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Abstract

Predictions are made for the e�ects of anomalous couplings in the processes of W -pair

and ZZ production. Analytical expressions for the di�erential cross-sections are derived

in both cases and numerical results are presented. The analytical results for W -pair

production were implemented into the Fortran program GENTLE, while the ZZ production

results are available in the stand-alone program ZAC. The numerical results are compared

with the Standard Model predictions. For W -pair production radiative corrections are

considered by using the structure function approach for the description of initial state

radiation.

E�ects of an anomalous magnetic moment a

�

of the � lepton to the �nal state ra-

diation in the process of � -pair production at LEP1 are examined. This process allows

to determine experimental limits for the anomalous magnetic moment of the � . As a

result we �nd that contributions linear in a

�

, which were believed to be small, cannot be

neglegted at the present limits.

Keywords:

W -pair production, ZZ production, anomalous couplings, anomalous magnetic moment

of the � -lepton



Zusammenfassung

Die Auswirkungen von anomalen Kopplungen bei den Prozessen der W -Paar- und

der ZZ-Erzeugung werden untersucht. Analytische Ausdr�ucke f�ur die di�erentiellen

Wirkungsquerschnitte werden f�ur beide Prozesse abgeleitet und numerische Ergebnisse

werden pr�asentiert. Die analytischen Ergebnisse zur W -Paarerzeugung wurden in das

Fortranprogramm GENTLE eingebaut, w�ahrend die Ergebnisse zur ZZ-Erzeugung in einem

separaten Program ZAC zur Verf�ugung stehen. Die numerischen Resultate werden mit den

Vorhersagen des Standard Modells verglichen. Bei derW -Paarerzeugung sind Strahlungs-

korrekturen durch den Strukturfunktionszugang im Rahmen der Anfangszustandsabstrah-

lung ber�ucksichtig worden.

Die Auswirkungen eines anomalen magnetischen Momentes a

�

des � -Leptons auf die

Endzustandsabstrahlung im Prozess der � -Paarproduktion bei LEP1 wurden untersucht.

Dieser Prozess erlaubt die Bestimmung des experimentellen Limits f�ur das anomale mag-

netische Moment a

�

. Als ein Ergebnis erhalten wir, dass Beitr�age, die linear in a

�

sind

und als klein angesehen wurden, bei den heutigen Limits nicht mehr vernachl�assigt werden

k�onnen.

Schlagw�orter:

W -Paar-Erzeugung, ZZ-Erzeugung, anomale Kopplungen, anomales magnetisches Mo-

ment des � -Leptons
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Chapter 1

Introduction

1.1 Motivation

The Standard Model of electroweak interactions [1{3] represents the basic theory in par-

ticle physics. So far, no signi�cant deviation from it could be found in any high energy

physics experiment. Precision measurements at electron-positron colliders like the LEP

collider at CERN and the SLC at SLAC were able to con�rm the underlying symme-

tries in e

+

e

�

{annihilation processes at the Z resonance down to the per mil level

1

. At

such high accuracies the quantum corrections can be seen. In addition, experiments at

hadron-hadron and hadron-lepton colliders are supporting the theory and do not give any

evidence for an inexactness of the Standard Model. Likewise, low energy experiments are

in a fantastic agreement with the theory.

The exposed position of the Standard Model as the basis for all predictions requires

permanent search for limitations. The goal is to increase the precision of already measured

values and perform experiments in untested regions of the parameter space, for example at

higher center-of-mass energies. Cross-checks between experiments using di�erent methods

to measure the same physical quantities must be performed to investigate the reliability

of the Standard Model.

At the Z peak the couplings between the Z boson and fermions have been measured

with an unmatched accuracy from the process

e

+

e

�

! Z ! f

+

f

�

(
): (1.1)

With O(10

7

) observed Z events the massM

Z

, the width �

Z

, the weak mixing angle sin

2

�

w

in the on-shell scheme and the number of light neutrino types N

�

are known to be [4]:

M

Z

= (91:1882� 0:0022) GeV; (1.2)

�

Z

= (2:4952� 0:0026) GeV; (1.3)

sin

2

�

w

= 0:22302� 0:00040 (1.4)

1

\At the end of eleven years of running, LEP will be remembered as the machine that put the theory

describing particle behavior - the Standard Model - on solid ground. Precision measurements made by

the four LEP experiments have con�rmed the Standard Model to an extraordinary degree of precision.

They have also demonstrated conclusively that three and only three families of matter particles exist."

from http://press.web.cern.ch/Press/Releases00/PR14.00ELEPstop.html

1



N

�

= 2:994� 0:012: (1.5)

In addition, data allow for the investigation of the decay modes of produced particles.

The center-of-mass energy at the LEP collider had been increasing in the last years

from about 91 GeV to more than 200 GeV. At energies above the production threshold

of W boson pairs the creation of four fermions is studied:

e

+

e

�

!W

+

W

�

! 4f: (1.6)

In these processes the mass of the W bosons, their width, and their gauge couplings are

examined. The experiments could prove for the �rst time that the predicted non-abelian

coupling between a Z boson and two W bosons exists. The measurement of the W -mass

m

W

= (80:419� 0:056) GeV (1.7)

is in a perfect agreement with the results for the Z-mass in (1.2) and the weak mixing

angle in (1.4).

At even higher center-of-mass energies the process

e

+

e

�

! ZZ ! 4f (1.8)

can be examined. To this process an anomalous ZZZ-vertex would contribute and limits

to it can be found. In addition, (1.8) is an irreducible background process for the Higgs

boson radiation process

e

+

e

�

! ZH ! 4f (1.9)

and should be precisely studied. Although process (1.9) might be used to discover the

Higgs boson

2

, it is also used to get a lower Higgs mass limit. It is (for the Standard Model

Higgs) [4]:

m

H

> 95:3 GeV, CL = 95%: (1.10)

Despite of its extremely successful history the Standard Model is not regarded as the

theory of everything. Its large number of free parameters gives the impression that there

should be a more systematic theory beyond it. Further, the Standard Model fails in the

attempt to include gravitation into the one theory together with other three forces. These


aws and the still undiscovered Higgs boson motivate the search for physical processes

beyond the Standard Model.

In addition, there might be a slight indication for physics beyond the Standard Model.

There is some evidence from neutrino physics that the neutrinos might have a small mass

[5] and because they do not have electrical charge it might be that there are completely

new phenomena in this sector. As an example, neutrinos might be Majorana particles

instead of Dirac particles or maybe a mixture of both. However, up to now there is no

con�rmation of a behavior which is contrary to the Standard Model prediction except of

the small neutrino mass.

2

\LEP was scheduled to close at the end of September 2000 but tantalising signs of possible new

physics led to LEP's run being extended until 2 November. At the end of this extra period, the four LEP

experiments had produced a number of collisions compatible with the production of Higgs particles with

a mass of around 115 GeV. These events were also compatible with other known processes." also from

http://press.web.cern.ch/Press/Releases00/PR14.00ELEPstop.html

2



1.2 Structure

The comparisons of achieved and expected experimental results with the theoretical ex-

pectations have to rely on predictions which need to be precise enough. In this thesis

some of these theoretical predictions are presented and extensions to the Standard Model

are considered in the form of anomalous couplings.

A short overview over the particle content of the Standard Model and its symmetries

and interaction lagrangian is given in chapter 2. Possible extensions, like supersymmetry,

are also shortly discussed and the principles of anomalous couplings and e�ective theories

are introduced for the 
WW and ZWW vertices. It is shown that higher dimensional

operators in e�ective theories contribute to anomalous couplings. The di�erences between

linear and nonlinear realizations of the gauge symmetries are also demonstrated.

In chapter 3 we apply the method of anomalous couplings to the �

+

�

�


 vertex and

investigate the e�ects of an anomalous magnetic moment of the � lepton in the process

of equation (1.1). It is studied how energy spectra and angular distributions of the �nal

state radiation in � pair production at LEP are in
uenced by the magnetic moment. The

Fortran program Anotau was written to allow for these examinations. Predictions for

various distributions of observables in the scattering process e

+

e

�

! Z ! �

+

�

�


 are

presented.

The main part of this work follows in chapter 4, where the process e

+

e

�

! 4f via W

pair production, as in equation (1.6), is discussed. Analytic expressions for the di�erential

cross-sections are presented for the signal diagrams and the CC11 background class. The

achieved expressions were implemented into the Fortran program GENTLE to give numerical

predictions for the angular cross-section. In addition to the Standard Model results also

the e�ects of non-standard 
WW and ZWW couplings are determined for the complete

CC11 class and presented in section 4.3. Especially in the search for anomalous triple

gauge boson couplings this class plays an important role since its �nal states o�er the most

complete kinematical information. Numerical calculations using the analytical results give

a feeling for potential deviations from the Standard Model due to the anomalous couplings

and may guide the search for them.

Radiative corrections to the W pair production process are considered for initial state

radiation (ISR). For the angular cross-section the structure function approach as described

in section 4.4 is used.

Anomalous contributions can also show up in new vertices which are not present in

the Standard Model, like for example in 
ZZ or ZZZ vertices. These vertices would

contribute to the process in equation (1.8) and can be studied in ZZ production. They

become measurable at center-of-mass energies above the production threshold of two

Z bosons. How the signature of anomalous 
ZZ and ZZZ vertices in ZZ production

processes at LEP2 might look like is discussed in chapter 5, where analytical results and

the numerical results from the program ZAC are presented.

The more technical parts of this work can be found in the appendices. The Feynman

rules used for the calculations are presented in appendix A. A detailed description of the

3



phase space variables and their construction is given in appendix B. Appendix C contains

a derivation of the magnetic dipole moment and of the electric quadrupole moment of

the W boson. Also the magnetic dipole moment of leptons is derived there. A brief

introduction into the FORTRAN program GENTLE v. 2.02 can be found in appendix D.

Newly implemented features are also described in this appendix. An extensive use was

made of the FORM package [6] for analytic manipulation of formulae in order to derive the

results presented in this thesis. Finally, a sample FORM �le as used in the calculation in

chapter 4 is explained in detail.

Throughout this thesis, natural units (c = �h = 1) are used.

4



Chapter 2

Standard Model of Electroweak

Interactions and Beyond

The Standard Model is a theory based on quantized �elds and its goal is the description

of the interactions between all known elementary particles. For references are suggested

e.g. the standard text books [7{12]. Particles are described by scalar, spinor, or vector

�elds and appear in this form in the scalar Lagrange function. Fermions, represented by

spinor �elds, can interact with each other via intermediate gauge bosons, represented by

vector �elds. Couplings between the particles are constructed by locally gauge invariant

products of more than two particle �elds in the Lagrangian. The only scalar �eld is the

Higgs boson.

The Standard Model will be discussed in this chapter by mentioning some important

parts of its history in section 2.1 and presenting its particle content in section 2.2. Further,

potential extensions are mentioned in section 2.3 and at the end of this chapter there is

a brief introduction to anomalous couplings.

2.1 Towards a Standard Model { Historical Overview

The Standard Model was constructed to unify the electromagnetic and the weak interac-

tion. Also the strong interaction (QCD) can be included in a consistent way. However,

until now the electroweak and strong interactions are described independently from each

other. Their uni�cation is left to future in a so-called GUT (Grand Uni�ed Theory).

Electromagnetism was discovered centuries ago. On a macroscopic level it was �rst

described mathematically by Maxwell in 1864 [13]. Later, in 1927 Dirac managed to

express the force between charged point particles and photons in a quantized way [14].

Using his theory Dirac could explain the phenomenological factor g = 2 in the magnetic

moment of the electron [15]. QED was further strengthened after Schwinger calculated

the radiative one-loop correction to the magnetic moment of the electron [16], which was

in very good agreement with the measured data. Nowadays, QED is the best veri�ed

theory.

The weak interaction represents the second branch of the Standard Model. Its history

started with the discovery of �-decay by Becquerel in 1896 [17]. A theory explaining

5



the �-decay was invented by Fermi in 1934 [18]. One year later Yukawa published a

meson theory and invented the idea of intermediate bosons for the strong and the weak

interactions [19]. Doing this he was the �rst who assigned separate coupling constants

to these two forces. At that time, the electron, the proton, and the neutron made up

the set of known elementary particles

1

and �-decay was the only known aspect of weak

interactions.

The muon, discovered in 1937 in cosmic rays [24,25], was �rst believed to be the meson

that was predicted by Yukawa, but soon discrepancies were noticed. This problem was

solved in 1947 when the charged �-mesons [26] and the strange particles [27] were discov-

ered. The long lifetime of particles with strangeness made it impossible to assume that

they decay in a strong interaction. Nishijima and Gell-Mann introduced independently

a new quantum number \strangeness", which is conserved in electromagnetic and strong

interactions but violated by the weak force. This could explain the long lifetime of the

new particles, but another oddity remained. The K mesons decayed into di�erent �nal

states and some of them seemed to have the \wrong" parity. The solution was either that

two particles with almost the same mass but di�erent parity existed or that parity was

violated. Yang and Lee proposed experiments to test parity conservation. Indeed, in the

famous Wu experiment [28] parity violation was detected in 1957. The vector currents had

to be given up for the weak interaction and had to be replaced by vector and axial-vector

currents [29, 30].

In 1960 Glashow picked up an idea of Schwinger to unify electromagnetic and weak

interactions [3]. He used a Yang-Mills theory [31] with a non-abelian local gauge symme-

try and proposed an additional neutral vector boson. He considered mixing between the

photon and the additional neutral boson, but he could not explain the boson masses, since

explicit masses for bosons break the desired gauge symmetries. Nambu and Jona-Lasinio

showed how to produce boson masses with the mechanism of spontaneous symmetry

breaking [32,33]. The problem with massless Goldstone bosons [34] produced by a spon-

taneous breaking of symmetries could be solved by Higgs in 1964 [35{37] with an idea

which is now called the Higgs mechanism. The Goldstone bosons are just absorbed by

the additional degrees of freedom of the massive gauge bosons.

In 1967 Weinberg and, independently, Salam suggested models to describe the elec-

troweak theory [1,2]. This model became later the Standard Model, but it was not much

noticed before 't Hooft and Veltman managed to prove its renormalizability four years

later [38{42]. In Weinberg's model the left-handed electron and its neutrino, respectively

the left-handed muon and the corresponding neutrino were collected in weak iso-doublets.

Although it was not realized immediately, the same kind of doublet can be constructed

with the up and down quarks, which where introduced by Gell-Mann [43, 44] with his

\eight-fold way" and Zweig [45] as the constituents of hadrons.

The violation of strangeness could be explained by the assumption of a mixing between

the down and the strange quark. The size of the mixing was parameterized by the Cabbibo

angle. Unfortunately, the mixing would also lead to a 
avor change in neutral current

processes, which was not observed. This puzzle could be solved by the so-called GIM

1

Pauli had already postulated the neutrino [20] to explain the non-conservation of energy and an-

gular momentum in the �-decay. However, this particle was discovered only in 1956 by F. Reines and

C. L. Cowan [21{23]. They used a nuclear reactor as a neutrino source.

6



mechanism invented by Glashow, Iliopoulous and Maiani in 1970 [46]. They introduced

an additional quark: the charm quark. After summing the 
avor changing neutral currents

over the up-type quarks their e�ects canceled each other in tree level processes. Not much

later, the charm quark was discovered in the production of J= mesons and, soon after

that, mesons with open charm were produced [47{50]. With the known particles two

so-called particle families (or generations) could be formed. Each of them contained a

neutrino, a charged lepton, and two quarks.

A �rst experimental consolidation of the Standard Model was given by the discovery

of neutral currents in neutrino-scattering experiments at CERN in 1973 [51, 52]. In 1973

Kobayashi and Maskawa [53] assumed the existence of a third family in order to explain

the violation of CP symmetry discovered in 1964 by Cronin and Fitch [54]. The 2 � 2

Cabbibo mixing matrix would be extended to a 3�3 Cabbibo-Kobayashi-Maskawa (CKM)

matrix and instead of only one free mixing angle there are three angles and one phase

needed to construct the most general unitary matrix. A non-vanishing phase in the CKM

matrix would introduce CP violation into the Standard Model Lagrangian in a natural

way.

Three years later in 1976 the � lepton was discovered by Perl et al. [55,56]. It was the

�rst particle of the announced third generation. Shortly after that followed the discovery

of the b-quark in 1977 [57]. And only some years ago the last missing quark of the

third family the, top quark, was found at Fermilab [58] after its mass was predicted by

the analysis of radiative corrections to the LEP measurements at the Z resonance. The

� -neutrino was directly observed recently in the DONUT experiment at Fermilab [59].

Two important experimental con�rmations of the Standard Model could be achieved

before the discovery of the top quark. In 1978 the mixing between the neutral gauge

bosons in the Weinberg-Salam model was veri�ed by the observation of the interference

between weak and electromagnetic interactions in the scattering of polarized electrons on

deuterium. And maybe the most important observation was the direct production of W

and Z bosons in the UA1 and UA2 experiments at CERN [60, 61]. Experimental data

from LEP indicates that the number of light neutrinos is three. This may lead to the

assumption that all fermion families are discovered and that only the Higgs boson remains

to be discovered in the Standard Model. We will come back to this in section 2.3.

2.2 The Particle Content of the Standard Model

In this section we present the particles of the Standard Model and their description by

�elds in a Lagrangian. Not only the physical particles like e.g. leptons, but also the

unphysical particles like the Faddeev-Popov ghosts are introduced.

The Standard Model Lagrangian can be split up in parts to pronounce the di�erent

sectors of the model:

L = L

fermion

+L

gauge

+L

Higgs

+L

Yuk

+L

g:f:

+L

F:P:

: (2.1)

In the following, the various sectors will be described.
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2.2.1 Fermions

The fermions are described byL

fermion

. This part of the Lagrangian contains the kinematic

terms of the fermions and their interactions with the gauge �elds. The interactions are

introduced as minimal couplings via covariant derivatives:

L

Fermion

= i

X

i=e;�;�

 

i

L

D= 

i

L

+ i

X

i=e;�;�

l

i

R

D=l

i

R

+ i

X

i=u;c;t

 

i

L

D= 

i

L

+ i

X

i=u;d;c;s;t;b

q

i

R

D=q

i

R

: (2.2)

Here,  

L

denotes a doublet of left-handed leptons:

 

l

L

=

 

�

l

l

!

L

; (2.3)

or quarks:

 

q

L

=

 

u

q

d

0

q

!

L

: (2.4)

The right-handed singlet �elds are denoted by l

i

R

for leptons and q

i

R

for quarks. The �elds

u

q

in equation (2.2) are used for up-type quarks and the �elds d

0

q

represent down-type

quarks. The primes indicate that the down-type �elds are not eigenstates of the mass

matrix. They are a linear combination of the mass eigenstates and constitute the partners

of the up-type quarks in the fundamental representation of the weak interaction.

The connection between the physical �elds d

q

and the unphysical �elds d

0

q

is given by

the Cabbibo-Kobayashi-Maskawa matrix [53]:

0

B

@

d

0

s

0

b

0

1

C

A

= V

CKM

0

B

@

d

s

b

1

C

A

(2.5)

The unitary matrix V

CKM

can be parameterized by three angles, which are generalized

Cabbibo angles, and a phase. The hyper-charge Y

W

of the fermions is chosen in a way

that the Gell-Mann-Nishijima relation [62]

Q = I

3

+

Y

W

2

(2.6)

holds. In equation (2.6) Q stands for the electric charge and I

3

represents the third

component of the weak isospin. The hyper-charge and other quantum numbers are given

for all fermions in table 2.1.

We assume the neutrinos to be massless. This has the consequence that the lepton

families do not mix and a mixing matrix similar to (2.5) is not needed for leptons. How-

ever, recent data suggest that neutrinos do mix [5]. This would imply masses for neutrinos

and a mixing matrix as in equation (2.5) would be needed. The e�ects of the tiny neutrino

masses are small and we will neglect them completely.
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Families Q

f

I

3

Y

W

1 2 3

Leptons

 

�

e

e

!

L

e

R

 

�

�

�

!

L

�

R

 

�

�

�

!

L

�

R

0

�1

�1

+

1

2

�

1

2

0

�1

�1

�2

Quarks

 

u

d

0

!

L

u

R

d

0

R

 

c

s

0

!

L

c

R

s

0

R

 

t

b

0

!

L

t

R

b

0

R

+

2

3

�

1

3

+

2

3

�

1

3

+

1

2

�

1

2

0

0

+

1

3

+

1

3

+

4

3

�

2

3

Table 2.1: The fermions of the Standard Model.

The covariant derivatives D

�

in equation (2.2) are de�ned by:

D

�

 

l

L

=

 

@

�

+ i

g

2

~� �

~

W

�

+ i

g

0

2

Y

W

B

�

!

 

l

L

; (2.7)

D

�

l

i

R

=

 

@

�

+ i

g

0

2

Y

W

B

�

!

l

i

R

; (2.8)

D

�

 

q

L

=

 

@

�

+ i

g

2

~� �

~

W

�

+ i

g

0

2

Y

W

B

�

+ i

g

s

2

G

a

�

�

a

!

 

q

L

; (2.9)

D

�

q

i

R

=

 

@

�

+ i

g

0

2

Y

W

B

�

+ i

g

s

2

G

a

�

�

a

!

q

i

R

: (2.10)

In the last two equations the parameter a runs from 1 to 8 and corresponds to the sum

over all gluons. The Pauli matrices are denoted by ~� and �

a

are the Gell-Mann matrices.

The constants g, g

0

, and g

s

represent the coupling constants for the SU(2)

L

, the U(1)

Y

gauge symmetries and the strong interaction, respectively. The gauge boson �elds are

given by

~

W

�

, B

�

, and G

a

�

.

Equation (2.2) de�nes the kinematics and the gauge couplings of the fermions in the

Standard Model with the covariant derivatives de�ned in (2.7) { (2.10). The coupling

between fermions and the Higgs boson will be treated in section 2.2.3.

2.2.2 Gauge Fields

The kinematics of the gauge �elds introduced in the equations (2.7) { (2.10) is described

in L

gauge

. It is given by:

L

gauge

= �

1

4

~

W

��

�

~

W

��

�

1

4

B

��

B

��

�

1

4

G

a

��

G

��

a

; (2.11)

with the �eld-strength tensors

W

i

��

= @

�

W

i

�

� @

�

W

i

�

� g�

ijk

W

j

�

W

k

�

; (2.12)
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B

��

= @

�

B

�

� @

�

B

�

; (2.13)

G

a

��

= @

�

G

a

�

� @

�

G

a

�

� g

s

f

abc

G

b

�

G

c

�

; (2.14)

where f

abc

are the structure constants of the group SU(3). The indices i, j, k represent

the numbers 1, 2, 3 and the letters a, b, c represent the numbers 1 to 8.

Note that there are no mass terms in equation (2.11). An explicit mass term, like

L

mass

= m

2

B

B

�

B

�

(2.15)

would violate the gauge symmetry and has to be omitted.

With the expressions (2.2) and (2.11) all interactions of the already discovered ele-

mentary particles can be described. However, so far the theory contains only massless

particles, since mass terms like

L

M

= m

e

�

 

L

 

R

+ h.c.; (2.16)

or the term in (2.15) are not invariant under the gauge transformations. A violation of

the invariance would spoil the renormalizability of the theory.

2.2.3 Higgs sector

To keep the renormalizability of the Standard Model and introduce masses for the gauge

bosons the SU(2)

L

� U(1)

Y

gauge symmetries must be broken spontaneously. This is

achieved by the Higgs mechanism. The ansatz for the locally gauge invariant Lagrangian

density of the Higgs sector reads:

L

Higgs

= (D

�

�)

y

D

�

�+ �

2

�

y

�� �

�

�

y

�

�

2

; (2.17)

where �

2

and � are positive constants. The covariant derivative is:

D

�

� =

 

@

�

+ i

g

2

~� �

~

W

�

+ i

g

0

2

Y

W

B

�

!

�: (2.18)

The �eld � is a complex doublet transforming under the group SU(2)

L

� U(1)

Y

with the

hyper-charge Y

W

(�) = 1. Using the Gell-Mann-Nishijima relation (2.6) it follows that the

upper component of � has the electric charge Q = +1, while the lower component is a

neutral �eld with Q = 0. This suggests the notation

� =

 

�

+

�

0

!

(2.19)

for the Higgs doublet. The covariant derivative in (2.18) leads to a coupling to the gauge

�elds W

i

�

and B

�

. There is no coupling to the gluon �elds G

a

�

, since the Higgs �eld is

a singlet under the SU(3) transformation. The minimum of the Higgs boson potential

�

2

(�

y

�)� �(�

y

�)

2

is

h�i

2

=

v

2

2

; (2.20)
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with v =

q

�

2

=�. It is the vacuum expectation value of the quantized Higgs �eld. Using

gauge invariance of equation (2.17) under SU(2)�U(1) rotations the vacuum expectation

value can be chosen in a way that the only non-vanishing term is real and contained in

the neutral part of the doublet. This condition leads to:

h�i =

 

0

q

�

2

=2�

!

=

 

0

v=

p

2

!

: (2.21)

The non-symmetrical choice of the phase in (2.21) is a global gauge �xing and breaks the

gauge symmetry spontaneously. Although the symmetry disappeared, some of its features

are still present and ensure the renormalizability of the Standard Model. The physical

Higgs �eld should have a vacuum expectation value which is zero. This can be achieved

by the �eld substitution:

� =

 

�

+

1

p

2

(v + h+ i�)

!

: (2.22)

The �eld h represents the Higgs boson and the �elds �, �

+

, and �

�

= (�

+

)

y

are the

Goldstone boson �elds. The latter are unphysical degrees of freedom and can be absorbed

by the gauge boson �elds with an appropriate choice of the gauge, the unitary gauge.

Then the Higgs doublet has the form

� =

 

0

1

p

2

(v + h)

!

: (2.23)

When we introduce the vacuum expectation value v of the Higgs doublet in (2.17), we get

mass terms for the gauge bosons. The expression relevant for the gauge boson masses is:

v

2

2

�

g

2

�

�

�W

1

�

� iW

2

�

�

�

�

2

+

�

g

0

B

�

� gW

3

�

�

2

�

: (2.24)

The charged W bosons are constructed from the �elds W

1

and W

2

by

W

�

�

=

W

1

�

� iW

2

�

p

2

: (2.25)

The identi�cation of the right-hand-side of equation (2.25) with the corresponding term

in (2.24) leads to the mass term

g

2

v

2

4

W

+

W

�

; (2.26)

which yields a mass for the W

�

bosons

m

W

=

gv

2

: (2.27)

By measuring g and m

W

the parameter v is also known. Its value is

v � 246 GeV: (2.28)
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In equation (2.24) it is obvious that the third component of the

~

W

�

mixes with the

�eld B

�

. With the de�nition of the orthogonal combinations

Z

�

=

gW

3

�

� g

0

b

�

p

g

2

+ g

02

; (2.29)

and

A

�

=

gb

�

+ g

0

W

3

�

p

g

2

+ g

02

; (2.30)

a mass term for the Z boson appears with

m

Z

=

q

g

2

+ g

02

v=2: (2.31)

The photon does not get a mass term and remains massless.

By the mixing of the photon and the Z boson a new parameter is introduced: the

weak mixing angle [3]. It is de�ned by

tan �

W

=

g

0

g

: (2.32)

Using the weak mixing angle and the W mass, we can express the Z boson mass:

m

Z

=

m

W

cos �

W

: (2.33)

This relation is valid at tree-level and is changed by radiative corrections.

Equation (2.17) contains also a mass term for the Higgs boson:

m

H

=

s

�

2

v: (2.34)

The parameter � cannot be determined so far and therefore the Higgs mass is still uncon-

strained.

Also the fermions get their masses from couplings to the Higgs boson. The Yukawa

coupling is:

L

Yuk

= �

0

B

@

e

R

�

R

�

R

1

C

A

T

C

l

0

B

B

B

B

B

B

B

B

B

@

�

y

 

�

e

e

!

L

�

y

 

�

�

�

!

L

�

y

 

�

�

�

!

L

1

C

C

C

C

C

C

C

C

C

A

+

0

B

@

u

R

c

R

t

R

1

C

A

T

C

0

q

0

B

B

B

B

B

B

B

B

B

@

�

T

�

 

u

d

0

!

L

�

T

�

 

c

s

0

!

L

�

T

�

 

t

b

0

!

L

1

C

C

C

C

C

C

C

C

C

A

�

0

B

@

d

0

R

s

0

R

b

0

R

1

C

A

T

C

q

0

B

B

B

B

B

B

B

B

B

@

�

y

 

u

d

0

!

L

�

y

 

c

s

0

!

L

�

y

 

t

b

0

!

L

1

C

C

C

C

C

C

C

C

C

A

+ h.c.; (2.35)
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where C

l

, C

0

q

, and C

q

denote 3 � 3 matrices. The two-dimensional antisymmetric tensor

is denoted as �. In the Standard Model the second term in (2.35) couples the up-type

components of the left-handed quark doublets to the vacuum expectation value in the

Higgs doublet. The neutrinos are assumed to be massless and no coupling between them

and the Higgs �elds is introduced. Using unitary transformations it is possible to trans-

form the matrices C

l

, C

0

q

, and C

q

without changing the physical content. The result is

just a rotation in the fermion �elds, which is without observable e�ects, since the rotated

fermions have the same quantum numbers.

The invariance under the unitary transformations allows to diagonalize the matrices

C

l

and C

0

q

. The matrix C

q

cannot be diagonalized at the same time as C

0

q

since they are

multiplied by the same quark �elds from the right side. With the unitary matrix V , C

q

can be written as:

C

q

= V

0

B

@

c

d

0 0

0 c

s

0

0 0 c

b

1

C

A

V

y

: (2.36)

The matrix V is the Cabbibo-Kobayashi-Maskawa matrix introduced in (2.5).

Note that the vacuum expectation value of the doublet � produces fermion masses in

(2.35) which are proportional to the elements of the diagonalized matrices C

l

, C

0

q

, and

C

q

. The matrix elements are not predictable and have to be put in by hand using the

experimentally known masses.

2.2.4 Gauge Fixing and Ghosts

The quantization of the Standard Model cannot be performed without �xing a gauge.

The calculation of boson propagators requires additional terms in the Lagrangian. These

terms, the gauge �xing terms, break the gauge symmetry, but they have no in
uence on

observables. The physical content of the theory remains the same. For the photon we

choose the R

�

gauge [63]:

L

g.f.


= �

�




2

(@

�

A

�

)

2

: (2.37)

The term in equation (2.37) �xes the gauge with the parameterization �




. The same kind

of gauge �xing term can be used for the gluons:

L

g.f.G

= �

�

G

2

�

@

�

G

a

�

�

2

: (2.38)

For practical reasons the 't Hooft-Feynman gauge with �

W

= 1 and �

Z

= 1 is often

used for the massive gauge bosons

2

:

L

g.f.W

= ��

W

�

�

�

�

�

@

�

W

+

�

� i

m

W

�

W

�

+

�

�

�

�

�

2

; (2.39)

and

L

g.f.Z

= �

�

Z

2

 

@

�

Z

�

�

m

Z

�

Z

�

!

2

: (2.40)

2

Another common choice for the gauge is the unitary gauge with � =1.
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In (2.39) and (2.40) the Goldstone boson �elds appear again. The gauge �xing is chosen

in a way that there is no mixing between the gauge boson and the Higgs boson �elds.

However, it introduces unphysical longitudinal degrees of freedom into the theory. In the

non-abelian groups a coupling between the physical and the unphysical degrees of freedom

leads to a mixing among them. This problem can be solved by introducing additional

�elds to cancel contributions from unphysical states. The new terms are the Faddeev-

Popov ghosts [64]. These ghost �elds behave like scalar fermions and there occurrence in

loops allows for cancellations with the other unphysical contributions.

The Lagrangian of the Faddeev-Popov ghosts depends on the gauge �xing terms. In

the Feynman gauge (� = 1) for electroweak interactions they are:

L

F.P.

= ��

+

�

@

�

@

�

+m

2

W

�

�

+

+ igc

W

�

+

@

�

�

Z

�

�

+

�

� ie�

+

@

�

�

A

�

�

+

�

� g�

+

@

�

�

W

+

(�

Z

c

W

� �

A

s

W

)

�

�m

W

�

+

"

g

c

2

W

� s

2

W

2c

W

�

Z

�

+

� e�

A

�

+

+

g

2

�

+

(h + i�)

#

+

�

�

+

! �

�

;W

+

! W

�

; i! �i

�

� �

Z

�

@

�

@

�

+m

2

Z

�

�

Z

� igc

W

�

Z

@

�

�

�

+

W

�

�

� �

�

W+

�

�

�m

Z

�

Z

�

�

g

2

�

�

�

+

�

g

2

�

+

�

�

+

g

2c

W

�

Z

h

�

� �

A

@

�

@

�

�

A

+ ie�

A

@

�

�

�

+

W

�

�

� �

�

W

+

�

�

; (2.41)

and for the gluons:

L

F.P.

= ��

a

@

�

@

�

�

a

+ ig

s

�

a

@

�

f

abc

G

b

�

�

c

: (2.42)

The �elds �

V

describe the Faddeev-Popov ghosts. The indices a, b, and c are used for the

gauge group SU(3), with the structure constants f

abc

. In equation (2.41) the abbrevia-

tions:

c

W

= cos �

W

(2.43)

s

W

= sin �

W

(2.44)

are used.

The Standard Model, as presented in this chapter, is complete in the sense that it

describes all known particles and interactions except gravitation. Its renormalizability

and consistency are ensured by gauge symmetries, which are not explicitly broken.

However, despite the great success of the Standard Model some features remain un-

satisfactory. Up to now, there is no experimental evidence for the Higgs mechanism as

the origin of spontaneously symmetry breaking. Another point is the large number of

parameters, which cannot be predicted but have to be experimentally determined.

2.3 Theories beyond the Standard Model

Neither in high-energy nor in low-energy experiments a signi�cant deviation from the

Standard Model predictions has been detected. Nevertheless, some still unsolved prob-

lems, e.g. the failing attempts to include gravitation in a consistent way, indicate that
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the Standard Model might have to be extended. Furthermore, the fact that the Higgs

boson is still undiscovered provides some space for speculations about the mechanism of

symmetry breaking.

Due to these reasons a bunch of theories beyond the Standard Model exists. It is

impossible to mention them all and I will not give more than a small excerpt of them

here.

The most prominent and popular theories beyond the Standard Model are supersym-

metry [65,66] and string theory [67,68]. In the supersymmetric approach a new symmetry

between fermions and bosons is introduced and all fermions in the Standard Model get

supersymmetric sfermions as partners. The sfermions obey Bose statistics and are bosons.

Similarly the Standard Model bosons get fermions, the bosinos, as supersymmetric part-

ners. In the supersymmetric models a more extended Higgs sector is needed than in the

Standard Model. At least two Higgs doublets are necessary to keep the theory anomaly

free [69{71]. The two doublets are equivalent to eight real particle �elds of which three

can be absorbed by the longitudinal modes of the massive gauge bosons. This leaves �ve

Higgs bosons and they should appear as physical particles. There are several reasons

why supersymmetry is an attractive extension to the Standard Model. Some of them will

become clear in the following discussion.

One of the major goals of particle physics is to explain many or even all phenomena

by the simplest possible theory and the smallest possible amount of parameters. This

motivates the search for a Grand Uni�ed Theory (GUT), see e.g. refs. [72, 73]. After

the uni�cation of the electromagnetic and the weak interactions into a SU(2)

L

� U(1)

Y

gauge symmetry it is desired to incorporate also the strong interaction. By examining the

running of the various coupling constants of the three gauge groups it becomes apparent

that they do not meet at the same point in the Standard Model. In supersymmetric

models this becomes possible.

A somehow natural extension in particle physics is to change the \size" of particles.

Instead of only point-like particles also one-dimensional strings or objects with even higher

dimension can be assumed. This approach is used in the theory of strings and superstrings,

see e.g. [67, 68]. There is a hope that it will be possible to incorporate gravity into the

theory of elementary particles. However, usual string theories are embedded in a ten or

eleven-dimensional space and the problem how to compactify the higher dimensions in a

unique way is still unsolved.

In supersymmetry and grand uni�ed theories it is usually assumed that with increasing

energy more and more symmetries will appear. In contrast to this hypothesis the opposite

might be true. The observed symmetries might be just the low energy behavior of a more

complicated world at much higher energies [74].

Since the Standard Model Higgs boson has not yet been discovered, there is still

some room for new physics in this sector. One idea to produce particle masses without

destroying the gauge symmetries is called Technicolor [75{82]. Here, a strong QCD-

like interaction is assumed, which creates condensates and in this way substitutes the

Higgs boson. Most Technicolor models predict measurable resonances at energies that

are already ruled out. However, some \post-modern" models, see e.g. ref. [83], are still

alive.

It is not surprising that all of these models change the experimental observables in
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their speci�c way. Model dependent calculations must be performed in the comparison

of theoretical predictions and experimental measurements. In the next section I will

present a model-independent method of calculating cross-sections and other observables.

Anomalous couplings are used to mimic the potential e�ects of new physics and a given

model predicts the size of the anomalous parameters. When the anomalous parameters

are measured well enough it will be possible to disentangle various theories.

2.4 Anomalous Triple Gauge Boson Couplings

In this section the most general form of the Lagrangian describing the VW

+

W

�

coupling

with V = 
; Z is presented. It is demonstrated that the requirement of invariance under

various symmetries can be used to reduce the number of unknown parameters. With the

assumption that the scale of new physics is far above the accessible energies the number

of parameters can be further reduced in two di�erent scenarios of e�ective theories.

Let us consider the most general Lagrangian L

ano

gen

that describes vertices with two

W bosons and one neutral boson that is invariant under Lorentz transformations [84{86]:

iL

ano

gen

= g

VWW

"

g

V

1

V

�

(W

�

��

W

+�

�W

+

��

W

��

) + �

V

W

+

�

W

�

�

V

��

+

�

V

m

2

W

V

��

W

+�

�

W

�

��

+ ig

V

5

�

����

((@

�

W

��

)W

+�

�W

��

(@

�

W

+�

))V

�

+ ig

V

4

W

�

�

W

+

�

(@

�

V

�

+ @

�

V

�

)

�

~�

V

2

W

�

�

W

+

�

�

����

V

��

�

~

�

V

2m

2

W

W

�

��

W

+�

�

�

����

V

��

#

: (2.45)

As in (2.25) the �elds W

�

denote the W boson, while V

�

represents the photon or Z

boson �eld. The abbreviations W

��

= @

�

W

�

� @

�

W

�

and V

��

= @

�

V

�

� @

�

V

�

are used.

The fourteen parameters g

V

1

, �

V

, �

V

, g

V

5

, g

V

4

, ~�

V

, and

~

�

V

are not restricted by Lorentz

invariance. The Standard Model, however, predicts the precise structure of VWW ver-

tices and delivers therefore fourteen couplings without a direct measurement. With the

normalization conditions g


WW

= e and g

ZWW

= e cot � the Standard Model couplings

are:

g

V

1

= �

V

= 1; (2.46)

and

�

V

= g

V

5

= g

V

4

= ~�

V

=

~

�

V

= 0: (2.47)

By measuring the couplings in (2.46) and (2.47) the Standard Model can be tested.

Unfortunately, the measurement of all fourteen coupling constants requires a huge num-

ber of observed events and it is therefore for practical purposes desirable to reduce the

number of parameters. One strategy is to assume that the vertex factor (2.45) is invari-

ant under certain symmetry transformations, like C (charge transformation), P (parity

transformation) or their product CP .

Assuming invariance under CP transformations leads to the shorter Lagrangian:

iL

ano

= g

VWW

h

g

V

1

V

�

(W

�

��

W

+�

�W

+

��

W

��

) + �

V

W

+

�

W

�

�

V

��

(2.48)

+

�

V

m

2

W

V

��

W

+�

�

W

�

��

+ ig

V

5

�

����

((@

�

W

��

)W

+�

�W

��

(@

�

W

+�

))V

�

#

:
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The six anomalous parameters g

V

4

, ~�

V

, and

~

�

V

disappear, because the according operators

do not have the correct behavior under the symmetry transformations. The coupling

proportional to g

V

5

violates both C and P but is invariant under CP transformations.

With the stricter assumption that C and P should be conserved separately also g

V

5

can

be eliminated.

In the case of electromagnetic interactions also gauge symmetry should be conserved.

This demand leads to g




1

= 1 and g




5

= 0, and only the two parameters �




and �




will

give anomalous contributions to the 
WW vertex.

Using all these assumptions we end up with six anomalous couplings, which is still

too many for present data. A further reduction of the number of couplings is possible by

examining how physics beyond the Standard Model may look like.

Since no deviations from the Standard Model predictions were measured up to date

we can expect that existing deviations are small if any. This implies that new physics can

be described by e�ective theories in the presently accessible energy range. In an e�ective

approach new terms are added to the Standard Model Lagrangian in a speci�c way. These

new terms can contain all possible operators that keep a required symmetry invariant.

The additional Lagrangian is written as a power series:

L

NR

=

1

�

X

i

�

(5)

i

O

(5)

i

+

1

�

2

X

i

�

(6)

i

O

(6)

i

+ : : : ; (2.49)

where O

(N)

i

denotes an operator of mass dimension N . The large parameter � is the

mass scale of the new physics. The typical contribution of the operators is expected to

be of the order of �

(N)

i

(

p

s=�)

N�4

, where s is the squared center-of-mass energy. If we

assume that new physics behaves \natural", the parameters �

(N)

i

will be of order one.

With this requirement the contributions from operators with a higher N will be smaller

than others as long as the condition ��

p

s is valid. In such a case an expansion in the

mass dimension is valid. However, the expansion will break down when

p

s reaches the

scale �.

3

If the expansion in (2.49) cannot be limited by a maximal value for N , any interaction

term in (2.45) can be rendered to be SU(2)

L

�U(1)

Y

gauge invariant by adding interactions

with additional gauge bosons, additional would-be Goldstone bosons, and the Higgs boson

[87{91]. However, in a low energy approximation, where we consider only operators with

N � N

max

, a gauge-invariant parameterization of the triple-gauge boson coupling can be

used to constrain the form of (2.45). In the following, we will assume that operators with

mass dimension larger than six can be neglected. Further we presume that lepton number

and baryon number are conserved. Then all operators with mass dimension �ve vanish.

Still, more than eighty operators with mass dimension six remain [92{95]. However, not

all of them will contribute to a particular process.

Using the SU(2)

L

� U(1)

Y

gauge-symmetry as a guideline there exist two possible

scenarios. If the Higgs boson is light, a linear realization of the symmetry is used. A

heavy Higgs or no Higgs boson at all will require a nonlinear realization of the symmetry.

3

A well-known example of such a behavior is the Fermi theory of the weak decays. At low energies

(

p

s << M

W

) the decay can be treated as a four-particle interaction. In the region of the Z peak,

however, this approach fails and the weak boson propagators must be considered.
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As the low energy degrees of freedom with direct interactions with the new physics we

consider the SU(2)

L

� U(1)

Y

gauge bosons and the would-be Goldstone bosons, which

contribute to the degrees of freedom of the massive gauge bosons. The two possible

scenarios will be discussed in the following.

2.4.1 Linear Realization

For the construction of gauge invariant operators the Higgs doublet �eld �, the covariant

derivatives D

�

and the �eld strength tensors

^

W

��

= W

��

� gW

�

�W

�

and B

��

can be

used. With these building blocks eleven CP conserving operators with mass dimension

six can be constructed [88{90, 92, 94, 95]. Four of these operators have strict constraints

due to low energy data, since they contribute to well measured gauge boson propagators.

Four other operators describe anomalous Higgs couplings and are neglected in the present

analysis. These operators can only be constrained by measuring the couplings between

Higgs and gauge bosons.

The three remaining operators are [86]:

L

TGC

d=6

= ig

0

�

B�

m

2

W

(D

�

�)

y

B

��

(D

�

�)+ ig

�

W�

m

2

W

(D

�

�)

y

~�

~

W

��

(D

�

�)+g

�

W

6m

2

W

~

W

�

�

(

~

W

�

�

�

~

W

�

�

);

(2.50)

where the coupling constants g and g

0

correspond to the SU(2)

L

and U(1)

Y

gauge groups.

The operators in (2.50) describe interactions between three gauge bosons, interactions

between four gauge bosons, and interactions between Higgs bosons and gauge bosons.

Note that the factors 1=�

2

appearing in (2.49) are here included in the parameters �

i

.

After setting the Higgs �eld to its vacuum expectation value we get the contributions

to the anomalous gauge boson couplings. The relations of �

B�

, �

W�

, and �

W

to the

anomalous couplings are then given by:

�g

Z

1

=

�

W�

c

2

W

; ��




= �

c

2

W

s

2

W

�

��

Z

��g

Z

1

�

= �

W�

+�

B�

; �




= �

Z

= �

W

: (2.51)

With the chosen symmetry requirements we managed to reduce the set of anomalous

couplings from fourteen parameters to three. However, we are not completely model

independent anymore and it should be stressed that if the condition �� s is not ful�lled

the relations in (2.51) will not be valid anymore.

2.4.2 Nonlinear Realization

If the Higgs boson is too heavy or if it is not present at all, a nonlinear realization is used

to construct an e�ective Lagrangian. The Higgs doublet � should be expressed by the

unitary and dimensionless matrix U :

U = e

i

~! � ~�

v

; (2.52)

with the would-be Goldstone bosons denoted as !

i

and v is the vacuum expectation value

of the Higgs �eld as introduced in (2.20).
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Using the \naive dimensional analysis" of ref. [96] the dependence of the scale of new

physics �

NP

can be determined and the operators can be compared with contributions

from the linear realization. The dependence is given by:

O(�

NP

) / �

2

NP

1

�

d

NP

1

�

w

NP

; (2.53)

where d is the number of derivatives and w gives the number of gauge �elds in the operator.

Applying (2.53) on the anomalous couplings in (2.45) it appears that the parameters �g

V

1

and �

V

are suppressed by a power 1=�

2

NP

and e�ectively of the dimension six. This means

that they can be produced by operators of the dimension six as in the case of the linear

realization. The term V

��

W

+�

�

W

�

��

producing the anomalous coupling proportional to �

V

is of the \naive" dimension eight and for large �

NP

expected to be much smaller than the

couplings �g

V

1

and �

V

.
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Chapter 3

The Anomalous Magnetic Moment

of the � Lepton

Dirac's famous prediction � = e=2m [15] for the magnetic moment of spin

1

2

point-like

particles was a great success of his theory. This result and the calculation of the one-

loop correction to � by Schwinger [16] were convincing arguments for QED. Today, the

magnetic moments of the two light leptons e

�

and �

�

are among the best measured

physical quantities and are determined with the spin-precession method to be [97]:

�

e

= (1:001159652193� 0:000000000010)

e�h

2m

e

; (3.1)

�

�

= (1:0011659230� 0:0000000084)

e�h

2m

�

: (3.2)

These values are in a very good agreement with the theoretical predictions.

To measure the magnetic moment of the � lepton the spin-precession method cannot

be applied, since the � lifetime is to short. However, the value of the magnetic moment is

of some interest, since a di�erence to the theoretical prediction would indicate new physics

in form of new particles or a composite � . The proton and the neutron are nice examples,

where the magnetic dipole moments di�er strongly from the theoretical prediction by

Dirac because of their compositeness.

In this chapter we discuss measurements of the magnetic dipole moment of the � lepton

and derive analytical predictions for its determination in the e

+

e

�

-annihilation processes

at LEP. For other aspects in � physics, please refer to recent overviews [98{101] and the

references therein.

Let us start with 
ashing brie
y the basics on magnetic dipole moments of leptons.

A more detailed discussion of equation (3.3) and the derivation of equation (3.4) can be

found in appendix C.1. The general form for the matrix element of the electromagnetic

current of a lepton is of the form

j

�

= e�u(p

0

; s

0

)

�




�

F

1

(q

2

) +

i

2m

�

��

q

�

F

2

(q

2

) + 


5

�

��

q

�

F

3

�

u(p; s); (3.3)

with q = p

0

� p and �

��

=

i

2

[


�

; 


�

].
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Figure 3.1: The two Feynman diagrams contributing to �nal state radiation in � pair

production.

The functions F

1

and F

2

contribute to the magnetic moment of the lepton

�

l

=

e�h

2m

[F

1

(0) + F

2

(0)] ; (3.4)

while F

3

generates the electric dipole moment

d

l

= eF

3

(0); (3.5)

which should vanish as long as CP symmetry is valid. A derivation of equation (3.4) is

given in appendix C.1. For spin

1

2

particles, F

1

(0) = 1. The anomalous magnetic moment

is de�ned as

a

l

=

2m

e�h

�

l

� 1 = F

2

(0): (3.6)

Without radiative corrections F

2

(0) disappears for point-like spin

1

2

particles. Including

radiative corrections the theoretical prediction in the Standard Model is [102]:

a

th

�

= 0:001177: (3.7)

The �rst measurements of the form factor F

2

(q

2

> 0) were performed in the process of

� pair production with an intermediate photon. This was done in the e

+

e

�

annihilation

experiments at PETRA [103]. The obtained limit was F

2

(q

2

> 0) � 0:02 (95% CL) in the

range of (5 { 37 GeV)

2

for q

2

.

Another possibility to get limits to F

2

(m

2

Z

) is to measure the Z�

+

�

�

vertex and as-

suming SU(2)

L

�U(1)

Y

symmetry. This model dependent analysis was done by Escribano

and Mass�o and they got the limit �0:04 < F (m

2

Z

) < 0:06 [104].

A way to measure the parameter F

2

(0) is to look at �nal state radiation in the process

of � pair production. The corresponding Feynman diagrams are shown in �gure 3.1. In

�gure 3.1 also the particle momenta are de�ned. The observed photons are on-shell, which

implies q

2

= 0. The measured F

2

(0) is not exactly equivalent to the anomalous magnetic

moment, since one of the � leptons is o�-shell.

Final state radiation was �rst applied to restrict the anomalous magnetic moment in

an analysis by Grifols and M�endez [105]. They used the e�ect of an anomalous term on

the Z decay width in their calculation and evaluated the expression

�

h

Z

0

! �

+

�

�




i

= �

0

+ �

ano

; (3.8)
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with

�

ano

=

�

2

a

2

�

M

3

Z

1024�m

2

�

sin

2

�

W

cos

2

�

W

"

(v

2

+ a

2

)�

1

9

(v

2

� a

2

)

#

: (3.9)

The Standard Model contribution is denoted with �

0

and v = 1 � 4 sin

2

�

eff

W

, a = 1 are

the common abbreviations for the coupling constants. Grifols and M�endez got the limit

ja

�

j � 0:11 (95% CL). Note that terms linear in a

�

are neglected in equation (3.9). This

is justi�ed for large values of a

�

, since linear terms always appear together with a spin


ip, which is proportional to m

2

�

=m

2

Z

. However, the actual size of the linear term can only

be determined in an explicit calculation as presented in section 3.1.

Recent measurements at LEP, using �nal state radiation and the linear terms in a

�

as

discussed in section 3.1, give the best limit to the magnetic dipole moment [106, 107]. It

is currently [97, 107]:

�0:052 <

�

�

e�h=2m

�

< 0:058: (3.10)

This limit is about �ve times bigger than the theoretical prediction.

3.1 Analytical Predictions

For the Standard Model process we assume all known corrections, like initial state radia-

tion and interferences between initial state and �nal state radiation, to be taken already

into account. Their e�ects are proportional to the presumably small value of a

�

= F

2

and

can be safely neglected. The contributions of the photon exchange diagram is suppressed

by the denominator in the s-channel propagator and is not considered here. Figure 3.1

shows the two remaining diagrams, used in this calculation.

To perform a precise determination of a

�

it is useful to look at more than the total

cross-section, e.g. to examine distributions. The parameters of physical relevance are the

production angle of the photon cos �




, and the photon energy E




. For an experimental

cut cos �

1

, the angle between photon and � lepton, is important. This cut is treated in

section 3.2, where numerical results are presented.

The matrix elements were evaluated applying the Feynman rules given in appendix

A and checked using the program CompHEP [108, 109] with modi�ed Feynman rules. The

analytical integrations over the phase space, described in appendix B.3, were performed

using FORM [6]. The integrals over the production angle of the � leptons were done �rst.

The only non-polynomial contribution in cos �

1

and �

1

came from the denominators of

the � propagators:

t

+

= 2p

1

q =

s

2

(1� x

0

)(1� �

0

cos �

1

); (3.11)

t

�

= 2p

2

q =

s

2

(1� x

0

)(1 + �

0

cos �

1

); (3.12)

where x

0

is related to the photon energy given by:

x

0

=

(p

1

+ p

2

)

2

s

= 1�

2E




p

s

; (3.13)
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and the velocity of the � leptons in their center-of-mass system:

�

0

=

s

1�

4m

2

�

x

0

s

(3.14)

is used.

The integrals of these propagators are:

1

2

1

Z

�1

d cos �

1

m

2

�

t

2

�

=

x

0

s(1� x

0

)

2

; (3.15)
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1
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�
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0

)

ln

x

0

s

m

2

�

: (3.16)

Note that the approximation in equation (3.16) is only used for integrations over x

0

.

After integrating over the two � angles we get the distribution:
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dx
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�

+
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; (3.17)

where the abbreviation

C =

�

�

G

2

�

M

4

Z

96�

s

js�M

2

Z

+ iM

Z

�

Z

(s)j

2

(v

2

+ a

2

); (3.18)

contains the s-channel propagator and the coupling constants.

The integration over the remaining angle cos �

1

is simple and yields:

d�
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= �

0
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�
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ln

1 + �
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� 1
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: (3.19)
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Figure 3.2: A one loop correction to �nal state radiation.

For small photon energies (x

0

! 1) the Standard Model part of equation (3.19) shows the

known infrared singularity. The anomalous terms have got an additional factor q

�

from

the vertex factor in equation (3.3) and are infrared safe. With an upper cut x for the x

0

integration, the cross-section

�

hard

(x) =

x

Z

0

dx

0

d�

dx

0

(3.20)

is �nite. The cut-o� x corresponds to a minimal photon energy

E

min




=

p

s

2

(1� x): (3.21)

The cross-section for hard photons is then:
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s

m

2

�

� 1

!#)

; (3.22)

where the Euler dilogarithm Li

2

is used. It is Li

2

(1) = �

2

=6 and Li

2

(0) = 0.

As mentioned before only the Standard Model contribution is singular for x ! 1,

so the singularity can be removed in the usual way. The contributions of soft photon

radiation and virtual diagrams, which are of the same order in the coupling constant,

have to be added. These corrections are [110]:

�

s+v

(x) = C(v

2

+ a

2

)

(

2

 

ln

s

m

2

�

� 1

!"

ln(1� x) +

3

4

#

+ 2Li

2

(1)�

1

2

)

: (3.23)

The total cross-section for �

+

�

�

(
) production is given by the sum

�

tot

= �

hard

(x) + �

s+v

(x): (3.24)
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and is

�

tot

= C
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(v
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s
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�

a

2

�

!)

: (3.25)

The total cross-section in equation (3.25) is independent of the cuto� parameter x as

desired. The infrared singularities in equation (3.22) and equation (3.23) cancel each

other. The terms proportional to a

2

�

were published in [104, 111]. The terms linear in a

�

were �rst presented in ref. [112].

The range in which equation (3.25) can be applied might be estimated with the the-

oretical prediction, for a

�

. When the limit for a

�

is close to the theoretical prediction

contributions from loop diagrams as shown in �gure 3.2 become important and cannot be

neglected anymore.

It is easy to extend the calculation from above to the presence of a non-vanishing

electric dipole moment as introduced in equation (3.3). The results can be extended by

the simple replacement:

a

2

�

m

2

�

!

a

2

�

m

2

�

+ 4

d

2

�

e

2

: (3.26)

There appear no terms linear in d

�

, so a

�

and d

�

have di�erent contributions to the

cross-sections and can in principle be disentangled.

3.2 Numerical Results

All numerical results obtained in this section were produced with the Fortran program

Anotau [113]. We used the value sin

2

�

W

= 0:2320 and the � mass m

�

= 1:777 GeV for

the calculations.

The result for the anomalous contribution to the total cross-section is shown in �g-

ure 3.3. To demonstrate the e�ects of the terms linear and quadratic in a

�

their separate

contributions are plotted in the same �gure. The �gure shows that linear terms are of

the same order as the quadratic terms at ja

�

j < 0:01. For smaller ja

�

j they even give the

dominating contribution to the anomalous e�ects and they are still of the order of 20%

for values of ja

�

j < 0:05.

Experimentally, it is impossible to identify photons when they are collinear with the

� leptons. This would require an additional cut on �

�

1

, the angle between the photon

momentum and the � momenta in the detector system. The angle �

1

introduced in (B.44)

{ (B.46) is de�ned in the center-of-mass system of the � leptons and cannot be used

directly to apply this cut. However, it is possible to express �

1

as a function of �

�

1

and the

photon energy:

�

1

= �

1

(�

�

1

; x

0

): (3.27)

The easiest way to calculate this dependency is by expressing the scalar product (p

1

k) by

the phase space variables de�ned in appendix B.3 and to compare this with the de�nition
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Figure 3.3: Contributions from terms linear and quadratic in a

�

constitute the e�ects of

an anomalous magnetic moment on the total cross-section.

of �

�

1

in the detector system:

p
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1
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i
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k

i

= p
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1
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] ; (3.28)

where the velocity of the �

+

in the detector system is:
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: (3.29)

With (3.28) and (3.29) it is easy to get an expression for cos �

�

1

:

cos �

�

1

=

1

�

1

"

1�

1� �

0

cos �

1

2

[(1 + x
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)� (1� x
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)�

0

cos �]

#

; (3.30)

and an explicit dependence of cos �

1

:

cos �

�

1=2

=

�A cos �

1

�B

q

D(1� cos

2

�

1

) + A

2

cos

2

�

1

� 2AB cos �

1

+B

2

; (3.31)
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where the abbreviations

A = �

0

(1 + x

0

); (3.32)

B = 1� x

0

; (3.33)

D = 4x

0

�

02

; (3.34)

E = A

2

� (A

2

�D) cos

2

�

�

1=2

; (3.35)

are used.

To apply the discussed boost and get the required form of (3.27) it is necessary to

invert equation (3.31) and express cos �

1

in dependence of cos �

�

1

. This leads to a quadratic

equation with two solutions:

cos �

1

=

AB(1� cos

2

�
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1
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q
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2
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1

)

E

: (3.36)

The correct solution of equation (3.36) is found by considering the limit x

0

! 1 which

corresponds to the case where the two Lorentz systems are identical. In this limit also

the angles �

�

1

and �

1

must be equal. Inserting x

0

= 1 in (3.32) { (3.35) exhibits that the

sign in front of the square root is the same as the sign of cos �

�

1

.

To apply the cut it is useful to switch the order of integration and treat the scattering

angles of the photon �rst. We get then the distribution:
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: (3.37)

Now, the integration of (3.37) over cos �

1

can be performed analytically for arbitrary limits

and equation (3.36) can be used to determine the integration limits for the desired cuts.

The cuts will be applied for both leptons and therefore the integration limits will remain

symmetric.

The limits for the integrals presented in (3.15) and (3.16) are changed and the integrals

yield now with new limits:

1

2

c

Z

�c

d cos �

1

m

2

�

t

2

�

= O(

m

2

�

s

)! 0; (3.38)
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Figure 3.4: E�ects of the anomalous magnetic moment for di�erent cuts to the angle

between � lepton and photon. The upper �gure shows ja

�

j = 0:05% and the lower �gure

shows ja

�

j = 0:01%.
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Figure 3.5: The ratio of the contribution of anomalous terms compared to the Standard

Model prediction depending on the minimal photon energy E

min

.

In �gure 3.4 the e�ects of this important cut are shown in the energy distribution of

the emitted photon. Clearly, the anomalous signal is reduced. However, for high photon

energies the anomalous contributions are less sensitive to the cut.

In �gure 3.5 the ratio of the anomalous contribution over the Standard Model predic-

tion is shown as a function of the minimal photon energy. The ratio increases for higher

photon energies, but on the other hand the number of events is reduced drastically.
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Chapter 4

W Pair Production

W pair production processes have been studied in theory since several decades. The

�rst cross-section calculations were performed already before the Standard Model became

known. With this kind of process the non-abelian gauge structure of the Standard Model

can be tested. Especially, a more precise determination of the W mass [116{118] and

the measurement of the triple gauge boson couplings [86] become possible with W pair

production.

The �rst calculations for the process ofW pair production in the Standard Model were

done in the seventies for the total cross-section [119] and for the total and di�erential

cross-section [120]. These calculations were done for the signal process

e

+

e

�

! W

+

W

�

: (4.1)

The produced bosons were assumed to be on-shell and the width of the W bosons was

neglected. The three contributing diagrams in the process (4.1) are shown in �gure 4.1.

The cross-section for this process is a function of s, the center-of-mass energy squared,

and m

W

, the mass of the W boson:

� = �(s;m

2

W

): (4.2)

Ten years before, it was shown that the decay width �

W

of the W boson will lead

to large corrections if the W is much heavier than the proton [121]. Therefore, it is

necessary to consider the �nite decay width to make precise predictions. This may be

done by convoluting the cross-section with Breit-Wigner factors [122]:

�(s) =

s

Z

0

ds

1

�(s

1

)

(

p

s�

p

s

1
)

2

Z

0

ds

2

�(s

2

)�

0

(s; s

1

; s

2

): (4.3)

The Breit-Wigner factors are:

�(s

i

) =

1

�

p

s

i

�

W

(s

i

)

(s

i

�m

2

W

)

2

+ s

i

�

2

W

(s

i

)

�B(f); (4.4)

where B(f) denotes the branching fraction for the decay of a W into the fermion doublet

f . The expression �

0

(s; s

1

; s

2

) in (4.3) describes the process ofW pair production with the

masses

p

s

1

for the W

�

and

p

s

2

for the W

+

. It is a generalization of �(s;m

2

W

) in (4.2).
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Figure 4.1: The three signal diagrams contributing to the W pair production process. The

s-channel Higgs boson diagram is neglected in the calculations. The diagrams constitute

the CC03 process.

Since the W bosons decay almost immediately, the process

e

+

e

�

! W

�

W

+

! (f

1

; f

1

0

)(f

2

; f

2

0

) (4.5)

is observed. s

1

and s

2

can be reconstructed by the invariant masses of the produced weak

doublets (f

1

; f

1

0

) and (f

2

; f

2

0

).

Additional diagrams, the so called background diagrams, contribute also to the same

�nal state fermions. Their number depends only on the �nal state fermions. Therefore,

one can easily classify all processes e

+

e

�

! 4f by their �nal state fermions [123]. Table 4.1

taken from reference [123] shows the number of diagrams for the various �nal states. We

will restrict ourself to the CC11 class. The CC11 class is de�ned in section 4.2, where also

the cross-sections are presented.

All results derived in this chapter are implemented in the Fortran program GENTLE [124]

and were presented partially already in [125{128]. GENTLE is mainly applied for total

cross-section predictions, nevertheless the package was also used in experimental studies

of anomalous couplings [129, 130].

4.1 The Signal Cross-Section

In this section, the analytic expressions for the CC03 cross-section are presented. They

correspond to processes where only the signal diagrams contribute. We split the cross-

section formula in a sum of products of coe�cient functions C and kinematical functions

�

du �sc �e�

e

���

�

���

�

d�u 43 11 20 10 10

e��

e

20 20 56 18 18

���

�

10 10 18 19 9

Table 4.1: Number of Feynman diagrams contributing to the production of CC type �nal

states.
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The coe�cient functions are [131]:

C

t

=

2

(6�

2

)

2

Re

1

jD

W

(s

1

)j

2

jD

W

(s

2

)j

2

� L

4

(e;W ))L

2

(F

1

;W )L

2

(F

2

;W )N

c

(F

1

)N

c

(F

2

); (4.7)

C

st

=

X

k=
;Z

2

(6�

2

)

2

Re

1

jD

W

(s

1

)j

2

jD

W

(s

2

)j

2

D

k

(s)

� g

k

L(e; l)L

2

(F

1

;W )L

2

(F

2

;W )L

2

(e;W )N

c

(F

1

)N

c

(F

2

); (4.8)

C

s

=

X

k;l=
;Z

2

(6�

2

)

2

Re

1

jD

W

(s

1

)j

2

jD

W

(s

2

)j

2

D

k

(s)D

�

l

(s)

� g

k

g

l

[L(e; k)L(e; l) +R(e; k)R(e; l)]

� L

2

(F

1

;W )L

2

(F

2

;W )N

c

(F

1

)N

c

(F

2

); (4.9)

with the abbreviation

D

V

(s) = s�M

2

V

+ i

p

s�

V

(s); (4.10)

for the denominators of the s-channel boson propagators. It can be seen from (4.7) - (4.9)

that the coe�cient functions are rather simple. They are constructed by the s-channel

propagators and the coupling constants.

As coupling constants we used:

g
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with Q

e

= �1 and I

e

3

= �

1

2

. The kinematical functions are then calculated to be:
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with

� = s

2

+ s

2

1

+ s

2

2

� 2ss

1

� 2ss

2

� 2s

1
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2

(4.15)

and the denominator of the neutrino propagator t

�

:

t

�

=

1

2

�

s� s

1

� s

2

�

p

� cos �

�

: (4.16)

Note, that the integration of equations (4.12), (4.13), and (4.14) leads to the corre-

sponding functions (2.2), (2.3), and (2.4) for the total cross-section in [131].

4.2 A Classi�cation: Background Contributions of

the CC11 Class

The CC11 class is de�ned by the �nal state fermions. It is required that two di�erent

weak iso-doublets are produced and that no electrons nor electron neutrinos are found

in the �nal state. Up to eleven diagrams, the three signal diagrams and eight additional

background diagrams, can contribute to such a process. In the following the notation

CCn process is used when a better discrimination between the �nal states is desired. The

number n determines the total number of Feynman diagrams contributing to the consid-

ered process. If it does not matter, whether the produced doublets consist of leptons or

quarks, we will speak of the CC11 class.

Four of the eight background diagrams in the CC11 class are shown in �gure 4.2. The

total number of Feynman diagrams for four fermion production depends on the number

of leptons in the �nal state. The following three cases can be distinguished:

� The CC09 process with pure leptonic �nal states.

� The CC10 process with semi-leptonic �nal states.

� The CC11 process with pure hadronic �nal states.

The various background diagrams can be denoted by the �nal state fermion coupling

to the neutral gauge boson in the s-channel propagator. For example the left diagram in

�gure 4.2 is denoted as a d

2

-diagram since the down-type fermion of the positive charged

doublet couples to the 
 or Z. In this context we will not distinguish whether the �nal

state fermion is a quark or a lepton.

It is useful to split up the background contributions into three parts. The �rst two

parts are the interferences of the s-channel and the t-channel signal diagrams with the

background diagrams in �gure 4.2. The corresponding cross-section contributions are

denoted by �

sb

and �

tb

. The third part contains the pure background and is denoted by

�

bb

.

d�

b

d cos �

=

d�

sb

d cos �

+

d�

tb

d cos �

+

d�

bb

d cos �

: (4.17)

The expressions for each part in equation (4.17) can be presented in a similar way as

it is done for the signal diagram results in equation (4.6). However, in contrast to the
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Figure 4.2: Four of the eight background diagrams contributing to the CC11 process.

CC03 expressions, we need in general two contributions from each interference, since more

coupling constant combinations can appear.

1

An exception are the interferences with the

t-channel diagram. Here only one combination of coupling constants is needed.

4.2.1 The Background-s-channel Interference

For the s-channel background interference we get:
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: (4.18)

The lower symbols + and � indicate the two coupling constant combinations.

The coe�cient functions are:
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For the su

1

-interference we get the kinematical functions:
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1

This e�ect is evoked by the additional spin dependent Zf

�

f-coupling in the background diagrams.

Consequently the coe�cient functions C

�

vanish when only photons are exchanged.
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The remaining kinematical functions can be easily obtained by the relation:
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After an integration over cos �, expression (4.21) leads to (3.1) of [131]. G

su

1

�

is pro-

portional to cos � and does not contribute to the total cross-section.

4.2.2 The Background-t-channel Interference

Since only left-handed fermions appear in the t-channel exchange in the interference of

t-channel and background, only one coe�cient function per interference term occurs:
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The coe�cient functions are:
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and the kinematical function for tu

1
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For the td

1

-interference we get:
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The kinematical functions for the second fermion doublet is obtained by the symmetry

relations
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4.2.3 The Pure Background Contribution

The pure background contribution contains the squares and interferences of eight Feynman

diagrams. This leads to 64 interferences and, therefore, to 128 coe�cient functions and

kinematical functions:
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The coe�cient functions are:

C

a

i

b

j

�

=

X

k;l=
;Z

2

(6�

2

)

2

Re

1

D

k

(s)D

�

l

(s)D

W

(s

3�i

)D

�

W

(s

3�j

)

� [L(e; k)L(e; l)� R(e; k)R(e; l)]

� L

2

(F

1

;W )L

2

(F

2

;W )N

c

(F

1

)N

c

(F

2

)

� L(f

a

i

; k)L(f

b

j

; l): (4.31)

The 
 and Z exchanges di�er only in the coe�cient functions, therefore, the number of

independent kinematical functions can be reduced to 2� 16. With the symmetry relation
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; (4.32)

the number of independent kinematical functions can be further reduced. Only 2 � 10

independent G-functions remain and have to be determined. To express all these kine-

matical functions only �ve new functions and two functions known from neutral current

processes are needed. The functions are: G
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Table 4.2 gives an overview over the functions on which the various interferences depend.

Let us start with the simplest case: the square of the background diagrams. The u
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contributions are given by:
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Table 4.2: Dependencies of the various background interferences on the seven kinematical

functions.

The kinematical functions for the squares of the other background diagrams are obtained

by the symmetry relations:
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After integrating equation (4.34) over cos � one gets the expression (3.3) as presented in

reference [131]. The function G

u
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�

in (4.33) does not contribute to the total cross-section,

since it is an odd function of cos �.

The kinematical functions for the interference terms between u
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The similar expressions for the other doublet are easily obtained by exchanging s
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Note that the function G
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) appears also in neutral-current processes [132] and
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where G
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is [123, 133, 134]:
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The contributions of interferences between diagrams where fermions from di�erent

doublets couple to the s-channel gauge boson have a more complicated structure. For the

interference between u
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and d
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diagrams we get:
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Expression (4.44) is used to write the kinematical function for the u
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interference:
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The kinematical function G
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with [135]:
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The relations
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and
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complete the set of kinematical functions for the pure background.

4.3 Anomalous Couplings in W Pair Production

In the process of W pair production triple gauge boson vertices, as shown in �gure 4.3,

appear in the two s-channel diagrams. In the Standard Model this vertex is described by

the Lagrangian

L = ig

WWV

h�

W

+

��

W

�

�

�W

+

�

W

�

��

�

V

�

+W

+

�

W

�

�

V

��

i

; (4.51)

where all parameters are known. However, since there are only weak constraints to the

possible parameters in this vertex, deviations may occur. The most general form for

the 
WW and ZWW vertices that is still compatible with Lorentz invariance was �rst

considered in [84]. Later, the number of anomalous parameters for each vertex was reduced
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Figure 4.3: The three gauge boson vertex.

to seven in [85,89]. Several studies were performed to examine the in
uence of anomalous

couplings on W pair production, see e.g. [136{139]. An overview can be found in [86].

The anomalous couplings used in this work are de�ned by the Lagrangian:
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and
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The Lagrangian L

1

in (4.52) de�nes anomalous couplings which conserve C and P symme-

try separately. In the Lagrangian L

2

of (4.53) the C and P violating, but CP conserving

coupling z

Z

is introduced. In the Standard Model the parameters �

Z

, x




, x

Z

, y




, y

Z

, and

z

Z

are zero.

The parameters z




and y




contribute to the magnetic dipole moment �

W

and the

electromagnetic quadrupole moment q

W

of the W boson [140]:

�

W

=

e

m

2
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(2 + x
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); (4.54)

q
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= �

e
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2
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� y




): (4.55)

A derivation of equations (4.54) and (4.55) can be found in appendices C.2 and C.3.

The weak couplings x

Z

and y

Z

give contributions in a similar way as �




and �




in equa-

tion (4.54) and (4.55) to the weak moments of the W boson.

Before LEP2 reached the threshold for W pair production, there had been limits to

the 
WW vertex from Tevatron [141]:

�0:33 < x




< 0:45 (y




= 0); (4.56)

�0:20 < y




< 0:20 (x




= 0); (4.57)
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where the relations
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; (4.59)

�

Z

= 0; (4.60)

are applied. Recent limits from LEP2 for anomalous couplings combined with results

from D0 are [142]:

�
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�

W

= �0:03

+0:08

�0:08

; (4.62)
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where the �'s are the coe�cients of the three six-dimensional operators:

O

B�

= ig

0

�

B�

m

2

W

(D

�

�)

y

B

��

(D

�

�) ; (4.64)

O

W�

= ig

�

W�

m

2

W

(D

�

�)

y

~� �

~

W

��

(D

�

�) ; (4.65)

O

W

= g

�

W

6m

2

W

~

W

�

�

�

�

~

W

�

�

�

~

W

�

�

�

; (4.66)

and imply the identities:
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4.3.1 The CC03 Process with Anomalous Couplings

As mentioned before, the three gauge boson vertices appear in the s-channel signal dia-

grams. The occurrence of non-vanishing anomalous couplings will therefore change the

cross-section of the CC03 process. The contributions of anomalous couplings to the di�er-

ential cross-section is investigated in this section.

We present the results in the same way as in section 4.1 and 4.2 and introduce the

functions C

s

nm

and G

s

nm

(s; s
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; s

2

; cos �) for the pure s-channel contribution and the functions

C
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n
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2

; cos �) for the interferences between s-channel and t-channel:
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(4.70)

With the Feynman rules of appendix A we get for the coe�cient functions:
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where the anomalous couplings
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are used. The Standard Model couplings are:
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To include the parity violating coupling z

Z

, we have to introduce the abbreviations:
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The kinematical functions G
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for the interference between s-channel and t-channel
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and for the s-channel squared diagrams:
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4.3.2 The CC11 Process with Anomalous Couplings

There appears no triple gauge boson vertex in the background diagrams. However,

anomalous couplings in
uence the background contributions due to interferences with

the s-channel diagram.

The di�erential cross-section for this part of the background is:
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with the coe�cient functions:
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In the interference between the s-channel and the u

1

-background diagram the kine-

matical functions for the various anomalous couplings are:
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The interferences of s-channel and the other background diagrams can be calculated

using the relations:
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4.4 Radiative Corrections { Initial State Radiation

Up to now, no complete electroweak one-loop calculation is available for the process

e

+

e

�

! 4f . However, much work has been invested on this �eld, see e.g. [116, 143{161]

and references therein.

In the present analysis we consider only initial state radiation (ISR) as radiative cor-

rections. These corrections are implemented in GENTLE for the total cross-section, but are

also used, with the modi�cations described in this section, in calculations of the di�erential

cross-section.

In total cross-section calculations radiative corrections lead to a change of the event

rate. This e�ect is mostly due to the fact that the center-of-mass energy is reduced by the

radiation of photons. A cross-section which strongly depends on the center-of-mass energy,

might get large corrections in such a process. A well-known example is the cross-section

for e

+

e

�

! Z ! �

+

�

�

, where the radiation of hard photons increases the cross-section

drastically at center-of-mass energies larger than m

Z

.
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The change of event rate can also be observed in the di�erential cross-section. In

this case however, an additional e�ect appears. The momenta of e

�

and e

+

are changed

by radiating photons. As a consequence, the center-of-mass system is boosted along the

beam axes. This Lorentz boost will also change the di�erential distribution of the W

bosons, without an e�ect on the total event rate.

To calculate the ISR corrections the structure function approach as described in section

4.4.1 is used and in section 4.4.2 we describe the Lorentz boost necessary for the di�erential

cross-section.

4.4.1 Structure Function Approach

Initial state radiation can be considered by the structure function approach [116,162]. In

this approach the Born cross-section is convoluted with two structure functions D(x; s):

d�

QED

(s)

ds

1

ds

2

d cos �

=

1

Z

x

min

1

dx

1

1

Z

x

min

2

dx

2

D(x

1

; s)D(x

2

; s)

X

i=1;2

�

�

�

�

�

d cos �

0

i

d cos �

�

�

�

�

�

d�(x

1

x

2

s; s

1

; s

2

)

d cos �

0

i

;

(4.101)
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The functions D(x; s) are [131, 162]:
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Note that the structure functions D(x; s) are determined for the total cross-section and

have to be considered as an approximation when applied to the di�erential cross-section.

The transformation of the angles (due to the Lorentz boost) leads to the introduction of

the Jacobean

�

�

�

�

d cos �

0

i

d cos �

�

�

�

�

into equation (4.101). The transformation function �

0

(�; x

1

; x

2

; s)

and the corresponding Jacobean are derived in section 4.4.2.

For numerical applications, e.g. the analysis presented in section 4.5.2, and especially

for comparisons with Monte Carlo programs [163, 164] it is useful to calculate a bin-wise

integrated cross-section:

� =

X

i

Z

cos �

0

b

i

(�

b

)

cos �

0

a

i

(�

a

)

d�

d cos �

0

: (4.110)

The integration in (4.110) could be performed analytically for the CC03 process and im-

plemented into GENTLE also when ISR corrections are considered.

4.4.2 Lorentz Boost

Let us denote the detector system as � and the center-of-mass system of the produced

W bosons as �

0

. The momenta of the electron and the positron in � are:

p

e

�

= Ex

1

(1; 0; 0; 1); (4.111)

p

e

+

= Ex

2

(1; 0; 0;�1): (4.112)

E =

p

s=2 is the beam energy of the collider. The transformation of these momenta into

their center-of-mass system (�

0

) leads to:

p

0

e

�

= E

p

x

1

x

2

(1; 0; 0; 1); (4.113)

p

0

e

+

= E

p

x

1

x

2

(1; 0; 0;�1): (4.114)

The boost velocity can be calculated by applying the transformation

p

0

3

=

p

3

� vp

0

p

1� v

2

(4.115)

on the momenta in (4.111) and (4.113). Solving the equation

p

x

1

x

2

=

x

1

� vx

1

p

1� v

2

(4.116)

for the boost velocity v we get:

v =

x

1

� x

2

x

1

+ x

2

: (4.117)

In their own center-of-mass system the momenta of the two W bosons are chosen to be:

p

0

W

�

=

0

@

s

�

0
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+ s

1
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s
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; (4.119)
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with s

0

= 4x

1

x

2

E

2

as the reduced center-of-mass energy and the de�nition:

�

0

� �(s

0

; s

1

; s

2

): (4.120)

Because of conservation of the 4-momentum, the energies and the momenta of the bosons

are �xed. The direction of the W bosons de�nes the angle �

0

.

Now, the momenta of the W

�

boson in the frame � can be calculated by a Lorentz

boost of the momentum (4.118) with velocity �v:

p

W

�

= (Q

i

; B

i

sin �; 0; B

i

cos �); (4.121)

where Q

i

and B

i

are real and positive functions of s

0

, s

1

, s

2

, cos � and v. The velocity of

the W

�

-boson in the laboratory system is given by:

�

i

=

B

i

Q

i

: (4.122)

The lower index i indicates, that more than one solution may exist for the functions Q

i

,

B

i

, and �

i

.

Using

p

e

�

+ p

e

+

= p

W

�

+ p

W

+

(4.123)

and the relations

p

2

W

�

= s

1

; p

2

W

+

= s

2

; (4.124)

the functions Q

i

and B

i

of (4.121) can be determined. We get two sets of solutions

B
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=

(s
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� s

2

+ s

1

)
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2
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(1� bv cos �)

2
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with the abbreviation

b =

v

u

u

t

1�

4s

1

s

0

(1� v

2

cos
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�)

(s

0

� s

2

+ s
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2

(1� v

2
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: (4.127)

The number of solutions for (4.125) and (4.126) depends on cos �, v and b. By de�nition,

B is real and positive and therefore two solutions exit when b < v cos �. No solution exists

for b < �v cos � and there will be one solution for all remaining cases.

With the solutions in (4.125) and (4.126) and equation (4.115), the relation between

the W production angles in the two Lorentz systems is:

cos �

0

=

B cos � � vQ

q

(1� v

2

)B

2

sin

2

� + (B cos � � vQ)

2

: (4.128)

The transformation (4.128) is in accordance with the similar transformation derived in

the limited case of on-shell W pair production published in reference [165] for on-shell

47



Figure 4.4: Di�erential cross-section for e

+

e

�

! �

�

��

�

u

�

d with various corrections.

W pair production. The derivation of (4.128) with respect to cos � leads to the Jacobean

included in equation (4.101):

d cos �

0

1;2

d cos �

=

�
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(4.129)
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1� b

2

b

v

1� vb cos �

#

: (4.130)

In the calculation of the bin-wise integrated di�erential cross-section it is easier to

perform the integration over cos � in the center-of-mass system of the W pair, �

0

, and

consider the boost only for the integration limits as described in (4.128). In this way an

analytical integration is still possible.

Note that for an angular bin in the laboratory system, there may be zero, one or two

corresponding bins in �

0

.

4.5 Numerical Results

4.5.1 Standard Model Contributions

All numerical results presented in this chapter were produced with the program GENTLE

[124]. The 
ag setting used for the calculations can be found in appendix D. Some of our

results were already presented in the articles [125{127].
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Figure 4.5: The ratios CC09/CC03, CC10/CC03, and CC11/CC03 at the center-of-mass

energies of 190 GeV and 500 GeV without QED corrections. The numerical calculation

was performed with an s-dependent width in the s-channel propagators.

The di�erential cross-section for processes with semi-leptonic �nal states at a center-

of-mass energy of 500 GeV is plotted in �gure 4.4. The forward peaking character of

the cross-section is obvious. This feature is even more pronounced at higher energies. It

is produced by the t-channel diagram of �gure 4.1. The four di�erent curves in �gure

4.4 show the cross-section with only the three signal diagrams with and without initial

state radiation and the complete CC10 process with and without initial state radiation.

It is demonstrated that the largest deviation due to radiative and background corrections

appears in the region of cos � < 0, which is the region of backward-scattering. The

e�ects of initial-state radiation are clearly much bigger than the corrections due to the

CC11 background contribution. The large corrections due to initial state radiation can

be explained by the reduction of the center-of-mass energy. At lower energies the cross-

section for backward scattering is much higher than at high energies, while the opposite

holds for the forward peak.

The contributions of the various processes in the CC11 class are studied in �gure 4.5.

In this �gure the ratio of cross-sections with background e�ects over the cross-section of

the signal diagrams is plotted for two center-of-mass energies. It is remarkable that the

curves of the various processes, CC09, CC10, and CC11 are similar to each other, although

there are di�erent couplings appearing and even a di�erent number of Feynman diagrams

contributing. At a center-of-mass of 190 GeV the background e�ects are small over the

whole range of the scattering angle. The biggest deviations are here in the limit cos � ! 1

and are of the order of three per mil. This situation changes drastically at a center-of-

mass energy of 500 GeV. Here, corrections due to background are large in the region of

backward scattering. The maximal deviation is at cos � = �1. They are of the order of

30%.

In table 4.3 we present numerical values for the di�erential Born cross-section for three

di�erent scattering angles. With a semi-analytical program like GENTLE a high precision in

the numerical integrations is easy to achieve. Therefore, the numbers for the cross-section

are presented with their numerical precision. The di�erential cross-sections are given for
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the CC03 signal diagrams with semi-leptonic �nal states and for all possible �nal states

of the CC11 class. The ratios of CC11=CC10 and CC10=CC09 are both about three, which

corresponds to the color factor appearing in the decay of theW bosons. The ratios deviate

slightly from the color factor even for the signal diagrams, because of QCD corrections

considered in the hadronic W decays.

The e�ects of initial-state radiation are considered in table 4.4. Apart from that the

values presented are produced in the same way as the numbers in table 4.3. Since two

additional numerical integrations are needed in the calculation of the cross-sections, we

require a lower numerical precision and give less digits.

The in
uence of s-dependent and s-independent boson widths in the Z and W prop-

agators is studied in tables 4.3 and 4.4. The e�ect of the s-dependence is small at low

energies as expected. However at higher energies, like

p

s = 500 GeV, the gauge violating

character of the s-dependent width becomes obvious and large deviations appear. They

are especially strong for backward scattered W pairs since the gauge cancellations are

strongest in this case. The s-dependent terms in the boson width destroy these cancel-

lations. As a result the cross-sections can be almost twice as high as with intact gauge

cancellations. Therefore, at energies well above the W threshold the s-independent cal-

culation is supposed to be more reliable [116, 166, 167].

p

s (GeV) cos � �

CC03

(pb) �

CC09

(pb) �

CC10

(pb) �

CC11

(pb)

{0.8 0.0944912 0.0303619 0.0945628 0.294524

{0.8 0.0943803 0.0303466 0.0945159 0.294360

190 0.0 0.216782 0.0697249 0.217156 0.676333

190 0.0 0.216791 0.0697497 0.217241 0.676600

0.8 0.790399 0.253913 0.790888 2.46346

0.8 0.790432 0.253951 0.791012 2.46385

{0.8 0.00712779 0.00191168 0.00598642 0.0187496

{0.8 0.0064616 0.0017215 0.0053926 0.016888

500 0.0 0.0227606 0.00688311 0.0214732 0.0669960

500 0.0 0.0215908 0.00654501 0.0204228 0.0637232

0.8 0.212756 0.0683217 0.212821 0.662936

0.8 0.212368 0.0682179 0.212503 0.661957

{0.8 0.00407742 0.000913816 0.00287169 0.00902554

{0.8 0.00244188 0.000403725 0.00128268 0.00407275

1000 0.0 0.01001499 0.00276245 0.00860917 0.0268337

1000 0.0 0.00614750 0.00155423 0.00484706 0.0151154

0.8 0.0550750 0.0175387 0.0546059 0.170015

0.8 0.0535172 0.0170530 0.0530947 0.165310

Table 4.3: Di�erential cross-sections without ISR. The CC03 cross-section is calculated

with the branching ratios for the CC10 process. In the �rst rows the cross-section with an

s-dependent boson width is given, while in the second rows the s-independent widths are

used in the calculation.
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p

s (GeV) cos � �

CC03

(pb) �

CC09

(pb) �

CC10

(pb) �

CC11

(pb)

{0.8 0.09075 0.02917 0.09083 0.2829

{0.8 0.09064 0.02915 0.09077 0.2827

190 0.0 0.1971 0.06339 0.1974 0.6149

190 0.0 0.1971 0.06340 0.1975 0.6150

0.8 0.6869 0.2206 0.6872 2.140

0.8 0.6868 0.2206 0.6871 2.140

{0.8 0.0131 0.003934 0.01228 0.03834

{0.8 0.01248 0.003749 0.01170 0.0365

500 0.0 0.02698 0.008348 0.02603 0.08119

500 0.0 0.02590 0.008036 0.02506 0.0782

0.8 0.2312 0.07427 0.2314 0.7207

0.8 0.2308 0.07418 0.2311 0.7198

{0.8 0.006844 0.001930 0.006032 0.01886

{0.8 0.005282 0.001441 0.004510 0.01412

1000 0.0 0.01128 0.00333 0.01037 0.0323

1000 0.0 0.007757 0.00223 0.006939 0.02163

0.8 0.06278 0.02010 0.06259 0.1949

0.8 0.0613 0.01963 0.06114 0.1904

Table 4.4: Di�erential cross-sections with ISR. The CC03 cross-section is calculated with

the branching ratios for the CC10 process. In the �rst rows the cross-section with an s-

dependent boson width is given, while in the second rows the s-independent widths are

used in the calculation.

4.5.2 Anomalous Couplings

In �gures 4.6 and 4.7 the ratio of cross-sections with anomalous couplings over the Stan-

dard Model cross-section is presented for two di�erent energies. The di�erential cross-

section is divided into �ve bins. This allows for direct comparisons with Monte Carlo

programs.

The �gures show the in
uence of anomalous couplings when only one parameter di�ers

from the Standard Model prediction. This oversimpli�ed scenario is not suited to describe

any realistic model beyond the Standard Model. It is nevertheless useful for comparisons

with other calculations and shows some basic e�ects of anomalous couplings. The results

in �gure 4.6 are in good agreement with a similar �gure in reference [168]. Additional

checks with the Monte Carlo program WOPPER [169, 170] are also in nice agreement with

the GENTLE calculation.

Both �gures show that the in
uence of anomalous couplings to the di�erential cross-

section are largest for backward scattering, i.e. in the region cos � < 0. Note, that this is

the same region where also corrections due to initial state radiation and background give

important corrections. At a center-of-mass energy of 190 GeV and for absolute values of

0.5 for the anomalous couplings, the contributions linear in the anomalous parameters are

dominating. This situation changes drastically at a center-of-mass energy of 500 GeV and

an absolute value of 0.1. Here the quadratic terms are important and start to dominate
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Figure 4.6: The ratio of cross-sections with anomalous coupling over the Standard Model

prediction at a center-of-mass energy of 190 GeV. In each �gure only one anomalous

parameter di�ers from zero.

as it can be seen for the parameter z

Z

, where the sign of z

Z

is almost of no importance.

In �gure 4.6 it is obvious, that most anomalous couplings lead to similar e�ects in the

di�erential cross-section. This feature allows for strong cancellations in the di�erential

cross-section between the di�erent parameters. We conclude that it is necessary to inves-

tigate more than only one anomalous coupling at a time. Multi-parameter �ts must be

performed in a realistic analysis.

With GENTLE it is easy to extend the number of anomalous couplings. All of the six

de�ned couplings can be used at the same time. A simple analysis is shown in �gure 4.8.
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Figure 4.7: The ratio of cross-sections with anomalous coupling over the Standard Model

prediction at a center-of-mass energy of 500 GeV. In each �gure only one anomalous

parameter di�ers from zero.

In each plot two anomalous parameters are allowed to di�er from zero. The cross-section

is split up into two areas. The forward cross-section is de�ned by:

�

F

=

1

Z

0

d cos �

d�

d cos �

; (4.131)

and the backward cross-section by:

�

B

=

0

Z

�1

d cos �

d�

d cos �

: (4.132)

The two cross-sections �

F

and �

B

can be used to express the total cross-section �

T

=

�

F

+ �

B

and the forward-backward asymmetry A

FB

= (�

F

� �

B

)=�

T

.
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Figure 4.8: 1�-bounds at a center-of-mass energy of 500 GeV for L = 50fb

�1

.

The rings in �gure 4.8 show the region for a pair of anomalous couplings where the

cross-section di�ers less than a standard deviation from the Standard Model prediction.

Although the cross-section for forward scattering (� 1:6 pbn) is much bigger than the

cross-section for backward scattering (� 110 fbn), the rings resembling the backward scat-

tering are more narrow. This e�ect demonstrates the higher sensitivity of the observable

�

B

to anomalous couplings.

It is interesting to compare the sensitivity of the forward-backward asymmetry to the

various anomalous couplings. It is obvious that the parity violating coupling z

Z

can be

better restricted in this analysis than the parity conserving couplings. In the latter case

the forward and the backward ring have almost the same center and the narrow ring of the
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backward scattering cross-section is almost completely contained in the ring of forward

scattering.
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Chapter 5

Anomalous Couplings in ZZ

Production

LEP2 is at present running at energies above the ZZ production threshold and the �rst Z

pairs have been observed. During the run of LEP2 several hundred events will be collected.

This will be enough to provide limits for ZZZ and 
ZZ vertices, which are absent in the

Standard Model of electroweak interactions at tree-level. However, physics beyond the

Standard Model might give strong contributions to neutral gauge boson vertices [171{173].

Requiring only invariance under Lorentz transformations the most general V ZZ ver-

tex, see �gure 5.1, with two on-shell Z bosons is given by [84, 85]:

�

���

V ZZ

=

p

2

�m

2

V

m

2

Z

h

if

V

4

(p

�

g

��

+ p

�

g

��

) + if

V

5

�

����

(q

1

� q

2

)

�

i

: (5.1)

In contrast to the VW

+

W

�

vertex with seven possible anomalous couplings [84, 85],

compare also section 4.3, Bose symmetry forbids more couplings in (5.1). More anomalous

couplings are allowed in (5.1) if one additional Z boson is o�-shell (see e.g. [174]), but

their contributions are suppressed by a factor (q

2

1

� q

2

2

). The anomalous parameter f

V

5

in (5.1) leads to violation of C and P symmetry, but maintains invariance under CP

transformations, while f

V

4

would introduce CP violation in (5.1).

The di�erential Standard Model cross-section for ZZ production in e

+

e

�

annihilation

has been known for almost 20 years [84, 175]. Also, the e�ects of anomalous neutral

gauge boson couplings in the production of 
Z, ZZ, and 
 bosons have been studied, see

p

q

1

q

2

V

�

Z

�

Z

�

Figure 5.1: The V ZZ vertex with V = 
; Z. Two Z bosons with momenta q

i

are on-shell,

q

2

i

= m

2

Z

.
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e.g. [176{180]. In Z
 production processes at the Tevatron [181{183] and LEP [184{186],

limits to the vertex Z
Z were obtained. However, they cannot be transferred to Z pair

production, since the anomalous couplings in equation (5.1) are independent of couplings

in Z
 production.

Recent analysis of ZZ production processes could provide limits to the anomalous

parameters f

V

4

and f

V

5

. They are [187]:

�3:6 � f

Z

4

� 3:4; �8:4 � f

Z

5

� 7:9; �2:1 � f




4

� 2:1; �4:9 � f




5

� 4:8: (5.2)

The total Standard Model cross-section for the process of ZZ production is already

included in GENTLE. Compare also appendix D. The included background e�ects are based

on the publications [135, 188], while the calculation of non-universal QED corrections

follows the ones presented in reference [189]. The attempt of the next section is to prepare

the installation of the di�erential cross-section with anomalous couplings into GENTLE. The

numerical calculations were performed with the FORTRAN program ZAC [190] and the

results were presented partially already in [191].

5.1 The Di�erential Cross-Section for ZZ Production

The di�erential cross-section for ZZ production is presented in this section. It is obtained

for the various spin combinations of �nal state Z bosons. This allows to determine their

sensitivity to the anomalous couplings.

The �nite width e�ects of the produced Z bosons are considered by convoluting the

cross-section for ZZ production with two Breit-Wigner functions. The di�erential cross-

section is then expressed by the sum:

d�

d cos �
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; (5.3)

with

d�

��

0

d cos �

=

Z

ds

1

Z

ds

2

p

�

64�s

2

�

�

�M

��

0

�

�

�

2

�(s

1

)�(s

2

); (5.4)

where � and �

0

stand for the possible Z boson helicities +, �, and 0, which are de�ned

by the vectors:
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The K�all�en function � and other notations may be inferred from chapter 4. The Breit-

Wigner factors �(s

i

) are:
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The squared matrix element
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��
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2

in equation (5.4) can be expressed by the Standard

Model part
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The squared amplitude in the Standard Model is:
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where the Zee couplings L

Z

and R

Z

can again be taken from chapter 4. The functions
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G
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; s
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with the Mandelstam variables:

t = �

1

2

�

s� s

1

� s

2

�

p

� cos �

�

; (5.16)

u = �

1

2

�

s� s

1

� s

2

+

p

� cos �

�

: (5.17)

It is worth to note that the coupling constant combination (L

4

Z

�R

4

Z

) gives contributions

only to the various spin combinations of equation (5.10). These terms cancel each other

for all measurable cross-sections, because the produced Z bosons are identical, and not

all of the spin combinations in equations (5.11) { (5.15) are observable by themselves. As

an example, the contribution of G

+�

(s

1

; s

2

) cannot be distinguished from G

�+

(s

2

; s

1

) and

only their sum can be measured. For completeness the remaining G-functions are given:

G
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2
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2
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SM�
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; s
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): (5.22)

58



The contributions from the anomalous diagrams are:
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=

X

V

k

;V

l

=
;Z

1

m

4

Z

"

(L

V

k

L

V

l

+R

V

k

R

V

l

)G

��

0

s

(s

1

; s

2

;V

k

; V

l

)

� (L

V

k

L

V

l

�R

V

k

R

V

l

)G

��

0

s�

(s

1

; s

2

;V

k

; V

l

)

#

+

X

V=
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with the coupling constants L




= R




= �e=2 for the 
ee coupling. The denominators

of the s-channel propagators 1=(s � m

2

V

) cancel with the corresponding factors in the

anomalous vertex function (5.1). Photon and Z exchange have the same s-dependence in

(5.24).

The functions G
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s

for the s-channel diagrams squared are:
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Similarly, the interferences G

��

0

i

between t and u-channel diagrams and the s-channel

diagram can be expressed by:
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Again, as in equation (5.10), terms which disappear in physical observables are present.

They are listed for completeness:
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As expected there are no contributions of anomalous couplings to the spin combina-

tions (+�) and (�+). These are spin 2 states and cannot be produced by the s-channel

diagrams.

Equations (5.25) { (5.40) exhibit that the CP violating couplings proportional to f

V

4

do

neither interfere with the Standard Model terms nor with terms proportional to f

V

5

. A

further conclusion is that it is impossible to separate out the e�ects of the parameters

f

Z

4

and f




4

on the di�erential cross-section of the process e

+

e

�

! ZZ. However, both

parameters imply CP violation in a V ZZ vertex.

In the limit of on-shell Z pair production only the combination with one longitudinally

and one transversally polarized Z receives contributions from anomalous couplings.

With the given expressions for the various spin combinations, the di�erential cross-

section (5.3) is obtained:
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where the abbreviation � = s

1

+ s

2

is used. The Standard Model part is described by S

while the anomalous contributions are contained in A

i

and A

s

.

In the Standard Model limit the di�erential cross-section in (5.41) is in agreement

with the result presented in reference [132]. Radiative corrections to (5.41) due to initial

state radiation, see e.g. [189], can be applied in the structure function approach including

a Lorentz boost of the scattering angle as described similarly in W pair production [127].

The presented analytical results demonstrate how potential anomalous couplings might

change the di�erential ZZ production cross-section. Anomalous couplings will have their

main e�ect in the production of a longitudinally and a transversally polarized Z boson.

For on-shell ZZ production, these are the only spin combinations which are sensitive to
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an anomalous signal. E�ects of non-vanishing f

V

4

and f

V

5

on the �nal states with two

transversally or two longitudinally polarized Z bosons are zero or suppressed by a factor

(s

1

� s

2

)

2

. Therefore, a measurement of the �nal state spins might be used to increase

the ratio of the anomalous signal over the Standard Model background. However, the

spin analysis can not be used to disentangle the signals from the anomalous parameters

f

V

4

and f

V

5

, since only one type of spin combination is sensitive to anomalous couplings.

Due to the interference contribution of f

V

5

in the equations (5.30) and (5.32). f

V

4

and f

V

5

have di�erent angular distributions. It might be possible to separate out their e�ects at

LEP2 by examine those characteristics if they would contribute substantially.

5.2 Numerical Results

The numerical calculations presented in this section were performed with the input values

m

2

Z

= 91:187 GeV; (5.45)

�

Z

= 2:49 GeV; (5.46)

G

F

= 1:16639 � 10

�5

GeV

�2

; (5.47)

s

2

W

= 0:23124; (5.48)

which were taken from reference [97].

Assuming that the anomalous couplings are large enough already the total cross-

section alone will give a clear signal as shown in �gure 5.2. Especially for energies much

above the production threshold a huge deviation will arise. This behavior re
ects the

fact that there is no gauge cancellation for the anomalous diagrams and as a consequence

unitarity is violated by them. However, at too high energies and large anomalous couplings

the method of anomalous couplings is not applicable anymore and the results become

senseless.

The di�erential cross-section for ZZ production is shown in �gure 5.3 for two di�erent

center-of-mass energies. At

p

s = 190 GeV the cross-section is relatively 
at for the

Standard Model prediction. At higher energies like 500 GeV the Z bosons are produced

in the direction of the beams or against it. As shown in the last section the contributions

of an anomalous coupling f

V

4

is quadratic in the parameter. The e�ect can only be an

enhancement of the cross-section, since no negative contributions are allowed. For the

anomalous coupling f

V

5

interference terms are allowed and can lead to a reduction of the

cross-section. This might lead to weaker limits on the parameters f

V

5

.

To analyze the power of a spin-dependent measurement we de�ne three spin combi-

nations in the �nal state:

LL: both Z bosons are longitudinally polarized

LT: one Z is longitudinally, the other transversally polarized

TT: both Z bosons are transversally polarized
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Figure 5.2: The total cross-section for ZZ production with anomalous couplings.

Which corresponds to

�

LL

= �

00

(5.49)

�

LT

= �

0�

+ �

0+

+ �

�0

+ �

+0

(5.50)

�

TT

= �

��

+ �

�+

+ �

+�

+ �

++

(5.51)

In �gures 5.4, 5.5, and 5.6 the ratio of the cross-section for our three cases over the

sum of all spins (�

LL

=�, �

LT

=�, and �

TT

=�) is plotted for a center-of-mass energy of

p

s = 190 GeV. In each diagram the solid line describes the Standard Model prediction,

while the dashed curves show the cross-sections with anomalous couplings. In the �gures

on the right-hand side cuts are applied to the invariant masses of the decay particles.

The �gures demonstrate that the average polarization of the Z bosons is di�erent from

the Standard Model expectation when anomalous couplings appear. This is mainly due

to the large e�ects on the spin combination LT. The e�ects on the other combinations are

suppressed by a factor (s

1

�s

2

), see section 5.1, and consequently the average polarization

must change.

The behavior of the Z polarization at a center-of-mass energy of

p

s = 500 GeV is

plotted in �gure 5.7. The average polarization of the Z bosons is clearly sensitive to

anomalous couplings. Especially the spin combination LT might be strongly changed.

Since with the Standard Model vertices almost no longitudinally polarized Z bosons are
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Figure 5.3: The di�erential cross-section for ZZ production in the Standard Model and

with anomalous couplings at center-of-mass energies of 190 GeV and 500 GeV.

produced, an excess of them would be a clear signal for physics beyond the Standard

Model. At these high energies a spin dependent analysis would be helpful in the search

for anomalous couplings.

Figure 5.4: The ratio of produced Z pairs, where both bosons are longitudinally polarized,

over all produced Z pairs. The left-hand �gure is without cuts, the right-hand �gure is

with cuts on the invariant masses: m

Z

� 2�

Z

<

p

s

i

< m

Z

+ 2�

Z

.
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Figure 5.5: Same as �gure 5.4, but for a longitudinally and a transversally polarized Z.

Figure 5.6: Same as �gure 5.4, but with both Z bosons transversally polarized.
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Figure 5.7: The analog of �gures 5.4, 5.5, and 5.6 without cuts to the invariant masses

and at a center-of-mass energy of

p

s = 500 GeV. Note, the couplings are much smaller

than for 190 GeV.

Acknowledgement

I am grateful to T. Hebbeker and P. Moln�ar from L3 for drawing my attention to

the experimental interest in the problem of anomalous ZZZ and ZZ
 vertices. Their

questions and the common discussions inspired this calculation. Thanks to J. Alcaraz for

numerical comparisons and to W. Lohmann for providing me with information about the

experimental situation.

65



Chapter 6

Conclusions

Summary

We used the formalism of anomalous couplings to determine various potential e�ects of

physics beyond the Standard Model. In this approach new physics can be parameterized in

a model independent way at energies well below the corresponding production threshold.

In chapter 3 we predicted the signal of a potential anomalous magnetic moment of

� leptons in the �nal state radiation spectrum at LEP. It was shown that terms that

were believed to be small and negligible (terms with a linear dependence of the magnetic

moment) cannot be neglected anymore, when the precision of the measurement reaches

a limit in the order of 5% or even smaller. The current limit of the LEP analysis is

now �0:052 <

�

�

e�h=2m�

< 0:058 and consequently the expressions with a pure quadratic

dependence of a

�

as used in earlier analysis should not be applied anymore. Instead, the

results derived in chapter 3 or the full Monte Carlo simulation [114] should be used.

In the main part of this thesis the process of four fermion production via two W

boson exchange was investigated. The full set of kinematical functions, describing the

di�erential cross-sections of the CC11 class processes, was derived. The analytical results

were implemented into GENTLE and used to study the e�ects of background diagrams and

ISR corrections.

In addition, all anomalous couplings which are invariant under CP transformations

were considered in the calculation and can be used to simulate physics beyond the Stan-

dard Model. This was done by experimentalists of the L3 collaboration especially in the

starting phase of LEP2.

We calculated the bin-wise integrated di�erential cross-sections with an analytic inte-

gration over cos � for the CC03 process with anomalous couplings. This feature simpli�es

and speeds up comparisons with Monte Carlo programs drastically. However, for the CC11

background processes only the total and the di�erential cross-section are available and

for the CC11 processes with anomalous couplings only the di�erential cross-sections were

calculated.

Since the ZZ production threshold has been reached at LEP2 also this process is

subject for studies. ZZ production is the main irreducible background process in the

search for a light Higgs boson, but also an anomalous triple gauge boson coupling could

contribute to the process. It is natural to apply the methods used for W pair production
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also here. Couplings of three Z bosons or two Z bosons and a photon are predicted

to vanish in the Standard Model at all. Moreover, most of the anomalous couplings

allowed in a ZWW vertex are forbidden by Bose symmetry in a ZZZ vertex. If only

one Z is o�-shell, only two anomalous couplings may exist. Their e�ects were studied in

chapter 5. The derived results can be used in a determination of the anomalous couplings,

respectively to determine limits to these couplings.

Outlook

It cannot be expected that the limits to the anomalous magnetic moment of the � will

improve much by using experiments with center-of-mass energies in the region of the

production threshold. In these experiments the photons do not have enough energy to

allow for a clear distinction between initial and �nal state radiation. However, a high

luminosity run at Z peak energies at a future linear collider might deliver a much better

statistics and could be used to increase to precision of the measurement.

After the era of LEP2, where the search for anomalous couplings was already per-

formed, a very interesting collider for the search of anomalous gauge couplings will be one

of the planned linear colliders

1

. In contrast to the case of the anomalous magnetic mo-

ment of the � , where a center-of-mass energy at the Z-peak is best, the triple gauge boson

couplings will be best examined at energies well above the W -pair production threshold.

Considering the high energy and the large luminosity of the future linear colliders I see a

large potential to discover new physics.

And besides the collider physics also in low energy particle physics experiments exist

the hope to �nd deviations of the Standard Model and anomalous triple gauge boson

couplings. For example, new and more precise measurements of the anomalous magnetic

moment of the muon will allow a precise determination of the gauge boson couplings of

the W boson, see e.g. [193, 194].

1

For the physical potential of a 500-1000 GeV linear collider, see e.g. reference [192].
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Appendix A

Feynman Rules

In this appendix we reproduce the Feynman rules used for our calculations. For a complete

list of Feynman rules we refer to the literature, see e.g. [195{199].

A.1 External Particles

To describe fermions and bosons we use for the external lines the expressions:

incoming fermion

u(p)

p

(A.1)

outgoing fermion

u(p)

p

(A.2)

incoming antifermion

v(p)

p

(A.3)

outgoing antifermion

v(p)

p

(A.4)

incoming vector boson

�

�

(k; �)

k

V

�

(A.5)

outgoing vector boson

�

�

�

(k; �)

k

V

�

(A.6)
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The spinors and antispinors are normalized to:

X

spin

u(p; s)u(p; s) = 2m; (A.7)

X

spin

v(p; s)v(p; s) = �2m; (A.8)

and

X

spin

u(p; s)u(p; s) = p=+m; (A.9)

X

spin

v(p; s)v(p; s) = p=�m: (A.10)

For the vector boson polarizations we have the properties:

k

�

�

�

(k; �) = 0; (A.11)

�

�

(k; �)�

��

(k; �

0

) = ��

�

�

0

(A.12)

X

�

�

�

(k; �)�

�

�

(k; �) = �g

��

+

k

�

k

�

k

2

: (A.13)

Note that the right-hand side of (A.13) is identical with the numerator in (A.16). The use

k

2

instead of m

2

on the right-hand-side of equation (A.13) allows to apply the formula

also for o�-shell particles.

A.2 Propagators

The particle propagators for fermions and spin one bosons are:

spin 1=2 fermion

i

p=�m

l

+ i�

=

i(p= +m)

p

2

�m

2

l

+ i�

p

(A.14)

massless vector boson

i

�g

��

k

2

+ i�

k

�

�

(A.15)

massive vector boson

i

�g

��

+

k

�

k

�

k

2

k

2

�m

2

V

+ i�

k

�

�

(A.16)

Expression (A.16) is a special gauge, the Landau gauge (� = 0), of the more general

propagator:
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k

2
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2

+ i�

"

g

��

� (1� �)

k
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In equation (B.62) we use for convenience the unitary gauge (� =1) of (A.17):
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k

�
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m

2

V

k

2

�m

2

V

+ i�

(A.18)

to calculate the muon decay on the Born level.

By changing the sign of the four-momentum the fermion propagators can be used also

for the description of antifermions.

A.3 Vertices

The vertices play an important role here since anomalous couplings might appear in them.

The couplings between fermions and the massive gauge bosons are treated in the Standard

Model. In three-gauge boson couplings anomalous contributions are taken into account.

In addition, for the calculations in chapter 3, an anomalous magnetic dipole moment a

�

and an anomalous electric dipole moment d

�

are considered in (A.20). In all vertices all

the momenta are assumed to be outgoing.

�iQ

f




�

f

f




�

(A.19)

ie

"




�

+ i

a

�

2m

�

�

��

q

�

+

d

�

2m

�




5

�

��

q

�

#

q

�

�




�

(A.20)

�ig

W




�

(1� 


5

)

l

�

l

W

��

(A.21)

70



�

ig

Z

p

2




�

[R

f

(1 + 


5

) + L

f

(1� 


5

)]

f

f

Z

�

(A.22)

�

���

V

SM

+ �

���

V

ano

k

�

k

+

q

W

��

W

+�




�

; Z

�

(A.23)

�

���

V ZZ

q

1

q

2

p

Z

�

Z

�




�

; Z

�

(A.24)

We used the abbreviations:

L

f

= 2I

3

� 2Q
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s
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; (A.25)
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The electric charge Q

f

and the third component of the weak isospin I

3

of a fermion f can

be taken from table 2.1.

For the three gauge boson vertices we used the vertex functions:
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The Standard Model predictions for these vertices are obtained with the parameter set:

x
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(A.34)
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Appendix B

Phase Space and Momenta

In semi-analytic calculations it is important to �nd an appropriate notation for the particle

momenta. Our choice of the parameterization of the four-particle �nal state is presented in

appendix B.1, the three-particle �nal state in B.3, and the two-particle �nal state is given

in appendix B.2. As a demonstration how suitable momenta can simplify a calculation

we present in B.4 the Born cross-section for muon decay.

B.1 W Pair Production

In the process e

+

e

�

! W

+

W

�

! 4f four fermions are produced. We have to �nd a

suitable base to construct the particle momenta and the four-particle phase space. The

general expression for n �nal state fermions is:

d� =

n

Y

i=1
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3

p

i
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(2p
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p

i

� k

1

� k

2
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; (B.1)

where k

1

and k

2

are the momenta of the incoming particles. The phase space in (B.1) can

be parameterized by a subsequent decay which leads to a product of several one particle

into two particles phase spaces. This is, for example, worked out in chapter 4.2 of [200].

In the special case of four-particle production the procedure leads to:

d� =

1
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1

d
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: (B.2)

The phase space elements d
, d


1

, d


2

are the solid angles in the rest system of a decaying

compound particle and can be split up in a polar angle � and an azimuthal angle �:

d
 = d� d cos �; (B.3)

d
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= d�
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d cos �

1

; (B.4)

d
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2
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; (B.5)

while s

1

and s

2

are invariant masses de�ned by the �nal state particles:
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+ p
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; (B.6)
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: (B.7)
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The allowed kinematical regions for the eight integration variables in (B.2) are:
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(B.8)

Note, that none of the particle momenta will depend on the variable � (see below) and

the integration over � in (B.2) will just give a factor 2�.

To construct the particle momenta out of the phase space variables, we follow the

strategy from [127, 131] and express the momenta by the variables s, s

1

, s

2

, �, �, �

1

, �

1

,

�

2

, and �

2

.

The momenta of the initial state fermions are chosen to be:

k
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= (k

0

;�k sin �; 0; k cos �); (B.9)
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with the energy k
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s=2. The three-momentum is:
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The momenta of the W bosons �x the W production angle �:
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with � � �(s; s

1

; s

2

). The relations p

2

W

�

= s

1

and p

2

W

+

= s

2

follow from (B.12) and

(B.13).

The momenta of the �nal state fermions can be easily constructed in the rest frame

R of the W bosons. They are:

p

R

1

=

 

s

1

+m

2

1

�m

2

2

2

p

s

1

; p

R

12

sin �

1

cos�

1

; p

R

12

sin �

1

sin�

1

; p

R

12

cos �

1

!

; (B.14)

p

R

2

=

 

s

1

�m

2

1

+m

2

2

2

p

s

1

;�p

R

12

sin �

1

cos�

1

;�p

R

12

sin �

1

sin�

1

;�p

R

12

cos �

1

!

; (B.15)

with the abbreviation
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: (B.16)

Equations similar to (B.14) and (B.15) hold for p

R

3

and p

R

4

. To get the momenta in the

center-of-mass system (B.14) and (B.15) have to be boosted along the z-axis. This leads
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The expressions for p

R

2;0

and p

R

4;0

can be obtained by exchanging the masses in (B.22) and

(B.23).

This completes the set of particle momenta and phase space variables.

B.2 ZZ Production

In the process e

+

e

�

! ZZ the decay of the gauge bosons is not considered and the �nal

state contains only the two spin-1 bosons. This simpli�es the phase space drastically. We

just have a two-particle �nal state leading to the di�erential cross-section:
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The `o�-shellness' of the Z bosons in (B.24) can be included into the calculation by making

an assumption about the masses
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The momenta of the incoming e

�

and e

+

particles are denoted by:
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The produced Z bosons have the momenta:
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with the polarizations:
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The process investigated in chapter 3 implies a phase space for three-fermion production.

According to (B.1) it is:
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Again, the phase space can be split up in a sequence of decays into two particles:
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As abbreviations we used the invariant mass squared x

0

of the � pair and the velocity �

0

of the � leptons in the rest system of the � pair. These values are:
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2
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s

; (B.39)
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In the construction of the moments we follow the same strategy as in section B.1. The

momenta of e

�

and e

+

are again de�ned by:
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The masses of the incoming e

�

and e

+

are already neglected in (B.41) and (B.42). The

photon momentum is set to be:
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That is equivalent to the momentum of the W

�

in (B.12) under the assumption that

s

1

= 0 and s

2

= x

0

. The momentum of the photon �xes already the invariant mass of

the � pair, but leaves still some freedom for the decay angles of the individual � leptons.

Their momenta are then:
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with the abbreviations
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Note that all momenta (B.43) { (B.44) are independent of '




so integration over '




results

in a trivial factor 2�.

The integrations over the production angles of the particles are carried out in chapter 3.

For completeness, we present the integrals over x

0

which require an infrared cuto�:
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In (B.47) and (B.48) the approximations �

0

! 1 and m

2

�

=x

0

! 0 are used.
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B.4 �

�

! e

�

�
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This simple decay �

�

! e

�

�

�

��

e

, taking into account the masses of muon and electron (as

might be reasonable for the decay � ! ��

�

��

�

), serves as a nice example how a suitable

choice of particle momenta can simplify an analytical calculation. The calculation was

inspired by Tord Riemann after he found a discrepancy between his result and the one

presented in the literature [201{203]. The literature result disagrees because not all mass

terms are considered there correctly. It should be emphasized that the neglected terms

are unmeasurably small and can be safely ignored. For a real calculation the radiative

corrections are much more important, but here we just want to demonstrate the simplicity

of the calculation with an appropriate phase space parameterization. The �nal result

given in (B.78) was checked with an independent calculation by L. Kalinovskaya and

T. Riemann [204].

We start with the transition probability for a particle decay:
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where m

�

and p

�

are already the mass and the momentum of the muon. The phase space

factor
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can be rewritten as:
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The solid angle 


e

in equation (B.52) denotes the direction of the electron in the rest

system of the e

�

��

e

pair. For the �

�

the direction is given by 


�

in the same Lorentz

system.
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��

e

e

�
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�

Figure B.1: The tree-level diagram for muon decay.
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Since the particle momenta and the matrix element (B.73), as we will see, do not

depend on all phase space variables, we can perform some integrations immediately. We

have:

Z




�

�

= 4�; (B.54)

Z

d


e

= 2�

Z

d cos �: (B.55)

This leads to

d� =

1

64m

3
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1

(2�)

3

jMj

2

(m

2

�

� s)(s�m

2

e

)

s

dsd cos �; (B.56)

for the decay width of the muon.

If we are not interested in the electron energy, a suitable frame for the momenta is the

W boson rest system.

First, we de�ne the momentum of the W boson:

p

W

�

= (

p

s; 0; 0; 0): (B.57)

This choice �xes the energy of all particles. For the �

�

and �

�

we get
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(B.58)
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: (B.59)

In (B.58) we made use of the freedom to choose the direction of the momentum of the

�

�

. The remaining momenta are:

p
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(B.60)
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p
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The matrix element is in unitary gauge:
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We can express the neutrino momenta by the momenta of the other three particles in

the decay:

p

�

�

= p

�

�

� p

W

�

; (B.63)

p
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e

= p

W

�

� p

e

�

: (B.64)

The Lorentz invariant module of the matrix element squared can depend only on

Lorentz scalars. These are the masses of the particles and the products:
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�
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; (B.65)
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with the abbreviations
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u = (p
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� p
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e
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: (B.70)

The Feynman diagram to the muon decay is given in �g. B.1. After summing over the

�nal state spins and averaging over the �

�

spin, we get:
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Performing the traces leads to:
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Finally, we get the result:
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After performing the simple phase space integrations over cos � and s we get the exact

expression for the muon decay on Born level:
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where, we used the abbreviations:

x =

m

2

e

m

2

�

; (B.75)
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�

m

2

W

: (B.76)

With a Taylor expansion for y � 1 and the identity

1

1� y

= 1 +

y

1� y

(B.77)

we get the tree-level result:
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with the well-known function

f(x) = 1� 8x + 12x
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: (B.79)

In (B.78) we neglect terms of the order O(y

2

) and O(yx

2

).
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Appendix C

Electromagnetic Multipole Moments

In this appendix we derive expressions for some electromagnetic multipole moments.

C.1 Magnetic Moments of Leptons

The most general form for the matrix element of the current of a spin 1=2 particle with

charge e is:

h	(p
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where �

�

is a four-vector 4� 4 matrix function depending on the momenta p and p

0

. The

� and �

0

denote the spin of the particle.

After expanding �
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in the 16 covariant matrices 1, 
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it can be shown that the right hand side of equation (C.1) can be rewritten as [11]:
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with q = p

0

� p. The structure functions F , G, and H can only depend on q

2

, the only

scalar kinematic variable. Since J

�

(0) is hermitian, F (q

2

), G(q

2

), and H(q
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) must be real.

After multiplying equation (C.3) by q
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, it follows with the current conservation q

�
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�

= 0

that H(q
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) must be zero.

For the remaining functions the normalization condition

F (0) +G(0) = 1 (C.4)

can be proved [11,205]. It is more common to express the functions F and G by two other

functions F
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(the electric form factor) and F
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where the common abbreviation �

��

=

i

2

[


�
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�

] is used. For simplicity we also dropped

the spin indices � and �

0

. By commuting p

0

to the left and p to the right in equation (C.5)

and applying the Dirac equations (C.2) one gets the identi�cation:
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F

2

(q

2

) = �G(q

2

); (C.7)

which together with equation (C.4) immediately leads to

F

1

(0) = 1: (C.8)

To derive an expression for the magnetic moment of spin 1=2 particles, we rewrite equation

(C.3) using the Gordon identity
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and dropping the term proportional to H. This leads to
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For vanishing momenta p
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and p we have:
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with ~� =

1

2

~�. With these approximations the second term on the right hand side of

equation (C.10) leads in �rst order of the small momenta to
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The contribution of this term to the interaction energy with an external vector potential
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A(~x) is
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with the magnetic �eld
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was used.

In a slowly varying magnetic �eld, we get
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which might be related to the de�nition of the magnetic moment of a particle with

spin 1/2:

h	
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jEj	

p;�
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Comparing the equations (C.16) and (C.17) leads to:
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In lowest order, F

2

(0) = 0 and equation (C.18) leads to the famous Dirac result [15]
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The anomalous magnetic moment is the deviation of this value and is de�ned as:
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C.2 The Magnetic Dipole Moment of the W Boson

Classically, the magnetic dipole moment is de�ned by the energy of a particle in a magnetic

�eld:
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In quantum mechanics, we can describe the electromagnetic force by coupling a current
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Let us choose a circularly polarized �eld:
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By inserting the expressions for A
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In quantum mechanics the magnetic dipole moment is de�ned as the expectation value

of the z component of the dipole vector in the state of maximal spin. This is:

� � hssj�

z

jssi: (C.29)
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Using the Wigner-Eckart theorem the expectation values of the various spin states can

be put into the relations [206, 207]:
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Equations (C.30) and (C.31) lead immediately to
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where equation (C.26) was used to express �

�

.

The calculation of the right hand side of equation (C.32) can be easily performed in

the Breit-frame, in which the incoming W and the outgoing W have the same momenta,

but in opposite direction. The helicity states in this frame can be written as:
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where E is the energy of the W boson. It can be shown that:
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it follows
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where both W bosons are considered to be on-shell. The �rst term in equation (C.38)

disappears in the Breit-frame.
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With equations (C.32) and (C.35) we get for the magnetic dipole moment:
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This leads to the �nal expression for the anomalous magnetic moment:
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C.3 The Electric Quadrupole Moment of the W Bo-

son

The non-relativistic electrical quadrupole moment is de�ned by:
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with �(~x) being the charge density J

0

. P

2

is the Legendre polynom. Equation (C.42)

must be compared with a relativistic expression for the quadrupole moment.

To achieve this, we split up the vertex function (C.34) in tensors Q
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The introduced tensors Q

J

can be compared with the multipole moments of theW boson.

The tensors Q

J

di�er from each other by their behavior under rotations. They transform

like the spheric harmonics Y

J;0

and form a complete base, so that the decomposition (C.43)

is unique. The Wigner 3j-symbols can be calculated with the Clebsch-Gordan coe�cients

by the relation:
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After applying (C.43) on equation (C.34), we get:
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Higher multipole moments do not contribute to �

0

h

0

h

, since the Wigner 3j symbols vanish

for J > 2.
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from (C.38), equation (C.45) can be solved for Q
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.

With the abbreviations

G

1

= 1� 2�

p

2

m

2

(C.48)

and

g = 1 + �+ �; (C.49)

it follows that

Q

2

= �

s

10

3

4E

p

2

m

2

 

G

1

� g + 2�

e

2

m

2

!

= �

s

10

3

E

q

2

m

2

(�� �): (C.50)

With the expansion of the exponential factor in (C.34)

e

�i~q�~r

= e

�qr cos�

=

1

X

J=0

(�i)

J

(2J + 1)j

J

(qr)P

J

(cos�) (C.51)

the right hand side of (C.34) is
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ie
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h
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This leads to the expressions

Q
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(q

2
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s J s
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�
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x (C.53)

for the non-relativistic moments Q

NR

0

and Q

NR

2

. The comparison of (C.43) and Q

NR

2

leads

to

e

2E

Q

2

= Q

NR

2

: (C.54)

The expansion of the Bessel function j

2

j

2

(qr) =

q

2

r

2

15

(C.55)

allows a direct comparison of Q and Q

NR

2

Q = �

s

6

5

1

q

2

Q

NR

2

: (C.56)

With (C.50) and (C.54) it follows immediately

Q = �

e

m

2

(�� �): (C.57)
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Appendix D

GENTLE v. 2.02

For the calculations in chapter 4, the version 2.02 of the Fortran program GENTLE was used.

This appendix gives a brief introduction into the program. A more detailed description can

be found in reference [124], where GENTLE v. 2.0 is described. New features in version 2.02,

added after version 2.0, are illustrated in section D.2. GENTLE v. 2.02 has now about 9100

lines of code.

D.1 Description of the Program

The Fortran program GENTLE allows to calculate the total and di�erential cross-sections

for four-fermion production processes in e

+

e

�

annihilation. This is achieved by a semi-

analytic calculation, where analytical expressions for the Muta cross-sections d�=ds

1

ds

2

,

respective d�=ds

1

ds

2

d cos � are numerically integrated using an adaptive one-dimensional

Simpson integration routine.

As shown in table D.1 GENTLE consists of two main branches (the CC and the NC-

branch). The last column shows the publications on which the corresponding GENTLE

parts are mainly based. These branches are shortly introduced in the following sections.

For more details see http://www.ifh.de/~riemann/doc/Gentle/gentle.html.

QED ISR total cross-section [208]

Background total cross-section [131]

CC

Anomalous couplings [127]

Di�erential cross-section [127]

QED ISR total cross-section [189]

NC Background total cross-section [135]

Anomalous couplings [191]

Table D.1: Overview over the di�erent branches and subbranches of GENTLE. Correspond-

ing publications are given in the last column. Note, the anomalous couplings calculation

in the NC-branch is only available in the stand-alone program ZAC [190] and is not a part

of GENTLE v. 2.02.
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D.1.1 The CC-branch and Anomalous Triple Gauge Boson Cou-

plings

The CC-branch of GENTLE allows to calculate total and di�erential cross-sections for the

CC03 and CC11 classes, see table D.2. This branch is switched on by setting the 
ag

IPROC = 1. The 
ag ICDS determines whether the total cross-section or the angular

di�erential cross-section is supposed to be calculated. The latter option is chosen by

IDCS = 1. For the CC03 class a bin-wise analytical integrated di�erential cross-section can

be calculated with IBIN = 1. This feature does not exist for the CC11 class background.

Here, only �xed points of the di�erential cross-section can be determined.

Electroweak radiative corrections can be controlled by the 
ags: IBORNF, ICOLMB,

ICONVL, IQEDHS, ITNONU, IZERO, and IZETTA. Inclusive QCD corrections to the W width

can be taken into account with the 
ag IIQCD = 1. The exact meaning of these 
ags is

described in detail in [124].

Anomalous triple gauge boson couplings are available in the CC-branch of GENTLE.

They can be switched on by the 
ag setting IANO = 1.

�

du �sc �e�

e

���

�

���

�

d�u 43 11 20 10 10

e��

e

20 20 56 18 18

���

�

10 10 18 19 9

Table D.2: Number of diagrams in the CC-branch. The boldfaced entries can be calculated

with GENTLE.

D.1.2 The NC-branch

The NC-branch contains the cross-sections for classes containing the production of two

Z bosons. The total cross-sections of the classes NC32, NC24, NC10, and NC06 can be

�

dd �uu �ee ��� ��

e

�

e

��

�

�

�

�

dd 4�16 43 48 24 21 10

�ss;

�

bb 32 43 48 24 21 10

�uu 43 4�16 48 24 21 10

�ee 48 48 4�36 48 56 20

��� 24 24 48 4�12 19 19

��� 24 24 48 24 19 10

��

e

�

e

21 21 56 19 4�9 12

��

�

�

�

10 10 20 19 12 4�3

��

�

�

�

10 10 20 10 12 6

Table D.3: Number of diagrams in the NC-branch. The boldfaced entries can be calculated

with GENTLE.
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calculated [135], see table D.3.

Although the Fortran program ZAC belongs in principle into the NC-branch it is only

available as a stand-alone version due to historical reasons.

D.2 New Features

The most complex change after version 2.0 was the inclusion of the di�erential cross-

section to the complete CC11 class. Also anomalous couplings are considered in this part

in an analogous way as they were applied for the CC03 part of GENTLE.

Another new feature is the possibility to use a constant, s-independentW boson width

in the calculations. Especially for higher energies this should give better results, since

gauge invariance is not destroyed by this choice. For a more detailed discussion of this

problem, see [116, 166, 167].
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Appendix E

A Sample FORM File

FORM is a program by J. Vermaseren [6] to perform analytical calculations. The full FORM

�le used for the calculation of the CC11 cross-section has about 500 lines of text and is

too long to be shown completely. To illustrate the calculation, extracts are presented and

explained.

The �le begins with the declaration of some variables:

* Calculation of CC11 with anomalous couplings

S a,tmp,GZ,XZ,YZ,ZZ,GZ2,XZ2,YZ2,ZZ2,ssa,sta,sua,sda;

.

.

.

S g012,g034,g12,g34,pr10,pr20,pr12,pr30,pr40,pr34;

i al,be,ga,ka,si,mu,nu,rho;

S MW2;

The three vertical dots indicate that lines were omitted. After the declaration of the

symbols, matrix elements and their charged conjugates are de�ned:

g schnl = vc(1,k2)*V1(al)*u(1,k1)*V3(k,ss2,ss1,al,be,ga)*

uc(2,p3)*V2p(be)*v(2,p4)*uc(3,p1)*V2(ga)*v(3,p2);

*

g tchnl = vc(1,k2)*V2pp(be)*pe*V2pp(ga)*u(1,k1)*

uc(2,p3)*V2p(be)*v(2,p4)*uc(3,p1)*V2(ga)*v(3,p2);

*

g udeer1 = vc(1,k2)*V1(al)*u(1,k1)*uc(3,p1)*V2(ga)*pu1*V1pp(al)*

v(3,p2)*uc(2,p3)*V2p(ga)*v(2,p4);

.

.

.

g schnlc = uc(1,k1)*V1c(mu)*v(1,k2)*V3c(k,ss2,ss1,mu,nu,rho)*

vc(2,p4)*V2pc(nu)*u(2,p3)*vc(3,p2)*V2c(rho)*u(3,p1);

.

.

.
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g ddeer2c = uc(1,k1)*V1c(mu)*v(1,k2)*vc(2,p4)*V1pc(mu)*

pd2*V2pc(rho)*u(2,p3)*vc(3,p2)*V2c(rho)*u(3,p1);

Altogether six amplitudes and their charge conjugates must be de�ned. The particle

momenta are denoted in the same way as in chapter 4. The vertices are introduced as

functions and given below:

* all momenta are outgoing

id V3(p1?,p2?,p3?,al?,be?,ga?)=GZ*(d_(ga,be)*(p3(al)-p2(al))

+d_(al,be)*(p2(ga)-p1(ga))+d_(al,ga)*(p1(be)-p3(be)))

+XZ*(d_(al,ga)*p1(be)-d_(al,be)*p1(ga))

+YZ/MW2*(p2(ga)*p1(be)*p3(al)-p2(al)*p1(ga)*p3(be)

+ p1.p2*(d_(al,ga)*p3(be)-d_(ga,be)*p3(al))

+ p1.p3*(d_(ga,be)*p2(al)-d_(al,be)*p2(ga))

+ p2.p3*(d_(al,be)*p1(ga)-d_(al,ga)*p1(be)))

+ZZ/MW2*(e_(al,ga,ka,si)*p1(be)-e_(al,be,ka,si)*p1(ga))*

p1(ka)*(p2(si)-p3(si));

*

id V3c(p1?,p2?,p3?,al?,be?,ga?)=GZ*(d_(ga,be)*(p3(al)-p2(al))

+d_(al,be)*(p2(ga)-p1(ga))+d_(al,ga)*(p1(be)-p3(be)))

+XZ*(d_(al,ga)*p1(be)-d_(al,be)*p1(ga))

+YZ/MW2*(p2(ga)*p1(be)*p3(al)-p2(al)*p1(ga)*p3(be)

+ p1.p2*(d_(al,ga)*p3(be)-d_(ga,be)*p3(al))

+ p1.p3*(d_(ga,be)*p2(al)-d_(al,be)*p2(ga))

+ p2.p3*(d_(al,be)*p1(ga)-d_(al,ga)*p1(be)))

-ZZ/MW2*(e_(al,ga,ka,si)*p1(be)-e_(al,be,ka,si)*p1(ga))*

p1(ka)*(p2(si)-p3(si));

*

* couplings of the Z boson:

id V1(al?)=g_(1,al)*(RZe*g7_(1)+LZe*g6_(1));

al V1c(al?)=g_(1,al)*(RZce*g7_(1)+LZce*g6_(1));

al V1p(al?)=g_(2,al)*(RZ2*g7_(2)+LZ2*g6_(2));

al V1pc(al?)=g_(2,al)*(RZc2*g7_(2)+LZc2*g6_(2));

al V1pp(al?)=g_(3,al)*(RZ1*g7_(3)+LZ1*g6_(3));

al V1ppc(al?)=g_(3,al)*(RZ1*g7_(3)+LZ1*g6_(3));

*

* couplings of the W boson:

*

al V2(al?)=g_(3,al)*g6_(3);

al V2c(al?)=g_(3,al)*g6_(3);

al V2p(al?)=g_(2,al)*g6_(2);

al V2pc(al?)=g_(2,al)*g6_(2);

al V2pp(al?)=g_(1,al)*g6_(1);

al V2ppc(al?)=g_(1,al)*g6_(1);

The next step is to include the fermion propagators and de�ne the squared amplitudes.

Twenty-one functions are needed to describe all squared amplitudes.
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id pe=1/pes*g_(1,tp);

al pu1=1/pus1*g_(3,up1);

al pu2=1/pus2*g_(2,up2);

al pd1=1/pds1*g_(3,dp1);

al pd2=1/pds2*g_(2,dp2);

.sort

g ssg = 9/16384*schnl*schnlc;

g stg = 9/8192*(tchnl*schnlc+schnl*tchnlc);

.

.

.

g d2d2g = 9/16384*ddeer2*ddeer2c;

.sort

The normalization in ssg and the other functions is chosen in such a way that the G-

functions in chapter 4 are produced.

After the construction of the squared matrix elements we can start with the phase

space integration. First, the number of terms is reduced by renaming the couplings.

s CPe,CMe;

id LZc2=LZ2;

al RZce=RZe;

al LZce=LZe;

id LZe^2=(CPe/2+CMe/2);

id RZe^2=(CPe/2-CMe/2);

.sort

Then the spinors are expressed by 
-matrices and the traces are calculated.

id u(1,p1?)=1;

al uc(1,p1?)=g_(1,p1);

.

.

.

al v(3,p1?)=1;

al vc(3,p1?)=g_(3,p1);

.sort

trace4,3;

trace4,2;

trace4,1;

The phase space integrations are prepared by successively substituting the components

of the momenta with the expressions derived in appendix B.1 and using relations between

the momenta.

id tp=(k1-p1-p2);

al up1=k1+k2-p2;

al up2=p3-k1-k2;
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al dp1=p1-k1-k2;

al dp2=k1+k2-p4;

contract 0 ;

id k1.k1=0;

al k2.k2=0;

al p1.p1=0;

al p2.p2=0;

al p3.p3=0;

al p4.p4=0;

.sort

id p1.p3=p10*p30-p13*p33-p1t*p3t*sth1*sth2*(cphi1*cphi2+sphi1*sphi2);

.

.

.

Now, the integration over �

2

can be carried out:

.

.

.

id sphi2^2=1-cphi2^2;

id sphi2=0;

al cphi2^5=0;

id cphi2^4=3/8;

id cphi2^3=0;

al cphi2^2=1/2;

id cphi2=0;

The integration over �

1

is performed in the same way:

id k1.p1=k10*p10-k13*p13-k11*p1t*sth1*cphi1;

al k1.p2=k10*p20-k13*p23+k11*p1t*sth1*cphi1;

al k2.p1=k10*p10+k13*p13+k11*p1t*sth1*cphi1;

al k2.p2=k10*p20+k13*p23-k11*p1t*sth1*cphi1;

.sort

id sphi1^2=1-cphi1^2;

b sphi1,cphi1;

id sphi1=0;

al cphi1^5=0;

id cphi1^4=3/8;

id cphi1^3=0;

id cphi1^2=1/2;

id cphi1=0;

The integration over �

1

and �

2

require a little bit more preparation, because of the fermion

propagators in the background diagrams. The various propagator terms have to be sepa-

rated from each other.

id p10=g012*pr10+g12*pr12*cth1;

al p13=g012*pr12*cth1+g12*pr10;

al p20=g012*pr20-g12*pr12*cth1;

al p23=-g012*pr12*cth1+g12*pr20;
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.sort

id pus1^-1*pds1^-1=1/sca1*(pus1^-1+pds1^-1);

id sth1^2=1-cth1^2;

Repeat;

id cth1*pds1^-1=-1*(s12-s-s34+2*pds1)/slam/pds1;

al cth1*pus1^-1=(s12-s-s34+2*pus1)/slam/pus1;

Endrepeat;

.sort

id sth1=0;

id pus1^-2=1/s/s34;

al pds1^-2=1/s/s34;

id pus1^-1=-1*Log1;

id pds1^-1=-1*Log1;

id cth1^5=0;

id cth1^4=1/5;

id cth1^3=0;

id cth1^2=1/3;

id cth1=0;

.sort

id p30=g034*pr30-g34*pr34*cth2;

al p33=g034*pr34*cth2-g34*pr30;

al p40=g034*pr40+g34*pr34*cth2;

al p43=-g034*pr34*cth2-g34*pr40;

.sort

id pus2^-1*pds2^-1=1/sca2*(pus2^-1+pds2^-1);

id sth2^2=1-cth2^2;

Repeat;

id cth2*pus2^-1=+1*(s34-s-s12+2*pus2)/slam/pus2;

al cth2*pds2^-1=-1*(s34-s-s12+2*pds2)/slam/pds2;

Endrepeat;

id pus2^-2=1/s/s12;

al pds2^-2=1/s/s12;

id pus2^-1=-1*Log2;

al pds2^-1=-1*Log2;

id cth2^5=0;

id cth2^4=1/5;

id cth2^3=0;

id cth2^2=1/3;

id cth2=0;

After the four integrations we have to simplify the result. First we replace all auxiliary

variables by invariant expressions like s

1

and s

2

and by the scattering angle �. This

process is simple, so we do not reproduce it here. Our result can be further simpli�ed by

extracting factors of �:

multiply slam^6*[ALAM-3];
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id slam^2=s^2+s12^2+s34^2-2*s*s12-2*s*s34-2*s12*s34;

.sort

id s^8= s^6*(slam^2-s12^2-s34^2+2*s*s12+2*s*s34+2*s12*s34);

id s12^8=s12^6*(slam^2-s^2-s34^2+2*s*s12+2*s*s34+2*s12*s34);

.

.

.

id s^4= s^2*(slam^2-s12^2-s34^2+2*s*s12+2*s*s34+2*s12*s34);

id s12^4=s12^2*(slam^2-s^2-s34^2+2*s*s12+2*s*s34+2*s12*s34);

id s34^4=s34^2*(slam^2-s^2-s12^2+2*s*s12+2*s*s34+2*s12*s34);

.sort

id s^4=s^2*(slam^2-s12^2-s34^2+2*s*s12+2*s*s34+2*s12*s34);

b [ALAM-3],[ALAM-2],[ALAM-1],[3-costh^2],slam,sinth,costh,pes,pus1,pus2,

pds1,pds2,CPe,CMe,RZe,LZe,Log1,LZ1,Log2,LZ2,XZ,GZ,YZ,ZZ;

print;

.end

The now produced output can be used for further simpli�cations by hand, as was done to

get the results on the di�erential cross-section presented in chapter 4. For the calculation

of the total cross-section and for explicit cross-checks with the results in reference [135]

the integration over � is performed and a comparison with the function in [135] is made

1

:

id pes^-2=1/s12/s34;

id pes^-1=Log;

id costh^9=0;

id costh^8=1/9;

id costh^7=0;

id costh^6=1/7;

id costh^5=0;

id costh^4=1/5;

id costh^3=0;

id costh^2=1/3;

id costh=0;

.sort

s scas;

f gff,g3f,gud,guu,gnc2,gnc24,gdu,g33;

.global

* comparison with published data:

*

g sd1c= slam^4*(sd1g-g3f(s12,s,s34,Log1));

*

* this is function (2.3) of the Bardin/Riemann article

*

id g3f(s?,s12?,s34?,Log?)=1/48*((s-s12-s34)*(slam^2+12*

1

The comparison is only demonstrated for one interference. Of course also the other functions were

checked successfully.
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(s*s12+s12*s34+s*s34))-24*(s*s12+s12*s34+s*s34)*

s12*s34*Log);

*

id Log1/scas=1/sca1*Log1;

al Log2/scas=1/sca2*Log2;

id sca1=(s12-s-s34);

al sca2=s34-s-s12;

id slam^2=s^2+s12^2+s34^2-2*s*s12-2*s*s34-2*s12*s34;

id CPe=2;

id LZ1=1;

id GZ=1;

id XZ=0;

id YZ=0;

id ZZ=0;

b slam,Log,Log1,Log2,sca1,sca2;

print sd1c;

.end
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