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We study the class of nonlinear Klein–Gordon–Maxwell systems describing a
standing wave (charged matter field) in equilibrium with a purely electrostatic field.
We improve some previous existence results in the case of an homogeneous
nonlinearity. Moreover, we deal with a limit case, namely when the frequency of the
standing wave is equal to the mass of the charged field; this case shows analogous
features of the well-known ‘zero-mass case’ for scalar field equations.

1. Introduction

This paper is concerned with a class of Klein–Gordon–Maxwell systems written as
follows:

−∆u + [m2 − (eφ − ω)2]u − f ′(u) = 0 in R
3,

∆φ = e(eφ − ω)u2 in R
3.

}
(1.1)

This system was introduced in the pioneering work of Benci and Fortunato [5] in
2002. It represents a standing wave ψ = u(x)eiωt (charged matter field) in equilib-
rium with a purely electrostatic field E = −∇φ(x). The constant m � 0 represents
the mass of the charged field and e is the coupling constant introduced in the
minimal coupling rule [20].

It is immediately seen that (1.1) deserves some interest as system if and only if
e �= 0 and ω �= 0; otherwise we get φ = 0. Throughout the paper we are looking for
non-trivial solutions, i.e. solutions such that φ �= 0.

Moreover, we point out that the sign of ω is not relevant for the existence of
solutions. Indeed, if (u, φ) is a solution of (1.1) with a certain value of ω, then
(u, −φ) is a solution corresponding to −ω. So, without loss of generality, we shall
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Figure 1. Comparison between g(p) and g0(p).

assume ω > 0. Analogously, the sign of e is not relevant, so we assume e > 0.
Actually, the results we shall prove do not depend on the value of e.

Let us recall some previous results that led us to the present research. The first
results are concerned with an homogeneous nonlinearity f(t) = |t|p/p. Therefore,
(1.1) becomes

−∆u + [m2 − (eφ − ω)2]u − |u|p−2u = 0 in R
3,

∆φ = e(eφ − ω)u2 in R
3.

}
(1.2)

As stated above, the first result is due to Benci and Fortunato [5]. They showed
the existence of infinitely many solutions whenever p ∈ (4, 6) and 0 < ω < m.

In 2004, D’Aprile and Mugnai published two papers on this topic. In [16] they
proved the existence of non-trivial solutions of (1.1) when p ∈ (2, 4] and ω varies in
a certain range depending on p:

0 < ω < mg0(p),

where

g0(p) =

√
p − 2

2
.

Afterwards, in [17], the same authors showed that (1.1) has no non-trivial solutions
if p � 6 and ω ∈ (0, m] (or p � 2).

Our first result gives a little improvement on problem (1.1) with p ∈ (2, 4).

Theorem 1.1. Let p ∈ (2, 4). Assume that 0 < ω < mg(p), where

g(p) =

{√
(p − 2)(4 − p) if 2 < p < 3,

1 if 3 � p < 4.

Then (1.2) admits a non-trivial weak solution (u, φ) ∈ H1(R3) × D1,2(R3).

It can immediately be seen that g0(p) < g(p), for any p ∈ (2, 4); this is shown in
Figure 1.

Under the above assumptions, the problem (1.2) is of a variational nature. Indeed,
its weak solutions (u, φ) ∈ H1(R3)×D1,2(R3) can be characterized as critical points
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of the functional S : H1(R3) × D1,2(R3) → R defined as

S(u, φ) = 1
2

∫
R3

|∇u|2 − |∇φ|2 + [m2
0 − (ω + eφ)2]u2 − 1

p

∫
R3

|u|p.

The first difficulty in dealing with the functional S is that it is strongly indefinite,
namely it is unbounded both from below and from above on infinite-dimensional
subspaces.

To avoid this indefiniteness, we will use a well-known reduction argument, stated
in theorem 2.2. The finite energy solutions of (1.1) are pairs (u, φu) ∈ H1(R3) ×
D1,2(R3), where φu ∈ D1,2(R3) is the unique solution of

∆φ = e(eφ − ω)u2 in R
3 (1.3)

(see lemma 2.1) and u ∈ H1(R3) is a critical point of

I(u) = S(u, φu).

The functional I no longer presents the strong indefiniteness. Under the assump-
tions of theorem 1.1, it will be studied by using an indirect method developed by
Struwe [26] and Jeanjean [22].

In the second part of the paper we consider a more general nonlinearity f(u).
Under usual assumptions, which describe behaviours analogous to |t|p (with p ∈

(4, 6)), it is easy to obtain a generalization of the existence result [5] of Benci and
Fortunato; we state this generalization in lemma 3.1. However, we point out that
all the quoted results share the assumption ω < m.

We are mainly interested in studying the limit case ω = m, when (1.1) becomes

−∆u + (2eωφ − e2φ2)u − f ′(u) = 0 in R
3,

∆φ = e(eφ − ω)u2 in R
3.

}
(1.4)

If we assume, as above, f ′′(0) = 0, we notice that the first equation in (1.4) has
the form of a nonlinear Schrödinger equation with a potential vanishing at infinity.
Indeed, if φ ∈ D1,2(R3) (and is radial), we have

lim
|x|→∞

(2eωφ − e2φ2) = 0.

So we are in the so-called zero-mass case for nonlinear field equations (see, for
example, [11] and [10]).

As in the cited papers, in order to get solutions, we need some stronger hypotheses
on f , which force it to be inhomogeneous, with a supercritical growth near the origin
and subcritical at infinity. More precisely, we assume that f : R → R satisfies the
following assumptions:

(f1) f ∈ C1(R, R);

(f2) ∀t ∈ R \ {0} : αf(t) � f ′(t)t;

(f3) ∀t ∈ R : f(t) � C1 min(|t|p, |t|q);

(f4) ∀t ∈ R : |f ′(t)| � C2 min(|t|p−1, |t|q−1);
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with 4 < α � p < 6 < q and C1, C2, positive constants. We shall prove the following
result.

Theorem 1.2. Assume that f satisfies the above hypotheses. Then there exists a
couple (u0, φ0) ∈ D1,2(R3) × D1,2(R3) that is a weak solution of (1.4).

Under the assumptions of theorem 1.2, standard arguments (again lemma 3.1)
yield the existence of (u, φ) ∈ H1(R3) × D1,2(R3) weak solutions of (1.1) in the case
ω < m. The limit case ω = m is trickier.

Even if the claim of theorem 1.2 is analogous to the cited existence results
(e.g. theorem 1.1) and the meaning of ‘weak solution’ is the same, the approach
in the proof is completely different. More precisely, in the zero-mass case, there
exists no functional S defined on D1,2(R3) × D1,2(R3) such that its critical points
are weak solutions of (1.4).

As above, we could consider a functional S : H1(R3) × D1,2(R3) → R whose crit-
ical points are finite energy weak solutions. For every u ∈ H1(R3) we can find
φu ∈ D1,2(R3), the solution of (1.3). Then we could consider the reduced functional Word added – OK?

I(u) = S(u, φu). The reduced functional I has the form

I(u) = S(u, φu) = 1
2

∫
R3

|∇u|2 + eωφuu2 −
∫

R3
f(u).

For such a functional the mountain-pass geometry in H1(R3) is not immediately
available.

The solution (u0, φ0) ∈ D1,2(R3) × D1,2(R3) will be found as limit of solutions of
approximating problems

−∆u + (ε + 2eωφ − e2φ2)u − f ′(u) = 0 in R
3,

∆φ = e(eφ − ω)u2 in R
3.

}
(1.5)

For every ε > 0, lemma 3.1 yields a solution (uε, φε) ∈ H1(R3) × D1,2(R3). The
stronger assumptions on f (subcritical at infinity, supercritical at zero) give rise to
uniform estimate in D1,2(R3) × D1,2(R3) which allows one to pass to the limit as
ε → 0. A similar approach has been used in [4, 12].

Before giving the proof of theorems 1.1 and 1.2, let us recall some other results
concerning (1.1). In [15] and [14] there are existence and non-existence results when
f has a critical growth at infinity. The existence of a ground state for (1.2), under
the existence assumptions of [16], is proved in [2]. Other recent papers (see, for
example, [7, 25]) are concerned with the Klein–Gordon–Maxwell system with a
completely different kind of nonlinearity, satisfying

1
2m2t2 − f(t) � 0.

The solutions in this case are called ‘non-topological solitons’. In [7] the existence
is proved of a non-trivial solution if the coupling constant e is sufficiently small. A
perturbation theory, using the e = 0 as starting point, was developed in [23, 24].
There are also some results for the system (1.1) in a bounded spatial domain [13,
18,19]. In this situation, existence and non-existence of non-trivial solutions depend
on the boundary conditions, the boundary data, the kind of nonlinearity and the
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value of e. Lastly, we refer the reader to the review paper [21], which contains a
large number of references on this topic, including existence results for other classes
of Klein–Gordon–Maxwell systems, obtained with a more general ansatz (see, for
example, [8, 9]).

In the following sections we shall prove theorems 1.1 and 1.2, respectively. The
appendix contains the proof of a certain inequality, used in § 2, which involves only
elementary calculus arguments.

2. Proof of theorem 1.1

We need the following.

Lemma 2.1. For any u ∈ H1(R3), there exists a unique φ = φu ∈ D1,2(R3) which
satisfies

∆φ = e(eφ − ω)u2 in R
3.

Moreover, the map Φ : u ∈ H1(R3) �→ φu ∈ D1,2(R3) is continuously differentiable,
and on the set {x ∈ R

3 | u(x) �= 0}

0 � φu � ω

e
. (2.1)

Proof. The proof can be found in [5, 17].

Theorem 2.2. The pair (u, φ) ∈ H1(R3) × D1,2(R3) is a solution of (1.2) if and
only if u is a critical point of

I(u) = S(u, φu) = 1
2

∫
R3

|∇u|2 + (m2 − ω2)u2 + eωφuu2 − 1
p

∫
R3

|u|p,

and φ = φu.

For the sake of simplicity we set Ω = m2 − ω2 > 0.
With our assumptions, it is a hard task to find bounded Palais–Smale sequences

of functional I. Therefore, we use an indirect method developed by Struwe [26] and
Jeanjean [22]. We look for the critical points of the functional Iλ ∈ C1(H1

r (R3), R)

Iλ(u) = 1
2

∫
R3

|∇u|2 + Ωu2 + eωφuu2 − λ

p

∫
R3

|u|p,

for λ close to 1, where

H1
r (R3) := {u ∈ H1(R3) | u is radially symmetric}.

Set a positive number δ < 1 (which we will estimate later), J = [δ, 1] and

Γ := {γ ∈ C([0, 1], H1
r (R3)) | γ(0) = 0, Iλ(γ(1)) < 0 for all λ ∈ J}.

Using a slightly modified version of [22, theorem 1.1], the following can be proved.

Lemma 2.3. If Γ �= ∅ and, for every λ ∈ J ,

cλ := inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)) > 0, (2.2)
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then for almost every λ ∈ J there is a sequence (vλ
n)n ⊂ H1

r (R3) such that

(i) (vλ
n)n is bounded,

(ii) Iλ(vλ
n) → cλ,

(iii) I ′
λ(vλ

n) → 0.

In order to apply theorem 2.3, we need only to verify that Γ �= ∅ and (2.2) holds.

Lemma 2.4. For any λ ∈ J , we have that Γ �= ∅.

Proof. Let u ∈ H1
r (R3) \ {0} and let θ > 0. Define γ : [0, 1] → H1

r (R3) such that
γ(t) = tθu for all t ∈ [0, 1]. By (2.1), for any λ ∈ J , we have that

Iλ(γ(1)) = Iλ(θu) � θ2

2

∫
R3

|∇u|2 + Ωu2 + ω2u2 − δ
θp

p

∫
R3

|u|p,

and then certainly γ ∈ Γ for a suitable choice of θ.

Lemma 2.5. For any λ ∈ J , we have that cλ > 0.

Proof. Observe that, for any u ∈ H1
r (R3) and λ ∈ J , by (2.1), we have

Iλ(u) � 1
2

∫
R3

|∇u|2 + Ωu2 − 1
p

∫
R3

|u|p,

and then, by Sobolev embeddings, we conclude that there exists ρ > 0 such that,
for any λ ∈ J and u ∈ H1

r (R3) with u �= 0 and ‖u‖ � ρ, we obtain Iλ(u) > 0. In
particular, for any ‖u‖ = ρ, we have Iλ(u) � c̃ > 0. Now fix λ ∈ J and γ ∈ Γ . Since
γ(0) = 0 �= γ(1) and Iλ(γ(1)) � 0, certainly ‖γ(1)‖ > ρ. By continuity, we deduce
that there exists tγ ∈ (0, 1) such that ‖γ(tγ)‖ = ρ. Therefore, for any λ ∈ J ,

cλ � inf
γ∈Γ

Iλ(γ(tγ)) � c̃ > 0.

Proof of theorem 1.1. Let λ ∈ J , for which there exists a bounded Palais–Smale
sequence (vn

λ)n in H1
r (R3) for functional Iλ at level cλ, namely

Iλ(vn
λ) → cλ;

I ′
λ(vn

λ) → 0 in (H1
r (R3))′.

Up to a subsequence, we can suppose that there exists vλ ∈ H1
r (R3) such that

vn
λ ⇀ vλ weakly in H1

r (R3) (2.3)

and

vn
λ(x) → vλ(x) a.e. in R

N .

We make the following claims:

I ′
λ(vλ) = 0, (2.4)

vλ �= 0,

Iλ(vλ) � cλ. (2.5)

https://doi.org/10.1017/S0308210509001814 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210509001814


The electrostatic Klein–Gordon–Maxwell system 455

Claim (2.4) follows immediately by [2, lemma 2.7].
Suppose by contradiction that vλ = 0. Then, since vλ

n → vλ(≡ 0) in Lp(R3) and
I ′
λ(vλ

n)[vλ
n] = on(1)‖vλ

n‖, we have∫
R3

|∇vλ
n|2 + Ω(vλ

n)2 �
∫

R3
|∇vλ

n|2 + Ω(vλ
n)2 + 2eωφvλ

n
(vλ

n)2 − e2φ2
vλ

n
(vλ

n)2

= λ

∫
R3

|vλ
n|p + on(1)‖vλ

n‖ = on(1).

Hence, vλ
n → 0 in H1(R3) and we get a contradiction with (2.2).

We pass to proving (2.5). Since vλ
n → vλ in Lp(R3), by (2.3), by the weak lower

semicontinuity of the H1(R3)-norm and by Fatou’s lemma, we get Iλ(vλ) � cλ.
Now we may consider a suitable λn ↗ 1 such that, for any n � 1, there exists

vn ∈ H1
r (R3) \ {0} satisfying

I ′
λn

(vn) = 0 in (H1
r (R3))′, (2.6)

Iλn(vn) � cλn . (2.7)

We want to prove that such a sequence is bounded.
By [17], vn satisfies the Pohozaev equality∫

R3
|∇vn|2 + 3Ωv2

n + 5eωφvn
v2

n − 2e2φ2
vn

v2
n − 6λn

p

∫
R3

|vn|p = 0. (2.8)

Therefore, by (2.6)–(2.8), the following system holds:∫
R3

1
2 |∇vn|2 + 1

2Ωv2
n + 1

2eωφvnv2
n − λn

p
|vn|p � cλn , (2.9)∫

R3
|∇vn|2 + 3Ωv2

n + 5eωφvn
v2

n − 2e2φ2
vn

v2
n − 6λn

p
|vn|p = 0, (2.10)∫

R3
|∇vn|2 + Ωv2

n + 2eωφvnv2
n − e2φ2

vn
v2

n − λn|vn|p = 0. (2.11)

Subtracting from (2.9) equation (2.10) multiplied by α and (2.11) multiplied by
(1 − 6α)/p, we get

p − 2αp − 2 + 12α

2p

∫
R3

|∇vn|2 +
∫

R3
[Cp,αΩ + Bp,αeωφvn + Ap,αe2φ2

vn
]v2

n � cλn ,

where

Cp,α =
(p − 2)(1 − 6α)

2p
,

Bp,α =
p − 10αp − 4 + 24α

2p
,

Ap,α =
1 + 2α(p − 3)

p
.

It is easy to see that
p − 2αp − 2 + 12α

2p
> 0,
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if and only if

α >
2 − p

2(6 − p)
.

In the appendix (see lemma A.1) we will prove that there exists

α ∈
(

2 − p

2(6 − p)
,
1
6

)
: Cp,αΩ + Bp,αeωφvn

+ Ap,αe2φ2
vn

� 0.

Then we can argue that

‖∇vn‖2 � C for all n � 1. (2.12)

Moreover, by (2.6), we have

Ω

∫
R3

v2
n �

∫
R3

|∇vn|2 + Ωv2
n + 2eωφvn

v2
n − e2φ2

vn
v2

n = λn

∫
R3

|vn|p. (2.13)

Since for all ε > 0 there exists Cε > 0 such that tp � Cεt
6 +εt2, for all t � 0, taking

ε = Ω/2, by (2.13) we get

1
2Ω

∫
R3

v2
n � Cε

∫
R3

v6
n.

Therefore, by the Sobolev embedding D1,2(R3) ↪→ L6(R3) and (2.12) we deduce
that (vn)n is bounded in H1(R3).

Up to a subsequence, there exists v0 ∈ H1
r (R3) such that

vn ⇀ v0 weakly in H1
r (R3).

By (2.6), we have that

I ′(vn) = (Iλn
)′(vn) + (λn − 1)|vn|p−2vn = (λn − 1)|vn|p−2vn

so (vn)n is a Palais–Smale sequence for the functional I|H1
r
, since the sequence

(|vn|p−2vn)n is bounded in (H1
r (R3))′.

By [2, lemma 2.7], we have that I ′(v0) = 0.
To conclude the proof, it remains to check that v0 �= 0.
By (2.6), we have∫

R3
|∇vn|2 + Ωv2

n �
∫

R3
|∇vn|2 + Ωv2

n + 2eωφvn
v2

n − e2φ2
vn

v2
n �

∫
R3

|vn|p.

Then, there exists C > 0 such that ‖vn‖p � C. Since vn → v0 in Lp(R3), the proof
is concluded.

3. Proof of theorem 1.2

The following lemma generalizes the existence result of [5].

Lemma 3.1. Let f satisfy the following hypotheses:

(f1) f ∈ C1(R, R);
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(f2) ∃α > 4 such that ∀t ∈ R \ {0} : αf(t) � f ′(t)t;

(f5) f ′(t) = o(|t|) as t → 0;

(f6) ∃C1, C2 � 0 and p < 6 such that ∀t ∈ R: |f ′(t)| � C1 + C2|t|p−1.

Assume that 0 < ω < m. Then (1.1) admits a non-trivial weak solution (u, φ) ∈
H1(R3) × D1,2(R3).

We simply give an outline of the proof.

• Using the same reduction argument (lemma 2.1 and theorem 2.2) applied to
(1.1), it is immediately seen that (u, φ) ∈ H1(R3) × D1,2(R3) is a solution
of (1.1) if and only if u ∈ H1(R3) is a critical point of

I(u) = 1
2

∫
R3

|∇u|2 + (m2 − ω2)u2 + eωφuu2 −
∫

R3
f(u),

and φ = φu.

• The functional I satisfies the Palais–Smale condition in H1
r (R3).

• The functional I shows the mountain-pass geometry.

Remark 3.2. If f is odd, just like in [5], the Z2-mountain-pass theorem [1] yields
infinitely many solutions.

Now we can prove theorem 1.2.
As stated in § 1, for every ε > 0, we consider the approximating problem (1.5).

The above lemma gives the solution (uε, φε) ∈ H1(R3) × D1,2(R3). More precisely
these solution are found by means of the mountain-pass theorem and they are
radially symmetric, in the sense that uε ∈ H1

r (R3) is a critical point of

Iε(u) = 1
2

∫
R3

|∇u|2 + εu2 + eωφuu2 −
∫

R3
f(u),

at the level
cε = inf

g∈Γε

max
θ∈[0,1]

Iε(g(θ)),

where

Γε = {g ∈ C([0, 1], H1(R3)) | g(0) = 0, Iε(g(1)) � 0, g(1) �= 0}.

Moreover, uε belongs to the Nehari manifold of Iε:

Nε =
{

u ∈ H1(R3) \ {0}
∣∣∣∣
∫

R3
|∇u|2 + εu2 + 2eωφuu2 − e2φ2

uu2 =
∫

R3
f ′(u)u

}
.

In the following, we will refer to those approximating solutions as ε-solutions.

Lemma 3.3. There exists C > 0 such that cε < C, for any 0 < ε � 1.
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Proof. Fix g ∈ Γ1 and let 0 < ε � 1. Then, for a suitable θε and since g ∈ Γε, we
have

cε � max
θ∈[0,1]

Iε(g(θ)) = Iε(g(θε)) � I1(g(θε)) � max
θ∈[0,1]

I1(g(θ)).

Lemma 3.4. There exists C > 0 such that ‖uε‖D1,2 � C, for any ε > 0. Moreover,
for any ε > 0, ∫

R3
f ′(uε)uε � C. (3.1)

Proof. Since uε is solution of (1.5), using (2.1), we have∫
R3

|∇uε|2 �
∫

R3
|∇uε|2 + εu2

ε + 2eωφuεu
2
ε − e2φ2

uε
u2

ε

=
∫

R3
f ′(uε)uε

� C

∫
R3

|uε|6

� C

( ∫
R3

|∇uε|2
)3

and so we conclude the proof.

We need a uniform boundedness estimate on the family of the ε-solutions, letting
ε go to zero.

We obtain the following result.

Lemma 3.5. There exists a positive constant C which is a uniform upper bound for
the family (uε, φuε)ε>0 in the D1,2(R3) × D1,2(R3)-norm.

Proof. We have

1
2

∫
R3

|∇uε|2 + εu2
ε + eωφuεu

2
ε −

∫
R3

f(uε) = cε,∫
R3

|∇uε|2 + εu2
ε + 2eωφuεu

2
ε − e2φ2

uε
u2

ε −
∫

R3
f ′(uε)uε = 0.

By lemma 3.3 and (f2) we deduce that(
α

2
− 1

) ∫
R3

|∇uε|2 + εu2
ε +

(
α

2
− 2

) ∫
R3

eωφuεu
2
ε � C, (3.2)

while, by (1.5)2, we have∫
R3

|∇φuε
|2 + e2φ2

εu
2
ε =

∫
R3

eωφuε
uε

2. (3.3)

Combining (3.2) and (3.3), we infer that (uε, φuε)ε>0 is bounded in the D1,2(R3) ×
D1,2(R3)-norm.
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Now we deduce that, for any εn → 0, there exist a subsequence of (uεn , φuεn
)n

(which we relabel in the same way), and (u0, φ0) ∈ D1,2(R3) × D1,2(R3) such that

uεn ⇀ u0 in D1,2(R3),

φuεn
⇀ φ0 in D1,2(R3).

We want to show that (u0, φ0) is a weak non-trivial solution of (1.4). From now
on, we use un and φn in place of uεn and φuεn

.

Proof of theorem 1.2. By [6, lemma 13] and [3, § 3], and by (3.1), we have that∫
R3

f ′(u0)u0 = lim
n

∫
R3

f ′(un)un � C > 0,

and so u0 �= 0.
Let us show that (u0, φ0) is a weak solution of (1.4), namely∫

R3
∇u0 · ∇ψ + 2eωφ0u0ψ − e2φ2

0u0ψ =
∫

R3
f ′(u0)ψ,∫

R3
∇φ0 · ∇ψ + e2φ0u

2
0ψ =

∫
R3

eωu2
0ψ,

for any ψ test function.
Since, for any n � 1, (un, φn) is a solution of (1.5), we have∫

R3
∇un · ∇ψ + εnunψ + 2eωφnunψ − e2φ2

nunψ =
∫

R3
f ′(un)ψ,∫

R3
∇φn · ∇ψ + e2φnu2

nψ =
∫

R3
eωu2

nψ.

Let us prove that ∫
R3

φnunψ →
∫

R3
φ0u0ψ. (3.4)

Indeed, defining K = supp(ψ), we observe that∣∣∣∣
∫

R3
φnunψ − φ0u0ψ

∣∣∣∣ �
∫

R3
|φnunψ − φnu0ψ| +

∫
R3

|φnu0ψ − φ0u0ψ|

�
∫

R3
|φn||un − u0||ψ| +

∫
R3

|φn − φ0||u0||ψ|

�
( ∫

R3
|φn|6

)1/6( ∫
K

|un − u0|6/5
)5/6

sup |ψ|

+
( ∫

K

|φn − φ0|6/5
)5/6( ∫

R3
|u0|6

)1/6

sup |ψ|,

and so we get (3.4), since un ⇀ u0 and φn ⇀ φ0 in H1(K).
Let us prove that ∫

R3
φ2

nunψ →
∫

R3
φ2

0u0ψ. (3.5)
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Indeed, we have∣∣∣∣
∫

R3
φ2

nunψ − φ2
0u0ψ

∣∣∣∣ �
∫

R3
φ2

n|un − u0||ψ| +
∫

R3
|φ2

n − φ2
0||u0||ψ|

�
( ∫

R3
|φn|6

)1/6( ∫
K

|un − u0|3/2
)2/3

sup |ψ|

+
( ∫

K

|φ2
n − φ2

0|6/5
)5/6( ∫

R3
|u0|6

)1/6

sup |ψ|

= on(1).

Therefore, by (3.4) and (3.5) and since ψ has compact support, we have∫
R3

∇un · ∇ψ︸ ︷︷ ︸
↓

+
∫

R3
εnunψ︸ ︷︷ ︸
↓

+
∫

R3
2eωφnunψ︸ ︷︷ ︸

↓

−
∫

R3
e2φ2

nunψ︸ ︷︷ ︸
↓

=
∫

R3
f ′(un)ψ︸ ︷︷ ︸

↓

,

∫
R3

∇u0 · ∇ψ + 0 +
∫

R3
2eωφ0u0ψ −

∫
R3

e2φ2
0u0ψ =

∫
R3

f ′(u0)ψ.

Analogously, we have∫
R3

∇φn · ∇ψ︸ ︷︷ ︸
↓

+
∫

R3
e2φnu2

nψ︸ ︷︷ ︸
↓

=
∫

R3
u2

nψ︸ ︷︷ ︸
↓

,

∫
R3

∇φ0 · ∇ψ +
∫

R3
e2φ0u

2
0ψ =

∫
R3

u2
0ψ.

In particular, by the latter identity, we infer that φ0 �= 0 and this concludes the
proof.
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Appendix A.

Lemma A.1. Let p ∈ (2, 4) and ω ∈ (0, g(p)m). Then there exists

α ∈ Ip =
(

2 − p

2(6 − p)
,
1
6

)
: Ap,αe2φ2

vn
+ Bp,αeωφvn + Cp,αΩ � 0,

where

Ap,α =
1 + 2α(p − 3)

p
,

Bp,α =
p − 10αp − 4 + 24α

2p
,

Cp,α =
(p − 2)(1 − 6α)

2p
.
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Proof. Keeping in mind (2.1), we must show that

f(t) = Ap,αt2 + Bp,αωt + Cp,αΩ � 0 for any t ∈ [0, ω]. (A 1)

First, we notice that, for any α ∈ Ip,

Ap,α > 0, Cp,α > 0.

Now we have to distinguish two cases: p ∈ (3, 4) and p ∈ (2, 3].

Case 1 (p ∈ (3, 4)). If α = (4 − p)/(24 − 10p) ∈ Ip, we have Bp,α = 0 and so we
have proved (A 1).

Case 2 (p ∈ (2, 3]). Since f reaches its minimum in −Bp,αω/2Ap,α and it belongs
to [0, ω], f is non-negative in [0, ω] if and only if

f

(
− Bp,αω

2Ap,α

)
� 0,

and, with straightforward calculations and using the fact that Ap,α + Bp,α = Cp,α,
this is equivalent to

m2

ω2 � (Ap,α + Cp,α)2

4Ap,αCp,α
. (A 2)

We set

Kp(α) :=
(Ap,α + Cp,α)2

4Ap,αCp,α
=

p2

8(p − 2)
(1 − 2α)2

1 − 6α

1
1 + 2α(p − 3)

and we shall prove that

inf
α∈Ip

Kp(α) =
1

(p − 2)(4 − p)
, (A 3)

and thus we may conclude. Indeed, if ω ∈ (0, g(p)m), then, by (A 3),

m2

ω2 > inf
α∈Ip

Kp(α),

and so there exists α ∈ Ip such that

m2

ω2 � Kp(α),

by which we deduce (A 2).
Let us now prove (A 3). Consider the case p = 3: in such a situation

K3(α) =
9
8

(1 − 2α)2

1 − 6α
and I3 = (− 1

6 , 1
6 ).

Since the function K3 is increasing in I3, we have

inf
α∈I3

K3 = K3(− 1
6 ) = 1

and so we have proved (A 3).
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Now, let us consider the case p ∈ (2, 3). We write

Kp(α) =
p2

8(p − 2)
H1(α)H2(α),

where

H1(α) :=
(1 − 2α)2

1 − 6α
, H2(α) :=

1
1 + 2α(p − 3)

.

Since, for i = 1, 2, Hi is a positive and increasing function in Ip, we have

inf
α∈Ip

Kp = Kp

(
2 − p

2(6 − p)

)
=

1
(p − 2)(4 − p)

,

and so we obtain (A 3).
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