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Abstract

Heavy-ion collisions at ultra-relativistic energies provide sufficient energy densities
and/or temperature that allow to transform the confined hadronic matter into a
deconfined state of quarks and gluons, commonly known as quark-gluon plasma
(QGP). Jet quenching or partonic energy loss in the medium is one of the most im-
portant signatures in favour of the existence of QGP in heavy-ion collisions. Jets are
cascades of energetic hadrons that result from the fragmentation of hard-scattered
quarks and gluons in high-energy collisions.

Recent measurements in high-multiplicity proton-proton (pp) collisions show in-
triguing QGP-like signals which tell that the pp collisions can not be treated as
elementary collisions. This brings to the table the possibility of QGP formation
in pp collisions as an open question that requires to be addressed and investigated
further. In view of this, intra-jet properties such as jet shape and fragmentation
functions are promising observables since they are more sensitive to the details of
the parton shower and hadronization processes.

This thesis presents the first measurement of the multiplicity dependence of intra-
jet properties of leading charged-particle jets, the mean charged-particle multiplic-
ity and fragmentation functions in pp collisions at /s = 13 TeV using the ALICE
detector. Jets are reconstructed from charged particles produced at midrapidity
(Inl < 0.9) using the sequential recombination anti-kr algorithm with jet resolution
parameters R = 0.2, 0.3, and 0.4 for the transverse momentum (pr) interval 5-110
GeV/c. A significant modification in jet fragmentation functions in high-multiplicity
(HM) events is observed compared to minimum-bias events. The results are com-
pared with predictions from QCD-inspired event generators and PYTHIA 8 quali-
tatively reproduces the data. A detailed PYTHIA 8 study shows that multiparton
interactions and contributions from gluon-initiated jets play significant roles in HM

events.



This thesis also reports the estimation of jet transport coefficient, ¢, for both
quark- and gluon-initiated jets in presence and absence of magnetic field using a
quasi-particle model. In presence of a finite magnetic field, a significant enhancement
in ¢ is found for both quark- and gluon-initiated jets at low temperatures, which

gradually decreases towards high temperatures.
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Chapter 1

Introduction

Physics is the science that studies matter, energy, and the fundamental forces that
govern the universe’s behaviour. It seeks to understand the basic principles that
describe the nature of the physical world and the interactions between different
entities. “Particle physics” is the branch of physics that deals with the behaviour
and the fundamental properties of the particles in the universe and the forces that act
upon them. The fundamental building components of matter and their interaction
have been the central focus of Physics from ancient to current times. Physicists seek
the ultimate answers by identifying the laws regulating the universe and unearthing
previously undiscovered substances. Initially, there was a belief that matter was
composed of indivisible atoms [1]. Later, Sir J. J. Thomson’s cathode ray tube
experiment [2] led to the discovery of the electron, challenging the idea of atoms
as indivisible. Sir J. J. Thomson proposed a model where electrons were embedded
in a positively charged “soup”. Ernest Rutherford discovered that electrons orbit
around a small, compact nucleus at the centre of the atom, which contains most of
the atomic mass and the positive charge [3]. Thomson’s ‘plum pudding’ model was
overturned as a result. It was discovered that protons [4] and neutrons [5] make up
the atomic nucleus. Neutrons are neutral, but protons have a positive charge. The

Deep-Inelastic Scattering (DIS) experiment [6,7] demonstrated that protons and



neutrons, previously thought to be fundamental particles, are not indivisible. They
comprise of smaller entities called quarks, held together by exchanging massless
particles known as gluons. Quarks and gluons collectively form the category known
as “partons”. Quarks are elementary particles and are the building blocks of protons
and neutrons, while gluons mediate the strong force that binds quarks together. The
classification of all known elementary particles and the fundamental forces through
which they interact (except gravity) is well explained by the Standard Model of
particle physics.

1.1 The Standard Model of Particle Physics

The development of quantum mechanics and special relativity —the two major physics
breakthroughs of the 20th century—gave rise to the Standard Model [8-10]. While
the former describes the physical aspects of nature at the size of atoms and sub-
atomic particles, and the latter covers the propagation of matter and light at high
speeds. The entire description that is consistent with special relativity and quantum
mechanics is brought about by the development of Quantum Field Theory (QFT), in
which all particles are thought of as excited states of their underlying quantum fields
and are, therefore, more fundamental than the particles themselves. The standard
model is the most precise physical theory to date, describing three of four funda-
mental forces (the electromagnetic, the weak, and the strong force) and all known
particles as quantized fields and excitations. The presence of every component of
the Standard Model was established, particularly with the discovery of the Higgs
boson at the Large Hadron Collider (LHC) in 2012.

Figure 1.1 shows the classification of all known elementary particles as described
by the Standard Model. Elementary particles are divided into two main groups:
fermions, which have half-integer spin and follow Fermi-Dirac statistics, and bosons,

which have integer spin and obey Bose-Einstein statistics. Fermions are splitted
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Figure 1.1: The classification and basic properties of fundamental particles of the standard
model. I, II, and III represent the three generations of fermions. The picture is taken from
Ref. [11].

further into leptons that participate in electroweak interactions without a colour
charge and quarks (anti-quarks) that participate in the strong interaction. There
are six types (known as flavours) of quarks and six types of leptons. For quarks, six
flavours are distinguished with a quark type: up (u), down (d), strange (s), charm
(¢), bottom (b), and top (¢). In addition, each quark has six anti-quarks that have
the same mass but opposite electric charges: anti-up (), anti-down (d), anti-strange
(5), anti-charm (), anti-bottom (b), and anti-top (£). All fermions are sorted into
particles showing similar physics behaviour called generations. The lighter and more
stable particles are present in the first generation, whereas the heavier particles are
in the second and third generations. In addition, Fiig. 1.1 illustrates particles that act
as mediators for these forces (weak, electromagnetic and strong forces). The weak
force is mediated by W* and Z° bosons, whereas the carriers of electromagnetic

and strong forces are photons and gluons, respectively. The Standard Model also

has a spin-0 boson called Higgs, named after Peter Higgs, who proposed the Higgs



mechanism in 1964 [12-15], together with five other scientists. Their predictions
were confirmed and proved successful by the ATLAS and CMS experiments [16,17].
Peter Higgs and Francois Englert received the Nobel Prize for their ground-breaking
theoretical research in 2013.

The standard model has been remarkably successful in explaining a wide range
of experimental observations in particle physics. However, it does have limitations
and does not incorporate gravity. Additionally, phenomena such as dark matter and

dark energy are not accounted for within the Standard Model.

1.2 Quantum Chromodynamics

Quantum Chromodynamics (QCD) [18] is an essential component of the Standard
Model of particle physics. QCD describes the strong force binding quarks and
gluons together to form hadrons. The strong interactions are mediated by gluons
that carry colour charge, whereas the quantum field theory of electromagnetism,
Quantum Electrodynamics (QED) describes the electromagnetic force mediated by
photons with no electric charge. QCD is invariant under local SU(3) transformations
and part of the SU(3) symmetry group.
The QCD Lagrangian [19] is expressed as:
|- iz
Locp = —ZFWFA“ + Z Yy (m“@,ﬁab — gﬂut,%A,(i — mqéab) Yyp- (1.1)
q
In Eq. 1.1, 94, is the Dirac spinor of the quark field with flavour ¢, colour charge
a, and mass my; t9 is the 3 x 3 Gell-Mann matrices; v* are Dirac y—matrices which
express the vector nature of the strong interaction with p being a Lorentz vector
index; g, is the strength of the quark-gluon interaction. The first term of Eq. 1.1

describes the kinematics and the dynamics of the gluons, and it can be expressed



as:

Fi = 0,40 — 0,A — g, fAPCABAC, (1.2)

where fABC

are the structure constants of SU(3) group. In Eq. 1.2, the term
“0s fABCAfAf” represents the self-interactions among gluons. The self-coupling
of gluon is related to two important properties of the QCD theory, known as con-

finement and asymptotic freedom.

1.2.1 Colour Confinement and Asymptotic Freedom

In theory, the QCD potential as a function of the distance between a quark—anti-

quark pair is expressed as:

4 as(r)

Vaep (r) = T3,

o.r, (1.3)

here a; is the QCD gauge coupling parameter and o is the QCD string tension. In
Eq. 1.3, the first term refers to Coulomb-like force, which depends on 1/r, whereas
the second term increases linearly with increasing the distance between the pairs.
The actual value of the coupling parameter a; in Eq. 1.3 cannot be predicted by QCD
for a given energy scale, but its energy dependence can be found by perturbative
quantum chromodynamics (pQCD) calculations. The running coupling strength o

can be expressed as a function of the gluon’s four-momentum transfer, Q:

47

(11 — %nq) In (AQQ—Q) 7

QCD

O‘S(QQ) =

(1.4)

where Aqcp, the QCD scale parameter, corresponds to the energy scale below which
perturbative coupling becomes divergent, and n, is the number of active flavours.
The experimentally determined value of Aqep is around 200 MeV [20]. From Eq. 1.3
and 1.4, it is observed that the second term (string term) of Eq. 1.3 is dominant at

low energies (large distance between quark—anti-quark pairs and small Q?), leading



to a linear increase in the QCD potential with r. This phenomenon, known as
“colour confinement”, because of which it is impossible to observe the free quarks
and gluons. However, the string term disappears for high energies (minimal distance
r — 0 between quark and anti-quark, high @?), and the Coulomb coupling becomes
extremely weak. This phenomenon is known as “asymptotic freedom” [21-23], where
quarks and gluons behave like free particles. The coupling parameter ay is shown
in Fig. 1.2 against the four-momentum transfer measured at various scales using
different experimental measurements. It is evident that at higher energy reactions,

the strong coupling decreases.
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Figure 1.2: Experimental measurements of QCD running coupling constant (as) as a
function of momentum transfer (@)). The figure is taken from Ref. [24].

It is expected that at sufficiently high temperatures, the hadronic matter can
be melted into a deconfined state of partonic matter, where the coupling between
the partons is small due to “asymptotic freedom”. This deconfined state of QCD

matter is known as the quark-gluon plasma (QGP).



1.2.2 The Quark-Gluon Plasma

The QCD matter is restricted to colourless hadrons at typical temperatures in the
universe. However, at very high pressure or temperature, hadronic matter vanishes
and is replaced by a deconfined state of QCD matter called the quark-gluon plasma.
Such deconfined quark and gluon states are thought to have existed in the early uni-
verse, a few microseconds after the Big Bang, at high temperatures and zero baryon

chemical potential. Figure 1.3 (left) shows the two states of QCD matter and its
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Figure 1.3: Left: Phase diagram of QCD matter as a function of temperature and baryon
chemical potential [25]. Right: Lattice QCD calculations of thermodynamic variables
compared to hadron resonance gas calculations [26]

phase transition as a function of temperature and baryon chemical potential (up),
popularly known as the QCD phase diagram. The “hadron gas” in the lower-left
corner of the QCD phase diagram represents conventional hadronic matter under
confinement conditions. Under natural conditions in the universe, nuclear matter is
represented by the point at (ug = 950 MeV, T ~ 0). A color-superconductor state
is expected to occur at low temperatures and high baryon chemical potential. A
high temperature and low baryon chemical potential represents the other conceiv-
able extreme. The transition is predicted at T ~ 145-165MeV [27] in the limit of
up = 0, corresponding to an energy density of roughly € ~ 0.18-0.5 GeV/fm? [28].
At these high temperature and low baryon chemical potential, the LQCD calcu-

lations [29] predict a smooth crossover between the hadronic and partonic phases.



These calculations use an equation of state that relates thermodynamic properties
like temperature (7), pressure (p), and energy density (€) to describe the equilib-
rium properties of QCD matter. The right panel of Fig. 1.3 illustrates the normalised
pressure (3p/T?), entropy density (3s/4T%), and normalised energy density (e/7*)
as a the function of temperature. The sharp increase in energy density and en-
tropy in Fig. 1.3 indicates the creation of new degrees of freedom resulting from
the transition from hadronic to partonic states. Experimentally, collisions between
heavy-ions at ultra-relativistic energies can provide enough energy densities to lead
to such a state. In the laboratories such as the Large Hadron Collider Experiment
(LHC) at CERN and the Relativistic Heavy Ion Collider (RHIC) at BNL, such a
state of matter has been created by colliding heavy nuclei, e.g., gold (Au), lead (Pb)

at ultra-relativistic velocities.

1.3 Heavy-Ion collisions

1.3.1 Evolution of the heavy-ion collisions

Freeze-out .
Hadronisation @ ...

QGP formation

Initial state

Time: 0 fm/c <1fm/c ~10 fm/c ~1015 fm/c

Figure 1.4: The evolution of a heavy-ion collision [26]



The evolution of a heavy-ion collisions [26] is theoretically characterized by a
sequence of stages as follows: (a) an initial state determined by the projectile’s wave
functions; (b) pre-equilibrium stage and formation and expansion of QGP; (c) the

formation of hadrons; (d) chemical and kinematic freeze-out, as shown in Fig. 1.4.

Initial state
Before the collision, each incoming nucleus looks like a Lorentz contracted disk
moving at almost the speed of light. After collisions, these two discs meet with
a specific collision geometry, which is determined by the number of participat-
ing nucleons (Npayt) and number of binary collisions (N ). In the initial state,
the total energy density and entropy deposition is determined by the partons
within the nucleus that participate in the smaller-Q? interactions, where N
is used to determine the interaction rate of these partons. As a result of varia-
tions in the distribution of nuclear matter, such parton interactions cause the

initial density profile to become “lumpy”, as seen in Fig. 1.4.

The QGP phase
After the collision, the smaller-Q? interactions create a weakly coupled pre-
equilibrium phase. This is tailed by the production of more softer partons
in these processes that allow the formation of a strongly coupled QGP phase
to arise. The gluon and charm quark trajectories in Fig. 1.4 show that the
hard processes from large-Q? interactions, whose rate is driven by Ny, allow
the production of high-momentum gluons and high momentum /mass quarks.
They provide information on the opaqueness of the QGP because of their small

wavelengths; these will be covered in detail in Chapter 2.

It is, however not well understood what exact processes are responsible for the
thermalization of the QGP. In this stage, the medium’s temperature surpasses
the critical temperature predicted by lattice QCD calculations. The medium

will cool and expand until hadronization takes place during its evolution. As



a strongly coupled fluid, the QGP can be characterized by relativistic viscous
hydrodynamics. The expansion of the medium is primarily driven by the pre-
viously mentioned non-uniform spatial energy distribution in the initial state,
which leads to pressure gradients in the QGP phase and anisotropic flow. The
shear viscosity of the QGP, or resistance to fluid deformation, has an impact
on this. Radial flow is caused by higher pressure in the centre of the QGP
medium than its periphery. The resistance to expansion, or bulk viscosity, of

the QGP, regulates the rate of expansion and has an impact on this.

Hadronization and Freezeout
The region of the QGP that cools below the transition temperature (7¢)
hadronize during the evolution of the system. Depending upon the temper-
ature and energy density, hadronization may occur at different times and in
different phase spaces. As the system evolves, the inelastic and elastic interac-

tions among the hadron continue.

At a temperature Ty, inelastic interactions between hadrons cease, and the
relative abundances of different hadron species stop changing. This point is
referred to as “chemical freeze-out”. Elastic interactions among hadrons can
continue until a temperature Ti;,, where the distance between two hadrons be-
comes larger than the mean free path, and hadrons stop interacting elastically.
This is known as “kinetic freeze-out” or “thermal freeze-out”. Afterwards, the
particle momenta gets fixed, and particles produced in the collision emerge

freely from the system and travel towards the detector.

1.3.2 Collision Geometry and Glauber Model

Figure 1.5 shows a geometrical representation of a collision between two nuclei at
very high energy. Both projectile and target beams are accelerated to velocities

nearly equal to the speed of light in opposite directions and are then made to collide

10



~ <" Dparticipants

before collision after collision

Figure 1.5: A schematic representation of relativistic heavy-ion collision. The figure is
taken from Ref. [30].

with each other. As both nuclei travel at relativistic velocities, they become Lorentz
contracted along the beam direction (z-axis) and appeared as a flattened or pancake-
like objects. The impact parameter (b) indicates the perpendicular distance between
the centre of these two colliding nuclei. The parameter b characterizes the overlap
region of collisions and provides information about the centrality of the collision.
The value of b can range from 0 fm, corresponding to head-on collisions to about
twice the radius of the nucleus, which corresponds to the most peripheral collisions.
Depending on b values, some fractions of nucleons from both nuclei take part in
interactions, which are referred to as “participants” (Npar) while some nucleons do
not participate in the collision, called as “spectators” (Ngpectator = 24 — Npart, A =
mass number of nucleus).

In heavy-ion collisions, Npu and Neop are estimated using the Glauber model [31]
where, the nuclear reaction is compared with the superposition of independent
nucleon-nucleon collisions. The mean values of Npar, Neon, and impact parame-
ter “b” for given centrality classes of measured events are estimated using Monte
Carlo Glauber calculations [31]. This is done by using the connection between the
distribution of the number of charged particles with the < Ny, > and impact pa-
rameter b, as depicted in Fig. 1.6. It is observed that a more central collision, i.e.

collision with a small impact parameter, leads to a higher particle multiplicity.
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Figure 1.6: Illustration of the correlation between the final number of produced charged
N, and Glauber calculated quantities. The figure is taken from Ref. [32].

1.3.3 Kinematic variables

When studying relativistic heavy-ion collisions, it is essential to use kinematic vari-
ables that are either invariant under Lorentz transformations or have simple forms
that allow for straightforward comparisons between different frames of reference.
The momentum of the particles produced in the collisions is presented in terms
of the four-momentum, p* = (E, p,, py, p-), where the transverse momentum pp =
\/m is most commonly used parameter in the later part of this thesis. In the
relativistic limit, the velocity of the particle is known as rapidity, which is defined

as:

11 (E+pz>
=—1In
Y 2 E_pz
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where E and p, are energy and z-component of momentum of the particle respec-
tively. The advantage of using rapidity in high-energy collisions are because of
its linear transformation under Lorentz boosts. To measure the rapidity of a par-
ticle, one should measure two quantities of that particle, such as its energy and
z-component of momentum. In many experiments, it is not easy to measure both
quantities simultaneously. So, it is convenient to utilize another variable, called

pseudorapidity (n), which is defined as

n= —ln[tan(g)] (1.5)

/N
\
[
{7
_ _O_, _Mﬁ_ | _{_» i};_ Beam axis
Interaction point \ /
\ |
\/

Figure 1.7: Geometry of angle # and azimuthal angle ().

where 6 is the angle between the particle’s momentum and beam axis. If the
particle’s kinetic energy is much greater than its rest mass energy, i.e. the massless
limit 7 is equivalent to the rapidity y. The position of a particle in the transverse
plane around the beam axis for a fixed € is described by the azimuthal angle (o=
tan™"(py/px)). Figure 1.7 shows a geometrical description of these quantities.

In a proton-proton collision, the centre-of-mass energy is commonly expressed as
Vs, where s = (p; + p2)2 represents one of the Mandelstam variables and pq, po are

the four momenta of the approaching protons, whereas in heavy-ion collisions, the
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center-of-mass-energy per nucleon-nucleon collision is expressed as \/SxN-

1.4 Experimental probes of the quark-gluon plasma

Several complementary observables provide evidence that heavy-ion collisions pro-
duce deconfined QCD matter. Some of the important signatures of the quark-gluon
plasma are discussed in this section: Quarkonium suppression, elliptic flow, jet

quenching, and strangeness enhancement.

1.4.1 Quarkonium Suppression

The charmonium and bottomonium states (c¢ and bb bound states, respectively) are
predicted by the colour screening model [23] to dissociate in the medium, suppressing
the observed yields. The dissociation can be attributed to the screening of the
binding potential of heavy quark-antiquark pairs by the deconfined colour charges in
the QGP. As a result, the heavy-quark potential in a deconfined medium is screened.
The screening radius (Debye radius, rp) at high enough temperatures will be lower
than the average quarkonium state size. The magnitude of the screening radius
is contingent upon the medium’s temperature; specifically, a rise in temperature is
anticipated to result in a reduction in the radius. Since the states with higher binding
energies have smaller radii and dissociate at higher temperatures, the dissociation
of the resulting quarkonium states and the consequent suppression of the yields are,
therefore, dependent on the temperature of the medium and are expected to occur
sequentially. .J/1 mesons are composed of a charm quark (c) and an anticharm quark
(¢) and the suppression of J/1 is expected in the presence of QGP. Experimental
observations of .J/i¢ suppression are first observed at the CERN SPS [33] and later
confirmed at the RHIC [34,35] and the LHC [36,37]. Figure 1.8 indicates that .J/1

production is suppressed at both RHIC and LHC energies.
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Figure 1.8: Measurements of Raa of J/1 as a function of pr (left) and (Npar) (right) for
heavy-ion collisions. Figures are taken from Refs. [36,37].

1.4.2 Anisotropic Flow

In non-central heavy-ion collisions, the overlap region of two incoming nuclei is spa-
tially asymmetric with an almond-like shape. This spatial asymmetry results in a
momentum anisotropy among the final-state hadrons, meaning particles are prefer-
entially emitted in certain directions. This momentum anisotropy then manifests
as anisotropy in the azimuthal angle (¢) of the produced particles with respect to
the reaction plane. The reaction plane is a geometric plane defined by the impact
parameters (the relative transverse positions of the colliding nuclei) and the beam
direction (the direction of the incoming particles). The angle ¢ measures the angle
of emission of a particle in the plane perpendicular to the beam direction.

In relativistic collisions, the invariant cross-section of the produced particles can

be expressed in terms of the Fourier decomposition as follows:

d*p - %ppoTddeO

EdgN LN (1 + Z 2u,cos(nlp — \Ilr])> ; (1.6)

where, v, = (cos(nyp)); ¢: azimuth angle, pr: transverse momentum, and y: rapid-
ity, and W,: the reaction plane angle. The azimuthal anisotropy as a function of pr

and y, is described by the quantity v,. For directed flow, the coefficient is denoted by
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vy, for elliptic flow by vs, for triangular flow by v3, and so forth. Since the particles
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Figure 1.9: The pr differential vy of A(A), K2, ¢,p(p), K*, and 7% - meson for various
centrality classes in Pb-Pb collisions [38]

produced just after collision do not interact among themselves; therefore, the az-
imuthal distribution is initially isotropic in nature, i.e., vi"# = (). After interaction
with each other multiple times, a momentum anisotropy in the final state particles
results from the anisotropy in the pressure gradient of the non-uniformly structured
initial state. This results in a non-zero v, as more matter is forced outward in the
direction of the steeper pressure gradient. A large number of early rescattering re-
sults in a positive vy also probably guarantees that the medium has reached a local
thermal equilibrium.

The vy measurements for charged particles as a function of pr in different central-
ity classes of Pb-Pb collisions at \/syy = 5.02 TeV [38] are shown in Figure 1.9. It
is found that the amplitude of vy grows with decreasing collision centrality, reaching
its maximum value for 40-50% Pb-PDb collisions. In addition, v, reduces in periph-
eral collisions (50-60% and 60-70%), indicating that the system’s shorter lifetime

prevents it from producing greater vs.
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1.4.3 Jet quenching

Jets are collimated showers of particles produced from the fragmentation and hadroniza-
tion of hard scattered partons in high energy collisions. While passing through the
QGP medium, these hard-scattered partons interact strongly with the medium par-
tons due to their colour charges and lose energy through elastic (collisional) and
inelastic (gluon radiation) processes, known as “jet quenching”. The observable for
the study of jet quenching is the jet nuclear modification factor Raa, which is used
to quantify the suppression of the jet production in heavy-ion collisions, compared

to the expectation from binary scaled pp collisions. The Raa can be defined as:

d? N /dyd
Raa = A/ dydpr ; (L.7)
< Tan > daé{)\f EL [ dydpr
where Nja are the jet yields in A-A collisions, and ¢, 7" is the inelastic cross

section in pp collisions, < Thx > is the nuclear overlap function. Experimentally, a
clear suppression of jet production is observed in heavy-ion collisions compared to
pp collisions at both RHIC and the LHC experiments. The importance of jets to

understand the quark-gluon plasma is discussed in detail in Chapter 2.

1.4.4 Strangeness enhancement

In heavy-ion collisions, the production of strange hadron particles are enhanced in
comparison to minimum bias pp collisions, which is one of the key signatures of QGP
medium, popularly known as strangeness enhancement [39]. Strange quarks are
produced through hard scattering processes, which include flavour creation (¢g — s3,
gg — s8), flavour excitation (¢gs — ¢s, gs — gs), and gluon splittings (¢ — s3). Due
to large gluon density in the QGP medium, the creation of s5 pairs from the gluon
channel dominates over the annihilation of quark (¢) and anti-quark (g). As a result
of the dominance of the gluon channel, strange hadron production is enhanced in

the presence of the QGP medium in AA collisions compared to what is observed in
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pp collisions. Strangeness enhancement was first discovered in 1988 by the CERN
fixed-target NA35 experiment [40], subsequently confirmed by CERN SPS [41-46],
RHIC [47-49] and later at the LHC [50]. The results in Fig. 1.10 show a smooth
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Figure 1.10: The ratio of pr-integrated yield between multi-strange hadrons to pions
(7t + 77) as a function of (dN.,/dn) in pp collisions at /s = 7TeV [51]

transition between the various collision systems and a rise in the ratio of multi-

strange to non-strange hadron yields with the multiplicity of charged particles.

1.5 Small collision systems

The proton-proton and proton-lead collisions are considered small collision systems
used to take simple references for heavy-ion collisions, i.e., they lacked the necessary
conditions to produce the QGP. However, this paradigm has been questioned by

recent measurements in high-multiplicity pp and p-Pb collisions. Signatures of QGP
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formation have also been seen in pp and p-Pb collisions, which are characterized by
charged particle multiplicities that are comparable to those attained in peripheral
heavy-ion collisions. The strangeness enhancement effect, the double-ridge in the
two-particle correlation distributions in high multiplicity events are some of these
QGP-like signatures in small collision systems.

The question of whether these observations, which point to a collective behaviour
originated from the production of a deconfined state of matter or if initial state effects
or final state effects other than the QGP formation is to blame instead, is raised by

these observations.

1.5.1 Importance of pp collisions

The simplest hadronic system to study nuclear matter effects is the proton-proton
collision. The pp collisions are generally used to validate and test predictions of
the Standard Model of particle physics. This includes studying the interactions of
quarks and gluons, electroweak processes, making precise measurements of particle
properties, such as masses, lifetimes, and production cross-sections etc. Historically,
pp collisions have played a pivotal role in the discovery of new particles, such as
W and Z bosons in 1983 [52,53] and Higgs boson in 2012 [16, 17] were discovered
through pp (pp) collisions. The discovery of Higgs boson confirmed the mechanism
responsible for mass generation in the Standard Model. The pp collisions also help
to test the perturbative and non-perturbative QCD by measuring the production
cross-section and properties of jets [54-59].

However, recent measurements at LHC have revealed QGP-like signatures in

high multiplicity pp collisions, as mentioned in the next subsection.

1.5.2 QGP-like signatures

Strangeness enhancement:

Recently, high-multiplicity pp collisions show the enhanncement of strange-
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particle yields at /s = 7 and 13TeV [51,60], as shown in Figs. 1.10 and
1.11, respectively, where the enhanncement reaches values similar to those

observed in peripheral Pb-Pb collisions. Given that various collision systems
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Figure 1.11: The ratio of pp-integrated yield between multi-strange hadrons to pions
(7t + 77) as a function of (dN.;/dn) in pp collisions at /s = 13 TeV [60]
should entail distinct particle production mechanisms, this behaviour is very

noteworthy [51].

The ridge-like structure in two-particle correlation distributions:
The angular correlation distributions between two particles are determined as
a function of two parameters: A¢ and An. The former is the difference in
the azimuthal angles of two particles, while the latter is the difference in their
pseudorapidity. The ATLAS experiment measured the two-particle angular
correlation in pp collisions at /s = 13 TeV for two intervals of charged particle
multiplicity (left: 0 < N < 20, right: N > 120) [61], where Ny is the
reconstructed charged particle multiplicity. The results are shown in Fig. 1.12.

The long-range ridge at A¢ ~ m is associated with the dijet partner and
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Figure 1.12: Two-particle correlation functions, C' (An, A¢), in pp collisions at 13 TeV
in Nyec intervals 0-20 (left) and > 120 (right) for charged particles having a momentum
range of 0.5-5 GeV. The distributions have been truncated to suppress the peak at the
near side to avoid statistical fluctuations at larger |An| [61]

momentum conservation in general, whereas the peak centred in (An, A¢) =
(0,0) is related to particles generated in the same jet or originating from the
decay of the same hadron. A long-range near-side ridge at A¢ ~ 0 is visible in
the highest multiplicity interval (right panel), and it resembles the one seen in
heavy-ion collisions. The ALICE and CMS collaborations also reported similar

findings in high-multiplicity pp collisions [62,63].

A few other observations also support the formation of QGP-like systems in
high-multiplicity pp collisions, such as higher radial flow velocity [64], and azimuthal
anisotropy driven by collision geometry [65]. Surprisingly, several other signatures
need to be explored in these collisions, i.e., jet quenching, suppression of charmo-
nia and bottomonia. The major part of this thesis is dedicated to explore the jet

quenching in small collision systems.
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1.6 Organization of this thesis

This thesis is organized as follows: Chapter 1 introduces theoretical aspects of study-
ing relativistic heavy-ion collisions and discusses the importance of pp collisions. A
detailed overview of jets and their use to understand the QGP medium is explained
in Chapter 2. Chapter 3 provides a brief overview of Large Hadron Collider and
the ALICE detector systems. Chapter 4 aims to present and discuss the analysis
techniques and methods used to study the jet properties in pp collisions at /s =
13 TeV. This chapter shows the first measurement of multiplicity dependence intra-
jet properties, and the results are compared with Monte Carlo event generators.
Chapter 5 describes the study of jet transport coefficient in the presence of a mag-
netic field using a quasi-particle model. Chapter 6 summarizes the work presented

in this thesis.
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Chapter 2

Jets: an overview

In ultrarelativistic heavy-ion collisions, a hot and dense medium of quarks and gluons
called the quark-gluon plasma is created due to the presence of high temperature
and/or densities in the collisions. The hard scatterings (high-momentum trans-
fer) of partons (quarks and gluons) take place early in the collisions, prior to the
QGP formation. These partons eventually fragment into collimated shower of par-
ticles, knows as jets. Concerning their respective energy scales, the evolution of jets
can be segmented into three stages. At the greatest energy scale, the initial stage
consists of a small number of partons interacting and exchanging high-momentum
transfer-squared, or Q*. The second stage is a multi-parton cascade shower, pro-
duced from the initial hard-scattered parton, where gluons radiate from the first
traversing parton and decay into quark-antiquark pairs or radiate further gluons. A
non-perturbative process called hadronization takes place as the virtualities of the
partons reduce, and the resulting set of partons combine to produce a set of final
state hadrons in the last stage of jet evolution. In this chapter a detailed discussion
on the definition of jet, jet reconstruction, the importance of jets in pp, p-Pb and

Pb-Pb collisions, and about the thesis works are presented.
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2.1 Towards jet definition

Jets are cascades of energetic hadrons that result from the fragmentation of hard-
scattered (i.e., produced in processes with large squared momentum transfer Q?)

quarks and gluons in high-energy collisions.

2.1.1 Theoretical understanding

The production cross-section of the jet is predicted by the pQCD factorisation the-
orem [1]. Figure 2.1 shows the 2 — 2 hard scattering of pp collisions, where the
scattered partons move in the transverse plane after the collision with high-pr and
180 degrees apart at roughly the same pr. With the help of the factorization formula
expressed in Eq. 2.1, one can differentiate individual steps and processes that take
place when the jets are created. The production of a final state X (parton, hadron,

jet) is written as [2]:

ghtha=X (p1,p2) fihl(xh QZ) & thQ (2, QQ) ® gk (xlpl, ZTap2, QQ) ® Dy x (2, Q2)~
(2.1)
The term fihl(ml, Q?) ( f;” (9, QQ)), denoted as Parton Distribution Functions
(PDFs), is the probability of finding a parton of species i(j) within the incoming
proton hy(hy) with fractional momentum x;(x2) of the total longitudinal momentum
and of virtuality Q? (the hard scale set by the partonic process). The Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations govern the scale Q* evolution
of PDFs, which are universal (process independent) non-pertubative objects [3,4].
The parton k, we are interested in, is part of a partonic system (a pair of back-
to-back partons at leading perturbative order) that is created by the hard scattering
of partons i and j, which is described by the perturbative cross section ¢ ~*. This
partonic system will relax its initial virtuality Q* through QCD branching down to

a scale Q2 ~ 1 GeV [2], below which perturbation theory stops, and hadronization
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Figure 2.1: Left: A schematic diagram of 2 — 2 hard process in pp collisions; Right:
Fragmentation and hadronization of partons, appearing in [5]
of the fragments occurs.

In the process of hadronization, the partonic fragments are grouped into colour-
neutral structures using different methods such as Lund strings [6], clusters [7], etc.,
which dynamically decay into the final state hadrons.

As seen in the right panel of Fig. 2.1, a partonic shower is created via the frag-
mentation process, and eventually, a spray of particles is produced via hadronization.
Comparisons between theory calculations and data are only valid when the same
definition is employed, as different jet definitions produce different jets. A brief
overview of the jet reconstruction procedures in the experiment, as well as in the

MC event generators, is discussed in the next subsection.

2.1.2 Reconstruction of jet

Jet reconstruction uses algorithms which provide a set of rules for grouping final state
particles into jets. The “Snowmass accord”, which was outlined in 1990 [8] by several
eminent theorists and experimentalists, addresses certain general characteristics of
jet definitions. It says that several important properties that should be met by
a jet definition are [9]: (i) Simple to implement in an experimental analysis; (ii)

Simple to implement in the theoretical calculation; (iii) Defined at any order of
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perturbation theory; (iv) Yields finite cross sections at any order of perturbation
theory; (v) Yields a cross-section that is relatively insensitive to hadronization. The
second major community-wide discussion on jets occurred in 2000 as part of the
planning for Run II of the Tevatron [10]. By then, new jet algorithms had been
developed [11-14], outdated algorithms had been fixed [15], and it is probably safe
to say that the community had nearly met the Snowmass requirements [16]. The
most important factors of an algorithm that must be taken into account are the
infra-red and collinear safety and the size of the jet. The area and size of the jet
determine how sensitive it is to soft radiations. In order to accurately calculate
the mass and energy of the jet, it is necessary to have a bigger jet radius since
this permits the jet to capture enough hadronized particles. However, a smaller jet
radius helps to reduce the underlying and pile-up effects and avoid overestimation
of the mass and energy of the jet.

The jet reconstruction algorithms can be broadly divided into two categories: a)
cone-based algorithms and b) sequential recombination algorithms. Cone-based al-
gorithms are based on the premise that QCD branching and hadronization leave the
bulk characteristics of an event’s energy flow unaltered (more precisely, energy flow
into a cone), can be regarded as “top-down” algorithms. Sequential recombination
algorithms are, on the other hand, regarded as “bottom-up” algorithms are typically
connected to the divergent structure of QCD matrix elements and repeatedly recom-
bine the nearest pair of particles based on some distance metric. There are several
cone algorithms, such as, “Iterative cone (IC)”, “Iterative cone with progressive
removal (IC-PR)”, “Iterative cone with split-merge (IC-SM)”, and “Iterative cone
with split-drop (IC-SD)”. The kt, Anti-kt, and Cambridge/Aachen algorithms are

the mostly widely used sequential clustering algorithms.
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2.1.2.1 Cone algorithms

“Iterative Cone” (IC) algorithms start with a seed particle, 7, which sets the initial
direction of the jet. In these algorithms, the momenta of all particles within a
circle (or “cone”) of radius R (a dimensionless quantity) around i are added up in

azimuthal angle ¢ and rapidity, y, such that
AR? = (yi — y))* + (vi — ¢5)° < R%; (2.2)

where y; and ¢; are the rapidity and azimuth of particle 7, respectively. The direction
of the resultant sum of all particles inside the cone is then considered as a new ‘seed’
direction. One repeats the process until the direction of the cone is stable. However,
this algorithm has some limitations about how to select seeds and what one should
do when the cones overlap or share particles. These two issues are addressed by
using approaches such as progressive removal (PR), split-merge (SM), and split-
drop (SD) with the iterative cone (IC) methods, resulting in IC-PR, IC-SM, and
IC-SD algorithms.

In the IC-PR algorithm, the particle with the highest transverse momentum in
the event is considered as the first seed. After finding the stable cone corresponding
to the first seed, one can consider it a jet and all particles within that jet are
removed from the event. This process is repeated until no particles remain (above
some optional threshold). The PR approach prevents cone overlap. However, the
issues of collinear safety remain.

In IC-SM algorithm [10], a different strategy is applied to address the problem
of the same particles showing in multiple cones. In this approach, all the stable
cones that are produced by iterating through all particles or calorimeter towers (or
those that are, for instance, above some seed threshold ~ 1-2 GeV) are indentified.
Then, a split-merge (SM) operation can be performed, which unites two cones if

the particles are shared with harder cone account for more than a fraction ‘f’ of the
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softer cone’s transverse momentum; otherwise, the shared particles are assigned to
the cone to which they are closer.

A “split-drop” (SD) process [17] is an alternative to SM in which non-shared
particles from the softer of two overlapping cones are dropped, i.e., completely ex-
cluded from jets. The primary problem with the IC-SM and IC-SD algorithms
are that adding a new soft seed particle may cause new stable cones and change the
final set of jets, i.e. infrared unsafe.

The seedless cone (SC) algorithm, which is Infrared and Collinear (IRC) safe,
avoids the use of seeds and iterations. This technique is frequently called a split-
merge algorithm (SC, therefore SC-SM). A soft particle may introduce new stable
cones into a seedless cone algorithm, but none of those new cones will involve hard
particles because a soft particle does not affect the stability of a cone involving
much larger momenta. As a result, the set of hard stable cones is infrared safe. The
aforementioned seedless method was designed for fixed-order computations involving
a minimal number of particles. On the other hand, the challenge of finding all stable
cones was solved in 2007 using a polynomial-time geometrical approach, which is
referred to as SISCone [18]. However, the SISCone algorithm is the slowest of the

IRC safe algorithms.

2.1.2.2 Sequential recombination algorithms

The JADE collaboration first introduced the simple sequential recombination algo-
rithm in the middle of the 1980s [19]. In this algorithm, the particles are grouped
based on momentum space, assuming that particles within jets will have small dif-
ferences in transverse momenta, resulting jets with fluctuating areas in (n—¢) space.
This algorithm is also IRC safe. Moreover, after the introduction of FastJet algo-
rithm [20], these algorithms are much faster and preferred by the experimentalists.

All sequential recombination algorithms follow a similar method. First the dis-
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tance between the particles is determined using

_ : 2p 1.2p
dij = min (kT,i’ kT,j) "R

(2.3)
where ‘p’ is the process parameter indicating the kind of sequential recombina-
tion method; kr is the transverse momentum of the particle; AR?,J- = (n; — 77]-)2 +
(¢; — ;)°, is the (7 — ¢) space distance between the two particles and R is the
radius parameter, which determines the size of the jet. The second distance variable
is d; p which is the distance between the particle and beam or jet axis, represented
as

)

The minimum of the d;; and d;p is found in the first step. If the minimum is d;;,
then particles i and j are combined into one object by summing their four vectors
and removed from the list of particles. Otherwise, if d;p is minimum, then 7 is
considered as the final jet and removed from the list of particles. This process is
repeated until all particles become part of the algorithm and the distance between
the jet axes Rj; is larger than R.

The parameter ‘p’ in Eq. 2.3, 2.4 is ‘1’ for kr algorithm [21], which merges
soft particles first and is consequently helpful in background determination. Since
this algorithm considers soft particles first, it gives jets with irregular sizes. The ‘p’
value is ‘0’ for the Cambridge/Aachen (C/A) algorithm [22]. In this method,
the distance variables are independent of momentum, and therefore, the jets are
irregular in shape like the kr-algorithm. However, the C/A has a clustering hierarchy
in angle, which makes it possible to consistently view a specific jet (hard and soft
jet substructure) on many different angular scales.

4

The anti-kr algorithm, where ‘p’ is ‘-1’, prefers hard particle clusterings over
soft particle clusterings or energy-independent clusterings. This indicates that the

jets expand outward from the hard “seeds”. This is the standard approach used by
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LHC experiments for signal extraction, producing jet regions with perfect circles in

azimuth and pseudorapidity space.

2.2 Overview of experimental results on jets

The hard and elementary scatterings leading to the production of jets occur in the
early stages of the collisions. In pp collisions, jets are well-defined objects in QCD
and well-understood theoretically and experimentally [23]. In the case of heavy-ion
collisions, jets are expected to get modified in comparison to pp collisions since the
process of hard quark or gluon evolution towards hadronization is influenced by and
integrated into the evolving QGP medium. This section discusses a brief overview of
the importance of jets to understand the QGP. The following are the questions that
jet studies try to address in order to understand the QGP: Does the interpretation
of results in heavy-ion collisions require the consideration of cold nuclear matter
effects? To what extent do partons lose energy in the medium? How do partons
fragment inside the medium? Does fragmentation behave the same in a vacuum, or
is it modified? What is the impact of the lost energy on the medium, and where
does it go?

The medium is not expected to be produced in small collision systems (pp and
p-A or d-A collisions). The measurements in pp collisions are used to take a baseline
study. On the other hand, the measurements in p-A or d-A collisions, where the
presence of a nucleus in the initial state may affect the final observations compared
to pp collisions. Various phenomena, such as coherent multiple scattering inside the
nucleus [24], gluon shadowing [25], or partonic energy loss [26-28|, may cause these
effects, known as cold nuclear matter effects, and therefore, they must be considered
in order to interpret heavy-ion collisions.

The partonic scattering rate in nuclear collisions is expected to get increased lin-

early with the average number of binary nucleon-nucleon collisions (N.,) compared
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to pp collisions assuming the initial state remains unchanged [29]. Therefore, the
nuclear modification factor R,py, is defined as the ratio of the transverse momen-
tum (pr) spectra of particles or jets in nuclear collisions to those in pp collisions,
scaled by (Neon). The production of jets [30-34] and high-pr particles [35-37] are
strongly suppressed in central heavy-ion collisions compared to pp collisions, which
is known as jet quenching. High-pt particles and reconstructed jets have also been
used in experimental searches for jet quenching effects in d-Au collisions at RHIC
and in p-Pb collisions at the LHC. These studies use more-differential event selec-
tion, as well as Minimum Bias (MB) events. Events are defined in terms of “event
activity” (EA) based on the following factors: forward charged-particle multiplicity
(STAR [38], PHENIX [39,40], ALICE [41]); forward transverse energy (ATLAS [42],
CMS [43]); or zero-degree neutral energy (STAR [38], ALICE [41]); where “forward”
and “zero-degree” denotes the direction of the heavy nuclear projectile respectively.

The measurements of inclusive hadron at RHIC in d-Au collisions [38,39] show
the enhancement of yield in the pr interval 2-5GeV /¢, however, no significant yield
modification is observed at higher pr with no significant difference between MB
and EA-selected distributions. In inclusive hadron measurements in p-Pb collisions
at the LHC, ATLAS and CMS report yield enhancement for pr greater than ~
30 GeV/c in MB events [42,44,45], and ATLAS reports additional dependence on
EA [42]. In contrast, ALICE does not observe significant yield modification for pr
> 8 GeV/c in either MB or EA-selected events [41,46]. In MB p-Pb collisions at the
LHC and d-Au collisions at RHIC, no significant yield modification has been seen
for inclusive jet yield [40,47-49]. While the ALICE collaboration finds no such yield
modification as a function of event “centrality”, measurements by the PHENIX
collaboration at RHIC [40] and the ATLAS collaboration at the LHC [48] find
apparent enhancement of the inclusive jet yield in EA-selected populations. In p-Pb
collisions at /sy = 5.02TeV, a correlation measurement of the dijet transverse-

momentum balance finds no substantial deviation from a simulated pp reference
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distribution, independent of EA [43]. The dijet acoplanarity measurements, which
can be produced by both initial-state and final-state effects also reveal that, in
comparison to simulations of pp collision distributions, there is no modification due
to nuclear matter effects in EA-selected p-Pb collisions at /sy = 5.02TeV [19,43,
50].

2.2.1 Partonic energy loss in the medium

Strongly interacting probes are expected to lose energy in the medium and be sup-
pressed at high momenta, but electroweak probes, like direct photons, leave the
QGP intact because it does not interact via the strong force. The results from the
PHENIX experiment showed that the high-pr coloured probes (final state hadrons)
are suppressed in heavy-ion collisions, however, direct photons are not suppressed at
RHIC energies [52-55]. A similar result is also observed at LHC [56-60] energies as

shown in the left panel of Fig. 2.2. The suppression of charged hadron spectra was
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Figure 2.2: Left: Raa for high-pr hadrons [56-59] and electroweak probes such as pho-
tons [60], W and Z bosons [61,62]; Right: The measurements of jet Raa for jet radius
R = 0.4 at the LHC [63-65]

the first sign of jet quenching in the heavy-ion collisions. At RHIC energies [66,67]
the lowest value of Raa for light hadrons goes up to 0.2 in heavy-ion collisions.

Furthermore, this value is 0.1 in Pb-Pb collisions for LHC energies 2.76 TeV and
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5.02 TeV, respectively [63-65,68]. It appears that at pr ~ 100 GeV/c, the Raa of
charged hadron reaches unity [45]. This is also predicted that for all QCD-inspired
energy loss models, Raa will reach 1, since at leading order, the differential cross
section for interactions with the QGP is proportional to 1/Q? [69].

Because of the sensitivity to nonperturbative processes and the complexity of
the theoretical description of hadronization, measurements of hadronic observables
blur fundamental physics. Measurements of reconstructed jets are thought to be less
sensitive to these effects [70]. The jet nuclear modification factor is measured by the
ALICE [68], ATLAS [65], and CMS [63] experiments at LHC. A comparative result of
jet Raa at the LHC energies is shown in the right panel of Fig. 2.2. It is observed that
within the systematic uncertainties, jet Rax is consistent at LHC energies. Although
the jet Raa measurements provide overall precision of jet quenching effects, the
study of more differential measurements might be more sensitive to the energy loss
mechanism.

The measurement of dihadron correlation helps to understand the energy loss
and modification of the jet fragmentation procedure. Figure 2.3 shows the measure-
ment of dihadron correlation in pp, d-Au, and Au-Au collisions at /syy = 200 GeV,
showing the suppression of the away side peak in central Au-Au collisions. A com-
plete suppression of away side peak and moderate enhancement of near side peak is
observed in the first measurement of dihadron correlation [71,72].

At the LHC, the first evidence of jet quenching is observed with reconstructed
jets in the measurement of dijet asymmetry A; [73], which measure the momentum
imbalance between leading and subleading jets. A comparative study of dijets be-
tween Pb-Pb and pp collisions show that a higher value of A; is observed in Pb-Pb
compared to pp collisions, consistent with the expectations due to jet energy loss.
The subsequent results from CMS [74], and ATLAS [75] experiments show similar
observations. Several other measurements, such as, gamma-hadron [76], jet-hadron

correlations [77] , heavy quark energy loss [58] etc. also support the concept of Raa
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Figure 2.3: Dihadron correlation in pp, d-Au and Au-Au collisions at /sy = 200 GeV
before background subtraction (a), and after background subtraction (b) [71,72]

as partonic energy loss. The reaction plane dependent measurements of jet vy [78]
show path length dependent energy loss possibly requiring a parton to go through

at least 2fm of QGP in order to lose energy.

2.2.2 Impact of the medium on the jet

The energy loss of the parton in the medium was discussed in the previous subsec-
tion. However, the interaction between partons and the medium was not covered.
A jet is a measurement of the final state of hadrons produced when the parton frag-
ments rather than a measurement of a parton. Based on their spatial correlations
with each other (and hence with the parton), hadrons in the final state are grouped
into the jet. Whether the lost energy has had time to equilibrate in the medium
determines whether or not it maintains its spatial correlation with the parent par-
ton. When a bremsstrahlung gluon fragments, it will be correlated with the parent
parton if it is unable to attain equilibrium with the medium. The jet is widened by
interactions with the medium, which transfers energy from higher momentum final

state particles to lower momentum particles. If partons from the medium become
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associated with the hard parton through medium interactions, similar apparent mod-
ifications might happen. The jet-finding algorithm and its parameters determine if
this lost energy is recovered as a component of a jet or not. The observation that
energy is lost is relatively simple, but there are numerous methods to modify the jet;
once we have observed observables specifically tailored to search for these effects, we
must be sure which mechanisms actually take place under which conditions. Several
distinct observables, each with unique advantages and disadvantages, show that the
medium does modify jets.

In the presence of a medium, the internal structure of the jet can be modified
coming from a variety of sources. The momentum broadening of jets can happen
due to the soft radiative and collisional interactions with the medium, which shifts
energy from higher momentum final-state particles to lower-momentum particles
and broadens the jet. Additionally, the medium may cause partonic splittings,
which would further modify the substructure of the jet. Moreover, depending on
the path lengths through the medium, jet substructures are also modified. Results
from the ALICE, CMS, and ATLAS experiments show strong modification of the
following jet substructure observables in Pb-Pb collisions compared to pp collisions,
such as jet fragmentation function [79,80], jet shape observable [81,82], jet grith [83],
groomed jet radius [84], and the groomed momentum splliting fractions [84].

The distribution of final state particles coming from a hard scattering is measured
by fragmentation functions, which are the total of parton fragmentation functions.
The charged-jet fragmentation function is defined as 2 = ph®ee /pie" and ¢ =
log(1/z™), where p2*"“! is the transverse momentum of jet constituent and pi¢" is
the transverse momentum of the jet, reflecting how jet constituents are distributed
with respect to the jet axis. The ATLAS measurements show the modification
of fragmentation function in Pb-Pb collisions compared to pp collisions for three
jet pr intervals [80], as depicted in fig. 2.4. There is a noticeable enhancement

at low z, which is followed by a depletion at intermediate z. This implies that
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Figure 2.4: Ratio of jet fragmentation function in Pb-Pb collisions compared to pp colli-
sions with ATLAS [80]

low momentum particle production is the source of the energy loss seen for mid-
to-high momentum hadrons. The fragmentation functions of jets have also been
measured: for D° mesons tagged jets, photon-tagged jets, and inclusive jets showing
a significant modification of this observable in heavy-ion collisions [85-87]. Jet
shape observables, which also describe the jet profile, are used to quantify the radial
distributions of momentum carried by the jet constituents. Several measurements
have been made of jet shapes for inclusive jets [88,89], DY mesons tagged jets [90],

and photon tagged jets [91].

= (pr/pr )" (AR jui/ R)" (2.5)

Another jet observable, the generalized angularities, defined in Eq. 2.5 represents an
entire phase space of jet structure observables, each with a distinct momentum and
angular component effect based on k and « values [92]. This phase space is repre-
sented by distinct regions for common jet structure observables such the jet mass

(k =1, a = 2) and jet girth (k = 1, @« = 1). The degree to which these observables
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modify can be determined by measuring the generalized angularities, which can also
help to explain why certain jet structural variables, like the mass, do not show a
strong modification [93], while others, like the girth, show modification [94]. Jet
substructure observables also use subjets, inside the jet to investigate the partonic
splittings. Grooming is usually used to focus more on the hard structure of the jet
and reduce the sensitivity to nonperturbative effects. Several groomed jet observ-
ables are measured to look for the modification in the presence of QGP medium,
such as groomed jet radius 6, [84], groomed momentum splitting fraction z,, and
the number of splittings in a jet that pass Soft Drop (ngp) etc. It is observed that in
heavy-ion collisions 6, is modified, however no significant modification is observed
for z, and ngp [95]. A detailed discussion of all the jet substructure observables are

discussed in Ref. [23], showing the modification in the presence of QGP medium.

2.3 Theoretical understanding of jet energy loss

Theoretically, two main categories of jet quenching effects can be classified as the
impact of QGP on the jet, which is formulated via weakly- or strongly-coupled
mechanisms and another one is the influence of the jet on the medium.

At the weakly-coupled limit, the radiative and collisional energy loss mechanisms
are considered. Several pQCD formalisms implement these mechanisms as a num-
ber of hard scatterings as in the Higher Twist (HT) [96] and Gyulassy-Levai-Vitev
(GLV) [97] formalisms, or as multiple soft scatterings as in the Baier-Dokshitzer-
Mueller-Peigne-Schiff-Zakharov (BDMPS-Z) [98], Arnold-Moore-Yaffe (AMY) [99],
and Amesto-Salgado-Wiedemann (ASW) [100] formalisms. AdS/CFT is used in
the strong coupling limit when a drag force is the primary energy loss mechanism.
Various models employ various mixes of the above mentioned implementations.

Jet quenching may also be affected by the influence of the jet on the medium

because the interaction with the medium reaction may add more particles to the
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jet cone. It is also possible to apply the medium response in a weakly- or strongly-
coupled manner. A kinetic-theory-based method is used to construct the medium
response in the weakly-coupled limit, where medium partons gain energy scattered
from the jet and recoil, creating a hole in the place of parton after recoil [101]. The
medium response is implemented using hydrodynamic theory in the strongly-coupled
limit when the evolution is a bulk medium with a diffusive wake. Furthermore, a
wake that is opposite to holes in the weakly-coupled scenario can also emerge behind
a hard parton. Therefore, various models are categorized by the jet-quenching effects

predicted in those models.

2.4 About the thesis work

2.4.1 Jets in high-multiplicity pp collisions

The pp and p—Pb collisions are initially performed to consider as baseline measure-
ments and to separate the initial-state effects from the final-state medium effects
observed in heavy-ion collisions. However, recent studies in these collisions, specif-
ically at high multiplicities, show ample signatures conventionally associated with
the QGP formation in heavy-ion collisions. These observations have brought an im-
mense interest to study pp and p—Pb collisions more precisely. As discussed in the
previous section, both in d-Au collisions at RHIC and p-Pb collisions at the LHC, the
nuclear modification factor has been measured for both charged particles and jets,
indicating no evidence of jet quenching at small collision systems [71,102-107]. Re-
cently, the measurement from the ALICE collaboration has found that the jet yield
increases with increasing multiplicity classes, indicating the jet production changes
with event activity in pp collisions, but the slope of the jet spectrum remains similar
compared to that in MB events [108].

In this thesis, we showed the first measurement of multiplicity dependence of

charged particle intra-jet properties in pp collisions at 13 TeV with the ALICE ex-
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periment [109]. A strong modification in the jet fragmentation function is observed
in the HM event class for the lower jet-pr interval. The amount of modification de-
pends on the jet-pr and jet radius and is also qualitatively explained by PYTHIA 8
with Monash 2013 tune. A detailed description of the analysis and results are ex-

plained in Chapter 4.

2.4.2 Jet energy loss: in presence of magnetic field

The energy loss of jets in heavy-ion collisions can be quantified by a quantity known
as jet transport coefficient denoted as ¢. The phenomena of jet quenching has been
very well explored by various theoretical models [4-14], viz. GLV-CUJET [15-17],
MARTINI [9], MCGILL-AMY [8], HT-M [18,19], HT-BW [6,20,21], JEWEL [22-25]
etc. In non-central nucleus-nucleus collisions, a substantial magnetic field (B) is
expected to be formed due to moving charges (spectators) at relativistic energy. It
is anticipated that the strength of the magnetic field created immediately following
the collision will be as high as 10m?2 (~ 3 x 10'® Tesla) at the LHC [39] and as high
as m2 (~ 10'® G) at RHIC.

In this thesis, we studied the effect of this huge magnetic field on jet transport
coefficient, ¢. To estimate ¢ in the absence of a magnetic field, a quasi-particle type
description [40] is used, which is based on the thermodynamics of lattice quantum
chromodynamics (LQCD) [41,42]. The magnetic field dependent § is calculated
based on the LQCD magneto-thermodynamical quantities [43,44]. The parallel
and perpendicular component of ¢ for quark- and gluon-initiated jets are estimated

using the correspondence between shear viscosity 1 and ¢ in presence of magnetic

field [45].
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Chapter 3

The Experimental Setup

This chapter presents a brief introduction to the Large Hadron Collider (LHC) [1-3]
and the detector sub-systems of A Large Ion Collider Experiment (ALICE) [4, 5]
used in this thesis work. The description of various detectors is given in terms of
their mechanical design, position, coverage, and physics goals. The ALICE trigger
setup, data acquisition system, and the offline framework of data analysis are also

discussed in brief.

3.1 The Large Hadron Collider (LHC)

The LHC is the world’s largest particle accelerator, located on the border between
Switzerland and France, near CERN, Geneva. The LHC is 26.7 km [3] long syn-
chrotron accelerator built in the existing tunnel previously used by the LEP (Large
Electron Positron) collider. The LHC is positioned between 45 meters and 170
meters below the Earth’s surface. The LHC consists of two separate accelerator
rings, which accelerate particles in opposite directions. Superconducting magnets
are utilized to guide the particle beams to move in opposite directions. The magnets
produce a strong magnetic field of 8.33 T, which is achieved by cooling them to a

very low temperature of 1.9 K using superfluid helium [3]. The LHC can collide
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protons with protons (pp), protons with nucleus (p—A), and nucleus with nucleus
(AA) at ultra-relativistic energies. As of today, the LHC has reached collision en-
ergies of /s = 13.6 TeV for pp collisions, /sy = 8.16 TeV for p-Pb collisions,
and /sy = 5.36 TeV for Pb-Pb collisions. Protons and lead ions are accelerated
in bunches. In the case of pp collisions, each bunch contains ~ 10! protons, with
a maximum of 2808 bunches per proton beam, whereas for Pb—Pb collisions, each
bunch consists of 7x107 nuclei, and the number of bunches per beam is 592 [3].
Before entering the LHC ring, protons and lead ions are pre-accelerated through
several stages. During these pre-acceleration stages, their energies are gradually in-
creased to make them ready for injection into the LHC. The schematic of the CERN
accelerator complex [6] is shown in Fig. 3.1.

In the beginning, protons are sourced from a bottle of hydrogen gas, and then
they undergo a process where they are stripped of their electrons. The stripped
protons are injected into the Linear Accelerator (LINAC), which accelerates them
to an energy of 50 MeV [3]. Protons with an energy of 50 MeV are further ac-
celerated by injecting them into the Proton Synchrotron Booster (PSB), increasing
their energies to 1.4 GeV. The accelerated protons from PSB are then directed to
the Proton Synchrotron (PS), which accelerates them to gain an energy of 25 GeV.
After that, protons are injected into the Super Proton Synchrotron (SPS), where
energy is boosted to reach 450 GeV. After SPS, protons are sufficiently energetic to
be injected into the LHC ring. In the case of lead ions, they start from a source
of vaporized lead. Lead ions are initially accelerated through LINAC3 to reach an
energy of 4.2 MeV per nucleon. From there, they are injected into the Low Energy
Ion Ring (LEIR), which accelerates the lead ions up to 72.2 MeV per nucleon. After
that, they follow the same route as protons before injection into the LHC ring [3].

The LHC features four interaction points indicated by yellow dots in Fig. 3.1.
Four major experiments are designed and built at these four interaction points: A

Large Ion Collider Experiment (ALICE) [4], Compact Muon Solenoid (CMS) [7], A
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Toroidal LHC ApparatuS (ATLAS) [8], and LHC beauty experiment (LHCb) [9].
The ALICE focuses on the study of heavy-ion collisions and particularly aims to
investigate the properties of quark-gluon plasma (QGP). ATLAS and CMS are
general-purpose detectors designed to explore various phenomena, including the
search for Higgs boson to new particles beyond Standard Model, supersymmetry,
etc. In contrast to ALICE, ATLAS, and CMS, which have enclosed detector setup
surrounding the collision point, the LHCDb consists of a set of sub-detectors to de-
tect mainly particles emitted in the forward direction after interactions. The LHCb
investigates rare decays of the beauty quark and the phenomena of charge parity
violation. At the LHC, there are also smaller experiments such as TOTEM (TOTal
Elastic and diffractive cross-section Measurement) [10], LHC forward (LHCT) [11],
and Monopole and Exotics Detector At the LHC (MoEDAL) [12] which expand the
physics capabilities and cover a broader range of scientific objectives of the LHC.
These smaller experiments share the interaction points of ATLAS, CMS, and LHCb.
We have used the data samples collected by the ALICE experiment. The next sec-

tion provides further details on the ALICE experiment and its objectives.

3.2 A Large Ion Collider Experiment (ALICE)

The ALICE experiment at the LHC is a dedicated heavy-ion collision experiment
that focuses on studying the strongly interacting QCD matter, the QGP, which is
believed to be present a few microseconds after the Big Bang. In addition to QGP
studies, the ALICE experiment has the capability to access a large set of observables
(both in soft and hard sector in QCD) in a wide momentum range to shed light on
the different stages of the evolution of heavy-ion collisions, starting from the initial
state to the QGP phase and then transition to hadronic matter [4,5,13]. Various
aspects of pp and p—Pb physics are also part of the ALICE program. The pp

and p—Pb collisions are initially performed to consider as baseline measurements
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and to separate the initial-state effects from the final-state medium effects observed
in heavy-ion collisions. However, recent studies in these collisions, specifically at
high multiplicities, show ample signatures conventionally associated with the QGP
formation in heavy-ion collisions. These observations have brought an immense
interest to study pp and p—Pb collisions more precisely.

THE ALICE DETECTOR

a. ITS SPD (Pixel)
b. ITS SDD (Drift)
c. ITS SSD (Strip)
d. VO and TO

e. FMD

i®

ITS
FMD, TO, VO
TPC

TRD

TOF

HMPID
EMCal

DCal

. PHOS, CPV
10. L3 Magnet
11. Absorber

12. Muon Tracker
13. Muon Wall

14, Muon Trigger
15. Dipole Magnet
16, PMD

17.AD
18.ZDC
19. ACORDE

©CRNO A WNPE

Figure 3.2: The ALICE experiment at the CERN LHC [13].

The ALICE detector consists of eighteen sub-detectors, as schematically shown
in Fig. 3.2. It is placed at the interaction point IP2 of the LHC. The ALICE detector
setup has a dimension of 16x16x26 m?® and a weight of ~ 10000 t. It provides a
robust particle identification (PID) over the momentum range from pr ~ 0.15 GeV/c
to pr ~ 20 GeV/c [5]. It can reconstruct primary and secondary vertices, e.g., it
can achieve a resolution of ~ 100 pum for studying the 2- and 3-prong decays of D
mesons. Heavy-ion collisions produce a large number of charged particles, which
are challenging to track. The ALICE detector is optimized to measure the average
charged-particle multiplicity at midrapidity 4000 but tested with simulations up to
8000 [4]. One can divide the ALICE detector system into three distinct parts: central

barrel detectors, forward detectors, and MUON spectrometer. A brief discussion on
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individual sub-detectors is presented in the following sections.

The ALICE detector system follows a right-handed orthogonal coordinate sys-
tem [14] with nominal interaction point (IP) at z,y,z = 0. The z axis is directed
along the beam line, and positive (negative) z direction corresponds to the forward
(backward) direction, also labelled as “A-side” (“C-side”) of the ALICE apparatus.
The x axis points to the accelerator centre, perpendicular to the mean beam direc-
tion and in line with the local horizontal. Positive (negative) x direction is towards
(outwards) the accelerator centre from the IP. The y axis is perpendicular to the
x and z axis. The positive y direction is upward from the IP, and the negative y

direction is downward from the IP.

3.3 Central Barrel detectors

The central barrel detectors of ALICE consist of tracking detectors (ITS, TPC,
TRD, TOF, and HMPID), electromagnetic calorimeters (PHOS and EMCal), and
an array of scintillators (ACORDE). All these detectors (except ACORDE) are
embedded inside a L3 solenoid magnet. The ACORDE is placed on top of the
magnet and used to trigger cosmic rays. The name ‘L3’ comes because the magnet
is reused from the L3 experiment at the LEP collider. The L3 magnet provides a
magnetic field of 0.5 T, allowing it to bend charged-particle tracks, which in turn

helps to measure the momentum of the tracks.

3.3.1 Inner Tracking System (ITS)

The Inner Tracking System (ITS) [4,15] is one of the tracking detectors of ALICE,
placed closest to the beam pipe. It consists of six layers of cylindrical silicon de-
tectors, as shown in Fig. 3.3. The two innermost layers are called Silicon Pixel
Detector (SPD), two middle layers are called Silicon Drift Detector (SDD) and the

two outermost layers are known as Silicon Strip Detector (SSD). The acceptance,
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Figure 3.3: Layout of the Inner Tracking System (ITS) detector [15].

position, and purpose of each of the components of the ITS detector are summarized
in Table 3.1. Being closest to the beam pipe, the SPD has the best granularity of
256 x 160 pixels/cells with a size of 50 ym in r¢ and 50 pm in z. The SPD is mainly
used for trigger selection and determination of the primary vertex position. The first
layer of the SPD has the pseudorapidity coverage of |n| < 2.0 that allows to measure
charged-particle multiplicity, together with Forward Multiplicity Detector (FMD),
over a wide kinematic range in 7 (~ eight units: —3.4 < n < 5.1) [16]. The other
four layers (SDD and SSD) of the ITS are used for PID through the measurement of
specific energy loss (dE/dx) of charged particles. Moreover, the ITS improves the

angle and momentum resolution of charged particles reconstructed by the TPC.

3.3.2 Time Projection Chamber (TPC)

The Time Projection Chamber (TPC) [4,17,18] is the main tracking detector of
ALICE experiment. As shown in Fig. 3.4 (left), the TPC is cylindrical in shape
with an inner radius of 85 cm and an outer radius of 247 cm. The TPC surrounds
the ITS with its central axis positioned along the beam direction with a length
of ~ 500 cm. The TPC covers the pseudorapidity region of || < 0.9 with full
azimuth. The active volume of the TPC is filled with a mixture of Ne + CO4 +
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Table 3.1: The acceptance, position, and purpose of each of the components of I'TS detec-
tor. Here, r is the radial distance from the IP.

Detector n 10) Position  Main Purpose
in polar in azimuth (in cm)
SPD Inl <2.0 0°<¢<360" r=39 tracking, vertex
Inf <14 0°<¢<360° r=76 tracking, vertex
SDD [ <0.9 0°<¢<360° r=150 tracking, PID
In] <09 0" <¢<360" r=239 tracking, PID
0°
0°

SSD  |n/ < 1.0 < ¢ <360 r=380 tracking, PID
In| < 1.0 < ¢ <360° r=43.0 tracking, PID

Ny (90:10:5) gas and divided by a 22 pm thick aluminized mylar foil, serving as
the central high voltage (HV) electrode. The endplates of the TPC are divided
into eighteen trapezoidal sectors. Each sector consists of MultiWire Proportional
Chambers (MWPC) with cathode pad readout. A voltage of 100 kV is applied
between the central HV electrode and the endplates.

The working principle of the TPC is as follows. When charged particles enter
into the gas volume of the TPC, they ionize the gas and produce electrons and ions.
Due to the presence of an electric field between the central HV electrode and the
endplates, the electrons drift towards the endplates and are then detected by the
MWPC, which provides the information of x and y coordinates, deposited energy
and drift time. The third coordinate, z, can be calculated from the drift time of the
electrons. Thus, the TPC can provide all three coordinates of the tracks of charged
particles, which means a complete reconstruction of the trajectory of the incident
charged particles. In addition, the TPC is operated inside a magnetic field of 0.5T
that helps to measure the momentum of charged particles using the curvature of
its trajectory. The TPC provides a good momentum resolution within the range
of 0.1 < pr < 100 GeV/c. Figure 3.4 (right) illustrates the PID performance of
the TPC in Pb-Pb collisions at /sxy = 2.76 TeV, showing an excellent separation
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between different species of charged particles [13].
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Figure 3.4: (Left) Layout of the Time Projection Chamber (TPC) detector [18]. (Right)
Measurements of specific energy loss (dE/dx) for different particles with the TPC [13].

3.3.3 Transition Radiation Detector (TRD)

The Transition Radiation Detector (TRD) [4,19,20] of ALICE is designed to identify
electrons with momentum above 1 GeV/c. Above this momentum, the TPC is
no longer sufficient to distinguish between electron and pion (see the right plot of
Fig. 3.4).

TRD stack TRD supermodule

TRD chamber

| TPC heat shield |
TOF
Figure 3.5: Layout of the Transition Radiation Detector (TRD) detector [4].

The TRD is placed in the central barrel (surrounding the TPC) at 290 < r < 368
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cm in radial distance from the nominal IP. It covers the pseudorapidity region of
In| < 0.84 over the full azimuth. The layout of the TRD detector is shown in Fig. 3.5.
It consists of 18 super modules, each containing 30 modules arranged in 6 layers in
the radial direction and 5 stacks along the z axis. The length of the TRD detector
is about 700 cm. Figure 3.6 (left) shows the cross-sectional view of a single TRD
module, which consists of three components: a 48 mm thick carbon fibre laminated
Rohacell /polypropylene fibre sandwich radiator, followed by a 30 mm thick drift
region, and a 7 mm thick MWPC with pad readout.

Figure 3.6 (left) also illustrates the working principle of the TRD detector. When
charged particles with high velocities i.e. v > 1000 (y = 1/y/1— 2 and § =
velocity) pass through materials with different dielectric constants; they radiate
photons. This phenomenon is known as Transition Radiation (TR) [21]. In the
momentum range analyzed with the TRD (1 < pr < 10 GeV/c), the TR is only
produced by electrons. Figure 3.6 (right) presents the average pulse height for pions
(triangles) and electrons with (circles) and without (squares) the production of TR as
a function of drift time. A clear separation between electrons and pio<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>