SLAC-PUB-12379
March 2007

Cfetool: A General Purpose Tool for Anomaly Detection in Periodic

Data

Alf Wachsmann
SLAC, Stanford, CA 94025, USA
Elizabeth Cassell

UC Santa Barbara, Santa Barbara, CA 93106, USA

Cfengine’s environment daemon “cfenv” has a limited and fixed set of metrics it measures on a computer. The
data is assumed to be periodic in nature and cfenvd reports any data points that fall too far out of the pattern
it has learned from past measurements. This is used to detect “anomalies” on computers.

We introduce a new standalone tool, “cfetool”, that allows arbitrary periodic data to be stored and evaluated.

The user interface is modeled after rrdtool, another widely used tool to store measured data.

Because a

standalone tool can be used not only for computer related data, we have extended the built-in mathematics to

apply to yearly data as well.

1. Introduction

Ever since Mark Burgess introduced an environ-
ment daemon to cfengine [1] we felt the need to feed
other kind of data into it than the about 20 hard-
coded metrics. The hard-coded observables in cfenvd
are things like network traffic to and from certain
ports, memory and disk usage, number of users on
a computers, etc. If one wanted to add other observ-
ables, new code needed to be added to cfenvd which
makes it very inflexible. The mathematical engine in
cfenvd [2,3] is used for detecting anomalies in periodic
data. It cannot be applied to arbitrary time series
data. Cfenvd defines classes for cfagent depending on
the amount of difference of the current data point from
the learned average behavior for the given time slot in
the period. cfagent can then take the appropriate ac-
tions on a computer with such an anomaly. Actions
include removing files in case too much disk space is
used or killing processes in case too much CPU time
is consumed.

Another tool - rrdtool - exists, that allows arbitrary
data to be fed into it no matter what the source of this
data is. Rrdtool [4] comes with a general purpose user
interface and the mathematical engine can be applied
to this data. However, rrdtool cannot be used for
anomaly detection.

An extension to rrdtool implementing the Holt-
Winters aberrant behavior detection [5] is a gener-
alization from cfenvd’s periodic data analysis. It ac-
counts not only for the periodic component in the data
sets but also for a constant offset and a linear com-
ponent. In total, 5 different parameters need to be
hand-tuned to make the “aberrant behavior” detec-
tion with Holt-Winters work. This tuning is different
for every dataset and needs to be done at the time the
data storage is initialized at the very beginning.

Goal for our new tool “cfetool” was to keep the
very easy to use mathematical engine from cfenvd and
add a general purpose user interface that is close to
rrdtool’s. The idea was to make cfetool a drop-in re-

placement for rrdtool where the periodic nature of the
observable is known. Additionally, we wanted cfetool
to interact with cfagent in the same way cfenvd does.
At the same time, we wanted to extend the mathemat-
ical model of cfetool to deal with data that exhibits
a yearly period. This allows not only computer data
to be stored and analyzed but also data from natural
phenomena like whether data with its seasonal pat-
tern.

In the next chapter, we describe the implementation
details an how we achieved the above goals. In chap-
ter 3 we will describe several different applications to
illustrate the usefulness of cfetool. We conclude with
describing some potential further enhancements.

2. Implementation Details

Most of the code for cfetool was directly taken from
cfenvd and cfenvgraph. However, some changes were
necessary to achieve the goals of a good user interface
and for data with different periods.

2.1. Extension to Daily and Yearly
Periods

By supporting not only computer related data with
cfetool, we have decided to extend the only period
cfenvd supports (“weekly”) by two more periods:
“daily” and “yearly”.

Inside of cfenvd and cfetool data points are stored
in “buckets” which correspond to a certain time step
during the weekly/daily /yearly time period. Let’s as-
sume that the update frequency for a daily data set
is 10 minutes. The first bucket stores the running
average of data points from minutes 0-9, the second
bucket data for minutes 10-19 and so on. A total of
24 hours * 60 minutes/hour / 10 minutes = 144 buck-
ets are needed to store data over the entire 24 hour
period. Together with some bookkeeping information,

Work supported in part by US Department of Energy contract DE-AC02-76SF00515

the running average of each bucket is eventually stored
in a cfenvd/cfetool database file.

The daily periods are implemented by simply expos-
ing the internal resolution cfenvd uses to store weekly
data via a user interface and then writing the data
in this resolution to the database file. No additional
changes to the mathematical engine were necessary.

To allow for yearly periodic data, the mathematical
formulas had to be added to cope with this longer
time frame. Instead of dividing the total number of
minutes per week by the update frequency, we had to
use the number of minutes per year. This stretches
the buckets linearly from just one week to an entire
year.

2.2. Monthly Periods

The question arises, why we did not implement a
monthly time period as well. A month is a peculiar
time construct: it is purely artificial and has no equiv-
alent in nature (the moon phases are a close but no
exact match). The first day of each month is not al-
ways the same day of the week. Human activity with
a monthly period can mean one of two things: some-
thing is happening according to the number of the day
of the month (paychecks come every 1st and 15th of
the month) or it is happening according to the days
of a month (every Monday of a month). With this
observation, it is not clear how the storage buckets
should be mapped to a month: should the fist bucket
represent the first (e.g.) 1 hour interval of the first day
of the month or should it be the first 1 hour interval
of the first (e.g.) Sunday of the month? An addi-
tional difficulty is that months have different lengths.
One has 28 and sometimes 29 days, others have 30
or 31 days. The lack of measurements for the last
days of some months makes the statistical analysis of
cfenvd/cfetool for these days much less significant and
thus less trustworthy (see [2] and [3] for how this ef-
fects the statistics.)

A similar but much smaller problem occurs with
February 29th in the yearly period. We decided to
keep a bucket for this day and live with the fact
that data in this bucket is updated only 1/4th of
the time. According to [2], it takes about 4 com-
plete time periods of data for the averaging algorithm
in cfenvd/cfetool to output meaningful data. Conse-
quently it takes 4¥*4=16 years for data from February
29th to be meaningful.

3. User Interface

In order to make cfetool an easy replacement for
rrdtool and because many internal procedure are very
similar, we decided to model the user interface of cfe-

SLAC-PUB-12379

tool after rrdtool’s. The structure of all commands
is:

cfetool <action> [parameters]

Where <action> is one of the following items.

“create” is used to create a new and empty
database. It takes the name of the metrics as argu-
ment. The period of the data can be determined with
one or more flags: [--dailyl|-d] [--weekly|-w]
[--yearlyl-y]. The update interval in minutes
[--stepl-s step] is another possible parameter. If
the create action is used with the [--file|-f] flag,
it takes a file as input which contains measurements
to feed into the cfetool database in batch mode. This
can be used to quickly feed existing data into cfetool.
It is much faster than individual update actions (see
below) because intermediate results are not written
back into the database file but kept in memory. Only
at the very end the data points are written to the file.

“update” inserts a new data point into the
database. It takes the metric name and an optional
timestamp as arguments. If the timestamp is omitted,
the current time will be used. With the [--daily|-d]
[--weekly|-w] [--yearlyl|-y] flags one can indi-
cate which database(s) should be updated.

“check” takes a new value and checks it against the
averages currently in the database specified by the
metric name. The value is not stored in the database.
The output indicates how much higher or lower the
new value is compared to the averages in the database
in terms of the number of standard deviations. This
feature allows “what-if” experiments without influ-
encing the stored data. A typical question that can
be answered with this action is: If the entire data dis-
tribution had already been learned. What would be
the amount of deviation from the average behavior for
this particular data point? The data point could be an
actual data point which was not flagged as anomaly
at the time when it was fed into the database but
with the knowledge of the entire distribution (i.e. in
hindsight) the assessment might be different.

“dump” dumps the content of an entire cfetool
database file in XML format. “import” imports such
dump back into cfetool’s internal database format.

“info” prints out some basic information about the
specified cfetool database.

A separate command “cfetoolgraph” outputs
graphs of averages for visual inspection of a cfetool
database. The output files are in a format viewable
by “gnuplot” or “xgmr” or other graphical plotting
program. The inconsistency in the user interface com-
pared to rdtool is inherited from the cfengine distri-
bution which we did not want to change.

4. Return Codes and Outputs

Before exiting, “cfetool update” will print one line
to the standard output stream in the following format:

yrly=ynum,wkly=wnum,dly=dnum

ynum, wnum and dnum will be either the number 0
if the corresponding database was not updated, or
a code indicating the state of the given statistic, as
compared to an average of equivalent earlier times, as
specified below:

code classifier meaning

-2 - no sigma variation

-4 low within noise threshold, and within

-5 normal 2 standard deviations from
-6 high expected value
-14 low microanomaly: within noise
-15 normal threshold, but 2 or more standard
-16 high deviations from expected value
-24 low normal; within 1 standard deviation
-25 normal from the expected value
-26 high
-34 low devl; more than 1 standard
-35 normal deviation from the expected
-36 high value
-44 low dev2; more than 2 standard
-45 normal deviations from the expected
-46 high value
-54 low anomaly; more than 3 standard
-55 normal deviations from the expected
-56 high value

Where “low” indicates that the current value is be-
low both the expected value for the current time po-
sition and the global average value. “high” indicates
that the current value is above those values. “normal”
indicates that the current value is within the range of
expected values.

“cfetool update” also exits with a code correspond-
ing to the above table. If more than one database
is being updated, the most negative result from the
updates is returned and the individual results must
be obtained from the standard output stream as de-
scribed above.

The text representation of these return and output
codes correspond directly to classes defined by cfenvd
which are then used by cfagent to define classes for
the use in cfengine scripts.

A monitoring tool other than cfagent can easily
compare these return codes and trigger an alarm in
case a certain threshold is exceeded.

SLAC-PUB-12379

5. Simultaneous use with cfenvd

Cfetool can be used to feed its anomaly detec-
tion into cfagent just like cfenvd does (use the
[--cfenvd|-c] flag with the create and update ac-
tion). The internal interface is a simple ASCII file
with class definitions for each metrics.

Here an example for a weather data metrics (see the
Application section below for details):

kasseltemp_high_devl
kasseltemp_high_dev2
kasseltemp_high_anomaly
value_kasseltemp=15
average_kasseltemp=3.0
stddev_kasseltemp=2.0

The metric name is “kasseltemp” with a current
value of “15” while the average value for the current
time slot is “3.0” with a deviation of “2.0”. Because
the current value is far above average, three addi-
tional classes are defined classifying the current value
as being more than 1 standard deviation too high and
more than 2 standard deviations too high and being
an anomaly because the value is too high.

To prevent cfetool and cfenvd writing to this in-
terface file at the same time, we have introduced an
advisory lock for the entire file.

6. Applications

Similar to rrdtool, there are no limits to what kind
of data can be stored and analyzed with cfetool. Thus,
the usability goes well beyond computer monitoring.

6.1. Stand-alone use of cfetool

To demonstrate the versatility of cfetool, we have
picked long term weather data as an example. The
outside temperature presumably follows a seasonal
pattern with a yearly period. Cfetool allows us to test
this assumption and show which temperature mea-
surements are outside the average value for a specific
day and by how much they are outside the expected
range.

The data set we used in this example is from the
German Weather Service (Deutscher Wetter Dienst;
http://www.dwd.de/de/FundE/Klima/KLIS/daten/
online/nat/ausgabe_tageswerte.htm) We picked
the weather station with German zip code 10438
which is in the city of Kassel. We are using the
average temperature 2 meter above ground in degree
Celsius (column “TM” in the data set). The data
ranges from January 1st, 1991 to February 22nd,
2005, spanning 15 years with one measurement per
day.

After slightly converting the date and extracting
just the TM column, we get a file with lines of this
format:

02/20/2005 12:00:00 0.3

This can now be fed into cfetool using the batch
mode with the command:

cfetool create kasseltemp —-step 1440 \
--yearly --file cfetool.input

Because we have only one measurement per day, we
are using 24 hours * 60 minutes/hour = 1440 min-
utes as the step value. The above command results in
a new subdirectory in the current working directory
called “kasseltemp” with a file “yearly.db”.

The command

cfetoolgraph kasseltemp --resolution \
--yearly

creates a new file
kasseltemp/yearly-snapshot/graph with the
average for each bucket and the standard devia-
tion of all data points falling in that bucket. The
—-resolution flag is used to obtain a high resolution
output which prevents cfetoolgraph from smoothing
out the data.

A simple Gnuplot script produces the graph de-
picted in Fig. 1 out of the graph file produced by
the command above.

This graph shows that the temperature pattern at
this particular German weather station indeed follows
a yearly pattern with fairly small deviations over the
years.

One question that cannot be answered by cfetool
is whether there is a global warming effect that in-
creases the average temperature slowly over the years.
The slow increase of the average value would result
in slowly growing averages with the overall standard
deviations growing only very slightly. The mathemat-
ical model implemented in cfenvd/cfetool is designed
to analyze the periodicity of data and not the long
term trends.

Using the database with the yearly distribution, we
can now use the “check” functionality of cfetool to
look at some specific data points.

Let’s test what a temperature of 35°C would be on
September 8, 2003:

cfetool check kasseltemp --yearly \
-—time 1063047600 --value 35.0

Which outputs

yrly=-36,bkt=61;wkly=0,bkt=0;d1ly=0,bkt=0

SLAC-PUB-12379

meaning a return code of “-36” for the yearly data set
which translates to a temperature which is higher than
1 standard deviation above the average but below 2
standard deviations. This value is compared against
the average from bucket “61” representing the values
of all September 8th data. The other return codes
and bucket information are all zero because we have
created only the yearly database.

6.2. Cfetool and cfagent

Cfetool can be used to interface to cfagent in the
same way cfenvd does. This way, cfagent can be used
to monitor arbitrary observables. Though restricting
it to computer related metrics makes the most sense
because that is the area where cfagent is used in.

Here is a setup we are using at SLAC to monitor the
temperature of our machine room. Our thermal sensor
elements are connected via serial lines to a terminal
server software which publishes new measurements ev-
ery 10 minutes via a broadcasting tool. A client tool
can receive these broadcasted values and process them
further. In this particular case, the client tool feeds
the measurements into cfetool with the command

cfetool update X --cfenvd --daily \
--weekly --yearly --value Y

where X is replaced with the location of the temper-
ature sensor (“underfloor” in the example below) and
Y with the actual measurement. Cfetools defaults to
using the current time as timestamp, hence no --time
argument is necessary. The —-cfenvd parameter tells
cfetool to write the evaluation of the most current
measurement into the interface file for cfagent as de-
scribed above. Note that the temperature data is peri-
odic in a daily, weekly and yearly rhythm (it would be
constant in an ideal machine room). With this setup,
we are monitoring the temperature at the “under-
floor” location with the following snippet of cfengine
script:

alerts:
monhost.underfloor_high_devl::
"Underfloor temperature
anomaly high 1 dev at $(env_time)
current value $(value_underfloor)
av $(average_underfloor)
pn $(stddev_underfloor)"

6.3. Cfetool in conjunction with other
monitoring tools

Cfetool can be used from within Perl or Shell scripts
to store and evaluate periodic data. In a Shell script,
for instance, one can do the following:

Temperature data from 01/01/1991 - 22/02/2005

30 T T T

20

15

|||

10 - o ||| i||
4 LA

i

I\Ii

§
il

! “1
it
|||||,.s|dl||||| e
i

i
.
i |||||| |
’ i

Temperature in degree C

hu

et
i
| ‘|

I| Sl
u|"i|‘|i| I

s
| "'"“'nn il

Il '.m!-f’

i | |
!'|||i||l||i i

I
| |||| .i‘ri-W !I
I|Ii||||||‘,g é!l%iiii

-10 1 1 1
0 50 100 150

200 250 300 350

Day of the year

Figure 1: Daily temperature in the German city of Kassel.

#!/bin/sh

acquire the measurement data
XYZdata=‘/some/fancy/tool’

store the data with cfetool
ignore STDOUT but remember the return code
rc=‘cfetool update \

--weekly \

--value $XYZdata >> /dev/null

react in case something is wrong
if [-30 -gt $rc -a $rc -gt -39]; then
echo "XYZ has value of $XYZdata" [\
mail -s "devl problem with XYZ" admin
if [-40 -gt $rc -a $rc -gt -49 1; then
echo "XYZ has value of $XYZdata" | \
page -s "dev2 problem with XYZ" admin
fi
fi

Because the user interface is very similar to rrdtool,
cfetool can also be used as data storage within your
favorite host and service monitoring tools like Nagios
[6]. In these cases, rrdtool should not be replaced
but complemented by cfetool due to its very different
scope.

SLAC-PUB-12379

7. Possible Enhancements

It could be desirable to have cfetool bindings to
other programming languages like Perl. This could
be done by providing a separate library with the nec-
essary functions. With such a library, cfenvd and cfe-
tool could be simplified by removing duplicate source
code and linked against the new library.

It would be nice to have a gnuplot template with
coloring of data points that lie outside the one and
two standard deviation range to make it easier to read
the plots from cfenvd and cfetool. The Holt-Winters
aberrant behavior detection extension to rrdtool could
provide some ideas how to accomplish this.

The inconsistent user interface for cfetoolgraph
could be removed. More importantly, this program
could be changed to output a graph as graphics in
PNG or JPG format directly without the need for
gnuplot. This would mirror the behavior of the “rrd-
tool graph” command.

8. Availability

Cfetool is available as part of the cfengine distribu-
tion.

References ment (DSOM 2002)
[4] T. Oetiker. Rrdtool Web Site. http://people.
[1] M. Burgess. Cfengine Web Site. http://www. ee.ethz.ch/"oetiker/webtools/rrdtool/.
cfengine.org/. [5] J.D. Brutlag. ”Aberrant behaviour detection in
[2] M. Burgess. Probabilistic anomaly detection in time series for network monitoring. Proceedings
distributed computer networks. Machine Learning of the Fourteenth Systems Administration Confer-
Journal (submitted). ence (LISA XIV) (USENIX Association: Berkeley,
[3] M. Burgess. Two dimensional time-series for CA).
anomaly detection and regulation in adaptive sys- [6] E. Galstad. Nagios Web Site. http://www.
tems. IFIP/IEEE 13th International Workshop nagios.org/.

on Distributed Systems: Operations and Manage-

SLAC-PUB-12379

