After integrating over the two 7 angles we get the distribution:

d’o 1. 1+48
- 1 o 2 2\ — 1 - 4 2
Lodcosd, ﬂC{ ( x)l(v —|—a)6, - 5( + cos®6,) — 4a*|a,
1
32(1 —z') [a2[(1 —2')?(1 — cos? 0,) + 82']
s
+ 3(v® — a®)z' (1 + cos® 6 )]m—f 2
3(v* +a?) 2 oy 1, 140
AV T2 1 i
+ (=2 (1+cos®0,)(1+z )ﬂ’ e
— (14 cos®6,)(1 — z')* — 82" cos? 07] }, (3.17)
where the abbreviation
G> M3,
- 2z ’ S (v + ), (3.18)

m 9671' |S — M% —|—7,Mzrz(8)|

contains the s-channel propagator and the coupling constants.
The integration over the remaining angle cos#; is simple and yields:

% = B'C’{(l —x)[(v2 +a2)%ln 11_?: -3 2]a7
+-(1—2") laQ(l _69:[)2 + (v + a2)az'] %af
+ Ufjj(l +22) (51, % 1) } (3.19)



Figure 3.2: A one loop correction to final state radiation.

For small photon energies (z' — 1) the Standard Model part of equation (3.19) shows the
known infrared singularity. The anomalous terms have got an additional factor ¢, from
the vertex factor in equation (3.3) and are infrared safe. With an upper cut z for the 2’
integration, the cross-section

rdo
ar = [d — 3.20
Ohard() / o (3.20)
is finite. The cut-off x corresponds to a minimal photon energy
min \/g

The cross-section for hard photons is then:

X

Ohara(T) = c{—g [(02 +a?) <(x _9) 1n7‘;“;—83 v 5) ~ 3a2(z — 2)] a,

1[,1—(1—2z)

+ 34 [a 1 + (v +a®)z*(3 — 29:)] mizaf
3
+ (02 +a?) lzﬁ - 3(2 +2)In - 4 22 + 2Lip(1 — z) — 2 Liy(1)
mT

+21In

lix(lnmiz—lﬂ}, (3.22)

where the Euler dilogarithm Li, is used. It is Liy(1) = 72/6 and Liy(0) = 0.

As mentioned before only the Standard Model contribution is singular for z — 1,
so the singularity can be removed in the usual way. The contributions of soft photon
radiation and virtual diagrams, which are of the same order in the coupling constant,
have to be added. These corrections are [110]:

m,

3 1
The total cross-section for 7777 () production is given by the sum
Otot = Ohard(T) + Os10(T). (3.24)
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and is

3 1 5 3 s
Otot — C{(v2—|—a2) l1—5<3—1nm>a7+6—4m—%a3]

T

3 1 s
2,2 2
+(a* —v )<_ZGT+ 109 2@)}. (3.25)

The total cross-section in equation (3.25) is independent of the cutoff parameter z as
desired. The infrared singularities in equation (3.22) and equation (3.23) cancel each
other. The terms proportional to a? were published in [104,111]. The terms linear in a,
were first presented in ref. [112].

The range in which equation (3.25) can be applied might be estimated with the the-
oretical prediction, for a,. When the limit for a, is close to the theoretical prediction
contributions from loop diagrams as shown in figure 3.2 become important and cannot be
neglected anymore.

It is easy to extend the calculation from above to the presence of a non-vanishing
electric dipole moment as introduced in equation (3.3). The results can be extended by
the simple replacement:

a? a? d?

There appear no terms linear in d,, so a, and d, have different contributions to the
cross-sections and can in principle be disentangled.

3.2 Numerical Results

All numerical results obtained in this section were produced with the Fortran program
Anotau [113]. We used the value sin® fy = 0.2320 and the 7 mass m, = 1.777 GeV for
the calculations.

The result for the anomalous contribution to the total cross-section is shown in fig-
ure 3.3. To demonstrate the effects of the terms linear and quadratic in a, their separate
contributions are plotted in the same figure. The figure shows that linear terms are of
the same order as the quadratic terms at |a,| < 0.01. For smaller |a,| they even give the
dominating contribution to the anomalous effects and they are still of the order of 20%
for values of |a,| < 0.05.

Experimentally, it is impossible to identify photons when they are collinear with the
7 leptons. This would require an additional cut on 6}, the angle between the photon
momentum and the 7 momenta in the detector system. The angle #; introduced in (B.44)
— (B.46) is defined in the center-of-mass system of the 7 leptons and cannot be used
directly to apply this cut. However, it is possible to express 6; as a function of 67 and the
photon energy:

6, = 0.(67,2"). (3.27)

The easiest way to calculate this dependency is by expressing the scalar product (p1k) by
the phase space variables defined in appendix B.3 and to compare this with the definition
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Figure 3.3: Contributions from terms linear and quadratic in a, constitute the effects of
an anomalous magnetic moment on the total cross-section.
of 8] in the detector system:

pik = plk® — Zplkz = pl&° [1 — By cos 6]], (3.28)

where the velocity of the 7 in the detector system is:

6 = |1 m2 ( 4m? 1 ) (3.20)
! (p?)? s 1l(1+a)F(1—a")8 cos AA '
With (3.28) and (3.29) it is easy to get an expression for cos6;:
1F 3 cosf
0] = 1-— 3.30
wti = [ - e e (330
and an explicit dependence of cos6;:
+Acosf; —
cos b/, = CP L (3.31)

\/D(l —cos?6;) + A% cos? 6, F 2ABcos by + B2’
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where the abbreviations

A = B(1+42), (3.32)
B = 1-2 (3.33)
D = 42'p?, (3.34)
E = A?—(A®-D)cos’6;),, (3.35)

are used.

To apply the discussed boost and get the required form of (3.27) it is necessary to
invert equation (3.31) and express cos #; in dependence of cos f;. This leads to a quadratic
equation with two solutions:

AB(1 — cos®0}) + \/AQB2(1 —cos?26;)? — E(B? — (B? + D) cos?6%)
7 :

The correct solution of equation (3.36) is found by considering the limit 2’ — 1 which
corresponds to the case where the two Lorentz systems are identical. In this limit also
the angles A and 6; must be equal. Inserting 2’ = 1 in (3.32) — (3.35) exhibits that the
sign in front of the square root is the same as the sign of cos 6.

To apply the cut it is useful to switch the order of integration and treat the scattering
angles of the photon first. We get then the distribution:

cosf = (3.36)

d*o

1+2? [1 1 m2 (1 1
_— e / ]_— ! [ _ _ _ T _ . _1 2 2
dx'd cos 0, 60{( z) [2(1 — ') (t+ - t) s <ti * t2> ] (v"+a)

+1_2$' l(l—x') ( L +i> (v2+a2)—6a2] ar

t,  t

1-—2

t— [4x'(v2 +a®) + (1 — cos® ;) (1 — x')z] icﬂ}. (3.37)

m2 7
Now, the integration of (3.37) over cos 6; can be performed analytically for arbitrary limits
and equation (3.36) can be used to determine the integration limits for the desired cuts.
The cuts will be applied for both leptons and therefore the integration limits will remain
symmetric.

The limits for the integrals presented in (3.15) and (3.16) are changed and the integrals
yield now with new limits:

1] m2 m?2

5_/dCOS elt—i— = O(?T) — 0, (338)
1 1 1 1+4c

—[d 60— = | ) )
2_/ cos 15 A=) no— (3.39)
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Figure 3.4: Effects of the anomalous magnetic moment for different cuts to the angle
between T lepton and photon. The upper figure shows |a.| = 0.05% and the lower figure
shows |a,| = 0.01%.
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Figure 3.5: The ratio of the contribution of anomalous terms compared to the Standard
Model prediction depending on the minimal photon enerqy Eyin,.

In figure 3.4 the effects of this important cut are shown in the energy distribution of
the emitted photon. Clearly, the anomalous signal is reduced. However, for high photon
energies the anomalous contributions are less sensitive to the cut.

In figure 3.5 the ratio of the anomalous contribution over the Standard Model predic-
tion is shown as a function of the minimal photon energy. The ratio increases for higher
photon energies, but on the other hand the number of events is reduced drastically.
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Chapter 4

W Pair Production

W pair production processes have been studied in theory since several decades. The
first cross-section calculations were performed already before the Standard Model became
known. With this kind of process the non-abelian gauge structure of the Standard Model
can be tested. Especially, a more precise determination of the W mass [116-118] and
the measurement of the triple gauge boson couplings [86] become possible with W pair
production.

The first calculations for the process of W pair production in the Standard Model were
done in the seventies for the total cross-section [119] and for the total and differential
cross-section [120]. These calculations were done for the signal process

ete” - WTW. (4.1)

The produced bosons were assumed to be on-shell and the width of the W bosons was
neglected. The three contributing diagrams in the process (4.1) are shown in figure 4.1.
The cross-section for this process is a function of s, the center-of-mass energy squared,
and myy, the mass of the W boson:

o =o(s,miy). (4.2)

Ten years before, it was shown that the decay width 'y, of the W boson will lead
to large corrections if the W is much heavier than the proton [121]. Therefore, it is
necessary to consider the finite decay width to make precise predictions. This may be
done by convoluting the cross-section with Breit-Wigner factors [122]:

s (\/g*\/a)z
o(s) = fdslp(sl) / dsap(s2)o0(s, s1, $2). (4.3)

0

The Breit-Wigner factors are:

1 V5ilw(s:)

y= 2 B(f), 44

Ploi) = 3 T e X B() (1.4
where B(f) denotes the branching fraction for the decay of a W into the fermion doublet
f. The expression oy (s, s1, S2) in (4.3) describes the process of W pair production with the

masses /51 for the W~ and /s, for the W™. It is a generalization of o (s, m3;,) in (4.2).
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Figure 4.1: The three signal diagrams contributing to the W pair production process. The
s-channel Higgs boson diagram is neglected in the calculations. The diagrams constitute
the CCO3 process.

Since the W bosons decay almost immediately, the process
efe =W W' — (fi, i) (fz f2') (4.5)

is observed. s; and s, can be reconstructed by the invariant masses of the produced weak
doublets (f1, fi') and (f2, f2').

Additional diagrams, the so called background diagrams, contribute also to the same
final state fermions. Their number depends only on the final state fermions. Therefore,
one can easily classify all processes eTe™ — 4f by their final state fermions [123]. Table 4.1
taken from reference [123] shows the number of diagrams for the various final states. We
will restrict ourself to the CC11 class. The CC11 class is defined in section 4.2, where also
the cross-sections are presented.

All results derived in this chapter are implemented in the Fortran program GENTLE [124]
and were presented partially already in [125-128]. GENTLE is mainly applied for total
cross-section predictions, nevertheless the package was also used in experimental studies
of anomalous couplings [129,130].

4.1 The Signal Cross-Section

In this section, the analytic expressions for the CC03 cross-section are presented. They
correspond to processes where only the signal diagrams contribute. We split the cross-
section formula in a sum of products of coefficient functions C and kinematical functions

du | 3c EVe | UV, | TVr
du | 43|11 |20 | 10 | 10
ev, | 20 | 20 | 56 | 18 18
puv, | 10 | 10 | 18 19 9

Table 4.1: Number of Feynman diagrams contributing to the production of CC type final
states.
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do vV
dczcsoz = 33 /dsld32 [Ctgt(s; 81, 82, cos0) + C°G®(s; s1, 82, cos )
+C**G*(s; 51, 82, COS 9)] . (4.6)
The coefficient functions are [131]:
2 1
ct = Re
(672)2 | Dw(s1)[*| Dw (s2)|?
x L*(e,W))L*(Fy, W)L*(Fy, W)N,(F;)N,(F3), (4.7)
2 1
cst = Re
2, 672 " Doy (51 Do (52) P Dk 5)
% grL(e, 1) L2 (Fy, W) L*(Fy, W)L2(e, W)No(Fy)No(Fy), (4.8)

. 2 o 1
¢ = k,zz;,z (67T2)2R | Dw (1) Dw (s2)[> D () Dj (s)
X grgi[L(e, k)L(e,l) + R(e, k)R(e,1)]
x L*(Fy,W)L*(Fy, W)N(F})N.(F,), (4.9)

with the abbreviation
Dy(s) = s — My +iy/sTy(s), (4.10)
for the denominators of the s-channel boson propagators. It can be seen from (4.7) - (4.9)
that the coefficient functions are rather simple. They are constructed by the s-channel
propagators and the coupling constants.
As coupling constants we used:

9y = GSw =6, 9z = 9w,
L(f,w) = —2_ R(f,W) = 0,
(W) = S5 (W)
4.11
L(f,y) = % L(f,2) = ;- (2I] —2Q;5%) .
)= T2 ' 2) T Iswow 15w
e
R(fy) = %L, R(f.Z) = g55a-(~2Qssh).
with Q. = —1 and I§ = —. The kinematical functions are then calculated to be:
s 1 AN L,
G° = 3—2)\ 25(s1 + s2) + 38182+Z sin“f| , (4.12)
o 1 AL,
gt = S (s — 81— 82) | 28(s1 + s2) + o Sin 6
_ 15 (43(31 + 59) — Asin? 9)] , (4.13)
1 A Asys2sin” 0
Gt = S lzs(sl + s2) + Zsin219+ %] , (4.14)
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with
A =5%+ 52 + 55 — 255, — 2555 — 2515y (4.15)

and the denominator of the neutrino propagator ¢,:

tV:%(S—Sl—SQ—\/XCOSQ). (4.16)

Note, that the integration of equations (4.12), (4.13), and (4.14) leads to the corre-
sponding functions (2.2), (2.3), and (2.4) for the total cross-section in [131].

4.2 A Classification: Background Contributions of
the CC11 Class

The CC11 class is defined by the final state fermions. It is required that two different
weak iso-doublets are produced and that no electrons nor electron neutrinos are found
in the final state. Up to eleven diagrams, the three signal diagrams and eight additional
background diagrams, can contribute to such a process. In the following the notation
CCn process is used when a better discrimination between the final states is desired. The
number n determines the total number of Feynman diagrams contributing to the consid-
ered process. If it does not matter, whether the produced doublets consist of leptons or
quarks, we will speak of the CC11 class.

Four of the eight background diagrams in the CC11 class are shown in figure 4.2. The
total number of Feynman diagrams for four fermion production depends on the number
of leptons in the final state. The following three cases can be distinguished:

e The CC09 process with pure leptonic final states.
e The CC10 process with semi-leptonic final states.
e The CC11 process with pure hadronic final states.

The various background diagrams can be denoted by the final state fermion coupling
to the neutral gauge boson in the s-channel propagator. For example the left diagram in
figure 4.2 is denoted as a ds-diagram since the down-type fermion of the positive charged
doublet couples to the v or Z. In this context we will not distinguish whether the final
state fermion is a quark or a lepton.

It is useful to split up the background contributions into three parts. The first two
parts are the interferences of the s-channel and the ¢-channel signal diagrams with the
background diagrams in figure 4.2. The corresponding cross-section contributions are
denoted by oy, and oy. The third part contains the pure background and is denoted by

Opb-
dO’b . dO’sb dO’tb dO’bb
dcosf dcosf dcos@® dcosh

The expressions for each part in equation (4.17) can be presented in a similar way as
it is done for the signal diagram results in equation (4.6). However, in contrast to the

(4.17)
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dy

Figure 4.2: Four of the eight background diagrams contributing to the CC11 process.

CCO03 expressions, we need in general two contributions from each interference, since more
coupling constant combinations can appear.! An exception are the interferences with the
t-channel diagram. Here only one combination of coupling constants is needed.

4.2.1 The Background-s-channel Interference

For the s-channel background interference we get:

dow A [4ds, 3 X [cimgm +cmige]. (418)

- 2
dcosf 27s Py W

The lower symbols 4+ and — indicate the two coupling constant combinations.
The coefficient functions are:
2 1

G = X (6022 Dy(5) D7 (=) Do (1) Do () Dy (530
« g [L(e, k) L(e,1) + R(e, k)R(e, )]
X LP(Fy, W) L*(F3, W)L(fs, [)Ne(F1) Ne(F3). (4.19)

For the sui-interference we get the kinematical functions:
3 cosf
16 /X

G (s, 51,82) =

82 {23 [s(sl + 59) — 57 — sg] L(s1;82,8) + (s +351)> — s%} :

(4.20)
31— 3cos’0
g—sl—m (8, S1, 82) = Ef828182 [28825(81; S2, S) +8—81+ 32]
3
- f—? [s(sl + 52)(1 + cos? §) + 25 55 sin’ 9] L(s1; 82, 5)
3
+ &(81 — s —4s3) + °%2 [8(381 — 59 — 8)(1 + cos? 6)
8 32
Asin® 0
+ 251(s; — s2) sin® 9] + Séj (s1 — s — s2), (4.21)
with /3
1 — 51 — A
L(s;81,83) = —=1n ST TRTNVA (4.22)

\/X 8—31—32—\/X

IThis effect is evoked by the additional spin dependent Z f f-coupling in the background diagrams.
Consequently the coefficient functions C_ vanish when only photons are exchanged.
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The remaining kinematical functions can be easily obtained by the relation:

5 (s, 81,82) = Gi%(s, 82, 81) = FGI* (5, 82, 81) = FG"' (8, 81, 82). (4.23)

After an integration over cosf, expression (4.21) leads to (3.1) of [131]. G**! is pro-
portional to cos# and does not contribute to the total cross-section.

4.2.2 The Background-t-channel Interference

Since only left-handed fermions appear in the t-channel exchange in the interference of
t-channel and background, only one coefficient function per interference term occurs:

do—tb \/X / ta; ~ta;
= ds;d Creighei, 4.24
dcosf 2ws? s1as2 izl;2 a:zu:d g ( )
The coefficient functions are:
2 1
clai = Re
k:z'y,z (672)> " Dw(s1)Dw(s2) Dj;(s) Diy (s3-s)

x L*(E,W)L(e, k) L(f2, k) L*(Fy, W) L*(Fy, W)N.(F,)N.(Fy).  (4.25)
and the kinematical function for tu, is:
gtu1 (S) S1, 32) —
-1 1
~ {2% s%5155(5sin” § — 2) [E(s + 81 — $2) + 28L(s1; 82, 8)
. 9
sin” 6 9
+ A [ < [25189(82 — 81) — 68”s2(s1 + $2)L(s1; 2, 8) — 3882(s + 52)]

sin? 6 881] 33132[ 3

G [(s — s1)* — s3] + > | —Zsszﬁ(sl; 59,5)(5ssin® § + 4s;

1 1
+ 4sy) — §(3s§ — 2881 + 45185 — 753 + 30ss5 + 9s%) sin® § — 5(33% — 253

3 2
—s189 + 2331)] + 8482£(81; 59,5)([4s152 + 57 + 53 — s(s1 + s9)] sin” @
.2
889 sin” 6
— 45189 + 57 + 53 — s(s1 + 52)]) + 27(23132 — 557 + 353
— 14551 — 35%) +§(5S%S2 — 25155 — 355 + Bssy sy + 38282)} : (4.26)
For the td;-interference we get:
gtdl(saslasQ) = _gtU1(8781782)
3952 [0 (s 41+ s0) [ )= (s = 52
- —= s+ 81+ 89)[51(251 — 5 — 83) — (s — s
3 i, 1+ S2)[51(281 2 2

-2 {ssl(s — 51)% + 559(5 — 59)% + 5159(51 — 32)2] L(s1; s2, s)}

+s [3(31 + 89) — 87 — 33} L(s1; 82, 8) + % [(s +51)% — sg]] . (4.27)
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The kinematical functions for the second fermion doublet is obtained by the symmetry
relations
G™2(s, 51, 89) = G (s, 89, 51), (4.28)

and
G2 (s, 51, 85) = G (s, 5, 51). (4.29)

4.2.3 The Pure Background Contribution

The pure background contribution contains the squares and interferences of eight Feynman
diagrams. This leads to 64 interferences and, therefore, to 128 coefficient functions and
kinematical functions:

L R R

2
dcos€ 2ms ahmwdif12

The coefficient functions are:

b 2 o 1
o= klz'yZ(Gﬂ-2)2R Dy(s) Dy (s) Dw (s3-i) Diy (s3-5)
x [L(e, k)L(e, 1) &= R(e, k) R(e, 1)]
><L2(F1, W)L?*(Fy, W)N.(Fy)N,(F)

L(ff, k)L(f},1)- (4.31)

The v and Z exchanges differ only in the coefficient functions, therefore, the number of
independent kinematical functions can be reduced to 2 x 16. With the symmetry relation

b — ghit (4.32)

the number of independent kinematical functions can be further reduced. Only 2 x 10
independent G-functions remain and have to be determined. To express all these kine-
matical functions only five new functions and two functions known from neutral current
processes are needed. The functions are: G{***, G G urdy - guidz - guiuz GED and GHD.
Table 4.2 gives an overview over the functions on which the various interferences depend.

Let us start with the simplest case: the square of the background diagrams. The u;u;
contributions are given by:

3cosd
4 VI

1
G"1¥i (s, 81, $2) 583 { L(s1; 82, 5) [(3 —51)° - 33] t+8— 81— 32} (4.33)

and
31— 3cos?6
8 A
3
+ 1—682(1 + cos? 0) [sL(s1; 52,5)(s51 — 52 — 8) — 25 — 51]

uiul

1
11 (s, 51, S2) 55183 [L(s1; 82,8)(s2 — 81+ 8) + 2] + 6—4)\(1 — cos® )

1
+ §81(3 + 3s5). (4.34)
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Uy U2 dy dy

d
gg1u2 , gi1 2

Uy ng_ﬂn’ ggﬂn h giﬂu’ gglg giulz’ gg1d2
233
gu1u2 gu1d2 d: d DD
— uULY uLu U U uULY
Us ,DD+ g+1 1, gil 1 g+1 2, g71 2 g+1 1, 9422
233
DD d d QU1U2 giulz
uULY u u uULY uULY - )
dl g+1 1, g422 g+1 2’ g_1 2 g+1 1, g_1 1 s
233
d: d: DD gu1u2 gu1d2
u u uilu — uiu uiu
dg g+1 2, gil 2 g+1 1, g422 ,DD+ g+1 1, gil 1

233

Table 4.2: Dependencies of the various background interferences on the seven kinematical
functions.

The kinematical functions for the squares of the other background diagrams are obtained
by the symmetry relations:

Gy (s, s1,82) = GY™'(s, 82, 81), (4.35)
ildl (S’ S1, 32) - :l:gilm (3; S1, 82), (436)
giZdZ(s, 817 82) = igilul (S, 82, 81) (437)

After integrating equation (4.34) over cos# one gets the expression (3.3) as presented in
reference [131]. The function G¥*** in (4.33) does not contribute to the total cross-section,
since it is an odd function of cos 6.

The kinematical functions for the interference terms between u; and d; diagram read:

ildl(s, $1,82) = jirldl(s, 51, 82) + G (s, 51, S2) — 33294%’23(3, s1,82), (4.38)

and
G (s, 81,82) = — [gildl(S, s1,82) + G (s, s1, 32)] =0. (4.39)

The similar expressions for the other doublet are easily obtained by exchanging s; and s»:
:IEde(sa 81782) = ildl(sas%sl)- (440)

Note that the function GRP (s, s1, so) appears also in neutral-current processes [132] and
is:

3
GoP(cosB;s1;80,8) = g(l + c08? 0)Gaza(51; 52, 5) (4.41)

1 —3cos?¥d

3 ss
3 31(s+82)1 (1—2£(81;82,8)72> ,

1 — S92 — S
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where Gyo» is [123,133,134]:

s2 + (s1 + 89)?
S — 81— 82

g422(8; S1, 82) = ;C(S, S1, 82) — 2. (442)

The contributions of interferences between diagrams where fermions from different
doublets couple to the s-channel gauge boson have a more complicated structure. For the
interference between u; and dy diagrams we get:

3 cosf _
G % (s,51,8) = g%s {23 [335(31; 52,8) — 51L (8238, 51) + i 5 81] — st 33} ,
(4.43)
and
u1ds s?sis3 2 Y 2
(s, 51,8,) = —18 33 (1 + sin® 0)s°s152L(81; 82, 8)L(82; 8, $1)

—3s [3%5(32; 5,51) + 55L(s1; 52, 3)]

[sin?§  scos®f 5%5189(1 + sin® §) s— 30

— 9

15t o (s—0o)+ e ( 3s )]
— s(s1 — s2) {S%E(SQ; s,51) — s3L(s1; 52, s)]

[3sin” 6 355182(1 + sin® §) s+o

. 1-3

T ot o2 ( SA)

3s2s155(1 +sin®0) [ , o, 5 12s8185(s —0)

4N IR X
s(1+ cos’6) [433 o+ 3(s3 +83) — (3s* + Tsys )o]
16)\ 192 1 2 192

in”6 [24 25 —

_ 81;12 [ 88182)(\ s=0) + 5% — 88 — 55— 108182] : (4.44)

Expression (4.44) is used to write the kinematical function for the ujus interference:

G (s, 81,82) = —G“1%(s,51,5) + 7 e [8(0—8)5(31;82,3)/3(8233,31)

+ (51 — 5 — 52)L(51; 52,8) + (52 — 5 — 51)L(52;5,81) — 2]
955189
22

+ [s(sl —8)+ $2 (sl — 89 — %)] L(s1; 82, 9)

scosf { 27s%s3s3

_|_

[8[38182 + s(o — $)|L(s1; 82, $)L(82; 8, 51)

+ [82(32 —s—581)— gssl] L(s9;8,81) — Z(s + 0')]

3
+ % [632325(31; Sa, 8)L (8958, 81) + 3552L(s1; S2, 8)
3
—5(3s2 4+ 281)L(s2;8,81) — s+ 81+ 582] } ) (4.45)
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The kinematical function G{*** can be expressed using the already derived function

d
1% (s, 81, 82) and G5

1
G2 (s, 51, 82) = 533132%%?(005 6,s,s1,82) — g“ldQ(s, S1, 82). (4.46)

Like G20 the function GRP(cosh, s, s1, s2) is also taken from neutral-current processes. It
is [132]:

DD(cosh, s, 81,8) = Z(l + cos® ) Gass(s; 51, 52)
— %2(1 — 3cos? 0)s[L(s1;52,5)252(51 — 83) + (5 — 51 — 352)]
X [L(s2;8,81)281(82 — 81) + (s — 52 — 351)] , (4.47)
with [135]:

3
9233(3; 51, 82) = ﬁ {5(32; S, Sl)ﬁ(sl; S2, S)
4s [ssl(s — 51)% + 552(5 — 59)% + 5159(51 — 32)2]
—+ (3 + S1 + 32) |:£(82, S, 81)28 |:(8 — 82) 1(3 + SS9 — 281)]
s2(

+ L(s1; 82, 5)2s [(3 —51)% + 53(s + 81 — 232)]

+5s5% — 4s(s1 + s9) — (51 — 32)2]} (4.48)
The relations
Ghva(s s1,80) = GU%(s,s9,81), (4.49)
and
Ghd2(5 51, 59) = £GU2(s, 51, 53), (4.50)

complete the set of kinematical functions for the pure background.

4.3 Anomalous Couplings in ¥ Pair Production

In the process of W pair production triple gauge boson vertices, as shown in figure 4.3,
appear in the two s-channel diagrams. In the Standard Model this vertex is described by
the Lagrangian

L =igwwy [(WhW " = WHW,, )V + Wiw, V], (4.51)

where all parameters are known. However, since there are only weak constraints to the
possible parameters in this vertex, deviations may occur. The most general form for
the YWW and ZWW vertices that is still compatible with Lorentz invariance was first
considered in [84]. Later, the number of anomalous parameters for each vertex was reduced
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W+

W

Figure 4.3: The three gauge boson vertex.

to seven in [85,89]. Several studies were performed to examine the influence of anomalous
couplings on W pair production, see e.g. [136-139]. An overview can be found in [86].
The anomalous couplings used in this work are defined by the Lagrangian:

Ly = —ie A, (W W, —WHW, )+ F,WHW |
—de (cot Ow + dz) [ (W F“’I/VJr W““’le) + ZWWJruW—u]
— Ze.TWFH,,WJr‘uWiV _ 26$ZZMVW+HW7V

— ze—F”*WMWﬂ‘ =2 ZW,, W (4.52)

M, M

and

€Zz

£2_M2

OaZps (W TWHe — QPW W + QPWHTW ™ — PW W 7). (4.53)
The Lagrangian £, in (4.52) defines anomalous couplings which conserve C and P symme-
try separately. In the Lagrangian £, of (4.53) the C and P violating, but CP conserving
coupling zz is introduced. In the Standard Model the parameters dz, x,, z, ¥, ¥z, and
2z are zero.

The parameters z, and y, contribute to the magnetic dipole moment py and the
electromagnetic quadrupole moment gy, of the W boson [140]:

e
pw = —5(2+ 2y + yy), (4.54)
mW
qw = —5 1+, —y,). (4.55)
mW

A derivation of equations (4.54) and (4.55) can be found in appendices C.2 and C.3.
The weak couplings x; and yz give contributions in a similar way as x, and A, in equa-
tion (4.54) and (4.55) to the weak moments of the W boson.

Before LEP2 reached the threshold for W pair production, there had been limits to
the yWW vertex from Tevatron [141]:

—0.33 < 2, < 0.45 (y, = 0), (4.56)
—0.20 < y, < 0.20 (z, = 0), (4.57)
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where the relations

T, = xztanby, (4.58)
Yy = Yyztanby, (4.59)
5, = 0, (4.60)

are applied. Recent limits from LEP2 for anomalous couplings combined with results
from DO are [142]:

aws = —0.03700¢, (4.61)
aw = —0.037508 (4.62)
apy = —0.057032 (4.63)

where the o’s are the coefficients of the three six-dimensional operators:

Ops = ig—22(D,®)" B» (D,®), (4.64)
myy
Ows = ig-2%(D,®) 7- W (D,), (4.65)
my
. O{W — —»V -
Ow = gGm%VW“,,-<Wp><W”“), (4.66)

and imply the identities:

AQwey = CWsw(Sz, (467)
S
aw =y, = —yz, (4.68)
Cw
By = Ty — chW5Z = —C—W (xz + S%,V(Sz) . (469)
Sw

4.3.1 The CC03 Process with Anomalous Couplings

As mentioned before, the three gauge boson vertices appear in the s-channel signal dia-
grams. The occurrence of non-vanishing anomalous couplings will therefore change the
cross-section of the CC0O3 process. The contributions of anomalous couplings to the differ-
ential cross-section is investigated in this section.

We present the results in the same way as in section 4.1 and 4.2 and introduce the
functions C$,,, and G, (s; s1, s2, cos #) for the pure s-channel contribution and the functions
Cst and GS'(s; 1, 82, cos0) for the interferences between s-channel and t-channel:

ano
dodtos

dcos@

Y /d81d82 [ZC gflm S, 81,82,0059 +chtgst s: 81,82,0089)
T8
(4.70)

With the Feynman rules of appendix A we get for the coefficient functions:

s _ 2 (3] !
Com = X (63 Dy (51 FIDw (9 FOR ) D7 5)

kJl=v,Z
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X grgl"[L+ (1= 65)81 AR

x L*(Fy, W)L*(Fy, W)N.(F\)N.(F), (4.71)
st 2 . 1
G = 2 6 D () FlDw (52 PDA(5)
% g L(e, ) L2(Fy, W)L2(Fy, W)L2(e, W)N,(F1) Nu(F), (4.72)

where the anomalous couplings

g5 = gSwiy, 97 = 9swZz,

y — 95wy y _ gswyz

95 = MI%V, 9z = MI%V, (4.73)
. SwZ

9% = gswoz, 9 = g]\ﬁ_,"ivzvz,

are used. The Standard Model couplings are:
oM = gsw, g3 = gew. (4.74)
To include the parity violating coupling 2z, we have to introduce the abbreviations:

Ail' = AT = L(e,k)L(e,l) — R(e,k)R(e,l) form # z (4.75)
AR = L(e,k)L(e,l) + R(e,k)R(e,l)  otherwise. (4.76)

The kinematical functions G** for the interference between s-channel and ¢-channel
are:

1 2 A
Gt = —s|(s1+ s2) (s — 81— 82— 8182) + Zsin® 6|, (4.77)
8 ty 4
1 2818
g;t = 188182 |:S — 81 — S92 — tl 2:| , (478)
1 sin” 0
gt = 1—6)\3 [2(31 + 59) — (s1(s — 81) + s2(s — 32))] ) (4.79)
and for the s-channel squared diagrams:
s 1 2 in2
Gs. = 1—28/\8 [(81 + $2)(1 + cos” ) + ssin 9] , (4.80)
s 1 2
gxy — a}\88182(1 + COS 0), (481)
1
g:x - ;5 = 1—28/\8 [4(31 + 32) + (S — 81— 32) Sin2 9] ) (482)
1
Gpy = 1—28/\33132 [23 sin®@ + (s, + s2)(1 + cos® 9)] , (4.83)
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1
Goy = Gps = T=ASS189, (4.84)

16
1
g, = 1—28/\28(81 + 55)(1 4 cos?6), (4.85)
S S 1 A <2
=Y = ﬁ)\ 25(s1+ 52) + | 35182 + vl 0|, (4.86)
1
G,., = a)@ s(s1 + s2) cos 9, (4.87)
s N
G,. = E)ﬂ 58189 C0S 0, (4.88)
s s 12
Ge. = G35 = —3—2)\2 s(s1 + s2) cosf. (4.89)

4.3.2 The CC11 Process with Anomalous Couplings

There appears no triple gauge boson vertex in the background diagrams. However,
anomalous couplings influence the background contributions due to interferences with
the s-channel diagram.

The differential cross-section for this part of the background is:

do'satl,m sa; sa; sa; 78a;
dcosf 271'32 /d81d32 Z Z Z [C+n n+C ng ] (4.90)

a=u,di=12 n

with the coefficient functions:

2 1

CEn = 2, 62 D5 Di(5) Dw (1) Do (52) Doy (55 )
< 67 [L{e,k)L(e. 1) £ Rle, )R(e, )]
X L2(F1’ )L2(F2, ) ( a)’ l)Nc(Fl)Nc(F2) (491)

In the interference between the s-channel and the u;-background diagram the kine-
matical functions for the various anomalous couplings are:

G™i(s,51,82) = %CT/S;S@ {23[8(81 + 89) — 87 — 53] L(51; 89,8) + (s +81)* — 33} ,
(4.92)
G (s, 51, 52) 332L)\00598 5182 [2889L(81; 82, 8) + 8 — 81 + 82
22(1 + cos® @)ssa(s1 + 52)L(51; 52, 8)
+ 6—4(1 —3cos?0)(s + 85 — 51)
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Asin? @

+ 1% ls% — 85— s(s1 + 82) — 1: ] , (4.93)
G (5,51, 52) = icosessls2 255925 — (51 + 52)]L(51; 52, 8) — 253 + 25159

32 VA

+ 388y — 881 + 82} , (4.94)

5518 1 — 3cos?d
Gi(s,snm) = == {6 ssa {sls — (51 s2)]L(s1352,5) + 5+ 51— 52}

+ (1 — 3cos? 8)[s — 2s555L(51; 52, 5)] — 16552L(51; 52, )

—8(s—s1+ 82)} : (4.95)

1 cosd

G™(s,81,82) = s {633182[2332£(31; 59,8) + 8 — 81 + 53]

32 V&

+A [6332(31 + 59)L(81; 82, 8) + (251 + 353) — 5155 — 257 + 383] } ,

(4.96)

Gii(s,s1,82) = %(1 + cos® @) ssy {28[8% + 53 — 5(s1 + 52)]L(51; 52, 8)
+55 = (s +51)°}, (4.97)
G (s,51,52) = G (s,51,80), (4.98)
G (s,51,52) = Gt (s,51, ). (4.99)

The interferences of s-channel and the other background diagrams can be calculated
using the relations:

gj;f;(s, 81, 82) = gi‘fi(s, S2,81) = :ng‘fj(s, S2,81) = qigi‘f;(s, S1,82). (4.100)

4.4 Radiative Corrections — Initial State Radiation

Up to now, no complete electroweak one-loop calculation is available for the process
ete” — 4f. However, much work has been invested on this field, see e.g. [116,143-161]
and references therein.

In the present analysis we consider only initial state radiation (ISR) as radiative cor-
rections. These corrections are implemented in GENTLE for the total cross-section, but are
also used, with the modifications described in this section, in calculations of the differential
cross-section.

In total cross-section calculations radiative corrections lead to a change of the event
rate. This effect is mostly due to the fact that the center-of-mass energy is reduced by the
radiation of photons. A cross-section which strongly depends on the center-of-mass energy,
might get large corrections in such a process. A well-known example is the cross-section
for ete” — Z — ptu, where the radiation of hard photons increases the cross-section
drastically at center-of-mass energies larger than m .
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The change of event rate can also be observed in the differential cross-section. In
this case however, an additional effect appears. The momenta of e~ and e* are changed
by radiating photons. As a consequence, the center-of-mass system is boosted along the
beam axes. This Lorentz boost will also change the differential distribution of the W
bosons, without an effect on the total event rate.

To calculate the ISR corrections the structure function approach as described in section
4.4.1 is used and in section 4.4.2 we describe the Lorentz boost necessary for the differential
cross-section.

4.4.1 Structure Function Approach

Initial state radiation can be considered by the structure function approach [116,162]. In
this approach the Born cross-section is convoluted with two structure functions D(z, s):

dcosé;
,|dcos@

do(z1228, $1, 82)
d cos 8! ’

dO'QED /
~ /4 / dzoD (21, ,
ds;ds»d cos 9 o z2D(@1,8)D(22, ) Py

mln mln

(4.101)

with 0, = 0l(s, s1, S2, 21, 2, 0) and the lower integration boundaries

> M (4.102)
zpn > o+ VE)® (4.103)

IS
The functions D(z, s) are [131,162]:
D(z,5) = (1— x)58/21%(1 +8) + H(x,s), (4.104)
with
o(3/4-78)B./2
[ —— (4.105)
T(1+2
.1
H(z,s) = —=(1+ a:)% + ¢ [F40+2)In(l - o) +3(1 +2)lna
Inz Ne ) 2
—4 i — 4.1
1—z 5 x]<2>, (4.106)
200
ne = —(Le—1), (4.107)
m
and
2
Be = —(L.—1), (4.108)
m
s
Lo = In—. (4.109)



Note that the structure functions D(z, s) are determined for the total cross-section and
have to be considered as an approximation when applied to the differential cross-section.
The transformation of the angles (due to the Lorentz boost) leads to the introduction of

into equation (4.101). The transformation function €'(6, z, x5, s)

the Jacobean ‘%COS 6
cosf
and the corresponding Jacobean are derived in section 4.4.2.
For numerical applications, e.g. the analysis presented in section 4.5.2, and especially
for comparisons with Monte Carlo programs [163,164] it is useful to calculate a bin-wise
integrated cross-section:

cosb, ()
o= [0 (4.110)

-
7 Jeose, (6a) dcosf

The integration in (4.110) could be performed analytically for the CCO3 process and im-
plemented into GENTLE also when ISR corrections are considered.

4.4.2 Lorentz Boost

Let us denote the detector system as ¥ and the center-of-mass system of the produced
W bosons as ¥'. The momenta of the electron and the positron in ¥ are:

pe- = FEx(1,0,0,1), (4.111)
pe+ = FEx5(1,0,0,—1). (4.112)

E = ,/s/2 is the beam energy of the collider. The transformation of these momenta into
their center-of-mass system (X') leads to:

piz— = E\/$1x2(1707071)7 (4113)
p.e = E\zi2:(1,0,0,—1). (4.114)

The boost velocity can be calculated by applying the transformation
Py = ——— (4.115)

on the momenta in (4.111) and (4.113). Solving the equation

r1 — VT
VI1Ty = —F——— 4.116
142 m ( )
for the boost velocity v we get:
p="1"2 (4.117)
T+ T2

In their own center-of-mass system the momenta of the two W bosons are chosen to be:

N A A

Py = (”4_8'+81’ U4—Sls1n9', 0, U4—Slc050'), (4.118)
N A N

Pyr = (”Eang, _“ESIHOI’ 0, —\/ECOSQI), (4.119)
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with s’ = 4z,2,E? as the reduced center-of-mass energy and the definition:
N = A($, 1, 82). (4.120)

Because of conservation of the 4-momentum, the energies and the momenta of the bosons
are fixed. The direction of the W bosons defines the angle 6'.

Now, the momenta of the W~ boson in the frame ¥ can be calculated by a Lorentz
boost of the momentum (4.118) with velocity —uv:

pw- = (Qs, B;sin 6,0, B; cos §), (4.121)

where Q; and B; are real and positive functions of s', sy, s, cosf and v. The velocity of
the W~-boson in the laboratory system is given by:

Qi
The lower index ¢ indicates, that more than one solution may exist for the functions Q);,

Bi, and ﬁz
Using

Gi (4.122)

Pe- + Pet = DPw- + Pw+ (4.123)
and the relations
Piy- = 51, P+ = 82, (4.124)
the functions @; and B; of (4.121) can be determined. We get two sets of solutions

(8" — 824 s1)v/1 —v%(vcos B +b)
2v/5'(1 — v2 cos? §)
(s — 89+ s1)v/1 — 02 (1% bvcosh)

_ , 4.126
Qe 2v/5'(1 — v2 cos? ) ( )

B, =

, (4.125)

with the abbreviation

b= J L 4s15'(1 — v2 cos? H) ' (4.127)
(S' — 89 + 81)2(1 - 1)2)
The number of solutions for (4.125) and (4.126) depends on cosf, v and b. By definition,
B is real and positive and therefore two solutions exit when b < v cosf. No solution exists
for b < —vcosf and there will be one solution for all remaining cases.
With the solutions in (4.125) and (4.126) and equation (4.115), the relation between
the W production angles in the two Lorentz systems is:

Bcost —vQ

cosf = :
\/(1 —v2)B?sin® 6 + (B cos§ — vQ)?

(4.128)

The transformation (4.128) is in accordance with the similar transformation derived in
the limited case of on-shell W pair production published in reference [165] for on-shell
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Figure 4.4: Differential cross-section for ete™ — p~v,ud with various corrections.

W pair production. The derivation of (4.128) with respect to cos @ leads to the Jacobean
included in equation (4.101):

d cos 9, Bia(1 — v?)
d cos ;2 - - 32 (4.129)
[512,2 + (1 — 512,2 sin® ) — 203, 2 cos 9]
X |Bre —vcos® £ v(1 — cos? 9)1_b2 v (4.130)
b b 1+ovbcosh|’ ‘

In the calculation of the bin-wise integrated differential cross-section it is easier to
perform the integration over cosf in the center-of-mass system of the W pair, ¥', and
consider the boost only for the integration limits as described in (4.128). In this way an
analytical integration is still possible.

Note that for an angular bin in the laboratory system, there may be zero, one or two
corresponding bins in ¥'.

4.5 Numerical Results

4.5.1 Standard Model Contributions

All numerical results presented in this chapter were produced with the program GENTLE
[124]. The flag setting used for the calculations can be found in appendix D. Some of our
results were already presented in the articles [125-127].
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Figure 4.5: The ratios CC09/CC03, CC10/CCO3, and CC11/CCO3 at the center-of-mass
energies of 190 GeV and 500 GeV without QED corrections. The numerical calculation
was performed with an s-dependent width in the s-channel propagators.

The differential cross-section for processes with semi-leptonic final states at a center-
of-mass energy of 500 GeV is plotted in figure 4.4. The forward peaking character of
the cross-section is obvious. This feature is even more pronounced at higher energies. It
is produced by the t-channel diagram of figure 4.1. The four different curves in figure
4.4 show the cross-section with only the three signal diagrams with and without initial
state radiation and the complete CC10 process with and without initial state radiation.
It is demonstrated that the largest deviation due to radiative and background corrections
appears in the region of cos@ < 0, which is the region of backward-scattering. The
effects of initial-state radiation are clearly much bigger than the corrections due to the
CC11 background contribution. The large corrections due to initial state radiation can
be explained by the reduction of the center-of-mass energy. At lower energies the cross-
section for backward scattering is much higher than at high energies, while the opposite
holds for the forward peak.

The contributions of the various processes in the CC11 class are studied in figure 4.5.
In this figure the ratio of cross-sections with background effects over the cross-section of
the signal diagrams is plotted for two center-of-mass energies. It is remarkable that the
curves of the various processes, CC09, CC10, and CC11 are similar to each other, although
there are different couplings appearing and even a different number of Feynman diagrams
contributing. At a center-of-mass of 190 GeV the background effects are small over the
whole range of the scattering angle. The biggest deviations are here in the limit cos — 1
and are of the order of three per mil. This situation changes drastically at a center-of-
mass energy of 500 GeV. Here, corrections due to background are large in the region of
backward scattering. The maximal deviation is at cos# = —1. They are of the order of
30%.

In table 4.3 we present numerical values for the differential Born cross-section for three
different scattering angles. With a semi-analytical program like GENTLE a high precision in
the numerical integrations is easy to achieve. Therefore, the numbers for the cross-section
are presented with their numerical precision. The differential cross-sections are given for
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the CCO3 signal diagrams with semi-leptonic final states and for all possible final states
of the CC11 class. The ratios of CC11/CC10 and CC10/CC0O9 are both about three, which
corresponds to the color factor appearing in the decay of the W bosons. The ratios deviate
slightly from the color factor even for the signal diagrams, because of QCD corrections
considered in the hadronic W decays.

The effects of initial-state radiation are considered in table 4.4. Apart from that the
values presented are produced in the same way as the numbers in table 4.3. Since two
additional numerical integrations are needed in the calculation of the cross-sections, we
require a lower numerical precision and give less digits.

The influence of s-dependent and s-independent boson widths in the Z and W prop-
agators is studied in tables 4.3 and 4.4. The effect of the s-dependence is small at low
energies as expected. However at higher energies, like /s = 500 GeV, the gauge violating
character of the s-dependent width becomes obvious and large deviations appear. They
are especially strong for backward scattered W pairs since the gauge cancellations are
strongest in this case. The s-dependent terms in the boson width destroy these cancel-
lations. As a result the cross-sections can be almost twice as high as with intact gauge
cancellations. Therefore, at energies well above the W threshold the s-independent cal-
culation is supposed to be more reliable [116,166, 167].

\/g (GeV) cosf | occos (pb) Occo9 (pb) Oc¢c10 (pb) Oc¢ei11 (pb)
—0.8 | 0.0944912 | 0.0303619 0.0945628 | 0.294524
-0.8 | 0.0943803 | 0.0303466 0.0945159 | 0.294360
190 0.0 | 0.216782 0.0697249 0.217156 0.676333
190 0.0 | 0.216791 0.0697497 0.217241 0.676600
0.8 | 0.790399 0.253913 0.790888 2.46346
0.8 | 0.790432 0.253951 0.791012 2.46385
—0.8 | 0.00712779 | 0.00191168 | 0.00598642 | 0.0187496
—0.8 | 0.0064616 | 0.0017215 0.0053926 | 0.016888
500 0.0 | 0.0227606 | 0.00688311 | 0.0214732 | 0.0669960
500 0.0 | 0.0215908 | 0.00654501 | 0.0204228 | 0.0637232
0.8 | 0.212756 0.0683217 0.212821 0.662936
0.8 | 0.212368 0.0682179 0.212503 0.661957
—0.8 | 0.00407742 | 0.000913816 | 0.00287169 | 0.00902554
—0.8 | 0.00244188 | 0.000403725 | 0.00128268 | 0.00407275
1000 0.0 | 0.01001499 | 0.00276245 | 0.00860917 | 0.0268337
1000 0.0 | 0.00614750 | 0.00155423 | 0.00484706 | 0.0151154
0.8 | 0.0550750 | 0.0175387 0.0546059 | 0.170015
0.8 | 0.0535172 | 0.0170530 0.0530947 | 0.165310

Table 4.3: Differential cross-sections without ISR. The CCO3 cross-section is calculated
with the branching ratios for the CC10 process. In the first rows the cross-section with an
s-dependent boson width is given, while in the second rows the s-independent widths are
used in the calculation.
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\/g (GeV) cos ) | oecos (Pb) J¢co9 (Pb) Jcc10 (pb) Occit (Pb)
-0.8 | 0.09075 0.02917 0.09083 0.2829
-0.8 | 0.09064 0.02915 0.09077 0.2827
190 0.0 | 0.1971 0.06339 0.1974 0.6149
190 0.0 | 0.1971 0.06340 0.1975 0.6150
0.8 | 0.6869 0.2206 0.6872 2.140
0.8 | 0.6868 0.2206 0.6871 2.140
-0.8 | 0.0131 0.003934 | 0.01228 0.03834
-0.8 | 0.01248 0.003749 | 0.01170 0.0365
500 0.0 | 0.02698 0.008348 | 0.02603 0.08119
500 0.0 | 0.02590 0.008036 | 0.02506 0.0782
0.8 | 0.2312 0.07427 0.2314 0.7207
0.8 | 0.2308 0.07418 0.2311 0.7198
-0.8 | 0.006844 | 0.001930 | 0.006032 | 0.01886
—0.8 | 0.005282 | 0.001441 0.004510 | 0.01412
1000 0.0 | 0.01128 0.00333 0.01037 0.0323
1000 0.0 | 0.007757 | 0.00223 0.006939 | 0.02163
0.8 | 0.06278 0.02010 0.06259 0.1949
0.8 | 0.0613 0.01963 0.06114 0.1904

Table 4.4: Differential cross-sections with ISR. The CC03 cross-section is calculated with
the branching ratios for the CC10 process. In the first rows the cross-section with an s-
dependent boson width is given, while in the second rows the s-independent widths are
used in the calculation.

4.5.2 Anomalous Couplings

In figures 4.6 and 4.7 the ratio of cross-sections with anomalous couplings over the Stan-
dard Model cross-section is presented for two different energies. The differential cross-
section is divided into five bins. This allows for direct comparisons with Monte Carlo
programs.

The figures show the influence of anomalous couplings when only one parameter differs
from the Standard Model prediction. This oversimplified scenario is not suited to describe
any realistic model beyond the Standard Model. It is nevertheless useful for comparisons
with other calculations and shows some basic effects of anomalous couplings. The results
in figure 4.6 are in good agreement with a similar figure in reference [168]. Additional
checks with the Monte Carlo program WOPPER [169,170] are also in nice agreement with
the GENTLE calculation.

Both figures show that the influence of anomalous couplings to the differential cross-
section are largest for backward scattering, i.e. in the region cosf < 0. Note, that this is
the same region where also corrections due to initial state radiation and background give
important corrections. At a center-of-mass energy of 190 GeV and for absolute values of
0.5 for the anomalous couplings, the contributions linear in the anomalous parameters are
dominating. This situation changes drastically at a center-of-mass energy of 500 GeV and
an absolute value of 0.1. Here the quadratic terms are important and start to dominate
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Figure 4.6: The ratio of cross-sections with anomalous coupling over the Standard Model
prediction at a center-of-mass energy of 190 GeV. In each figure only one anomalous
parameter differs from zero.

as it can be seen for the parameter zz, where the sign of z; is almost of no importance.

In figure 4.6 it is obvious, that most anomalous couplings lead to similar effects in the
differential cross-section. This feature allows for strong cancellations in the differential
cross-section between the different parameters. We conclude that it is necessary to inves-
tigate more than only one anomalous coupling at a time. Multi-parameter fits must be
performed in a realistic analysis.

With GENTLE it is easy to extend the number of anomalous couplings. All of the six
defined couplings can be used at the same time. A simple analysis is shown in figure 4.8.
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Figure 4.7: The ratio of cross-sections with anomalous coupling over the Standard Model
prediction at a center-of-mass energy of 500 GeV. In each figure only one anomalous
parameter differs from zero.

In each plot two anomalous parameters are allowed to differ from zero. The cross-section
is split up into two areas. The forward cross-section is defined by:

1
do
= [ dcosf 4.131
oF 0/ € 1cos 6’ ( )
and the backward cross-section by:
0
do
= [ dcos# . 4.132
OB /1 cos (4.132)

The two cross-sections or and og can be used to express the total cross-section op =
op + op and the forward-backward asymmetry Apg = (0 — 0B)/07.
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Figure 4.8: 1o-bounds at a center-of-mass enerqy of 500 GeV for £ = 50fb~".

The rings in figure 4.8 show the region for a pair of anomalous couplings where the
cross-section differs less than a standard deviation from the Standard Model prediction.
Although the cross-section for forward scattering (=~ 1.6 pbn) is much bigger than the
cross-section for backward scattering (& 110 fbn), the rings resembling the backward scat-
tering are more narrow. This effect demonstrates the higher sensitivity of the observable
op to anomalous couplings.

It is interesting to compare the sensitivity of the forward-backward asymmetry to the
various anomalous couplings. It is obvious that the parity violating coupling zz can be
better restricted in this analysis than the parity conserving couplings. In the latter case
the forward and the backward ring have almost the same center and the narrow ring of the
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backward scattering cross-section is almost completely contained in the ring of forward
scattering.
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Chapter 5

Anomalous Couplings in 27
Production

LEP2 is at present running at energies above the ZZ production threshold and the first Z
pairs have been observed. During the run of LEP2 several hundred events will be collected.
This will be enough to provide limits for ZZZ and yvZ Z vertices, which are absent in the
Standard Model of electroweak interactions at tree-level. However, physics beyond the
Standard Model might give strong contributions to neutral gauge boson vertices [171-173].

Requiring only invariance under Lorentz transformations the most general VZZ ver-
tex, see figure 5.1, with two on-shell Z bosons is given by [84,85]:

2 2
Yy = % i) (07" + pPg") +if) % (a1 — ), ] - (5.1)
z
In contrast to the VW W~ vertex with seven possible anomalous couplings [84, 85],
compare also section 4.3, Bose symmetry forbids more couplings in (5.1). More anomalous
couplings are allowed in (5.1) if one additional Z boson is off-shell (see e.g. [174]), but
their contributions are suppressed by a factor (¢> — ¢3). The anomalous parameter fy
in (5.1) leads to violation of C and P symmetry, but maintains invariance under CP
transformations, while f}” would introduce CP violation in (5.1).

The differential Standard Model cross-section for ZZ production in e*e™ annihilation
has been known for almost 20 years [84,175]. Also, the effects of anomalous neutral
gauge boson couplings in the production of vZ, ZZ, and v bosons have been studied, see

Zao

q1

q2

Zg

Figure 5.1: The VZZ vertex with V =, 7. Two Z bosons with momenta q; are on-shell,
2 2
q; = mz.
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e.g. [176-180]. In Z~ production processes at the Tevatron [181-183] and LEP [184-186],
limits to the vertex ZvZ were obtained. However, they cannot be transferred to Z pair
production, since the anomalous couplings in equation (5.1) are independent of couplings
in Z~ production.

Recent analysis of ZZ production processes could provide limits to the anomalous
parameters f,; and f). They are [187]:

—36<ff <34, -84<fF<79 —-21<f]<21, —-49<f] <438 (5.2)

The total Standard Model cross-section for the process of ZZ production is already
included in GENTLE. Compare also appendix D. The included background effects are based
on the publications [135, 188], while the calculation of non-universal QED corrections
follows the ones presented in reference [189]. The attempt of the next section is to prepare
the installation of the differential cross-section with anomalous couplings into GENTLE. The
numerical calculations were performed with the FORTRAN program ZAC [190] and the
results were presented partially already in [191].

5.1 The Differential Cross-Section for 77 Production

The differential cross-section for ZZ production is presented in this section. It is obtained
for the various spin combinations of final state Z bosons. This allows to determine their
sensitivity to the anomalous couplings.

The finite width effects of the produced Z bosons are considered by convoluting the
cross-section for ZZ production with two Breit-Wigner functions. The differential cross-
section is then expressed by the sum:

do do”°’

dcosf ;dcosﬁ’

(5.3)

with

c?cos& /dsl /d82 641/_ ‘MW p(s1)p(s2), (5.4)

where o and ¢’ stand for the possible Z boson helicities +, —, and 0, which are defined
by the vectors:

1 :
€1+ = €23 = E (0, F1, —1, 0) R (55)

w o= 5= (VX,0,0, (s + 51 — 52)) , (5.6)

n = 5o (VA,0,0, (5 = 51+ 52)) - (5.7)
The Kallén function A and other notations may be inferred from chapter 4. The Breit-
Wigner factors p(s;) are:

mZFZ(Sz')
my)? +m5T%(s:)

ploi) = 2 7o (5.3
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! 2 . .
The squared matrix element ‘M‘”’ ‘ in equation (5.4) can be expressed by the Standard

! 2 . . !
Model part ‘M‘S’l‘\’,l and the anomalous contributions A% :

112 112 !
M| = Mg+ A4 (5.9)
The squared amplitude in the Standard Model is:
! 2 ! !
IMEG| = (LY + RY) G851 (s1, 2) + (LY — RY) GZ5_(s1,52), (5.10)

where the Zee couplings Lz and Rz can again be taken from chapter 4. The functions
G3g are:

2
1655159

Gi(51,89) = Wcos295in2 6, (5.11)
gOO ) 1 1
ar(s1,8) = -t 2(s1 — 8)%sin? 0 (ﬁ + t_2> , (5.12)
s%(u+t)?
gécl\:/}:(slﬁ 32) = (u2t2 ) (1 - COS4 9), (513)
2
Goi(51,8:) = z—;l {83% cos® f + 4s,sin” @ (sl — scos’ 9) + Asin? 9} , (5.14)
u
Gam(s1,52) = Gam(sz,51), (5.15)
with the Mandelstam variables:
1
t = —3 (S—Sl—SQ—\/XCOSQ), (5.16)
1
u = -3 (s—sl—sz+\/Xc039). (5.17)

It is worth to note that the coupling constant combination (L% — R%) gives contributions
only to the various spin combinations of equation (5.10). These terms cancel each other
for all measurable cross-sections, because the produced Z bosons are identical, and not
all of the spin combinations in equations (5.11) — (5.15) are observable by themselves. As
an example, the contribution of G~ (s1, s2) cannot be distinguished from G~ (s3, s1) and
only their sum can be measured. For completeness the remaining G-functions are given:

ggg/[—(slasQ) — 0, (518)
3255159 1 1
ggﬁ—(sl,&) = +F XE {2 [s — 81+ $9] (a - ;)
1 1
+52[s + 51— 59] (ﬁ - t_2)} ) (5.19)
165152 (s1 — 52) 51+s 1 1
++ _ 152 (81 — S2 1+ 82
Gou-(s1,52) = F \3/2 {[48 - 5182 )\] (E B ¥>

(s — s = s2) =N (=) b (5.20)
£ .y 45%(u + t)(u? — t?) G
Gsm_(s1,82) = + NI 2 (5.21)

Gan—(51,52) = +Gay_(s52,51). (5.22)
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The contributions from the anomalous diagrams are:

, 1
AUU = Z [(LVkLW +RVkRV'l)g (317827‘/167‘/1)

Vidioyz M7

— (Ly, Ly, — Ry, Ry;) GJ° (81,82,Vk,V)]

+ Z f5 [ (LvLQZ — RVR2Z) gf”’(sl, 82) (523)
V=, Z
— (LvL} + RyR%) 677 (s1, sz)] (5.24)
with the coupling constants L, = R, = —e/2 for the yee coupling. The denominators

of the s-channel propagators 1/(s — m?/) cancel with the corresponding factors in the
anomalous vertex function (5.1). Photon and Z exchange have the same s-dependence in
(5.24).

The functions Q;"" for the s-channel diagrams squared are:

.9
Asin® 6 Vi

Go¥(s1,52) = 1515, (s1 —s2)” fi* f4, (5.25)
1 2

G (51, 85) = % {Affk + (A —dsi[s — 2(s1 + ) Y1, (5.26)

g;ti(sl, 32) = (31 - 32) sin 9f5vlc Y (5 27)

g;to(sl, 82) = gs (82, 31)7 (5 28)

Gy (s1,8) = 0 (5.29)

Similarly, the interferences g;"" between ¢ and u-channel diagrams and the s-channel
diagram can be expressed by:

G (51, 5,) = 3(3s1 Z:Z —9) {45y — (352 — 51+ 5)sin® 0} , (5.30)
o2

Gt (s1,0) = 22 851 CRR PN (5.31)

gii0(81782) = gzg)i(sQasl)a (532)

G (s1,52) = G, ¥ (s1,82) = 0. (5.33)

Again, as in equation (5.10), terms which disappear in physical observables are present.
They are listed for completeness:

G (s1,55) = icies DY FI 4 (0= dsafs — 200 + o)) AE), (5.39)
1
gsi—o(sljs2) q:gg:(32781); (535
G2 (51, 89) G (s1,82) = G5 (51, 82) =0, (5.36)
(51, 52)

{(1 1) (4882 — 48% — 88182
= :Fs _ — —
u t \/X
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85152(81 — 82)(s — 81 — $2)
- )\3/2

+cosf (8(81 - 82)(‘1_ si=s) 4) } : (5.37)

G (s1,82) = £G (52,51), (5.38)
Gt (sy,85) = %W {(1 - %) A — (s — 81 — sz)]} o (5.39)
w(s1,82) = GiF(s1,52) = 0. (5.40)

As expected there are no contributions of anomalous couplings to the spin combina-
tions (+—) and (—+). These are spin 2 states and cannot be produced by the s-channel
diagrams.

Equations (5.25) — (5.40) exhibit that the CP violating couplings proportional to f} do
neither interfere with the Standard Model terms nor with terms proportional to fJ. A
further conclusion is that it is impossible to separate out the effects of the parameters
fZ and f] on the differential cross-section of the process e*e™ — ZZ. However, both
parameters imply CP violation in a VZZ vertex.

In the limit of on-shell Z pair production only the combination with one longitudinally
and one transversally polarized Z receives contributions from anomalous couplings.

With the given expressions for the various spin combinations, the differential cross-
section (5.3) is obtained:

do VA
Toosd = /dsl /dSQ mp(sl)p(sﬁ {S+ A; + A}, (5.41)
with the functions
Ly + R; :
S = 2% {4)\ sin? §(so + s185) + A% (1 — cos* 9) + 16881820'} : (5.42)
4 LyL?% — Ry R2
A = —— 3 L TEE Y [o5](s — 0)o — 45150 — A(s + o) sin? 0}, (5.43)
my v= 2 ut
Ly L
A, = Y vi v, + RZkRW {/\(1 + cos® 9) [saff’c Lt (50— 85189) fo ¥ 5‘/’](5.44)
Vi Ve Z 4515om7,

+ (51 — 82)? [)\ sin 0% £} + 165150 fo ¢ 5‘/’]} ,

where the abbreviation o = s; 4+ s, is used. The Standard Model part is described by S
while the anomalous contributions are contained in A; and A,.

In the Standard Model limit the differential cross-section in (5.41) is in agreement
with the result presented in reference [132]. Radiative corrections to (5.41) due to initial
state radiation, see e.g. [189], can be applied in the structure function approach including
a Lorentz boost of the scattering angle as described similarly in W pair production [127].

The presented analytical results demonstrate how potential anomalous couplings might
change the differential ZZ production cross-section. Anomalous couplings will have their
main effect in the production of a longitudinally and a transversally polarized Z boson.
For on-shell ZZ production, these are the only spin combinations which are sensitive to
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an anomalous signal. Effects of non-vanishing f;” and fJ on the final states with two
transversally or two longitudinally polarized Z bosons are zero or suppressed by a factor
(s — s2)?. Therefore, a measurement of the final state spins might be used to increase
the ratio of the anomalous signal over the Standard Model background. However, the
spin analysis can not be used to disentangle the signals from the anomalous parameters
f{ and fY, since only one type of spin combination is sensitive to anomalous couplings.
Due to the interference contribution of fJ in the equations (5.30) and (5.32). f} and fY
have different angular distributions. It might be possible to separate out their effects at
LEP2 by examine those characteristics if they would contribute substantially.

5.2 Numerical Results
The numerical calculations presented in this section were performed with the input values

m3 = 91.187 GeV,

I'; = 249 GeV,

Gr = 1.16639-107° GeV 2
sy, = 0.23124,

which were taken from reference [97].

Assuming that the anomalous couplings are large enough already the total cross-
section alone will give a clear signal as shown in figure 5.2. Especially for energies much
above the production threshold a huge deviation will arise. This behavior reflects the
fact that there is no gauge cancellation for the anomalous diagrams and as a consequence
unitarity is violated by them. However, at too high energies and large anomalous couplings
the method of anomalous couplings is not applicable anymore and the results become
senseless.

The differential cross-section for ZZ production is shown in figure 5.3 for two different
center-of-mass energies. At /s = 190 GeV the cross-section is relatively flat for the
Standard Model prediction. At higher energies like 500 GeV the Z bosons are produced
in the direction of the beams or against it. As shown in the last section the contributions
of an anomalous coupling f} is quadratic in the parameter. The effect can only be an
enhancement of the cross-section, since no negative contributions are allowed. For the
anomalous coupling fy interference terms are allowed and can lead to a reduction of the
cross-section. This might lead to weaker limits on the parameters f7 .

To analyze the power of a spin-dependent measurement we define three spin combi-
nations in the final state:

LL: both Z bosons are longitudinally polarized
LT: one Z is longitudinally, the other transversally polarized

TT: both Z bosons are transversally polarized

61



a(pb)

S

S

B

_4 S
S
.

%100 120 140 160 180 200 220 240 260 280 300
vs(GeV)

1

Figure 5.2: The total cross-section for ZZ production with anomalous couplings.

Which corresponds to

ol = 0 (5.49)
ot = o0 4 o™ o 0ot (5.50)
ol = o 4o 4ot 4ot (5.51)

In figures 5.4, 5.5, and 5.6 the ratio of the cross-section for our three cases over the
sum of all spins (o"/o, 68T /o, and 01T /o) is plotted for a center-of-mass energy of
v/s =190 GeV. In each diagram the solid line describes the Standard Model prediction,
while the dashed curves show the cross-sections with anomalous couplings. In the figures
on the right-hand side cuts are applied to the invariant masses of the decay particles.

The figures demonstrate that the average polarization of the Z bosons is different from
the Standard Model expectation when anomalous couplings appear. This is mainly due
to the large effects on the spin combination LT. The effects on the other combinations are
suppressed by a factor (s; — s2), see section 5.1, and consequently the average polarization
must change.

The behavior of the Z polarization at a center-of-mass energy of /s = 500 GeV is
plotted in figure 5.7. The average polarization of the Z bosons is clearly sensitive to
anomalous couplings. Especially the spin combination LT might be strongly changed.
Since with the Standard Model vertices almost no longitudinally polarized Z bosons are
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Figure 5.3: The differential cross-section for ZZ production in the Standard Model and
with anomalous couplings at center-of-mass energies of 190 GeV and 500 GeV.

produced, an excess of them would be a clear signal for physics beyond the Standard
Model. At these high energies a spin dependent analysis would be helpful in the search
for anomalous couplings.
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Figure 5.4: The ratio of produced Z pairs, where both bosons are longitudinally polarized,
over all produced Z pairs. The left-hand figure is without cuts, the right-hand figure is
with cuts on the invariant masses: mz — 2I'y < \/s; < mgz +2I'y.
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o8 [
':\o.s i
A
0.7 |
0.6
0.5 F
r SM
0.4 - f‘Z =3
o fo=23
0.3
02K
0.1
; vs=190 GeV
| 1 | Loy

0

vs=190 GeV

I N B
-1 -0.8 -0.6 -0.4

P S IS BRI B
0.2 0.4 0.6 0.8 1
cos@

P
-0.2 0

‘\\\‘\\\‘\\\‘\\\‘\\\‘
0 0.2 04 0.6 0.8 1
cos@

1 20.8-0.6-04-02

0.
':\
b
0

0.1

8
P
06 |
05 |
0.4 |
0.3

0.2 |

0 L

vs=190 GeV

N O S O RO B I EPUUN P
-0.8-0.6-04-0.2 0 0.2 04 06 08 1

cos@

vs=190 GeV

17 -0.8 -0.6 ~0.4 0.2

N N RN RN B
0 02 04 06 08 1

cos@

Figure 5.6: Same as figure 5.4, but with both Z bosons transversally polarized.
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Figure 5.7: The analog of figures 5.4, 5.5, and 5.6 without cuts to the invariant masses
and at a center-of-mass energy of /s = 500 GeV. Note, the couplings are much smaller

than for 190 GeV.
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Chapter 6

Conclusions

Summary

We used the formalism of anomalous couplings to determine various potential effects of
physics beyond the Standard Model. In this approach new physics can be parameterized in
a model independent way at energies well below the corresponding production threshold.

In chapter 3 we predicted the signal of a potential anomalous magnetic moment of
7 leptons in the final state radiation spectrum at LEP. It was shown that terms that
were believed to be small and negligible (terms with a linear dependence of the magnetic
moment) cannot be neglected anymore, when the precision of the measurement reaches
a limit in the order of 5% or even smaller. The current limit of the LEP analysis is
now —0.052 < 5727? < 0.058 and consequently the expressions with a pure quadratic
dependence of a, as used in earlier analysis should not be applied anymore. Instead, the
results derived in chapter 3 or the full Monte Carlo simulation [114] should be used.

In the main part of this thesis the process of four fermion production via two W
boson exchange was investigated. The full set of kinematical functions, describing the
differential cross-sections of the CC11 class processes, was derived. The analytical results
were implemented into GENTLE and used to study the effects of background diagrams and
ISR corrections.

In addition, all anomalous couplings which are invariant under CP transformations
were considered in the calculation and can be used to simulate physics beyond the Stan-
dard Model. This was done by experimentalists of the L3 collaboration especially in the
starting phase of LEP2.

We calculated the bin-wise integrated differential cross-sections with an analytic inte-
gration over cos @ for the CCO3 process with anomalous couplings. This feature simplifies
and speeds up comparisons with Monte Carlo programs drastically. However, for the CC11
background processes only the total and the differential cross-section are available and
for the CC11 processes with anomalous couplings only the differential cross-sections were
calculated.

Since the ZZ production threshold has been reached at LEP2 also this process is
subject for studies. ZZ production is the main irreducible background process in the
search for a light Higgs boson, but also an anomalous triple gauge boson coupling could
contribute to the process. It is natural to apply the methods used for W pair production
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also here. Couplings of three Z bosons or two Z bosons and a photon are predicted
to vanish in the Standard Model at all. Moreover, most of the anomalous couplings
allowed in a ZWW vertex are forbidden by Bose symmetry in a ZZZ vertex. If only
one Z is off-shell, only two anomalous couplings may exist. Their effects were studied in
chapter 5. The derived results can be used in a determination of the anomalous couplings,
respectively to determine limits to these couplings.

Outlook

It cannot be expected that the limits to the anomalous magnetic moment of the 7 will
improve much by using experiments with center-of-mass energies in the region of the
production threshold. In these experiments the photons do not have enough energy to
allow for a clear distinction between initial and final state radiation. However, a high
luminosity run at Z peak energies at a future linear collider might deliver a much better
statistics and could be used to increase to precision of the measurement.

After the era of LEP2, where the search for anomalous couplings was already per-
formed, a very interesting collider for the search of anomalous gauge couplings will be one
of the planned linear colliders!. In contrast to the case of the anomalous magnetic mo-
ment of the 7, where a center-of-mass energy at the Z-peak is best, the triple gauge boson
couplings will be best examined at energies well above the W-pair production threshold.
Considering the high energy and the large luminosity of the future linear colliders I see a
large potential to discover new physics.

And besides the collider physics also in low energy particle physics experiments exist
the hope to find deviations of the Standard Model and anomalous triple gauge boson
couplings. For example, new and more precise measurements of the anomalous magnetic
moment of the muon will allow a precise determination of the gauge boson couplings of
the W boson, see e.g. [193,194].

1For the physical potential of a 500-1000 GeV linear collider, see e.g. reference [192].
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Appendix A

Feynman Rules

In this appendix we reproduce the Feynman rules used for our calculations. For a complete
list of Feynman rules we refer to the literature, see e.g. [195-199].

A.1 External Particles
To describe fermions and bosons we use for the external lines the expressions:

incoming fermion

p
u(p) —>— (A.1)
outgoing fermion
_ p
u(p) — > (A.2)
incoming antifermion
B p
v(p) —a—oe (A.3)
outgoing antifermion
p
v(p) — (A.4)
incoming vector boson
k
en(k,A) Vi ~~~e (A.5)
outgoing vector boson
k
e (k, ) o~~~ V), (A.6)
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The spinors and antispinors are normalized to:

> u(p,s)u(p,s) = 2m, (A.7)
> u(p,s)v(p,s) = —2m, (A.8)

and

> ulp,s)ya(p,s) = p+m, (A.9)

spin

> v(p,s)v(p,s) = p—m. (A.10)

spin

For the vector boson polarizations we have the properties:

kle (k,\) = 0, (A.11)

eu(k, N (B, N) = —dy (A.12)
. kuk,

qu(k,)\)ey(k,)\) = _guu+ ::2 . (A13)

A

Note that the right-hand side of (A.13) is identical with the numerator in (A.16). The use
k?* instead of m? on the right-hand-side of equation (A.13) allows to apply the formula
also for off-shell particles.

A.2 Propagators
The particle propagators for fermions and spin one bosons are:

spin 1/2 fermion

! __tm) o—ﬁ—o (A.14)
p—m+ie p?—m?+ie '

massless vector boson

. 9wy k
U e~o~~e IV A.15
Zkz + 1€ ( )
massive vector boson
kuk,
T 9w + 12 k
Iy U e~~~ v (A.16)
kE* —my, + i€

Expression (A.16) is a special gauge, the Landau gauge ({ = 0), of the more general
propagator:
—1 k. k
- - ,—(1— Ltk
k2 —m? 1 ie | ( §)k2_§m%/+7;€

Dy = (A.17)
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In equation (B.62) we use for convenience the unitary gauge (£ = co) of (A.17):

k,k,
— g + 55

m
Dy =iV A.18
TR —md e ( )
to calculate the muon decay on the Born level.
By changing the sign of the four-momentum the fermion propagators can be used also
for the description of antifermions.

A.3 Vertices

The vertices play an important role here since anomalous couplings might appear in them.
The couplings between fermions and the massive gauge bosons are treated in the Standard
Model. In three-gauge boson couplings anomalous contributions are taken into account.
In addition, for the calculations in chapter 3, an anomalous magnetic dipole moment a
and an anomalous electric dipole moment d, are considered in (A.20). In all vertices all
the momenta are assumed to be outgoing.

f
—1Q " ols (A.19)
T
ie |[y* 4+ 26:7; o q, + ;:;Tvso—“”qu ola g (A.20)
.
Y
—igwy" (L —75) Wtn (A.21)
l
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19z

=" [Re(L+v5) + Ly(1 = s)]

V2

We used the abbreviations:

ura
1—‘V SM

M

Wte

A

q2
A

q1
ZCX

213 — 2Q 53y,

)1/2
)1/2

(A.22)

(A.23)

(A.24)

(A.25)
(A.26)

(A.27)

(A.28)

The electric charge Q¢ and the third component of the weak isospin I3 of a fermion f can

be taken from table 2.1.

For the three gauge boson vertices we used the vertex functions:

Tie = e [Pk, — k) + g™ (g — k)P + gk — )],

SM

MY = decotbu g% (ke —k )" + g™ (g — k)’ + g™ (k- — )],

Ff,“'a — e {% [guﬁqa _ guaqﬂ]

ano

o [k — B o+ (ahks) (90K — g°0k")

w

Ty e = —ie{0z g7 (k = k)" + g" (ke — )’ + " (¢ — k)°]

Z ano

+37 9" - g"¢°)

k) (5728 — 1) + (k) (0 — 7))} (A31)



+ T)Z’/L—g I:kiqakﬁ — kﬁiqﬁk’g —+ (qk+) (g,uﬁk.g _ gaﬁkﬁ)

w
+(gk-) (%K — g*kD) + (k_k) (9"*¢° — 9"°¢%)]
12

+_2Z I:E#Bf”udqa _ Euanaq,@] qn(k.+ _ k)a} , (A32)

my
pra p2_m%/ - Vi o uB B po -V _pafBp

Ivzz = T2 [Zf4 (p g +pg )"‘Zfs € (‘h - ‘h)p] . (A-33)

A

The Standard Model predictions for these vertices are obtained with the parameter set:

z, = 0, yy = 0,
(SZ = 0, Tz = 0, (A34)
Yz = 07 2z = 0.
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Appendix B

Phase Space and Momenta

In semi-analytic calculations it is important to find an appropriate notation for the particle
momenta. Our choice of the parameterization of the four-particle final state is presented in
appendix B.1, the three-particle final state in B.3, and the two-particle final state is given
in appendix B.2. As a demonstration how suitable momenta can simplify a calculation
we present in B.4 the Born cross-section for muon decay.

B.1 W Pair Production

In the process ete™ — WHTW ™~ — 4f four fermions are produced. We have to find a
suitable base to construct the particle momenta and the four-particle phase space. The
general expression for n final state fermions is:

d3
v = [T (zpz k—k) (B.1)

=1

where k; and ky are the momenta of the incoming particles. The phase space in (B.1) can
be parameterized by a subsequent decay which leads to a product of several one particle
into two particles phase spaces. This is, for example, worked out in chapter 4.2 of [200].
In the special case of four-particle production the procedure leads to:

1 \//\ (s,s1,52) \/)\ (s1, m?, m3) \/)\ (s9, m3,mj)
128 s 51 52

dI' = d81d82d9d91d92 (B2)

The phase space elements d€2, d€2;, d{2, are the solid angles in the rest system of a decaying
compound particle and can be split up in a polar angle # and an azimuthal angle ¢:

dQ = d¢ dcosb, (B.3)
dQl = d¢1 d cos 91, (B4)
dQQ = d¢2 d cos 92, (B5)

while s; and sy are invariant masses defined by the final state particles:
s1 = (¢ +p2)2, (B.6)
So = (pg —|—p4)2. (B?)
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The allowed kinematical regions for the eight integration variables in (B.2) are:

(m1 +ma)? < 51 < (Vs —mg —my)?,
(mg + m4)2 < S9 < (\/_ - \/5)27 (B 8)
—1 < cosf,cosbi,cos6y < 1, :
0 S ¢7 ¢17 ¢2 S 2m.

Note, that none of the particle momenta will depend on the variable ¢ (see below) and
the integration over ¢ in (B.2) will just give a factor 2.

To construct the particle momenta out of the phase space variables, we follow the
strategy from [127,131] and express the momenta by the variables s, s1, s9, 0, @, 61, ¢1,
By, and ¢».

The momenta of the initial state fermions are chosen to be:

ki = (ko,—ksin#,0,kcosb), (B.9)
ks = (ko,ksinf,0,—kcosb), (B.10)

with the energy ko = v/s/2. The three-momentum is:

- A(s, m2,m2)

The momenta of the W bosons fix the W production angle 6:

1
Pw- = 2—\/5 (s + 81 — 89,0,0, \/X) , (B.12)
1
pw+ = EWE (S — 51+ 52,0,0, —\/X) ; (B.13)
with A = A(s, s1,52). The relations p},_ = s; and p},+ = sy follow from (B.12) and

(B.13).
The momenta of the final state fermions can be easily constructed in the rest frame
R of the W bosons. They are:

2 2
S +mé—m
= <M,pf2 sin 6y cos ¢y, pt sin 6, sin ¢y, pF, cos 91> , (B.14)
2‘/81
R S1 — m% + m% R R . R
Py = | ————=, —p1ysinf; cos ¢, —prysin by sin ¢y, —piycosby |, (B.15)
2‘/81

with the abbreviation

A(s,mf, m3)
R_V > 7 = B.1
P12 2\/§ ( 6)

Equations similar to (B.14) and (B.15) hold for p¥ and pf. To get the momenta in the
center-of-mass system (B.14) and (B.15) have to be boosted along the z-axis. This leads
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to:

o= (’Yi)zpf,o + Y12p15 cos 0, pTy sin 67 cos ¢y, prs sin 6y sin ¢, ¥1,p1s cos by + ’712]?{2,0),
p2 = (V0¥ — y2pfh cos, —pfh sin 6; cos ¢y, —pfh sin 1 sin ¢, =1 ,pfh cos b1 + y12p8,),
ps = (’71[),)417:?0 - ’734]??4 cos ), p:ﬁ sin ) cos ¢, P:ﬁ sin 6 sin ¢, ’Ygd?:i cos 0 — ’7341750),
ps = (15450 + Y34p5y O8O, —pi, sin 6y cos ¢y, —pi, sin O sin ¢y, —734pgy 08 b1 — Y3aphy),
(B.17)
with
0 S+ 81— 89
_ StsT s B.18
V12 2,/551 ( )
VA
M2 = g ; (B.19)
\/S81
S+ 89— 81
Vo4 = = (B.20)

2./589

VA
= B.21
Y34 2\/E, ( )

sy +m? —mj

R
= — B.22
pl,O 2\/5 Y ( )
sy +m3 —mj
ph, = ST (B.23)

’ 2\/5

The expressions for pf’o and pffo can be obtained by exchanging the masses in (B.22) and
(B.23).
This completes the set of particle momenta and phase space variables.

B.2 77 Production

In the process ete” — ZZ the decay of the gauge bosons is not considered and the final
state contains only the two spin-1 bosons. This simplifies the phase space drastically. We
just have a two-particle final state leading to the differential cross-section:

d A
o _ VA M.
dcosf  64ms?

The ‘off-shellness’ of the Z bosons in (B.24) can be included into the calculation by making
an assumption about the masses ,/s; and /sy for the Z bosons and convoluting them
with the Breit-Wigner factors p(s;):

do vV )
dcosf /dsl /d32 64752 IM[” p(s1)p(s2), (B.25)

(B.24)

where p(s;) is:
1 V3L z(5:)

plsi) = 7 (5 — m%)? + s;T%(s;) (B-26)
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The momenta of the incoming e~ and e™ particles are denoted by:

P = ? (1,sin0,0,cosf), (B.27)
Py = g (1, —sinf,0, —cos ). (B.28)
The produced Z bosons have the momenta:

1
kl = 2—\/5 (S + 81 — S92, 0, 0, \/X) R (B29)

1
ky = NG (s — 81+ 82,0,0, —\/X) , (B.30)

with the polarizations:
€+ = \/;(07:':17170) ’ (B31)
€ = 2\/5 (\/_ 0,0, (s+ s1 — 82)) (B.32)
1

E;ﬂ: = \/;(O,il,l,O) ’ (B33)
€ = N (\/_ 0,0,— (s — 81 +s2)). (B.34)

B.3 efe” - 71717y

The process investigated in chapter 3 implies a phase space for three-fermion production.
According to (B.1) it is:

d®p, dBp, d3k

dr =
(2m)32p} (2m)32p8 (2m)32k°

54(k1 —+ k’g — P1 — P2 — k’) (B35)

Again, the phase space can be split up in a sequence of decays into two particles:

dl' = — dI'; dT. da’ B.36
with
A(z',m2/s,m2/s !
dr, = \/ ( / / )dtpldcosﬁl = Edgoldcos@l, (B.37)
8z’ 8
A(1,2',0)
dl, = +———dp,dcosb,. (B.38)

8
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As abbreviations we used the invariant mass squared z' of the 7 pair and the velocity 3
of the 7 leptons in the rest system of the 7 pair. These values are:

2
o = Ptp) (B.39)
S
4m?
ro— 1o B.40
8 oy (B.40)

In the construction of the moments we follow the same strategy as in section B.1. The
momenta of e and e are again defined by:

ki = i(l,sin&,,o,—cos&,), (B.41)

S

ky = (1,—sin#,,0,cosb,). (B.42)

w‘%w
V)

The masses of the incoming e~ and et are already neglected in (B.41) and (B.42). The
photon momentum is set to be:

q= %(1—1«',0,0,1—1«'). (B.43)
That is equivalent to the momentum of the W~ in (B.12) under the assumption that
s1 = 0 and sy = 2'. The momentum of the photon fixes already the invariant mass of
the 7 pair, but leaves still some freedom for the decay angles of the individual 7 leptons.
Their momenta are then:

ﬁ

P12 = 1

($a(1 — 2+ 142, £bcos ¢y, £bsin g, +a(l +2') — 1+ :c'), (B.44)

with the abbreviations

a = [ cosb, (B.45)

b = 2Va'f sinb,. (B.46)

Note that all momenta (B.43) — (B.44) are independent of ¢., so integration over ¢, results
in a trivial factor 27.

The integrations over the production angles of the particles are carried out in chapter 3.
For completeness, we present the integrals over 2’ which require an infrared cutoff:

f In(z's/m? s 1 : :
[ttt s o
f de’ = In . (B.48)
1—-2a l—x

In (B.47) and (B.48) the approximations 3 — 1 and m?/z' — 0 are used.
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B4 u —e v

This simple decay p~ — e~ 1,7, taking into account the masses of muon and electron (as
might be reasonable for the decay 7 — uv,,), serves as a nice example how a suitable
choice of particle momenta can simplify an analytical calculation. The calculation was
inspired by Tord Riemann after he found a discrepancy between his result and the one
presented in the literature [201-203]. The literature result disagrees because not all mass
terms are considered there correctly. It should be emphasized that the neglected terms
are unmeasurably small and can be safely ignored. For a real calculation the radiative
corrections are much more important, but here we just want to demonstrate the simplicity
of the calculation with an appropriate phase space parameterization. The final result
given in (B.78) was checked with an independent calculation by L. Kalinovskaya and
T. Riemann [204].
We start with the transition probability for a particle decay:

(271.)4 3 d3p1, 3

K i=1

dl' =

where m, and p, are already the mass and the momentum of the muon. The phase space
factor

d3p 3 d3py (:].31)17 ( 3
dPS = ° = 6 {pu— D pi, (B.50)
(2m)32p0- (2m)32p8, (2m)32p8  \™" o

can be rewritten as:

1
with the abbreviations
2
ar, = °2 SSmedQe (B.52)
2 _
ar, = 2~ *40, . (B.53)
Sm“

The solid angle €2, in equation (B.52) denotes the direction of the electron in the rest
system of the e 7, pair. For the v, the direction is given by €2, in the same Lorentz
system.

Figure B.1: The tree-level diagram for muon decay.
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Since the particle momenta and the matrix element (B.73), as we will see, do not
depend on all phase space variables, we can perform some integrations immediately. We
have:

/ Q, = 4, (B.54)
/dQe - 27r/dc059. (B.55)
This leads to
1 1 M (m2 — s)(s —m?)

= — dsd cos @ B.
63, (2r) sd cos 8, (B.56)

for the decay width of the muon.
If we are not interested in the electron energy, a suitable frame for the momenta is the

W boson rest system.
First, we define the momentum of the W boson:

pw- = (+/5,0,0,0). (B.57)
This choice fixes the energy of all particles. For the p~ and v, we get

s+mi m2 —s

_ = 00 —H~ B.58

Pu <2\/§ T 2\/§> ( )
m2 — s m2 — s

Y Ll kA B.59

pu <2\/§7’7 2\/5) ( )

In (B.58) we made use of the freedom to choose the direction of the momentum of the
1~ . The remaining momenta are:

2 .02 —m2 —m?2
Do = <82+\/Tg*37 82\/7;% sin € cos @, 82\/”;6 sin #sin ¢, % cos 9) (B.60)
s —m?

P, = 27\/56 (1, —sinf cos ¢, — sin fsin ¢, — cos ) . (B.61)

The matrix element is in unitary gauge:
(=g + bR [y
Piy- — My
We can express the neutrino momenta by the momenta of the other three particles in
the decay:

2
G,myy _

M = i w(py, ) Yu(1 — v5)u(py)

U(pe) (1 — vs5)u(ps,) (B.62)

Dy, = Du- —Pw-, (B.63)

Pr. = Pw- — Pe (B.64)

The Lorentz invariant module of the matrix element squared can depend only on
Lorentz scalars. These are the masses of the particles and the products:

s+ m?

(Pupw-) = —5— (B.65)
s +m?

(pe-pw-) = —5— (B.66)
m? +m?—t

(D= " Pe-) = —F—p 5 , (B.67)
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with the abbreviations

s = (bu —ps) (B.63)
t = (plf_pe*)2v (B.69)
u = (pu —pn)" (B.70)

The Feynman diagram to the muon decay is given in fig. B.1. After summing over the
final state spins and averaging over the p~ spin, we get:

IMP = Gy T {(1 = 75) P, /2 + )% } T (L= 75) (/P + me) /o0 }
(SRR i) (—g + Rk i)

2 2 2 2
Pyw- — My Pw- — My

(B.71)

Performing the traces leads to:

16G,m; 8
IM[* = Ry {2ym§s 2y?’s* + —5= (Pu- - Pe-) (Pu- - Pw-) (D= - PW-)
(3 - mW) w
+4 (1 — —2> [Py~ Pe=) (Pu- - Pw-) + (Pp= - Pe-) (Pe- - Pw-)]
myy
252 9 52
= o pY—d(p._ -p V- 4+ e Dy D
+m%v(pu Pe-) — 4 (Pu- - Pe-) <+m‘év>(p“ pw-) (Pe- - Pw-)
2s
+ — Pu- - pw-) (Pe- - Pw-) [(Du- - Pw-) + (Pe- - PW-)]
My,
e ) (e ) 22y [ 4) (o - pw-)?
m%v u e m%/v w
S
Y (2 - m—) [5 (e - pw-) = 2 (Pe- - pw-)? + 25 (Dy- -pw—ﬂ} (B.72)
w
Finally, we get the result:
16G?m} ry?
2 pMw 2 2 2 Yy 2 2
= —r — — — = — B.
M| i, )P {(mﬂ u) (u me) ymet + — [3(u+t) mﬂme]} (B.73)

After performing the simple phase space integrations over cos # and s we get the exact
expression for the muon decay on Born level:

G>’m? T T 12 12 1—y
I = L L3z —12— +9= —32°" +32° + = — — |1 B.74
109,73 [( T y3+ .2 zy” + 3z +y4 " n T— ( )
T T 4 6 (1—x)
+ 2+x3y3—6—+9——3xy+2x3—3a:3y+———>
< vy v v?) A—y)(1—zy)
17 2 17 8 4
+12$21nx+3x3y21nx—8%——x+4x—+2x2y—2az3y+—x3+——— ,
y> o2 y? 2 v ooy

80



where, we used the abbreviations:

2
m
S B.75
x mz? ( )
mi
= — B.76
y -y (B.76)

With a Taylor expansion for y < 1 and the identity

1 Y
— =14+ —" B.77
T - (B.77)
we get the tree-level result:
G2m; 3 9
P = S (142 2 5
10975 (z) 1+ 5y+ =Y (B.78)
with the well-known function
f(z) = 1—-8z+122°Inx + 82 — 2. (B.79)

In (B.78) we neglect terms of the order O(y?) and O(yz?).
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Appendix C

Electromagnetic Multipole Moments

In this appendix we derive expressions for some electromagnetic multipole moments.

C.1 Magnetic Moments of Leptons

The most general form for the matrix element of the current of a spin 1/2 particle with
charge e is:

(T(p',0")|J*(0)|¥(p,0)) = (22)3@(],', T (', p)ulp, o), (C.1)

where T'* is a four-vector 4 x 4 matrix function depending on the momenta p and p’. The
o and o' denote the spin of the particle.
After expanding I'* in the 16 covariant matrices 1, v,, [V, Vo), 757, and 5 and using
the Dirac equations:
— / ! / —
u(p O )(ﬁ - m) - Ov (CQ)
® —mu(p,0) = 0,

it can be shown that the right hand side of equation (C.1) can be rewritten as [11]:
_ _ 1
a(p', o )T*(p', p)ulp, o) = a(p',0’) [’Y”F(ff) + 5 -0+ )'G(g)

(p—p')" 2
P ) oo, (©3)
with ¢ = p’ — p. The structure functions F, G, and H can only depend on ¢2, the only
scalar kinematic variable. Since J#(0) is hermitian, F(¢*), G(¢*), and H(¢?) must be real.
After multiplying equation (C.3) by g,, it follows with the current conservation ¢, J* =0
that H(q*) must be zero.
For the remaining functions the normalization condition

F(0)+G(0)=1 (C.4)

can be proved [11,205]. It is more common to express the functions F' and G by two other
functions Fy (the electric form factor) and F:

iF5(q%)
2m

a(p )P (p', p)u(p) = u(p') |V Fi(q®) + o (p" — p)u |u(p), (C.5)
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where the common abbreviation ¢*” = % [v*, "] is used. For simplicity we also dropped
the spin indices o and ¢’. By commuting p’ to the left and p to the right in equation (C.5)
and applying the Dirac equations (C.2) one gets the identification:

F(¢*) = G(@)+ F(¢), (C.6)
Fy(¢*) = —G(g%), (C.7)

which together with equation (C.4) immediately leads to

To derive an expression for the magnetic moment of spin 1/2 particles, we rewrite equation
(C.3) using the Gordon identity

a(p')o" (p' — p)yu(p) = ia(p’) [(p™ + p*) — 2my*] u(p) (C.9)

and dropping the term proportional to H. This leads to

a(p )T (v, p)ulp) = %a(p’){(pw’)“ [F(*) + G(?)]
+io™ (p' = p)uF(q*) bu(p). (C.10)

For vanishing momenta p’ and p we have:

Q_L(0,0',)[’}/i,’}/j]u(o,O') = 4i€ijk (Tk)a,a” (Cll)
(0,0 )[v*,7°]u(0,0) = O, (C.12)

with 7 = %5. With these approximations the second term on the right hand side of

equation (C.10) leads in first order of the small momenta to
7; — —
E [(p - ﬁ) X T]U’,U F(O) (013)

The contribution of this term to the interaction energy with an external vector potential
A7) is

_ZGF(O) i = 2 I N 5
(Ul Bl = 70550 [ @0 D2A@) (7 ) x Ty
= oy / Lo PP () B(#), (C.14)

with the magnetic field B=VxA= —1iq X A Here, the definition

E=— f J,(2)A*(z)d%e. (C.15)
was used.
In a slowly varying magnetic field, we get
eF(0) , >
Wyl Ely) == (7, - Bt =), (C.16)
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which might be related to the definition of the magnetic moment of a particle with
spin 1/2:

(Yot | Vo) = ~1 75 (M BOG= 7). (C.17)
Comparing the equations (C.16) and (C.17) leads to:
eF(0) e
= = —I[F F: . 1

"0 2 R 0) + RO) (©15)

In lowest order, F5(0) = 0 and equation (C.18) leads to the famous Dirac result [15]

e

=, C.19
h=g - (C.19)

The anomalous magnetic moment is the deviation of this value and is defined as:

a=F0)=—p— 1 (C.20)

C.2 The Magnetic Dipole Moment of the W Boson

Classically, the magnetic dipole moment is defined by the energy of a particle in a magnetic
field:
E=—ji-B. (C.21)

In quantum mechanics, we can describe the electromagnetic force by coupling a current
to the field A¥(z):

E= —fJu(a:)A“(:v)d%. (C.22)
Let us choose a circularly polarized field:
Ay = 0, (C.23)
i-= % (& — i&,) e 7, (C.24)
where ¢ = ge,. For B follows: _ _
B=—ifx A (C.25)
By inserting the expressions for A* and B into the equations (C.21) and (C.22), we get:
1

Qi —ig-7 13
po = (II% . J_(z)e " dz, (C.26)
with the abbreviations:
Ji(z) = Ju(z) £iJ,(z), (C.27)
Ptr = flg ilu’y' (C28)

In quantum mechanics the magnetic dipole moment is defined as the expectation value
of the z component of the dipole vector in the state of maximal spin. This is:

p = (ss|u,|ss). (C.29)
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Using the Wigner-Eckart theorem the expectation values of the various spin states can
be put into the relations [206,207]:

(=1)

(ss|pus]ss,) = ﬁ<ss;|lilssz><s|u|s> (C.30)

and

(ss|uslss) = \/%<88|1088><8|,u|8>. (C.31)

Equations (C.30) and (C.31) lead immediately to
1 1 L
(s5[1053) lim — /(33'Z|J, (z)]ss,)e I3z, (C.32)

- (ss'|1—1ss,)a=0qg

where equation (C.26) was used to express f .

The calculation of the right hand side of equation (C.32) can be easily performed in
the Breit-frame, in which the incoming W and the outgoing W have the same momenta,
but in opposite direction. The helicity states in this frame can be written as:

1

(0,1, +4,0),
¢\/§( )
€ = (p/m,0,0,E/m),
€} €x,

e = (p/m,0,0,—E/m). (C.33)

€+

Let us define p o
el (—ph |Ju(0)|ﬁh>

= .34
2F 2F ’ (C.34)
where F is the energy of the W boson. It can be shown that:
_eI",z,h = lim(—1)*** /(ss' |J_(z)|ss,)e " d3z (C.35)
2F q—0 2T ? ' '
With the relation
(BR[| J,(0)|BR) = i (€}y)5 €naV, > (C.36)
it follows
Flf:/h == E;L*llgfhavﬂalg. (C37)
Here, we used for the YW W~ vertex
P’ 9*q"
Vel = e {(p +p')* lgaﬁ (1 — 2)\—2> — A ]
m m
145+ ) (g°9° — g°¢%) }, (C.38)

where both W bosons are considered to be on-shell. The first term in equation (C.38)
disappears in the Breit-frame.
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With equations (C.32) and (C.35) we get for the magnetic dipole moment:

(11)1011) 1 e

T (10]1-1 11>5(_1)ﬁra+’ (C39)

where I'y, can be determined with equation (C.37) to

_ 2Bp(14k+N)

This leads to the final expression for the anomalous magnetic moment:

e

u (1+ 5+ N). (C.41)

- 2m

C.3 The Electric Quadrupole Moment of the IV Bo-
son

The non-relativistic electrical quadrupole moment is defined by:

Q = [(ssl(35" = r)p(@)]s )’
_ /(ss|r2p(i’)P2(cos®)|ss>d3x, (C.42)
with p(Z) being the charge density J°. P is the Legendre polynom. Equation (C.42)

must be compared with a relativistic expression for the quadrupole moment.
To achieve this, we split up the vertex function (C.34) in tensors Q;:

s ad 8’ J S '
Mo = (U2 S (3 5 1) @ilsh9) (C.43)
J=0

The introduced tensors @7 can be compared with the multipole moments of the W boson.
The tensors @ differ from each other by their behavior under rotations. They transform
like the spheric harmonics Y and form a complete base, so that the decomposition (C.43)
is unique. The Wigner 3j-symbols can be calculated with the Clebsch-Gordan coefficients
by the relation:

. . . -1 j1—ja2—ms . ‘ .
(r{; 73122 73%) :(;7?<]1m1]2m2|13—m3>. (0.44)

After applying (C.43) on equation (C.34), we get:
1 0 1 1 2 1

Higher multipole moments do not contribute to I'%,,, since the Wigner 35 symbols vanish
for J > 2.
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With
2

2 2NE?
Y, = —2E lGl - % <G1 —g+ )] (C.46)

m2

and
I‘[Lr = 2FEG,, (C.47)

from (C.38), equation (C.45) can be solved for @ and Q5.
With the abbreviations

P
Gi=1- QAW (C.48)
and
g=1+K+ A, (C.49)

it follows that

[10 _p? e?
/10 _ ¢?

With the expansion of the exponential factor in (C.34)

e T = gmarcos® — i(—i)J(QJ +1)7s(qr)P;s(cos ©) (C.51)

J=0
the right hand side of (C.34) is
, o 1 0 1 1 2 1
_1\1+s, / —iq-T 33, — NR NR
0 fasiia@)s)e  de = (o AR+ (o )@ (C52)
This leads to the expressions
NIy _ 2T+ 1=
7 ( s J s)
-s 0 s
for the non-relativistic moments QY® and QY®. The comparison of (C.43) and QY® leads
to

f (35]p(Z) P;(cos ©)|ss)js (qr)d*e (C.53)

e
The expansion of the Bessel function js
2,2
. qr
Ja(qr) = 5 (C.55)
allows a direct comparison of Q and QY®
61
With (C.50) and (C.54) it follows immediately
e
Q= _W(H —A). (C.57)
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Appendix D

GENTLE v. 2.02

For the calculations in chapter 4, the version 2.02 of the Fortran program GENTLE was used.
This appendix gives a brief introduction into the program. A more detailed description can
be found in reference [124], where GENTLE v. 2.0 is described. New features in version 2.02,
added after version 2.0, are illustrated in section D.2. GENTLE v. 2.02 has now about 9100
lines of code.

D.1 Description of the Program

The Fortran program GENTLE allows to calculate the total and differential cross-sections
for four-fermion production processes in ete™ annihilation. This is achieved by a semi-
analytic calculation, where analytical expressions for the Muta cross-sections do/ds;dss,
respective do/ds;dssd cos 6 are numerically integrated using an adaptive one-dimensional
Simpson integration routine.

As shown in table D.1 GENTLE consists of two main branches (the CC and the NC-
branch). The last column shows the publications on which the corresponding GENTLE
parts are mainly based. These branches are shortly introduced in the following sections.
For more details see http://www.ifh.de/ riemann/doc/Gentle/gentle.html.

QED ISR total cross-section 208]
e Background total cross-section | [131]
Anomalous couplings 127]

[

[

[
Differential cross-section [127]

[

[

[

QED ISR total cross-section 189]
NC | Background total cross-section | [135]
Anomalous couplings 191]

Table D.1: Quverview over the different branches and subbranches of GENTLE. Correspond-
ing publications are given in the last column. Note, the anomalous couplings calculation
in the NC-branch is only available in the stand-alone program ZAC [190] and is not a part
of GENTLE v. 2.02.
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D.1.1 The CC-branch and Anomalous Triple Gauge Boson Cou-
plings

The CC-branch of GENTLE allows to calculate total and differential cross-sections for the
CC03 and CC11 classes, see table D.2. This branch is switched on by setting the flag
IPROC = 1. The flag ICDS determines whether the total cross-section or the angular
differential cross-section is supposed to be calculated. The latter option is chosen by
IDCS = 1. For the CCO3 class a bin-wise analytical integrated differential cross-section can
be calculated with IBIN = 1. This feature does not exist for the CC11 class background.
Here, only fixed points of the differential cross-section can be determined.

Electroweak radiative corrections can be controlled by the flags: IBORNF, ICOLMB,
ICONVL, IQEDHS, ITNONU, IZERQ, and IZETTA. Inclusive QCD corrections to the W width
can be taken into account with the flag IIQCD = 1. The exact meaning of these flags is
described in detail in [124].

Anomalous triple gauge boson couplings are available in the CC-branch of GENTLE.
They can be switched on by the flag setting TANO = 1.

du | 3c EVe | UV, | TV,
du | 43|11 |20 | 10 | 10
ev, | 20 | 20 | 56 | 18 18
puv, | 10 | 10 | 18 19 9

Table D.2: Number of diagrams in the CC-branch. The boldfaced entries can be calculated
with GENTLE.

D.1.2 The NC-branch

The NC-branch contains the cross-sections for classes containing the production of two
Z bosons. The total cross-sections of the classes NC32, NC24, NC10, and NCO6 can be

dd | au ee fift | Dele | Dy
dd | 416 | 43 | 48 | 24 | 21 | 10
Ss,bb| 32 | 43 | 48 | 24 | 21 | 10
au | 43 |416] 48 | 24 | 21 | 10
ée 48 | 48 [436| 48 | 56 | 20
O | 24 | 24 | 48 412 19 | 19
7r | 24 | 24 | 48 [ 24 | 19 | 10
Deve | 21 | 21 | 56 | 19 | 49 | 12
v, | 10 | 10 | 20 | 19 | 12 | 43
v, | 10 | 10 | 20 | 10 | 12 6

Table D.3: Number of diagrams in the NC-branch. The boldfaced entries can be calculated
with GENTLE.
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calculated [135], see table D.3.
Although the Fortran program ZAC belongs in principle into the NC-branch it is only
available as a stand-alone version due to historical reasons.

D.2 New Features

The most complex change after version 2.0 was the inclusion of the differential cross-
section to the complete CC11 class. Also anomalous couplings are considered in this part
in an analogous way as they were applied for the CCO3 part of GENTLE.

Another new feature is the possibility to use a constant, s-independent W boson width
in the calculations. Especially for higher energies this should give better results, since
gauge invariance is not destroyed by this choice. For a more detailed discussion of this
problem, see [116,166,167].
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Appendix E

A Sample FORM File

FORM is a program by J. Vermaseren [6] to perform analytical calculations. The full FORM
file used for the calculation of the CC11 cross-section has about 500 lines of text and is
too long to be shown completely. To illustrate the calculation, extracts are presented and
explained.

The file begins with the declaration of some variables:

*

Calculation of CC11 with anomalous couplings
a,tmp,GZ,XZ2,Y2,22,GZ22,X22,Y722,222,ssa,sta,sua,sda;

n

n

g012,g034,g12,g34,pr10,pr20,pr12,pr30,pr40,pr34;
al,be,ga,ka,si,mu,nu,rho;
S MW2;

(SN

The three vertical dots indicate that lines were omitted. After the declaration of the
symbols, matrix elements and their charged conjugates are defined:

g schnl = vc(1,k2)*V1(al)*u(l,k1)*V3(k,ss2,ss1,al,be,ga)x
uc(2,p3)*V2p(be) *v(2,p4) *uc(3,pl)*V2(ga) *v(3,p2);

E3

g tchnl = vc(1,k2)*V2pp(be)*pexV2pp(ga)*u(l,kl)*
uc(2,p3)*V2p(be) *v(2,p4)*uc(3,pl)*V2(ga) *v(3,p2) ;

*

g udeerl = vc(1,k2)*Vi(al)*u(l,kl)*uc(3,pl)*V2(ga)*pul*Vipp(al)*
v(3,p2)*uc(2,p3)*V2p(ga)*v(2,p4);

g schnlc = uc(1l,k1)*Vic(mu)*v(1,k2)*V3c(k,ss2,ssl,mu,nu,rho)*
ve(2,p4)*V2pc (nu) *u(2,p3) *vc (3,p2) *V2c (rho) *u(3,pl);
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g ddeer2c = uc(1,k1)*Vic(mu)*v(1,k2)*vc(2,p4)*Vipc (mu)*
pd2*V2pc (rho) *u(2,p3)*vc(3,p2) *V2c (rho) *u(3,pl);

Altogether six amplitudes and their charge conjugates must be defined. The particle
momenta are denoted in the same way as in chapter 4. The vertices are introduced as
functions and given below:

* all momenta are outgoing
id V3(p1?,p27,p37,al?,be?,ga?)=GZ*(d_(ga,be)*(p3(al)-p2(al))
+d_(al,be)*(p2(ga)-pl(ga))+d_(al,ga)*(pl(be)-p3(be)))
+XZx (d_(al,ga)*pl(be)-d_(al,be)*pl(ga))
+YZ/MW2* (p2(ga) *pl (be) *p3(al)-p2(al) *pl(ga)*p3(be)
+ pl.p2*(d_(al,ga)*p3(be)-d_(ga,be)*p3(al))
+ pl.p3*(d_(ga,be)*p2(al)-d_(al,be)*p2(ga))
+ p2.p3*x(d_(al,be)*pl(ga)-d_(al,ga)*pl(be)))
+ZZ/MW2* (e_(al,ga,ka,si)*pl(be)-e_(al,be,ka,si)*pl(ga))*
pl(ka)*(p2(si)-p3(si));
E3
id V3c(p1?,p27,p37,al?,be?,ga?)=GZx(d_(ga,be)*(p3(al)-p2(al))
+d_(al,be)*(p2(ga)-pl(ga))+d_(al,ga)*(pl(be)-p3(be)))
+XZx (d_(al,ga)*pl(be)-d_(al,be)*pl(ga))
+YZ/MW2* (p2(ga) *p1(be) *p3(al) -p2(al)*pl(ga)*p3(be)
+ pl.p2*(d_(al,ga)*p3(be)-d_(ga,be)*p3(al))
+ pl.p3*(d_(ga,be)*p2(al)-d_(al,be)*p2(ga))
+ p2.p3*x(d_(al,be)*pl(ga)-d_(al,ga)*pl(be)))
-ZZ/Mw2*(e_(al,ga,ka,si)*pl(be)-e_(al,be,ka,si)*pl(ga))*
pl(ka)*(p2(si)-p3(si));
E3
* couplings of the Z boson:
id Vi(al?)=g_(1,al)*(RZe*g7_(1)+LZexg6_(1));
al Vic(al?)=g_(1,al)*(RZcexg7_(1)+LZcexg6_(1));
al Vip(al?)=g_(2,al)*(RZ2*g7_(2)+LZ2xg6_(2));
al Vipc(al?)=g_(2,al)*(RZc2*g7_(2)+LZc2*g6_(2));
al Vipp(al?)=g_(3,al)*(RZ1xg7_(3)+LZ1%g6_(3));
al Vippc(al?)=g_(3,al)*(RZ1*g7_(3)+LZ1xg6_(3));
*
* couplings of the W boson:
E3
al V2(al?)=g_(3,al)*g6_(3);
al V2c(al?)=g_(3,al)*g6_(3);
al V2p(al?)=g_(2,al)*g6_(2);
al V2pc(al?)=g_(2,al)*g6_(2);
al V2pp(al?)=g_(1,al)*g6_(1);
al V2ppc(al?)=g_(1,al)*g6_(1);

The next step is to include the fermion propagators and define the squared amplitudes.
Twenty-one functions are needed to describe all squared amplitudes.
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id pe=1/pes*g_(1,tp);

al pul=1/pusix*g_(3,upl);
al pu2=1/pus2x*g_(2,up2);
al pdi=1/pdsixg_(3,dpl);
al pd2=1/pds2*g_(2,dp2);

.sort

g ssg = 9/16384*schnl*schnlc;

g stg = 9/8192x(tchnl*schnlc+schnl*tchnlc);
g d2d2g = 9/16384*ddeer2+*ddeer2c;

.sort

The normalization in ssg and the other functions is chosen in such a way that the G-
functions in chapter 4 are produced.

After the construction of the squared matrix elements we can start with the phase
space integration. First, the number of terms is reduced by renaming the couplings.

s CPe,CMe;

id LZc2=LZ2;

al RZce=RZe;

al LZce=LZe;

id LZe"2=(CPe/2+CMe/2);
id RZe"2=(CPe/2-CMe/2);
.sort

Then the spinors are expressed by y-matrices and the traces are calculated.

id u(1,p1?)=1;
al uc(1,p1?)=g_(1,pl);

al v(3,pl1?)=1;

al vc(3,p17)=g_(3,pl);
.sort

trace4,3;

trace4,?2;

trace4,1;

The phase space integrations are prepared by successively substituting the components
of the momenta with the expressions derived in appendix B.1 and using relations between
the momenta.

id tp=(k1-pl-p2);
al upl=kil+k2-p2;
al up2=p3-k1-k2;
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al dpl=pl-ki-k2;
al dp2=kil+k2-p4;
contract O ;

id k1.k1=0;

al k2.k2=0;
al pl.p1=0;
al p2.
al p3.
al p4.
.sort
id pl.p3=pl0*p30-p13*p33-plt*p3t*sthixsth2*(cphil*cphi2+sphil*sphi2);

e

)

o]

o]

O O O O

2
3
4

)
)
.
)

el

Now, the integration over ¢, can be carried out: :

id sphi2~2=1-cphi2~2;
id sphi2=0;

al cphi2”5=0;

id cphi2~4=3/8;

id cphi2~3=0;

al cphi2~2=1/2;

id cphi2=0;

The integration over ¢; is performed in the same way:

id k1.p1=k10*p10-k13*p13-kll*plt*sthl*cphil;
al k1.p2=k10*p20-k13*p23+kll*plt*sthi*xcphil;
al k2.p1=k10*p10+k13*p13+kll*plt*sthi*xcphil;
al k2.p2=k10*p20+k13*p23-kll*plt*sthi*cphil;
.sort

id sphil~®2=1-cphil~2;

b sphil,cphil;

id sphil=0;

al cphil~5=0;

id cphi1~4=3/8;

id cphil~3=0;

id cphil~2=1/2;

id cphil=0;

The integration over #; and 6, require a little bit more preparation, because of the fermion
propagators in the background diagrams. The various propagator terms have to be sepa-
rated from each other.

id p10=g012*pr10+gl2*pri2*cthi;
al p13=g012*pri2*cthl+gl2*pri0;
al p20=g012*pr20-gl2*pri2*cthil;
al p23=-g012*pri2*cthl+gl2*pr20;
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.sort

id pus1”-1*pds1~-1=1/scal*(pusl”-1+pdsi~-1);
id sth172=1-cth172;

Repeat;

id cthil*pds1~-1=-1%(s12-s-s34+2*pdsl)/slam/pds1;
al cthl*pusi~-1=(s12-s-s34+2xpusl)/slam/pusi;
Endrepeat;

.sort

id sthi1=0;

id pus1~-2=1/s/s34;

al pds1~-2=1/s/s34;

id pusl™-1=-1x*Logl;

id pds1”-1=-1x*Logl;

id cth175=0;

id cth174=1/5;

id cth173=0;

id cth1°2=1/3;

id cth1=0;

.sort

id p30=g034*pr30-g34*pr34*cth2;

al p33=g034+*pr34*cth2-g34*pr30;

al p40=g034*pr40+g34+*pr34*cth2;

al p43=-g034*pr34*cth2-g34*pr40;

.sort

id pus2--1*pds2~-1=1/sca2(pus2--1+pds2~-1) ;
id sth272=1-cth272;

Repeat;

id cth2*pus2”-1=+1%(s34-s-s12+2*pus2)/slam/pus2;
al cth2*pds2”-1=-1x%(s34-s-s12+2*pds2)/slam/pds2;
Endrepeat;

id pus2”-2=1/s/s12;

al pds2°-2=1/s/s12;

id pus2”-1=-1xLog2;

al pds2”-1=-1xLog2;

id cth275=0;

id cth274=1/5;

id cth273=0;

id cth2°2=1/3;

id cth2=0;

After the four integrations we have to simplify the result. First we replace all auxiliary
variables by invariant expressions like s; and s and by the scattering angle §. This
process is simple, so we do not reproduce it here. Our result can be further simplified by

extracting factors of \:

multiply slam”6%[ALAM-3];
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id slam™2=5"2+51272+s53472-2%s*x312-2%s*s34-2%g12%s34;

.sort

id s878= s76*x(slam”~2-51272-534"2+2*s*512+2*s5*3534+2%x3512%s34) ;
id 812°8=812"6*(slam”~2-5"2-834"2+2%s*s12+2*%s*334+2*%512%534) ;

id s74= s72*(slam”~2-51272-534"2+2*s*512+2*s*3534+2%x3512%s34) ;

id s81274=512"2*%(slam”~2-s"2-834"2+2%s*s12+2*%s*534+2*512%s534) ;

id 834°4=834"2%(slam”~2-8"2-812"2+2%s*s12+2*%s*334+2%512%534) ;

.sort

id s"4=s"2%(slam~2-812"2-534"2+2*5*s512+2%s*s34+2%512%334) ;

b [ALAM-3], [ALAM-2], [ALAM-1],[3-costh”2],slam,sinth,costh,pes,pusl,pus2,
pdsil,pds2,CPe,CMe,RZe,LZe,Logl,LZ1,Log2,LZ2,XZ,GZ,YZ,ZZ;

print;

.end

The now produced output can be used for further simplifications by hand, as was done to
get the results on the differential cross-section presented in chapter 4. For the calculation
of the total cross-section and for explicit cross-checks with the results in reference [135]
the integration over 6 is performed and a comparison with the function in [135] is made’:

id pes~-2=1/s12/s34;

id pes~-1=Log;

id costh™9=0;

id costh~8=1/9;

id costh”7=0;

id costh~6=1/7;

id costh™5=0;

id costh~4=1/5;

id costh”3=0;

id costh~2=1/3;

id costh=0;

.sort

S scas;

f gff,g3f,gud,guu,gnc2,gnc24,gdu,g33;
.global

* comparison with published data:

E3

g sdlc= slam~4x(sdlg-g3f(si2,s,s34,Logl));
*

* this is function (2.3) of the Bardin/Riemann article
E3

id g3f(s?7,s127,5347,Log?)=1/48*%((s-s12-534)*(slam~2+12x

!The comparison is only demonstrated for one interference. Of course also the other functions were
checked successfully.
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(s*812+3812*334+35*%334) ) -24* (s*312+512%534+5*534) *
s12%s34x*Log) ;
%
id Logl/scas=1/scalx*Logl;
al Log2/scas=1/sca2*Log2;
id scal=(s812-s-s34);
al sca2=s34-s-s12;
id slam™2=5"2+51272+s3472-2%s*x512-2%s*s34-2%g12%s34;
id CPe=2;
id LZ1=1;
id GZ=1;
id XZ=0;
id YZ=0;
id ZZ=0;
b slam,Log,Logl,Log2,scal,sca2;
print sdic;
.end
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