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1 Introduction

Recent results in conformal field theories open the possibility to answer questions about their
real time dynamics [1]. Thanks to the venerable Wick rotation, a d-dimensional Euclidean
CFT is equivalent to a (d−1) + 1 dimensional one with a time direction, a map which can
be used in either direction. Intuition about real-time processes, in particular lightcone and
high-energy limits, underlies many recent analytic results about CFTs [2–6]. On the other
hand, the currently most precise numerical results rely on Euclidean methods. In this paper
we attempt to use these numerical results to learn about the real-time dynamics of the
2+1-dimensional Ising CFT.

The most basic question we would like to answer is whether high-energy scattering
in this theory is transparent or opaque. A typical physical experiment we have in mind
consists of preparing a pair of lumps, regions of positive spins and some given transverse
size, to which we apply a large boost, see figure 1. Do the lumps pass through each other,
or disperse into oblivion?

This information is contained in the Regge limit of the four-point correlator of the spin
field σ:

〈σ4σ2σ3σ1〉 − 〈σ2σ1〉〈σ4σ3〉 ∝ G− 1 . (1.1)

CFT four-point functions depend on two real variables. The Regge limit is attained by
applying a large relative boost between (1, 2) and (3, 4), and the two variables represent
respectively the boost factor and impact parameter (see [7]). Note that correlations near the
lightcone are sensitive to the physics of scattering, even if operators 1 and 2 are spacelike-
separated, as depicted in the figure 1. In the Regge limit we expect exponential dependence
in the boost:

lim
boost η→∞

(G− 1) ∝ e(j∗−1)η (1.2)

The Regge intercept j∗ is interpreted as the spin of an effective Reggeized particle exchanged
between the lumps. It is known that j∗ ≤ 1 in any unitary CFT [6]: the correlator is
asymptotically bounded. Let us review some general expectations about this limit, whose
study has a long history; see [8] for a historical overview combining experiment and theory.

There is a sharp qualitative distinction between the cases of j∗ < 1 and j∗ = 1:
scattering is asymptotically transparent or nontrivial, respectively. Transparency, for the
2+1-dimensional Ising CFT, would mean that highly boosted lumps pass through each
other without interacting. This is to be contrasted with the strong interactions (which
is not a CFT, but high-energy forward scattering can be discussed very generally) where
protons appear increasingly opaque at high energies, as witnessed experimentally by the
increasing elastic and inelastic cross sections. For CFTs, since high-energy scattering can
be viewed as late-time evolution in Rindler space, the question of transparency versus
opacity is equivalent to the question of whether the theory thermalizes on Rindler space,
transparency meaning lack of thermalization, see section 9 of [9].

What is typically easier to calculate is the pre-asymptotic behavior, which can often
be characterized by a power-law of the form (1.2) with a transient exponent jtransient

∗
and a possibly small coefficient. If all known contributions satisfy jtransient

∗ < 1, then
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Figure 1. Scattering of lumps. We probe this process by correlating four local measurements.

correlators become more transparent with energy and one expects the pre-asymptotic and
true asymptotic behaviors to match: j∗ = jtransient

∗ < 1. On the other hand, if jtransient
∗ > 1,

the transient growth cannot be the true asymptotics (because the correlator is bounded),
and other contributions neglected in (1.2) must eventually take over. The natural physical
expectation then is that the growth saturates in an opaque (or at least nontrivial) scattering
with j∗ = 1.

The bound of chaos states that, in any unitary theory, jtransient
∗ ≤ 2 [10] (the precise

interpretation of (jtransient
∗ − 1) as a Lyapunov exponent is discussed in appendix A there).

A standard and plausible scenario is that in theories with jtransient
∗ > 1, opacity is first

reached at small impact parameters, leading to a black disc whose radius grows with energy.
Examples of theories with either type of behavior exist. To give a few examples, two-

dimensional minimal models have j∗ < 1 [11]. Holographic CFTs have jtransient
∗ ≈ 2, thus

nearly saturating the chaos bound. This reflects graviton exchange in the dual gravitational
picture [12, 13]. This feature is also observed in the Sachdev-Ye-Kitaev (SYK) model [14].
The two-dimensional version of SYK studied in [9] also exhibits transient growth, albeit
with a non-maximal exponent: 1 < jtransient

∗ < 2. For QCD, fits of hadron scattering data
suggest a Pomeron intercept jtransient

∗ ≈ 1.09 [15]. In the perturbative regime of a four-
dimensional perturbative gauge theory, the famous BFKL analysis shows, very generally,
that jtransient

∗ ≈ 1 +O(αs) > 1. This conclusion is very much tied to the gluon having spin
1, and in weakly coupled quantum field theories without vector bosons, we thus generally
expect j∗ < 1.

In general, it can be difficult to determine which category a given theory fits in. On the
one hand, for many purposes the 3D Ising CFT appears to be “close” to a perturbative scalar
theory, as witnessed by the successful approximation of the spectrum by the ε-expansion
around d = 4. This would suggest transparency. On the other hand, the theory lacks a
tuneable coupling constant, and it is unclear whether d = 3 is “close enough” to d = 4 for
this argument to be convincing. The main goal of this paper is to study this question using
numerical data on the excited states of the 3D Ising CFT. We will find numerical evidence
that the model is indeed in the category of vector-free perturbative theories: j∗ ≈ 0.8 < 1.
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More generally, we study the leading Regge trajectory of the model, j∗(∆), which reduces
to the intercept at a special point.

Let us briefly review the 3D Ising CFT. It is characterized by having Z2 symmetry and
only two relevant operators, called σ and ε, which are respectively odd and even under Z2.
(From the bootstrap perspective, this defines the theory.) They are scalars and their scaling
dimensions and OPE coefficients have been determined using Monte Carlo simulations and
the numerical bootstrap. The best numbers available, including the errors, are

∆σ = 0.5181489(10) , ∆ε = 1.412625(10) ,
fσσε = 1.0518537(41) , fεεε = 1.532435(19) .

(1.3)

The spectrum also contains multi-twist families made out of these operators. The leading
trajectory can be viewed as composites [σσ]0,J (defined below), which can be identified
unambiguously for J ≥ 2. We will also study the leading odd trajectory [σε]0,J . We will
benefit from the high-accuracy data and analysis for these families and other operators
reported in [5]. Note that the stress tensor is a member of the leading trajectory: T = [σσ]0,2.

The intercept is but one point on a continuous curve, j∗ ≡ j∗(∆ = 3
2). Our main tool

to study the full curve will be the Lorentzian inversion formula, which reconstructs the
dimensions and OPE coefficients in one channel, as a continuous function of spin, in terms
of operators exchanged in cross-channels. A well-understood large-spin expansion has been
known to work well even down to J = 2 [2–5]. We will approach the intercept in two
steps: first we will establish numerical convergence of the operator sum by reproducing the
known stress tensor dimension, ∆∗(2) = 3, to high accuracy. From there we will gradually
reduce ∆.

In addition to the leading trajectory and intercept, we will discuss the following simple
question: do the spin-0 operators σ and ε lie on Regge trajectories? We will find numerical
evidence that σ lies on the shadow of the leading odd trajectory. Within the ε-expansion, it
is known that ε resides on an analytically continued branch of the leading trajectory [16];
we will find that the 3D numerical data is compatible with this hypothesis but by itself
does not significantly add to the evidence.

This paper is organized as follows. In section 2 we first review the Lorentzian inversion
formula and how it can be used to extract low twist CFT data in a general theory. Then
we focus on three dimensions and discuss the accurate numerical evaluation of the formula
using the method of dimensional reduction [17, 18], comparing the result with large-spin
approximations. In section 3 and 4 we apply this method to the 3d Ising model. We
specifically work on the 〈σσσσ〉 and the 〈σεεσ〉 correlators to extract data for spin-two
operators in the [σσ]0 and [σε]0 families, the intercept, and we describe our attempts to
reach spin 0. In section 5 we discuss various aspects relevant to the interpretation of
the results. In subsection 5.1 we comment on general distinctions between theories with
intercept above and below 1. In subsection 5.2 we analyze the leading trajectories of the
critical O(N) model at large N in both bilinears [φiφj ]0 and [φiS]0, which we will find to
be analogous to the [σσ]0 and [σε]0 trajectories in 3D Ising. Finally, in subsection 5.3 we
propose a formula which relates the intercept being less than unity to regularity of the
heavy spectrum. Section 6 contains our concluding remarks. Appendix A contains explicit
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inversion integrals utilized in the paper, appendix B records compact approximations to
large-spin operators, and appendix C provides a short proof that the leading trajectory
is convex.

Note. While this work was being completed, closely related methods have been applied
to the critical O(2) model [19].

2 Review of Lorentzian inversion formula and other ingredients

We consider a correlation function of 4 scalar primary operators

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 = 1

(x2
12)

∆1+∆2
2 (x2

34)
∆3+∆4

2

(
x2

14
x2

24

)a(
x2

14
x2

13

)b
G(z, z̄), (2.1)

where xij = xi−xj , a = ∆2−∆1
2 , b = ∆3−∆4

2 and the conformal cross-ratios z, z̄ are defined as

zz̄ = x2
12x

2
34

x2
13x

2
24
, (1− z)(1− z̄) = x2

23x
2
14

x2
13x

2
24
. (2.2)

We can use the OPE for operators 1 and 2 together and for operators 3 and 4 to decompose
the correlator in s-channel conformal blocks as follows

G(z, z̄) =
∑
∆,J

f12Of43OG
(a,b)
∆,J (z, z̄) , (2.3)

where fijO is the OPE coefficient and G(a,b)
∆,J (z, z̄) is the s-channel conformal block, which

resums the contribution of the primary with dimension ∆ and spin J and all of its descen-
dants. More explicitly, conformal blocks are special functions that are the eigenfunctions of
the quadratic and quartic Casimir equation. They admit closed form in even spacetime
dimension, for instance the conformal blocks in d = 2 dimension can be written as follows:

G
(a,b)
∆,J (z, z̄) =

k
(a,b)
∆−J(z)k(a,b)

∆+J(z̄) + k
(a,b)
∆+J(z)k(a,b)

∆−J(z̄)
1 + δJ,0

, (d = 2) , (2.4)

where k is the hypergeometric function

k
(a,b)
β (z) = zβ/2 2F1(β/2 + a, β/2 + b, β, z). (2.5)

Here β = ∆ + J is the conformal spin. We also introduce τ = ∆− J which we refer to as
twist. We will use ∆, J, β, τ in different contexts to specify the operators in the spectrum.

Conformal blocks do not admit simple closed-form expressions in odd spacetime dimen-
sions and one must resort to various approximations. The main approximation we will use
is to write 3d blocks as sums over 2d blocks [18], as reviewed in appendices A.1.

In general, we normalize the blocks so that: limz�z̄�1G∆,J (z, z̄) = z
τ
2 z̄

β
2 . The leading

term as z, z̄ → 0 is then

lim
z,z̄→0

G
(a,b)
∆,J (z, z̄) = (zz̄)

∆
2 CJ

(
z + z̄

2
√
zz̄

)
,

where CJ(η) ≡
Γ
(
d−2

2
)
Γ(J + d− 2)

Γ(d− 2)Γ
(
J + d−2

2
) 2F1

(
− J, j + d− 2, d−1

2 , 1−η
2
)
.

(2.6)
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The function CJ (η) is a multiple of a Gegenbauer function, CJ (η) ∝ C(d/2−1)
J (η), satisfying

limη→∞CJ(η) = (2η)J .

2.1 Lorentzian inversion formula

A good starting point for analytics is an alternate form of the OPE in which one integrates
over operator dimensions along the principal series, but where spin is still discrete and
needs to be summed over:

G(z, z̄) =
∞∑
J=0

∫ d/2+i∞

d/2−i∞

d∆
2πic(∆, J)F (a,b)

∆,J (z, z̄) + (non-normalizable) , (2.7)

where non-normalizable modes describe operators with ∆ < d
2 (which includes, notably,

the identity). The CFT data is then encoded in the poles of the analytic function c(∆, J).
These are located at the position of the physical operators in the conformal block expansion,
and the residues give the OPE coefficients in the following way

f12Of43O = − Res
∆′=∆

c(∆′, J) . (2.8)

The harmonic function F∆,J is a single-valued, shadow-symmetric combination of the block
and its shadow [20]:

F
(a,b)
∆,J (z, z̄) = 1

2

G(a,b)
∆,J (z, z̄) +

K
(a,b)
d−∆,J

K
(a,b)
∆,J

G
(a,b)
d−∆,J(z, z̄)

 , (2.9)

where

K
(a,b)
∆,J = Γ(∆− 1)

Γ
(
∆− d

2

)κ(a,b)
∆+J , κ

(a,b)
β =

Γ
(
β
2 − a

)
Γ
(
β
2 + a

)
Γ
(
β
2 − b

)
Γ
(
β
2 + b

)
2π2Γ(β − 1)Γ(β) .

(2.10)
The functions F∆,J satisfy an orthogonality relation which allows to read off the OPE

data from the correlator (Euclidean inversion formula). The Lorentzian inversion formula
reconstructs the same data using less information, the double discontinuity [6, 21, 22]:

ct(∆, J) =
κ

(a,b)
∆+J
4

∫ 1

0

∫ 1

0
dzdz̄ µ(z, z̄)G(−a,−b)

J+d−1,∆+1−d(z, z̄) dDisc [G(z, z̄)] , (2.11)

which needs to be summed with the contribution of the u-channel to give the full coefficients:

c(∆, J) = ct(∆, J) + (−1)Jcu(∆, J). (2.12)

cu(∆, J) is obtained from ct(∆, J) by exchanging the operators 1 and 2. The measure is1

µ(z, z̄) = 1
(zz̄)2

∣∣∣∣z − z̄zz̄

∣∣∣∣d−2
. (2.13)

1This form agrees with ref. [6] using the identity: G(−a,−b)(z, z̄)J,∆ = ((1− z)(1− z̄))a+bG(a,b)(z, z̄)J,∆.
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The double discontinuity of the correlator is a certain linear combination of analytic
continuation around z̄ = 1 which computes the expectation value of a double commutator [6]:

dDisc [G(z, z̄)] = cos[π(a+ b)]G(z, z̄)− 1
2e

iπ(a+b)G�(zz̄)− 1
2e
−iπ(a+b)G	(zz̄) . (2.14)

This combination is positive definite and is analogous to the absorptive (imaginary) part of
a scattering amplitude. The coefficient function which comes out of Lorentzian inversion is
automatically shadow-symmetric:

c(∆, J)
K

(a,b)
∆,J

= c(d−∆, J)
K

(a,b)
d−∆,J

. (2.15)

Along the principal series, Re(∆) = d
2 , convergence of the Lorentzian inversion formula

is controlled by the Regge limit and requires J > j∗, where j∗ is the intercept defined in
eq. (1.2). The Lorentzian inversion formula then manifests the analyticity of the spectrum
in spin, giving an organizing principle for operators of spin J > j∗. In a unitary CFT this
always includes all operators with J ≥ 2.

In this paper we will focus on the leading trajectory ∆∗(J). For integer J ≥ 2, eq. (2.8)
shows that this is the pole nearest to the principal series, and positivity of the integrand (for
real ∆) implies convergence in a strip: d−∆∗(J) < Re(∆) < ∆∗(J). For non-integer spin,
the leading trajectory answers a simple question: when does the integral (2.11) converge?

The resulting smooth curve can also be parametrized as j∗(∆), where convergence is
satisfied for J > j∗(∆). With this definition, it is easy to show using positivity of the dDisc
that j∗(∆) is a real and convex function, see [23], extending the integer-spin convexity proved
in refs. [2, 24] using Nachtmann’s theorem (we give an alternative proof in appendix C).
Since the leading trajectory is also manifestly shadow-symmetrical, j∗(∆) = j∗(d − ∆),
it follows that its minimum, the intercept must be at the symmetrical point: j∗ ≡ j∗(d2).
This agrees with the physical definition of the intercept given earlier in eq. (1.2) since
convergence of the Lorentzian inversion formula at that point is controlled by the Regge
limit of correlator.

Two practical points worth mentioning are as follows: first, at the cost of a factor of
two, we can restrict the integration range in the Lorentzian inversion formula to z < z̄.
Second, when we are interested in extracting s-channel data from poles at ∆ > d/2, we can
decompose the s-channel blocks as follows and restrict to the first term, gpure (defined to
have a single tower of terms in the limit 0� z � z̄ � 1):

G
(a,b)
J+d−1,∆+1−d(z, z̄) = g

(a,b)pure
J+d−1,∆+1−d(z, z̄) +

Γ(∆− 1)Γ(−∆ + d
2)

Γ(∆− d
2)Γ(−(∆ + 1− d))

g
(a,b)pure
J+d−1,−∆+1(z, z̄).

(2.16)
This is because the second term does not contribute to the poles ∆ > d/2 and simply
ensures shadow symmetry. However, when one is interested in extracting data in the vicinity
of the intercept ∆ ∼ d/2 (as we will do in section 3.2) one cannot use this decomposition.

2.2 Extracting low-twist OPE data

For generic β, we will only be interested in the poles and residues of c(z, β), which will
come from the small-z limit of the integrand. In particular, for the pole corresponding to

– 6 –
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the operator of smallest twist, it suffices to take z → 0 in the inversion formula (2.11):

ct(∆, J) =
∫ 1

0

dz

2z z
− τ2Ct(z, β) + (collinear descendents) , (2.17)

where we are defining a generating function Ct(z, β):

Ct(z, β) =
∫ 1

z

dz̄

z̄2 κβk
(−a,−b)
β (z̄) dDisc [G(z, z̄)] . (2.18)

The generating function encodes the spectrum through power laws. More precisely, if we
expand it as

C(z, β) =
∑
m

Cm(β)z
τm
2 , (2.19)

it is easy to see that each power will produce in eq. (2.17) a pole Cm
τm−τ , interpreted as an

operator of twist τm following eq. (2.8). Note that eq. (2.17) does not subtract collinear
descendants, since neglected corrections by integer powers of z affect the residues at shifted
valued τm + 2, τm + 4, . . .. In this paper we will restrict ourselves to the lowest twist family
for which m = 0 and collinear descendants play no role (for more information on how to
treat higher twist families see [25]).

The exponents τm give the twist of operators in the spectrum. The coefficient Cm(β)
are related to OPE coefficients but the relation is slightly subtle because eq. (2.8) requires
residues computed at constant spin J , whereas Cm(β) gives residues at constant β. The
exact relation thus includes a Jacobian [5, 6, 26]:

f12Of34O =
(

1− dτm(β)
dβ

)−1
Cm(β)

∣∣∣∣
β−τ=2J

. (2.20)

Our strategy to gain knowledge from the inversion formula is to insert the t-channel
decomposition of the correlator (obtained from the s-channel by swapping operators 1 and
3, equivalent to fusing 1 with 4 and 2 with 3) into the generating function in eq. (2.18):

Ct(z, β) =
∑

∆′,J ′
f14O′f23O′c

∆1···∆4
∆′,J ′ (z, β) (2.21)

where

c∆1···∆4
∆′,J ′ (z, β) ≡

∫ 1

z

dz̄

z̄2 κ
(a,b)
β k

(−a,−b)
β (z̄)dDisc

 (zz̄)
∆1+∆2

2

[(1−z)(1−z̄)]
∆2+∆3

2

G
(a′,b′)
∆′,J ′ (1−z, 1−z̄)


(2.22)

with a′ = ∆2−∆3
2 , b′ = ∆1−∆4

2 . To obtain the u-channel generating function Cu we
interchange ∆1 with ∆2 wherever they appear in eq. (2.21).

We only know closed-form expressions for the integral (2.21) in special cases. An
important one is the t-channel identity (which can only be physically realized when ∆2 = ∆3
and ∆1 = ∆4):

C(z, β)
∣∣∣
t−channel identity

= z
∆1+∆2

2

(1− z)
∆2+∆3

2

I(∆1,∆2)(β), (2.23)
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where

I(∆1,∆2)(β) =
∫ 1

0

dz̄

z̄2 κβk
(−a,−a)
β (z̄)dDisc

 z̄
∆1+∆2

2

(1− z̄)∆2



=
Γ
(
β+∆1−∆2

2

)
Γ
(
β+∆2−∆1

2

)
Γ (∆1) Γ (∆2) Γ(β − 1)

Γ
(
β+∆1+∆2

2 − 1
)

Γ
(
β−∆1−∆2

2 + 1
) .

(2.24)

Another important analytic result pertains to the case where we insert a two-dimensional
block in the t-channel, where the integral reduces to an SL2(R) 6j symbol [27–29]. Although
we are interested in d = 3, we will use this result by writing the 3d blocks as sums over 2d
blocks. A brief review on this method of dimensional reduction is given in appendix A.1,
here we quote the final result. A conformal block in d dimension can be expanded as a sum
over (d− 1)-dimensional blocks as shown in eq. (A.1):

G
(a,b)
∆,J (z, z̄; d) =

∑
A(a,b)
m,n (∆, J)G(a,b)

∆+m,J−n(z, z̄; d−1) 0 ≤ n ≤ J,m = 0, 1, 2 . . . , (2.25)

where the coefficients A are determined recursively using the Casimir differential equation.
Inserting this expansion into the inversion integral (2.21) for each individual block, we obtain
three-dimensional inversion integrals as a sum over two-dimensional inversion integrals given
analytically in eq. (A.8)

c∆1···∆4
∆′,J ′ (z, β; d=3) =

∑
m=0

J ′∑
n=0
A(a′,b′)
m,n (∆′, J ′)c∆1···∆4

∆′+m,J ′−n(z, β; d=2). (2.26)

In practice, the error in this method can be reduced to zero by including as many terms as
needed, since exponential convergence rapidly sets in. In our analysis, for most values of
J ′ and ∆′, going to m = 15 is more than enough. The analytic formulas for 2d integrals
requires the z̄ integral in eq. (2.21) to have lower bound 0 instead of z; the difference is
negligible compared to other sources of error as long as we are away from the intercept
(however for completeness in figure 3.2 the twist of stress-tensor resulting from the inversion
formula with z̄ > z is given as well). In section 3.2 we will use a different approximation
when we approach the intercept.

2.3 OPE data from truncated spectrum

In theory, the exponents in eq. (2.19) are obtained by analyzing the z → 0 limit of the
t-channel sum (2.21). In particular, the leading twist and OPE coefficient is equal to the
following limit:

τ(β) = limz→0
2z∂zC(z, β)
C(z, β) , C(β) = limz→0

C(z, β)

z
z∂zC(z,β)
C(z,β)

. (2.27)

In practice, however, we only have access to a finite number of terms in the t-channel
sum, which prevents us from taking z arbitrarily small: the limit lies at the boundary of
convergence of the t-channel OPE. In some previous analyses, a convenient value of z was
simply fixed [5, 17]; one could also consider fitting the z-dependence to a power law.
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Our approach in this paper will be to plot the quantity τ = 2z∂zC(z,β)
C(z,β) as a function

of z and look for a plateau. If z is chosen too large, we expect errors due to neglected
higher-twist s-channel operators, while if z is too small, we expect truncation errors from the
t-channel sum. By restricting our attention to a plateau region we hope to simultaneously
minimize both sources of error (in addition to getting rough error estimates).

2.4 Relation to large spin expansion and its accuracy

The effectiveness of the analytical bootstrap in extracting large spin data is well established [2–
4]. These results are typically obtained by considering the double lightcone limit (z, z̄)→
(0, 1), where one argues that singularities in the t-channel must be reproduced by large-spin-
tails in the s-channel. Let us briefly review how these results relate to the formulas just
reviewed, highlighting the ways in which our analysis will differ.

The basic physical picture is that large spin (or large β) pushes the integral (2.21) to the
z̄ → 1 corner, due to the shape of the k-function (defined in eq. (2.5)). At sufficiently large
spin, the t-channel identity given in eq. (2.23) thus dominates. Its specific z dependence
then implies the existence of so-called double twist families [φ1φ2]n,J , where J denotes the
spin of operator. Their twist approximates the naive dimensional analysis [2, 3, 30]:

τ[φ1φ2]n,J = ∆φ1 + ∆φ2 + 2n+ γ, (2.28)

where γ, the anomalous dimension of the operator, vanishes in the large-spin limit. From
the scaling relation

√
1− z̄ ∝ 1

β , one can easily see that the leading correction, due to
exchange of t-channel operator of lowest nontrivial twist τmin, decays like

γ(n, `) ' γn
Jτmin

. (2.29)

Such corrections are found by analyzing the collinear z̄ → 1 limit of t-channel blocks.

lim
z̄→1

G
(a′,b′)
∆′,J ′ (1− z̄, 1− z)→ (1− z̄)

∆′−J′
2 k

(a′,b′)
∆′+J ′(1− z) +O(1− z̄)2. (2.30)

One can readily see that using this approximation, the inversion integral over z̄ is greatly
simplified and can be performed analytically; the result is particularly simple if one expands
instead in powers of 1−z̄

z̄ , see eq. (2.24). For the leading trajectory in the Ising CFT,
taking the coefficient of log z in eq. (2.30) then gives a simple pocket-book formula for
large-spin corrections:

τ[σσ]0,J ≈ 2∆σ −
∑
O=ε,T

2λ2
σσOΓ(∆σ)2

Γ
(
∆σ − τO

2
)2 Γ(∆O + JO)

Γ
(∆O+JO

2
)2 ( 2

β − 1

)τO
. (2.31)

We have chosen β 7→ β − 1 as our expansion parameter since it is manifest from the
exact formulas that the series proceeds in even powers of β − 1 (the so-called reciprocity
relation [26, 31]). Numerically, this formula works surprisingly well down to spin J = 2,
although the errors are somewhat difficult to estimate a priori. Analogous formulas for
OPE coefficients and for [σσ]1 and [εε]0 trajectories are recorded in appendix B.

One could try to estimate errors by studying further 1/J corrections, but let us report
here on a more straightforward exercise which is to simply compare the approximation
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Figure 2. Integrand of the inversion formula (2.21) with z = 10−2, comparing the exact cross-
channel block for ε-exchange (using the 3d to 2d series) with its collinear series in (1 − z̄). For
β = 5, the collinear limit in eq. (2.30) approximates the dominant region well but underestimates
the integrand at small z̄. At larger values of β this region becomes negligible. Note that we rescaled
the integrand by 2ββ

√
1− z̄ to make features more visible.

in eq. (2.30) with the actual integrand entering the Lorentzian inversion formula. We do
this here for a single t-channel block (ε), reserving discussion of the sum over blocks to the
next section. The z̄-dependence of the integrand of eq. (2.21) comes from two factors: the
s-channel block kβ(z̄) and the t-channel block. Their product is shown for ε-exchange in
figure 2 for β = 5 and β = 10. We show three approximations for the t-channel blocks:
the 3d to 2d expansion (called “exact” since terms beyond the third one are invisible on
the plot), and the collinear series in powers of (1− z̄) whose first two terms are given for
reference in eq. (A.16).

One can see that at the larger value β = 10 (corresponding roughly to J = 4) even
the leading collinear term matches the integrand very well. At the integrated level, it
underestimates the ε contribution by only 3%. For β = 5 (corresponding to the stress
tensor) the error is up to 10%, coming mostly from the region of z̄ not close to 1. Because
this multiplies a small coefficient, this corresponds to a 4× 10−3 error on the twist of the
stress tensor. Replacing the power of (1− z̄) by 1−z̄

z̄ produces similar numbers. Including
up to the third term in the (1− z̄) series reduces the errors to 0.3% and 2%, respectively.
Since our goal will be to do much better than this, we need to employ formulas which are
valid at all z̄. We achieve this in the next section by using the 3d to 2d expansion of blocks,
which converges much faster.

3 Leading Z2-even twist family

In this section we study the leading Regge trajectory in the 3D Ising model (i.e., [σσ]0
family) by applying the formalism developed in section 2, focusing on low spins.

We begin with the stress tensor, which is the spin 2 operator of [σσ]0 family. This will
serve as a benchmark case: while its twist is known from conservation laws, reproducing it
as an infinite sum over cross-channel operators is nontrivial. We show that in order to get
the best control over systematic errors, we need to work at significantly lower values of z
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than previously considered, which is feasible by including subleading families ([σσ]1 and
[εε]0) in the cross-channel and resumming their large-spin tails. We obtain both the twist
and OPE coefficient of the stress-tensor with error at the level 10−4 which is compatible
with the error in the numerical data used in inversion formula (see the numerical error for
spin 6 operator of [εε]0 family in table 4 of [5]).

In subsection 3.2 we apply a similar analysis to the intercept, where convergence in the
s-channel twist will be found to be slower. In subsection 3.3 we briefly discuss attempts
to reach the operator ε itself through an analytic continuation of the trajectory near the
intercept.

3.1 Recovering the stress-tensor

Here we calculate the twist and the OPE coefficient of the stress-energy tensor in the [σσ]0
family using the inversion formula. Since it is a conserved operator it saturates the generic
spin unitarity bound:

∆ = J + d− 2. (3.1)

So when we are in 3 dimensions, the stress tensor has scaling dimension 3, twist τ = 1 and
conformal spin β = 5. This operator belong to [σσ]0 family with asymptotic twist at large
spin equal to 2∆σ ≈ 1.036298. We will thus be looking for a small negative anomalous
dimension: γT ≈ −0.036298.

We compute the generating function in eq. (2.21), analyzing the effect of various
truncations of the operators included in the t-channel. The truncations cause errors in the
twist and OPE coefficient of the stress tensor. The conformal blocks are computed using
the 3d to 2d series mentioned in eq. (2.25). This method was also used in [17]. However the
main difference between our approach and theirs is that we do not expand the argument
of the double discontinuity in eq. (2.21) at small z. This is important and allows us to
sum over infinite families. This is because the z → 0 limit and OPE sums do not generally
commute (beyond the leading trajectory) and retaining the full z dependence is necessary
to accurately cut off the sums at J ′ ∼ 1/

√
z (see [5, 6]). The 3d to 2d series converges

rapidly and we always include sufficiently many terms that we can neglect this source of
error, effectively treating the blocks as “exact”. We will comment on the small-z expansion
for the exchange of a single operator and its region of validity later in this section.

First, let us show the effect of various t-channel truncations to twist τ = 2 z∂zC(z,β)
C(z,β) ,

evaluated at β = 5 and for various values of z. This will illustrate the relative importance
of subleading families depending on the value of z. The data used for exchanged operators
is from tables in the appendix of [5].2 We see in figure 3 that including the subleading twist
families [σσ]1 and [εε]0 significantly improves the result. In addition, we also observe once
we multiply C(z, β) with (1 − z)∆σ , the plateau extends to larger value of z for each of
truncation in the cross channel. This is illustrated for ε exchange in figure 3. The reason
for this is that the region of large z is contaminated both by collinear descendants of the
leading trajectory, and by higher-twist trajectories. Since ∆σ is close to the unitarity bound,

2We thank Ning Su for pointing out that the treatment of fake operators in [5] might potentially be
improved, which could change our results slightly.
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Figure 3. The effect of different t-channel truncations in eq. (2.21) on the extracted stress-tensor
anomalous dimension γT = τT − 2∆φ. Including more operators enables us to reach lower values of
z where we find a stable z-independent plateau.

the latter are much smaller, and the former are largely canceled by multiplying by the
mean-field factor (1− z)∆σ . One salient point is that for sufficiently small z all the curves
eventually depart from the correct stress-tensor twist. This is because at smaller z the OPE
converges more slowly and operators with both higher spin and twist need to be included. It
is also apparent that summing up to a finite spin cutoff is not sufficient to create a plateau,
since operators with quite large spin are also important (see figure 4). By resumming the
higher spin tails in all the families in two different independent way, we bypass this problem
and produce two curves which as can be seen are the most successful curves in reproducing
the anomalous dimension of stress-tensor, both in terms of accuracy and stability, given the
publicly available numerical data. We will discuss how we performed these resummations
and obtained the stable curves in the paragraphs below.

Figure 4 shows that high spin tails are strongly needed for [εε]0 family, which has not
yet converged at spin 40 at the shown values of z. In addition, it is also required for the
[σσ]1 family even though this family is converging more quickly. This is in contrast with
[σσ]0 family for which the sum is fully convergent for the whole region we are considering,
so resumming its high spin operators has a negligible effect as can be seen in figure 4.

A strong tail for the [εε]0 family was to be expected physically since, in large-spin
perturbation theory, single-ε exchange produces a log(z) term which accounts for a large
fraction of the stress tensor anomalous dimension (see eq. (2.31)). One may thus expect
the box-like diagram in figure 4(d) to contain a 1

2 log2 z term which exponentiates single-ε
exchange. Since such a log2 z cannot be generated by individual t-channel operators and
must necessarily come from a large-spin tail [5, 32].

Accurate numerical data for large spin tails at spins J > 40 is unavailable. In principle
one could obtain good analytic approximations for this region using large spin perturbation
theory, where the couplings between σσ and [εε]0 follow from mixed correlators, as was also
studied in [5]. We derive this analytic approximation with the inversion integrals having
lower bound z (this is done by subtracting 0 to z integral from the 2d integrals in eq. (A.8).
See appendix. A.3 for more details). However, in the spirit of the data-driven approach
followed in this paper, we adopt a simple modelling and fitting strategy as well. We will
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(a) [σσ]0 family.
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(b) [σσ]1 family.
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(c) [εε]0 family. (d) large-spin diagram for [εε]0 exchange.

Figure 4. Partial sum contributions to C(z, β = 5) for the first three leading families as a function
of the maximal spin. The [σσ]0 family converges for any z, but other families, especially [εε]0, are
very sensitive to large spins. Figure (d) shows how the exchange of [εε]0 can contribute as log2 z.

compare the two methods for estimation of the error in the tail. We do not directly fit
the OPE data of large-spin operators (twist and OPE coefficients) since all we will need
is their contribution to the z̄-integrated double-discontinuity. The important advantage
of this method is that the difficulties related to performing the inversion formula for large
spin blocks, such as the expensive 3d to 2d expansion is avoided. The cross channel block
has a simple z-dependence, as can be seen from the large spin and small z expansion (see
appendix A in [3]):

Gτ ′,`′(1− z̄, 1− z)→ kβ(1− z)vτ ′/2F (τ ′, z̄) +O(1/
√
`, 1/
√
z), (3.2)

where kβ(1 − z) = (1 − z)β/22F1(β/2 + a, β/2/+ b, β, 1 − z) was defined in eq. (2.5) and
the function F won’t be important to us. The prime notation is associated with the
cross-channel operators. The next thing we want to estimate is the large spin expansion
of the OPE coefficients. At large spin the OPE coefficient of operators converges to their
values in mean field theory [3], f2

σσ[σσ]n,` ∼ [1 + (−1)`]P∆σ
2∆σ+2n,` where

P∆σ
2∆σ+2n,` ≡

(∆σ − d/2 + 1)2
n(∆σ)2

n+`
n!`!(`+d/2)n(2∆σ+n−d+1)n(2∆σ+2n+`−1)`(2∆σ+n+`−d/2)n

(3.3)

– 13 –



J
H
E
P
0
2
(
2
0
2
3
)
1
9
0

������

50 100 150 200 250 300

0.000

0.002

0.004

0.006

0.008

0.010

0.012

Figure 5. Partial sums contributing to C(z=10−4.5, β=5), extrapolated to very large spins.

and where (a)b denotes the Pochhammer symbol which is defined as (a)b ≡ Γ(a+b)
Γ(a) . This

allows us to estimate the inversion formula in (2.21) at large spin as follows:

Cβ(z, β′) ∼ C ′P∆σ
2∆σ+2n,`β

′−τ ′kβ′(1− z) z
∆1+∆2

2

(1− z)
∆2+∆3

2

(3.4)

This fitting can be done for all of the three families included in the cross-channel. However
as just explained it only has an impact for subleading families. To account for the mixing
of the [σσ]1 and [εε]0 family, we will fit their sum for each spin to the function given in
the r.h.s. of eq. (3.4), for which we will have n = 1 and β = 2J + τ[εε]0 . The fit is done
with data having spin 18 and higher for both families. The parameter of the fit and their
covariance matrix for each family is given as follows:

C ′[σσ]1+[εε]0 = 0.009575 , τ ′[σσ]1+[εε]0 = 0.9226 , COV =
(

0.00002378 0.0006099
0.0006099 0.01568

)
.

(3.5)
Note that τ ′ ∼ 2∆σ which is the expected value. Using this fit we can estimate the
contribution of the tail of the aforementioned families to C(z, β) and make the sum over
families a convergent sum as can be seen in the figure 5. By adding Gaussian noise to
the fitted values C ′ and τ ′ with the quoted covariance, we find branching curves results
in an error of order 10−4 in the final answer for the stress-tensor twist (the size of the
branching is compatible with the difference between the analytic tail and the fit manifested
in a magnified version figure 5). We note that the fit uncertainties are highly correlated,
and varying C ′ and τ ′ independently would generate very different curves! We see that once
the contribution of higher spin is taken into account in the sum over families, the flatness
of the curve and thus independency of γT from z is restored (see figure 6 and figure 3).

The order ∼ 10−4 error in the tail at small z in figure 6 is comparable with the error on
the numerical data of the [εε]0 family (see for instance the data for spin 6 operator table 4
in [5]). So one cannot hope to further reduce the discrepancy just by improving the tail. In
addition, errors on the numerical data (as opposed to the error caused by truncation of
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Figure 6. Magnified version of figure 3, showing the importance of resumming large-spin tails to
extract a z-independent stress-tensor twist. The difference between the two tails which is of order
10−4 and is a result of the difference between blue and orange curves in figure 5, gives an estimate
of the error for the tail contribution).

the spectrum) do not have a definite sign, making it impossible to give an upper bound on
the result.

The final issue to be addressed is the range of z accessible to us. As predicted we cannot
get arbitrarily close to zero as the error of the tails would eventually become significant
(see figure 6). However, we are allowed to take any z such that in the range depicted in
figure 6. We choose the decade in which the curve has the smallest error (in terms of the
standard deviation with respect to the average of the function in the decade) which is
log10 z ∈ (−3.8,−2.8). This would in turn determine the stability of the result.

τ = 1.00013± 5× 10−5
(
error from deviation from

flatness and differences between two tails
) (3.6)

It is crucial to address the question of removing the residual gap between this result
and the actual twist of the stress-tensor. We argue that this can be done by including
higher twist family in the OPE. To understand whether this is the right resolution, the
first thing to check would be whether the high twist operators push the curve down or up.
We do that by looking at 2limz→0

z∂zCτ ′,J′ (z,β)
Cτ ′,J′ (z,β) − 2∆σ for individual operators in figure 7

and checking that the contribution of each is well below the average derived in eq. (3.6).
Now that we have a reliable way of computing the twist for the β as small as β of the

stress-tensor, we can calculate it for other points in the vicinity of stress-tensor by repeating
this procedure. We can then use these points and get the function τ(β) by interpolation.
The function we find is demonstrated in figure 8.

Now we know by eq. (2.20) that the squared of the OPE coefficient is related to C(β = 5)
with a Jacobian factor which we can then calculate with the function τ(β) derived above.
Thus we arrive at the value of the OPE coefficient.

Again confining ourselves to the decade log10 z ∈ [−3.8,−2.8], we find

fσσT = 0.326077± 12× 10−6 (3.7)

– 15 –



J
H
E
P
0
2
(
2
0
2
3
)
1
9
0

������

200 400 600 800 1000

-10

-8

-6

-4

-2

(a) Evaluated at z = 10−4,

������

50 100 150 200 250 300

-6

-5

-4

-3

-2

-1

(b) Evaluated at z = 10−3.

Figure 7. Individual high twist operators 2 z∂zCτ′,j′ (z,β)
Cτ′,j′ (z,β) − 2∆σ push the curve of γβ=5 down.
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Figure 8. τ(β) in the vicinity of β = 5. The intersection between τ(β) and the line J = 2 gives the
location of the stress-tensor.

∆T fσσT
Inversion Formula (with fit of the tail) 1.00013(5) 0.326077(12)
Numerical Result 1 0.32613776(45)

Table 1. Twist and OPE of the stress-tensor, the spin 2 operator in [σσ]0, derived from the inversion
integral (all the 3 families and the high spin tail from the fit is included) compared with the value
derived from numerical bootstrap.

We summarize the result for the stress-tensor in the table 1. Remarkably we are able to
obtain the twist and OPE coefficient of the stress-tensor with accuracy 10−4!

Comparison between z → 0 and finite z. As mentioned in previous sections, when
we are interested in the exchange of the first few leading twist blocks in the cross-channel,
we have the luxury of taking z → 0 limit in eq. (2.21) since there is no infinite sum involved.
In this limit the inversion formula simplifies significantly. The closed form of the inversion
formula is known and is calculated in [28] which is a 7F6 function. However, one needs
to take into account the errors introduced both by truncation in the cross-channel OPE
expansion of the correlator in dDisc as well as error introduced by higher order terms in
the z expansion. As an illustration, in figure 9, we compare the anomalous dimension of
the stress-tensor derived by using the z → 0 expansion of eq. (2.21) when only ε and T are
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Figure 9. Comparison between the twist derived by evaluating exactly individual blocks (using the
2d expansion) and their small-z limit. The agreement extends to larger values of z when the former
is multiplied by (1− z)∆σ .

exchanged in the cross-channel with the one derived with by keeping the full z dependence
(plotted in figure 3 in cyan color) as well as the subtracted full z dependant one (plotted in
figure 3 in gray color). We emphasize again that such comparisons only make sense when
there is no infinite sum involved.

From figure 9 one can observe that the z → 0 limit matches with the subtracted full z
dependant one up to z ∼ 10−2. However the twist obtained by the unsubtracted integral
starts to differ at z = 10−3.5. We can then conclude that z → 0 expansion can be safely
used as long as we confine ourselves to z < 10−3 for the exchange of ε and T.

Comparison between z̄ → 1 and finite z̄. When β is large enough, most of the
contribution to the integral in C(z, β) comes from z̄ → 1. As was shown before, in this
limit, the blocks appearing in the cross channel expansion simplify a lot. In this section we
compare the third order result in 1− z̄ expansion with the result non-perturbative in 1− z̄.
In section 2.4 we have already seen the error of the collinear expansion for the stress-tensor
is not negligible. However, it is worthwhile to compare the final results derived with this
expansion with the non-perturbative one. In figures 10 we compare the final answer for the
twist.

One can see from this plot that the relative error on the anomalous dimension is
approximately 6% which is compatible with the analysis in subsection 2.4.

3.2 Intercept

To understand the extent of validity of the inversion formula for low spin it is crucial to
study the [σσ]0 regge trajectory at spin below two. Similar to the stress-tensor, we extract
the information from 〈σσσσ〉 correlator.

In mean field theory, we know that operators in [φφ]0 family lie on a straight line in
J −∆ plane with ∆− J = 2∆φ. In addition due to the shadow symmetry (∆↔ d−∆),
we have the straight line trajectory for the shadow family as well. The trajectory and its
shadow are plotted in figure 11.
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Figure 10. Comparison between the twist derived from collinear expansion versus the exact
evaluation of individual blocks using 2d expansion.

JJ

Figure 11. The Regge trajectory of [φφ]0 and its shadow in free field theory. The two trajectories
intersect at the shadow symmetric point.

Note from figure 11 that the two curves intersect each other at the shadow symmetric
point with ∆ = d/2; the spin at this point is d/2− 2∆φ.

Moving on to the interacting Wilson Fischer fixed point, operators acquire anomalous
dimension and they move away from the straight line trajectories and lie on a smoother
curve. Analyticity of the mentioned curve for J ≥ j∗ has been established by the proof of
the Lorentzian inversion formula. However, in perturbation theory (ε expansion) operators
with lower spins have also been found to lie on Regge trajectories that are analytic in
spin (see [16]).
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What we are interested in this section is to extend our methods to spin smaller than 2
and to capture the non-perturbative characteristic of the leading Regge trajectory, [σσ]0
and its intercept, j∗.

There are subtleties associated with going to such low β. One for instance is that as
discussed in section 2, close to the shadow-symmetric point, ∆ = d/2 the mentioned decom-
position of the s-channel block in eq. (2.16) breaks down and our collinear approximation
for the s-channel block is not relevant any more. This means that another expansion of
the s-channel block is required. We find a relevant expansion using another set of complex
variables ρ and ρ̄ which is related to z and z̄ as follows (see [33])

ρ = z

(1 +
√

1− z)2 ↔ z = 4ρ
(1 + ρ)2

ρ̄ = z̄

(1 +
√

1− z̄)2 ↔ z̄ = 4ρ̄
(1 + ρ̄)2

(3.8)

We expand the s-channel block in eq. (2.11) in ρ, ρ̄→ 0 which captures the contribution
of the block for z ∼ z̄ ∼ 0 and ∆ ∼ d/2 and then we transform back to z and z̄. We will
denote the block expanded in these variables as Gβ,4−τρ,n (z, z̄). Here n is the order in which
we keep the terms in ρ and ρ̄ expansions. This is the appropriate range for the vicinity of
the intercept. The generating function replacing eq. (2.21) is then as follows:

C(z, β) = κ(β)
∫ 1

z

1
(z̄z)2

(z − z̄)
(zz̄) z(τ/2+1)Gβ,4−τρ,6 (z, z̄)dDisc[G(z, z̄)] (3.9)

Note that for calculating eq. (3.9), the s-channel block is expanded in ρ and ρ̄ to 6th order.
In addition, in order to perform the integral, we expand the correlator in cross-channel
expansion. Since we are interested in very small β, it would be beneficial to use the full
cross-channel blocks. By numerically integrating the integral form of the conformal block
for spin 0 which is introduced in [34–36], we obtain the ε exchange.

G∆,0(z, z̄) =
Γ(∆)

Γ(∆+∆34
2 )Γ(∆−∆34

2 )
u

∆
2

∫ 1

0
dσ(1−(1−(1−z)(1−z̄))σ)

−∆+∆12
2

×σ
∆+∆34−2

2 (1−σ)
∆−∆34−2

2 2F1

(∆+∆12
2 ,

∆−∆12
2 ,∆− d−2

2 ,
zz̄σ(1−σ)

1−(1−(1−z)(1−z̄))σ

)
(3.10)

This integral representation is exploited in different contexts in the literature, see for
instance [37]. In addition, one can also derive similar integral representation for the
exchange of conserved current:

Gj+d−2,j(z, z̄) =
∫ 1

0
dt

(22jΓ(1+j))
(
√
πΓ(1/2+j))

√
zz̄

(
√

1−t
√
t
√

1−tz−z̄+tz̄)

(
1−
√

1−tz−z̄+tz̄
1+
√

1−tz−z̄+tz̄]

)j
(3.11)

specifying to spin 2 gives us the exchange of stress tensor. Now we have all the ingredients
to evaluate the inversion formula for the exchange of ε and T which are the leading twist
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Figure 12. The function J(∆) is plotted at low spin, for the exchange of ε and for the exchange
of ε and stress-tensor at two different values of z. The important takeaway is that the spin of the
intercept is below 1. The width created by these curves estimates the error of the analysis.

operators. Once the integrals of the blocks are done, one can perform the inversion integral
in eq. (3.9) numerically as well to obtain the generating function. We can then use this
generating function to obtain the twist at different values of conformal spin using eq. (2.27).
Now trivially the function τ(β) gives us the function J(∆), from which we can read off the
intercept as can be seen in figure 12.

In our analysis, we find that the smallest value of β for which eq. (2.21) agrees with
eq. (3.9) is βmin ∼ 3. For β’s smaller than this value we must use the latter.

However, note that since we are not exchanging the twist families, precision of our result
will be moderate. To quantify our error, we compare the twist derived at different values of
z with exchange of only ε as well as exchange of both ε and T. We see that our results does
not change drastically in any of the mentioned cases. This comparison is plotted in figure 12
Remarkably one can see in figure 12, that the intercept of the leading Regge trajectory,
[σσ]0 is below one, j∗ ≈ 0.8, which conclusively shows that 3D Ising theory is transparent
at high energies. We also estimate the (shadow symmetrical) residue at the intercept to be:

Res
J=j∗

ct(∆, J)
K(∆, J)

∣∣∣∣∣
∆= 3

2

≈ 0.02. (3.12)

Recently a similar estimate jO(2)
∗ ≈ 0.82 was obtained in [19] for the O(2) model using

a related method. It would be interesting to compare the details. See section 5.1 for a
detailed discussion on the implications of this result.

3.3 Analytic continuation to spin 0: looking for ε

It was shown in perturbation theory (see [38]), i.e. ε-expansion, that one can obtain an
analytic curve for the leading Regge trajectory and analytically continue it to recover ε and
its shadow on the continued curve.
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Figure 13. The interpolation of data points and their fit for two sets of points considered in
figure 12 is given. The analytic continuation is obtained once the fit is found. The ε and its shadow
are represented by the two red dots. We see the prediction for ∆ε by looking at the intersection of
the curves and the ∆ axis.

In this subsection we study the possibility of finding the ε operator on the curve
obtained by the analytic continuation of the Regge trajectory to spins below the intercept
in the full non-perturbative 3D Ising CFT. In order to perform the analytic continuation,
we need an ansatz for the leading trajectory near the intercept which reproduces the data
obtained from inversion formula properly. The ansatz we use for the function J(∆) needs
to have two important characteristic. First, it should be symmetric under the shadow
transform (∆↔ d−∆). Second, asymptotically it must approach the lines J = ∆− 2∆σ

and J = −∆+d−2∆σ. One simple ansatz that satisfies both of these condition is as follows.

(J − d/2 + 2∆σ)2 = (∆− d/2)2 +A (3.13)

This corresponds to the following τ(β) function:

τ(β) = A

β − β0
+B − β0 (3.14)

It follows that we must have β0 = d− 2∆σ and B = d− β0, however, we keep their values
unidentified. The data points are fitted with this ansatz for each of the different cases
considered above to obtain the value for A, β0 and B in each case. As an example the
values for the fit of data obtained from ε+ T at z = 10−4 is given (blue lines in figure 13):

A = −0.085593 β0 = 1.96857 B = 2.98551 (3.15)

Having this ansatz, the analytical continuation of the Regge trajectory to J < j∗ is
straightforward (see figure 13 for the trajectory and its analytic continuation). Evaluating
the function at J = 0 gives us an estimation of the conformal dimension of ε operator
and its shadow. As an example the fit of data obtained from ε+ T at z = 10−4 gives the
following estimates:

∆ε = 1.11752 ∆ε̃ = 1.868 (3.16)
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These values are not particularly close to the ε operator. However the analysis predict their
existence as was seen before in perturbation theory. Note from figure 13 that a slight vertical
shift in the curve would suffice to make it pass through ε. However it should be obvious that
using this method to determine quantitative properties of ε would be numerically unstable.

4 Z2-odd operators

In this section we study low spin operators with Z2-odd quantum numbers by analyzing the
correlator 〈σεεσ〉, which in our notation corresponds to ∆1 = ∆σ and ∆2 = ∆ε. According
to our previous discussion this correlator gives information about odd operator in the
s-channel. The operators exchanged in the t-channel, where we fuse σ with σ and ε with ε,
include ε and the families [σσ]0, [σσ]1, [εε]0. In the u-channel we exchange instead Z2-odd
operators. We will use the data from [5] and include σ as well as the family called [σε]0 in
that reference, which were found to be numerically dominant for this correlator.3

There are many interesting physical facts about 3D Ising model that one can understand
by studying Z2-odd operators with low spins. A salient feature is the absence of a spin 1
conformal primary with scaling dimension near that of the [σε]0 family. For example, in
the ε-expansion, the operator σ2∂σ is a descendant and there is no nearby primary.

From the perspective of the inversion formula, this is nontrivial since there are no
indications that the (odd-spin) [σε]0 Regge trajectory shoots off near J = 1 (see for example
figure 13 of [5]). If the analytically continued trajectory smoothly passes through J = 1, then
the absence of a J = 1 primary requires the residue along this trajectory to vanish precisely
at the J = 1 point. One of our goals in this section will be to verify this. Again, we will not
address possible degeneracies: our working assumption will be that the inversion formula at
low spins (J ≤ 2) is numerically dominated by a single Z2-odd s-channel trajectory, which
we will denote as [σε]0.

Another compelling question is whether this family of operators contains a spin 0
operator, and if so, what is that operator. We try to answer this question by extending
Ceven(z, β) to low spin. We show that indeed this family contains a spin 0 operator
whose quantum numbers are compatible with being the shadow of σ. This is shown by
comparing the scaling dimension and the OPE coefficient and showing that they are in the
right neighbourhood.

As a warm up example, we start by studying the leading Z2-odd spin 2 operator, for
which we have controlled errors and accurate data. Again, we apply the procedure explained
in section 2.3 to derive the twist and the OPE coefficient. To control the error of the result
similarly as in section 3, we illustrate the importance of including the subleading twist
families to obtain a stable answer with controlled error. In addition, we see the range of
z in which the twist expansion is consistent, the sum over families are convergent and no
resummation is required. However, the overall accuracy of the result for the spin 2 operator

3The multiplicity of Z2-odd operators was not addressed in that reference and we do not address it here
either. At asymptotically large spins we expect operators from the family [σσσ]0 to have lower twist, and in
general to mix with [σε]0, however such operators were not resolved in [5]. In effect, we will assume that the
u-channel OPE is numerically dominated by a single operator for each spin.
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(a) For the value of z = 10−3.
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(b) For the value of z = 10−4.5.

Figure 14. Partial sum over the contributions of different families for the spin 2 operator with
β = 6.18.

in [σε]0 is smaller compared with the spin 2 operator in [σσ]0, indicating that there are
families of higher twist that would need to be exchanged in the cross-channels (for instance
[σε]1, [εε]1 and [σσ]2) to get smaller errors and a more stable result.

Once we have familiarized ourselves with the procedure, we move on to the spin 1 and
spin 0 operators by following the same steps. As expected, the result will be less stable and
we have less control over the errors.

4.1 Benchmark case: the spin 2 operator

In this section we verify with what accuracy the anomalous dimension and OPE coefficient,
fσεO2 , of the leading Z2-odd operator of spin 2, O2, can be derived from the inversion
formula with various truncation in the t-channel expansion. The procedure and the steps
taken here are the same as the calculation for stress-tensor. However, the details of the
calculation are of course different. Again, since we are dealing with low spins, the 2d
expansion of the block is a good tool to use. But before we proceed to that, we need to
find the relevant range of z in which eq. (2.27) can be applied. This would be the range
in which the twist expansion of the argument of the dDisc breaks down. One can indeed
confirm that indeed convergence of the twist expansion breaks in relatively large z, which is
shown in figure 14.

With the same analysis performed in figure 14, we can conclude that the range of z in
which we have a valid twist expansion of the dDisc argument begins at 10−3. Thus this will
be the lowest z for evaluation of the twist and the OPE coefficient.

In figure 15 we show the result for the anomalous dimension of the spin 2 operator.
The correlator in the argument of the dDisc in Ct is built by exchanging ε, [σσ]0, [σσ]1 and
[εε]0 in the t-channel and the argument for Cu is built by exchanging σ and [σε]0 for the
u-channel. We sum the contribution of the t-channel and u-channel since we are interested
in the spin 2 operator in the s-channel (see eq. (2.12)). We will call this function Ceven(z, β)
(in section 4.2, where we are interested in odd spin operators of [σε]0, we subtract the
u-channel contribution from the t-channel and subsequently the function derived this way
will be called Codd(z, β)).

In order to understand the importance of the subleading families we compare the result
with the case that only ε, [σσ]0 and σ are exchanged in figure 15.
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Figure 15. γ(β = 6.18) is given for comparison between different truncation in the cross-channel
expansion of the dDisc. We see the importance of including the subleading families to get a plateau.
In addition, multiplying Ceven(z, β) with (1− z)

∆1+∆2
2 has been shown to extend the range of z in

which we have a flat curve (see the paragraph below figure 3 for explanation).
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Figure 16. The intersection point of the line J = 2 and the curve τ(β) is where the spin 2 operator
is located.

Following the same procedure as the one for stress-tensor, we choose the decade in
which we have the most stable result (the smallest standard deviation), which is log10 z ∈
[−2.3,−1.3]. Then by averaging over z in this region, we get the following result for the
twist of the spin 2 operator:

τ = 2.1845± 0.0035. (4.1)

We can calculate τ(β) for a number of operators in the vicinity of the spin 2 operator,
i.e., β = 6.18 for a fixed z. This will help us derive the function τ(β) by interpolation.
As another method of getting the anomalous dimension of the spin 2 operator, we again
intersect the spin 2 line with τ(β) as done in figure. 16. The point of intersection is where
the spin 2 operator is located.

Same as [σσ]0, once we have the function τ(β), we can compute the OPE coefficient by
calculating C(β) according to eq. (2.27) and multiplying it by the relevant Jacobian factor
in eq. (2.20) to get:

fσεO2 = 0.3907± 0.0014. (4.2)
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∆O2 fσεO2

Inversion Formula 2.1845(35) 0.3907(14)
Numerical Result 2.180305(18) 0.38915941(81)

Table 2. Twist and OPE of spin 2 operator, O2 in [σε], derived analytically compared with the
value derived from numerical bootstrap.

In the table. 2, we summarised our analytical result for the scaling dimension and OPE
coefficient of spin 2 operator along with values predicted by numerical bootstrap (see [5]).

4.2 Absence of a spin 1 primary in the [σε]0 family

Now that we have familiarized ourselves with the basic process for extracting low spin
operators in [σε]0, we try to extend the analysis to study the absence of a spin 1 primary in
the odd-spin family. Note that throughout this subsection all of the operators discussed in
subsection 4.1 are still exchanged in the cross-channel expansion of the double discontinuity.

The unitarity bound in eq. (3.1) indicates that a spin-1 operator must have dimension
at least 2, and we start the analysis by examining the function Codd(z, β) in the vicinity
of β = 3.

The first step is to realize the range of z in which we can trust the twist expansion
following the procedure illustrated for O2 operator in figure 14. We find that the inversion
formula is safe to use for z > 10−2.5. Thus all of the analysis in this section is done with
three different values of z in this range, z = 10−2.5, z = 10−2 and z = 10−1.5, to evaluate
the stability.

In figure 17, Codd(z, β) multiplied by the factor (1− z)
∆2+∆3

2 /z
∆σ+∆ε

2 is depicted. The
(1− z)

∆2+∆3
2 factor is meant to approximately remove the collinear descendants and higher

twist contamination (see the paragraph below figure 3 for explanation) and division by
z

∆σ+∆ε
2 reduces the z-dependence of Codd(z, β) to zγβ/2.
A few comments must follow: we emphasize much alike section 3.2 the stability in z is

moderate. The difference in the curve is suggestive of what the error should be.
We see that all three curves cross zero at β ∼ 3.3. This implies the vanishing of the

OPE coefficient at a conformal spin near that value.
Theoretically, the J = 1 operator is absent from the spectrum if and only if the

vanishing of C occurs precisely when the trajectory crosses J = 1. Because of C vanishing,
the numerical evaluation of the twist using z∂z logC is however unstable. To assess whether
the vanishing of C and J = 1 occur at the same point, we consider the following combination:

f(z, β) =
(
β/2− 1− z∂z

)
Codd(z, β). (4.3)

Using eq. (2.27) it can also be written as:

f(z, β) = (J − 1)Codd(z, β). (4.4)

Note that this function vanishes when the trajectory contains an operator with spin 1 or
when Codd(z, β) is zero. If the residue at the spin 1 point vanishes (which in turn implies
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Figure 17. (1−z)
∆2+∆3

2 Codd(z, β)/z
∆σ+∆ε

2 for β in the vicinity of spin 1 operator for three different
values of z. One can observe the vanishing of the OPE coefficient for β ∼ 3.3.

������

3.0 3.5 4.0 4.5

0.05

0.10

0.15

0.20

Figure 18. f(z, β)/z
∆σ+∆ε

2 = (J−1)Codd(z, β)/z
∆σ+∆ε

2 for β close to ∆σ+∆ε+2 for three different
values of z. Within errors, this function seems compatible with having a double zero touching the
real axis.

the absence of spin 1 operator), then the two zeros in f(z, β) must be at the same place
and we expect to find a curve tangent to the x-axis. By examining the function f(z, β) in
figure 18, we see that the curves are almost tangential but not completely! We speculate
this to be caused by the truncation of the t-channel OPE.

Lastly, to recognize whether vanishing of Codd(z, β) is due to a subtle cancellation
between the t-channel and u-channel, we study (1 − z)

∆2+∆3
2 Ceven(z, β)/z

∆σ+∆ε
2 for the

same values of β in figure 19, which differs by a factor of (−1)J for u-channel contributions.
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Figure 19. (1− z)
∆2+∆3

2 Ceven(z, β)/z
∆σ+∆ε

2 for β close to ∆σ + ∆ε + 2 for three different values
of z. One can observe that the function does not vanish for any β. This is in contrast with
(1− z)

∆2+∆3
2 Codd(z, β)/z

∆σ+∆ε
2 in figure 17 for the same range of β.

In figure 19, we can explicitly observe that indeed when the t-channel and the u-channel
are added instead of subtracted as it is done in Ceven(z, β), there is no vanishing of the
OPE coefficient.

To sum up, we studied the odd-spin sector of [σε]0 family through constructing Codd(z, β)
and its derivative. We showed that the analytic calculation is consistent with the absence
of a Z2-odd primary operator with spin 1 in [σε]0 family and this absence results from a
very interesting conspiracy between the u-channel and t-channel contributions.

4.3 Continuing to spin 0

In this section, we try to push the analysis to see whether [σε]0 trajectory can contain
a spin 0 operator. Again the accuracy of our analysis is moderate since the range of z
accessible to us is small (by an analysis similar to what has been done in section 4.1 we
realize that z < 10−2 cannot be used) and even in this region the result varies quite a bit
since the expansion of the dDisc converges more slowly for such a small value of β and more
subleading twist operators need to be exchanged as the contribution of each operator falls
with its twist as 1/βτ ′ .

That being said, we can still proceed with extracting the twist of such low β and
intersect it with J = 0 line to find out if the trajectory admits a spin 0 operator and if it
does, what the twist of such spin 0 operator is. Once again, the difference of the result for
different value of z, gives us an estimation of the error.

This analysis is done in figure 20. We see that the error is indeed, unfortunately, not
negligible, meaning that we cannot pin down the operator with great accuracy. However,
what is manifest from this analysis is that the [σε]0 trajectory does include a spin 0 operator
with dimension in the neighbourhood of ∆ ∼ 2.5. If one calculates the squared of OPE
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Figure 20. The intersection between the three curves τ(β) and the line J = 0 is the predicted
location of the spin 0 operator. The black dot on the J = 0 line is the actual location of shadow of
σ operator.

∆σ̃ fσεσ̃

Inversion Formula at z = 10−2 2.69 1.16
Inversion Formula at z = 10−1.5 2.53 1.10
Inversion Formula at z = 10−1 2.44 1.15
Numerical Result 2.48185 1.4393

Table 3. Twist and OPE coefficient of spin-0 operator in [σε] trajectory estimated from the inversion
formula, compared with the value derived from numerical bootstrap.

coefficient of this operator, we find f2
σεσ̃ ∼ 1.15. We make the conjecture that this operator

is indeed shadow of σ operator. As a support for this conjecture we remind the reader of
the scaling dimension of shadow of sigma, σ̃, which is ∆σ̃ = 3−∆σ ' 2.48 and its OPE
coefficient, f2

σεσ̃ ' 1.44 (this is calculated using (2.15) which relates c(∆, J) and c(d−∆, J)).
For convenience, these estimates along with what is expected from numerical bootstrap is
summarized in table 3.

Our analysis predicts that the spin-0 operator of [σε]0 has its scaling dimension in the
vicinity of the shadow of σ operator. However, the gap between the OPE coefficient of
shadow of σ and the result obtained from the inversion formula indicates that even though
our analysis is compatible with shadow of sigma belonging to [σε]0 trajectory, using this
method to predict quantitatively properties of the operator would not be numerically very
effective. This is similar to what we observed for ε operator in section 3.3.

We also obtain a Chew-Frautschi plot for this analytic trajectory, [σε]0,even in figure 23a
(as we did for the [σσ]0 family in figure 12). This figure is placed in section 5.2 below, for
comparison with similar trajectories in the O(N) model.
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5 Extended discussion

To shed light on the results presented in this paper, we give an extended discussion on
the following aspects. First, we discuss the qualitative distinctions between the Regge
trajectories of transparent and opaque theories, we compare 3D Ising with the critical O(N)
model at large N (which is in the transparent class), and we work out a novel formula
showing that transparency implies regularity of the heavy spectrum.

5.1 Transparent versus opaque theories

When do we expect the spectrum to be analytic down to J = 0? Here we argue that, in
many situations, this is closely related to asymptotic transparency.4

Let us try to sketch, more generally, what singularities we expect in the complex
(∆, J)-plane. We begin with the region of large spin and dimension. There we certainly
find double twist trajectories, which have approximately constant twist τ ≈ ∆i + ∆j + 2n
and lie near to 45◦ in the figure. More generally we also expect multi-twist operators, built
of products of many primaries and derivatives, and it is interesting to try and track their
trajectories. Since the number of local operators grows with spin, we expect the number of
trajectories to be infinite, likely accumulating at discrete twist values (with, presumably,
only a finite number of them having a nonzero OPE coefficient at a given integer spin).
These are the solid lines shown in figure 21. As explained in ref. [22], Regge trajectories
represent non-local operators, which reduce to line integrals of local operators at the position
of the crosses.

Although a general classification of nonlocal operators is still lacking, we also expect
near-horizontal trajectories. In a weakly coupled gauge theory these are well-known to arise
as color-singlet combinations of null-infinite Wilson lines U(x⊥) ∝ Pei

∫∞
−∞ dx+A+(x+,0−,x⊥)

where x± = t ± x are lightcone coordinates. The simplest such trajectory, the BFKL
Pomeron, is labelled by the positions of two Wilson lines, where the quantum number ∆ is
conjugate to their transverse separation (see [12, 39–41] for various distinct perspectives).
Notice that since the gauge fields have spin 1 the integral

∫
dx+A+ is formally boost-invariant

(momentarily neglecting the need to introduce rapidity cutoff); products of multiple Wilson
lines thus have the same spin (boost) quantum number. More generally, non-local operators
satisfy the standard addition law from Regge theory:

J[O1O2] ≈ JO1 + JO2 − 1 , (5.1)

where the offset is due to the mismatching number of dx+ on both sides.
The sharp difference between Lagrangian theories which contain vector bosons, and

those which do not (“matter-like” theories) is where these near-horizontal trajectories lie.
A nonlocal composite of two scalars would give a single trajectory near J ≈ −1, and
the first accumulation point of trajectories is delayed to J ≈ −2; a composite of two
fermions may produce a single trajectory near J ≈ 0, but it is still effectively isolated
from more complicated composites. In contrast, in gauge theories one immediately runs

4A discussion along these lines was first presented by one of the authors at the 2018 Azores workshop on
the analytic bootstrap.
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Figure 21. Chew-Frautschi sketches for transparent and opaque theories. Solid lines indicate multi-
twist trajectories, and dashed lines show possible BFKL-like horizontal trajectories. Complicated
behavior could occur where accumulation points of trajectories intersect. (a) In scalar-like theories,
most serious complications would seem restricted to J < 0 making analytic continuation to J = 0
plausible. (b) In nonabelian gauge theories, here at weak coupling, the perturbative leading trajectory
has intercept jtransient

∗ > 1 (solid disk). At higher orders in perturbation theory, near-horizontal
composites with ever-increasing spin must exist. Singularities above the thick red lines must
disappear nonperturbatively, by convexity.

into infinitely many trajectories that mix with each other. One reason why BFKL were
able to make progress is that mixing between states of different number of elementary
Reggeized gluons is suppressed by two effects: by weak coupling and/or the planar limit,
see [41]. Quantum corrections move the two-Reggeon intercept above 1 in both limits: the
intercept is jtransient

∗ = 1 +O(αs) at weak coupling, and at strong coupling jtransient
∗ ≈ 2 in

holographic theories, leading to interactions which grow with energies (opacity).
Now if exchange of one object grows like some power eη(jtransient

∗ −1) at large boost, one
naturally expects double exchange to grow twice as fast, giving an effective excitation of
spin 2jtransient

∗ − 1 > jtransient
∗ . This argument seems rather unavoidable due to cluster

decomposition in spacetime dimensions d > 2, since excitations can be widely separated in
the transverse plane. It is not possible to have just a single trajectory with j∗ > 1, there
must be an infinite tower! The growth of course can only be transient because the correlator
is bounded; it is generally expected that the higher trajectories stop the growth rather
than speed it up, in the same way that the higher-order Taylor coefficients of the function
(1 − e−x) limit its initial linear growth. See [12] for further discussions; we do not have
anything to add here about how saturation works, if only to note that convexity requires
that all singularities cancel above the red line in figure 21.

An important lesson from this discussion is that in asymptotically transparent theories it
seems perfectly reasonable (if numerically challenging) to analytically continue trajectories
to J = 0, while in opaque theories there may be much more serious obstructions to
crossing J = 1.

5.2 Analyticity to spin J = 0 in the large-N O(N) model

The O(N) model at large N is a theory for which we have analytical control by using 1/N
expansion. This theory is a specifically suitable theory for testing the ideas put forward
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in this paper since its operator content resembles the one in 3d Ising. This is because 3d
Ising can be viewed as the O(N) model with N = 1. The leading-twist O(N) bilinear
families of the O(N) model have been studied at large N to order 1/N2 in [38]. We will
reproduce their results with a slightly different approach up to order 1/N and compare with
our results on 3d Ising in section 3. In addition, we study the O(N)-fundamental family
up to order 1/N to study our conjecture about its spin-0 continuation discussed in the 3d
Ising case in section 4.

The O(N) model is a theory of N scalar fields φi, that transform in the fundamental
representation of O(N). The OPE of these fields can be separated into three different
tensor structures:

φi × φj =
∑
S

δijO +
∑
T

O(ij) +
∑
A

O[ij], (5.2)

where S stands for singlet of even spin, T stands for symmetric traceless of even spin and
A stands for anti-symmetric tensors of odd spin. Similarly to previous sections, we want to
derive the CFT data (OPE coefficient and anomalous dimension) for low spin operators in
the spectrum.

Leading O(N)-bilinear twist family. First we review how this works for the low spin
operators in [φiφj ] double twist families, which are the leading twist families of the O(N)
theory. This discussion will follow closely [38]. The data for the spectrum will be derived in
the limit that N is large and is thus given as an analytic expansion in 1/N . We look at a
4-point function of these scalar fields, which can be again separated in three independent
tensor structures:
x

2∆φ

12 x
2∆φ

34 〈φi(x1)φj(x2)φk(x3)φl(x4)〉

= δijδkl GS(u, v) +
(
δilδjk + δikδjl −

2
N
δijδkl

)
GT (u, v) +

(
δilδjk − δikδjl

)
GA(u, v) .

(5.3)

The functions that appear are just the usual conformal block expansion but with the sums
only over the operator in the given sector. We can also expand this correlator in the t and
u channels to obtain the following crossing symmetry equation:

fS(u, v) = 1
N
fS(v, u) + N2 +N − 2

2N2 fT (v, u) + 1−N
2N fA(v, u)

→ 1
N
fS(v, u) + 1

2fT (v, u) + 1
2fA(v, u) ,

fT (u, v) = fS(v, u) + N − 2
2N fT (v, u) + 1

2fA(v, u) ,

fA(u, v) = −fS(v, u) + 2 +N

2N fT (v, u) + 1
2fA(v, u) .

(5.4)

The leading equations at large N are the main tool of this section. The crossing equations
into the u-channel are essentially the same but with minus signs everywhere in the A sector.
The functions that appear are defined by f(u, v) = u−∆φG(u, v) to incorporate the factors
coming from crossing. The full correlation function can be expanded in 1/N and the explicit
expression at N =∞ follows from Wick contraction and is as follows:

G0
ijkl(u, v) = δijδkl + u

d−2
2 δikδjl +

(
u

v

) d−2
2
δilδjk. (5.5)
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This equations means that we have the following expansion for each decomposition:

GS(z, z̄) = 1 + 1
N
G(1)
S (u, v) + . . .

GT (z, z̄) = u
d−2

2

(
1 + 1

v
d−2

2

)
+ 1
N
G(1)
T (u, v) + . . .

GA(z, z̄) = u
d−2

2

(
1− 1

v
d−2

2

)
+ 1
N
G(1)
A (u, v) + . . .

(5.6)

Now we are equipped to look at the N scaling of different terms in the crossing equation.
First, we see that for T and A operators, there is a whole tower of double twist operators
exchanged at N →∞ limit, so their OPE coefficients are of order 1 and are the ones from
generalized free fields. The double twist operators in the S sector do not appear at this
order so their OPE coefficients must have term that scale as a negative power of N (1/N1/2).
From dimensional analysis we can find that the leading scaling dimension of φ is 1/2. This
means that double twist operators of spin J have a leading dimension of 1 + J . There is
however still the possibility that the scalars that appear in the OPE are shadows of the
double twists, similar for the σ operator in the [σε]0 family of the 3d Ising model. This
possibility will be incompatible with the leading N behaviour of the correlator for the T
sector. However, for the S sector, if the shadow does not appear, we indeed run into trouble,
as the crossing would imply that T and A operator do not have anomalous dimension of
order 1/N . We will then call the operator appearing in the OPE S and it has a leading
dimension of d−∆[φφ]S,0 = 2.

The idea for studying this theory using the inversion formula is to use the crossing
equations (5.4) to understand how to combine the different elements that appear in the
generating function C(z, β). Crossing then dictates what combination of fR(v, u) appears
in the t-channel expansion of the inversion formula for [φφ]R double twist operators in
each sector.

One can see from eqs. (5.4) that the leading behaviour of the OPE coefficients is then
given by the identity contribution. This can be found by evaluating (2.24) at β = 1 + 2J
and multiplying by 2 because the identity appears both in the t and u channels. The result
for S can be deduced from evaluating the answer at spin 0 and transforming to the shadow
with (2.15). We find:

f2
φφS = 4

π2N
+O

( 1
N2

)
,

f2
φφ[φφ]T/A(J) = Nf2

φφ[φφ]S (J) =
2Γ(J)Γ

(
J + 1

2

)2

πΓ(2J)Γ(J + 1) +O

( 1
N

)
.

(5.7)

The next step is to calculate anomalous dimensions. One important point to emphasize
with this setup is that whether we are summing over the whole twist family or considering
only the exchange of a single operator, taking z → 0 in the first step does not create any
problem. This is because the analyticity of the data in 1/N prevents problems caused by
loss of the log2 terms when the wrong order of limits are taken and this problem is simply
resolved because log2 terms appear only in next order in 1/N .

– 32 –



J
H
E
P
0
2
(
2
0
2
3
)
1
9
0

The simplest anomalous dimensions to first calculate are those in the T and A families
because they receive contribution only from S at order 1/N . This is done using the inversion
formula at z → 0 in eq. (A.9) together with fφφS calculated above and it leads to

γ[φφ]T/A(β) = − 8
π2N(2J + 1)(2J − 1) . (5.8)

One nice use for this result comes from the fact that we should recover that the spin 1
operator in the A sector is a conserved current with dimension 2. This can be used to fix
the correction to the dimension of φ since the dimension of the spin 1 operator is given by
2∆φ + 1 + γ[φφ]A(1). The result is

∆φ = 1
2 + 4

3π2N
, (5.9)

which is consistent with the previous calculations summarized in [38, 42, 43].
We can continue by calculating the anomalous dimensions of the singlet double twists.

Here the double twist operators in the other sectors contribute. We could again use eq. (A.9)
but it gets complicated for general spin. We instead lean on the fact that conformal blocks
for conserved currents (which describe the double twist operators at leading order) are very
simple. Using the method described in appendix A.4 we find that for conserved currents
the coefficient of the log is√

z̄

1− z̄ G∆,J(1− z, 1− z̄)
∣∣∣∣∣
log

= −2Γ(2J + 1)
Γ
(
J + 1

2

) . (5.10)

This can be used directly in (2.21) along with the data already found for the T and A
double twist operators. The contributions are exactly the same for both sectors, except
that they contribute with even and odd spins. The result for the sum of the contributions
from φS (same as for T and A sectors) and the double twists is

γ[φφ]S (J) = − 8
π2N(2J − 1) . (5.11)

We have now come to the point where a consistency check is possible. Indeed the spin 2
operator in this family should be the stress tensor and it should have a dimension of 3,
which we find to be the case given (5.9).

As a concluding remark we plot the Chew-Frautschi plot of [φφ]0,S at N = 1000 in
figure 22. The analogous plot for [σσ]0 is figure 12. At N →∞ the intercept approaches
1/2. As N decreases we see that the value of the intercept increases:

j∗ = 1
2 −

8
3π2N

+
√

8
π2N

(5.12)

This result can be compared with our result for the intercept in section 3.2. We emphasize
that for small N we do not expect this formula to be accurate. As mentioned above the
intercept for O(2) model is recently calculated to be ∼ 0.82 in [19], where eq. (5.12) would
predict 1.00152. The difference for 3D Ising is of course more drastic. Eq. (5.12) for N = 1
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Figure 22. The Chew-Frautschi plot for [φφ]S and its analytic continuation (dashed lines) of the
[φφ]0,S is plotted for N = 1000 and N = 10. We see that as N increase the intercept approaches
1/2 from above. Note that the curves plotted here are valid up to order 1/N . Dots indicate the
spin-0 S operator.

predicts the intercept to be 1.13013, whereas what was predicted in section 3.2 is ∼ 0.8.
The formula should however be reliable for sufficiently large N .

Another remarkable fact is that if we analytically continue the Chew-Frautschi plot to
J smaller than the intercept, we can recover the spin 0 operator of [φφ]0 and its shadow (S)
on the continued curve (dashed line in figure 22).5

Leading O(N)-fundamental twist family. Now we turn to the leading O(N)-fun-
damental twist family, [φiS]0. We study this family by considering the 4-point function
〈φiSSφj〉. The index structure of crossing equations is trivial for this correlator as there
is one possible option, δij . This means that we can discard the indices from crossing and
consequently from inversion formula and use its stripped version as:

G(u, v) = u
∆1+∆2

2

v
∆2+∆3

2

G(v, u). (5.13)

To obtain information about [φiS]0 family form inversion formula, we first need to calculate
the t-channel and u-channel dDisc of the correlator. In 1/N expansion, dDisctG(u, v) have
identity operator at leading order. This is the only operator exchanged at O(N0). At the
next order we have the exchange of operator S which is a single twist operator and its
large N suppression comes from its OPE coefficient, fφφSfSSS (in fact sin(∆S − 2∆S)/2

5Analytic continuation of the leading Z2 even trajectory to J < J0 has also been studied in ε-expansion
in [16]. There it was shown that one can discover ε operator on the analytically curve as the shadow of spin 0
operator in [σσ]0 family. One might hope to apply the same procedure to 3d Ising and analytically continue
the trajectory in figure 12 to find the ε operator, however since we do not have an analytical expression for
the trajectory, this continuation could not be done in a numerically controlled convincing way.
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seems to introduce further suppression but this is cancelled with a factor of Γ(1−∆S/2) in
the inversion formula). To calculate the u-channel discontinuity we swap operators 1 and
2. The leading contribution to this expansion comes from the exchange of φi which gets
its large N scaling from the OPE coefficient f2

φφS .6 Note that contribution of the double
twist operators in both channels are suppressed as 1/N2 due to the sine factors of dDisc
(see eq. (2.14)).

Now, we have enough information to obtain the leading order OPE coefficient and
anomalous dimension of [φiS]0 operators. For our purpose which is to compare with
section 4, we would like to obtain this data for the spin 0 operator of the family and verify
whether this operator can be the shadow of φi. This would be analogues to our conjecture
that the shadow of σ is on the [σε]0 trajectory. The leading contribution to the OPE
coefficient of [φS]0 family comes from the identity using eq. (2.24):

f2
φS[φS]0,j = I(∆φ,∆S)(2j + ∆φ + ∆S). (5.14)

If one uses this formula for the spin 0 operator, i.e., β = 5/2, one obtains the OPE coefficient
at order O(N0) to be 1. Now we can use the shadow transform given in eq. (2.15) to obtain
the fφS ˜[φS]0,0

to be:

f2
φS ˜[φS]0,0

= 0 + 4
π2N

. (5.15)

Notice that f2
φS ˜[φS]0,0

vanishes at order N0, this is because the shadow transform gives zero

at leading order for operator with dimension d−2
2 as can be easily seen from eq. (2.15). The

fact that f2
φS ˜[φS]0,0

matches with f2
φφS up to order 1/N is an evidence for our conjecture

that φi is indeed the shadow of the spin 0 member of the [φiS]0 family.
Interestingly, if we assume analyticity down to spin 0 for this trajectory, we can have a

prediction for the OPE coefficient fSSS at leading order (1/
√
N) which is otherwise not

trivial to obtain. This can be done by imposing that

d−∆[φS]0,0 = ∆φ. (5.16)

The leading order contribution to the anomalous dimension of [φiS]0,0 can be calculated
using the inversion formula with exchange of S in the t-channel and φi in the u-channel.
The only unknown in this equation is fSSS . We get:

d−∆(0)
φ − γ

(1)
φ −∆(0)

S − γ
(1)
S − γ

(1)
[φS]0,0 = ∆(0)

φ + γ
(1)
φ ,

1
2 + 28

3π2N
− 2f2

φφS + fSSSfφφS [. . .] = 1
2 + 4

3π2N
,

(5.17)

where [. . .] is a nonvanishing numerical constant. Using that f2
φφS = 4

π2N , we find that
remarkably the two sides agree provided that fSSS = 0/

√
N at leading order. This nicely

agrees with results from [44, 45].7 The Chew-Frautschi plots of [φiS]0 as well as [σε]0 are
plotted in figures 23a and 23b for comparison of their similarity.

6It might seem that there is an extra 1/N2 suppression because S has integer scaling dimension:
sin[π∆φ−∆S−∆φ

2 ]2 in the dDisc scale as 1/N2. However, these zeroes will get cancelled with factors of
Γ(1−∆S/2) in the inversion integral.

7We note that in arXiv version 1 of this work there was an error in the contribution proportional to f2
φφS

in (5.17), which led to a nonzero fSSS . The plot in figure 23b was correspondingly updated here. We thank
Johan Henriksson for pointing out the mentioned references.
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(a) [σε]0,even family obtained at z = 10−1.5.
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(b) [φiS]0 family for N = 6 including correction of
order 1/N .

Figure 23. Chew-Frautschi plot for leading non-singlet trajectories in the 3D Ising and O(N) model
respectively. See figure 12 and figure 22 for similar plots of the leading singlet trajectories.

5.3 Implications for anomalous dimensions heavy operators?

What does transparency imply for the spectrum of heavy operators? Naively one may expect
that it implies a certain regularity in the spectrum, to prevent different components of the
wavefunctions from arriving with random phases. This subsection summarizes our attempt
to derive a quantitative version of this statement. The argument is similar to that used
already in [46] to show that, in holographic CFTs, anomalous dimensions of large-(∆′, J ′)
OPE data in the t-channel grows with energy ∆′ in a way controlled by exchange of a
s-channel Reggeized graviton. Our proposed formula, eq. (5.30), conversely shows that an
intercept j∗ < 1 implies decreasing anomalous dimensions: a regular spectrum.

The results in ref. [46] were obtained pre-Conformal Regge theory using the so-called
impact parameter representation, and were derived in the context the language of holography.
We try to give them a fresh look in light of ref. [7], which allows us to strip the formula from
its holographic context. We proceed in two steps: first we work out implications for the
Regge limit of the correlator in (z, z̄)-space, then we convert those to heavy cross-channel
operators. The second step will rely on an unproven identity about blocks in eq. (5.29),
but otherwise we believe that all steps are rigorous. The first step is achieved by the
Watson-Sommerfeld resummation of our eq. (2.7), as given in eqs. (5.21) and (5.22) of
ref. [22] (restricting the blocks to the leading power given in eq. (2.6); see also [23]):8

eiπ(a+b) (G(z, z̄)	 − G(z, z̄)
)

→

d
2 +i∞∫
d
2−i∞

d∆
2πi C1−∆

(
z + z̄

2
√
zz̄

)
Res

J=j∗(∆)

[
ct(∆, J) + e−iπJcu(∆, J)
κ(∆ + J)(e−2iπJ − 1) (zz̄)

1−J
2

]
(5.18)

The formula simplifies significantly when considering the dDisc in eq. (2.14). We need to add
the complex conjugate conjugation path, which gives the same thing with just iπ 7→ −iπ

8In our conventions, eq. (5.22) of ref. [22] reads, to leading power:

eiπ(a+b) (F∆,J(z, z̄)	 − F∆,J(z, z̄)
)
→ C1−∆

(
z + z̄

2
√
zz̄

)
1

2πiκ(∆ + J) (zz̄)
1−J

2 .
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inside the square bracket, and eq. (5.18) reduces to:

lim
z,z̄→0

dDisc G(z, z̄) =

d
2 +i∞∫
d
2−i∞

d∆
2πi C1−∆

(
z + z̄

2
√
zz̄

)
Res

J=j∗(∆)

[
ct(∆, J)

2κ(∆ + J)(zz̄)
1−J

2

]
. (5.19)

To our knowledge, this formula has not appeared in print before. Notice that the u-channel
coefficient has canceled, as well as the integer-spin poles: the t-channel dDisc is directly
related to the t-channel contribution to the Lorentzian inversion formula. This is perhaps
not too surprising given the form of the Lorentzian inversion formula in eq. (2.11): as a
consistency check, we tried inserting eq. (5.19) back into the latter, and we indeed recover
ct(∆, J) using the orthogonality relation between C1−∆ along the principal series. In other
words, to leading power, eq. (5.19) is just the inverse of the inversion formula.

Because of this interpretation, we can assume that eq. (5.19) is valid even for correlators
which do not grow in the Regge limit, even though the validity of eq. (5.18) in this case
does not strictly follow from the works [7, 22, 23] and may require further discussion [47].

What does eq. (5.19) imply for heavy t-channel operators? We follow the logic of
refs. [46, 48], where the z ∼ z̄ → 0 limit of the correlator is related to t-channel operators
with large dimension and spin ∆′ ∼ J ′ ∼ 1/

√
z. We review the Euclidean case [48]. The

starting point is the fact that the unit operator in the s-channel is reproduced by an infinite
sum over t-channel operators:

1 =
∞∑

n,J ′=0

(
1 + (−1)J

)
P (0)(∆′, J ′)

(
zz̄

(1−z)(1−z̄)

)∆σ

G∆′,J ′(1−z, 1−z̄)︸ ︷︷ ︸
G

(t)
∆′,J′ (z,z̄)

(5.20)

where ∆′ = 2∆σ + 2n and the average spectral density P (0)(∆′, J ′) ≡ P∆σ
∆′−J ′,J ′ is defined in

eq. (3.3). The term with (−1)J is regular in the z, z̄ → 0 limit and can be ignored for the
present discussion. More generally, to study the limit we rewrite the OPE sum (exactly) as
an integral

G(z, z̄) =
∫
d∆′dJ ′

2 c(0)(∆′, J ′)G(t)
∆′,J ′(z, z̄)× 〈C(∆′, J ′)〉 , (5.21)

where the bracket is a sum over δ-function at each local operators, divided by the mean
free spectral density:

〈C(∆′, J ′)〉 ≡
∑
∆′

f2
σσO′

C(0)(∆O, J ′)
δ(∆′ −∆O) . (5.22)

Note that our normalization of the spectral density is slightly different from [48]. As
discussed there, the fact that the z, z̄ → 0 limit is dominated by identity implies that
〈C(∆′, J ′)〉, after suitably smearing out in ∆′ and J ′, goes to 1 asymptotically, with
computable corrections. Namely, exchange of a s-channel scalar operator of dimension ∆
produces a correction suppressed by a relative ∆′−2∆:

(zz̄)
∆
2 =

∫
d∆′dJ ′

2 c(0)(∆′, J ′)G(t)
∆′,J ′(z, z̄)× γ(0)γ(d− 2)

γ(∆)γ(∆ + d− 2)(h′h̄′)−∆ + subleading ,

(5.23)

– 37 –



J
H
E
P
0
2
(
2
0
2
3
)
1
9
0

where
γ(x) = Γ

(∆1 + ∆2 − x
2

)
Γ
(∆3 + ∆4 − x

2

)
(5.24)

is a combination which will re-occur often, and

h′ = ∆′ + J ′ − 1, h̄′ = ∆′ − J ′ − d+ 1 (5.25)

are combinations which transform simply (h′ 7→ ±h′ or ±h̄′) under all SO(d, 2) Weyl
reflections (∆↔ d−∆, ∆↔ 1− J and j ↔ 2− d− J). Although in eq. (5.23) we focus on
the leading term at large-∆′ and J ′, we find that using the Weyl-friendly form of h and h̄
makes subleading terms smaller (suppressed by a relative 1/∆′2).

What about s-channel operators with spin? Using the Casimir recursion in Dolan-
Osborn coordinates (see section 2 of [33]) we could compute exactly the OPE coefficient dual
to a power of zz̄

(1−z)(1−z̄) times a Gegenbauer polynomial. This will be detailed elsewhere [49]
and here we simply record a compelling formula that we observed for the leading behavior
at large ∆′ and J ′:

(zz̄)
∆
2 CJ

(
z + z̄

2
√
zz̄

)
=
∫
d∆′dJ ′

2 c(0)(∆′, J ′)G(t)
∆′,J ′(z, z̄)× γ(0)γ(d− 2)

γ(∆− J)γ(∆ + J + d− 2)

× (h′h̄′)−∆CJ

(
h′2 + h̄′2

2h′h̄′

)
+ subleading .

(5.26)
Notice the parallel between z and h−2 on the two sides of the formula, with Gegenbauers
turning onto Gegenbauers. This is the key observation made long ago in ref. [46] using an
auxiliary impact parameter representation, which allowed them to generalize the statement
that the Fourier transform of a Gegenbauer is a Gegenbauer. Here we sidestepped the
auxiliary space and we are simply making a statement about conformal blocks.

Comparing eqs. (5.21) and (5.26) and summing over the s-channel OPE gives a formal
series expansion for the asymptotic spectral density:

〈C(∆′, J ′)〉 =
∑
∆,J

f12Of34O
γ(0)γ(d− 2)(h′h̄′)−∆

γ(∆− J)γ(∆ + J + d− 2)CJ

(
h′2 + h̄′2

2h′h̄′

)
+ . . . (5.27)

where the dots stand for the omitted subleading terms in eq. (5.26). The formula shows that
the presence of an operator (∆, J) on the s-channel OPE implies ∼ (h′h̄′)−∆ corrections
to the large-dimension spectrum in the cross-channel with the same Gegenbauer angular
dependence. The factors 1/γ(∆− J) produce a double-zero when (∆, J) is a double twist
operator: this was expected since such exponents can be generated by individual blocks and
do not affect the heavy spectrum. This factor grows at large ∆ and likely causes eq. (5.27)
to be an asymptotics series in 1/h. Eq. (5.27) represents a technical extension of ref. [48]
to account for spinning s-channel operators. As explained there, a minimal but rigorous
“smearing” can be provided via Cauchy moments.

We now apply the same logic to the Regge limit (5.19) of the double discontinuity.
From the t-channel perspective, the double discontinuity simply multiplies the average in
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eq. (5.21) by two sines:

dDisc G(z, z̄) =∫
d∆′dJ ′

2 c(0)(∆′, J ′)G(t)
∆′,J ′(z, z̄)× 〈2 sin

(
∆′−J ′−∆2−∆3

2

)
sin
(

∆′−J ′−∆1−∆4
2

)
C(∆′, J ′)〉 .

(5.28)

We need to find the average which reproduce the conformal Regge prediction (5.19).
This requires a generalization of eq. (5.26) where the Gegenbauer function is no longer
a polynomial, and for which the Casimir recursion mentioned above eq. (5.26) does not
terminate. However, we find the form of eq. (5.26) compelling enough to conjecture that it
is valid in general:

(zz̄)
1−J

2 C1−∆

(
z + z̄

2
√
zz̄

)
?=
∫
d∆′dJ ′

2 c(0)(∆′, J ′)G(t)
∆′,J ′(z, z̄)× γ(0)γ(d− 2)

γ(J −∆)γ(J − d+ ∆)

× (h′h̄′)J−1C1−∆

(
h′2 + h̄′2

2h′h̄′

)
+ subleading .

(5.29)
We do not have a proof of eq. (5.29), but we give indirect evidence for it below. Plugging
eq. (5.29) into eq. (5.19) and comparing with eq. (5.28), we obtain the following formula for
the asymptotics of the spectral density:

〈C(∆′, J ′)2 sin2(· · · )〉
γ(0)γ(d− 2) '

d
2 +i∞∫
d
2−i∞

d∆
2πi

Γ(∆− 1)
Γ
(
∆− d

2
)C1−∆(ηh) Res

J=j∗(∆)
1
2b
t(∆, J)(h′h̄′)J−1 (5.30)

where ηh = h′2+h̄′2
2h′h̄′ with h′, h̄′ defined in eq. (5.25) and

bt(∆, J) = ct(∆, J)
K(∆, J)γ(∆− J)γ(d−∆− J) . (5.31)

Eq. (5.30) is the main result of this subsection. It shows that the heavy spectrum must
be regular in theories that are asymptotically transparent, at least in so far as probed by
the four-point function. That is, if j∗ < 1, then the right-hand-side vanishes like ∆′2(j∗−1)

implying that the average of 2 sin2(· · · ) tends to zero at large scaling dimensions. Operators
whose dimensions differ appreciably from double twists, ∆′ ≈ ∆2 + ∆3 + 2n+ J ′, if they
exist, can thus only appear with decreasing coefficients.

At large dimensions with h′ ≈ h̄′, we expect the integral (5.30) to be dominated near
the intercept, which was studied in section 3.2. It would be interesting to confront the
prediction of this formula with the heavy spectrum of the 3d Ising model.

Conversely, for theories that are asymptotically opaque with dDisc → 1, we would
naively expect ∆ to be uniformly distributed modulo 2 so that 2 sin2(· · · ) averages to 1, ie.
the phase of eiπ∆ must be random. The condition that dDisc→ 1 is however an additional
physical assumption which does not follow from eq. (5.30) alone.

An important comment on the regime of validity of eq. (5.30). We know of no guarantee
that the function bt is power-behaved at large imaginary dimensions, since the γ-factors in

– 39 –



J
H
E
P
0
2
(
2
0
2
3
)
1
9
0

eq. (5.31) imply that bt ∝ cteπ|Im∆|, and all we know from the Lorentzian inversion formula
is that ct is power-behaved. This means that the integral in eq. (5.30) may not converge
pointwise for a given h′, h̄′. This is not a fundamental problem and simply means that we
need some smearing in ∆′: eq. (5.30) is an expression for the average spectral density. Just
how much smearing is needed is a question we leave to future work.

5.3.1 Comments on conformal Regge theory

As mentioned, a relation between Regge trajectories and the heavy spectrum is not new and
was discussed in the holographic context in [46]. To our knowledge, however, this was not
discussed in the more general context. Let us thus make contact with the conventions and
results of the conformal Regge theory paper [7]. We begin by rewriting our Gegenbauer-like
function C1−∆ in eq. (2.6) in terms of the harmonic function Ω defined there, which are the
same up to a proportionality factor:

4π
d
2 Ωiν(η) ≡ Γ(∆− 1)

Γ
(
∆− d

2
)C1−∆(η)

∣∣∣
∆= d

2 +iν
. (5.32)

We note that this is shadow-symmetric: Ωiν = Ω−iν . We may then rewrite our eq. (5.18)
for the Regge limit of the correlator as

lim
z,z̄→0

A(z, z̄) =∫ +∞

−∞

dν

2π

[
4π

d
2 Ωiν

(
z+z̄
2
√
zz̄

)]
Res

J=j∗(∆)

[
γ(∆−J)γ(d−∆−J)b

t+bue−2πiJ

e−2πiJ−1 (zz̄)
1−J

2

]
(5.33)

where A ≡ eiπ(a+b)G(z, z̄)	 − G(z, z̄), bu(∆, J) is defined similarly to eq. (5.31), and ∆ =
d
2 + iν where it appears. This form is in precise agreement with eq. (56) of [7].9 For the
double discontinuity we get the same formula with bt+bue−2πiJ

e−2πiJ−1 7→
bt

2 .
We see that the only differences between the Lorentzian inversion and Mellin-space

formalisms is how the double twist poles γγ are treated. What comes out of the Lorentzian
inversion formula is c ∝ γγb and from this perspective it seems like an arbitrary choice
to make explicit this factor in eq. (5.33). In holographic CFTs, however, the function b

turns out to be simple rational function (at tree-level) which makes the writing in eq. (5.33)
natural. In the Mellin space approach of ref. [7], the double-trace poles are built-in.

Comparing eqs. (5.33) and (5.30), we see that the principal change in going from (z, z̄)
space to (h′, h̄′) space is the disappearance of the γγ double twist poles. This was already
observed using the impact parameter representation in ref. [46], understood there to be
directly related to the (h′, h̄′) spectrum (called (h, h̄) in section 3.2 there); it was later
explained that going from the (z, z̄) Regge limit to the impact parameter representation
simply cancels factors of γγ (see eq. (2.31) of [23]). Here our starting point was simply an

9We used that K(∆, J)there = 1
K(∆,J)here

(2∆−d)4−J
π2γ(∆−J)γ(d−∆−J) . Furthermore, comparing eqs. (28)

and (43) of [7] with our eq. (2.8) we find b+J (ν)there = 2−J
π2 (bt + bu)here, and, from eq. (54) there:

β(ν)there = −π2 Res
J=j∗(∆)

b+J (ν)there.
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observed identity regarding the asymptotics of blocks, eq. (5.29), generalized from integer
spins, and we view the results of [23, 46] as further supporting that identity.

To our knowledge, it is an open question whether the function b is power-behaved or
not, or equivalently, whether the integral (5.30) (or equivalently (2.31) of [23]) converges
pointwise. This is not implied by the Lorentzian inversion formula, but it is known to be
true perturbatively in holographic theories. If this were to hold nonperturbatively, one
could imagine a version of eq. (5.30) (including subleading corrections) that represents the
exact spectral function, that is a sum over discrete δ-function, as opposed to just smeared
averages as considered here. We leave this to future investigation.

6 Concluding remarks

In this paper we studied the spectrum of the 3D Ising model at low spin, combining the
Lorentzian inversion formula developed in [6] with the numerical data from [5]. Two leading
twist families are our main focus; [σσ]0 which is the leading Z2-Even twist family and [σε]0
which is the leading Z2-Odd twist family. Two compelling questions are studied in this
work. First, can these trajectories which are proven to exist for J ≥ 2 be extended to
spin 0 to find ε and the shadow of σ? Second, what is the intercept of the leading Regge
trajectory, [σσ]0?

We started by studying a benchmark case, the stress tensor in section 3.1. This is
the spin 2 operator in [σσ]0 family. To evaluate the inversion integral to high accuracy
we used the method of dimensional reduction to express 3-dimensional blocks as sums of
2d ones with practically negligible errors (see [18] and appendix. A.1). We then summed
the conformal blocks over the known (truncated) spectrum determined in ref. [5], i.e., ε
and operators belonging to [σσ]0, [σσ]1 and [εε]0 families up to spin 40. We also added the
high-spin tails to these families, which are under analytic control. In figure 3 we compare
the stress-tensor anomalous dimension obtained from different truncation in cross-channel
expansion in terms of stability and overall error. We obtain a stable result for twist and
OPE coefficient with a controlled error at 10−4 levels (see table. 1).

We then proceeded to continuously lower the value of ∆ (and spin) to reach the
intercept. The intercept answers the question of whether high-energy scattering in the
2+1-dimensional version of the model is transparent or opaque. However, the method is very
different from studying such scattering processes directly using the OPE, since the integrals
computed in section 3.2 are dominated by a region of large impact parameter, where OPE
convergence is improved. Such shuffling around of information is familiar from dispersion
relations. In the vicinity of the intercept we use accurate integral representations of the ε
and T cross-channel blocks (see eqs. (3.10) and (3.11)), as well as suitable approximations
(ρ-expansion) for the direct channel blocks. The truncation of spectrum is reflected in the
z-dependence of the result as depicted in figure 12, and we obtain the value of the intercept
to be ∼ 0.8 with uncertainty less than 1 in the last digit.

By analytically continuing the leading trajectory fitted to a hyperbola (see figure 13)
we find a consistent picture where the ε operator and its shadow lie on a different branch
of the leading trajectory, although we were not able to use this method to compute the
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properties of ε numerically stable way. In the Z2-odd sector we find similar conclusions,
with a compelling picture of a odd-spin [σε]0 trajectory having a zero at the location of
an (absent) spin-1 current, and where the even-spin trajectory is compatible with passing
through the shadow of σ. This qualitatively picture arises rigorously in the large-N O(N)
model, as shown in section 5.2, with the [φiφj ]0 (discussed previously in [16, 38]) and [φiS]0
trajectories replacing [σσ]0 and [σε]0 respectively (see figure 13).

The finding that the intercept is below unity, j∗ < 1, indicates transparency in the
high-energy scattering of lumps or equivalently a negative Lyapunov exponent and absence
of chaos when the theory is placed in Rindler space. A specific prediction is regularity of
the heavy spectrum in eq. (5.30). While thus not chaotic, the 3D Ising CFT is certainly not
integrable, and a useful analogy may be the KAM theorem in classical mechanics, which
states (very roughly) that certain small enough deformations of an integrable system are not
chaotic.10 The approximately conserved quantities of the Ising CFT are likely higher-spin
currents [4, 50] and transparency suggests that these become increasingly powerful for heavy
operators with increasing dimensions.
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A Inversion integrals

In this appendix we discuss various inversion integrals employed in the body of the paper.
We first describe the dimensional reduction of 3-dimensional blocks over 2d ones, which
relies itself on a recursion for the series expansion of blocks; we present (for the first time) a
closed formula for the latter. Then we give analytic formulas for the inversion integral of 2d
block. Combined, these results provide an accurate way to compute the contribution of a
single cross-channel block. Lastly, we consider the collinear approximation to the exchange
of a single cross-channel block, which has been used to make comparison plots such as
in section 2.4.

A.1 Dimensional reduction for cross-channel blocks

In this section, we briefly review of the dimensional reduction method introduced in [18]
and employed in the body of the paper. The idea is to break the (Euclidean) d-dimensional
conformal group, SO(d+1, 1), to its subgroup SO(d,1). This will help us to write different

10We thank Alex Maloney for this analogy.
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representations of the latter group in terms of the former. A primary operator in d-
dimensions is a sum of infinitely many primaries in (d − 1)-dimensions. This is because
a state corresponding to a primary operator must be annihilated by all the generators of
special conformal translations, Kµ. Primaries of both of both groups are annihilated by
K1, . . . ,Kd−1 but only SO(d) primaries are annihilated by Kd. Loosely speaking, taking
derivatives with Pd generates new SO(d − 1) primaries. The SO(d) angular momentum
multiplets also decompose into SO(d− 1) multiplets. This consequently means that any
d-dimensional conformal multiplet of spin J and dimension ∆ can be decomposed in terms
of infinitely many d− 1 dimensional mutiplet with spin 0 ≤ ` ≤ J and dimensions ∆ +m

with m ≥ 0. This in turn means that conformal blocks should also follow this decomposition
rule so that a d-dimensional conformal block can be written as follows:11

G
(a,b)
∆,J (z, z̄; d) =

∑
A(a,b)
m,n (∆, J)G(a,b)

∆+m,`−n(z, z̄; d− 1) 0 ≤ n ≤ J, m = 0, 1, 2 . . . ,
(A.1)

where again a = ∆2−∆1
2 and b = ∆3−∆4

2 .
The coefficients with m = 0 describe the dimensional reduction of Gegenbauer polyno-

mials and are given as

A(a,b)
0,n (∆, J) =

ZJn/2 , n even
0 , otherwise

(A.2)

with, in our conventions,

Zt ≡
(−1)t(1

2)t(−J)2t

t! (J − 2t+ d−1
2 )t(−J − d−4

2 )t
(A.3)

with (a)b ≡ Γ(a+b)
Γ(a) the Pochhammer symbol. Generally, the other coefficients vanish unless

m ≡ n modulo 2. They can be obtained recursively by comparing the radial expansion
of the blocks in the two dimensions. This recursion was given for identical operators in
ref. [18] and we state here the general case:

A(a,b)
m,n (∆, J) =

m+n
2∑

p=max(−m−n2 ,0)

(
ZJ−n+2p
p a

(a,b)
m+n

2 −p,m−n2 +p(∆, J ; d)
)

−
m∑

m′=1

∑
n′

A(a,b)
m−m′,n−n′(∆, J)a(a,b)

m′+n′
2 ,m

′−n′
2

(∆ +m−m′, J − n+ n′; d− 1) .

(A.4)
where the sum over n′ ranges from max(−m′, n− J + δm′+n−`,odd) to min(m′, n) in steps
of 2. The coefficients a describe the radial expansion of blocks:

G
(a,b)
∆,J (z, z̄; d) =

∑
r,s≥0

a(a,b)
r,s (∆, J ; d)(zz̄)

∆+r+s
2 CJ+s−r

(
z + z̄

2
√
zz̄

; d
)
. (A.5)

In the case of identical operators, a closed form solution to eq. (A.4) was given in ref. [18],
which we reproduced. As shown in that reference, the expansion (A.1) converges very
rapidly, always at least as fast as the ρ-series.

11Our subscripts differ from ref. [18] as: mhere = 2mthere, as required for non-identical operators.
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A.2 New closed-form expression for radial expansion coefficients

The coefficients in eq. (A.5) are to be determined using another recursion [33] (see for
example appendix A of ref. [6] for nonidentical operators). We do not reproduce that
recursion here, because, inspired by recent formulas by Li [51] and a bit of guesswork, we
were able to find a closed formula!

a(a,b)
r,s (∆, J ; d) =

(
∆−J+2−d

2 + a
)
r

(
∆−J+2−d

2 + b
)
r

r!(∆−J+2−d)r(−J − d−2
2 )r(J − r + d−2

2 )r

(
∆+J

2 + a
)
s

(
∆+J

2 + b
)
s

s!(∆ + J)s

×
min(r,s)∑
p=0

(
(−1)p4F3

[
−r+p −s+p p ∆−1

∆+p−d−2
2 J+d−2−r+p −J−s+p−d−2

2
; 1
]

×
(2−d

2 )p(4−d
2 )p(−r)p(−s)p(d−1−∆+J−r)p(−J)r−p

p!(∆− d−2
2 )p(−J − s− d−2

2 )p(J+d−2)p−r

)
.

(A.6)

Note from eq. (A.5) that r increases the twist of the descendants and s the conformal spin.
The logic of this formula is that coefficients get progressively more complicated as one
goes away from the leading twist or leading conformal spin, where only the p = 0 term
contributes in both cases; a pattern was guessed empirically by working away from these
simple limits. The formula truncates in d = 2 and d = 4 due to the Pochhammers. In fact
the limit to even spacetime dimensions gives annoying 0/0 forms, and to evaluate eq. (A.4)
in d = 2 we use the following simplified result:

a(a,b)
r,s (∆, J ; d=2) = 1

1 + δJ,0

(
∆−J

2 + a
)
r

(
∆−J

2 + b
)
r

r!(∆− J)r

(
∆+J

2 + a
)
s

(
∆+J

2 + b
)
s

s!(∆ + J)s

×
(

1 + (−r)J(∆ + s)J
(1−∆− r)J(1 + s)J

) (A.7)

which is valid for j + s− r ≥ 0 and should be set to 0 otherwise.

A.3 Lorentzian inversion in 2d

The 3d to 2d series (A.1) is useful for this work because of exact results for inversion integrals
that exist in d = 2. Let us denote as c∆1,∆2,∆3,∆4

∆′,J ′ (β, z; d=2) the contribution eq. (2.21)
coming from a 2d t-channel block of (∆′, J ′), as defined in eq. (2.4). Using eq. (3.38) in [52]
(see also [17, 53]), the result (integrated from z̄ ≥ 0 instead of z̄ ≥ z!) is written as:

c∆1,∆2,∆3,∆4
∆′,J ′ (β, z; d=2) = z

∆1+∆2
2

(1− z)
∆2+∆3

2

I
∆1
2 ···

∆4
2

∆′+J′
2

(
β
2

)
k

(a′,b′)
∆′−J ′(1− z) + (J ′ 7→ −J ′)

1 + δJ ′,0
,

(A.8)
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where a′ = ∆2−∆3
2 , b′ = ∆1−∆4

2 and Ih1···h4
h′ (h) is the one-dimensional inversion given as:

Ih1···h4
h′ (h) = Γ(h+ h21)Γ(h+ h43)

Γ(h2 + h3 − h′)Γ(h1 + h4 − h′)Γ(2h− 1)
Γ(h− h′ + h1 + h3 − 1)
Γ(h+ h′ − h1 − h3 + 1)

× 4F3

[
h′+h23 h′+h41 h′−h1−h4+1 h′−h2−h3+1

2h′ h+h′−h1−h3 h′−h−h1−h3+2 ; 1
]

+ 2 sin
(
π(h′−h2−h3)

)
sin
(
π(h′−h1−h4)

)
κ

(h12,h34)
2h

× 4F3

[
h+h34 h+h12 h+h1+h2−1 h+h3+h4−1

2h h+h′+h1+h3−1 h−h′+h1+h3
; 1
]

(A.9)

with hij = hi − hj . This result, inserted in the 3d to 2d expansion (A.1), gives the
formula (2.26) which is used repeatedly in this paper.

We stress that the analytic result (A.9) is only valid when integrating over the complete
range 0 ≤ z̄ ≤ 1 in the inversion integral (2.21), whereas the formula instructs us to
invegrate only over z ≤ z̄ ≤ 1. Since in practice we work at small z, we can correct for
this discrepancy by subtracting from eq. (A.9) the integral of the first few terms in the
z̄ → 0 Taylor series of the integrand. For very small z this is completely negligible, but for
moderate values like z ∼ 10−2 this is important for our precision study.

The hypergeometric series in eq. (A.9) terminates in special cases such as h′ = h32.
These correspond to power laws in the t-channel. Setting h1 + h2 = τ , h21 = a and h34 = b

the formula reduces to the integral recorded in eq. (4.7) of [6] (using also a↔ b symmetry):

I(a,b)
τ (β) ≡

∫ 1

0

dz

z2 κ
(a,b)
β k

(−a,−b)
β (z)dDisc

[(1− z
z

) τ
2−b

z−b
]

= 1
Γ
(
− τ

2 + b
)

Γ
(
− τ

2 − a
) Γ
(
β
2 − a

)
Γ
(
β
2 + b

)
Γ(β − 1)

Γ
(
β
2 −

τ
2 − 1

)
Γ
(
β
2 + τ

2 + 1
) . (A.10)

This integral allows to deal exactly with identity exchange and more generally large-spin
perturbation theory. The first hypergeometric function in eq. (A.9) can be interpreted as
summing up the (1− z̄)/z̄ series according to this integral; this series is asymptotic, and the
second hypergeometric can be interpreted as a nonperturbative correction at large spin [17].

A.4 Collinear expansion z̄ → 1 for cross-channel exchanged blocks

Taking the limit z → 0 of G∆,J(z, z̄) or z̄ → 1 of G∆,J(1 − z̄, 1 − z) is a straightforward
procedure. In this limit the quadratic Casimir equation becomes a hypergeometric equation
so the leading behaviour of the conformal blocks in this limit is

G∆,J → z
∆−J

2 k∆+J(z̄) , (A.11)

where kβ(z) is defined in (2.5). A nice way to organize the expansion, which was discussed
for example in [6], is in terms of these functions since they control the SL2(R) part of the
conformal group that remains after taking the limit. With a convenient factor extracted
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and focusing on d = 3, the expansion that we use is√
1− z/z̄ G∆,J(z, z̄) =

∞∑
m=0

z
τ
2 +mh

(m)
∆,J(z̄) , (A.12)

with
h

(m)
∆,J(z̄) =

m∑
n=−m

h
(m,n)
∆,J kβ+2n(z̄) . (A.13)

The quadratic Casimir equation then gives the following recursion relation in m (see [6]):
m∑

n=−m
(n(n+ β − 1) +m(m+ τ − 2))h(m,n)

∆,J kβ+2n(z̄)

=
(
τ − 3

2 +m+ a

)(
τ − 3

2 +m+ b

)
h

(m−1)
∆,J (z̄)− 1

4

m∑
m′=1

(2m′

z̄m′
− 2m′ − 1

z̄m′−1

)
h

(m−m′)
∆,J (z̄) .

(A.14)
To isolate the coefficient of kβ+2n(z̄) on the right-hand-side we need to use the shift relation

1
z̄
kβ(z̄) = kβ−2(z̄) +

(1
2 −

2ab
β(β − 2)

)
kβ(z̄) +

(β
2

4 − a
2)(β

2

4 − b
2)

β2(β2 − 1) kβ+2(z̄) , (A.15)

to eliminate all explicit appearance of z̄, after which we can solve recursively for the
coefficients h(m,n)

∆,J .
The result of the recursion can finally be combined with the prefactor in eq. (A.12) to

expand the block in pure powers of z. The first two terms of this expansion are

G∆,J(z, z̄)≈ z
τ
2 kβ(z̄)+z

τ
2 +1

[
β−τ

2(β−τ−1)kβ−2(z̄)+ (β2−4a2)(β2−4b2)(β+τ−2)
32β2(β2−1)(β+τ−1) kβ+2(z̄)

+
(
τ+2a+2b

4 +
ab
(
(β−1)2−τ+1

)
β(β−2)(τ−1)

)
kβ(z̄)

]
+O(z̄

τ
2 +2) .

(A.16)
For blocks with J non-integer, the same formulas give the expansion of gpure

∆,J (z, z̄).

B Compact approximations from large-spin perturbation theory

In this appendix we record compact but surprisingly accurate approximations for the
OPE data based on large-spin perturbation theory. Our formulas are essentially simplified
versions of results from [5].

Starting from the Lorentzian inversion formula, the idea is to truncate the t-channel
sum to just identity and a small number of operators. For each operator, we keep only the
leading term at large spin or β →∞, which comes from z̄ → 1, and we extract anomalous
dimensions by looking at logarithmic terms as z → 0.

Considering the exchange of an operator O of twist τO = ∆O − JO and conformal spin
βO = ∆O + JO, we take the double limit (z, z̄) → (0, 1) (for example starting from the
z̄ → 1 limit recorded in eq. (2.30)):

lim
z→0,z̄→1

G
(0,0)
∆O,JO(1− z̄, 1− z)→ −2Γ(βO)

Γ(βO2
)2 (1− z̄)

τO
2
(

1
2 log z +H

(
βO
2 − 1

))
(B.1)
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where H(x) = ψ(x + 1) − ψ(1) is the harmonic number. Plugging into the inversion
integral (2.22) (replacing (1− z̄) by 1−z̄

z̄ ) and expanding eq. (A.10) at large β, we obtain
the following approximation to the collinear generating function:

Ct(z, β) + Cu(z, β) ≈ C(0)
[σσ]0(β)z∆σ

[
1−

∑
O

2f2
σσOΓ(βO)Γ(∆σ)2

Γ(βO2
)2Γ

(2∆σ−τO
2

)2 1
2 log z +H(βO2 − 1)

[(β − 1)/2]τO

]
,

(B.2)
where we defined the mean-field theory coefficient on the leading trajectory:

C
(0)
[σσ]0(β) ≡ 2I(0,0)

−2∆σ
= 2Γ (β)

Γ
(
β
2

)2
1

Γ (∆σ)2

Γ
(
β
2 + ∆σ − 1

)
Γ
(
β
2 −∆σ + 1

) . (B.3)

We stress that in eq. (B.2) only the lowest few operators should be included in the sum,
which is not a convergent sum. We include only ε and T . As noted in the main text, we
expand in 1/(β − 1) because the series is even in that variable. Taking the coefficient of
1
2 log z, and the constant, respectively, gives the “pocket-book” formula recorded for the
twist in eq. (2.31), and a corresponding formula for the OPE coefficients (including the
Jacobian factor in eq. (2.20)):

τ[σσ]0 ≈ 2∆σ −
∑
O=ε,T

2λ2
σσOΓ(∆σ)2

Γ
(
∆σ − τO

2
)2 Γ(βO)

Γ
(βO

2
)2 ( 2

β − 1

)τO
,

f2
σσ[σσ]0 ≈

C
(0)
[σσ]0(β)

1− dτ[σσ]0
dβ

1−
∑
O=ε,T

2λ2
σσOΓ(∆σ)2

Γ
(
∆σ − τO

2
)2 Γ(βO)

Γ
(βO

2
)2H (

βO
2 − 1

)( 2
β − 1

)τO . (B.4)

Note that β = ∆ + J = τ + 2J enters the formula for τ . To compute the twist of an
operator of given spin J , we first evaluate the first line with β 7→ 2∆σ + 2J to get a crude
approximation to τ ; we then iterate using the improved value β 7→ τ + 2J . The procedure
converges rapidly. The resulting value of β is then inserted in both equations. In figure 24
we compare this formula with the numerical data of ref. [5]. Both plots exhibit relative
accuracy better than 10−4 for all twists and the stress tensor OPE coefficients, but the
relative error is closer to 10−3 for the spin-4 OPE coefficient.

Given the error budget discussed in section 3.1, we believe that the remarkable accuracy
of the approximation at spin J = 2 is a lucky accident of that particular formula. Indeed,
in the absence of accident one would expect the discrepancy to be significantly larger for
J = 2 than for J = 4.

For the subleading trajectories, [σσ]1 and [εε]0 are near-degenerate and mix substantially,
as pointed out in [5]. We thus need to study a 2×2 matrix of correlators. We including only
exchange and identity and the logarithmic term from exchange of σ. We begin with identity
exchange, first pretending that 2∆ε ≈ 2∆σ + 2 so as to make the operators degenerate. We
then expanding the Lorentzian inversion formula to second order in z where needed (ie. to
subtract descendants of [σσ]0):

M (0) ≡
(
Cσσσσ Cσσεε
Cεεσσ Cεεεε

)
z≈2∆σ+2

=
Γ
(β

2
)2

Γ(β − 1)

 ∆σ− 1
2

Γ(∆σ)2

(
2

β−1

)2−2∆σ

0

0 2
Γ(∆ε)2

(
2

β−1

)2−2∆ε

 .

(B.5)
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Figure 24. Comparison of the large-spin approximation (B.4) for the [σσ]0 family with the numerical
data of [5], for the twist and OPE coefficients (divided by mean field theory). Only numerical errors
are shown: discrepancies on the left-hand side of the plots should be attributed to shortcomings in
the approximation not data.

To get anomalous dimensions we look for logarithmic terms 1
2 log z. We keep two sources:

identity exchange expanded to linear order in (2∆ε−2∆σ−2), and σ-exchange. Multiplying
by (M (0))−1/2 on both sides to properly normalize the states, we find that the twists of the
[σσ]1 and [εε]0 families are the eigenvalues of the following matrix (respectively the higher
and lower eigenvalues):

τ{[σσ]1,[εε]0} =
(

2∆σ+2 X

X 2∆ε

)
(B.6)

with off-diagonal term

X = 4f2
σσεΓ(∆ε)Γ(∆σ −∆ε)Γ(∆σ)2

Γ
(∆ε

2
)2Γ

(2∆σ−∆ε
2

)2 ∆ε −∆σ − 1√
2∆σ − 1

( 2
β − 1

)∆σ

. (B.7)

To find the OPE coefficients we compare a certain derivative of the matrix of generating
functions (2z∂z − τ[εε]0)C with the OPE:

(τ[σσ]1 − τ[εε]0)
(
fσσ[σσ]1
fσσ[εε]0

)(
fσσ[σσ]1 fσσ[εε]0

)
= (M (0))1/2

[
τ{[σσ]1,[εε]0} − 1τ[εε]0

]
(M (0))1/2 .

(B.8)
The right-hand-side is an explicitly given matrix of rank 1 and so the equation allows to
solve for fσσ[σσ]1 and fεε[σσ]1 , up to overall sign conventions; couplings to the [εε]0 family are
obtained similarly. These approximations are plotted in figure 25. Note that the accuracy
is less than for [σσ]0 since the approximation is more complicated due to the mixing yet far
cruder (we did not even account for ε exchange).

C Convexity of the leading trajectory

Here we give an elementary proof that the region of convergence of the Lorentzian inversion
formula, in the real (∆, J) plane, is convex. We consider a correlator of identical operators,
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Figure 25. Same as figure 24 but for the [σσ]1 and [εε]0 families (top and bottom, respectively).

so dDiscG is a positive-definite distribution. Consider first the integration region where
z � z̄ � 1. In this region, the block in eq. (2.11) has an exponential-like dependence on
J,∆: GJ+d−1,∆+1−d ∝ z

J−∆
2 +d−1z̄

∆+J
2 . The basic point is that the exponential function

is convex:
exA+(1−x)B ≤ xeA + (1− x)eB, 0 ≤ x ≤ 1 . (C.1)

Therefore if the integral (2.11) converges at the two points (∆A, JA) and (∆B, JB), it
automatically converges everywhere along the line segment joining them: the region of
convergence is convex. Increasing J can only improve convergence, and adding imaginary
parts does not affect convergence.

The conformal blocks which enter the Lorentzian inversion formula are more complicated
functions than exponentials, but we can apply the same logic. A better model, which
reflects the shadow-symmetry of the curve, is a cosh function; indeed the z ∼ z̄ � 1 limit
of the blocks, in eq. (2.6), is bounded above and below by a multiple of a cosh:

c1g(z) cosh
(

1
2(∆− d

2) log z
z̄

)
≤ C∆+1−d

(
z + z̄

2
√
zz̄

)
≤ c2g(z) cosh

(
1
2(∆− d

2) log z
z̄

)
(C.2)

where g(z) = cosh
(1

2(1− d
2) log z

z̄

)
and the constants c1 and c2 depend only on spacetime

dimension but work uniformly for all ∆, z, z̄. This shows that Lorentzian inversion converges
if and only if the cosh model converges, and since cosh is a sum of two exponentials we
can apply eq. (C.1). This takes care of the region z ∼ z̄ � 1. The last region which can
potentially affect convergence is z → 0 with z̄ ∼ 1, but in this region the z and z̄ dependence
of the block largely decouple and the dependence on the dangerous variable z → 0 is again
exponential as in eq. (C.1). We conclude that if Lorentzian inversion converges at two real
points (∆A, JA) and (∆B, JB), it also converges at all points with Re(∆) and Re(J) on or
above the line segment joining them.
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