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We study the class of nonlinear Klein—-Gordon-Maxwell systems describing a
standing wave (charged matter field) in equilibrium with a purely electrostatic field.
‘We improve some previous existence results in the case of an homogeneous
nonlinearity. Moreover, we deal with a limit case, namely when the frequency of the
standing wave is equal to the mass of the charged field; this case shows analogous
features of the well-known ‘zero-mass case’ for scalar field equations.

1. Introduction

This paper is concerned with a class of Klein—-Gordon—Maxwell systems written as
follows:

—Au+[m® = (e¢ — w)*|u— f'(u) =0 n RS’} (1.1)

A¢ = e(edp —w)u® in R3.

This system was introduced in the pioneering work of Benci and Fortunato [5] in
2002. It represents a standing wave 1) = u(z)e“? (charged matter field) in equilib-
rium with a purely electrostatic field E = —V¢(x). The constant m > 0 represents
the mass of the charged field and e is the coupling constant introduced in the
minimal coupling rule [20].

It is immediately seen that (1.1) deserves some interest as system if and only if
e # 0 and w # 0; otherwise we get ¢ = 0. Throughout the paper we are looking for
non-trivial solutions, i.e. solutions such that ¢ # 0.

Moreover, we point out that the sign of w is not relevant for the existence of
solutions. Indeed, if (u,¢) is a solution of (1.1) with a certain value of w, then
(u, —¢) is a solution corresponding to —w. So, without loss of generality, we shall
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Figure 1. Comparison between g(p) and go(p).

assume w > 0. Analogously, the sign of e is not relevant, so we assume e > 0.
Actually, the results we shall prove do not depend on the value of e.

Let us recall some previous results that led us to the present research. The first
results are concerned with an homogeneous nonlinearity f(¢) = |¢|?/p. Therefore,
(1.1) becomes

—Au+[m? — (e¢p — w)?|u — [ulP2u =0 in R?, Lo
A¢ =e(e¢p —w)u? in R (1-2)

As stated above, the first result is due to Benci and Fortunato [5]. They showed
the existence of infinitely many solutions whenever p € (4,6) and 0 < w < m.

In 2004, D’Aprile and Mugnai published two papers on this topic. In [16] they
proved the existence of non-trivial solutions of (1.1) when p € (2,4] and w varies in
a certain range depending on p:

0 < w < mgo(p),

where
p—2

go(p) = 9

Afterwards, in [17], the same authors showed that (1.1) has no non-trivial solutions
if p>6andw e (0,m] (or p < 2).
Our first result gives a little improvement on problem (1.1) with p € (2,4).

THEOREM 1.1. Let p € (2,4). Assume that 0 < w < mg(p), where
p—2)4—p) if2<p<3,
9(p) = BRI
1 if 3 < p<A.
Then (1.2) admits a non-trivial weak solution (u,¢) € H*(R3) x DV2(R3).

It can immediately be seen that go(p) < g(p), for any p € (2,4); this is shown in
Figure 1.

Under the above assumptions, the problem (1.2) is of a variational nature. Indeed,
its weak solutions (u, ¢) € H'(R3) x D1?(R3) can be characterized as critical points

https://doi.org/10.1017/50308210509001814 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210509001814

The electrostatic Klein—-Gordon—Mazwell system 451
of the functional S: H'(R?) x D?(R3) — R defined as

Stu,d) = 5 [ 1VuF = 1V67 +mf = @+ eout = [ Jul.

The first difficulty in dealing with the functional S is that it is strongly indefinite,
namely it is unbounded both from below and from above on infinite-dimensional
subspaces.

To avoid this indefiniteness, we will use a well-known reduction argument, stated
in theorem 2.2. The finite energy solutions of (1.1) are pairs (u,¢,) € H*(R3) x
DL2(R3), where ¢, € DV2(R3) is the unique solution of

A¢p = e(edp —w)u? in R3 (1.3)
(see lemma 2.1) and v € H'(R3) is a critical point of

The functional I no longer presents the strong indefiniteness. Under the assump-
tions of theorem 1.1, it will be studied by using an indirect method developed by
Struwe [26] and Jeanjean [22].

In the second part of the paper we consider a more general nonlinearity f(u).

Under usual assumptions, which describe behaviours analogous to |¢|P (with p €
(4,6)), it is easy to obtain a generalization of the existence result [5] of Benci and
Fortunato; we state this generalization in lemma 3.1. However, we point out that
all the quoted results share the assumption w < m.

We are mainly interested in studying the limit case w = m, when (1.1) becomes

—Au+ (2ewg — 2¢%)u — f'(u) =0 n R3’} (1.4)

A¢ = e(edp —w)u? in R3.
If we assume, as above, f”(0) = 0, we notice that the first equation in (1.4) has

the form of a nonlinear Schréodinger equation with a potential vanishing at infinity.
Indeed, if ¢ € DM?(R3) (and is radial), we have

lim (2ewd — e?¢?) = 0.

|z]| =00

So we are in the so-called zero-mass case for nonlinear field equations (see, for
example, [11] and [10]).

As in the cited papers, in order to get solutions, we need some stronger hypotheses
on f, which force it to be inhomogeneous, with a supercritical growth near the origin
and subcritical at infinity. More precisely, we assume that f: R — R satisfies the
following assumptions:

(f1) f e CY(R,R);

(2) vt e R\{0}: af(t) < f/(D)t;

(f3) Vvt e R: f(t) = Cy min(|¢]?, |t]9);

(1) Vi € R: |1'(t)] < Comin(tP", [¢77);
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with 4 < a < p < 6 < g and C4, Cs, positive constants. We shall prove the following
result.

THEOREM 1.2. Assume that f satisfies the above hypotheses. Then there exists a
couple (ug, ¢o) € DV2(R3) x DV2(R3) that is a weak solution of (1.4).

Under the assumptions of theorem 1.2, standard arguments (again lemma 3.1)
yield the existence of (u, ¢) € H'(R3) x D12(R?) weak solutions of (1.1) in the case
w < m. The limit case w = m is trickier.

Even if the claim of theorem 1.2 is analogous to the cited existence results
(e.g. theorem 1.1) and the meaning of ‘weak solution’ is the same, the approach
in the proof is completely different. More precisely, in the zero-mass case, there
exists no functional S defined on DV2(R?) x D12(R3) such that its critical points
are weak solutions of (1.4).

As above, we could consider a functional S: H!(R?) x D}2(R3) — R whose crit-
ical points are finite energy weak solutions. For every u € H'(R3) we can find
¢u € DV2(R3), the solution of (1.3). Then we could consider the reduced functional =~ word added - ok
I(u) = S(u, ¢,,). The reduced functional I has the form

I(u) = S(u, ¢) = %/RS |Vu|2 + ewdyu® — /R3 f(u).

For such a functional the mountain-pass geometry in H'(R?) is not immediately
available.

The solution (ug, ¢o) € DV2(R3) x DL2(R3) will be found as limit of solutions of
approximating problems

—Au + (e + 2ewd — 2¢*)u — f'(u) =0 in R, Ls
A¢p = e(edp —w)u® in R3. (1-9)

For every € > 0, lemma 3.1 yields a solution (u.,¢:) € H'(R?) x DV2(R3). The
stronger assumptions on f (subcritical at infinity, supercritical at zero) give rise to
uniform estimate in D*2(R?) x D12(R3) which allows one to pass to the limit as
€ — 0. A similar approach has been used in [4,12].

Before giving the proof of theorems 1.1 and 1.2, let us recall some other results
concerning (1.1). In [15] and [14] there are existence and non-existence results when
f has a critical growth at infinity. The existence of a ground state for (1.2), under
the existence assumptions of [16], is proved in [2]. Other recent papers (see, for
example, [7,25]) are concerned with the Klein-Gordon—-Maxwell system with a
completely different kind of nonlinearity, satisfying

im*t? — f(t) > 0.

The solutions in this case are called ‘non-topological solitons’. In [7] the existence
is proved of a non-trivial solution if the coupling constant e is sufficiently small. A
perturbation theory, using the e = 0 as starting point, was developed in [23,24].
There are also some results for the system (1.1) in a bounded spatial domain [13,
18,19]. In this situation, existence and non-existence of non-trivial solutions depend
on the boundary conditions, the boundary data, the kind of nonlinearity and the
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value of e. Lastly, we refer the reader to the review paper [21], which contains a
large number of references on this topic, including existence results for other classes
of Klein—-Gordon—-Maxwell systems, obtained with a more general ansatz (see, for
example, [8,9]).

In the following sections we shall prove theorems 1.1 and 1.2, respectively. The
appendix contains the proof of a certain inequality, used in § 2, which involves only
elementary calculus arguments.

2. Proof of theorem 1.1
We need the following.

LEMMA 2.1. For any u € HY(R?), there exists a unique ¢ = ¢, € DV2(R?) which
satisfies
A¢ = e(ep —w)u® in R3,

Moreover, the map ®: u € HY(R?) — ¢, € DV2(R?) is continuously differentiable,
and on the set {z € R? | u(z) # 0}

0< u < (2.1)
Proof. The proof can be found in [5,17]. O
THEOREM 2.2. The pair (u,¢) € H(R?) x DV2(R?) is a solution of (1.2) if and
only if u is a critical point of

1
I(u) = S(u, ) = %/RS IVul? + (m? — w?)u? + ewp,u? — 5/}1&3 |ul?,

and ¢ = ¢y,

For the sake of simplicity we set £2 = m? — w? > 0.

With our assumptions, it is a hard task to find bounded Palais—Smale sequences
of functional I. Therefore, we use an indirect method developed by Struwe [26] and
Jeanjean [22]. We look for the critical points of the functional I € C*(H}(R3),R)

1 A
I\(u) = 5 /R3 \Vaul? + Qu? + ewg,u? — ;/RS [ul?,

for A close to 1, where
H!(R?) := {u € H'(R?) | u is radially symmetric}.
Set a positive number § < 1 (which we will estimate later), J = [d, 1] and
I':={y€C(0,1], H:(R?)) | v(0) = 0, Ir(v(1)) < 0 for all A € J}.
Using a slightly modified version of [22, theorem 1.1], the following can be proved.
LEMMA 2.3. If I' # @ and, for every A € J,

cy = ;relfrtren[%ﬁ] In(y(t)) > 0, (2.2)
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then for almost every \ € J there is a sequence (v)y), C H}(R3) such that
(i) (v} is bounded,
(ii) In(v)) = ca,
(iil) I} (vy)) — 0.
In order to apply theorem 2.3, we need only to verify that I" # & and (2.2) holds.
LEMMA 2.4. For any A € J, we have that I' # @.

Proof. Let u € H}(R3) \ {0} and let > 0. Define v: [0,1] — H}(R?) such that
~(t) = thu for all t € [0,1]. By (2.1), for any A € J, we have that

o) = he <G [ Ve + oot —% [,
and then certainly v € I" for a suitable choice of 6. O
LEMMA 2.5. For any A € J, we have that ¢y > 0.
Proof. Observe that, for any u € H}(R?) and X € J, by (2.1), we have

1
INOES / IVl + u? — 1 / ful?,
2 Jgrs D Jrs

and then, by Sobolev embeddings, we conclude that there exists p > 0 such that,
for any A € J and u € H}(R?) with u # 0 and |lu| < p, we obtain I)(u) > 0. In
particular, for any |lul| = p, we have Iy(u) > é > 0. Now fix A € J and «y € I'. Since
~7(0) =0 # (1) and Ix(vy(1)) < 0, certainly ||v(1)|| > p. By continuity, we deduce
that there exists ¢, € (0,1) such that ||y(t4)|| = p. Therefore, for any A € J,

ey 2 inf In(y(t,)) =2 ¢> 0.
yEr
O

Proof of theorem 1.1. Let A € J, for which there exists a bounded Palais—Smale
sequence (v}), in H}!(R?) for functional I at level ¢y, namely

I (v}) — ex;
I (v}) =0 in (H}(R®))".
Up to a subsequence, we can suppose that there exists vy € H}(R?) such that
v — vy weakly in H}(R?) (2.3)
and
v} (z) = va(z) ae. in RY,

We make the following claims:

I\ (va) =0, (2.4)
vy # 0,
I)\(’U)\) g C). (25)
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Claim (2.4) follows immediately by [2, lemma 2.7].
Suppose by contradiction that vy = 0. Then, since v;} — vy(= 0) in LP(R?) and

I (o) [wd] = 0,(1)||v) ], we have

/ VoA + 202)? < / VA2 + Q) + 2ewds (1% — 262, (v))?
R3 R3 n

:A/ AP + 0n(D)][0}]] = 0n(1)-
R3

Hence, v)) — 0 in H'(R?) and we get a contradiction with (2.2).

We pass to proving (2.5). Since v} — vy in LP(R?), by (2.3), by the weak lower
semicontinuity of the H!(R3)-norm and by Fatou’s lemma, we get I)(vy) < cy.
Now we may consider a suitable A\, ' 1 such that, for any n > 1, there exists
vn, € HY(R3) \ {0} satisfying
I, (vy) =0 in (HX(RY)Y, (2.6)
I, (vn) <, (2.7)

We want to prove that such a sequence is bounded.
By [17], v, satisfies the Pohozaev equality

6,
/ |V |? 4+ 30202 + bewd,, v2 — 26292 v2 — —/ |un|? = 0. (2.8)
R3 " p R3
Therefore, by (2.6)—(2.8), the following system holds:
A
/ Vo, |2 4 30202 + Lewg,, vi — ualP < e, (2.9)
R3 p
6\,
/]R3 [Vun|® + 30202 + Sew,, v2 — 2°¢2 vl — ?|vn|p =0, (2.10)
/ [Vun|® + Q202 + 2ewe,, va — €242 v2 — Ay|vn [P = 0. (2.11)
R3

Subtracting from (2.9) equation (2.10) multiplied by « and (2.11) multiplied by
(1 —6a)/p, we get

p—2ap—2+ 12a

/ |an|2 Jr/ [Cp,aQ + Bpatwy, + Ap,a62¢gn]”i < Crys
R3 R3

2p
where
—2)(1-6
¢, - =20 —6)
2p
Bpa:pfl()apf4+24a’
) 2p
1+2 —
Ay — + 2a(p — 3)
p

It is easy to see that
p—2ap—2+12a

2p

> 0,

https://doi.org/10.1017/50308210509001814 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210509001814

456 A. Azzollini, L. Pisani and A. Pomponio
if and only if

2—p
o> —Fr.
2(6 —p)
In the appendix (see lemma A.1) we will prove that there exists
a € 2-p 1 1 Chaf2 + By qewd, + A, o242 >0
2(6 _p)7 6 . b, fle Un P, U &V

Then we can argue that
[Vopll2 < C foralln > 1. (2.12)

Moreover, by (2.6), we have
.Q/ v2 < / |Vu,|? + 202 + 2ewd, v2 — e2¢? 12 = )\n/ |vn|P. (2.13)
R3 R3 " R3

Since for all € > 0 there exists C. > 0 such that t? < C.t% +¢t2, for all t > 0, taking
e = (2/2, by (2.13) we get

1 2 6
582 [ v, <C. v,
R3 R3

Therefore, by the Sobolev embedding D!?(R3) — L5(R3) and (2.12) we deduce
that (v,,)n is bounded in H'(R3).
Up to a subsequence, there exists vg € H}(R3) such that

vp, — v weakly in H}(R?).
By (2.6), we have that
I'(vn) = (In,) (va) + (An — 1)|Un|p_2vn =(An — 1)|Un‘p_2")n
80 (Un)n is a Palais-Smale sequence for the functional I|y1, since the sequence
(|vn|P~2v,)p is bounded in (H}!(R3))'.
By [2, lemma 2.7], we have that I’(vg) = 0.

To conclude the proof, it remains to check that vg # 0.
By (2.6), we have

/ \an|2+(2v72l</ |an\2+(21),21+26w¢vnv,21—62 ivié/ [v |P.
R3 R3 R3

Then, there exists C' > 0 such that ||v,|, > C. Since v, — vo in LP(R?), the proof
is concluded. O

3. Proof of theorem 1.2

The following lemma generalizes the existence result of [5].
LEMMA 3.1. Let f satisfy the following hypotheses:

(f1) f e CHR,R);
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(f2) 3o > 4 such that Vt € R\ {0}: af(t) < f'(¢)¢;
(f5) f'(t) =o(|t]) ast — 0;
(f6) 3C1,C2 = 0 and p < 6 such that Vt € R: |f'(t)] < C1 + Cat|P~L.

Assume that 0 < w < m. Then (1.1) admits a non-trivial weak solution (u,@) €
HY(R3) x DL2(R3).

We simply give an outline of the proof.

e Using the same reduction argument (lemma 2.1 and theorem 2.2) applied to
(1.1), it is immediately seen that (u,¢) € H'(R?) x DL2(R3) is a solution
of (1.1) if and only if u € H'(R?) is a critical point of

I(w) = [ IVu? 4 (0 =)+ ewsu | pw),

and ¢ = ¢y.
e The functional I satisfies the Palais-Smale condition in H}(R?).

e The functional I shows the mountain-pass geometry.

REMARK 3.2. If f is odd, just like in [5], the Zs-mountain-pass theorem [1] yields
infinitely many solutions.

Now we can prove theorem 1.2.

As stated in § 1, for every € > 0, we consider the approximating problem (1.5).
The above lemma gives the solution (u., ¢.) € H!(R3) x D12(R3). More precisely
these solution are found by means of the mountain-pass theorem and they are
radially symmetric, in the sense that u. € H}(R?) is a critical point of

1
IE(U) = 5 s |vu|2 + eu’ =+ ew¢uu2 - - f(u),

at the level

e = ot jug T-000)

where

I ={g e C([0,1], H'(R?®)) | g(0) = 0, I-(g(1)) <0, g(1) # 0}.

Moreover, u. belongs to the Nehari manifold of I.:
N, = {u c H'(R?)\ {0} ' / |Vu|? + eu? 4 2ewo,u® — e2p2u? = f'(u)u}.
R3 R3

In the following, we will refer to those approximating solutions as e-solutions.

LEMMA 3.3. There exists C > 0 such that c. < C, for any 0 < e < 1.
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Proof. Fix g € I'1 and let 0 < € < 1. Then, for a suitable . and since g € I, we
have

¢ < max I.(9(0)) = I.(9(0:)) < I(g(b:)) < Jnax, Ii(g(0)).

O

LEMMA 3.4. There exists C > 0 such that ||uc||pr.2 = C, for any € > 0. Moreover,
for any e > 0,

I (uc)ue = C. (3.1)
R3
Proof. Since wu, is solution of (1.5), using (2.1), we have
/ [Vue|* < / [Vue|? + eu? + 2ewy, uZ — €6, u?
RS RS :

= f’(ug)ug
RS

< O/ e
RB
3
< c(/ |Vu5|2>
RS

and so we conclude the proof. O

We need a uniform boundedness estimate on the family of the e-solutions, letting
€ go to zero.
We obtain the following result.

LEMMA 3.5. There exists a positive constant C' which is a uniform upper bound for
the family (ue, by, )eso in the DL2(R3) x DY2(R3)-norm.

Proof. We have
1
5/ |Vue|? + eu? + ewy, u? — / fue) = ce,
R3 R3
/ |Vu|? + Eug + Zewqﬁugug - 62¢35u§ — / f(ue)ue = 0.
R3 R3
By lemma 3.3 and (f2) we deduce that

S |V |? + eu? + 9 / ewdn, ul < C, (3.2)
2 R3 2 R3

while, by (1.5)2, we have

[ 0P reeti= [ cwout (33)
R R¢

Combining (3.2) and (3.3), we infer that (ue, ¢, )e=0 is bounded in the D*2(R3) x
DY2(R3)-norm. O
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Now we deduce that, for any e, — 0, there exist a subsequence of (uc,, v, )n
(which we relabel in the same way), and (ug, ¢9) € DV?(R3) x D2(R?) such that

ue, — ug in DH2(R3),

n

bu. — do in D2(R?).

We want to show that (ug, ¢g) is a weak non-trivial solution of (1.4). From now
on, we use u, and ¢, in place of u., and ¢, -

Proof of theorem 1.2. By [6, lemma 13] and [3, § 3], and by (3.1), we have that

f(ug)ug = lirrln I (up)u, = C >0,

R3 R3

and so ug # 0.
Let us show that (ug, ¢p) is a weak solution of (1.4), namely

VWrV¢+%M%W¢—J%%¢=/TfW®%
R3 R3

/ Vo - Vb + oudth = / ewud,
R3 R3

for any 1 test function.
Since, for any n > 1, (uy, ¢p) is a solution of (1.5), we have

/ Vu, - Vi + epunt) + 2ewd,un) — ezd)iuni// = / F(un)t,
R3 R3

/ Vo - Vi + e2¢nuiw = / ewuiw
R3 R3

Let us prove that
R (3.4
R3 R3

Indeed, defining K = supp(v), we observe that
' /]R3 Pnun) — ¢0U01/1‘ < /R3 |prunth — pnuop| + /R3 [P0t — douot)|
< [ Joullun — wollvl + [ 16n~ dolluoll
R3 R3

1/6 5/6
<(Lo1l) ([t =l ) supi
5/6 1/6
o WA I S

and so we get (3.4), since u,, — ug and ¢, — ¢g in H!(K).
Let us prove that

/]R Gnunt — /R djuot. (3.5)
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Indeed, we have

\/ qsiunw—qs%uow\g/ B2l = wollol + [ 162~ dBllualv]
R3 R3 R3

1/6 2/3
(L) ([ = wa?) sup o
5/6 1/6
w(Lro=atee) ([ k) suwlw

= 0,(1).

Therefore, by (3.4) and (3.5) and since ¢ has compact support, we have

[ Vv /R et + /R 2ewunt) - /R PG = /}R Py,

& s + 4 3
Vug - Vip + 0 + / 2ewpouor) — / e puop =/ [ (o).
R3 R3 R3

R3

Analogously, we have

Vén - Vi + / e = / 2,
R3 R3 R3

—_——
1 1 1

/ Vo - Vi + / oulih = / w2,

R3 R3 R3

In particular, by the latter identity, we infer that ¢g # 0 and this concludes the
proof. O
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Appendix A.

LEMMA A.l. Let p € (2,4) and w € (0,g(p)m). Then there exists

2— 1
acl,= ( P > D Apa€¢2 4 By aewd,, + Cpof2 >0,

2(6—p)’ 6
where
1+ 2a(p—3
Ao = (p=3)
p
p— 10ap — 4 + 24«
Bp,a: 2 5
p
—2)(1-6
¢ (=20 -60)
2p
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Proof. Keeping in mind (2.1), we must show that

ft) = Apoat’ + By owt +Cp o2 >0 for any t € [0,w)]. (A1)
First, we notice that, for any o € I,,
Ap o >0, Cp,a > 0.
Now we have to distinguish two cases: p € (3,4) and p € (2, 3].

Case 1 (pe (3,4). If a = (4 —p)/(24 — 10p) € I,, we have B, , = 0 and so we
have proved (A 1).

CASE 2 (p € (2,3]). Since f reaches its minimum in —B), cw/24, , and it belongs
to [0,w], f is non-negative in [0,w] if and only if

By qw
_ I )
H(-552) =0

and, with straightforward calculations and using the fact that A, o + Bp.o = Cp a,

this is equivalent to
2 2
mi 2 (Apia + Cp,a) . (A 2)
w? 44, Cp.a

We set
C (Apa+Cpa)? PP (1-20)? 1

K = =
o) 44, .Cha  8(p—2) 1-6a 1+ 2a(p—3)

and we shall prove that
inf K,(a) = —
a€ly (p—2)(4-p)
and thus we may conclude. Indeed, if w € (0, g(p)m), then, by (A 3),
2

m .
oz > Juf Kopla),

and so there exists o € I}, such that

by which we deduce (A 2).
Let us now prove (A 3). Consider the case p = 3: in such a situation

9 (1 —2a)?
Kg(Oé) = g% and 13 = (—%, %)

Since the function K3 is increasing in I3, we have

inf K3 = K3(—
a}gls 3 3(

H=1

and so we have proved (A 3).
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Now, let us consider the case p € (2,3). We write

2
p
Kp(a) 8(p_2)H1(a)H2(a)v
where (1 — 2 .
— zlx
@) :==—5— )= 5m—
Since, for ¢ = 1,2, H; is a positive and increasing function in I,, we have
iansz,,(Q p): : :
acl, 26-p)/) (@-2)(4-p)
and so we obtain (A 3). O
References
1 A. Ambrosetti and P. Rabinowitz. Dual variational methods in critical point theory and
applications. J. Funct. Analysis 14 (1973), 349-381.
2 A. Azzollini and A. Pomponio. Ground state solutions for the nonlinear Klein—Gordon—
Maxwell equations. Topolog. Meth. Nonlin. Analysis 35 (2010), 33-42.
3 M. Badiale, L. Pisani and S. Rolando. Sum of weighted Lebesgue spaces and nonlinear
elliptic equations. NoDEA: Nonlin. Diff. Eqns. Applic. DOI:10.1007/s00030-011-0100-y.
4 J. Bellazzini, C. Bonanno and G. Siciliano. Magneto-static vortices in two dimensional
abelian gauge theories. Mediterr. J. Math. 6 (2009), 347—-366.
5 V. Benci and D. Fortunato. Solitary waves of the nonlinear Klein—-Gordon field equation
coupled with the Maxwell equations. Rev. Math. Phys. 14 (2002), 409-420.
6 V. Benci and D. Fortunato. Towards a unified theory for classical electrodynamics. Arch.
Ration. Mech. Analysis 173 (2004), 379-414.
7 V. Benci and D. Fortunato. Solitary waves in abelian gauge theories. Adv. Nonlin. Studies
8 (2008), 327-352.
8 V. Benci and D. Fortunato. Three-dimensional vortices in abelian gauge theories. Nonlin.
Analysis 70 (2009), 4402-4421.
9 V. Benci and D. Fortunato. Spinning Q-balls for the Klein—-Gordon-Maxwell equations.
Commaun. Math. Phys. 295 (2010), 639-668.

10 V. Benci, C. R. Grisanti and A. M. Micheletti. Existence and non-existence of the ground
state solution for the nonlinear Schrodinger equations with V(oco) = 0. Topolog. Meth.
Nonlin. Analysis 26 (2005), 203-219.

11 H. Berestycki and P. L. Lions. Nonlinear scalar field equations. I. Existence of a ground
state. Arch. Ration. Mech. Analysis 82 (1983), 313-345.

12 H. Berestycki and P. L. Lions. Existence d’états multiples dans des équations de champs
scalaires non linéaires dans le cas de masse nulle. C. R. Acad. Sci. Paris Sér. I 297 (1983),
267-270.

13 A. M. Candela and A. Salvatore. Multiple solitary waves for non-homogeneous Klein—
Gordon—Maxwell equations. In More Progresses in Analysis: Proc. 5th Int. ISAAC Congr.,
Catania, Italy, 25-30 July 2005 (ed. H. G. W. Begehr and F. Nicolosi), pp. 7563-762 (River
Edge, NJ: World Scientific, 2009).

14 P. Carriao, P. Cunha and O. Miyagaki. Existence results for the Klein—-Gordon-Maxwell
equations in higher dimensions with critical exponents. Commun. Pure Appl. Analysis 10
(2011), 709-718.

15 D. Cassani. Existence and non-existence of solitary waves for the critical Klein—-Gordon
equation coupled with Maxwell’s equations. Nonlin. Analysis 58 (2004), 733-747.

16 T. D’Aprile and D. Mugnai. Solitary waves for nonlinear Klein—-Gordon—-Maxwell and
Schrodinger—Maxwell equations. Proc. R. Soc. Edinb. A 134 (2004), 893-906.

17 T. D’Aprile and D. Mugnai. Non-existence results for the coupled Klein—-Gordon—-Maxwell

equations. Adv. Nonlin. Studies 4 (2004), 307-322.

https://doi.org/10.1017/50308210509001814 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210509001814

18

19

20

21

22

23

24

25

26

The electrostatic Klein—-Gordon—Mazwell system 463

P. d’Avenia, L. Pisani and G. Siciliano. Dirichlet and Neumann problems for Klein—-Gordon—
Maxwell systems. Nonlin. Analysis 71 (2009), e1985-€1995.

P. d’Avenia, L. Pisani and G. Siciliano. Klein—-Gordon-Maxwell systems in a bounded
domain. Discrete Contin. Dynam. Syst. 26 (2010), 135-149.

B. Felsager. Geometry, particles and fields (Springer, 1998).

D. Fortunato. Solitary waves and electromagnetic fields. Boll. UMI (9) I (2008), 767-789.
L. Jeanjean. On the existence of bounded Palais—Smale sequences and application to a
Landesman-Lazer-type problem set on RV. Proc. R. Soc. Edinb. A 129 (1999), 787-809.

E. Long. Existence and stability of solitary waves in non-linear Klein—-Gordon—Maxwell
equations. Rev. Math. Phys. 18 (2006), 747-779.

E. Long and D. Stuart. Effective dynamics for solitons in the nonlinear Klein—Gordon—
Maxwell system and the Lorentz force law. Rev. Math. Phys. 21 (2009), 459-510.

D. Mugnai. Solitary waves in abelian gauge theories with strongly nonlinear potentials.
Annales Inst. H. Poincaré Analyse Non Linéaire 27 (2010), 1055-1071.

M. Struwe. The existence of surfaces of constant mean curvature with free boundaries. Acta
Math. 160 (1988), 19-64.

(Issued 10 June 2011)

https://doi.org/10.1017/50308210509001814 Published online by Cambridge University Press


https://doi.org/10.1017/S0308210509001814



