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The nuclear symmetry energy is defined by the second derivative of the energy per nucleon with
respect to the proton–neutron asymmetry, and is sometimes approximated by the energy differ-
ence between the neutron matter and the symmetric matter. The accuracy of this approximation
is assessed analytically and numerically within the Hartree–Fock theory using effective inter-
actions. By decomposing the nuclear-matter energy, the relative error of each term is expressed
analytically; it is constant or is a single-variable function determined by the function type. The
full errors are evaluated for several effective interactions, by inserting values for the param-
eters. Although the errors stay within 10% up to twice the normal density irrespective of the
interactions, at higher densities the accuracy of the approximation significantly depends on the
interactions.
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1. Introduction

The nuclear symmetry energy, which is defined as the second derivative of the energy per nucleon
with respect to the proton–neutron asymmetry, is an important quantity for predicting the masses of
neutron-rich nuclei and the structure of neutron stars. Calculation of the symmetry energy, however,
is not always easy. Analytical approaches are impossible unless the energy of the system is given by
a twice-differentiable function with respect to the asymmetry, while a numerical evaluation requires
precise calculation of the energy of the system. For this reason, the symmetry energy is sometimes
approximated as the energy difference between the pure neutron matter and the symmetric matter.
Conversely, this approximation of the symmetry energy corresponds to a quadratic approximation of
the neutron-matter energy with respect to the asymmetry, in its estimation from the symmetric-matter
energy.

As Bethe originally pointed out [1], this quadratic approximation of energy is applicable to a small
asymmetry but its validity is not obvious for systems with large asymmetry, like neutron matter. The
accuracy of this approximation has been studied in several works. It was examined in the Brueckner–
Hartree–Fock theory with the Paris potential by Bombaci and Lombardo [2], and with the AV18 plus
three-nucleon force by Zuo et al. [3]. Chen et al. investigated this approximation at the saturation
density with a modified Gogny interaction [4]. Drischler et al. also studied it in the chiral effective
field theory [5]. It should be mentioned that Wellenhofer et al. pointed out that the approximation is
not valid enough at certain temperatures [6].
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We reinvestigate the accuracy of the approximation of the symmetry energy at zero temperature
within the Hartree–Fock theory by using effective interactions which have been tested for the structure
of finite nuclei. This enables analytical arguments, by which the origin of the errors can be examined
term by term. Then, the errors can be numerically estimated by inserting values for the parameters.
In practice we adopt six effective interactions: the Skyrme interactions SkM∗ [7] and SLy4 [8], the
Gogny interactions D1S [9] and D1M [10], and the M3Y-type interactions M3Y-P6 and M3Y-P7 [11].

This paper is organized as follows. In Sect. 2, we decompose the nuclear-matter energy, the
symmetry energy, and its error. From Sect. 3 to 5, we evaluate the relative errors of individual terms.
Section 3 is devoted to the errors whose analytical forms are independent of the effective interaction.
The errors specific to the Skyrme and finite-range (Gogny and M3Y-type) effective interactions
are analytically investigated in Sects. 4 and 5, respectively. Numerical results for the errors for
the symmetry energy are displayed and discussed in Sect. 6. Section 7 provides a summary of the
paper.

2. Decomposition of energies and errors

In this section, we shall give expressions for the symmetry energy at(ρ) and its approximation ãt(ρ)

by decomposing them into several terms. Correspondingly, the errors of the symmetry energy can
be decomposed as well.

2.1. Effective Hamiltonian

In this paper, we consider homogeneous nuclear matter with spin degeneracy in the non-relativistic
Hartree–Fock theory.

Because of the homogeneity, the single-particle wave function is written as a plane wave,

ϕkστ (r) = 1√
�

eik·rχσχτ , (1)

where k denotes the momentum and � is the volume of the system, for which we shall take � → ∞
later. χσ (χτ ) is the spin (isospin) wave function.

The effective Hamiltonian of the system consists of the kinetic energy and the effective interaction,

H = K + V ; K =
∑

i

p2
i

2M
, V =

∑
i<j

vij, (2)

where i and j are nucleon indices. The effective interaction V is comprised of the central term, the
LS term, and the tensor (TN) term. In homogeneous matter, the LS term and the TN term can be
neglected. We therefore treat only the central term, which may contain the usual two-body interaction
and a density-dependent interaction. For the latter we assume the contact form. We then have

v12 = v(C)
12 + v(DD)

12 ;

v(C)
12 =

∑
n

(
t(SE)
n PSE + t(TE)

n PTE + t(SO)
n PSO + t(TO)

n PTO
)
fn(r12),

v(DD)
12 = t(SE)

ρ PSE [ρ(r1)]α δ(r12) + t(TE)
ρ PTE [ρ(r1)]β δ(r12), (3)

where fn(r12) is an appropriate function of r12 = |r12|, with r12 = r1 − r2. In this paper, we
consider the Skyrme, the Gogny, and the M3Y-type interactions. Correspondingly, fn(r12) is the
δ-function (with and without momentum dependence), the Gauss function, or the Yukawa function.
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The effective interactions have range parameters, and the index n distinguishes the range. All kinds
of t in the above equation are strength parameters. PTE, PTO, PSE, and PSO are projection operators
to singlet–even, triplet–even, singlet–odd, and triplet–odd two-particle states, and they are related to
the spin exchange operator Pσ and the isospin exchange operator Pτ as follows:

PSE = 1 − Pσ

2

1 + Pτ

2
, PTE = 1 + Pσ

2

1 − Pτ

2
,

PSO = 1 − Pσ

2

1 − Pτ

2
, PTO = 1 + Pσ

2

1 + Pτ

2
. (4)

We can rewrite v(C)
12 as follows,

v(C)
12 =

∑
n

(t(W)
n + t(B)

n Pσ − t(H)
n Pτ − t(M)

n Pσ Pτ )fn(r12) ;

t(W)
n = (

t(SE)
n + t(TE)

n + t(SO)
n + t(TO)

n

)
/4,

t(B)
n = (−t(SE)

n + t(TE)
n − t(SO)

n + t(TO)
n

)
/4,

t(H)
n = (−t(SE)

n + t(TE)
n + t(SO)

n − t(TO)
n

)
/4,

t(M)
n = (

t(SE)
n + t(TE)

n − t(SO)
n − t(TO)

n

)
/4. (5)

2.2. Decomposition of energy per nucleon

With the wave function of Eq. (1) and the effective Hamiltonian of Eqs. (2) and (3), the energy
per nucleon can be expressed in the following manner, as was derived in Ref. [12]. We consider a
function W as

W(kτ , kτ ′) =
∫

k1≤kτ

d3k1

∫
k2≤kτ ′

d3k2 f̃ (|k12 − k′
12|), (6)

where f̃ (q) signifies the Fourier transform of f (r): f̃ (q) = ∫
d3r f (r)e−iq·r . k12 and k′

12 represent
relative momenta (k12 = (k1 − k2)/2) in the initial and the final states. Since k12 = k′

12 in the
Hartree (i.e., direct) term and k12 = −k′

12 in the Fock (i.e., exchange) term, the contributions of
these terms to the energy are represented by the function W as follows:

WH
n (kτ , kτ ′) =

∫
k1≤kτ

d3k1

∫
k2≤kτ ′

d3k2 f̃n(0) = 16π2

9
k3
τ k3

τ ′ f̃n(0) (Hartree term),

WF
n (kτ , kτ ′) =

∫
k1≤kτ

d3k1

∫
k2≤kτ ′

d3k2 f̃n(2k12)

= 8π2
[∫ |kτ ′−kτ |/2

0
dk12

16

3
k3
τ k2

12 f̃ (2k12) +
∫ (kτ ′+kτ )/2

|kτ ′−kτ |/2
dk12

{
−1

2
(k2

τ ′ − k2
τ )2k12

+ 8

3
(k3

τ + k3
τ ′)k2

12 − 4(k2
τ + k2

τ ′)k3
12 + 8

3
k5

12

}
f̃n(2k12)

]
(Fock term). (7)
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We can express the total energy by using these functions. Under spin degeneracy, the total energy
is represented by

E = �

10π2M
(k5

p + k5
n )

+ ρα�

36π4

[
t(SE)
ρ ρα(k6

p + k6
n ) + (t(SE)

ρ ρα + 3t(TE)
ρ ρβ)k3

p k3
n

]
+ �

(2π)6

∑
n

[
(2t(W)

n + t(B)
n − 2t(H)

n − t(M)
n )

{WH
n (kp, kp) + WH

n (kn, kn)
}

+ 2(2t(W)
n + t(B)

n ) WH
n (kp, kn)

+ (2t(M)
n + t(H)

n − 2t(B)
n − t(W)

n )
{WF

n (kp, kp) + WF
n (kn, kn)

}
+ 2(2t(M)

n + t(H)
n ) WF

n (kp, kn)
]
, (8)

where kp (kn) denotes the Fermi momentum of protons (neutrons), and they are connected with the
density ρp (ρn) or with the total density ρ and the asymmetry ηt as

kp = (3π2ρp)
1/3 =

{3π2

2
ρ(1 − ηt)

}1/3
, kn = (3π2ρn)

1/3 =
{3π2

2
ρ(1 + ηt)

}1/3
;

ρ = ρp + ρn, ηt = ρn − ρp

ρ
. (9)

The energy per nucleon E = E/A is acquired by dividing E by the nucleon number A = ρ�. Here,
we decompose E into the kinetic term (EK), the density-dependent term (EDD), the Hartree term
between like nucleons (EHO) and between unlike nucleons (EHX), and the Fock term between like
nucleons (EFO) and between unlike nucleons (EFX):

E(ρ, ηt) = EK + EDD +
∑

n

(EHOn + EHXn + EFOn + EFXn
)
;

EK = 1

10π2Mρ
(k5

p + k5
n ),

EDD = 1

36π4

[
t(SE)
ρ ρα−1(k6

p + k6
n + k3

p k3
n ) + 3t(TE)

ρ ρβ−1k3
p k3

n

]
,

EHOn = 1

(2π)6ρ
· (

2t(W)
n + t(B)

n − 2t(H)
n − t(M)

n

){WH
n (kp, kp) + WH

n (kn, kn)
}
,

EHXn = 1

(2π)6ρ
· 2(2t(W)

n + t(B)
n ) WH

n (kp, kn),

EFOn = 1

(2π)6ρ
· (

2t(M)
n + t(H)

n − 2t(B)
n − t(W)

n

){WF
n (kp, kp) + WF

n (kn, kn)
}
,

EFXn = 1

(2π)6ρ
· 2(2t(M)

n + t(H)
n ) WF

n (kp, kn). (10)
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2.3. Decomposition of symmetry energy

The symmetry energy at(ρ) is defined by the second-order derivative of E with respect to the
asymmetry ηt ,

at(ρ) := 1

2

∂2E
∂η2

t

∣∣∣∣
ηt=0

. (11)

Let us denote the νth-order partial derivative of a function F with respect to ηt by F (ν): F (ν) =
(∂ν/∂ην

t )F . Corresponding to the decomposition of E , we also decompose the symmetry energy as
follows:

at(ρ) = 1

2
E (2)

∣∣∣∣
ηt=0

= aK + aDD +
∑

n

(
aHOn + aHXn + aFOn + aFXn

)
;

ai = 1

2
E (2)

i

∣∣∣∣
ηt=0

(i = K, DD, HOn, HXn, FOn, FXn). (12)

Formulas for calculating each ai are given in Appendix B. Note that WH
n (kp, kp)

(ν)
∣∣
kp=kF

�=
WH

n (kp, kn)
(ν)

∣∣
kp=kn=kF

.

2.4. Approximation of the symmetry energy and its error

The symmetry energy at(ρ) is often approximated by the difference in E between ηt = 1 and ηt = 0,

ãt(ρ) := E(ρ, ηt = 1) − E(ρ, ηt = 0)

= at(ρ) +
∞∑

ν=2

E(ρ, ηt)
(2ν)

(2ν)!

∣∣∣∣∣
ηt=0

. (13)

This coincides with the quadratic approximation of E with respect to ηt ,

E(ρ, ηt) ≈ E(ρ, ηt = 0) + at(ρ) η2
t . (14)

Notice that E is an even function of ηt under charge symmetry.
We are now ready to consider the accuracy of the approximation of Eq. (13). As measures of the

approximation, we will estimate the absolute error δt = ãt−at and the relative error �t = (ãt−at)/at .
Corresponding to each term of Eq. (12) (ai(ρ); i = K, DD, HOn, HXn, FOn, FXn), we define its
approximated value ãi(ρ) by

ãi(ρ) := Ei(ρ, ηt = 1) − Ei(ρ, ηt = 0). (15)

Then the relative error of each term �i = (ãi −ai)/ai can be estimated analytically, as shown below.
The full errors δt and �t are expressed by using �i,

δt = ãt − at =
∑

i

�i ai,

�t = ãt − at

at
=

∑
i

�i
ai

at
. (16)
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Thus, through �i, the error of the symmetry energy can be examined term by term. We shall estimate
�i in the following three sections.

3. Terms with constant relative errors

The relative errors (�i) for the kinetic term, the density-dependent term, and the Hartree term of the
central force are constant, or even vanish, independent of the density. In this section we discuss �i

for these terms.

3.1. Kinetic term

We first discuss the kinetic energy term in the exact and the approximated symmetry energy, aK and
ãK. The 2νth-order coefficient of kinetic energy per nucleon (1 ≤ ν) can be derived inductively:

E (2ν)
K (ρ, ηt)

(2ν)!

∣∣∣∣∣
ηt=0

= k5
F

5π2Mρ
· 1

(2ν)!
2ν−1∏
i=0

5 − 3i

3
; kF =

(3π2ρ

2

)1/3
. (17)

The relative error of the kinetic term in the symmetry energy turns out to be constant, independent
of ρ:

�K = ãK − aK

aK
=

∞∑
ν=2

E (2ν)
K /(2ν)!
E (2)

K /2

∣∣∣∣∣
ηt=0

=
∞∑

ν=2

[
ν−1∏
i=1

(6i − 5)(6i − 2)

(6i + 3)(6i + 6)

]
= 0.057. (18)

In Eq. (6) of Ref. [6], the result equivalent to Eq. (18) is presented as (ãK−aK)/ãK = �K/(1+�K) =
0.054.

3.2. Density-dependent term

For the density-dependent contact term, we have

ãDD = aDD, �DD = 0. (19)

This is because EDD can be written up to the quadratic term with respect to ηt as

EDD(ρ, ηt) = 1

16

[
t(SE)
ρ ρα+1(3 + η2

t ) + 3t(TE)
ρ ρβ+1(1 − η2

t )
]
. (20)

3.3. Hartree term

The Hartree term of the central force in the energy per nucleon also depends quadratically on ηt . In
practice, Eq. (7) yields

WH
n (kp, kp) = 4π6ρ2(1 − ηt)

2 f̃n(0),

WH
n (kn, kn) = 4π6ρ2(1 + ηt)

2 f̃n(0),

WH
n (kp, kn) = 4π6ρ2(1 − η2

t ) f̃n(0),

(21)

leading to �HOn = �HXn = 0.
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4. Skyrme interaction

We next discuss the terms depending on the function types of the interaction, through which a full
expression of the errors of the symmetry energy is obtained.

The Skyrme interaction has momentum-dependent terms, additional to Eq. (3), while some of the
terms in Eq. (5) become equivalent to the exchange terms of others. The interaction is expressed,
instead of Eq. (3), as

v12 = t0(1 + x0Pσ ) δ(r12)

+ 1

2
t1(1 + x1Pσ )

[
p′2

12 δ(r12) + δ(r12) p2
12

] + t2(1 + x2Pσ )p′
12 · δ(r12) p12

+ t(SE)
ρ PSE, [ρ(r1)]α δ(r12) + t(TE)

ρ PTE [ρ(r1)]β δ(r12). (22)

Here, p12 = (∇1 − ∇2)/(2i), and p′
12 is the Hermitian conjugate of p12 acting on the left. For the t0

term that has f (r12) = δ(r12), we have

WH
0 (kτ , kτ ′) = WF

0 (kτ , kτ ′) = 16π2

9
k3
τ k3

τ ′ . (23)

For the t1 and t2 terms, 1
2(p′2

12 δ(r12) + δ(r12) p2
12) and p′

12 · δ(r12) p12 yield [12]

WH
1 (kτ , kτ ′) = WF

1 (kτ , kτ ′) = 4π2

15
k3
τ k3

τ ′(k2
τ + k2

τ ′) (t1 term),

WH
2 (kτ , kτ ′) = −WF

2 (kτ , kτ ′) = 4π2

15
k3
τ k3

τ ′(k2
τ + k2

τ ′) (t2 term), (24)

respectively.
Let us define

Wo
c = 16π2

9
(k6

p + k6
n ), Wx

c = 16π2

9
k3

p k3
n ,

Wo
p = 8π2

15
(k8

p + k8
n ), Wx

p = 8π2

15
k3

p k3
n (k2

p + k2
n ), (25)

where the superscript o (x) indicates the like- (unlike-) nucleon contribution and the subscript c (p)

corresponds to the t0 (t1 and t2) term. Then the energy per nucleon E is decomposed as follows:

E = EK + Ec + EpO + EpX + EDD ;

Ec = 1

(2π)6ρ

(
to
c Wo

c + tx
c Wx

c

)
,

EpO = 1

(2π)6ρ
to
p Wo

p , EpX = 1

(2π)6ρ
tx
p Wx

p , (26)

where

to
c = t0(1 − x0), tx

c = t0(2 + x0),

to
p = t1(1 − x1) + 3t2(1 + x2), tx

p = t1(2 + x1) + t2(2 + x2). (27)
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Corresponding to the above decomposition, the symmetry energy and its error are decomposed into
ai and �i (i = K, c, pO, pX, DD). δt and �t are expressed by

δt = ãt − at = �KaK + �pOapO + �pXapX,

�t = ãt − at

at
= �K

aK

at
+ �pO

apO

at
+ �pX

apX

at
, (28)

since we obviously have �c = �DD = 0.
We have shown, in the previous section, that �K = 0.057. For the momentum-dependent terms,

we consider the ratios ãpO/apO = 1 + �pO and ãpX/apX = 1 + �pX, where apO = 1
2E (2)

pO

∣∣∣
ηt=0

,

ãpO = EpO
∣∣
ηt=1 − EpO

∣∣
ηt=0, and likewise for apX, ãpX. Because

Wo(2ν)
p (ρ, ηt)

∣∣∣
ηt=0

= 16π2

15
k8

F

2ν∏
i=1

11 − 3i

3
,

Wx(2ν)
p (ρ, ηt)

∣∣∣
ηt=0

= 16π2

15
k8

F(3ν − 2)

2ν∏
i=1

11 − 3i

3
, (29)

the ratios are

ãpO

apO
=

∑∞
ν=1 E (2ν)

pO /(2ν)!
E (2)

pO /2

∣∣∣∣∣
ηt=0

= 9

20

∞∑
ν=1

[
1

32ν(2ν)!
2ν∏

i=1

(11 − 3i)

]
= 0.979,

ãpX

apX
=

∑∞
ν=1 E (2ν)

pX /(2ν)!
E (2)

pX /2

∣∣∣∣∣
ηt=0

= 9

20

∞∑
ν=1

[
3ν − 2

32ν(2ν)!
2ν∏

i=1

(11 − 3i)

]
= 0.900. (30)

Therefore δt and �t for the Skyrme interaction are calculated by the following formulas:

δt = ãt − at = 0.057aK − 0.021apO − 0.100apX,

�t = ãt − at

at
= 0.057

aK

at
− 0.021

apO

at
− 0.100

apX

at
. (31)

5. Finite-range interactions

In this section, the errors of each term in the symmetry energy are analytically investigated for
finite-range effective interactions. The Gauss function fn(r12) = e−(μnr12)

2
and the Yukawa function

fn(r12) = e−μnr12/μnr12 are handled in practice; they are used in the central channels of the Gogny
and M3Y-type interactions.

As we showed in Sect. 3, the density-dependent term and the Hartree term give no errors. Then,
the errors in the approximated symmetry energy can be expressed as

δt = ãt − at = �KaK +
∑

n

�FOnaFOn +
∑

n

�FXnaFXn,

�t = ãt − at

at
= �K

aK

at
+

∑
n

�FOn
aFOn

at
+

∑
n

�FXn
aFXn

at
. (32)

Recall that �K is constant. Unlike the Skyrme interaction, the relative errors of the Fock terms in
the symmetry energy depend on the density. However, for a given function form, each of �FOn
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Fig. 1. kF/μn dependence of �FOn and �FXn for (a) the Gauss interaction and (b) the Yukawa interaction.
The dashed lines are explained in the text.

and �FXn depends only on kF/μn, where 1/μn is the range parameter. Therefore, we calculate the
relative errors �FOn and �FXn as functions of kF/μn. We depict the results in Fig. 1 for the Gauss
and the Yukawa functions, whose analytic expressions are given in Appendix C. It is emphasized
that these results are determined only by the function type of the effective interaction, independent
of the parameters. As kF/μn increases, |�FOn| and |�FXn| tend to deviate from zero. The longest
range of the nucleon–nucleon interaction should be given by the Compton wavelength of the pion
(1.414 fm). Corresponding to the range 0 ≤ 1/μn ≤ 1.414 fm and the density 0 ≤ ρ ≤ 0.64 fm−3

(i.e., 0 ≤ kF ≤ 2.11 fm−1), whose upper bound is about four times the normal density, �FOn and
�FXn are displayed for 0 ≤ kF/μn ≤ 3.

The dashed vertical line in Fig. 1(a) represents kF/μn for ρ = 0.32 fm−3 and 1/μn = 1.2 fm,
which is the longer range in D1S. We find that |�FOn| may reach about 0.25 at ρ = 0.32 fm−3 for
the Gauss interaction, while |�FXn| is kept within 0.05 in the full range in Fig. 1(a).

As in Fig. 1(a), the dashed line in Fig. 1(b) represents kF/μn for ρ = 0.32 fm−3 and the longest
range of the M3Y-type interaction 1.414 fm−1. In contrast to the Gauss function, |�FOn| and |�FXn|
stay within 0.1 in 0 ≤ ρ ≤ 0.32 fm−3 for the Yukawa interaction. Even in the higher-density region
up to kF/μn = 3, they are 0.13 at the most.

6. Numerical results for several interactions

By inputting the values of the parameters, �t and δt are calculated at individual values of ρ. In
Tables 1 to 3, δt at the saturation density ρ0 is presented for the interactions SkM∗, SLy4, D1S, D1M,
M3Y-P6, and M3Y-P7. The values of the parameters in these interactions are given in Appendix A.
The decomposed errors δi are also listed in Tables 1 to 3, unless they vanish.

In Fig. 2, we show the numerical results of �t and δt as a function of ρ. Figure 2(a) reveals the
interaction dependence of �t . In 0 < ρ ≤ 0.32 fm−3, we find that the relative error is |�t| < 0.1
for all of the effective interactions. To be more precise, it is within |�t| < 0.05 except for SkM∗. In
the higher-density region of 0.32 ≤ ρ < 0.64 fm−3, |�t| < 0.05 holds for SLy4 and the M3Y-type
interactions. In contrast, |�t| exceeds 0.20 for SkM∗ and the Gogny interactions. This tendency is
also seen for δt in Fig. 2(b). The |δt| of M3Y-P6, M3Y-P7, and SLy4 are significantly smaller than
those of D1M, D1S, and SkM∗.

Interestingly, although SkM∗ and SLy4 have the same function type, δt behaves quite differently
between them. The origin of this difference may be accounted for on the basis of the decomposition in
Sect. 4, via Eq. (31) to be more precise. In Fig. 3, aK(ρ), apO(ρ), and apX(ρ) for SkM∗ and SLy4 are
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Table 1. δt(ρ0) and δi(ρ0) for SkM∗ and SLy4.

SkM∗ SLy4

ρ0 (fm−3) 0.160 0.160
at(ρ0) (MeV) 30.03 32.00
δt(ρ0) (MeV) 1.36 0.68

δK(ρ0) (MeV) 0.70 0.70
δpO(ρ0) (MeV) −0.00 −0.33
δpX(ρ0) (MeV) 0.65 0.31

Table 2. δt(ρ0) and δi(ρ0) for D1S and D1M.

D1S D1M

ρ0 (fm−3) 0.163 0.165
at(ρ0) (MeV) 31.12 28.55
δt(ρ0) (MeV) 0.82 1.17

δK(ρ0) (MeV) 0.71 0.72
δFO1(ρ0) (MeV) 0.06 −0.71
δFO2(ρ0) (MeV) −0.35 0.88
δFX1(ρ0) (MeV) −0.68 −1.47
δFX2(ρ0) (MeV) 1.08 1.75

Table 3. δt(ρ0) and δi(ρ0) for M3Y-P6 and M3Y-P7.

M3Y-P6 M3Y-P7

ρ0 (fm−3) 0.163 0.163
at(ρ0) (MeV) 32.14 31.74
δt(ρ0) (MeV) 1.10 1.20

δK(ρ0) (MeV) 0.71 0.71
δFO1(ρ0) (MeV) −0.38 −0.43
δFO2(ρ0) (MeV) 0.15 0.22
δFO3(ρ0) (MeV) −0.09 −0.09
δFX1(ρ0) (MeV) 0.00 0.12
δFX2(ρ0) (MeV) 0.78 0.74
δFX3(ρ0) (MeV) −0.08 −0.08

depicted.As recognized from Eq. (31) and Fig. 3,�pXapX = −0.1apX contributes to δt positively. The
contribution (−apX) is larger for SkM∗ than for SLy4. Moreover, �pOapO = −0.021apO contributes
negatively and it tends to cancel the positive contribution of apX for SLy4, while apO almost vanishes
for SkM∗.

Figure 1 accounts for the difference in δt between the Gogny and M3Y-type interactions. The
large |�FXn| for the Gauss function at high kF/μn makes |δt| large. Note that �t in D1S diverges at
ρ = 0.55 fm−3, as shown in Fig. 2(a), because at reaches 0.

7. Summary

We have investigated the accuracy of the approximation of the symmetry energy in nuclear mat-
ter within the Hartree–Fock theory. As measures of the accuracy of ãt(ρ) (difference of the
neutron-matter energy from the symmetric-matter energy) relative to at(ρ) (second derivative of
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Fig. 2. Errors for the symmetry energy, (a) �t and (b) δt (MeV), for several effective interactions.
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Fig. 3. Contribution of each term in the symmetry energy for (a) SkM∗ and (b) SLy4.

the energy with respect to the asymmetry ηt), we have estimated the absolute error δt and the relative
error �t . The errors are decomposed into several terms, associated with the decomposition of the
nuclear-matter energy in Eq. (10). With this decomposition, δt can be expressed in terms of ai and �i,
where i represents the individual components. We have derived analytical expressions for each of the
�i, which makes the origin of δt and �t transparent. On this basis, δt and �t are estimated for the six
effective interactions by inserting values for the parameters. We have found −2 MeV � δt � 4 MeV,
which means |�t| < 0.1, up to twice the normal density for all of the effective interactions. At higher
densities, they depend considerably on the effective interactions. The errors are kept small for the
two M3Y-type interactions and SLy4, while the good accuracy of the approximation is lost for the
two Gogny interactions and SkM∗. We have explained this tendency from �i, i.e., the relative errors
of individual terms in the symmetry energy.

Recall that SLy4, D1M, M3Y-P6, and M3Y-P7 are the parameter sets that are fitted to the micro-
scopic calculation of the equation of state of neutron matter. With the exception of D1M, this
constraint might help to keep δt and �t small even at high density. For the Skyrme interactions, all
of �i are constant, and δt can be written by only three terms, the kinetic term aK, the momentum-
dependent term between like nucleons apO, and that between unlike nucleons apX. Then, we found
that the parameters of the momentum-dependent terms to

p and tx
p produced different behavior of δt

between SkM∗ and SLy4. For the finite-range interactions, δt can be expressed by the kinetic term
aK, the Fock terms between like nucleons aFOn and between unlike nucleons aFXn. For given func-
tion types, the coefficients of the Fock terms �FOn and �FXn are single-variable functions of kF/μn,
which are independent of the parameters. As shown in Fig. 1, �FXn produces a significant difference
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in δt and �t between the Gauss and the Yukawa functions at high density. This suggests that the
function type plays a certain role in the accuracy of the approximation.
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Appendix A. Parameters of interactions

The parameters of the effective interactions used in this paper, SkM∗ [7], SLy4 [8], D1S [9], D1M [10],
M3Y-P6, and M3Y-P7 [11], are tabulated in Tables A1, A2, and A3.

Table A1. Parameter sets of SkM∗ and SLy4.

Parameters SkM∗ SLy4

t0 (MeV fm3) −2645.0 −2488.91
t1 (MeV fm5) 410.0 483.13
t2 (MeV fm5) −135.0 −549.40
x0 0.090 0.778
x1 0.000 0.328
x2 0.000 −1.000
to
c (MeV fm3) −382.291 −2406.95

tx
c (MeV fm3) −7064.94 −5528.05

to
p (MeV fm5) 5.000 324.663

tx
p (MeV fm5) 550.00 575.327

t(SE)
ρ (MeV fm3(1+α)) 2599.17 −608.49

t(TE)
ρ (MeV fm3(1+β)) 2599.17 5166.12
α 1/6 1/6
β 1/6 1/6

Table A2. Parameter sets of D1S and D1M.

Parameters D1S D1M

μ−1
1 (fm) 0.7 0.5

μ−1
2 (fm) 1.2 1.0

t(W)

1 (MeV) −1720.3 −12797.57
t(B)

1 (MeV) 1300.0 14048.85
t(H)

1 (MeV) −1813.53 −15144.43
t(M)

1 (MeV) 1397.6 11963.89
t(W)

2 (MeV) 103.64 490.95
t(B)

2 (MeV) −163.48 −752.27
t(H)

2 (MeV) 162.81 675.12
t(M)

2 (MeV) −223.93 −693.57
t(SE)
ρ (MeV fm3(1+α)) 0 0

t(TE)
ρ (MeV fm3(1+β)) 2781.2 3124.44
α — —
β 1/3 1/3
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Table A3. Parameter sets of M3Y-P6 and M3Y-P7.

Parameters M3Y-P6 M3Y-P7

μ−1
1 (fm) 0.25 0.25

μ−1
2 (fm) 0.40 0.40

μ−1
3 (fm) 1.414 1.414

t(SE)

1 (MeV) 10766 10655
t(TE)

1 (MeV) 8474 9592
t(SO)

1 (MeV) −728 11510
t(TO)

1 (MeV) 12453 13507
t(SE)

2 (MeV) −3520 −3556
t(TE)

2 (MeV) −4594 −4594
t(SO)

2 (MeV) 1386 1283
t(TO)

2 (MeV) −1588 −1812
t(SE)

3 (MeV) −10.463 −10.463
t(TE)

3 (MeV) −10.463 −10.463
t(SO)

3 (MeV) 31.389 31.389
t(TO)

3 (MeV) 3.488 3.488
t(SE)
ρ (MeV fm3(1+α)) 384 830

t(TE)
ρ (MeV fm3(1+β)) 1930 1478
α 1 1
β 1/3 1/3

Appendix B. Formulas for symmetry energy

Here we present some formulas for ai, which is defined in Eq. (12).
The second-order derivatives with respect to the asymmetry of the kinetic-energy term and the

density-dependent term are

E (2)
K = ∂2EK

∂η2
t

= π2ρ

4M
(k−1

p + k−1
n ),

E (2)
DD = ∂2EDD

∂η2
t

= 1

8

(
t(SE)
ρ ρα+1 − 3t(TE)

ρ ρβ+1).

(B.1)

The second-order derivatives of the W functions are:

WH
n (kp, kp)

(2) + WH
n (kn, kn)

(2) = 16π6ρ2 f̃n(0),

WH
n (kp, kn)

(2) = −8π6ρ2 f̃n(0),

WF
n (kp, kp)

(2) + WF
n (kn, kn)

(2) = 32π6ρ2
[

k−4
p

∫ kp

0
dk k3 f̃n(2k) + k−4

n

∫ kn

0
dk k3 f̃n(2k)

]
,

WF
n (kp, kn)

(2) = 4π6ρ2
∫ (kp+kn)/2

|kp−kn|/2
dk

× [−{(k−4
p + k−4

n )(k2
p + k2

n ) + 4k−1
p k−1

n }k + 4(k−4
p + k−4

n )k3]f̃n(2k). (B.2)
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Each term of Eq. (12) is given by

aK = π2ρ

4M
k−1

F ,

aDD = ρ

16
(t(SE)

ρ ρα+1 − 3t(TE)
ρ ρβ+1),

aHOn = 1

2(2π)6 (2t(W)
n + t(B)

n − 2t(H)
n − t(M)

n )
{WH

n (kp, kp)
(2) + WH

n (kn, kn)
(2)

}∣∣∣
ηt=0

= ρ

8
(2t(W)

n + t(B)
n − 2t(H)

n − t(M)
n ) f̃n(0),

aHXn = 1

(2π)6 (2t(W)
n + t(B)

n ) WH
n (kp, kn)

(2)
∣∣∣
ηt=0

= −ρ

8
(2t(W)

n + t(B)
n ) f̃n(0),

aFOn = 1

2(2π)6 (2t(M)
n + t(H)

n − 2t(B)
n − t(W)

n )
{WF

n (kp, kp)
(2) + WF

n (kn, kn)
(2)

}∣∣∣
ηt=0

= ρ

2
(2t(M)

n + t(H)
n − 2t(B)

n − t(W)
n )k−4

F

∫ kF

0
dk k3 f̃n(2k)

aFXn = 1

(2π)6 (2t(M)
n + t(H)

n ) WF
n (kp, kn)

(2)
∣∣∣
ηt=0

= ρ

2
(2t(M)

n + t(H)
n )k−4

F

∫ kF

0
dk

(−k2
Fk + k3) f̃n(2k).

(B.3)

Appendix C. Explicit expressions for �FOn and �FXn

If the function form is specified, �FOn and �FXn can be expressed in more explicit forms. Here, we
denote kF/μn by x. Then �FOn and �FXn become functions only of x for a given function form.

For the Gauss function f (r) = e−(μr)2
, whose Fourier transform is f̃ (2k) = (

√
π/μ)3 e−(k/μ)2

,
we obtain

�FOn = 3

x2 · 1

1 − e−x2 − x2e−x2

[
−1 + 3(1 − 2−1/3)x2 + (2 − x2) e−x2

− (1 − 2−1/3x2) e−22/3x2 + √
πx3{erf (21/3x) − erf (x)}

]
− 1,

�FXn = 3

x2 · 2 − 3x2 − 2e−x2 + x2e−x2 + √
πx3 erf (x)

−1 + x2 + e−x2 − 1,

(C.1)

where erf (x) = (2/
√

π)
∫ x

0 e−t2
dt.
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For the Yukawa function f (r) = e−μr/μr, whose Fourier transform is f̃ (2k) = 4π/μ(μ2 + 4k2),
�FOn and �FXn are

�FOn = 3

2x2 · 1[
4x2 − log(1 + 4x2)

][
2(1 − 2−1/3)x2 + 12(21/3 − 1)x4

+ 1

4
log

1 + 4 · 22/3x2

(1 + 4x2)2 + 3 · 22/3x2 log(1 + 4 · 22/3x2) − 6x2 log(1 + 4x2)

− 16x3{arctan(24/3x) − arctan(2x)}
]

− 1,

�FXn = 3

4x2 · 4x2(1 − 6x2) + 32x3arctan(2x) − (1 + 12x2) log(1 + 4x2)

4x2 − (1 + 4x2) log(1 + 4x2)
− 1. (C.2)
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